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ABSTRACT

This dissertation builds a clear understanding of the role of information in wire-

less networks, and devises adaptive strategies to optimize the overall performance. The

meaning of information ranges from channel/network states to the structure of the signal

itself. Under the common thread of characterizing the role of information, this disserta-

tion investigates opportunistic scheduling, relaying and multicast in wireless networks.

To assess the role of channel state information, the problem of opportunistic

distributed opportunistic scheduling (DOS) with incomplete information is considered

for ad-hoc networks in which many links contend for the same channel using random

access. The objective is to maximize the system throughput. In practice, link state

information is noisy, and may result in throughput degradation. Therefore, re�ning the

state information by additional probing can improve the throughput, but at the cost of

further probing. Capitalizing on optimal stopping theory, the optimal scheduling policy

is shown to be threshold-based and is characterized by either one or two thresholds,

depending on network settings.

To understand the bene�ts of side information in cooperative relaying scenarios,

a basic model is explored for two-hop transmissions of two information �ows which

interfere with each other. While the �rst hop is a classical interference channel, the

second hop can be treated as an interference channel with transmitter side information.

Various cooperative relaying strategies are developed to enhance the achievable rate. In

another context, a simple sensor network is considered, where a sensor node acts as a

relay, and aids fusion center in detecting an event. Two relaying schemes are considered:

analog relaying and digital relaying. Su�cient conditions are provided for the optimality

of analog relaying over digital relaying in this network.

To illustrate the role of information about the signal structure in joint source-

channel coding, multicast of compressible signals over lossy channels is studied. The

focus is on the network outage from the perspective of signal distortion across all re-

ceivers. Based on extreme value theory, the network outage is characterized in terms

of key parameters. A new method using subblock network coding is devised, which

prioritizes resource allocation based on the signal information structure.
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Chapter 1

INTRODUCTION

Recent years have witnessed a tremendous growth in the demand for ubiquitous infor-

mation access. Indeed, our society hinges heavily on reliable and e�cient operations

of large-scale networks, e.g., the Internet and wireless ad-hoc/sensor networks, for col-

lecting, processing, analyzing and managing information in adverse noisy environments.

The unique characteristics of wireless links, together with the bursty nature of tra�c

�ows, create both new challenges and opportunities in our attempts to implement this

vision. Di�erent from the wireline counterpart, the design of wireless networks faces a

number of unique challenges, particularly, co-channel interference and multipath fading.

1) Co-channel interference: When more than one information �ow occupies the same

channel, the shared nature of wireless medium results in co-channel interference. The

receiver, apart form the message of its own source, also receives transmissions from

other unintended sources. This may lead to collisions and transmission outages. Wire-

less systems deal with interference by incorporating time/frequency orthogonality, or by

handling at the medium access control (MAC)-layer level, typically, via scheduling or

random access protocols.

2) Time varying channel conditions over fading channels: Fading is the time variation

of the wireless channel, and can often be characterized with two types of e�ects: large-

scale path loss and shadowing e�ects that cause the signal to attenuate with distance;

and multipath scattering e�ects that result in delayed copies of the signal adding up

constructively or destructively at the receiver. Fading e�ects are often mitigated at the

physical layer using coding/modulation and diversity techniques.

Besides the above impediments, wireless networks often operate under hostile

conditions that include bursty tra�c and changing network topology. Meeting the qual-

ity of services (QoS) requirements of the end users can be extremely di�cult in such

hostile operating conditions.

Further, for practical reasons, wireless systems are often constrained in terms

of resources such as bandwidth, power, time etc. The impetus for the optimal design

and operation of any wireless system lies in the e�cient management of these limited
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resources. E�ective management of limited resources, in turn, hinges heavily on the

availability of information about the system states in the presence of complicated dy-

namics in the network. For instance, in multimedia systems, availability of a priori

information about the parameters, such as the distribution and �compressibility� of the

signals, helps in e�cient data compression, thereby saving storage and transmission

bandwidth. In multiuser wireless networks, the availability of information about the dy-

namics of the channel state, tra�c �ow, topology etc., at each epoch, can be leveraged

using the notion of opportunistic scheduling to signi�cantly enhance the QoS provision-

ing. Also, in networks where interference is the main impediment, access to information

about the interference and its structure enables e�cient design of transmission/reception

techniques toward optimal interference management.

Thus motivated, one primary goal of this work is to understand the �value of

information� in enhancing the system performance. As noted above, the meaning of

information ranges from state information about the channel/network dynamics to the

structure of the source signal itself. By developing a clear understanding of various forms

of information availability, we demonstrate that indeed one can gain substantially, in

terms of overall performance, when compared to the methods which do not exploit the

availability of information.

Under the common theme of characterizing the value of information, this thesis is

broadly organized into four chapters. In Chapter 2, distributed opportunistic scheduling

(DOS) is studied with the objective of quantifying the trade-o� between throughput

gain with re�ned channel state information and the corresponding overhead. Based

on optimal stopping theory, a framework for PHY-aware scheduling is developed for

exploiting rich diversities at the physical-layer and medium access control (MAC) layer.

In Chapter 3, a two-hop interference network is studied, in which the second hop is

viewed as an interference channel with side information at the transmitters. Information

theoretic techniques are applied to study the value of this side information in enhancing

the achievable rate. In Chapter 4, the problem of multicasting compressible signals is

considered, where one principal objective is to exploit the information available on the

signal structure in developing joint source/channel coding strategy to improve the QoS.
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In Chapter 5, a sensory relay network model is considered, and optimality conditions

for analog vs digital relaying are characterized. In what follows, we brie�y summarize

our contributions along with the motivations and techniques involved.

1.1 Distributed Opportunistic Scheduling

As noted above, two key challenges to the wireless communications are interference and

fading. In the design of wireless ad-hoc networks, the traditional approach has been

to separate packet losses caused by fading from those caused by collision, neglecting

the structure pertaining to the dynamics of these parameters in the networks. That

is, the PHY layer addresses the issues of fading, and the MAC layer addresses the

issue of contention. However, as shown in [1, 2], fading can often adversely a�ect the

MAC layer in many realistic scenarios. The coupling between the temporal dynamics of

fading and MAC calls for a uni�ed PHY/MAC design for wireless ad-hoc networks in

order to achieve optimal throughput and latency. Indeed, lurking beneath this dynamic

nature of the wireless medium and tra�c are the joint PHY/MAC diversities (including

multiuser, time and spatial diversities), which are available for exploitation in a wide

range of wireless scenarios. Nevertheless, one has to carefully understand these dynamics

and build channel-aware scheduling approaches for e�cient handling of the information

�ow. It is therefore of critical importance to develop a rigorous understanding of state-

aware scheduling that can resolve contention and mitigate interference e�ciently while

exploiting diversities.

Notably, there has recently been a surge of interest in channel-aware scheduling

and channel-aware access control. Channel-aware opportunistic scheduling was �rst de-

veloped for downlink transmissions in multiuser wireless networks ([3],[4],[5],[6]). While

these studies assumed centralized scheduling, distributed opportunistic scheduling was

initiated by Zheng et al. [7], where, using optimal stopping theory, authors devise

scheduling strategies for ad-hoc networks under the assumption that the nodes have

perfect channel information. Generalization of [7] to the noisy estimation case is carried

out in [8]. It has been observed in [9] that the errors in channel estimation results in

outages, and they propose backo� schemes to avoid transmission outages. However,
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backo� may lead to severe throughput degradation, especially in the low SNR regime,

due to a more conservative rate reduction. Therefore, a plausible solution is to mitigate

rate estimation errors by performing further channel probing. Clearly, the improved rate

estimation obtained with second-level probing enables the desired link to make more ac-

curate decisions. However, the advantages of second-level probing come at the price of

additional overhead. There is, therefore, a tradeo� between the throughput gain from

better channel conditions and the cost for further probing.

With this insight, in Chapter 2, we investigate DOS with two-level channel prob-

ing by optimizing the tradeo� between the throughput gain from more accurate rate es-

timation and the resulting additional probing overhead. Based on the recent advances in

OST, namely OST with two-level incomplete information [10] and statistical versions of

�prophet inequalities� [11], we show that the optimal scheduling policy is threshold-based

and is characterized by either one or two thresholds, depending on network settings. Nec-

essary and su�cient conditions for both cases are rigorously established. In particular,

our analysis reveals that performing second-level channel probing is optimal when the

�rst-level estimated channel condition falls in between the two thresholds. Numerical

results are provided to illustrate the e�ectiveness of the proposed DOS with two-level

channel probing. We also extend our study to the case with limited feedback, where the

feedback from the receiver to its transmitter takes the form of (0, 1, e).

1.2 Two-Hop Interference Flows

Relay channels and interference channels have been basic building blocks of wireless net-

works. Particularly, interference in networks is modeled by a basic two user interference

channel (IC), which consists of two transmitter-receiver pairs involved in simultaneous

communication, and their transmissions interfere with each other. As noted earlier, in-

terference is a central phenomenon in wireless communications. Most state-of-the-art

wireless systems deal with interference in one of two ways: orthogonalize the commu-

nication links in time or frequency, so that they do not interfere with each other; or,

allow the communication links to share the same degrees of freedom, but treat each

other's interference as adding to the noise �oor. It is clear that both approaches can be
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sub-optimal. The �rst approach entails an a priori loss of degrees of freedom in both

links, no matter how weak the potential interference is. The second approach treats

interference as pure noise while it actually carries information and has structure that

can potentially be exploited in mitigating its e�ect.

Unfortunately, the problem of characterizing the capacity region of a general

IC has been open. The only case in which the capacity is known is in the strong

interference case, where each receiver has a better reception of the other user's signal

than the intended receiver [12]. The best known strategy for the general case is due to

Han and Kobayashi (HK) [13]. This strategy is a natural one and involves splitting the

transmitted information of both users into two parts: private information to be decoded

only at its own receiver and common information that can be decoded at both receivers.

By decoding the common information, part of the interference can be canceled o�, while

the remaining private information from the other user is treated as noise. Recently,

Etkin and Tse [14], have proposed a speci�c HK type scheme where it is shown that the

proposed scheme achieves to within a single bit of the capacity region of an IC.

In a relay channel, as introduced by van der Meulen [15], a relay node assists

the source in communicating data to a destination. Relay networks are instrumental in

harnessing the dynamic nature of the wireless medium to yield a form of diversity called

cooperative diversity [16].

An interesting model under consideration can be viewed as a combination of

relay channels and interference channels. Speci�cally, this model involves two sources

which communicate simultaneously with two destinations, and are aided by two relay

nodes. While the �rst hop is akin to the traditional interference channel, the second

hop has an interesting feature. Speci�cally, as a by-product of the Han-Kobayashi [13]

transmission scheme applied to the �rst hop, each of the relays (in the second hop) has

access to some of the data that is intended to the other destination, in addition to its

own data. Thus, the second hop represents an interference channel with side information

at the transmitters. This feature opens the door to cooperation between the relays. A

clear understanding towards exploiting side information at the relays in the second hop

enables one to devise relaying strategies to manage interference and e�cient information
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�ow, thereby enhancing the achievable rate region of the network.

In Chapter 3, we explore some cooperative strategies among relays that system-

atically exploit the availability of side information to maximize the achievable rates.

Speci�cally, we observe that the availability of side information at each relay opens the

door for cooperation which can take the form of distributed multiple-input and multiple-

output (MIMO) broadcast, thus greatly enhancing its e�ectiveness at high SNR. How-

ever, since each relay has only partial side information of the data beyond its own, full

cooperation is not possible. Thus, a key feature of this network is that it has elements

of both the broadcast channel and the interference channel.

In light of this, we study strategies based on the nontrivial marriage of MIMO-BC

techniques for cooperative relaying, rate-splitting and superposition coding, to enable

interference cancelation at the receivers, and the Gelfand-Pinsker (GP) coding [17] at

each transmitter to reduce the interference to its own receivers. Speci�cally, we propose

two types of layered schemes that combine MIMO broadcast and HK coding. The �rst

one is layered coding with binning which mainly hinges on a novel interplay between

binning (DPC) and HK coding. The second one is a layered coding with superposition

strategy that involves superposition coding over di�erent tiers. Numerical results are

provided that indicate our approaches provide substantial bene�ts at high SNR.

1.3 Multicast of Compressible Signals

Reliable delivery of compressible information to many destinations is an important sce-

nario in modern day wireless systems. This transmission scenario, for instance, is useful

for multimedia streaming over a WiFi or WiMAX network with multiple receivers. It

is also applicable to sensor networks, where each sensor node wishes to communicate

its sensed observations to multiple coordinating agents. Needless to say, this problem

is quite challenging due to the lossy nature of wireless channels and the heterogeneity

in the amount of information received across di�erent receivers. Another challenge is

the �bottleneck� e�ect with the shared transmission medium among many receivers; i.e.,

the overall performance is limited by the receiver that has the worst channel condition.

Therefore, ensuring that the QoS for the bottleneck user is on par with the others clearly
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makes the multicast transmission more challenging. In light of this, it is of paramount

importance to come up with transmission schemes that can mitigate channel erasures so

that data loss is minimized. Notably, network coding (NC), a recent breakthrough in this

avenue by Ahlswede et al. [18], o�ers a promising platform for multicast transmissions.

When we consider source signals for transmission, many of these signals are

known to be sparse or compressible. The conventional method of data compression

involves sampling the signal at the Nyquist's rate, storing the samples, and compressing

them in an appropriate domain prior to the transmission, which would incur heavy

sampling and storing burden at the sender. On the other hand, recent developments of

compressive sensing theory [19, 20, 21] have provided methods not only for lower-rate

signal acquisition, but also for accurate signal reconstruction.

When it comes to transmission of compressible data over wireless links, the

traditional wisdom has been to adopt separation principle. That is, while the structure

of the source signal is considerably exploited in sampling and compression, it is seldom

exploited in minimizing the �information loss� incurred due to transmission over the

hostile channel. This calls for joint design of compression and transmission strategies to

enhance the �ow of information.

With this motivation, in Chapter 4, we study multicasting compressively sampled

signals from a source to many receivers, over lossy wireless channels. Our focus is on

the network outage from the perspective of signal distortion across all receivers, for

both cases where the transmitter may or may not be capable of reconstructing the

compressively sampled signals. Capitalizing on extreme value theory, we characterize

the network outage in terms of key system parameters, including the erasure probability,

the number of receivers and the sparse structure of the signal. We show that when

the transmitter can reconstruct the compressively sensed signal, the strategy of using

network coding to multicast the reconstructed signal coe�cients can reduce the network

outage signi�cantly. We observe, however, that the traditional network coding could

result in suboptimal performance for power-law decay signals. Thus motivated, we

devise a new method, namely subblock network coding, that exploits the knowledge

about the signal structure. Essentially, subblock coding involves fragmenting the data
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into subblocks, and allocating time slots to di�erent subblocks, based on their priorities.

We formulate the corresponding optimal allocation as an integer programming problem.

Since integer programming is often intractable, we develop a heuristic algorithm that

prioritizes the time slot allocation by exploiting the inherent priority structure of power-

law decay signals. Numerical results show that the proposed schemes outperform the

traditional methods with signi�cant margins.

1.4 Analog versus Digital Relaying in a Sensor Network

In Chapter 5, we consider a simple model of wireless sensor network for hypothesis

testing, where a sensor node acts as a relay and aids a fusion center to perform hypothesis

testing on an event. The sensor performs noisy observations on the underlying event,

performs a local processing and then relays the processed data to the fusion center.

We compare two relay schemes: �estimate-and-forward� (analog relaying) and �detect-

and-forward� (digital relaying), in terms of the ultimate detection performance they

support at the fusion center. With this performance criterion, the relative merit of the

two schemes is shown to depend on the observation SNR at the sensor and the SNR

of the communication link connecting the sensor and the fusion center. A su�cient

condition, in terms of these SNRs, for the superiority of digital relaying over analog

relaying is derived for this simple network model. Although the network model used

here is highly simpli�ed, it is hoped that this work will contribute to a foundation for

analysis of more realistic scenarios, leading to advances in sensor placement strategies

and inference algorithms in sensor networks. This study can also impact the development

of cooperative relaying strategies in wireless relay networks.
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Chapter 2

DISTRIBUTED OPPORTUNISTIC SCHEDULING WITH INCOMPLETE STATE

INFORMATION

2.1 Introduction

Channel-aware scheduling has recently emerged as a promising technique to harness

the rich diversities inherent in wireless networks. In channel-aware scheduling, joint

physical layer (PHY)/medium access control (MAC) optimization is utilized to improve

network throughput by scheduling links with good channel conditions for data trans-

missions [3, 22, 6]. While most existing studies focus on centralized scheduling (see,

e.g., [4, 23, 24, 22, 6]), some initial steps have been taken in [25] to develop distributed

opportunistic scheduling (DOS) to reap multiuser diversity and time diversity in wireless

ad-hoc networks.

The DOS framework considers an ad-hoc network in which many links contend

for the same channel using random access, e.g., carrier-sense multiple-access (CSMA).

However, random access protocols provide no guarantee that a successful channel con-

tention is necessarily attained by a link with good channel conditions. From a holistic

perspective, a successful link with poor channel conditions should forgo its data trans-

mission and let all links re-contend for the channel. This is because after further channel

probing, it is more likely for a link with better channel conditions to take the channel,

yielding possibly higher throughput. In this way, multiuser diversity across links and

time diversity across time can be exploited in a joint manner. However, each channel

probing incurs a cost of contention time. The desired tradeo� between the through-

put gain from better channel conditions and the cost for further probing reduces to

judiciously choosing an optimal rule for stopping channel probing for throughput max-

imization. Using optimal stopping theory (OST), it is shown in [25] that the optimal

scheduling scheme turns out to be a pure threshold policy: The successful link proceeds

to transmit data only if its supportable rate is higher than the pre-designed threshold;

otherwise, it skips the transmission opportunity and lets all other links re-contend. In

general, threshold-based scheduling uses local information only, and hence is amenable

to easy distributed implementation in practical systems.
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The initial study of DOS [25] hinges upon a key assumption that the channel

state information (CSI) is perfectly available at the receiver. In practice, the link rates

are estimated from noisy observations. It is shown in [9] that the signal-to-noise ratio

(SNR) estimated by the minimum mean squared error (MMSE) method is larger than

the �actual SNR� due to the estimation error noise. Thus, the transmission rate must be

backed o� from the estimated rate in order to avoid transmission outages. Our initial

steps in [8] show that the optimal scheduling policy under noisy channel estimation still

has a threshold structure.

Despite their robust performance under noisy channel estimation, the linear

backo� schemes proposed in [8] are reactive in nature and back o� the rate by a fac-

tor proportional to the channel estimation errors, which may lead to severe throughput

degradation, especially in the low SNR regime (where a more conservative rate backo�

is needed). Recently, wideband communications (e.g., ultra-wideband) has attracted

signi�cant attention [26], owing to its low-power operation and the ability to co-exist

with other legacy networks, etc. The great potential of wideband communications gives

an impetus to address the problem of throughput degradation due to estimation errors,

in the low-SNR (wideband) regime. More speci�cally, to circumvent this drawback, a

plausible solution is to mitigate the rate estimation errors by performing further chan-

nel probing. In the sequel, we refer to the initial rate estimation performed during the

channel contention as ��rst-level probing�, whereas the subsequent probing performed

after the successful contention is referred to as �second-level probing�. Clearly, the im-

proved rate estimation obtained with second-level probing enables the desired link to

make more accurate decisions. However, the advantages of second-level probing come

at the price of additional delay. This gives rise to two important questions: 1) Is it

worthwhile for the link with successful contention to perform further channel probing

to re�ne the rate estimate, at the cost of additional probing? 2) While there is always

a gain in the transmission rate due to the re�nement, how much can one bargain with

the additional probing overhead?

We shall answer these questions by considering distributed opportunistic schedul-

ing with two-level channel probing. Based on two recent advances in optimal stopping
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theory, namely optimal stopping with two-level incomplete information [10] and statis-

tical versions of �prophet inequalities� [11], we provide a rigorous characterization of the

scheduling strategy that optimizes the tradeo� between the throughput gain achieved

by second-level channel probing and the resulting additional delay. It is shown that

the optimal scheduling strategy is threshold-based and is characterized by either one or

two thresholds, depending on the system parameters. By establishing the corresponding

necessary and su�cient conditions for these two cases, we show that the second-level

probing can signi�cantly improve the system throughput when the estimated rate via

�rst-level probing falls in between the two thresholds. In such scenarios, the cost of addi-

tional delay can be well justi�ed by the throughput enhancement using the second-level

channel probing. We elaborate further on this in Section 2.3. Finally, through numerical

results, we illustrate the e�ectiveness of the proposed scheduling scheme.

Before proceeding further, the main contributions distinguishing this work from

other existing works should be emphasized. OST under two levels of incomplete infor-

mation is addressed with the objective of maximizing the net-return in [10]; in contrast,

we study OST with two levels of probing as applied to DOS with the objective of max-

imizing the rate of return (i.e., the throughput). We study distributed opportunistic

scheduling for ad-hoc communications under noisy conditions where the rate estimate is

available only after a successful channel contention; and this is clearly di�erent from [9],

which considers centralized scheduling assuming that the rate estimates of all links are

available a priori at the base station. Despite the fact that both this work and [8] study

distributed opportunistic scheduling with imperfect information, this work concentrates

on proactively improving throughput by enhancing rate estimation, whereas [8] proposes

to passively reduce data rate to avoid transmission outages. Another related work [27]

uses optimal stopping theory to investigate the intrinsic trade-o� between energy and

delay in distributed data aggregation and forwarding in sensor networks.

The rest of the chapter is organized as follows. In Section 2.2, we provide a brief

introduction to the optimal stopping theory, discuss the system model, and provide

background on DOS with only �rst-level probing in noisy environments. In Section 2.3,

we present second-level channel probing and characterize the optimal DOS with two-
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level probing. We also present numerical results to illustrate the gain due to two-level

probing. In Section 2.4, we extend our study to the case where there is limited feedback

from the receiver to its transmitter. Finally, Section 2.5 contains our conclusions.

Notation: |·| denotes the amplitude of the enclosed complex-valued quantity. R+

denotes the set of non-negative real numbers. We use [x]+ for max[x, 0], and E[·] for

expectation.

2.2 Background and System Model

Preliminaries on optimal stopping theory

As noted above, in an ad-hoc communication network with many links, when a link

discovers that its channel condition is �relatively poor� after a successful channel con-

tention, it can either transmit or skip this opportunity so that, in the next round, some

link with a better condition would have the chance to transmit. This is intimately re-

lated to the optimal stopping problem in sequential analysis [28]. Simply put, optimal

stopping theory is concerned with the problem of choosing a strategy for deciding when

to take a given action based on the past events in order to maximize an average return,

where return is the net gain (the di�erence between the reward and the cost). The

corresponding strategy is called an optimal stopping rule.

More speci�cally, let Z1, Z2, ... denote a sequence of random variables, and let

Y0, Y1(Z1), Y2(Z1, Z2), . . . , Y∞(Z1, Z2, . . .) a sequence of real-valued reward functions. The

reward is Yn(Z1, ..., Zn) if the strategy chooses to stop at time n. The theory of optimal

stopping is concerned with determining the stopping time N to maximize the expected

reward E[YN ]; and in general, a stopping rule (or a stopping time) (cf. [28]) is de�ned to

be a random variable N such that {N = n} ∈ Fn, where Fn is the σ-algebra generated

by {Z1, . . . , Zn}. This is equivalent to saying that the decision to transmit at a slot n

depends only on the sequence {Z1, . . . , Zn}. A good introduction to optimal stopping

theory can be found in [28],[29], or [30].
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System model

Consider a single-hop ad-hoc network in which L links contend for the channel using

random access. A collision model is assumed for random access, in which a channel

contention of a link is said to be successful if no other links transmit at the same time.

Let pℓ be the probability that link ℓ contends for the channel, ℓ = 1, . . . , L. Then

the overall successful contention probability, ps, is given by ps =
∑L

ℓ=1

(
pℓ
∏

i̸=ℓ(1− pi)
)

(cf. [31]). For ease of exposition, we assume that the contention probabilities, {pℓ},

remain �xed (see [32] for a study with adaptive contention probabilities). We de�ne the

random duration of achieving one successful channel contention as one round of channel

probing. Clearly, the number of slots in each probing round, K, is a geometric random

variable, i.e., K ∼ G(ps). Denoting the slot duration by τ , the corresponding random

duration for one probing round thus becomes Kτ , with its expected value being τ/ps.

In a nutshell, each round of channel probing consists of two phases, namely,

channel contention and channel estimation. We assume that a link can estimate its link

conditions (hence the transmission rate) after a successful contention1.

Let s(n) denote the successful link in the n-th round of channel probing, and Rn

denote the corresponding transmission rate. Due to the time-varying nature of wireless

channels, Rn is random. Following the standard assumption on block fading channels

in wireless communications [33], we assume that the channel remains constant for a

duration of T . When an estimate of the transmission rate is available, the successful

link may decide to transmit over a duration of T , if the rate is high enough, or may skip

it2 and allow all links to re-contend, in the hope that another link with a better channel

will take the channel later.

To get a more concrete sense of joint channel probing and distributed scheduling,

we depict, in Fig. 2.1, an example with N rounds of channel probing and one single

data transmission. Speci�cally, suppose after the �rst round of channel probing with a

duration of K1 slots, the rate, R1, of link s(1) is very small (indicating a poor channel

1The successful link can carry out its rate estimation via a training phase during the request-to-
send/clear-to-send (RTS/CTS) handshake, which follows a successful contention. This procedure is
fairly standard in the literature, and is not dealt with here.

2This decision can be broadcast to all users in the one-hop neighborhood (e.g., NCTS).
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condition); and as a result, s(1) gives up this transmission opportunity and lets all links

re-contend. Then, after the second successful contention with a duration ofK2 slots, link

s(2) also gives up the transmission because its rate, R2, is also small. This continues for

N rounds until link s(N) transmits because its transmission rate, RN , is good. Clearly,

there exists a tradeo� between the throughput gain from better channel conditions and

the cost for further probing.

ττ

TN

N

(2) I CSC I (1)S C C (N)S

TΚ τ Κ  τΚ τ
21

Successful Handshake / Collision / Idle Data transmission

Figure 2.1: A sample realization of channel probing and data transmission.

In [25], it is shown that the process of joint channel probing and distributed

scheduling can be treated as a team optimization problem in which all links collaborate to

maximize rate of return (the average throughput). Speci�cally, as illustrated in Fig. 2.1,

after one round of channel probing, a stopping rule N decides whether the successful

link carries out data transmission, or simply skips this opportunity to let all links re-

contend. Let Tn =
∑n

j=1Kjτ + T be the total system time, de�ned as the sum of the

contention time and the transmission duration, where Kj is the number of slots in the

jth probing round. It turns out that the optimal DOS strategy achieving the maximum

throughput hinges on the optimal stopping rule N∗, which yields the maximal rate of

return θ∗. That is,

θ∗ , sup
N∈Q

E[RNT ]

E[TN ]
, (2.1)

and

N∗ , argmax
N∈Q

E[RNT ]

E[TN ]
, (2.2)

where

Q , {N : N ≥ 1,E[TN ] <∞}. (2.3)
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It is clear that Rn plays a critical role in distributed opportunistic scheduling. In

practice, rate estimates are seldom perfect. It is shown in [9] that the rate corresponding

to the estimated SNR tends to be greater than the actual rate, and subsequently the

transmission rate must be backed o� from the estimated rate to avoid outages. Then,

a natural question to ask is whether it is worthwhile for the link with successful con-

tention to perform further channel probing to re�ne the channel estimate, at the cost of

additional probing overhead, and how much can one bargain?

Intuitively speaking, when the transmission rate is small, it makes sense to give

up the transmission, since the gain due to rate re�nement would be marginal due to the

poor link conditions. On the other hand, when the rate is large enough, it may not be

advantageous to perform additional probing as the improvement is meager. It is natural

to expect that there exists a �gray area� between these extremes where signi�cant gains

are possible by re�ning the rate estimate with additional probing. In what follows, we

seek a clear understanding of the above fundamental issues.

To this end, we present the PHY-layer signal model �rst. The received signal

corresponding to s(n) can be written as3

Ys(n)(n) =
√
ρhs(n)(n)Xs(n)(n) + ξs(n)(n), (2.4)

where ρ is the normalized receiver SNR, hs(n)(n) is the channel gain for link s(n),

Xs(n)(n) is the transmitted signal with E[
∣∣Xs(n)(n)

∣∣2] = 1, and ξs(n)(n) is additive white

Gaussian noise (AWGN) with unit variance. Further, hs(n)(n) and hs(m)(m) are the

channel coe�cients corresponding to the link with successful contention in the n-th

round of probing and that in the mth round of probing. In this work, we consider a

homogeneous network in which all links are subject to independent Rayleigh fading,

with identical channel statistics. With this observation, we assume that hs(n)(n) and

hs(m)(m) are independent for n ̸= m. This is a practically valid assumption because

the likelihood of one link (say link m) achieving two consecutive successful channel

probings, p2m
∏

i̸=m(1 − pi)2, is fairly small, especially when the number of links in the

network is large. Furthermore, even if the same link successfully obtains two consecutive

3We note that the results reported here can be extended to frequency-selective fading channels by
replacing scalar fading parameters with vectors.
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channel contentions, the channel conditions corresponding to the two consecutive suc-

cessful channel probings are independent since the channel probing duration in between

is designed to be comparable to the channel coherence time. As shown in [25], when

pm = 1
L , L = 10 and π = 0.9, the probability that the correlation across two adjacent suc-

cessful contentions is no greater than 0.1 is 0.903. Summarizing, it is quite reasonable

to impose the assumption on the channel independence between two successful channel

contentions.

Without loss of generality, to simplify our exposition, we make the following

simpli�cations: We focus on the n-th probing round and omit the temporal index n,

whenever possible. We use Yn, Xn, ξn and hn to denote Ys(n)(n), Xs(n)(n), ξs(n)(n) and

hs(n)(n), respectively, in the sequel. For convenience, the parameter T is normalized to

unity; i.e., T = 1.

When perfect CSI is available to the link, as assumed in [25], the instantaneous

supportable data rate is given by the Shannon channel capacity:

Rn =W log(1 + ρ|hn|2), (2.5)

whereW is the bandwidth. Observe that {Rn, n = 1, . . .} are independent and identically

distributed (i.i.d.) due to the assumption that hn are independent and homogeneous.

To facilitate our analysis, we concentrate our following investigation in the low

SNR (wideband) regime, assuming ρ → 0 and W = Θ(1ρ). It is well known that a

decrease in SNR estimation error can only increase the rate of communication. For

cases with wideband signaling (e.g., in the low SNR regime), where an increase in the

SNR results in a linear increase in the throughput, obtaining more accurate estimates

of the SNR can yield substantial bene�ts.

DOS with one-level probing

In this section, we brie�y examine DOS with one-level channel probing in the low SNR

regime [8]. LetM be the training length, and τt =MTs, where Ts is the symbol duration.

We assume that τt = Θ(1) as ρ → 0. We further assume that the rate estimation is

performed via minimum mean square error (MMSE) estimates of the channel coe�cient
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hn. It follows that, ĥ
(1)
n , the MMSE estimate of hn, is given by [34]:

ĥ(1)n =

√
ρ

ρM + 1

M∑
m=1

Ym, (2.6)

Accordingly, we can express hn in terms of ĥ(1)n and the estimation error h̃(1)n as follows:

hn = ĥ(1)n + h̃(1)n , (2.7)

where

ĥ(1)n ∼ CN
(
0,

ρM

ρM + 1

)
(2.8)

and

h̃(1)n ∼ CN
(
0,

1

ρM + 1

)
. (2.9)

Based on the orthogonality principle, ĥ(1)n and h̃
(1)
n are uncorrelated.

Without perfect CSI, the link employs the estimated SNR {ρ|ĥ(1)n |2, n = 1, . . .}

as the basis for distributed scheduling. However, since the channel estimation error, h̃(1)n ,

behaves as additive Gaussian noise, the actual instantaneous SNR of the link is given

by [9, Eq.(3)]:

λ(1)n =
ρ|ĥ(1)n |2

1 + ρ|h̃(1)n |2
, (2.10)

where the e�ect due to channel estimation errors is subsumed in the noise term. 4

Inspection of (2.10) reveals that λ
(1)
n is always smaller than the estimated SNR

{ρ|ĥ(1)n |2}, in the presence of channel estimation errors. As a result, an outage occurs

if the link transmits at a data rate speci�ed by {ρ|ĥ(1)n |2}. To circumvent this problem,

a linear backo� scheme is proposed in [8] to reduce the data rate. More speci�cally,

the estimated SNR is linearly backed o� to σMρ|ĥ(1)n |2, where σM is the backo� factor

with 0 < σM < 1. Under imperfect information, the transmission rate in the low-SNR

wideband region simpli�es to

R(1)
n ≈ ρWσM |ĥ(1)n |2. (2.11)

The steps leading to the above equation are discussed in Appendix A.1. 5

4 For example, the maximum likelihood decoding method yields that X̂ =
√
ρĥ∗Y = ρ|ĥ|2X +

ρĥ∗h̃X +
√
ρĥ∗ξ, where ρĥ∗h̃X, is e�ectively additive noise.

5For further discussion regarding the design of the backo� factor, σM , we refer the reader to [8].
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For convenience, let θ be the cost per unit system time, where the system time

encompasses the contention time, the probing time and the transmission time. It follows

that a successful channel contention incurs an average cost of θτ/ps, whereas the data

transmission for a duration of T entails a cost θT . It takes a total duration of
∑n

j=1Kjτ

to reach the n-th round of probing. After the n-th round of probing and computing its

rate R(1)
n , the successful link has the following options:

1. Transmit at rate R(1)
n for a time duration of T = 1 (the corresponding reward is

R
(1)
n − θ); or

2. Defer transmission and let all nodes re-contend (the corresponding reward is the

expected return).

Note that the cost of probing, θτ/ps, is common to both options. Clearly, the basis for

distributed opportunistic scheduling with one-level probing is the observation sequence

{R(1)
n }n. Using Proposition 3.1 of [25], we can show that the optimal DOS policy with

noisy channel estimation still has a threshold structure, given by

N∗ = min
n
{n ≥ 1 : R(1)

n ≥ θ̂},

where the optimal threshold θ̂ is given as the solution to the following Bellman optimality

equation:

E
[
R(1)

n − θ
]+

=
θτ

ps
. (2.12)

Furthermore, θ̂ is the corresponding throughput.

The above result reveals that the optimal stopping rule, N , is a pure threshold

policy, and the stopping decision can be made based on the current rate only. Accord-

ingly, the optimal channel probing and scheduling strategy takes the following simple

form: If the successful link discovers that its current rate R(1)
n is higher than the threshold

θ̂, it transmits the data with rate R(1)
n ; otherwise, it skips this transmission opportunity

(e.g., by skipping the CTS), and then the links re-contend.
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Figure 2.2: A sketch of DOS with two-level probing.

2.3 DOS with Two-Level Probing

In this section, we characterize the optimal DOS with two-level probing, i.e., the links

may choose to re�ne their rate estimates before making a decision on whether to transmit

or not. We illustrate, in Fig. 2.2, the underlying rationale behind DOS with two-level

probing. In the following, we detail the procedure with second-level probing, and then

cast DOS with two-level probing as a problem of maximal rate of return, using optimal

stopping theory with incomplete information. We then characterize the corresponding

structure and provide a complete description of the optimal strategy.

Second-level probing

To improve the estimation accuracy, the receiver of the successful link can request its

transmitter to send another pilot packet, at the cost of a part of the data transmission
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duration allotted to it. More speci�cally, in addition to the pilot symbols sent during the

�rst-level probing, the receiver obtains a re�ned MMSE estimate of hn by exploiting the

newly transmitted pilot symbols of length τt during second-level probing (of duration

τ). Then, the link uses the remaining 1 − τ of the time for the data transmission. We

let ĥ
(2)
n denote this re�ned estimate of hn, obtained via two-level probing. We can show

that

ĥ(2)n =

√
ρ

2ρM + 1

2M∑
i=1

Yi, (2.13)

Furthermore, the estimate ĥ
(2)
n , and the corresponding estimation error, h̃

(2)
n , are uncor-

related, where

ĥ(2)n ∼ CN
(
0,

ρ2M

ρ2M + 1

)
(2.14)

and

h̃(2)n ∼ CN
(
0,

1

ρ2M + 1

)
. (2.15)

Finally, the resulting data rate is computed as

R(2)
n ≈ ρWσ2M |ĥ(2)n |2, (2.16)

where σ2M is the corresponding linear rate backo� factor.

Next, we establish the relationship between the estimates due to �rst-level and

second-level probings. Simply put, we are interested in obtaining an estimate of hn from

(ĥ
(1)
n ,
∑2M

n=M+1 Yn). Applying the Gram-Schmidt orthogonalization procedure, we can

transform (ĥ
(1)
n ,
∑2M

n=M+1 Yn) into orthogonal components. Then, we project hn onto

these components to represent ĥ(2)n as (see [35, Ch.4, p.130] for details):

ĥ(2)n = ĥ(1)n + he, (2.17)

where he ∼ CN (0, σ2e), with σ2
e = Mρ

(Mρ+1)(2Mρ+1) . Note that ĥ
(1)
n and he are orthogonal.

By orthogonality, we have

E[|ĥ(2)n |2] = E[|ĥ(1)n |2] + σ2e . (2.18)

Thus, it follows that the expected rate of the second-level probing conditioned on the

rate due to �rst-level probing, obeys the following relationship:

E[R(2)
n |R(1)

n ] = crR
(1)
n +Re,
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where Re = σ2MWρσ2e , and cr = σ2M
σM

. We note that Re can be interpreted as the

expected relative rate gain due to the second level probing.

Scheduling options and rewards

In what follows, we devise DOS with two levels of probing using optimal stopping theory.

Drawing on the ideas from [28], we show that optimizing the network throughput via

DOS can be cast as a maximal rate of return problem.

Consider the example in Fig. 2.1. It takes a total duration of
∑n

j=1Kjτ to reach

the n-th round of probing. After the n-th round of probing, the successful link has the

following three options after computing its rate R
(1)
n :

1. Transmit at rate R
(1)
n for a time duration of T = 1;

2. Defer transmission and let all nodes re-contend; or

3. Perform second-level probing to obtain the new rate R
(2)
n , and then decide whether

to transmit at R
(2)
n for a time duration of 1− τ , or to defer and re-contend.

Clearly, the basis for distributed opportunistic scheduling with two-level probing

is the observation sequence {R(1)
n , R

(2)
n }n, with the option of skipping R(2)

n . We emphasize

that the transmission duration after second-level probing reduces to 1− τ , in contrast to

the duration of one after �rst-level probing.

Let ϕn : R+ → {0, 1, 2} and ψn : R+ → {0, 1} be the decision sequences after

R
(1)
n = x is observed. In particular, ϕn(x) = 1 refers to transmitting at the current

rate, ϕn(x) = 0 means giving up the transmission and re-contending, while ϕn(x) = 2

indicates engaging in the second-level probing. Furthermore, when ϕn(x) = 2, the �nal

decision hinges on R
(2)
n = y: if ψn(y) = 1, the link transmits at the re�ned rate, whereas

if ψn(y) = 0, the link gives up the transmission and lets all nodes re-contend.

Let N be a stopping rule such that {N = n} ∈ Fn, where Fn is the σ-algebra

generated by {R(1)
j , R

(2)
j }j≤n. Stopping rule N is given by

N = inf{n ≥ 1|ϕn = 1, or ϕn = 2 and ψn = 1}.
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Let Tn be the total time, given by

Tn =

n∑
j=1

Kjτ + 1,

which is the sum of total contention time (and time due to second-level probing, when

performed) and the data transmission duration, Td,n = 1− I(ϕn = 2)I(ψn = 1)τ with I(·)

being the indicator function.

Let θ be the cost per unit system time. Then successful contention, with �rst-

level probing, incurs an average cost of θτ/ps. Second-level probing incurs a further cost

of θτ , whereas the data transmission for a duration of Td entails a cost θTd.

The expected net reward (expected return) is given by

r = E [RNTd,N − θTN ] ,

where Rn is the transmission rate after the n-th probing round and is given by

Rn = I(ϕn = 1) ·R(1)
n + I(ϕn = 2)I(ψn = 1) ·R(2)

n .

The corresponding rate of return is E[RNTd,N ]/E[TN ]. The maximal expected

return is given by

r0 = sup
N∈Q

E [RNTd,N − θTN ] .

Note that the expected return, r, depends on the decision functions ϕ, ψ, and the

cost θ. The principal objective is to maximize the rate of return (i.e., the throughput)

of the DOS with two-level probing, de�ned as

θ∗ = sup
N∈Q

E [RNTd,N ]

E [TN ]
.

Summarizing, we are interested in seeking a stopping rule N ∈ Q that obtains

θ∗. The following lemma relates the optimal throughput θ∗ to the expected optimal

return r0, and guarantees the existence of such an optimal stopping rule.

Lemma 2.1. For DOS with two-level probing, the optimal stopping rule N∗ exists.

Furthermore, θ∗ is attained at N∗, and θ∗ satis�es

r0 = sup
N∈Q

E [RNTd,N − θ∗TN ] = 0.
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Proof. See Appendix A.2.

Next, we derive the optimality equation for DOS with two-level probing.

We begin by considering the option of second-level probing and introducing its

associated reward function. Suppose after observing R
(1)
n = x, the link performs a

second-level probing to obtain R
(2)
n , and then uses an optimal strategy thereafter. Then,

with R
(2)
n = y, it may choose to transmit at rate y, for a duration of 1 − τ ; or it

could defer and re-contend. Note that the reward associated with the transmission is

(y − θ)(1− τ), and the reward associated with forgoing the transmission is the expected

return, r. Therefore, the link engages in a transmission if (y − θ)(1 − τ) > r, and defers

its transmission if (y − θ)(1 − τ) ≤ r. The expected net reward corresponding to the

second-level probing is thus given by

Jθ(x, r) , rG

(
r

1− τ
+ θ|x

)
+ (1− τ)

∫ ∞

r
1−τ

+θ
(y − θ)G(dy|x)− θτ, (2.19)

where G(y|x) is the conditional cumulative distribution function (cdf) of R
(2)
n given

R
(1)
n = x. Note that G(y|x) is a non-central χ2 distribution with two degrees of freedom.

Furthermore, both R
(1)
n and R

(2)
n are exponentially distributed. We use F to denote the

cdf of R
(1)
n . Finally, it can be shown that lim

x→∞
G(y|x) = 0 and E [y|x] = crx+Re.

Upon observing R(1)
n after the n-th probing round, the link s(n) can obtain one

of the following three rewards:

1. R(1)
n − θ: the reward obtained by transmitting at a rate R(1)

n ;

2. r0: the reward obtained by forgoing the current opportunity and re-contending

(the maximal expected return); or

3. Jθ(R
(1)
n , r0): the reward obtained by resorting to re�ning the rate via second-level

probing.

The optimal strategy for the link is to choose the option that yields the maximum of

the above rewards. Therefore, the optimality equation of DOS with two-level probing

can be represented by the following Bellman optimality equation:

E
[
max

{
R(1) − θ, r0, Jθ(R(1), r0)

}]
− θτ

ps
= r0, (2.20)
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where R(1) has same distribution as R(1)
n . Note that, in the discussions above, we have

factored out the cost for obtaining the �rst successful channel probing, i.e. θτ/ps, since

it is common to all three returns. From Lemma 2.1, when the throughput, as a function

of θ, reaches its maximum, we have that r0 = 0 at θ = θ∗. Thus, (2.20) can be rewritten

as

E
[
max

{
R(1) − θ∗, Jθ∗(R(1), 0)

}]+
=
θ∗τ

ps
. (2.21)

Inspection of (2.21) indicates that the second-level probing is optimal when Jθ∗(x, 0) > 0

and Jθ∗(x, 0) > x− θ∗ for some x.

It is worth noting that

θ∗ > θL
∆
=

E[R(1)]
τ
ps

+ 1
. (2.22)

Note that θL corresponds to the throughput of PHY-oblivious scheduling, which is a

single-level probing scheme with zero threshold. This can be achieved by the degenerate

stopping rule, which stops at the very �rst time.

Structure of optimal scheduling strategy

We next proceed to study the structure of the optimal scheduling strategy. Essentially,

the optimal strategy takes a threshold form. Depending on the speci�c network setting,

the optimal strategy may admit one of the two intuitively reasonable types, which we

will call Strategy A and Strategy B. Generally speaking, under Strategy A, it is always

optimal to demand additional information when the estimated rate lies between two

thresholds. This is the case when the gain due to second-level probing is comparable

with the additional overhead. In contrast, under Strategy B, there is never a need to

appeal to second-level probing. This case occurs for example, when the improvement

due to the re�nement is dominated by the probing overhead. An extreme example of

this case is when perfect CSI is available to the transmitter.

Before we state the main result on the optimal strategy, we de�ne q(x)
∆
=

Jθ∗(x, 0) − x + θ∗. Intuitively speaking, q(x) represents the expected gain achieved

by second-level probing compared to directly transmitting at the current rate. Thus, if

q(x) > 0, performing second-level probing is a better option than directly proceeding to
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data transmission. We need the following lemmas before characterizing the structure of

the optimal scheduling strategy.

Lemma 2.2. Jθ∗(x, 0) and q(x) are characterized by the following properties:

i. Jθ∗(x, 0) is monotonically increasing in x with lim
x→∞

Jθ∗(x, 0) =∞ and lim
x→0

Jθ∗(x, 0)

< 0 when Re
θ∗ e

− θ∗
Re < τ

1−τ .

ii. For cr < 1
1−τ , q(x) is monotonically decreasing in x with lim

x→0
q(x) > 0 and

lim
x→∞

q(x) = −∞.

Proof. See Appendix A.3.

Remarks: Observe that the above conditions are stated in terms of the design

variables (e.g., τ and cr). It is clear that Re ≤ θ∗, since Re is the relative gain due

to rate re�nement and cannot be greater than the optimal throughput θ∗. Thus, in the

extreme case, where Re = θ∗, we have the pessimistic bound Re
θ∗ e

− θ∗
Re < e−1, based on

which it su�ces to have τ > 1/(1 + exp(1)) to guarantee that Condition i) holds. We,

however, caution that τ > 1/(1 + exp(1)) is only a su�cient condition. Also, it is easy

to satisfy the condition in ii) by choosing cr ≤ 1/(1− τ)− δ, where δ > 0.
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Figure 2.3: A structural sketch for Strategy
A.
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Figure 2.4: A structural sketch for Strategy
B.
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Lemma 2.3. There exists at most one solution, in terms of {xJ , xq, θ∗}, to the following

system of equations:
∫∞
θ∗ (1−G(u|xJ))du = θ∗τ

1−τ ,

(cr(1− τ)− 1)xq + (1− τ)
(
Re +

∫ θ∗

0 G(u|xq)du
)
= 0,∫ xq

xJ
Jθ∗(u, 0) dF (u) +

∫∞
xq

(u− θ∗) dF (u) = θ∗τ
ps
.

(2.23)

Recall that xJ and xq are the solutions to Jθ∗(x, 0) = 0 and q(x) = 0, respec-

tively. From Lemma 2.2, it is easy to see that there is at most one pair {xJ , xq} satisfying

(2.23). Similarly, since Jθ∗(x, 0) and q(x) intercept at x = θ∗, there exists at most one

θ∗ due to the monotonic nature of Jθ∗(x, 0) and q(x).

For convenience, let {xJ , xq, θ∗A} denote the solution to (2.23) with xJ ≤ xq, and

θ∗B be the solution to (2.12). Using the above lemmas, we obtain the following result on

the structure of optimal scheduling strategy.

Theorem 2.1. The optimal strategy for DOS with two-level probing, takes one of the

two forms:

[Strategy A] It is optimal for the successful link

i. to transmit immediately after the �rst-level probing if R
(1)
n > xq; or

ii. to give up the transmission and let all links re-contend if R
(1)
n < xJ ; or

iii. to engage in second-level probing if R
(1)
n ∈ [xJ , xq]; upon computing the new rate

R
(2)
n , to transmit at rate R

(2)
n if R

(2)
n > θ∗A, or to give up the transmission otherwise.

Furthermore, the throughput under Strategy A is θ∗A.

[Strategy B] There is never a need to perform second-level probing. That is, it is optimal

for the successful link to transmit at the current rate R
(1)
n if R

(1)
n > θ∗B, or to defer its

transmission and re-contend otherwise. Furthermore, the throughput under Strategy B

is θ∗B.

Proof. See Appendix A.4.
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Optimality conditions

In previous sections, we have studied DOS with two-level probing within the OST frame-

work, and characterized the structure of optimal scheduling strategies. Our �ndings

reveal that optimal scheduling may take either of two forms: Strategy A or Strategy

B. The next key step is to determine the conditions under which it is optimal to use

Strategy A or Strategy B. We show that this can be easily determined by performing a

threshold test on the function Jθ∗(·, ·). We have the following theorem.

Theorem 2.2. Strategy A is optimal if Jθ∗A (θ∗A, 0) ≥ 0; else, Strategy B is optimal.

Proof. See Appendix A.5.

Numerical results

In this section, we provide a numerical example to illustrate the e�ectiveness of the

proposed DOS with two-level probing under noisy estimation. Speci�cally, we compare

the performance of the proposed DOS with two-level probing, with that of DOS with

one-level probing and PHY-oblivious scheduling. The baseline for comparison is the

PHY-oblivious scheduling that does not make use of any link-state information. We

focus on the relative gain over PHY-oblivious scheduling, which is a function of ρM ,

and is de�ned as

Γ(ρM) =
θ − θL
θL

.

We set ps = exp(−1), M = 300 and W = 3000, so that τt = 0.1 and τ = 0.2. Fig. 2.5

depicts the performance comparison. It is clear that the relative gain achieved by DOS

with two-level probing substantially outperforms that obtained by DOS with one-level

probing. Observe that the performance gain is signi�cant in the low SNR regime (i.e.,

smaller values of α). As α increases, the relative gain of DOS with two-level probing

approaches that of DOS with one-level probing, and our intuition is that, for higher

values of α, the cost of overhead o�sets that of the rate gain due to additional probing.

Accordingly, the �gray area� between two thresholds (xh and xq) collapses, and the

optimal strategy degenerates to Strategy B, which is essentially DOS with �rst-level

probing.
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Figure 2.5: Relative gain Γ as a function of α = ρM .

2.4 DOS with Two-Level Probing: A Case with Limited Feedback

In the above studies, it is assumed that for the link with successful contention, its

transmitter knows the rate estimate for data transmissions. In some practical scenarios,

there is only limited feedback from the receiver to the transmitter. With this motivation,

we extend the study of DOS with two-level probing to the case where the feedback from

the receiver to its transmitter takes the form (0, 1, e). More speci�cally, the decisions

from the receiver to the transmitter are conveyed by using �NACK/ACK/ERASURE"

signaling, where �NACK" is represented by �0� corresponding to the decision of defer and

re-contend, �ACK� by �1� corresponding to the decision of transmit, and �ERASURE�

by �e� indicating that the rate estimate falls in the gray area.

One-level probing

We �rst consider DOS with one-level probing, with one-bit feedback from the receiver

to its transmitter. The basic idea is as follows. A constant transmission rate, denoted

as R1, is pre-determined and known to the transmitter, and the data transmission takes

place only when the one-bit feedback is �1�. A central problem here is to design the

transmission strategy for maximal throughput. Let γ be the price function per unit

time. Then, given its current rate estimate R
(1)
n , the successful link in the the n−th

probing has two options:

• �1�� transmit at rate R1, and the corresponding reward is R1I(R
(1)
n > R1)−γ; or
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• �0�� defer and re-contend, with the expected reward of r0.

Clearly, there is an average cost of γτ/ps for every successful contention.

Let γ̂ , sup
N∈Q

E[RNT ]/E[TN ] be the optimal throughput. Then, based on Lemma 2.1,

the optimality equation is given by

E
[
R1I(R

(1) > R1)− γ̂
]+

=
γ̂τ

ps
. (2.24)

As a result, we can show that the optimal policy in this case still has a threshold structure

with R1 being the threshold. Furthermore, noting that R
(1)
n ∼ exp(E[R(1)]), we conclude

that the average throughput is given as

γ̂ =
R1e

− R1

E[R(1)]

τ
ps

+ e
− R1

E[R(1)]

.

Observe that γ̂ is a function of R1. For a given stopping rule, R1 can be chosen to

maximize the throughput, i.e., the optimal transmission rate R̂1 and the corresponding

throughput obey

R̂1 = argmax
R1

γ̂ and γ̂max = γ̂(R̂1).

It can be shown that R̂1 is the solution to(
R1

E[R(1)]
− 1

)
e

R1

E[R(1)] =
ps
τ
. (2.25)

It follows that the optimal throughput is given by

γ̂max = R̂1 − E[R(1)] =
ps
τ
E[R(1)]e

−R̂1

E[R(1)] . (2.26)

Two-level probing

Next, we study DOS with two-level probing, with the feedback taking the form of (0, 1, e).

Along the same line as in the studies in Section 2.3, the receiver of the successful link,

depending on its rate estimate R
(1)
n , presents three options to its transmitter:

• �1�� transmit at the rate R1; or

• �0�� defer and re-contend; or

• �e�� perform a second-level probing to obtain R
(2)
n , and then decide:
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� �1�� to transmit at rate R1; or

� �0�� to defer and re-contend.

De�ne γ∗ = sup
N∈Q

E[RNTd,N ]/E[TN ], which represents the optimal throughput for the given

R1. By Theorem 2.1, this corresponds to r0 = 0. Since, γ∗ is the function of the rate R1,

we further maximize the throughput over all choices of R1, by de�ning γ∗max = max
R1

γ∗.

We can write the expected net reward function corresponding to the second-level

probing as

Vγ∗(x,R1) = (1− τ)(R1 − γ∗)
∫ ∞

R1

G(dy|x)− γ∗τ,

which can be further simpli�ed as

Vγ∗(x,R1) = (1− τ)(R1 − γ∗) (1−G (R1|x))− γ∗τ.

The optimality equation in this case is given by

E
[
max

{
R1I

(
R(1) ≥ R1

)
− γ∗, Vγ∗(R(1), R1)

}]+
= γ∗

τ

ps
. (2.27)

The following lemma gives useful bounds on the optimal throughput.

Lemma 2.4. For a given transmission rate R1, the optimal throughput satis�es the

inequalities

γL ≤ γ∗ ≤ γU ,

where

γL , (1− τ)R1

(1− τ) + τ
(
1 + 1

ps

)
e

R1

E[R(2)]

; γU , R1

1 + τ
ps

.

Remarks:

a) The lower bound γL is obtained by using a strategy where the successful link always

performs a second level probing, and then decides to transmit for a duration of 1− τ or

to re-contend.

b) The upper bound γU is achieved by a genie aided scheme, where the successful link

contends only when its channel is good and there is no transmission outage.

Next we turn our attention to structural properties of the optimal strategy. For

convenience, de�ne the relative gain function as

qγ∗(x,R1) , Vγ∗(x,R1)−R1I(x ≥ R1) + γ∗.
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Lemma 2.5. Vγ∗(x,R1) and qγ∗(x,R1) are characterized by the following properties:

i. Vγ∗(x,R1) is monotonically increasing in x. Furthermore, lim
x→∞

Vγ∗(x,R1) = c1 >

0, if τ ≤ 1− ps, and lim
x→0

Vγ∗(x,R1) < 0, when τ ≥ 1
2(ln(1 +

1
ps
)− 1).

ii. qγ∗(x,R1) ≥ 0 for x < R1; and qγ∗(x,R1) < 0 for x ≥ R1.

Proof. See Appendix A.6.

The above lemma serves as the basis to determine the optimal DOS scheduling

under the feedback of (0, 1, e). Speci�cally, from the properties of Vγ∗(·, R1), there exists

an xv such that

Vγ∗(x,R1) ≥ 0, ∀x ≥ xv, (2.28)

which, in turn, gives a threshold below which the option of �defer and re-contend� is

optimal. From the properties of qγ∗(·, R1), it is also clear that for all x ≥ R1, it is

optimal to transmit immediately without a second-level probing. Therefore, the interval

[xv, R1] de�nes the gray area where one could bene�t from performing a second-level

probing.

We note that the throughput, denoted by γ∗, is the parameter to be optimized

over the thresholds xv and R1. Combining (2.27) and (2.28), we establish

γ∗ =
(1− τ)R1

∫ R1

xv
(1−G(R1|u))dF (u) +R1e

− R1

E[R(1)]

(1− τ)
(∫ R1

xv
(1−G(R1|u))dF (u) + e

− R1

E[R(1)]

)
+ τ( 1

ps
+ e

− xv

E[R(1)] )

(2.29)

γ∗τ = (1− τ)(R1 − γ∗) (1−G (R1|xv)) . (2.30)

which relate three key parameters, namely the lower threshold xv, the transmission rate

R1, and the throughput γ∗. It can be seen from (2.29) and (2.30) that xv = f1(R1, γ
∗)

and γ∗ = f2(xv, R1), indicating that γ∗ = g(R1). Then, R1 can be chosen to maximize

g(R1); i.e.,

R∗
1 = argmax

R1

g(R1); and γ
∗
max = g(R∗

1).

Accordingly, the optimal x∗v is given by

x∗v = f1(R
∗
1, γ

∗
max).
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Let {x∗v, R∗
1, γ

∗
max} be the set of parameters obtained as outlined above. Also,

let R̂1 be the solution to (2.25). The optimal strategy in the case with limited feedback

is given by the following result.

Theorem 2.3. The optimal strategy for DOS with two-level probing, with (0, 1, e) feed-

back, takes one of the two forms:

[Strategy A] It is optimal for the receiver of the successful link to

i. feed back �1� if R
(1)
n ≥ R∗

1, indicating to transmit at rate R∗
1 immediately after the

�rst-level probing; or

ii. feed back �0� if R
(1)
n < x∗v, indicating to give up the transmission and let all links

re-contend; or

iii. feed back �e� if R
(1)
n ∈ [x∗v, R

∗
1), indicating to engage in second-level probing; and

upon computing the new rate R
(2)
n ,

a) feed back �1� if R
(2)
n ≥ R∗

1, indicating to transmit at rate R∗
1; or

b) feed back �0� if R
(2)
n < R∗

1, indicating to give up the transmission and re-

contend.

Furthermore, the throughput under Strategy A is γ∗max.

[Strategy B] There is never a need to perform second-level probing. That is, it is

optimal for receiver of the successful link to

i. feed back �1� if R
(1)
n ≥ R̂1, indicating to transmit at rate R̂1; or

ii. feed back �0� if R
(1)
n < R̂1, indicating to give up the transmission and re-contend.

Furthermore, the throughput under Strategy B is γ̂.

Proof. The proof follows the same line of that for Theorem 2.1.

2.5 Conclusion

We have considered distributed opportunistic scheduling for single-hop ad-hoc networks

in which many links contend for the same channel using random access. Speci�cally,
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we have investigated DOS with two-level channel probing by optimizing the tradeo�

between the throughput gain from more accurate rate estimation and the corresponding

probing overhead. Capitalizing on optimal stopping theory with two-level incomplete

information, we have shown that the optimal scheduling policy is threshold-based and

is characterized by either one or two thresholds, depending on system settings. We have

also identi�ed optimality conditions. In particular, our analysis reveals that DOS with

second-level channel probing is optimal when the �rst-level estimated rate falls in be-

tween the two thresholds. By a numerical example, we have illustrated the e�ectiveness

of the proposed DOS with two-level channel probing. Finally, we considered the exten-

sion of DOS with two-level probing to the case where there is limited feedback, of the

form (0, 1, e), from the receiver to its transmitter.

In this work, we have considered DOS with two-level probing, where it is assumed

that the re�nement of the rate estimate is carried out once, via second-level probing

of duration τ . However, we can further extend this to L−level probing, where for

k = 1, . . . , L − 1, a successfully contending transmitter has the options 1) to transmit,

or 2) to defer and re-contend, or 3) to resort to (k + 1)−st level training at the cost

of additional overhead. In this situation, it is of interest to devise well-structured, yet

simple policies.

We note that the proposed distributed scheduling with two-level probing provides

a new framework to study joint PHY/MAC optimization in practical networks where

noisy probing is often the case and imperfect information is inevitable. We believe that

this line of study provides some initial steps towards opening a new avenue for exploring

the intrinsic tradeo�s between probing (sensing) and scheduling to enhance spectrum

utilization; and this is potentially useful for enhancing MAC protocols for wireless mesh

networks and cognitive radio networks. Notably, a very recent work [36] has applied

our methods [25] to study optimal selection of channel sensing order in cognitive radio

networks.
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Chapter 3

TWO-HOP INTERFERENCE FLOWS: A CASE OF INTERFERENCE CHANNELS

WITH PARTIAL SIDE INFORMATION

3.1 Introduction

Relay channels and interference channels model two fundamental forms of networked

communications. In a relay channel, as introduced by van der Meulen [15], a relay node

assists the source in communicating data to a destination. In an interference channel,

as introduced by Ahlswede [37], two pairs of nodes, each consisting of a source and a

destination, wish to communicate simultaneously. A de�ning property of this channel

is that each of the two destinations experiences interference, resulting from the signal

transmitted to the other destination.

In this chapter, we consider a model building on these two basic models In our

model, two sources wish to communicate simultaneously with two destinations, and

are aided by two relay nodes. We con�ne our attention to a two-hop scenario, i.e.,

communication is performed in two consecutive �hops� occurring in two time intervals.

During the �rst hop, the two sources communicate data to their respective relays, and

during the second hop, the relays forward the data to the destinations. For ease of

exposition, we focus on the model where the relays are half-duplex (i.e., the relays are

not able to transmit data during the �rst hop), and the destinations are not able to hear

the signal transmitted by the source. For example, this models a situation where the

destinations are far away.

In designing communication strategies for this scenario, it is useful to begin with

communication strategies for the interference channel. During the �rst hop in the model

under consideration, the two sources simultaneously communicate their messages, each

to its corresponding relay. That is, the relays function as virtual destinations, and

each relay experiences interference resulting from the signal communicated to the other

relay. The communication problem at hand is thus equivalent to transmission over an

interference channel. The best known transmission strategy for this channel is due to

Han and Kobayashi [13], known as Han-Kobayashi (HK) coding. During the second hop,
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each relay functions as a virtual source, and communicates its corresponding message to

the �nal destination. While HK coding can be applied to this hop as well, the availability

of side information at the relays leaves room to achieve better performance. We elaborate

further on this in the following. The HK coding achieves its remarkable performance

by requiring each destination (of the interference channel) to decode, beyond its own

message, also a part of the message intended for the other destination. That is, each

source splits its message into two sub-messages: a common sub-message and a private

sub-message. Each destination decodes both of the sub-messages transmitted by its

corresponding source, and also the common sub-message communicated to the other

destination. In the context of the interference channel scenario considered by Han and

Kobayashi, the destination has no use for the additional common sub-message it decodes,

and is expected to discard it once decoding is complete. However, in the context of the

two-hop scenario considered here, this additional knowledge, obtained by the relays in

their roles as destinations in the �rst hop, can be further exploited to enable cooperation

between them, in their roles as sources during the second hop. Thus, the requirement

that each node decode part of the message intended for the other, provides a bene�t in

both hops.

How can cooperation between the relays be achieved? In the approach by Sime-

one et al. [38], each relay transmits superimposed signals, corresponding to its own two

sub-messages (the private one and the common one), as well as the alternate relay's

common sub-message1. In this chapter, we explore a di�erent set of new approaches

based on the following observations.

Consider one extreme case where, during the �rst hop, each of the common sub-

messages constitutes the entire message transmitted by the corresponding source, and

the private sub-messages degenerate to null. Accordingly, after the �rst hop communica-

tions, the two relays have full knowledge of all of the data intended for both destinations.

They may, therefore, function as a virtual antenna array, and the communication prob-

lem (during the second hop) coincides with multi-antenna (MIMO) broadcast2. Co-

1More precisely, their model considers many sets of source-relay-destinations, and each relay is aware
of two common sub-messages, in addition to their own.

2Strictly speaking, each relay is subject to an individual power-constraint, rather than a total power
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operation of this form, between nodes, is typically known as distributed MIMO (see,

e.g., [39, 40]). In particular, we can apply broadcast coding techniques based on the

Gelfand-Pinsker (GP) binning [17] or Marton's coding technique [41] which yields the

best known achievable rate region for general broadcast channels. Indeed, broadcast

transmissions with dirty-paper coding (DPC) [42] (an application of Morton's coding to

the Gaussian case) have recently been shown to achieve the capacity region of Gaussian

multi-antenna broadcast channels [43]. Additional multi-antenna broadcast strategies

are possible as well. The above case, where the common sub-messages constitute all of

the data transmitted during the �rst hop, is one extreme. At the other extreme, the pri-

vate messages constitute all of the data during the �rst hop, and the common messages

are reduced to null. In this case, cooperation between the relays during the second hop

is not possible, and the best known communication strategy is again HK coding.

A natural question to ask is what signaling strategy would work well for the

continuum between the two extremes discussed above? A key feature of this network

is that it has elements of both the broadcast channel and the interference channel.

In light of this, we study strategies based on the nontrivial marriage of MIMO-BC

techniques for cooperative relaying, rate-splitting and superposition coding, to enable

interference cancelation at the receivers, and the Gelfand-Pinsker (GP) coding [17] at

each transmitter to reduce the interference to its own receivers. One key contribution

of our work lies in addressing the above challenge by developing strategies that are

carefully crafted with a �avor of layered coding. Speci�cally, we propose two types of

layered schemes that combine MIMO broadcast and HK coding. The �rst one is the

layered coding with binning that mainly hinges on a novel interplay between binning

(DPC) and HK coding. The second one is the layered coding with superposition strategy

that involves superposition coding over di�erent tiers.

More speci�cally, our relaying schemes involve each relay splitting its message

into three parts:

1. Common message: This part essentially encompasses the �side-information� available

constraint as typically assumed in multi-antenna communication problems. However, in this chapter,
we focus on symmetric interference channels, and use a simple time-sharing argument to circumvent
this problem.
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at both relays. This is used towards e�cient transmission cooperation between the re-

lays. Depending on the cooperative techniques used, each receiver may be required to

decode either the full common message or only the relevant part.

2. Public message: This part is known only to the intended relay, used for canceling

a part of interference at the receivers. This message needs to be decoded at both the

receivers.

3. Sub-private message: This part is also known only to the intended relay, but it is

required to be decoded solely at the intended receiver.

We use the term �private message� to refer to public and sub-private messages collec-

tively. The details of these schemes will be presented in Sections 3.3 and 3.3.

In related work, some cooperative strategies for interference channels with/without

relays have been devised. Work [38] focuses on linear relaying strategies (particularly,

beamforming), to maximize the end-to-end rate in a symmetric two-hop network, with

the optimal power allocation being performed jointly by the sources and the relays. In

[39], Oyman et al.apply distributed MIMO techniques for dense MIMO interference net-

works with multiple MIMO relay nodes. They quantify the tradeo� between the power

and the bandwidth e�ciency, under the restriction to linear processing at the relays.

Mohajer et al. [44] study two-hop interference networks (a.k.a. the Gaussian relay net-

work), and establish an approximate characterization of the rate region for some speci�c

cases, known as ZS and ZZ networks. Cao et al. [45] propose upper bounds on the

end-to-end capacity of a symmetric two-hop interference network. In contrast to the

above works, based on our initial steps on two-hop interference �ows [46], the focus of

this study is mainly on the second hop communication, where we explore non-linear

cooperative strategies at the relays to enhance the achievable rate region.

Maric et al. [47] consider the case of an interference channel where the transmit-

ters are interested in sending common information to both destinations along with their

own independent messages and presented the capacity region under the assumption of

strong interference. The authors [47] also examine the case where the available knowl-

edge is asymmetric, in the sense that one transmitter has complete knowledge of the

other's message, while the other transmitter knows only its own message. In contrast,
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in our model, the two receivers are both interested in distinct portions of the �common

information� and our focus is on the case with moderate interference (as de�ned in [14])

in the second hop. In the work by Prabhakaran et al. [48], the authors consider a two-

user Gaussian interference channel under full-duplex scenario, where each of the sources,

apart from transmitting its own message, is also able to hear the transmissions from the

other source. Under such scenario, the authors characterize the sum capacity up to a

constant number of bits, and inner and outer bounds are derived. Wang et al. [49] study

the two-user Gaussian interference channel with conferencing transmitters characterize

the capacity region to within 6.5 bits/s/Hz. Interference channels with conferencing

encoders have also been considered in [50, 51].

The rest of the chapter is organized as follows. In Section 3.2, we describe the

system model and give the relevant background on the two-hop communications. In

Section 3.3, we consider the transmissions from relay in the second hop, and present

coding strategies based on layered binning and superposition coding. In Section 3.4, we

illustrate our coding strategies on a symmetric Gaussian interference network. Numerical

results are provided in Section 3.5, and we conclude this study in Section 3.6.

Notation: We use xN to denote the sequence, [x[1], . . . , x[n]], [·]† to denote the

transpose operator, E[·] to denote the expectation operator and C(x) to denote 1
2 log(1+x).

TN
ϵ (X) and TN

ϵ (X|Y ), respectively, refer to the set of N -length sequences that are ϵ-

typical with respect to the distribution PX and conditional distribution PX|Y [52, 53].

3.2 System Model and Background

As illustrated in Fig. 3.1, the communications in both hops are slotted and synchronized.

The mode of communication is half-duplex, i.e., in the �rst slot, sources (S1, S2) transmit

and relays (L1, L2) listen; and in the second slot, relays transmit and the mobile stations

(D1, D2) listen. The source to relay (S → L) (relay to destination (L→ D)) transmission

of one information �ow interferes with the S → L (L → D) transmission of the other

information �ow. Speci�cally, we assume that each slot spans for a period of N channel

uses, where N is chosen large enough to achieve reliable transmission. During the �rst

slot, sources transmit and relays listen.
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Figure 3.1: A sketch of two-hop interference �ows.

For ease of exposition, we focus on the Gaussian case in this study. It is worth

pointing out that our achievable schemes presented in Section 3.3 are more general, in

the sense that they can be applicable to general discrete memoryless channels as well.

It follows that the received signal at the relay L1, for n = 1, . . . , N , is given as

Yr,1[n] = g1,1Xs,1[n] + g1,2Xs,2[n] + Zr,1[n], (3.1)

where Zr,1[n] ∼ N (0, σ2
r) is the AWGN process at the relay L1. Further, g1,1 and g1,2,

respectively, are the channel gains on the direct and interfering links for user 1. Trans-

mitters are subject to an average power constraint, i.e., E[ 1N
∑N

n=1 |Xs,i|2] ≤ Γ, i = 1, 2.

In the second slot, the received symbol at the destination, for n = N + 1, . . . , 2N , is

given by

Y1[n] = h1,1X1[n] + h1,2X2[n] + Z1[n], (3.2)

where Z1[n] ∼ N (0, 1) is the AWGN process at the receiver D1. Further, h1,1 and h1,2,

respectively, are the channel gains on the direct and interfering links for user 1. A

similar set-up is employed for the second �ow. Relays are subject to an average power

constraint, i.e., E[ 1N
∑N

n=1 |Xi|2] ≤ P, i = 1, 2. We assume that the transmitters as

well as the receivers in both hops have the complete state information about their direct

links and interfering links.

A primary goal is to characterize the achievable rate regions for the second-hop

communications. In the following sections, we brie�y describe the transmission schemes

and coding strategies adopted by S → L → D links in the network for the cooperative

relaying and for the interference minimization.
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Transmission from sources: the �rst-hop communications

In the �rst hop, the two parallel S → L channels represent the classical interference

channel introduced by [37]. The capacity achieving strategy for a general interference

channel is still unknown, and the best known strategy is due to Han and Kobayashi [13].

The HK coding involves splitting the transmitted information of both users into two

parts: private information to be decoded only at own receiver and common information

that can be decoded at both receivers. Therefore, at the end of �rst slot, each relay has

its own message estimates and the estimate of the common message intended for the

other user. Source Si, i = 1, 2, draws its message wi ∈ {1, . . . , 2NR′
i} and splits it into

(wp,i,wc,i), where wp,i ∈ {1, . . . , 2NR′
p,i}, wc,i ∈ {1, . . . , 2NR′

c,i} and R′
i = R′

c,i + R′
p,i. Source

Si generates two codebooks: Cp,i, with |Cp,i| = 2NR′
p,i , to carry the private message to the

intended relay, and Cc,i, with |Cc,i| = 2NR′
c,i , to carry the common message to be decoded

by both relays. For a given block length N , source Si chooses codewords, CN
p,i and

CN
c,i, from Cp,i and Cc,i respectively, and transmits their superposition: XN

s,i = CN
p,i + CN

c,i.

Each receiver decodes its own message along with the common message of the other

user. Thus, after decoding the transmitted signals, L1 has (wp,1,wc,1,wc,2) and L2 has

(wp,2,wc,2,wc,1). For details on the mechanism of decoding and the analysis, we refer

to [13].

Observe that, at one extreme, when the interference in the �rst hop is very

low, the rate of common messages diminishes. Thus, it follows that wi = wp,i. On the

other hand, when the �rst hop has strong (or very strong) interference, each relay can

completely decode both the intended and interfering messages [12, 54]. Therefore, we

have wi = wc,i in this case.

The relays process the data during the �rst slot before transmitting in the second

hop. Relay L1 has (w1,wc,2), while relay L2 has (w2,wc,1). Observe that each relay has a

piece of common information intended for the other receiver. Therefore, the second hop

transmission can be viewed as an interference channel where each transmitter has partial

information intended for the other receiver. An important goal of our study here is to

devise relaying schemes for the second hop that e�ectively harness the side information

available. We assume that, relay Li, depending on its forward channel conditions, splits
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its decoded message into three parts (vp,i, vc,1, vc,2), where vp,i is the private message,

known only to Li, and (vc,1, vc,2) is the set of common messages, known to both the

relays. Note that Li is interested in conveying vi = (vp,i, vc,i) to Di. Next, we present

some de�nitions and background for the second hop.

Transmission from relays with partial side information: the second hop communications

The model for second hop consists of two transmitters (L1 and L2), and two receivers,

(D1 and D2), and a discrete memoryless channel with input alphabets X1,X2 and output

alphabets Y1,Y2 and a conditional distribution p(y1, y2|x1, x2), where (x1, x2) ∈ (X1,X2)

and (y1, y2) ∈ (Y1,Y2).

Relay Li, i = 1, 2, wishes to send the message, vi ∈ Vi = {1, . . . , 2NRi}, to the re-

ceiver Di, i = 1, 2, over N channel uses. Let Vi = Vp,i×Vc,i, with Vp,i = {1, . . . , 2NRp,i} and

Vc,i = {1, . . . , 2NRc,i}. Message vi is split such that vi = (vp,i, vc,i) with vp,i ∈ Vp,i, vc,i ∈

Vc,i. Observe that L1 knows vc,2 while L2 knows vc,1. The channel is memoryless; that

is

p(yN1 , y
N
2 |xN1 , xN2 ) =

N∏
n=1

p(y1[n], y2[n]|x1[n], x2[n]).

A (2NR1 , 2NR2 , N, P
(N)
e ) code for the channel has two encoding functions

f1 : V1 × Vc,2 → XN
1 , f2 : V2 × Vc,1 → XN

2

and two decoding functions gi : YN
i → Vi, i = 1, 2, and an error probability P

(N)
e =

max{P (N)
e,1 , P

(N)
e,2 }, where, for i = 1, 2, we have

P
(N)
e,i =

1

2N(R1+R2)

∑
v1,v2

P (gi(Y
N
i ) ̸= vi|v1, v2), i = 1, 2.

A rate pair (R1, R2) is achievable if, for any ϵ > 0, there is an (2NR1 , 2NR2 , N, P
(N)
e ) code,

for N su�ciently large, such that P (N)
e < ϵ.

Our focus is on the moderate interference regime. That is, for all (X1, X2) ∼

p(x1)p(x2), we assume that

I(X1;Y1|X2) > I(X1;Y2|X2) and I(X2;Y2|X1) > I(X2;Y1|X1).
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3.3 Layered Coding for Second-Hop Communications: IC with Partial

Side-Information

In this section, we study some strategies based on iterative binning and superposition

coding. Before proceeding further with achieveability strategies, we brie�y comment

on the encoding procedure employed by the relays for the second-hop transmission.

Throughout, we assume that the relay Li, i = 1, 2 splits its own private message vp,i ∈ Vp,i

further into two parts as vp,i = (vpp,i, vpc,i) such that vpp,i ∈ Vpp,i = {1, . . . , 2NRpp,i}, vpc,i ∈

Vpc,i = {1, . . . , 2NRpc,i}, with Vp,i = Vpp,i × Vpc,i and Rp,i = Rpp,i + Rpc,i. We refer to vpp,i

as the sub-private message (which is decoded only by the intended receiver) and vpc,i is

the public message (which is decoded by both receivers). Thus each relay encodes the

message tuple (vpp,i, vpc,i, vc,1, vc,2) and transmits the corresponding codewords.

Layered binning for interference cancelation

We start with the application of binning strategies to mitigate interference by exploiting

knowledge available at the transmitters. One key observation is that, when the focus

is just on the transmission of common information, the transmitters can form a virtual

two-antenna transmitter and use the Gelfand-Pinsker (GP) binning/Marton's coding

(DPC for Gaussian channels) which is known to be the best strategy in such cases.

On the other hand, when all the information available at the relays is private, it is

bene�cial to perform HK type coding at the transmitters. Clearly, the idea is to exploit

the capabilities inherent in both HK coding and binning techniques. In light of these

observations, we propose �layered binning� as a novel combination of GP binning and

HK coding.

Simply put, layered binning consists of a combination of binning and superposi-

tion coding over di�erent tiers, with the following steps:

i. The common message codebooks are binned against each other in line with Mor-

ton's coding.

ii. Public messages are encoded such that they are decoded by both the receivers, to

enable interference cancelation (in line with HK coding).
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iii. Observe that the interfering part of common messages is still interference at each

receiver. However, this is the �side-information� known at each relay. Each relay

bins its own sub-private message codebook against the codebook of the interfering

common message.

A superposition of sub-private message over public message, along with the common

message is transmitted. Observe that clubbing the transmission of sub-private message

with the common messages is related to the problem of broadcast channel with random

parameters [55, 56]. We have the following result.

Theorem 3.1. The rate pair (R1, R2) = (Rp,1+Rc,1, Rp,2+Rc,2) is achievable if, for some

joint distribution such that

p(xpc1)p(xpc2)p(uc1,uc2)p(x1, upp,1|uc,1,uc,2, xpc,1)p(x2, upp,2|uc,1,uc,2, xpc,2),

the rate tuple (Rp,1, Rc,1, Rp,2, Rc,2) satis�es the following three sets of constraints, denoted

B1, B2 and B3:

Constraint set B1: (constraints at the transmitters)

rc1 + rc2 ≥ I(Uc1;Uc2) (3.3)

rp1 ≥ I(Upp1;Uc2|Uc1, Xpc1) (3.4)

rp2 ≥ I(Upp2;Uc1|Uc2, Xpc1) (3.5)

Rc,1 ≤ R′
c,1 (3.6)

Rc,2 ≤ R′
c,2; (3.7)

Constraint set B2:

Rp1 ≤ I(Y1;Xpc1, Upp,1|Uc1, Xpc2)− rp1

Rp1 +Rc1 ≤ I(Y1;Xpc1,Uc1, Upp,1|Xpc2)− rc1 − rp1

Rp1 +Rp2 ≤ min {

I(Y1;Xpc2, Upp,1|Xpc1,Uc1)− rp1 + I(Y2;Xpc1, Upp,2|Xpc2,Uc2)− rp2,

I(Y1;Upp,1|Xpc1,Uc1, Xpc2)− rp1 + I(Y2;Xpc1, Xpc2, Upp,2|Uc2)− rp2,

I(Y1;Xpc1, Xpc2, Upp,1|Uc1)− rp1 + I(Y2;Upp,2|Xpc2,Uc2, Xpc1)− rp2

}
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2Rp1 +Rp2 ≤ I(Y1;Xpc1, Xpc2, Upp,1|Uc1)− rp1 + I(Y1;Upp,1|Xpc1,Uc1, Xpc2)− rp1

+I(Y2;Xpc1, Upp,2|Xpc2,Uc2)− rp2

Rp1 +Rp2 +Rc1 ≤ min {

I(Y2;Xpc1, Xpc2, Upp,2|Uc2)− rp2 + I(Y1;Uc1, Upp,1|Xpc1, Xpc2)− rc1 − rp1,

I(Y2;Upp,2|Xpc2,Uc2, Xpc1)− rp2 + I(Y1;Xpc1, Xpc2,Uc1, Upp,1)− rc1 − rp1,

I(Y2;Xpc1, Upp,2|Xpc2,Uc2)− rp2 + I(Y1;Xpc2,Uc1, Upp,1|Xpc1)− rc1 − rp1

}

Rp1 + 2Rp2 +Rc1 ≤ I(Y1;Xpc2,Uc1, Upp,1|Xpc1)− rc1 − rp1 + I(Y2;Xpc1, Xpc2, Upp,2|Uc2)− rp2

+I(Y2;Upp,2|Xpc2,Uc2, Xpc1)− rp2

2Rp1 +Rp2 +Rc1 ≤ min {

I(Y1;Xpc1, Xpc2,Uc1, Upp,1)− rc1 − rp1 + I(Y1;Upp,1|Xpc1,Uc1, Xpc2)− rp1

+I(Y2;Xpc1, Upp,2|Xpc2,Uc2)− rp2,

I(Y1;Xpc1, Xpc2, Upp,1|Uc1)− rp1 + I(Y1;Uc1, Upp,1|Xpc1, Xpc2)− rc1 − rp1

+I(Y2;Xpc1, Upp,2|Xpc2,Uc2)− rp2

}

2Rp1 +Rp2 + 2Rc1 ≤ I(Y2;Xpc1, Upp,2|Xpc2,Uc2)− rp2 + I(Y1;Xpc1, Xpc2,Uc1, Upp,1)− rc1 − rp1

+I(Y1;Uc1, Upp,1|Xpc1, Xpc2)− rc1 − rp1

Rp1 +Rp2 +Rc1 +Rc2 ≤ min {

I(Y1;Xpc1, Xpc2,Uc1, Upp,1)− rc1 − rp1 + I(Y2;Uc2, Upp,2|Xpc1, Xpc2)− rc2 − rp2,

I(Y2;Xpc1, Xpc2,Uc2, Upp,2)− rc2 − rp2 + I(Y1;Uc1, Upp,1|Xpc1, Xpc2)− rc1 − rp1,

I(Y1;Xpc2,Uc1, Upp,1|Xpc1)− rc1 − rp1 + I(Y2;Xpc1,Uc2, Upp,2|Xpc2)− rc2 − rp2

}

2Rp1 +Rp2 +Rc1 +Rc2 ≤ min {

I(Y1;Xpc1, Xpc2,Uc1, Upp,1)− rc1 − rp1 + I(Y1;Upp,1|Xpc1,Uc1, Xpc2)− rp1

+I(Y2;Xpc1,Uc2, Upp,2|Xpc2)− rc2 − rp2,

I(Y1;Xpc1, Xpc2, Upp,1|Uc1)− rp1 + I(Y1;Uc1, Upp,1|Xpc1, Xpc2)− rc1 − rp1

+I(Y2;Xpc1,Uc2, Upp,2|Xpc2)− rc2 − rp2

}

2Rp1 +Rp2 + 2Rc1 +Rc2 ≤ I(Y2;Xpc1,Uc2, Upp,2|Xpc2)− rc2 − rp2

+I(Y1;Xpc1, Xpc2,Uc1, Upp,1)− rc1 − rp1

+I(Y1;Uc1, Upp,1|Xpc1, Xpc2)− rc1 − rp1;

Constraint set B3: Same as constraint set B3, with the indices �1� and �2� inter-

changed.

Proof. Refer to Appendix B.1.
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Remarks: Observe that the above rate region yields HK and MIMO-BC regions as the

special cases.

1. HK Region: Rc,i = Rp,i = rc,i = rp,i = 0, Rp,i = Ri i = 1, 2, Uc1 = Uc2 = ϕ.

R1 ≤ I(Y1;Xpc1, Upp,1|Xpc2)

R2 ≤ I(Y2;Xpc2, Upp,2|Xpc1)

R1 +R2 ≤ min {I(Y1;Xpc2, Upp,1|Xpc1) + I(Y2;Xpc1, Upp,2|Xpc2),

I(Y1;Upp,1|Xpc1, Xpc2) + I(Y2;Xpc1, Xpc2, Upp,2),

I(Y1;Xpc1, Xpc2, Upp,1) + I(Y2;Upp,2|Xpc2, Xpc1)}

2R1 +R2 ≤ I(Y1;Xpc1, Xpc2, Upp,1) + I(Y1;Upp,1|Xpc1, Xpc2) + I(Y2;Xpc1, Upp,2|Xpc2)

R1 + 2R2 ≤ I(Y2;Xpc1, Xpc2, Upp,2) + I(Y2;Upp,2|Xpc2, Xpc1) + I(Y1;Xpc2, Upp,1|Xpc1),

2. MIMO-BC: Rp1 = Rp2 = rp1 = rp2 = 0, Ri = Rc,i;Xpc1 = Xpc2 = Xpp1 = Xpp2 = ϕ.

R1 ≤ I(Y1;Uc1)− rc1

R2 ≤ I(Y2;Uc2)− rc2

R1 +R2 ≤ I(Y1;Uc1) + I(Y2;Uc2)− rc1 − rc2

which, from (3.3), is equivalent to the Marton's region for the vector BC, given by

R1 ≤ I(Y1;Uc1)

R2 ≤ I(Y2;Uc2)

R1 +R2 ≤ I(Y1;Uc1) + I(Y2;Uc2)− I(Uc1;Uc2).

Superposition coding for interference cancelation

The layered binning strategy discussed above has high complexity in general. Observe

that, when public messages are decoded, the interference due to the common message

still remains. This may not be bene�cial always. On the other hand, we also observe

that simple coding strategies based on superposition coding have much lower complexity,

and hence are much easier to implement. With this insight, in the following sections,

we propose coding strategies based on superposition coding.

Strategy I:

In this method, the common messages are encoded such that they are decoded by both
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the receivers. The receivers, after decoding the common messages, cancel out the cor-

responding interference from the received signal so that other messages can be decoded

free of interference due to common messages. The coding strategy takes the following

steps:

i. Each common message is encoded �rst using vector codewords.

ii. Each transmitter encodes its public message using superposition coding treating

the common message set as the cloud center.

iii. Each transmitter generates sub-private codeword which superposed over the com-

bination of its own public message and common messages.

We have the following theorem.

Theorem 3.2. The rate pair (R1, R2) = (Rp,1+Rc,1, Rp,2+Rc,2) is achievable if, for some

joint distribution such that

p(xc1)p(xc2)p(xpc1|xc2,xc1)p(xpc2|xc2,xc1)p(x1|xpc1,xc2,xc1)p(x1|xpc1,xc2,xc1).

the rate tuple (Rp,1, Rc,1, Rp,2, Rc,2) satis�es the following two sets of constraints, denoted

C1 and C2:

Constraint set C1: (constraints at the encoders)

Rc,1 ≤ R′
c,1

Rc,2 ≤ R′
c,2;

Constraint set C2 :

Rp1 ≤ I(Y1;X1|Xpc2Xc,1,Xc,1)

2Rp1 +Rp2 ≤ I(Y1;X1, Xpc2|Xc,1,Xc,2) + I(Y1;X1|Xpc2, Xpc1,Xc,1,Xc,2)

+I(Y2;X2, Xpc1|Xpc2,Xc,1,Xc,2)

2Rp1 +Rp2 +Rc1 ≤ I(Y1;X1, Xpc2|Xc,2) + I(Y1;X1|Xpc2, Xpc1,Xc,1,Xc,2)

+I(Y2;X2, Xpc1|Xpc2,Xc,1,Xc,2)

2Rp1 +Rp2 +Rc2 ≤ I(Y1;X1, Xpc2|Xc,1) + I(Y1;X1|Xpc2, Xpc1,Xc,1,Xc,2)

+I(Y2;X2, Xpc1|Xpc2,Xc,1,Xc,2)

2Rp1 +Rp2 +Rc1 +Rc2 ≤ I(Y1;X1, Xpc2) + I(Y1;X1|Xpc2, Xpc1,Xc,1,Xc,2)

+I(Y2;X2, Xpc1|Xpc2,Xc,1,Xc,2)
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Rp1 +Rp2 ≤ min {I(Y1;X1|Xpc2, Xpc1,Xc,1,Xc,2) + I(Y2;X2, Xpc1|Xc,1,Xc,2),

I(Y1;X1, Xpc2|Xpc1,Xc,1,Xc,2) + I(Y2;X2, Xpc1|Xpc2,Xc,1,Xc,2),

I(Y2;X2|Xpc2, Xpc1,Xc,1,Xc,2) + I(Y1;X1, Xpc2|Xc,1,Xc,2)}

Rp1 +Rp2 +Rc1 ≤ min {I(Y1;X1|Xpc2, Xpc1,Xc,1,Xc,2) + I(Y2;X2, Xpc1|Xc,2),

I(Y2;X2|Xpc2, Xpc1,Xc,1,Xc,2) + I(Y1;X1, Xpc2|Xc,2)}

Rp1 +Rp2 +Rc2 ≤ min {I(Y1;X1|Xpc2, Xpc1,Xc,1,Xc,2) + I(Y2;X2, Xpc1|Xc,1),

I(Y2;X2|Xpc2, Xpc1,Xc,1,Xc,2) + I(Y1;X1, Xpc2|Xc,1)}

Rp1 +Rp2 +Rc1 +Rc2 ≤ min {I(Y1;X1|Xpc2, Xpc1,Xc,1,Xc,2) + I(Y2;X2, Xpc1),

I(Y2;X2|Xpc2, Xpc1,Xc,1,Xc,2) + I(Y1;X1, Xpc2)}

2Rp1 + 2Rp2 +Rc1 ≤ I(Y1;X1, Xpc2|Xpc1,Xc,1,Xc,2) + I(Y2;X2, Xpc1|Xc,2)

+I(Y1;X1|Xpc2, Xpc1,Xc,1,Xc,2) + I(Y2;X2, Xpc1|Xpc2,Xc,1,Xc,2)

2Rp1 + 2Rp2 +Rc2 ≤ I(Y1;X1, Xpc2|Xpc1,Xc,1,Xc,2) + I(Y2;X2, Xpc1|Xc,1)

+I(Y1;X1|Xpc2, Xpc1,Xc,1,Xc,2) + I(Y2;X2, Xpc1|Xpc2,Xc,1,Xc,2)

2Rp1 + 2Rp2 +Rc1 +Rc2 ≤ I(Y1;X1, Xpc2|Xpc1,Xc,1,Xc,2) + I(Y2;X2, Xpc1)

+I(Y1;X1|Xpc2, Xpc1,Xc,1,Xc,2) + I(Y2;X2, Xpc1|Xpc2,Xc,1,Xc,2)

2Rp2 +Rp1 +Rc1 +Rc2 ≤ I(Y1;X1, Xpc2|Xpc1,Xc,1,Xc,2) + I(Y2;X2, Xpc1)

+I(Y2;X2|Xpc2, Xpc1,Xc,1,Xc,2)

2Rp2 +Rp1 +Rc2 ≤ I(Y1;X1, Xpc2|Xpc1,Xc,1,Xc,2) + I(Y2;X2, Xpc1|Xc,1)

+I(Y2;X2|Xpc2, Xpc1,Xc,1,Xc,2)

2Rp2 +Rp1 +Rc1 ≤ I(Y1;X1, Xpc2|Xpc1,Xc,1,Xc,2) + I(Y2;X2, Xpc1|Xc,2)

+I(Y2;X2|Xpc2, Xpc1,Xc,1,Xc,2)

2Rp2 +Rp1 ≤ I(Y1;X1, Xpc2|Xpc1,Xc,1,Xc,2) + I(Y2;X2, Xpc1|Xc,1,Xc,2)

+I(Y2;X2|Xpc2, Xpc1,Xc,1,Xc,2)

Rp2 ≤ I(Y2;X2|Xpc1Xc,1,Xc,1).

Proof. Refer to Appendix B.2.

Strategy II:

In Strategy I discussed above, each receiver needs to decode all the common messages.

This might restrict the rate of common information when the interference is moderately

low. This problem can be circumvented by relaxing the condition and just requiring

that each receiver only decodes its own common message. A typical instance of this

method is the zero-forcing beamforming for Gaussian networks, where transmitters pre-
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subtract the known interference due to the interfering part. The coding strategy takes

the following steps:

i. Each common message is encoded �rst using vector codewords.

ii. Each transmitter encodes its public message independent of common messages.

iii. Each transmitter generates sub-private codeword which superimposed over the

combination of its own public message and the common message.

We have the following theorem.

Theorem 3.3. The rate pair (R1, R2) = (Rp,1 + Rc,1, Rp,2 + Rc,2) is achievable if, for

some joint distribution such that

p(xc,1)p(xc,2)p(xpc,1)p(xpc,2)p(x1|uc,1, xpc,1)p(x2|uc,2, xpc,2),

the rate tuple (Rp,1, Rc,1, Rp,2, Rc,2) satis�es the following three sets of constraints, denoted

D1, D2 and D3:

Constraint set D1: constraints at the transmitters

Rc,1 ≤ R′
c,1 (3.8)

Rc,2 ≤ R′
c,2; (3.9)

Constraint set D2

Rp,1 ≤ I(Y1;X1|Xpc,2,Xc,1)

Rp,1 +Rc,1 ≤ I(Y1;X1|Xpc,2)

Rp,1 +Rp,2 ≤ min {I(Y2;X2, Xpc1|Xc,2) + I(Y1;X1|Xpc,1, Xpc,2,Xc,1),

I(Y1;X1, Xpc,2|Xpc,1,Xc,1) + I(Y2;X2, Xpc,1|Xpc,2,Xc,2)}

2Rp,1 +Rp,2 ≤ I(Y1;X1, Xpc2|Xc,1) + I(Y2;X2, Xpc,1|Xpc,2,Xc,2) + I(Y1;X1|Xpc,1, Xpc,2,Xc,1)

Rp,1 +Rp,2 +Rc,1 ≤ min {I(Y2;X2, Xpc,1|Xpc,2,Xc,2) + I(Y1;X1, Xpc,2|Xpc,1),

I(Y2;X2, Xpc1|Xc,2) + I(Y1;X1|Xpc,1, Xpc,2),

I(Y1;X1, Xpc,2) + I(Y2;X2|Xpc,2, Xpc,1,Xc,2)}

2Rp,1 +Rp,2 +Rc,1 ≤ min {I(Y1;X1, Xpc,2) + I(Y2;X2, Xpc,1|Xpc,2,Xc,2) + I(Y1;X1|Xpc,1, Xpc,2,Xc,1),

I(Y1;X1, Xpc2|Xc,1) + I(Y2;X2, Xpc,1|Xpc,2,Xc,2) + I(Y1;X1|Xpc,1, Xpc,2)}

Rp,1 + 2Rp,2 +Rc,1 ≤ I(Y2;X2, Xpc1|Xc,2) + I(Y1;X1, Xpc,2|Xpc,1) + I(Y2;X2|Xpc,2, Xpc,1,Xc,2)

2Rp,1 +Rp,2 + 2Rc,1 ≤ I(Y1;X1, Xpc,2) + I(Y2;X2, Xpc,1|Xpc,2,Xc,2) + I(Y1;X1|Xpc,1, Xpc,2)
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Rp,1 +Rp,2 +Rc,1 +Rc,2 ≤ min {I(Y1;X1, Xpc,2|Xpc,1) + I(Y2;X2, Xpc,1|Xpc,2),

I(Y2;X2, Xpc,1) + I(Y1;X1|Xpc,1, Xpc,2)}

2Rp,1 +Rp,2 +Rc,1 +Rc,2 ≤ min {I(Y1;X1, Xpc,2) + I(Y2;X2, Xpc,1|Xpc,2) + I(Y1;X1|Xpc,1, Xpc,2,Xc,1),

I(Y1;X1, Xpc2|Xc,1) + I(Y2;X2, Xpc,1|Xpc,2) + I(Y1;X1|Xpc,1, Xpc,2)}

2Rp,1 +Rp,2 + 2Rc,1 +Rc,2 ≤ I(Y1;X1, Xpc,2) + I(Y2;X2, Xpc,1|Xpc,2) + I(Y1;X1|Xpc,1, Xpc,2);

Constraint set D3: Same as D2 with the indices �1� and �2� interchanged.

Proof. The proof is similar to the proof of Theorem 3.2, and is omitted.

3.4 The Gaussian Case with Symmetric Channel Gains

In this section, we illustrate the coding strategies discussed above for the case of a

second-hop modeled as a symmetric Gaussian interference channel; i.e., h1,1 = h2,2 = h

and h1,2 = h2,1 = g. We note that determining the complete rate region, optimal coding

schemes and input distributions for the interference channel is a complex task, and

does not yield much insights. Therefore, we restrict our attention to characterizing the

symmetric achievable rate, de�ned as R = maxmin {R1, R2}, where the rate pair (R1, R2)

belongs to the best known achievable rate region for the interference channel of interest.

Further, we limit our discussions to the speci�c signaling schemes, encoding/decoding

order, as will be discussed below.

Let the received signal at each receiver is given by

Y1 = hX1 + gX2 + Z1

Y2 = hX2 + gX1 + Z2,

where X1 and X2 are the transmitted signals from S1 and S2 respectively, and Zi ∼

N (0, 1), i = 1, 2, is the additive Gaussian noise at receiver Di. Each transmitter has a

power constraint E[|Xi[n]|2] ≤ P . We assume that each user has access to the same

amount of side-information, i.e., R′
c,1 = R′

c,2 = R′
c.

Before proceeding further with the coding strategies, we remark on the notation

used in this section. For convenience, we use Xa to denote any vector of the form

[Xa,1, Xa,2]. Further, we let h1 = [h, g], h2 = [g, h] and ∥h∥2 = h2 + g2. Observe that hi is

the vector channel formed by the transmitter (S1, S2) at the receiver Di .
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Let (v1, vc,2) = (vpc,1, vpp,1, vc,1, vc,2) and (v2, vc,1) = (vpc,1, vpp,1, vc,1, vc,2) be the

message set to be transmitted from S1 and S2 respectively. Encoder 1 employs XN
pc,1 to

encode vpc,1, UN
pp,1 to encode vpp,1, and UN

c,1,1 and UN
c,2,1 to encode vc,1 and vc,2 respec-

tively. Similarly, encoder 2 employs XN
pc,2 to encode vpc,2, UN

pp,2 to encode vpp,2, and UN
c,1,2

and UN
c,2,2 to encode vc,1 and vc,2 respectively. Note that UN

c,1 and UN
c,2 are generated

cooperatively by both encoders. Each encoder splits its power P into three parts, Pc,

Ppp and Ppc. All codewords are drawn from a zero mean Gaussian ensemble. Both

encoders compute Xc,1 = fc1(Uc,1,Uc,2), Xc,2 = fc2(Uc,1,Uc,2) and encoder Si computes

Xpp,i = fp,i(Upp,i) as the transmit signals. Then Si transmits

Xi = Xc,1,i +Xc,2,i +Xpc,i +Xpp,i

The received signal at Di can be written as

Yi = h†
i (Xc,1 +Xc,2 +Xpc +Xpp) + Z1.

We let ζi = h†
i (Xpc +Xpp)+Z1 where ζi is the equivalent additive noise at Di in decoding

the common messages, treating the interference due to private messages as additive noise.

Observe that ζi ∼ N (0, σ2
ζ ), where σ

2
ζ = 1 + ∥h∥2 Pp.

Binning for interference cancelation: layered dirty paper coding (DPC)

In this section we demonstrate the application of GP binning techniques which, when

specialized to the Gaussian case, boil down to dirty paper coding (DPC) [42]. Essen-

tially, DPC involves pre-cancelation of interference at the transmitter without incurring

any power cost. From the perspective of transmitting common information only, the

interference channel can be modeled as a Gaussian vector broadcast channel, except that

it has the interference due to private messages. Gaussian MIMO broadcast channels

have been well studied and their capacity regions have been characterized in [43, 57]

by exploiting DPC. Therefore, it is clear that DPC's performance in the second hop is

superior when entire information at relays is common.

Encoding:

1. Encoding the public messages: Encoder Si chooses a codeword XN
pc,i, Xpc,i ∼

N (0, Ppc) to relay its own public message. Public messages are decoded �rst at the
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receivers, and their e�ects are subtracted from the received signals before decoding

common and sub-private messages.

2. Encoding the common messages: Relays collaborate to encode the common messages

sequentially. Suppose at any time the common message pertaining to one user is encoded,

DPC is performed on the common message of the other user treating the interference

due to the �rst user's common message as the known information. Consider the general

case, where relays L1 and L2 allocate Ppp,1 and Ppp,2 for the transmission of their private

messages. Then, it is clear that the sum power budget is 2P −Pp,1−Pp,2 for transmitting

common messages, where Pp,i = Ppp,i + Ppc,i. While the second-hop is analogous to a

vector BC, we should point out that, relay L1 has to use only P − Pp,1 and relay L2

has to use only P − Pp,2 to transmit the common information. We will develop a time

sharing mechanism to overcome this di�culty. Depending on the encoding order of the

common information, DPC is performed using following strategies.

• Encoding strategy π1 For private messages, set Ppp,1 = p∗1 and Ppp,2 = p∗2. Relays �rst

encode vc,2 using UN
c,2(vc,2). Then, set XN

c,2 = UN
c,2. Encode vc,1 using UN

c,1(vc,1), and

apply DPC on UN
c,1(vc,1) treating XN

c,2 as the known interference while treating the e�ect

due to sub-private messages, ζN1 = h†
1X

N
pp + ZN

1 , as the noise. That is, choose the vector

Xc,1 ∼ N (0,Σc,1), independent of Xc,2, such that

Uc,1 = Xc,1 +BcXc,2,

where Bc is chosen as per the DPC requirement [42]; i.e., Bc corresponds to the optimal

non-causal MMSE estimate of Xc,1 given h†
1Xc,1 + ζ1. Encoders jointly compute their

signals for relaying the common message set asXc = Xc,1+Xc,2. Relays choose covariance

matrices to maximize the sum-rate; i.e, Σ1 = Σπ1
1 , Σ2 = Σπ1

2 ; where {Σπ1
1 ,Σπ1

2 } is the

solution to (3.10).

Rπ1(p
∗
1, p

∗
2) = max

Σ1,Σ2

(
C

(
h†
1Σ1h1

1 + h2p∗1 + g2p∗2

)
+ C

(
h†
2Σ2h2

1 + h†
2Σ1h2 + h2p∗2 + g2p∗1

))
(3.10)

subject to tr (Σ1 +Σ2) ≤ 2P − Ppc,1 − Ppc,2 − p∗1 − p∗2.

• Encoding strategy π2 For private messages, set Ppp,1 = p∗2 and Ppp,2 = p∗1. Relays encode

vc,1 in XN
c,1, then generateX

N
c,2 by encoding vc,2 and then performing DPC treating h†

2X
N
c,1
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as the known side information. As before, the optimal sum-rate, Rπ2(p
∗
1, p

∗
2), is obtained

by solving (3.10) swapping indexes 1 and 2, with the corresponding covariance matrices

being {Σ1,Σ2} = {Σπ2
1 ,Σπ2

2 }.

• Time sharing Observe that the power allocation for common messages at each re-

lay, corresponding to the strategy πj , is determined by P
πj

c,1
∆
=
[
Σ

πj

1 +Σ
πj

2

]
1,1

; P
πj

c,2
∆
=[

Σ
πj

1 +Σ
πj

2

]
2,2
. To meet the power constraint at each relay, relays perform time sharing

by using π1 for the �rst half of the slot and π2 for the second half. Note that, due to

symmetry in channel conditions, relay Li obeys the average power constraint per slot:

1

2
(Pπ1

c,i + Pπi
c,1 + Ppc,1 + Ppc,2 + p∗1 + p∗2) = P.

3. Encoding the sub-private messages: Observe that, due to DPC, each user is able

to decode its own common message but not the interfering part. Therefore, the e�ect

of the common message due the other user is still interference. Fortunately, this is

known side-information to the encoders. Therefore, each encoder performs another

round of DPC on its own sub-private messages, treating the e�ect of interfering part of

the common codeword as the known side-information. To this end, Di chooses the DPC

signal Xpp,i ∼ N (0, Ppp), independent of Uc,j , j ̸= i, such that,

Upp,i = Xpp,i + b†
cUc,j ,

where bc corresponds to the MMSE estimator of Xpp,i given h†
1Xpp,i+Zi. It is interesting

to note that bc does not depend on the variance of the interference. Therefore, due to

DPC, each individual receiver can decode its private message as though there were no

interference due to common messages.

Decoding: Receivers decode messages in the following order. Public messages are

decoded �rst, treating h†
i (X

N
c,1+XN

c,2+XN
pp), the interference from common messages and

private messages, as noise. Once the public messages are decoded, each receiver sub-

tracts their e�ect, h†
iXpc, from the received signal, Yi. In the second step, each receiver

decodes the part of common message intended for it. In decoding the common message,

each receiver treats h†
iX

N
pp, the interference due to sub-private messages, as noise. Fi-

nally, receivers decode their sub-private messages individually, treating the interference

due to the sub-private message of other user as noise. Note that the interference from
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public messages disappears due to interference cancelation at the receiver, and the inter-

ference from common messages is canceled out due to the DPC performed on sub-private

messages.

Analysis: Next, we evaluate the achievable rates due to this scheme. Let a power split

(Ppc, Pc, Ppp) at relays be given such that Ppc+Pc+Ppp = P . As mentioned earlier, public

messages are decoded �rst, treating the e�ect of common and sub-private messages as

noise. Therefore, the equivalent noise at receiver Di in decoding the public message is

given by

Ψi = h†
i (Xc,1 +Xc,2 +Xpp) + Zd,i.

We note that Ψ ∼ N (0, σ2Ψ), where

σ2Ψ = E[|Ψ|2]

= h†
i (Σ1 +Σ2 + Ppp · I)h†

i + 1

= ∥h∥2 (P − Ppc) +
4Pcg

2h2

∥h∥2 + Pch2
∆

σ2
p

+ 1,

where σ2p = ∥h∥2 Ppp + 1.

Next, consider the transmission of common messages. For the general case, a

closed-form solution for the optimal power allocation is still unknown. However, under

the symmetric power allocation for the sub-private message set Ppp,1 = Ppp,2 = Ppp, it

can be shown that the optimal sum-rate is given by (see [58] for details)

Rπ1
c = C

(
(h2 − g2)2P

2
c

σ4p
+

2Pc

σ2p
∥h∥2

)
, (3.11)

and the corresponding DPC matrices are given by (refer to Appendix B.4, for more

details)

Σπ1
c,1 =

Pc(
σ2p1 +

Pc
σ2
p
∥h∥2

)(
∥h∥2 + Pc

σ2
p
h2∆

)
 h2

(
1 + Pc

σ2
p
h∆

)2
gh
(
1− Pc

σ2
p

2
h2∆

)
gh
(
1− P ′

c
2h2∆

)
g2 (1− P ′

ch∆)
2

 ,
Σπ1
c,2 =

Pc

(
1 + 2Pc

σ2
p
∥h∥2 + P 2

c
σ4
p

)
(
1 + Pc

σ2
p
∥h∥2

)(
∥h∥2 + Pc

σ2
p
h2∆

)
 g2 hg

hg h2

 , (3.12)

where h2∆ = h2 − g2.
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Next, consider sub-private messages. Observe that DPC is performed on the

private message treating the interference due to common information as the known

side-information. Further, each receiver subtracts out the interference due to public

messages. Therefore, each receiver can decode its own sub-private message as though

there were no interference due to common messages and public messages. Therefore,

each relay can transmit its private information at a rate

Rpp = C

(
h2Ppp

1 + g2Ppp

)
. (3.13)

Therefore, when the proposed layered coding with DPC is used, the total achiev-

able rate per link is given by

RLAY−DPC = max{
Ppc,Pc,Ppp:

Pc+Pp=P

}Rpc +Rc +Rpp; s. t. Rc ≤ R′
c,

where Rc is the common information rate per link, Rpc is the public information rate

per link, and Rpp the sub-private information rate per link, given by

Rc =
1

2
C

(
(h2 − g2)2P

2
c

σ4p
+

2Pc

σ2p
∥h∥2)

)
,

Rpc = min

{
C

(
g2Ppc

σ2Ψ

)
,
1

2
C

(
∥h∥2 Ppc

σ2Ψ

)}
, and Rpp = C

(
h2Ppp

1 + g2Ppp

)
.

We remark that our choice of covariance matrices, in performing DPC for the

common messages, is greedy, in the sense that it maximizes the rates for transmission

of the common message without taking into account their e�ect on the public messages.

We observe that due to the above mentioned decoding order, apart from private mes-

sages, common messages also appear as interference for public messages. Since common

messages are aired using vector broadcast techniques, the signal power of the common

messages at the receivers is enhanced signi�cantly. Therefore, public messages may in-

cur signi�cant amounts of interference from common messages. Thus when Rc is large,

the contribution due to public messages vanishes, and consequently, it is bene�cial to

perform DPC without resorting to splitting the private message toward interference can-

celation. Indeed, when Rc and hence Pc increases, a small amount of power P1 = P −Pc

is left to rely private and public messages. Concordant to the results obtained for
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weak interference channels [59, 60, 61], when P1 satis�es P1 ≤ (h−2g)
2g3 , splitting of the

private message is no longer necessary. Thus, to decoding one user's private message

while treating other user's private message as noise becomes optimal. When Rc is very

small, a relatively smaller amount of power is spent on transmitting common messages.

Therefore, it is bene�cial to perform message splitting of the private message to aid in

interference cancelation.

Superposition coding: layered beamforming

In the previous section, we proposed a layered coding strategy that incorporates DPC

to relay common messages. However, we note that DPC has high complexity. The

non-linearity inherent in DPC inhibits us from avoiding interference due to the common

messages when decoding public messages. This may not be bene�cial always. On the

other hand, linear schemes like beamforming are much easier to implement, and reduce

the burden of common messages before decoding the private messages. In light of the

above observations, we propose coding schemes based on a marriage of HK coding and

BF schemes.

Strategy I: As noted in the previous section, this scheme requires each receiver to

decode both the common messages. Since information rate in such cases is determined

by the weaker link, this scheme yields bene�ts when the gain on the interfering link is

higher.

Encoding: For transmitting common messages, transmitters apply coherent beam-

forming by letting each encoder choose its symbols such that Uc,1,1 = Uc,1,2 = Uc,1 and

Uc,2,1 = Uc,2,2 = Uc,2, with Uc,i ∼ N (0, 1), i = 1, 2. That is, Σu,1 = Σu,2 =

 1 1

1 1

. Then,
set

Xc,1,1 =
√
PcmUc,1; Xc,2,1 =

√
PcuUc,2

Xc,1,2 =
√
PcuUc,1; Xc,2,2 =

√
PcmUc,2

where Pcm and Pcu are chosen such that Pc = Pcm+Pcu. Observe that Pcm is the portion of

the power used by each transmitter to transmit the intended part of its common message,

while Pcu is the power used to transmit the �interfering part� as the side-information.
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For transmitting public and sub-private messages, each encoder uses codewords XN
pc,i

and XN
pp,i respectively. To transmit its message set, transmitter i computes the signal

Xi as

Xi = Xc,1,i +Xc,2,i +Xpc,i +Xpp,i, i = 1, 2.

Observe that E[|Xi|2] = P .

Decoding: Receivers decode messages in the following order. First, each receiver

decodes common information. To decode the common information, the e�ect of private

messages is treated as noise. Once the common messages are decoded, each receiver

subtracts the e�ect of the common messages from its received signal in order to decode

its private messages Thus, there is no interference from the common messages on the

private messages. Observe that each splitting of private message into sub-private and

public sub-messages is according to HK coding.

Analysis: We represent the received signal as

Yi = h†
i (Xc,1 +Xc,2 +Xpc +Xpp) + Zi.

Considering the transmission of only common messages, we equivalently model the chan-

nel as

Y1 = h†
1aUc,1 + h†

2aUc,2 + ζ1, (3.14)

where, for convenience, we have de�ned a = [
√
Pcm,

√
Pcu]. Furthermore, ζ1 is the equiv-

alent noise at D1 in decoding the common messages, with ζd,1[n] ∼ N (0, σ2
ζ ), where

σ2
ζ = ∥h∥2 Pp + 1.

Similarly, for the second receiver D2,

Y2 = h†
1aUc,2 + h†

2aUc,1 + ζ2, (3.15)

where ζ2 ∼ N (0, σ2
ζ ).

Consider the transmission of common information. We observe that (3.14) rep-

resents a virtual MAC formed by (Uc,1, Uc,2, Y1), and (3.15) represents another virtual

MAC formed by (Uc,1, Uc,2, Y2). The achievable common information rate region is the

intersection of the regions formed by these two MACs. The following proposition gives

the optimal power allocation vector for the common information transmission.
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Proposition 3.1. The common information rate per link, under coherent beamforming,

is maximized by equal power allocation at the relays, given by Pcm = Pcu = Pc/2, and

the corresponding common information rate per link is given by

Rc =
1

2
C

(
(g + h)2 Pc

∥h∥2 Pp + 1.

)
. (3.16)

The proof can be found in Appendix B.3.

Next, consider the private messages. Since sub-common messages and sub-

private messages are decoded by canceling the interference due to the common messages,

the encoding and decoding of the public and sub-private messages mimic the version of

HK coding considered in [14]. The information rate for the private message for each

user is given by

Rp = max{
Ppc,Ppp:

Ppc+Ppp=Pp

}Rpp +Rpc, (3.17)

with

Rpp = C

(
h2Ppp

1 + g2Ppp

)
and Rpc = min

{
C

(
g2Ppc

1 + ∥h∥2 Ppp

)
,
1

2
C

(
∥h∥2 Ppc

1 + ∥h∥2 Ppp

)}
.

Thus, the rate that can be achieved per user in the second hop due to CBF is

RCBF = max{
Pc,Pp:

Pc+Pp=P

}Rp +Rc; s. t. Rc ≤ R′
c.

Strategy II:

In the coherent beamforming case, each receiver needs to decode all the common mes-

sages. This might restrict the rate of common information when the interference is

moderately low. Under these circumstances, it can be bene�cial to relax this require-

ment which is in spirit with the strategy II discussed in Section 3.3. For the Gaussian

case, the design of an optimal beamforming vector for the common message codewords is

crucial. In our illustration, for simplicity, we consider zero forcing beamforming (ZFBF),

which involves transmitters pre-subtracting the known interference due to the interfer-

ing part of the common message. Essentially, ZFBF consists of inverting the channel

matrix by the relays to create orthogonal channels between the relays and the receivers.

Encoding: For transmitting common messages, each encoder chooses its symbols such
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that Uc,1,1 = Uc,1,2 = Uc,1 and Uc,2,1 = Uc,2,2 = Uc,2, with Uc,i ∼ N (0, 1), i = 1, 2. That is,

Σu,1 = Σu,2 =

 1 1

1 1

. Then, set
Xc,1,1 =

h
√
Pc

∥h∥
Uc,1; Xc,2,1 = −

g
√
Pc

∥h∥
Uc,2

Xc,1,2 = −
g
√
Pc

∥h∥
Uc,1; Xc,2,2 =

h
√
Pc

∥h∥
Uc,2

For transmitting public and sub-private messages, each encoder uses codewords XN
pc,i

and XN
pp,i respectively. To transmit its message set, transmitter i computes the signal

Xi as

Xi = Xc,1,i +Xc,2,i +Xpc,i +Xpp,i, i = 1, 2.

Observe that E[|Xi|2] = P .

Decoding: Receivers decode messages in the following order. First, each receiver

decodes the common information. Observe that each user is able to decode only his own

common message and the interfering part of the common messages vanishes due to zero-

forcing. To decode the common information, the e�ect of private messages is treated as

noise. Once the common messages are decoded, each receiver subtracts the e�ect of the

common messages from its received signal in order to decode its private message. Thus,

there is no interference from the common messages on the private messages. Observe

that each splitting of private message into sub-private and public sub-messages is similar

to HK coding.

Analysis: With the decoding order �xed as mentioned above, the rate of common

information per user is given by

Rc = C

( (
h2 − g2

)2
Pc

∥h∥2 (1 + ∥h∥2 Pp)

)
. (3.18)

The information rate for the private message per user is given by

Rp = max{
Ppc,Ppp:

Ppc+Ppp=Pp

}Rpp +Rpc, (3.19)

with

Rpp = C

(
h2Ppp

1 + g2Ppp

)
and Rpc = min

{
C

(
g2Ppc

1 + ∥h∥2 Ppp

)
,
1

2
C

(
∥h∥2 Ppc

1 + ∥h∥2 Ppp

)}
.
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Thus, the rate that can be achieved per user in the second hop due to ZFBF is

RZFBF = max{
Pc,Pp:

Pc+Pp=P

}Rp +Rc; s. t. Rc ≤ R′
c.

3.5 Numerical Examples

We perform numerical evaluation of the schemes discussed above. The metric of interest

is the total achievable symmetric rate per user. For ease of evaluation, we consider

a symmetric interference L → D link with a link SNR of 20dB, where we de�ne link

SNR = h2P . We are interested in studying the e�ect of common information availability,

Rc at the relays, on the achievable information rate per user ILD over the L → D

link. De�ne the parameter α = g2/h2. Figs. 3.2 and 3.3 show ILD versus Rc plots

for di�erent schemes. For comparison purposes, we also consider the naive strategies

without layering: HK-scheme (does not exploit the common information), DPC and

beamforming (do not split private message for interference cancelation). The optimal

power allocation policies and the corresponding achievable rates of di�erent schemes

were determined numerically by exhaustive search.

We have the following observations:

• Layered coding with DPC outperforms all other schemes for all ranges of Rc ex-

amined and for relatively small values of α. This is because, for relatively smaller

values of α's, the interference of common messages on public messages is low, en-
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abling e�cient message splitting for smaller values of Rc. When Rc is large, the

layered coding scheme boils down to DPC which is optimal when Rc is large.

• Layered coding with BF is superior to its DPC counterpart for larger values of α

in the regime when Rc is small. While both DPC and BF enhance the SNR of the

common messages, for the layered DPC scheme, the interference due to common

messages may drastically a�ect the rate of the public messages to an extent that

it may become bene�cial for relays to allot more power to transmitting the private

message than to transmitting the common messages. However, for the layered

BF scheme, successive cancelation of interference from common messages at the

receivers proves to be useful.

• HK based scheme outperforms DPC and BF schemes when the amount of common

information available is relatively low. This indicates that in such cases, it is ben-

e�cial to allocate more power for unknown interference cancelation than relaying

the common information.

• The performance of layered coding schemes boils down to that of HK coding when

there is no side information available at the relays; i.e., Rc = 0. This is due to

the fact that HK coding is the best known scheme for ICs where the transmitters

have no side information.

• The beamforming method is not superior in any regime. For higher values of α,

performance of CBF improves whereas the performance of ZFBF becomes worse.

When the values of α is low, ZFBF performs better when compared to the CBF.

This is due to the fact that the power spent on the information bits in ZFBF

decreases with the interference and the gain due to coherent combining in CBF

increases with the strength of interfering link.

3.6 Conclusions

In this chapter, we considered a basic model for two-hop transmissions of two informa-

tion �ows that interfere with each other. The main focus has been on the second hop
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transmission, where one intrinsic feature is that each relay has access to a part of the in-

formation intended for the other destination. A key observation is that when each relay

has only partial side-information, neither distributed MIMO broadcast nor HK coding

would be optimal, and a naive combination of these two schemes would not work either.

Further, since each receiver receives a superposition of di�erent sub-messages that are

relayed, the decoding order of the signals at the receiver plays a critical role. Therefore,

e�cient relaying strategies entail a careful marriage of distributed MIMO broadcast and

HK coding.

We addressed the above challenge by investigating di�erent relaying schemes and

developing novel layered strategies built on distributed MIMO broadcast and HK coding.

Speci�cally, we proposed two types of layered schemes: layered coding with binning and

layered superposition coding. We illustrated the applications of proposed strategies for

a symmetric Gaussian case. We presented numerical examples to demonstrate that our

schemes can yield a substantial rate gain.
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Chapter 4

WHEN COMPRESSIVE SAMPLING MEETS MULTICAST: OUTAGE ANALYSIS

AND SUBBLOCK NETWORK CODING

4.1 Introduction

Multicasting is an emerging technology in wireless networks in supporting a plethora of

applications, including text, teleconferencing, and multimedia streaming, to a group of

users. Notably, many of these signals are known to be sparse or compressible, where

the sparsity (or compressibility) refers to the property that the �essential information

rate� of a signal is signi�cantly smaller than what is suggested by its bandwidth (in

case of continuous signals), or that a signal essentially depends on a number of degrees

of freedom which is much smaller than its length (in case of discrete-time signals).

Images, for instance, usually admit a compact representation in the wavelet domain,

and audio signals can be often compressed in the frequency domain. As a result, in

data communication systems, data transmission is often preceded by its compression, to

ensure e�cient utilization of resources by minimizing redundancy.

As shown in Fig. 4.1(a), the conventional method of data compression involves

sampling the signal at the Nyquist rate, storing the samples, and compressing them in

an appropriate domain prior to the transmission. One �drawback� of the traditional

approach when applied to sparse signals is that the size of measurements is of the same

order as of the size of the signal itself, independent of its sparsity/compressibility. This

would incur heavy sampling and storage burden at the sender. On the other hand, recent

developments in compressive sensing theory [19, 20, 21] have provided methods not only

for lower-rate signal acquisition, but also for accurate signal reconstruction, as shown

in Fig. 4.1(b). One basic idea behind compressive sensing theory is that it exploits

the compressibility of the signals by only sensing its essential information. We note

that a scheme involving compressive sensing was considered in [62], for point-to-point

transmission.

In this study, a primary objective is to understand the reliable delivery of com-

pressible information to many destinations over wireless channels. This transmission sce-
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nario, for instance, is useful for multimedia streaming over a WiFi or WiMAX network

with multiple receivers. It is also applicable to sensor networks, where each sensor node

wishes to communicate its sensed observations to multiple coordinating agents. Need-

less to say, this problem is quite challenging due to the lossy nature of wireless channels

and the heterogeneity in the amount of information received across di�erent receivers.

Another challenge is the �bottleneck� e�ect with the shared transmission medium among

many receivers, i.e., the overall performance is limited by the receiver that has the worst

channel condition. Therefore, ensuring that the QoS for the bottleneck user is on par

with the others clearly makes the multicast transmission more challenging.

We note that traditionally, in order to mitigate data loss over wireless channels,

retransmission schemes are widely used, e.g., Automatic Repeat reQuest (ARQ) [63].

However, retransmissions would not work well in some practical situations, particularly,

in multicast scenarios with many destinations (receivers) [64] or when the applications

are delay sensitive. Alternatively, forward error correction (FEC) can be used to reduce

the amount of feedback [65], but a signi�cant challenge in using FEC is to determine the

right amount of redundancy because too much FEC redundancy would unnecessarily

slow down the data dissemination process, whereas insu�cient redundancy leaves many

receivers unable to decode the information. Furthermore, the inherent heterogeneity of

information conveyed to multiple receivers signi�cantly complicates the task of redun-

dancy estimation. Notably, network coding (NC), a recent breakthrough by Ahlswede

et al. [18], o�ers a promising platform for multicast transmissions. With this insight,

we will study joint compressive sensing and network coding for multicasting compressive

signals, as illustrated in Fig. 4.1(c). To the best of our knowledge, there has been little

e�ort on exploring compressive sensing over a multicast scenario; and this work is among

the �rst few to examine the interplay between compressive sensing and network coding.

Speci�cally, we consider a single-hop wireless network in which the sender mul-

ticasts a compressively sensed signal to L receivers, over wireless channels. We note

that many natural and man-made signals can be modeled as power-law decay signals,

a class of signals whose coe�cients decay according to the power law, when sorted in

the decreasing order. (For example, video signals admit power-law decay in the wavelet
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domain.) Without loss of generality, we assume that the compressible signal belongs to

the class of power-law decay signals. We are particularly interested in the distortion of

the reconstructed signal, in terms of the mean squared error (MSE), at each individual

receiver. For a given target MSE, we shall characterize the outage probability, where

the outage is de�ned as the event in which the MSE in signal reconstruction exceeds

the target MSE. Due to multiple receivers, the network outage is dominated by the

�bottleneck� receiver.

Roughly speaking, depending on the computing capability of senders and re-

ceivers, there are two possible approaches for transmitting the compressible data: (A)

transmit raw measurements or (B) transmit the compressed coe�cients. Approach (A)

of transmitting raw samples is more applicable to situations where senders are less so-

phisticated than the receivers, e.g., in a sensor network where a sensor multicasts its

sensed observation to multiple coordinating agents. A typical sensor node, being a tiny

and battery-operated device, could not a�ord sophisticated on-board data processing.

Further, since several sensor nodes are deployed in the network and many of them are

frequently refreshed/replaced, it might become highly costly for each sensor node to be

cognizant of the underlying signal structure. In this case, a plausible approach is to

transmit the compressed samples, as illustrated in Fig. 4.1(b). It is clear that, in this

scheme, the onus of faithful reconstruction of the compressive signal lies with the re-

ceiver, and the sender just needs to sample the source signal using an appropriate kernel

prior to the transmission. A signi�cant advantage is that a random sampling kernel (or

sampling matrix) at the sender often su�ces and no knowledge about the source signal's

structure is needed. In contrast, in Approach (B), the sender samples the signal, stores

it, compresses it in an appropriate domain, and transmits the compressed data to the

receiver. In this case, the sender needs to be cognizant of the signal structure and be

su�ciently sophisticated to carry out the data compression, e.g., as seen in multimedia

streaming in wireless networks and television broadcasting. Obviously, Approach (B)

would outperform Approach (A). Nevertheless, Approach (A) has the advantage that it

entails no strict requirements on the computational power at the sender.

In our study, we consider both approaches outlined above. First, we analyze

64



the outage performance corresponding to di�erent transmission strategies, and quantify

the behavior of the outage probability as a function of key parameters, including the

signal structure, channel erasure, and the number of receivers. As expected, when the

sender has the capability to sample and compress the signal before transmitting the

coe�cients, the required number of transmissions can be greatly reduced to meet the

outage requirement.

Next, we explore subblock network coding, a new network coding method tailored

towards transmitting power-law decay signals. This is motivated by the observation that

the traditional network coding could result in undesirable performance for power-law de-

cay signals. Then, we formulate the subblock network coding as an integer programming

problem, and develop a heuristic algorithm that exploits the inherent priority structure

of the power-law decay signal. We show that by using the proposed subblock network

coding scheme, one can gain substantially in terms of reconstruction performance when

compared to the traditional network coding.

In related work, recent developments in compressive sensing theory have spurred

a wide range of interest in di�erent applications of compressive signals [19, 20, 66]. In

particular, there have been some recent advances dealing with the applications of com-

pressive sensing in communications, and the transmission of compressible signals over

wireless channels. The transmission of compressible data over wireless channel has been

considered in [67, 68] which focus on the estimation of sensor data under a joint source-

channel coding framework and analyze the power-latency relationship with the number

of nodes. We note that, these works do not consider multicasting and the e�ect of

channel erasures. Along a di�erent avenue, network coding has received much attention

since the pioneering work of Ahlswede et al. [18]. In particular, in the context of reliable

multicast of data over wired networks, Ho et al. [69] have proposed a random linear

network coding used at an intermediate node to generate the coded packets. By doing

this, the authors have shown that the network capacity can be achieved asymptotically.

Recently, network coding has also been applied successfully to increase throughput in

wireless networks [70, 71]. In these works, by appropriately combining transmission

packets, the sender can reduce the number of required transmissions. Also, Nguyen et
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Figure 4.1: Multicast transmission of compressible data (a) conventional method; (b)
transmission of compressed measurements (c) proposed joint compressive sensing and
network coding.

al. [72] have proposed an XOR-based network coding for single-hop wireless broadcast

networks to reduce the number of retransmissions. In contrast to these works, we in-

vestigate subblock network coding for transmitting power-law decay signal in multicast

networks. The work related most to ours is that of Stankovic et al. [73]. However, this

work studied only unequal error protection algorithms for progressive image transmission

in unicast transmissions.

The organization of this chapter is as follows. We provide in Section 4.2 the

system model and some background. In Section 4.3, we investigate in detail a variety of

transmission strategies and analyze the corresponding outage performance. In Section

4.4, we explore subblock network coding for power-law decay signals. Numerical results

and discussions are presented in Section 4.5. Finally, we draw conclusions in Section

4.6.
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4.2 System Model and Background

We consider a multicast network where a sender wishes to transmit compressible signals

to L receivers over lossy wireless channels. Let x ∈ RN be the source signal of interest.

For example, x can be an audio/video signal in the context of multimedia and television

networks, or it can be a sensed physical stimulus at a sensor node in the context of sensor

networks. The link between the sender and each receiver is lossy; i.e., each transmitted

packet to a receiver Rj is subject to an erasure with probability ϵ. We assume that the

system is time-slotted and each slot length corresponds to one packet transmission.

Each receiver is required to meet a certain target MSE. We say that an outage

occurs, at receiver Rj , if the corresponding MSEj exceeds the target MSE. The outage

probability determines the QoS for each receiver. For a given target MSE, say mse, the

outage probability is given by

P j
out = P(MSEj > mse), j = 1, . . . , L.

For convenience, we say there is a network outage when at least one of the

receivers su�ers an outage, i.e., {∃j ∈ {1, . . . , L} : MSEj > mse}. Accordingly, the network

outage probability can be given by

P ∗
out = P(max

j
MSEj > mse).

Clearly, the outage performance is governed by the receiver with the worst channel

conditions, i.e., the �bottleneck� receiver.

Next, we brie�y remark on the structure of the source signal under consideration.

Suppose that x ∈ RN , in some N−dimensional orthonormal basis Φ = {ϕ}Nn=1, ϕn ∈

RN , can be represented as

x =
N∑

n=1

θnϕn, θn = ⟨x, ϕn⟩.

The vector θθθ = [θ1, . . . , θN ]T , is the coe�cient vector of x in the basis Φ. We

assume that x belongs to the class of power-law decay signals, in Φ, in the sense that

its coe�cients in this basis Φ decay according to a power-law, which is formally de�ned

as follows [19].
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Let x ∈ RN , and, for some orthonormal basis Φ, assume that the coe�cients

{θ}Nn=1 : θn = ⟨x, ϕn⟩ are re-indexed in a descending order such that

|θ(1)| ≥ |θ(2)| ≥ . . . |θ(n)|.

Then, we have the following de�nition.

De�nition 2.1. A signal x is a power-law decay signal in the orthonormal basis Φ, if

the vector θθθ obeys power-law decay, that is,

|θ(n)| ≤ Rn
− 1

p , R > 0, for some �xed p ∈ (0, 1]. (4.1)

The corresponding error due to the best K−term approximation, x(K) ∆
=
∑K

k=1 θ(k)ϕ(k),

is given by

MSE(K) =
∥∥∥x− x(K)

∥∥∥2 =
N∑

n=K+1

|θ(n)|2 ≤ CrK
−r, r =

2

p
− 1,

where Cr = CpR
2 and Cp depends only on p.

Power-law decay signals admit compressibility in the sense that the MSE in their

best K−term approximation can always be upper bounded by CrK
−r.

We now restate an important result of compressive sensing regarding the recon-

struction of power-law decay signal x. In assessing the practical signi�cance of power-

law decay signals, a natural question arises; i.e., can we reconstruct the power-law decay

signal, x, with arbitrarily small reconstruction error with only a few number of measure-

ments of x? It turns out that the answer is positive. An important result by Candes

et al. [21] asserts that, with only O (K logN) random measurements (i.e., measurement

matrices are random matrices with i.i.d. entries) from a of x, one can reconstruct x with

MSE ≤ CrK
−r. For the sake of completeness, we present the following result [21].

Theorem 4.1. (Optimal recovery of power-law decay signals from random measure-

ments) Suppose that x ∈ RN is a power-law decay signal in the basis Φ obeying (4.1)

for some �xed 0 < p < 1, and let a > 0 be a su�ciently small number. Assume that we

are given M = O(K logN) random measurements of x: y = Ψx, where Ψ is the M ×N

measurement matrix. Then with probability 1, the minimizer θθθ∗ to the optimization
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problem

min
θθθ∈RN

|θθθ|ℓ1

s. t. y = ΨΦθθθ

is unique. Furthermore, with probability at least 1−O(N− ρ
a ), we have

∥x− x∗∥2 ≤ Cp,aR
2K−r, r = 2/p− 1.

Here, Cp,a is a �xed constant depending on p and a, but not on anything else. The

implicit constant in O(N−ρ/a) is allowed to depend on a.

The above theorem asserts that the power-law decay signals can be �sampled

accurately� using the techniques of compressive sensing.

Without loss of generality, we assume that the coe�cients of x follow the order:

|θ1| ≥ |θ2| ≥ . . . ≥ |θN |. Further, we assume that, prior to transmissions, the data

are quantized and encapsulated into packets. Since this study aims at obtaining a

fundamental understanding of the interplay between compressive sensing and network

coding, we assume that data quantization errors are negligible, which could be accounted

for further by using the same method in [74].

4.3 Transmission Strategies: Outage Analysis

In this section, we investigate in detail a variety of strategies for multicasting com-

pressible data to many receivers, depending on whether the transmitter is capable of

reconstructing the compressively sensed signal.

Transmission of compressed measurements (TCM)

In this method, the sender performs the compressed measurements of the source signal

using an M × N (M << N) sensing matrix Ψ. Each measurement is quantized with

a �ne precision and transmitted in the form of a packet. This scenario is of interest

where the sender could not a�ord the sophistication to reconstruct the source signal

from compressed measurements via ℓ1 optimization, and the receiver takes on more

processing burden. Further, in this case, the sender does not even need to know the
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compressible basis of the source signal. This is typical in the case of sensor networks,

where the tiny sensor node has less computational power and is oblivious of the structure

of the source signal. The system diagram is illustrated in Fig. 4.1(b). In this case, the

sender transmits the raw, compressed measurements that are obtained via compressive

sensing, as outlined in [21].

Let K be the desired level of sparsity, and M = c1K logN be the corresponding

threshold on the number of measurements for reconstruction of the signal with the

desired accuracy. Let y be the M -length measurement vector obtained by sensing x

using M × N measurement matrix Ψ, i.e., y = Ψx, where Ψ is chosen such that the

solution to the ℓ1 optimization problem (4.2) will enable a satisfactory reconstruction of

the signal x in the sense of Theorem 4.1. It has been shown in [21] that this is possible

as long as the measurement matrix, Ψ, obeys a Uniform Uncertainty Principle (UUP)

and Exact Reconstruction Principle (ERP). Matrix Ψ should be chosen so as to capture

su�cient information with a high probability. More importantly, it is easy to �nd such

a projection matrix Ψ, since easily constructible ensembles like binary, Gaussian and

Fourier ensembles obey both UUP and ERP with high probability. Thus, in our case,

we assume that Ψ is generated by drawing its elements, independently and identically,

from a zero mean Gaussian distribution, i.e.,[Ψ]i,j ∼ N (0, 1
N ).

LetM > Mcs be the number of measurements transmitted. Let Xj
m be a random

variable representing the event of loss of the mth packet at the jth receiver. Xj
m is a

binary random variable given by Xj
m ∼ Bin(ϵ). Let Nj =

∑M
m=1X

j
m, i.e., the number

of samples lost due to erasure at receiver Rj . Then, Nj is a binomial random variable

with parameters (M, ϵ). Observe that the outage is the event when a receiver loses more

than M −Mcs samples, i.e.,

P j
out = P (Nj > M −Mcs) .

Next, we evaluate the outage probability of the �bottleneck� receiver:

P ∗
out = P

(
max

j
Nj > M −Mcs

)
.

Since M is large, it is reasonable to approximate Nj as a Gaussian random variable.
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De�ne N∗
j =

Nj−E[Nj ]√
V ar(Nj)

. It follows that, N∗
j ∼ N (0, 1). Then, we have

P ∗
out = P

(
max

j
Nj ≥M −Mcs

)
= 1− P

(
max

j
N∗

j ≤M1

)
, (4.2)

where M1 =
M(1− ϵ)−Mcs√

ϵ(1− ϵ)M
.

Next, we need the following result from extreme value theory [75]: Let N∗
1 , . . . N

∗
L

be i.i.d. with N∗
1 ∼ N (0, 1), aL and bL be two sequences of numbers such that aL →

∞, bL → 0, as L→∞. In particular,

aL =
√

2 logL− 1

2
(2 logL)−

1
2 (log(4π) + log logL) ,

bL = (2 logL)−
1
2 .

Then,
maxj N

∗
j − aL

bL

D
=⇒ ζ,

where
D
=⇒ denotes convergence in distribution, and ζ(x) = exp(−e−x) is the Gumbel

CDF. Thus, we conclude that, as L→∞,

P
(
max

j
N∗

j ≤M1

)
=⇒ζ

(
M1 − aL

bL

)
.

Based on (4.2), we obtain the outage probability as

P ∗
out = 1− ζ

(
M1 − aL

bL

)
.

For convenience, de�ne M2
∆
=
M1 − aL

bL
. Equivalently,

M2 =M1

√
2 logL− 2 logL− 1

2
log(4π logL).

Then, we can represent the outage probability as

P ∗
out = 1− exp(−e−M2). (4.3)

After some algebra, it follows that

P ∗
out ≈ 1− exp

−e−(
1−ϵ−Mcs

M√
ϵ(1−ϵ)

√
2M logL−2 logL

). (4.4)
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Observe that, in many practical scenarios,M is larger than L. We can then approximate

(4.4) as

P ∗
out ≈ exp

(
−

[
1− ϵ− Mcs

M√
ϵ(1− ϵ)

√
2M logL− 2 logL

])
. (4.5)

Observe that, for a �xed value of L, P ∗
out decays exponentially with the square root of

the number of samples M .

Transmission of coe�cients (TC)

In this transmission strategy, the sender performs compressed sensing of x via measure-

ment matrix Ψ, and then estimates the K largest elements of the coe�cient vector θθθ.

That is to say, the sender is assumed to be capable of bearing the computational burden

of signal reconstruction via compressed measurements. Furthermore, each coe�cient is

quantized and encapsulated in a packet. There are a variety of ways in which these coef-

�cients can be protected against the channel erasure. To address this issue, we consider

several coding methods for the transmission of coe�cients.

Round robin transmission of coe�cients (TC-RR):

In this �naive� scheme, the sender transmits Kt packets with K coe�cients being trans-

mitted in a round-robin fashion with t repetitions. We assume that O(K logN) mea-

surements are made at the sender to obtain a K-term approximation for x. Without loss

of generality, we assume that the coe�cients θ1, . . . , θK are transmitted t times each.

For ease of exposition, �rst consider the case when t = 1. The number of packets

received by the receiver Rj is given by Nj =
∑K

k=1X
j
k. Further, the kth packet received

is denoted by θ̂jk = Xj
kθk. The MSE due to this scheme can then be upper bounded as

follows:

MSEj =
N∑
k=1

|θk − θ̂jk|
2

≤
K∑
k=1

|θk −Xj
kθk|

2 + CrK
−r.

Observe that

|θk −Xj
kθk|

2 =

 0 w. p. 1− ϵ

|θn|2 w. p. ϵ.
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Next, we evaluate the outage performance. We are particularly interested in the

�bottleneck� receiver. Therefore,

P ∗
out = P

(
max

j
MSEj > mse

)
= 1− (P (MSEj ≤ mse))L .

Consider the desired threshold mse = CrK
−r. This yields

P ∗
out = 1−

(
P

(
K∑
k=1

|θk −X1
kθk|2 = 0

))L

= 1− (1− ϵ)KL .

It is clear that when each coe�cient is transmitted repeatedly for t > 1 slots,

the equivalent packet erasure probability is ϵt (this is a naive way of introducing redun-

dancy). We obtain the network outage probability as

P ∗
out = 1−

(
1− ϵt

)KL
. (4.6)

Since ϵt is very small, using binomial expansion, (4.6) can be approximated as

P ∗
out ≈ KLϵ

t. (4.7)

Observe that, for a �xed value of L and t, P ∗
out decays geometrically with t.

Transmission of coe�cients by random network coding (TC-RNC)

In this scheme, the sender wishes to transmit K coe�cients to L receivers. Again, we

assume that each coe�cient is encapsulated into one packet. The sender uses random

network coding [76] for encoding the packets. In particular, each transmitted packet C

is generated by a linear combination of the K original packets, C =
∑K

i=1 αici, where

αi denote coe�cients drawn randomly from a large �nite �eld. We assume the �eld size

is large enough that the generated coded packets are independent. In order to recover

the original packets, a receiver needs to receive at least K coded packets.

Assume that Kt packets, with t > 1, are transmitted by performing network

coding on K coe�cients. Similar to Section 4.3, we let Nj be the number of samples

lost due to erasure at receiver Rj ; i.e., Nj =
∑Kt

m=1X
j
m. Consequently, Nj is a binomial
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random variable with parameters (Kt, ϵ). Since Kt is large, we have the approxima-

tion Nj ∼ N (Ktϵ, ϵ(1− ϵ)Kt) . Again, appealing to extreme value theory, we have the

network outage probability as

P ∗
out ≈ 1− exp

(
−e

−
(

1−ϵ− 1
t√

ϵ(1−ϵ)

√
2Kt logL−2 logL

))
. (4.8)

Again, (4.8) can be approximated as

P ∗
out ≈ exp

(
−

[
1− ϵ− 1

t√
ϵ(1− ϵ)

√
2Kt logL− 2 logL

])
. (4.9)

We note that, for a �xed value of L and K, P ∗
out decays exponentially with the number

of transmitted packets, Kt.

Remarks: Observe that, network coding requires at least K packets to re-

cover any information regarding the data, and it would incur complete information loss

otherwise. In contrast, for the round-robin method, even when the number of packets

received is less than K, the recovery is still possible, but with a higher MSE. Thus, when

the quantity M/K, the ratio of the number of transmitted packets to that required, is

small, round-robin can outperform network coding in terms of average MSE. With this

observation, we propose �subblock network coding� that amalgams the robustness of

network coding with the redundancy present in the round-robin scheme. Simply put,

subblock network coding exploits the power-law decay nature of the signal coe�cients,

partitions the coe�cient vector accordingly, and performs random network coding within

each subblock. We detail this subblock network coding in the following section.

4.4 Network Coding for Power-law Decay Signals

Traditional network coding for power-law decay signals

It is well known that network coding can help to improve the network bandwidth e�-

ciency in wireless multicast scenarios [77]. By combining the data before transmitting

them out, the sender may reduce the required number of transmissions. In this study, we

consider power-law decay signals which yield unequal priority data. Observe that, di�er-

ent coe�cients contribute di�erently to the signal distortion, indicating that combining
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the coe�cients blindly without considering their priorities would lead to undesirable

performance. In contrast, subblock network coding takes into account the priority of

the data and appropriately allocates time slots to each subblock. To get a more concrete

sense, we present the following example for illustration.

Example: Consider a transmission scenario in which the sender has two packets

a and b that it wants to deliver to a receiver. Assume that packet a is more important

than packet b. This happens in multimedia transmissions; e.g., an I frame is more

important than a P or B frame. Furthermore, assume that the losses of packets a and

b, respectively, contribute 75% and 25% to the total distortion. We assume that the

packet erasure probability is ϵ, and the sender has 4 time slots for transmissions. If

the sender uses random network coding blindly, it simply combines these two packets to

generate coded packets and transmits them in the four time slots. In order to recover

the transmitted data, the receiver needs to receive at least 2 coded packets (given that

the �nite �eld is large enough so that all the coded packets are independent). In this

case, the expected distortion of the received signal at the receiver is given by

E(D1) = ϵ4 + 4ϵ3(1− ϵ). (4.10)

Now, if the sender takes into account the priorities of the packets, instead of combining

the two packets together, it allocates 3 time slots for transmitting packet a and 1 time

slot for transmitting packet b. Therefore, in this case, the expected distortion at the

receiver is given by

E(D2) =
3ϵ3 + ϵ

4
. (4.11)

From (4.10) and (4.11), we observe that E(D1) > E(D2) when ϵ > 1/3.

As shown above, the traditional network coding method may result in subopti-

mal performance for power-law decay signal. On the other hand, better performance is

attainable by appropriately fragmenting the transmitted data into subblocks and carry-

ing out network coding within each subblock. In the following subsections, we explore

subblock network coding for power-law decay signals.
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Subblock network coding for power-law decay signals

Recall that the �rst K coe�cients of x have the order |θ1| ≥ |θ2| ≥ · · · ≥ |θK |. Let T

be the total number of time slots available for transmissions. Without loss of generality,

we assume that K ordered coe�cients are partitioned into d subblocks. Let mi be the

number of coe�cients in subblock i; thus,
∑d

i=1mi = K. The problem of subblock net-

work coding now boils down to �nding an optimal allocation of time slots for subblocks,

such that the average MSE of the network is minimized. Let π = [t1, t2, . . . td] be a time

slot allocation policy for d unequal priority subblocks. We then have
∑d

i=1 ti = T .

Let△Di be the MSE incurred due to the loss of subblock i. WithMi =
∑i

j=1mj ,

it follows that

△Di = R2
Mi∑

l=Mi−1+1

l−2/p, (4.12)

where R and p are constants. Furthermore, assume that the sender applies random

network coding within each subblock. Let P(i) be the probability that subblock i is lost

at a receiver. We have

P(i) =
mi−1∑
j=0

(
ti
j

)
ϵti−j(1− ϵ)j . (4.13)

For a given allocation policy π, the average MSE is

MSE(π) =
d∑

i=1

△DiP(i)

= R2
d∑

i=1

Mi∑
l=Mi−1+1

mi−1∑
j=0

l−2/p

(
ti
j

)
ϵti−j(1− ϵ)j .

To minimize MSE(π) over the set T of all feasible time slot allocation policies, we have

the following optimization problem:

min
π∈T

{
MSE(π)

}
s.t.

d∑
i=1

mi = K

d∑
i=1

ti = T

mi, ti ≥ 0 i = 1, . . . , d

mi, ti are integers i = 1, . . . , d,
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This is an integer programming problem with a large search space, and its optimal

solution is often intractable. In what follows, we propose a heuristic greedy algorithm.

Two-step heuristic greedy algorithm

In this subsection, we explore an algorithm that greedily exploits the inherent priority

(weight) structure embedded in power-law decay signals. Speci�cally, the algorithm has

two steps: coarse allocation and re�nement.

Coarse allocation: In this step, each subblock is allocated a number of time slots,

proportional to its weight. Roughly speaking, the larger a subblock's weight, the more

protection it needs. However, this procedure may end up with overly prioritizing sub-

blocks with higher weights, while leaving the other subblocks unprotected. This calls

for an allocation re�nement.

Allocation re�nement: In this step, the time slot allocation is re�ned greedily by

exploiting an inherent property of the power-law decay signal, summarized as follows.

Let π0 = [t01, t
0
2, . . . , t

0
d] be the time slot allocation that is obtained in the �rst step. In

order to �nd a re�ned allocation, we start from the �rst subblock t01, i.e., the subblock

with the highest priority coe�cients.
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Algorithm 1 : Time Slot Allocation Algorithm (TSA).

Input: d, mi, θi, K, T , ϵ.
Output: π∗ = [t∗1, t

∗
2, . . . , t

∗
d]

1: STEP 1: (Coarse allocation) The number of time slots allotted to subblock i is
proportional to its weight over the total weight of all K coe�cients.

2: π0 := [t01, t
0
2, . . . , t

0
d]

3: for i← 1 to d− 1 do
4: Mi :=

∑i
j=0mi

5: t0i ← ⌊
∑Mi

l=Mi−1+1 |θl|∑K
j=1 |θj |

× T ⌋
6: end for

7: t0d ← T −
∑d−1

i=1 t
0
i

8: MSE∗ ← E[MSE(π0)]
9: STEP 2: (Allocation re�nement) Move one time slot at a time from ti to ti+1 or

vice versa until it increases the average MSE or ti = mi.
10: for i← 1 to d− 1 do {For each subblock i}
11: if adding one more slot to the current subblock reduces E[MSE] then
12: while ti+1 > mi+1 do

13: π0 ← [t1, t2, . . . , ti+1, ti+1−1, . . . , td] {Move one time slot from the subblock
i to subblock i+ 1}

14: if MSE∗ > E[MSE(π0)] then
15: MSE∗ ← E[MSE(π0)]
16: π∗ ← π0

17: else

18: π0 ← [t1, t2, . . . , ti + 1, ti−1 − 1, . . . , td]
19: break;
20: end if

21: end while

22: else

23: while ti > mi do

24: π0 ← [t1, t2, . . . , ti−1, ti+1+1, . . . , td] {Move one time slot from the subblock
i to subblock i+ 1}

25: if MSE∗ > E[MSE(π0)] then
26: MSE∗ ← E[MSE(π0)]
27: π∗ ← π0

28: else

29: π0 ← [t1, t2, . . . , ti + 1, ti−1 − 1, . . . , td]
30: break;
31: end if

32: end while

33: end if

34: end for

We �rst examine whether increasing or decreasing the number of time slots

allocated for the �rst subblock reduces the expected MSE. For example in the case of

decreasing, if t01 > m1, then we move one time slot from t01 to t02. Now, the new time
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slot allocation is π1 = [t01 − 1, t02 + 1, . . . , t0d]. If the new time slot allocation π1 reduces

the expected MSE of the network, i.e., E[MSE(π0)] > E[MSE(π1)], then we record π1 as

the new allocation. However, if that is not the case, the allocation procedure is carried

out in the reversed direction by adding one more time slot to the �rst subblock from the

second one. Once the appropriate direction is found, the procedure is repeated in the

same manner until t01 = m1, or until the new time slot allocation increases the expected

MSE of the network. The same procedure is applied to t02, t
0
3, . . . , t

0
d−1. The pseudo-code

for this greedy algorithm is provided in Algorithm 1.

Time complexity analysis: We now analyze the time complexity of the greedy algo-

rithm. As indicated in the algorithm, given the number of subblocks d, there are two

steps: coarse allocation and re�nement. In the coarse allocation, the algorithm takes

O(d) to allocate time slots to all subblocks. In the second step involving allocation

re�nement, the algorithm loops d times, and in each loop i, it runs at most T − mi

times for moving time slots to the next highest priority subblock. The runtime of this

step is O(Td). Consequently, the running time of the TSA algorithm is O(Td). Since

we assume that the sizes of all subblocks are equal, there are at most 2
√
K possibilities

that we can divide K packets into equal size subblocks. Also, we have the number of

subblocks d ≤ K/2. Thus, the running time of the greedy algorithm is upper bounded

by O(K1.5T ).

4.5 Numerical Example and Discussions

In this section, we illustrate the performance gain of the subblock network coding via

a numerical example. We assume that each coe�cient is encapsulated into one packet,

i.e., hereinafter, �coe�cient� and �packet� are used inter-changeably.

Basic setup

For the sake of comparison, we introduce two more schemes: TC-SysRNC and TC-PRO.

Intuitively, the TC-SysRNC scheme is of interest because it would reduce the average

MSE compared to the TC-RNC scheme by allowing the receivers to recover partial data.

Whereas the TC-PRO scheme is an intuitive time slot allocation method for unequal
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priority data. The transmission protocols of these two new schemes are described as

follows.

• Transmission of coe�cients with systematic random network coding (TC-SysRNC):

In this scheme, the transmission is divided into two phases: the basic phase and

the augmentation phase. In the basic phase, allK original packets are transmitted.

Next, in the augmentation phase, the sender transmits the coded packets generated

as in the TC-RNC scheme. The receivers, which might have lost some original

packets, can receive more coded packets to recover their own data by solving the

system of linear equations [76]. Note that, because packets are not mixed in the

basic phase, a receiver is able to obtain partial of the data, even if it cannot recover

all the mixed packets in the augmentation phase.

• Transmission of coe�cients with proportional time slot allocation (TC-PRO): In

this scheme, each of the K coe�cients is allocated time slots, proportional to its

weight. For example, let |θi| be the weight of coe�cient θi. Then the number of

time slots allocated to θi is ti = ⌊T |θi|/
∑

j |θj |⌋. This allocation procedure starts

from the largest weight coe�cient to the smallest weight coe�cient, or stops when

there is no available time slot. The coe�cients are transmitted repeatedly in their

allocated time slots. This transmission scheme coarsely exploits the structure of

the power-law decay signal.

Before delving into the details, we should note that the TCM scheme requires more

bandwidth (by a factor of O(logN)) compared to the schemes that transmit coe�-

cients. Clearly, this is an unfair comparison since the two transmission strategies cater

to di�erent scenarios, as discussed before. In particular, the TCM scheme is used in

scenarios where the sender has limited resources. In contrast, the schemes that trans-

mit coe�cients are applied when the sender is more sophisticated. In this section, we

evaluate and compare the performances of the schemes that transmit coe�cients only.

In our example, we compare the proposed subblock network coding schemes with

TC-RR, TC-RNC, TC-SysRNC, and TC-PRO, in terms of outage probability and the

average MSE. We consider the multicast of a power-law decay signal of length N = 1000
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to L = 500 receivers. Assume that the number of time slots available for transmissions

is T = 40. For simplicity, we set R = 1, Cp = 1, and p = 0.9. Let the desired level

of sparsity be K = 30. That is, we set the target mean squared error as the best K-

term approximation, mse = CrK
−r. We assume that the erasure channels between the

sender and the receivers are independent, and all have the same erasure probability ϵ.

The average MSE is determined as the mean of the average MSEs across all receivers

over 1000 trials.

Numerical results

First, we investigate the impact of packet erasure probability on the network outage of

di�erent schemes in Fig. 4.2. As expected, the network outage of each scheme increases

with ϵ. This is because there are more packet losses due to higher erasure probability.

We observe that TC-PRO and TC-RR schemes perform worse. In particular, the TC-

PRO scheme, which overprotects the higher priority coe�cients while leaving many lower

priority coe�cients unprotected, results in the worst performance. It is clear that the

subblock network coding scheme, TC-SubRNC, outperforms the non-subblock network

coding schemes with considerable margin. Intuitively, by using network coding within

each subblock, the sender reduces the overwhelming redundancy in the received data,

while still ensuring appropriate protection for each subblock.

Next, Fig. 4.3 depicts the normalized average MSE of the di�erent schemes with

respect to ϵ. The normalized average MSE is de�ned as the ratio of the average MSE

to the total signal power. First, we note that a scheme with smaller normalized average

MSE is not necessarily a scheme with smaller outage. This is because the network outage

is dominated by the bottleneck receiver. Next, as seen in Fig. 4.3, the normalized average

MSE of the TC-RNC scheme increases signi�cantly with ϵ, especially, when ϵ > 0.15.

Our intuition is that in the TC-RNC scheme, the sender treats all coe�cients uniformly

when combining them to generate coded packets. Consequently, at the receiver, in order

to recover the transmitted coe�cients, it needs to receive at least K coded packets.

This condition, however, would not be satis�ed in the high-erasure regime, i.e., ϵ > 0.15.

In contrast, the TC-SubRNC scheme divides the transmitted coe�cients into smaller
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subblocks and appropriately allots time slots to each subblock. As a result, the larger

weight coe�cients would be received successfully with higher probability, leading to only

a slight increase in the average MSE.
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4.6 Conclusions

In this chapter, we considered transmission scenarios in which the sender multicasts a

compressively sampled signal to many receivers over lossy wireless channels. First, using

extreme value theory, we quanti�ed the network outage for both cases where the trans-

mitter may or may not be capable of reconstructing the compressively sampled signals.

We showed that when the sender can reconstruct the compressively sampled signals, the

strategy of using network coding to multicast the reconstructed signal coe�cients can

reduce the network outage signi�cantly. Next, we showed that the traditional network

coding could result in suboptimal performance with the power-law decay signals. With

this insight, we devised a new method, namely subblock network coding, which involves

fragmenting the data into subblocks, and allocating time slots to di�erent subblocks,

based on their priorities. We formulated the corresponding optimal allocation as an

integer programming problem, and developed a heuristic algorithm that exploits the

inherent priority structure of the power-law signals. We showed that by using subblock

network coding one can gain substantially in terms of network outage compared with

the other schemes. We are currently exploring the Markov Chain Monte Carlo method
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to quantify the potential gain of subblock network coding.

To the best of our knowledge, there has been little work on multicasting com-

pressible signals, and this study here presents some initial steps to understand the in-

terplay between compressive sensing and network coding.
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Chapter 5

DIGITAL RELAYING VERSUS ANALOG RELAYING: A SUFFICIENT

CONDITION FOR OPTIMALITY

5.1 Introduction

Recently, wireless sensor networks (WSNs) have attracted much attention of the research

community. Due to their high �exibility, enhanced surveillance coverage, robustness,

mobility, and cost e�ectiveness, WSNs have wide applications and high potential in

military surveillance, security, monitoring of tra�c, and environment. Usually, a WSN

consists of a large number of low-cost and low-power sensors, which are deployed in the

environment to collect observations and preprocess the observations. Each sensor node

has limited communication capability that allows it to communicate with other sensor

nodes via a wireless channel. Often, there is a fusion center that processes data from

sensors and forms a global situational assessment.

The ability to detect events of interest is a key capability of the sensor network

technology. Detection is the �kick-start� procedure for the operation of any sensor net-

work. Indeed, the physical attributes of a target, like its position and velocity, can be

ascertained only after having detected its presence. Furthermore, in some applications

such as surveillance, industrial monitoring etc., the detection of an intruder or a hazard

is the prime goal.

The decision-making problem, where each sensor sends to the fusion center a

summary of its own observations, in the form of a message taking values from a �nite

alphabet, is termed decentralized detection. Decentralized detection scenarios for sensor

networks typically entail geographically dispersed sensors that collect observations about

an �event� of interest and transmit information about these individual observations to a

fusion center. The fusion center produces an estimate about the event, based on the data

it receives from the sensors. If the event is binary with a known prior probability distri-

bution, the problem falls into the Bayesian detection framework, and the probability of

error at the fusion center is a typical metric of performance. When no prior distribution

on the event is available, Neyman-Pearson detection seeks to minimize the probability
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of false alarm subject to a constraint on the probability of missed detection [78]. A key

challenge in decentralized detection is to come up with decision rules at the sensors,

and fusion rules at the fusion center so as to optimize the detection performance at the

fusion center.

Wireless sensor nodes are typically tiny devices powered by batteries, and hence

are subject to stringent constraints on the resources such as, bandwidth and power. To

design an e�cient system for detection in sensor networks, it is imperative to understand

the interplay between data processing at the sensor nodes, resource allocation, and over-

all performance in distributed sensor systems. A clear understanding of this interplay

can be leveraged to gain insight into the e�cient design of sensor networks. Decentral-

ized detection has received much attention in the literature due to its importance in the

event driven sensor networks. In-depth treatments of this �eld can be found in the work

of Tsitsiklis [79], Viswanathan et al. [80] and Blum et al. [81], and the references therein.

A recent survey on channel-aware distributed detection, where sensors communicate to

the fusion center over noisy (and fading) links, can be found in [82].

Early treatments of distributed detection adopted various simplifying assump-

tions, particularly about independence of observations at the sensors, and about com-

munication between the sensor nodes and the fusion center, which was often assumed

to be perfect. When these assumptions hold, the performance of a decentralized system

is optimized by each sensor transmitting its likelihood ratio to the fusion center. The

fusion center forms a global likelihood ratio from the product of these and achieves per-

formance equivalent to what would be possible if all the raw sensor data were available

at the fusion center. If the communication links between the sensors and the fusion cen-

ter are imperfect, performance may actually be improved by quantizing the individual

sensor likelihood ratios prior to transmission to the fusion center. Some observations

along this line have been made by other authors in various contexts. In [83], for example,

it is observed that analog sensors perform better than their digital counterpart below

a certain threshold SNR in large sensor networks where the metric of performance is

the Cherno� exponent. In [84], a distributed detection method based on the method

of types is considered. Again in this setting, it is observed that hard-decision fusion
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Event Relay Sensor Fusion Center

Figure 5.1: Block diagram of a typical sensor relay network.

(digital relaying) can outperform soft-decision fusion (analog relaying) in the single sen-

sor case. In this chapter, comparison of analog and digital relay schemes is undertaken

from a classical decision theoretic perspective for a simple network model consisting of

a single sensor communicating with the fusion center over an additive Gaussian noise

channel. A Bayesian situation is assumed and probability of error at the fusion center is

the performance metric. In this setting, a su�cient condition for superiority of digital

relaying, given a �xed average transmit power, is derived analytically in terms of the

observation SNR at the sensor and the SNR of the communication channel between the

sensor node and the fusion center.

Although the network model used here is highly simpli�ed, it is hoped that this

work will contribute to a foundation for analysis of more realistic scenarios, leading to

advances in sensor placement strategies and inference algorithms in sensor networks as

well as the design of wireless relay networks [85] in which a relay assists communication

between a source-destination pair.

The rest of this chapter is organized is as follows. Section 5.2 presents the system

model and assumptions. Section 5.3 introduces the relaying methods and presents the

mathematical framework. Section 5.4 compares the performance of relaying schemes.

Section 5.5 discusses simulation results, and some concluding remarks are given in Sec-

tion 5.6.

5.2 System Model

We consider a single sensory relay network, consisting of a relay-sensor and fusion center,

with a power constraint at the relay. The system is as shown in the Fig. 5.1. The prime
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objective of the network is to make a decision on a binary event at the fusion center with

minimum detection error. The job of relay sensor is to assist the fusion center in making

a decision on the event. We assume that the underlying phenomenon is an equally-likely

binary event, S ∈ {0, 1}. In terms of null-hypothesis (H0) and target-hypothesis (H1),

we write

H0 : S = 0, P (H0) = 0.5

H1 : S = 1, P (H1) = 0.5.

The sensor observes a noisy stochastic process Xn associated with the event. We

represent the observation process at the sensor as

Xn = hSn + Zn, n = 1, . . . , (5.1)

where h represents the scaling factor accounting for the uncertainties in the amplitude

of the event sensed by the sensor, and Zn is an i.i.d additive Gaussian process with

Zn ∼ N (0, σ2z). We assume that the sensor has knowledge of h, and hence, the sensor

observations are independent conditioned on the hypothesis (Sn) and h. Upon observing,

the sensor processes Xn to obtain a statistic Un, which is relayed to the fusion center,

adhering to an average transmit power constraint of P . The local processing rule for

the observations at the sensor node, denoted by γ, is de�ned as

γ : X → U , (5.2)

where X is the observation space and U denotes the output space of the sensor. Due

to the transmit power constraint P at the sensor, it is clear that E[|U |2] ≤ P , for all

U ∈ U . Observe that the processing rule at the sensor node, γ, depends on the relaying

scheme.

The relay sensor, after computing a statistic Un from its observations, transmits

Un to the fusion center over a wireless link for decision making. We assume that fusion

center has no access to the observations of the event, and has to make a decision solely

based on the information sent from the relay. We represent the signal received by the

fusion center as

Yn = gUn +Wn, n = 1, . . . , (5.3)
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where g represents channel attenuation, and Wn is an i.i.d. additive Gaussian process

with Wn ∼ N (0, σ2w). We assume that the fusion center is cognizant of its channel state

g, and hence the observations are conditionally independent given g and the hypothesis.

The fusion center has to make a decision Ŝn based on the information relayed by the

sensor. The objective is to minimize the detection error under the transmit power

constraint at the relay. In what follows, we formulate and analyze the problem in hand

under classical binary hypothesis testing framework, and develop a fair idea about the

relaying schemes. We assume that the detection is performed on a sample-by-sample

basis. In what follows, for presentational convenience, we omit the use of temporal

subscript n.

5.3 Relaying Schemes

Upon obtaining the noisy observations of the event, the sensor is posed with the problem

of computing a statistic (that is, to design γ) so as to aid fusion center in decision making.

The senors can be �digital� or �analog� depending on the processing schemes. A digital

sensor may quantize its observations and communicate its decisions in the form of bits,

while an analog sensor may compute the su�cient statistics of its observations, which is

a real number, and may transmit it as an analog signal. Assessing the performances of

these schemes in di�erent regimes of network parameters is key to the design of sensor

and relay networks. One wishes to deploy analog or digital sensors depending on which

scheme is superior in a given regime.

Digital relaying (detect and forward)

The relay sensor performs binary hypothesis testing on the observations and the decision

is conveyed in the form of a bit. Thus, the decision variable U is binary. That is, with

the power constraint, U ∈ {−
√
P,
√
P}. We express the likelihood function at the sensor

as

H0 : X ∼ fX(zi|H0, h),

H1 : X ∼ fX(zi|H1, h).
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where

fX(x|H0, h) =
1√
2πσ2z

exp− x2

2σ2z
;

fX(x|H1, h) =
1√
2πσ2z

exp−(x− h)2

2σ2z
.

From the fundamentals of detection theory [78], it is clear that the optimal processing

rule is given by

U = γ(X) =

 +
√
P if fX(x|H1, h) ≥ fX(x|H0, h)

−
√
P if fX(x|H1, h) < fX(x|H0, h).

(5.4)

More succinctly, we have the sensor's processing rule as

γ(X) =
√
P [2I(X ≥ h/2)− 1] , (5.5)

where I(·) is the indicator function.

Next, consider the fusion rule at the fusion center. The fusion center receives

Y , a noisy version of the statistic U communicated by sensor over the noisy link. It

is faced with the task of making decision Ŝ, on S, based on the received signal Y .

Observe that the distribution of Y , and therefore the fusion rule, depend on the decision

rule γ, of the sensor. Therefore, to derive the decision rule at the fusion center, it is

essential �rst to evaluate the detection error probabilities at the sensor. To this end, we

de�ne SNRo
∆
= 1

4
h2

σ2
z
, as the observation SNR, which is the �signal-to-noise ratio� of the

observations at the sensor. Then, for a given SNRo, we note that the probability of error

at the sensor, p, is given by:

p = P (X ≥ h/2|S = 0, SNRo) = Q
(√

SNRo

)
, (5.6)

where Q(·) is the Q−function given by Q(x) = 1√
2π

∫ x
0 e

−u2

2 du.We note that the received

signal Y obeys:

H0 : Y = −
√
Pg +W w.p. 1− p

Y =
√
Pg +W w.p. p

H1 : Y =
√
Pg +W w.p. 1− p

Y = −
√
Pg +W w.p. p.
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Particularly, Y is conditionally distributed as a mixture-Gaussian distribution given by

H0 : fY (y|H0, g) =
1√
2πσ2w

(
(1− p) exp−(y + g

√
P )2

2σ2w
+ p exp−(y − g

√
P )2

2σ2w

)
(5.7)

H1 : fY (y|H1, g) =
1√
2πσ2w

(
(1− p) exp−(y − g

√
P )2

2σ2w
+ p exp−(y + g

√
P )2

2σ2w

)
.

We point out that, in reality, the optimal detection strategy involves coupling

between the decision procedures at the sensor and the fusion center. However, the

evaluation of thresholds and the analysis of the optimal scheme is intractable in general.

Therefore, in the developments of this section, we adapt the so-called �person-by-person

optimization" approach (PBPO) [79], where the decision at the fusion center is optimized

assuming �xed decision rules at the sensor.

Therefore, following PBPO approach, the decision process at the fusion center

boils down to classical hypothesis testing with

Choose Ŝ = 1, if L(Y ) ≥ 1,

where L(y) is the likelihood ratio, given by

L(y) =
p exp−(2g

√
Py

σ2
w

) + 1− p

(1− p) exp−(2g
√
Py

σ2
w

) + p
. (5.8)

After some steps, the decision rule simpli�es to

Choose Ŝ = 1 if gY ≥ 0.

Next, we evaluate the detection error due to this �digital relaying� scheme. We

let SNRl
∆
= g2P/σ2w denote the link SNR, i.e., signal-to-noise ratio of the link between

sensor and the fusion center. For convenience, de�ne SNR = [SNRo, SNRl]. The detection

error at the fusion center, when aided by a digital sensor, is given by

PED(SNR) = p+ (1− 2p)Q
(√

SNRl

)
, (5.9)

where p is given by the equation (5.6).
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Analog relaying (estimate and forward)

This case employs analog sensor to aid fusion center. Relay sensor constructs a su�cient

statistic of the phenomenon, scales the message for the given power constraint and

transmits it to the sink. Essentially, the sensor node acts as an analog relay ampli�er

with the output space, U = R with E[|U |2] ≤ P for all U ∈ U . It is clear that the

su�cient statistic T is given by the log likelihood ratio,

T (x) = log
fX(x|H1, h)

fX(x|H0, h)
=

h

2σ2z
(2x− h) . (5.10)

It follows that T is a Gaussian RV with variance Var(T ) = 4SNRo, and E[T |H0] = −2SNRo

and E[Ti|H1] = 2SNRo.

Accounting for the average power constraint, the message sent from the relay is

given by

U(X) =

√
P

4SNRo(1 + SNRo)
T (X) (5.11)

so that

H0 : U ∼ N

(
−
√

PSNRo
1 + SNRo

,
P

1 + SNRo

)

H1 : U ∼ N

(√
PSNRo
1 + SNRo

,
P

1 + SNRo

)
.

The fusion center receives Y , a noisy version of U , and performs decision on the event

based on Y , so as to minimize the probability of detection error. The decision rule at

the fusion center is the likelihood ratio test, given as:

Choose Ŝ = 1, if
fY (y|H1, g)

fY (y|H0, g)
≥ 1.

We note that

H0 : Y ∼ N

−√g2PSNRo
1 + SNRo

, g2
P

1 + SNRo
+ σ2w


H1 : Y ∼ N

√g2PSNRo
1 + SNRo

, g2
P

1 + SNRo
+ σ2w

 .

It follows that the optimal rule simpli�es to

Choose Ŝ = 1 if gY ≥ 0.
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Consequently, for a given set of SNR parameters, SNR, the detection error at the fusion

center when aided by an analog sensor can be shown to be

PEA(SNR) = Q

(√
SNRlSNRo

SNRl + SNRo + 1

)
. (5.12)

5.4 Comparison of Analog and Digital Relaying

In this section, we compare the performance of analog and digital relaying schemes just

described, in terms of observation and link SNRs. It is unclear, a priori, in which regimes

one scheme outperforms the other. We partly answer the above question by providing a

su�cient condition for the optimality of digital scheme over the analog scheme. Before

presenting our main result, we state the following lemma.

Lemma 5.1. Let a, b ≥ 0 such that a+ b ≤ 1
2 , then

Q

(
1√
a+ b

)
≥ Q

(
1√
a

)
+Q

(
1√
b

)
.

Proof. Let a ≥ b, so that 1√
a+b
≤ 1√

a
≤ 1√

b
. We have

Q

(
1√
a+ b

)
−

[
Q

(
1√
a

)
+Q

(
1√
b

)]
=

1√
2π

∫ 1√
a

1√
a+b

e−
x2

2 dx− 1√
2π

∫ ∞

1√
b

e−
y2

2 dy

≥ 1√
2π

∫ 1√
a

1√
a+b

√
axe−

x2

2 dx− 1√
2π

∫ ∞

1√
b

√
bye−

y2

2 dy

=
e
− 1

2(a+b)

√
2π

[√
a−

(√
a e

− b
2a(a+b) +

√
b e

− a
2b(a+b)

)]
≥ e

− 1
2(a+b)

√
2π

[√
a−

(√
a e−

b
a +
√
b e−

a
b

)]
≥ e

− 1
2(a+b)

√
2π

√
a
[
1−

(
e−

b
a + e−

a
b

)]
≥ 0,

where the �rst inequality follows from the fact that x ≤ 1√
a
for the �rst integral and

y ≥ 1√
b
for the second integral. Second inequality follows from the assumption that

a + b ≤ 1
2 , third inequality is by a ≥ b, and the last inequality is due to fact that(

e−x + e−
1
x

)
≤ 1 for x ≥ 0.
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The following result establishes that for the values of SNRs beyond a certain

threshold, digital relaying is superior to analog relaying.

Proposition 5.1. [Optimality of Digital Relaying]: For all observation and link

SNRs, SNR = [SNRo, SNRl] such that 1/SNRo + 1/SNRl ≤ 1/2, it is optimal to use digital

relaying over analog relaying, i.e., PED(SNR) ≤ PEA(SNR).

Proof. From (5.9) and (5.12), and using the fact that Q(·) is a decreasing function of

its argument, it is clear that

PED(SNR) ≤ Q
(√

SNRo

)
+Q

(√
SNRl

)
(5.13)

and

PEA(SNR) ≥ Q
(√

SNRlSNRo

SNRl + SNRo

)
. (5.14)

Setting a = 1
SNRo

and b = 1
SNRl

, and applying Lemma 5.1, we obtain

PEA(SNR)− PED(SNR) ≥ Q

(
1√
a+ b

)
−
[
Q

(
1√
a

)
+Q

(
1√
b

)]
≥ 0.

Proposition 5.1 asserts that for the single sensor case, under the regime of mod-

erately high observation and link SNRs, the digital scheme performs better than the

analog scheme. This behavior can be explained intuitively as follows. Under digital

scheme, since only the decision bits are communicated, sensor just acts as a ampli�er-

repeater on the event and hence the power spent per symbol is more, which, in turn,

manifests the distortions su�ered by the signal over the forward link. In case of analog

scheme, the su�cient statistic, which is a real number, is communicated and the power

spent on the symbol is insu�cient to overcome the deleterious e�ects of the channel.

Thus, when the SNR either at the backward link or at the forward link grows large,

analog and digital schemes become equivalent.

5.5 Simulation Results

In this section, we evaluate the performance of digital and analog schemes. The per-

formance metric is the decision error as a function of link SNR, for a �xed observation
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SNR. Fig. 5.2 shows the performance curves as a function of SNRl, for an observation

SNR of 3dB. It can be seen that the digital scheme clearly outperforms analog scheme.

As SNRl increases, the di�erence in the performance diminishes due to the fact that

lim
SNRl→∞

PED(SNR) = lim
SNRl→∞

PEA(SNR) = Q(
√
SNRo). (5.15)
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Figure 5.2: Pe vs. SNRl for SNRo = 3 dB.
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Figure 5.3: Pe vs. SNRl for SNRo = −3 dB.

5.6 Conclusions

In this work, we considered the problem binary hypothesis testing in a single sensory

relay network. In particular, we studied and compared two schemes, namely: detect-and-

forward (digital relaying) and estimate-and-forward (analog relaying). We observed that

the performance of relaying scheme depends on observation as well as link SNRs. We

established a su�cient condition for the optimality digital relaying over analog relaying.

This can have important implications on the design of sensor and communication relay

networks. As a part of the future work, we wish to address the necessary condition

for the optimality of digital sensors. Furthermore, the developments in the paper are

carried under a classical hypothesis testing framework. It will be interesting to carry

out a similar analysis and comparison with respect to di�erent classes detectors like

NP-detector, min-max detector etc.
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Chapter 6

CONCLUSIONS AND DISCUSSIONS

In this thesis, we have laid out a framework to build a clear understanding of the value

of information in wireless networks. The scope of information in this thesis is broad,

ranging from channel/network states to the structure of the signal itself. Under the

common thread of characterizing the value of information, we have investigated three

important scenarios of wireless networks, namely opportunistic scheduling, cooperative

relaying and multicasting in wireless networks. In the case of opportunistic scheduling,

the information was in form of channel state information; in the case of cooperative re-

laying, it was in the form of partial knowledge of the concurrent interfering message; and

in the multicasting scenario, information was the knowledge about the physical nature

of the signal itself. Exploiting the available information to devise adaptive strategies is

a key ingredient in these studies. Through rigorous analysis and numerical examples,

we demonstrated that, by suitably exploiting the available information, one can gain

substantially in terms of system performance. In what follows, we brie�y outline our

key contributions with discussions, and possible future directions.

6.1 Distributed Opportunistic Scheduling

Channel-aware scheduling is a promising technique to harness the rich diversities inher-

ent in wireless networks. In channel-aware scheduling, a joint physical layer (PHY)/medium

access control (MAC) optimization is utilized to improve network throughput by schedul-

ing links with good channel conditions for data transmissions. However, to reap rich

dividends from channel-aware scheduling, one has to carefully understand these dynam-

ics of PHY/MAC diversities. Therefore, in this context, the availability of information

at the participating nodes, about the PHY/MAC dynamics, becomes critical. In ad-hoc

networks where there is no centralized decision maker, making this information available

becomes more challenging. We addressed this challenge by considering a framework for

distributed opportunistic scheduling (DOS).

DOS involves a process of joint channel probing and distributed scheduling

for ad-hoc (peer-to-peer) communications. The objective is to maximize the system
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throughput. While related works in DOS hinge on the assumption of perfect channel

state information (CSI), in practice, the CSI is often imperfect due to noisy estimation.

When the CSI is imperfect, the transmission rate has to be backed o� from the esti-

mated rate to avoid transmission outages. This may result in throughput degradation,

which is proportional to the estimation error. Clearly, a plausible solution to enhance

the throughput is to mitigate the rate estimation errors by performing further channel

probing.

With this motivation, our DOS framework is centered around cleverly tackling

incomplete channel information, with the option of re�ning the CSI for the scheduled

user. However, the advantages of second-level probing come at the price of additional

overhead. Thus, there is a tradeo� between the throughput gain from better channel

conditions and the cost for further probing. We showed that this tradeo� reduces to

judiciously choosing an optimal stopping rule for channel probing and the transmission

rate for throughput maximization. Capitalizing on optimal stopping theory with in-

complete information, we showed that the optimal scheduling policy is threshold-based,

and is characterized by either one or two thresholds, depending on network settings.

We rigorously established necessary and su�cient conditions for both cases. In par-

ticular, we observed that performing second-level channel probing is optimal when the

�rst-level estimated channel condition falls in between the two thresholds. Numerical

results illustrate the e�ectiveness of the proposed DOS with two-level channel probing.

We also extended our study to the case with limited feedback, where the feedback from

the receiver to its transmitter takes the form of (0, 1, e). We note that the proposed

distributed scheduling with two-level probing provides a new framework to study joint

PHY/MAC optimization in practical networks where noisy probing is often the case

and imperfect information is inevitable. We believe that this line of study provides

some initial steps towards opening a new avenue for exploring the intrinsic tradeo�s

between probing (sensing) and scheduling to enhance spectrum utilization; and this is

potentially useful for enhancing MAC protocols for wireless mesh networks and cognitive

radio networks.

In this work, we have considered DOS with two-level probing, where it is assumed
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that the re�nement of the rate estimate is carried out once, via second-level probing

of duration τ . However, we can further extend this to L−level probing, where for

k = 1, . . . , L − 1, a successfully contending transmitter has the options 1) to transmit,

or 2) to defer and re-contend, or 3) to resort to (k + 1)−st level training at the cost

of additional overhead. In this situation, it is of interest to devise well-structured, yet

simple policies. Extending the current results on single-hop ad hoc networks to multi-

hop models is also of considerable interest for future study.

6.2 Cooperative Relaying

It is well-known that interference is a detrimental phenomenon in wireless communica-

tion, limiting the system performance. Interference management is a key issue in the

design of wireless systems. Most state-of-the-art wireless systems deal with interference

in one of two ways: To orthogonalize the communication links in time or frequency, so

that they do not interfere with each other at all; or, to allow the communication links to

share the same degrees of freedom, but treat each other's interference as adding to the

noise �oor. It is clear that both approaches can be sub-optimal. The �rst approach en-

tails an a priori loss of degrees of freedom in both links, no matter how weak the potential

interference is. The second approach treats interference as pure noise while it actually

carries information and has structure that can potentially be exploited in mitigating its

e�ect. These treatments are based on the assumption that the each transmitter/receiver

pair is isolated from other. In various practical scenarios, however, they are not isolated,

and cooperation among transmitters or receivers can be induced. Further, other nodes

in the network can serve as relays, and cooperate with the active links in mitigating the

interference. A key outcome of this view is that, due to the broadcast nature of the

wireless medium, each node in the network obtains partial side information about the

interference. The main challenge then is exploit this side information to improve the

system performance.

With this motivation, we considered a two-hop interference network in which

two sources wish to communicate simultaneously with two destinations, and are aided

by two relay nodes. The transmissions interfere with each other in each hop. A key
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observation is that, while the transmission during the �rst hop is essentially over a

classical interference channel, the transmission in the second hop enjoys an interesting

advantage. Speci�cally, the second hop represents an interference channel with partial

side-information at the transmitters. Consequently, this opens the door to cooperation

between the relays. In light of this, we proposed various cooperative relaying strategies

based on distributed MIMO broadcast, to enhance the achievable rate of the information

�ows. Indeed, we observed that, by exploiting the side information available at the

transmitters, the proposed strategies gain substantially over other strategies considered

in the literature.

Next, we discuss some possible future extensions. In this work, we have con-

sidered a two-hop model comprising two information �ows. It will be interesting to

consider more than two �ows (i.e., more than two source-destination pairs aided by re-

lays) in a two-hop network. Further, throughout this study, we have assumed that all

nodes the network have perfect knowledge of their direct and interfering link conditions.

An interesting direction would be to relax the assumption of perfect state information

and study its impact on the throughput of the network. Also, it will be interesting

to consider the more realistic case where the transmitter nodes have no channel state

information. In this case, possible transmission strategies could involve cooperation as

well as competition.

6.3 Digital versus Analog Relaying

We considered a basic scenario in sensor networks, where a single sensor node relays

a statistic of its observations of an event to the fusion center which performs the �nal

inference on the event. We considered two relaying schemes: analog relaying and digital

relaying. With ultimate detection error at the fusion center being the performance

metric, we provided su�cient conditions for the optimality of analog relaying over digital

relaying in this network. This observation has potential applications in the design and

placement of sensor nodes in sensor networks.

There are several directions for extending this work. In this work, we have

given only a su�cient condition for the optimality of digital relaying. However, one

98



can strengthen this result by establishing the necessary conditions. Furthermore, the

developments in this work are carried under a classical hypothesis testing framework.

It will be interesting to carry out a similar analysis and comparison with respect to

di�erent classes detectors like NP-detector, min-max detector etc.

6.4 Multicasting

To understand the value of information in the multicast scenario, we considered multicas-

ting compressively sampled signals from a source to many receivers, over lossy wireless

channels. We focused on the network outage from the perspective of signal distortion

across all receivers, for both cases where the transmitter may or may not be capable

of reconstructing the compressively sampled signals. Based on extreme value theory,

we characterized the network outage in terms of key system parameters, including the

erasure probability, the number of receivers and the sparse structure of the signal. When

the transmitter can reconstruct the compressively sensed signal, the strategy of using

network coding to multicast the reconstructed signal coe�cients can reduce the network

outage signi�cantly. However, the traditional network coding could result in suboptimal

performance for power-law decay signals. Thus motivated, we devised a new method,

using subblock network coding, which involves fragmenting the data into subblocks, and

allocating time slots to di�erent subblocks, based on their priorities. The correspond-

ing optimal allocation is formulated as an integer programming problem. Since integer

programming is often intractable, we developed a heuristic algorithm that prioritizes

the time slot allocation by exploiting the inherent priority structure of power-law de-

cay signals. Through numerical results, we demonstrated that the proposed schemes

outperform the traditional methods with signi�cant margins.

As a part of the future work, we are currently exploring the Markov Chain Monte

Carlo method to quantify the potential gain of subblock network coding. In this work,

we have considered a centralized scheme for compressing/sampling the information. A

potentially explorable direction would be to look into distributed ways of exploiting the

structure of the signals in sampling and compressing them. This can have signi�cant

implications in reducing transmission and processing burdens in sensor networks.
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A.1 Derivation of Rate Equation (2.11)

On setting β(1) , E
[
|h̃(1)|2

]
, we follow the approach proposed in [9] and normalize

|ĥ(1)|2 and |h̃(1)|2 as

λ̂(1) =
|ĥ(1)|2

1− β(1)
(A.1)

and

ζ(1) =
|h̃(1)|2

β(1)
, (A.2)

where both λ̂(1) and ζ(1) are exponentially distributed with unit variance.

De�ne the �e�ective channel SNR� and �normalized error variance� as

ρ
(1)
eff , (1− β(1))ρ (A.3)

and

α(1) , β(1)

1− β(1)
, (A.4)

respectively. Substituting (A.1),(A.3) and (A.4) in (2.10) results in

λ(1) =
ρ
(1)
eff λ̂

(1)

1 + α(1)ρ
(1)
effζ

(1)
. (A.5)

It has been shown in [9] that the conditional probability distribution function

(pdf) of λ(1) given λ̂(1) takes the following form:

f
(
λ(1)

∣∣∣ λ̂(1)) =
λ̂(1)

α(1)
[
λ(1)

]2 exp
− 1

α(1)

 λ̂(1)
λ(1)
− 1

ρ
(1)
eff

 I

 λ̂(1)
λ(1)

≥ 1

ρ
(1)
eff

 . (A.6)

The following linear backo� function is employed to prevent channel outage.

λc(λ̂
(1)) = σMρeff λ̂

(1), (A.7)

where σM is the backo� factor with 0 < σM < 1. Let R
(BK)
n be the instantaneous rate

with backo�, which is given by

R(BK)
n = log

(
1 + λc(λ̂n)

)
I
(
λc(λ̂n) ≤ λn

)
. (A.8)

We note that, due to the estimation errors, the instantaneous rate, R
(BK)
n de�ned

in (A.8), is now a random variable, and is not observable at time n. Moreover, since
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{(ρ|ĥj |2,Kj)}j≤n is the only observable sequence, the decision has to be made solely based

on F ′, the σ-�eld generated by {(ρ|ĥj |2,Kj)}j≤n. However, it can be shown that the op-

timal scheduling strategy and the optimal throughput remain the same if the random

�reward� R(BK)
n is replaced with its conditional expectation, denoted as R(1)

n [28, Page

1.3] [11]. As a result, the scheduling can now be based on R
(1)
n instead of R(BK)

n , where

R
(1)
n

∆
= E

[
R

(BK)
n |F ′

]
. Using (A.6) and (A.7), the conditional expectation R

(1)
n can be

computed as

R(1)
n =E

[
R(BK)

n |F ′
]

=E
[
log
(
1 + λc(λ̂

(1))
)
I
(
λc(λ̂

(1)) ≤ λ(1)
)
|F ′
]
,

=

1− exp

−
(

1
σM
− 1
)

α(1)ρ
(1)
eff


W log

(
1 + σMρ|ĥ(1)|2

)
. (A.9)

For the low SNR wideband regime where ρ → 0 and W = Θ(1ρ), R
(1)
n can be well

approximated by

R(1)
n ≈ ρWσM |ĥ(1)|2. (A.10)

A.2 Proof of Lemma 2.1

For a given θ, let N(θ) be a stopping rule such that

N(θ) = arg sup
N∈Q

E [RNTd,N − θTN ] .

Let Zn
∆
= RnTd,n − θTn. Then, it follows from Theorem 1 in [28, Chapter 3] that N(θ)

exists if the following conditions are satis�ed:

(A1) E[sup
n
Zn] <∞, and (A2) lim sup

n→∞
Zn = −∞, a.s.

Since, it is clear that lim sup
n→∞

Zn = −∞, we can easily verify (A2).

For some 0 < µ < 1/ps, we introduce

Z ′
n = max{R(1)

n , R(2)
n }T − nθτ

(
1

ps
− µ

)
and

Z ′′
n =

n∑
j=1

θτ

(
1

ps
−Kj − µ

)
.

112



Then, we note that

E

[
sup
n
Zn

]
≤ E

[
sup
n
Z ′
n

]
+ E

[
sup
n
Z ′′
n

]
.

Appealing to Theorem 1 and Theorem 2 of [28, Chapter 4], we conclude that E [Z ′
n] <

∞ and E [Z ′′
n ] <∞, respectively. Therefore (A1) holds.

The second part of the lemma follows directly from Theorem 1 in [28, Ch.6].

A.3 Proof of Lemma 2.2

a) Using integration by parts, we rewrite Jθ∗(x, r) as

Jθ∗(x, 0) = (1− τ)
∫ ∞

θ∗
(1−G(u|x))du− θ∗τ. (A.11)

Since G(y|x) decreases monotonically with x, Jθ∗(x, 0) is also monotonically

increasing in x. Note that lim
x→∞

(1 − G(u|x)) = 1. Then, by Lebesgue's convergence

theorem, we have limx→∞ Jθ∗(x, 0) = ∞. Let z =
√
σ2MWρhe, where z ∼ CN (0, Re),

with Re = σ2MWρσ2
e . Then, from (2.17), it follows that lim

x→0
G(y|x) = G|z|2(y) = 1− e−

y
Re ,

and consequently,

lim
x→0

Jθ∗(x, 0) = (1− τ)Ree
− θ∗

Re − θ∗τ. (A.12)

Thus, under the condition Re/θ
∗e−

θ∗
Re < τ/(1− τ), limx→0 Jθ∗(x, 0) < 0.

b) Using integration by parts, we can rewrite Jθ∗(x, r) as

Jθ∗(x, 0) = (1− τ)

(
crx+Re − θ∗ +

∫ θ∗

0

G(u|x)du

)
− θ∗τ. (A.13)

It follows that

q(x) = (cr(1− τ)− 1)x+ (1− τ)Re + (1− τ)
∫ θ∗

0
G(u|x)du,

and we can verify that

lim
x→0

q(x) = Re(1− τ) + (1− τ)θ∗ > 0.

Furthermore, when cr < 1
1−τ , it is clear that limx→∞ q(x) = −∞. Since G(y|x) is

monotonically decreasing in x, we conclude that q(x) is also monotonically decreasing

in x.
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A.4 Proof of Theorem 2.1

Let xJ and xq be solutions to Jθ∗(x, 0) = 0 and q(x) = 0 respectively. From Lemma 2.2,

we have

Jθ∗(x, 0)


< 0 if x < xJ

= 0 if x = xJ

> 0 if x > xJ

(A.14)

and

q(x)


< 0 if x > xq

= 0 if x = xq

> 0 if x < xq

. (A.15)

Thus, one of the following two possibilities holds.

i. The case with xq ≥ xJ :

From the above discussions and the monotonicity properties of Jθ∗(·, 0) and q(·),

it follows that

max [x− θ∗, Jθ∗(x, 0)]+ =


x− θ∗ if x > xq

Jθ∗(x, 0) if x ∈ [xJ , xq]

0 if x < xJ

. (A.16)

Furthermore, from (A.16) and the optimality equation (2.21), we have that∫ xq

xJ

Jθ∗(u, 0) dF (u) +

∫ ∞

xq

(u− θ∗) dF (u) = θ∗τ

ps
. (A.17)

Consequently, it is clear that the optimal strategy is

ϕn(R
(1)
n ) =


1 (transmit) if R

(1)
n > xq

2 (2-level) if R
(1)
n ∈ [xJ , xq]

0 (re-contend) if R
(1)
n < xJ

(A.18)

and when ϕn(R
(1)
n ) = 2, the strategy is

ψn(R
(2)
n ) =

 1 (transmit) if R
(2)
n ≥ θ∗A

0 (re-contend) if R
(2)
n < θ∗A

(A.19)

where θ∗A is the solution to (A.17). It can be seen that thresholds xJ and xq are

found as the solutions to Jθ∗(x, 0) = 0 and q(x) = 0 respectively. Thus, {xJ , xq, θ∗A}
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is the solution to the system (2.23). An illustration of Strategy A is depicted in

Fig. 2.3.

ii. The case with xq < xJ :

From (A.14) and (A.15), we have

max [x− θ∗, Jθ∗(x, 0)]+ =

 x− θ∗ if x ≥ θ∗

0 if x < θ∗
(A.20)

and Jθ∗(x, 0) < max [x− θ∗, 0]. Therefore, it is never optimal to perform second-

level probing. From (A.20) and the optimality equation (2.21) we obtain∫ ∞

θ∗
(x− θ∗) dF (x) = θ∗τ

ps
,

which is equivalent to (2.12). Thus from (A.20), the optimal strategy is

ϕ(R(1)
n ) =

 1 (transmit) if R
(1)
n ≥ θ∗B

0 (re-contend) if R
(1)
n < θ∗B,

(A.21)

where the threshold θ∗B is the solution to (2.12). An illustration of Strategy B is

depicted in Fig. 2.4.

A.5 Proof of Theorem 2.2

Suppose Jθ∗
A
(θ∗A, 0) ≥ 0. Then, this implies that Jθ∗

A
(θ∗A, 0) ≥ max[x− θ∗A, 0] when x = θ∗A.

Speci�cally, when R
(1)
1 = θ∗A, performing second-level probing and using an optimal

strategy thereafter yield an expected reward of Jθ∗A (θ∗A, 0), which is at least as good as

using Strategy B. Equivalently, we show that there exists at least one value of x (θ∗A

in this case) for which performing second-level probing is optimal. We conclude that

Strategy A is optimal.

Next, we assume Strategy A is optimal and show that Jθ∗A(θ
∗
A, 0) ≥ 0. Under such

an assumption, there must exist some x1 for which it is bene�cial to demand additional

information, i.e.

Jθ∗A(x1, 0) ≥ max[x1 − θ∗A, 0]. (A.22)

We now investigate Jθ∗A(θ
∗
A, 0) in two di�erent cases, namely θ∗A ≥ x1 and θ∗A < x1.
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i. The case with θ∗A ≥ x1:

In this case,

Jθ∗A(θ
∗
A, 0) ≥ Jθ∗A(x1, 0) ≥ max[x1 − θ∗A, 0] = 0, (A.23)

where the �rst and second inequalities are due to the monotonicity of J(·, 0) and

the assumed optimality of Strategy A, respectively.

ii. The case with θ∗A < x1:

In this case,

Jθ∗A(θ
∗
A, 0) ≥ Jθ∗A(x1, 0)− x1 + θ∗A ≥ 0, (A.24)

where the �rst inequality follows from the fact that JθA(x, 0)− x+ θ is decreasing

in x and the second inequality is due to (A.22).

Summarizing the above two cases, we conclude that Jθ∗A(θ
∗
A, 0) ≥ 0 is a necessary condi-

tion for the optimality of Strategy A. Using contra position, we conclude that Strategy

B is optimal if Jθ∗
A
(θ∗A, 0) < 0.

A.6 Proof of Lemma 2.5

It is clear that Vγ∗(x,R1) is monotonically increasing in x, and that

lim
x→∞

Vγ∗(x,R1) = (1− τ)R1 − γ∗.

Since γ∗ ≤ γU , it follows that lim
x→∞

Vγ∗(x,R1) > 0, provided that τ ≤ 1 − ps. Further-

more, observe that

lim
x→0

Vγ∗(x,R1) = (1− τ)(R1 − γ∗)e−
R1
Re − γ∗τ

≤ γ∗
(
(1− τ)(R1

γL
− 1)e−

R1
Re − τ

)
= τγ∗

(
(1 +

1

ps
)e

R1

E[R(2)] e−
R1
Re − 1

)
≤ τγ∗

(
(1 +

1

ps
)e−(1+2τ) − 1

)
,

where the last inequality follows due to the fact that E[R(2)]
R1

≤ 1 and E[R(2)]
Re

≈ (1 + 2τ).

We conclude that

lim
x→0

Vγ∗(x,R1) < 0, for τ ≥ 0.5

(
ln

(
1 +

1

ps

)
− 1

)
.

116



The second part follows from the facts that for x ≥ R1,

qγ∗(x,R1) = (1− τ) (1−G (R1|x)) (γ∗ −R1)− τR1 < 0,

and for x < R1,

qγ∗(x,R1) = (1− τ)R1 (1−G (R1|x)) + (1− τ)G (R1|x) γ∗ ≥ 0.
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APPENDIX B

PROOFS OF RESULTS FROM CHAPTER 3
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B.1 Proof of Theorem 3.1

Code construction: Pick a distribution

p(xpc1)p(xpc2)p(uc1,uc2)p(x1, upp,1|uc,1,uc,2, xpc,1)p(x2, upp,2|uc,1,uc,2, xpc,2),

and let Ri = Rc,i +Rpc,i +Rpp,i, i = 1, 2, be the given rate-split.

1.Codewords for common messages: For i = 1, 2, generate 2N(Rc,i+rc,i), 2 × 1-vector

codewords, UN
c,i(kc,i), for kc,i ∈

{
1, . . . , 2N(Rc,i+rc,i)

}
, where each symbol is drawn i.i.d.

with Uc,i ∼ PUc,i(·). Partition this set of codewords into 2NRc,i equal-sized bins, with

2Nrc,i codewords per bin. Observe that each bin corresponds to a common message

index, and the bin corresponding to message vc,i = k can be de�ned as, for i = 1, 2,

B
(i)
k =

{
UN

c,i(kc,i) : kc,i ∈ {(k − 1)2Nrc,i+ 1, . . . , k2Nrc,i}
}
,

For each pair of bin indices (k, l), de�ne the product bin

Bk,l =
{
(UN

c,1(kc,1),U
N
c,2(kc,2)) : U

N
c,1(kc,1) ∈ B

(1)
k , UN

c,2(kc,2) ∈ B
(2)
l ,

(UN
c,1(kc,1),U

N
c,2(kc,2)) ∈ TN

ϵ (Uc,1Uc,1)
}
.

Declare an error if a typical codeword pair is not found in the bin.

2. Codewords for public messages: For i = 1, 2, generate 2NRpc,i codewords, XN
pc,i(vpc,i), vpc,i ∈

Vpc,i, where each symbol is drawn i.i.d. with Xpc,i ∼ PXpc,i(·).

3.Codewords for sub-private messages: For i = 1, 2, for each UN
c,i(kc,i) and XN

pc,i(vpc,i),

generate 2N(Rp,i+rp,i) codewords, UN
pp,i(kc,i, vpc,i, kp,i), for kp,i ∈

{
1, . . . , 2N(Rpp,i+rp,i)

}
, where

each symbol is drawn i.i.d. with

Upp,i ∼ PUpp,i|Uc,i,Xpc,i
(·|uc,i(kc,i), xpc,i(vpc,i)).

Partition this set of codewords into 2NRpp,i equal-sized bins, with 2Nrp,i codewords per

bin. Observe that each bin corresponds to a sub-private message index, and the bin

corresponding to message vpp,i = k can be de�ned as

Ck(kc,i, vpc,i) =
{
UN
pp,i(kc,i, vpc,i, kp,i) : kp,i ∈ {(k − 1)2Nrp,i + 1, . . . , k2Nrp,i}

}
.
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Further, (Xpc,i,Uc,i) play the role of the cloud center while Upp,i is the satellite codeword.

Codeword assignments are then revealed to both the encoders and the decoders.

Encoding and transmission:

1.Joint binning for common messages: For the given common messages, (vc,1, vc,2),

the encoders try to �nd a pair of codewords Uc,1(kc,1),Uc,2(kc,2) from the product bin

Bvc,1,vc,2 .

2. Public message: For the given message, vpc,1, encoder 1 picks XN
pc,1(vpc,1).

3. Binning for the sub-private message: Given vpc,1, kc,1, and for given vpp,1, encoder 1

tries to �nd a codeword Upp,1(kp,1) in the bin Cvpp,1 , such that

(
UN
pp,1(kc,1, vpc,1, kp,1),U

N
c2(kc2)

)
∈ TN

ϵ (Upp,1Uc,2|Xpc,1Uc,1).

Encoder 1 declares an error otherwise.

4.Codeword for transmission: S1 computes

X1(vpc,1, kc,1, kc,2, kp,1) = f1(Xpc,1, Xc1, Xc2, Xpp,1),

and transmits XN
1 . A similar procedure is performed at S2 with index �1� and �2� ex-

changed.

Decoding: We illustrate the decoding procedure for the decoder of D1. A similar

procedure holds for the other decoder too. Given the received signal Y N
1 , decoder 1

performs the joint decoding of the common, public and sub-private messages. The

decoder checks if there exists an unique tuple (k̂c,1, v̂pc,1, k̂pp,1), and a v̂pc,2 such that

(
UN

c,1(k̂c,1), X
N
pc,1(v̂pc,1), X

N
pc,2(v̂pc,2), U

N
pp,1(v̂pc,1, k̂c,1, k̂pp,1), Y

N
1

)
∈ TN

ϵ (Uc,1Xpc,1Xpc,2Upp,1Y1),

and puts out (v̂c,1, v̂pc,1, v̂pp,1) as the decoded message set, where v̂c,1 and v̂pp,1 are

indices of the bins containing the respective typical codewords, i.e., UN
c,1(k̂c,1) ∈ B

(1)
v̂c,1

and UN
pp,1(k̂c,1, v̂pc,1, k̂p,1) ∈ Cv̂pp,1(k̂c,1, v̂pc,1).

Analysis: By the symmetry of random code generation, the performance of the codes

does not depend on the message set transmitted. Therefore, without loss of generality, we
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assume that message sets v1 = (vpc,1, vc,1, vpp,1) = (1, 1, 1) and v2 = (vpc,2, vc,2, vpp,2) =

(1, 1, 1) are sent.

Encoding errors: The encoding errors can arise because of two events. The �rst

corresponds to the binning of common messages in which encoders declare an error if{̸
∃(UN

c,1(kc,1),U
N
c,2(kc,2)) ∈ B

(1)
1 ×B

(2)
1 : (UN

c,1(kc,1),U
N
c,2(kc,2)) ∈ B1,1

}
.

Following [86], it can be shown that the probability of this event can be made

arbitrarily small if N is very large, ϵ is small, and

rc1 + rc2 ≥ I (Uc1; Uc2) , (B.1)

which yields (3.3). The second encoding error corresponds to the binning of sub-private

message against the common message codewords. Suppose it has been determined by

both the encoders that (kc,1, kc,2) = (1, 1). Then, encoder 1 declares an error if

{
̸ ∃ UN

pp,1(1, 1, kp,1) ∈ C1(1, 1) :
(
UN
pp,1(1, 1, kp,1),U

N
c,2(1)

)
∈ TN

ϵ (Upp,1Uc,2|Xpc,1Uc,1)
}
.

Similarly, encoder 2 declares an error if

{
̸ ∃ UN

pp,2(1, 1, kp,2) ∈ C2(1, 1) :
(
UN
pp,2(1, 1, kp,2),U

N
c,1(1)

)
∈ TN

ϵ (Upp,2Uc,1|Xpc,2Uc,2)
}
.

Based on [55, 56], it follows that the probability of the above error event can be

made arbitrarily small if N is very large, ϵ is small, and

rp1 ≥ I (Upp1; Uc,2|Uc,1, Xpc,1)

rp2 ≥ I (Upp,2; Uc,1|Uc,2, Xpc,2) ,

yielding (3.4) and (3.5).

Decoding errors: We consider decoding error analysis for only decoder 1. (By

symmetry, similar analysis holds for decoder 2.) De�ne the event

Ei,j,k,l =
{
(XN

pc,1(i), X
N
pc,2(j),U

N
c,1(k), U

N
pp,1(i, k, l), Y

N
1 ) ∈ TN

ϵ (Xpc,1Xpc,2Uc,1Upp,1Y1)
}
.

Decoding errors occur if either the correct codewords are not typical with the received

sequence or there is a pair of incorrect codewords that are typical with the received
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i j k l Condition

* * * * Rpc1 +Rpc2 +Rc1 + rc1 +Rpp1 + rp1 ≤ I(Y ;Xpc1, Xpc2,Uc1, Upp,1)

* * 1 * Rpc1 +Rpc2 +Rpp1 + rp1 ≤ I(Y ;Xpc1, Xpc2, Upp,1|Uc1)

* 1 * * Rpc1 +Rc1 + rc1 +Rpp1 + rp1 ≤ I(Y ;Xpc1,Uc1, Upp,1|Xpc2)

* 1 1 * Rpc1 +Rpp1 + rp1 ≤ I(Y ;Xpc1, Upp,1|Uc1, Xpc2)

1 * * * Rpc2 +Rc1 + rc1 +Rpp1 + rp1 ≤ I(Y ;Xpc2,Uc1, Upp,1|Xpc1)

1 * 1 * Rpc2 +Rpp1 + rp1 ≤ I(Y ;Xpc2, Upp,1|Xpc1,Uc1)

1 1 * * Rc1 + rc1 +Rpp1 + rp1 ≤ I(Y ;Uc1, Upp,1|Xpc1, Xpc2)

1 1 1 * Rpp1 + rp1 ≤ I(Y ;Upp,1|Xpc1,Uc1, Xpc2)

Table B.1: Table depicting the error events (i = ∗ if i ̸= 1)

.

sequence. That is, the �rst error corresponds to Ec
1111, and the latter corresponds to∪

{i,j,k,l}̸={1,1,1,1}Eijkl. Therefore, we have the probability of error as

Pe = P(Ec
1111 ∪

∪
{i,j,k,l}

̸={1,1,1,1}

Eijkl) ≤ P(Ec
1111) +

∑
{i,j,k,l}

̸={1,1,1,1}

P(Eijkl).

It is clear that, from the AEP [52, 53], P(Ec
1111)→ 0. Rest of the error events are listed

in Table B.1 along with the rate constraints to achieve the corresponding events with

arbitrarily low error probability. Steps to evaluate these constraints are standard and

are omitted here.

Note that some constraints are redundant due to the fact that the error-free

decoding of vpp,i is possible only if both vpc,1 and vc,1 are decoded correctly. Also,

decoder 1 would not be interested in the error-free decoding of vpc,2, once vpc,1, vc,1 and

vpp,1 are decoded without any error.

Summarizing, the error events at decoder 1 can be made to have arbitrarily

small probability if the rate-tuple (Rpc,1, Rpc,2, Rc,1, Rpp,1), obey the following set of

constraints:
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Rpp1 ≤ I(Y ;Upp,1|Xpc1,Uc1, Xpc2)− rp1

Rpc1 +Rpp1 ≤ I(Y ;Xpc1, Upp,1|Uc1, Xpc2)− rp1

Rpc2 +Rpp1 ≤ I(Y ;Xpc2, Upp,1|Xpc1,Uc1)− rp1

Rc1 +Rpp1 ≤ I(Y ;Uc1, Upp,1|Xpc1, Xpc2)− rp1 − rc1

Rpc1 +Rpc2 +Rpp1 ≤ I(Y ;Xpc1, Xpc2, Upp,1|Uc1)− rp1

Rpc1 +Rc1 +Rpp1 ≤ I(Y ;Xpc1,Uc1, Upp,1|Xpc2)− rc1 − rp1

Rpc2 +Rc1 +Rpp1 ≤ I(Y ;Xpc2,Uc1, Upp,1|Xpc1)− rc1 − rp1

Rpc1 +Rpc2 +Rc1 +Rpp1 ≤ I(Y ;Xpc1, Xpc2,Uc1, Upp,1)− rc1 − rp1.

For convenience, we denote this set of constraints as S1. By symmetry, at decoder

2, the rate-tuple (Rpc,1, Rpc,2, Rc,2, Rpp,2) obey a set of constraints, S2, where S2 is same as

S1, except that indices �1� and �2� interchanged everywhere in S1. Thus, for arbitrarily

low probability of error, the rate-tuple (Rpc,1, Rpc,2, Rc,1, Rc,2, Rpp,1, Rpp,2) must belong to

S1
∩
S2. Applying Fourier-Motzkin [87] elimination to the constraints S1 and S2, we

eliminate Rpc,1 and Rpc,2 to obtain constraint sets B1 and B2.

B.2 Proof of Theorem 3.2

Code construction: First, pick a distribution

p(xc1)p(xc2)p(xpc1|xc2,xc1)p(xpc2|xc2,xc1)p(x1|xpc1,xc2,xc1)p(x1|xpc1,xc2,xc1).

The private message vp,i is further split into (vpp,i, vpc,i) with rates (Rpp,i, Rpc,i) such

that Rp,i = Rpp,i +Rpc,i.

1. Codewords for common messages: For i = 1, 2, generate 2NRc,i , 2 × 1-vector code-

words, XN
c,i(vc,i), for vc,i ∈ Vc,i, where each symbol is drawn i.i.d. with Xc,i ∼ PXc,i(·).

2. Codewords for public messages: For i = 1, 2, for each common codeword pair,

(XN
c,1(vc,1),X

N
c,2(vc,2)), generate 2

NRpc,i codewords, XN
pc,i(vc,1, vc,2, vpc,i), vpc,i ∈ Vpc,i, where
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each symbol is drawn i.i.d. with Xpc,i ∼ PXpc,i|Xc,1Xc,2
(·).

3. Codewords for sub-private messages: At encoder i, i = 1, 2, for each set of common

and public codewords, (XN
c,1(vc,1),X

N
c,2(vc,2), X

N
pc,i(vc,1, vc,2, vpc,i)), generate 2NRpp,i code-

words, XN
i (vc,1, vc,2, vpc,i, vpp,i), for vpp,i ∈ Vpp,i, where each symbol is drawn i.i.d. with

Xi ∼ PXi|Xc,1,Xc,1,Xpc,i
(·|xc,1,xc,2, xpc,i).

Codeword assignments are revealed to both the encoders and the decoders.

Encoding and transmission:

Given (vc,1, vc2, vpc,1, vpp,1) = (i, j, k,m), S1 transmits XN
1 (i, j, k,m). A similar procedure

is adopted at S2 with index �1� and �2� exchanged.

Decoding: We illustrate the decoding procedure for the decoder of D1. A

similar procedure holds for the other decoder too.

Given the received signal Y N
1 , the decoder checks if there exists an unique tuple

(̂i, ĵ, k̂, m̂) and a l̂, such that

(
XN

c,1(̂i),X
N
c,2(ĵ), X

N
pc,1(̂i, ĵ, k̂), X

N
pc,2(̂i, ĵ, l̂), X

N
1 (̂i, ĵ, k̂, m̂), Y N

1

)
∈ TN

ϵ (Xc,1Xc,2Xpc,1Xpc,2X1Y1)

and puts out (vc,1, vpc,1, vpp,1) = (̂i, ĵ, m̂) as the decoded message set. An error is de-

clared if either such a tuple does not exist or the tuple is not unique.

Analysis: By the symmetry of random code generation, the performance of the codes

does not depend on the message set transmitted. Therefore, without loss of generality, we

assume that message sets v1 = (vpc,1, vc,1, vpp,1) = (1, 1, 1) and v1 = (vpc,2, vc,2, vpp,2) =

(1, 1, 1) are sent. We consider decoding error analysis for only decoder 1. By symmetry,

similar analysis holds for decoder 2. De�ne the event

Ei,j,k,l,m =
{
(XN

c,1(i),X
N
c,2(j), X

N
pc,1(i, j, k), X

N
pc,2(i, j, l), X

N
1 (i, j, k,m), Y N

1 )

∈ TN
ϵ (Xc,1Xc,2Xpc,1Xpc,2X1Y1)

}
.
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i j k l m Constraints

* * * * * Rc1 +Rc2 +Rpc1 +Rpc2 +Rpp1 ≤ I(Y1;X1, Xpc2)

* 1 * * * Rc1 +Rpc1 +Rpc2 +Rpp1 ≤ I(Y1;X1, Xpc2|Xc,2)

1 * * * * Rc2 +Rpc1 +Rpc2 +Rpp1 ≤ I(Y1;X1, Xpc2|Xc,1)

1 1 * * * Rpc1 +Rpc2 +Rpp1 ≤ I(Y1;X1, Xpc2|Xc,1,Xc,2)

1 1 * 1 * Rpc1 +Rpp1 ≤ I(Y1;X1|Xpc2Xc,1,Xc,2)

1 1 1 * * Rpc2 +Rpp1 ≤ I(Y1;X1, Xpc2|Xpc1,Xc,1,Xc,2)

1 1 1 1 * Rpp1 ≤ I(Y1;X1|Xpc2, Xpc1,Xc,1,Xc,1)

Table B.2: Table depicting the error events (i = ∗ if i ̸= 1)

.

Decoding error occurs if either the correct codewords are not typical with the re-

ceived sequence or there is a set of incorrect codewords that are typical with the received

sequence. That is, the �rst error corresponds to Ec
11111, and the latter corresponds to∪

{i,j,k,l,m}̸={1,1,1,1,1}Eijklm. Therefore, we have the probability of error as

Pe,1 = P(Ec
11111 ∪

∪
{i,j,k,l,m}

̸={1,1,1,1,1}

Eijklm)

≤ P(Ec
1111) +

∑
{i,j,k,l,m}

̸={1,1,1,1,1}

P(Eijklm).

It is clear that, from the AEP [52], P(Ec
11111) → 0. Rest of the error events are listed

in Table B.2 along with the rate constraints to achieve Pe,1 < ϵ for any ϵ > 0. Steps to

evaluate these constraints are standard and are omitted here.

Note that constraints corresponding to some events are redundant due to the

fact that the error-free decoding of vpp,1 is possible only if vc,1, vc,2 and vpc,1 are de-

coded correctly. Also, the fact that D1 would not be interested in the error-free decod-

ing of vpc,2, once vpc,1, vc,1 and vpp,1 are decoded without any error, makes the event

(1, 1, 1, l ̸= 1, 1) irrelevant at D1. The above analysis yields the following constraints on
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(Rpc,1, Rpc,2, Rc,1, Rc,2, Rpp,1) at decoder 1.

Rpp1 ≤ I(Y1;X1|Xpc2, Xpc1,Xc,1,Xc,2)

Rpc2 +Rpp1 ≤ I(Y1;X1, Xpc2|Xpc1,Xc,1,Xc,2)

Rpc1 +Rpp1 ≤ I(Y1;X1|Xpc2Xc,1,Xc,1)

Rpc1 +Rpc2 +Rpp1 ≤ I(Y1;X1, Xpc2|Xc,1,Xc,2)

Rc2 +Rpc1 +Rpc2 +Rpp1 ≤ I(Y1;X1, Xpc2|Xc,1)

Rc1 +Rpc1 +Rpc2 +Rpp1 ≤ I(Y1;X1, Xpc2|Xc,2)

Rc1 +Rc2 +Rpc1 +Rpc2 +Rpp1 ≤ I(Y1;X1, Xpc2).

For convenience, we denote this set of constraints as T1. By symmetry, at de-

coder 2, the rate-tuple (Rpc,1, Rpc,2, Rc,1, Rc,2, Rpp,2) obey a set of constraints, T2, where

T2 is same as T1, except that indices �1� and �2� interchanged everywhere in T1. Thus,

for arbitrarily low probability of error, i.e., Pe < ϵ for any ϵ > 0, the rate-tuple

(Rpc,1, Rpc,2, Rc,1, Rc,2, Rpp,1, Rpp,2) must belong to T1
∩
T2. Applying Fourier-Motzkin [87]

elimination to the constraints T1 and T2, we eliminate Rpc,1 and Rpc,2 to obtain constraint

sets C1 and C2.

B.3 Proof of Proposition 3.1

For the MAC formed by (Uc,1, Uc,2, Yd,1), we have the rate region as (see (3.14))

Rc,1 ≤ C

(
(a†h1)

2

σ2ζ

)
(B.2)

Rc,2 ≤ C

(
(a†h2)

2

σ2ζ

)
(B.3)

Rc,1 +Rc,2 ≤ C

(
(a†h1)

2 + (a†h2)
2

σ2ζ

)
. (B.4)

For the MAC formed by (Uc,1, Uc,2, Yd,2), the rate region can be obtained from (B.2)-

(B.4) by swapping Rc,1 and Rc,2 (see (3.15)). The intersection of the rate regions of these

126



MACs is given by

Rc,1 ≤ min

{
C

(
(a†h2)

2

σ2ζ

)
, C

(
(a†h1)

2

σ2ζ

)}
(B.5)

Rc,2 ≤ min

{
C

(
(a†h2)

2

σ2ζ

)
, C

(
(a†h1)

2

σ2ζ

)}
(B.6)

Rc,1 +Rc,2 ≤ C

(
(a†h1)

2 + (a†h2)
2

σ2ζ

)
. (B.7)

We �rst obtain the optimal power allocation policies for both the sum-rate and

individual rate maximization, and then demonstrate that they are equal.

a. Maximizing the sum-rate:

We know that the sum-rate constraint is

Rc,1 +Rc,2 ≤ C

(
(h†

1a)
2 + (h†

2a)
2

σ2ζ

)
. (B.8)

The goal is to �nd the power allocation vector that maximizes the sum-rate given

by the above equation. This problem can be posed as a constrained problem as

Maximize Rc,1 +Rc,2 subject to ∥a∥2 = Pc.

Since logarithm is increasing in its argument, the above problem is equivalent to

max
a:∥a∥2=Pc

(h†
1a)

2 + (h†
2a)

2.

Let c = a/
√
Pc, so that ∥c∥2 = ∥a∥2 /Pc. Also, let

A = h1h
†
1 + h2h

†
2 =


h2 + g2 2hg

2hg h2 + g2

 .
Then, the optimization problem simpli�es to

max
c:∥c∥2=1

c†Ac,

which is a standard eigenvalue problem. It turns out that the solution (c∗) to the

above problem is the eigenvector corresponding to the maximum eigenvalue (λmax) of
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the matrix A. We can verify that λmax = (h+ g)2, and

c∗ =
[
1/
√
2, 1/
√
2
]
.

Thus, the optimal power allocation is Pcm = Pcu = Pc/2.

b. Maximizing the individual rates:

Since Pcm = Pc − Pcu, we can observe that, in the RHS of (B.5) or (B.6), the �rst term

is decreasing in Pcm, while the second term is increasing in Pcm. Thus, the maxima for

Rc,1 and Rc,2 are achieved when both the terms of RHS are equal. This is possible only

when Pcm = Pc − Pcm. That is Pcm = Pc/2.

Substituting this into (B.5) and (B.6), and making use of the symmetry in the

rates, we obtain

Rc = min

{
C

(
(h+ g)2 Pc

2σ2ζ

)
,
1

2
C

(
(h+ g)2 Pc

σ2ζ

)}
.

Setting z = (h+g)2Pc

σ2
ζ

and observing that (1+ z
2)

2− (1+z) = z2

4 ≥ 0, we conclude

that

Rc =
1

2
C

(
(h+ g)2 Pc

σ2ζ

)
. (B.9)

B.4 Determining DPC matrices and derivations of (3.11) and (3.12)

The derivation of optimal input covariance matrices applies the techniques in [58]. For

the sake of completeness, we present the derivations in detail here. Considering the

encoding strategy π2, the aim is to design the DPC coe�cients Σ′
1,Σ

′
2 which maximize

the sum rate given by

Tπ2(Pp, Pp) = max
Σ′
1,Σ

′
2:

tr(Σ′
1+Σ′

2)≤2P ′
c

1

2
C
(
h†
1Σ

′
1h1

)
+

1

2
C

(
h†
2Σ

′
2h2

1 + h†
2Σ

′
1h2

)
,

where for convenience we have normalized the noise variance to unity by letting Σ′
1 =

Σ1

σ2
ζ
,Σ′

2 = Σ2

σ2
ζ
and P ′

c =
P−Pp

σ2
ζ

. Using the MAC-BC transformation [58], we solve for Σ′
1

and Σ′
2. To this end, let P1, P2 be the optimal powers allocated for the transmitters in

the corresponding �dual-MAC�. Then, for j = 1, 2, de�ne

Aj = 1 + h†
j

j−1∑
l=1

Σ′
lhj ; Bj = I+

2∑
l=j+1

Plhlh
†
l .
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Then the optimal covariance matrix is given by

Σ′
j = AjPj ·B

− 1
2

j G†
jFjGjF

†
jB

− 1
2

j ,

where Fj , Gj are left and right singular vectors of B
− 1

2
j hjA

− 1
2

j obtained by the SVD

B
− 1

2
j hjA

− 1
2

j = FjΛjGj .

Consider the dual MAC problem. The dual uplink corresponds to a MAC having

two single antenna users and a receiver with two antennas. We need to �nd optimal

transmit powers P1, P2, that achieve the sum-capacity of the MAC, as the solution to

the following optimization problem.

CMAC = max
P1,P2:

P1+P2≤2P ′
c

1

4
log
(
det
[
I+ P1h1h

†
1 + P2h2h

†
2

])
.

By the symmetric structure in the dual uplink channels, it is clear that allocating

equal power to each user maximizes the sum rate of the system. Thus sum-capacity is

achieved with P1 = P2 = P ′
c and with any decoding order. Furthermore, we can verify

that the sum-capacity is

CMAC =
1

4
log
(
1 + (h2 − g2)2(P ′

c)
2 + 2P ′

c(h
2 + g2)

)
. (B.10)

Now we use the MAC-BC transformations to �nd the covariance matrices (Σ′
1,Σ

′
2). On

simpli�cation, we obtain

A1 = 1;B1 = I+ P ′
ch2h

†
2;G1 = 1;F1 =

1

Λ1
B

− 1
2

1 · h1; Λ1 =

√
h†
1B

−1
1 · h1

and the covariance matrix Σ′
1 is given by

Σ′
1 =

P ′
c

Λ2
1

B−1
1 · h1h

†
1B

−1
1

=
P ′
c(

1 + P ′
c ∥h∥2

) (
∥h∥2 + P ′

ch
2
∆

)
 h2 (1 + P ′

ch∆)
2

gh
(
1− P ′

c
2
h2
∆

)
gh

(
1− P ′

c
2
h2
∆

)
g2 (1− P ′

ch∆)
2

 ,

where h∆ = h2 − g2.

Similarly, for j = 2,

A2 =
∥h∥2

(
1 + 2P ′

c ∥h∥
2 + P ′

c
2h2∆

)
(
1 + P ′

c ∥h∥
2
)(
∥h∥2 + P ′

ch
2
∆

) ,B2 = I; G2 = 1; F2 =
h2

∥h∥
; Λ2 =

√
A2 ∥h2∥
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and the covariance matrix Σ′
2 is given by

Σ′
2 = P ′

cA2
h2h

†
2

∥h∥2
=

P ′
c

(
1 + 2P ′

c ∥h∥2 + P ′2
c h2

∆

)(
1 + P ′

c ∥h∥2
) (

∥h∥2 + P ′
ch

2
∆

)
 g2 hg

hg h2

 .

Now one can easily verify that

P π2
c,1 = [Σ1 +Σ2]1,1 = P − Pp; P π2

c,2 = [Σ1 +Σ2]2,2 = P − Pp.

Furthermore, we can verify that

Tπ2(Pp, Pp) =
1

4
log
(
1 + (h2 − g2)2(P ′

c)
2 + 2P ′

c(h
2 + g2)

)
, (B.11)

which is equal to the sum-capacity of the dual-MAC (B.10).

arks: Note that the covariance matrices Σ1 and Σ2 are of single rank. Thus in

our case, dirty paper coding involving scalar signals is su�cient to achieve the maximum

sum rate. Indeed, by letting b1 =
√
Pc

Λ1
B−1h1, b2 =

√
PcA2

h2
∥h2∥ , one can obtain vectors

Xc,1 = b1Xc,1 and Xc,2 = b2Xc,2 where Xc,1, Xc,2 are independent Gaussian random

variables of unit variance.

130


