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ABSTRACT  

   

Debugging is a hard task. Debugging multi-threaded applications with 

their inherit non-determinism is all the more difficult. Non-determinism of any 

kind adds to the difficulty of cyclic debugging. In Android applications which are 

written in Java, threads and concurrency constructs introduce non-determinism to 

the program execution. Even with the same input, consecutive runs may not be 

the same and reproducing the same bug is a challenging task. This makes it 

difficult to understand and analyze the execution behavior or to understand the 

source of a failing execution.  

This thesis introduces a replay mechanism for Android applications 

written in Java and is based on the Lamport Clock. This tool provides the user 

with a controlled debugging environment, where the program execution follows 

the identical partially ordered happened-before dependency among threads, as 

during the recorded execution. In this, certain significant events like thread 

creation, synchronization etc. are recorded during run-time. They can later be 

replayed off-line, as many times as needed to pinpoint and fix an error in the 

application. It is software based approach and has been implemented by 

modifying the Dalvik Virtual Machine in the Android platform. The method of 

replay described in this thesis is independent of the underlying operating system 

scheduler. 
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CHAPTER 1 

INTRODUCTION 

Debugging has been an imperative step to ensure the correctness of 

software programs. Based on the data from a survey, in a 2002 NIST report [1], 

on an average a bug found in coding/unit testing takes 4.9 hours to fix, whereas an 

average bug found in post-product release takes 15.3 hours to fix. In addition, 

using the distribution of where bugs are found, we calculate that the overall 

average time to investigate and fix a bug is 17.4 hours. This is quite costly in 

terms of the engineer‘s time as well as the impact on the software products and 

users.  

A very common debugging technique is cyclic debugging. Here the 

programmer re-executes a program several times to pinpoint an error that 

occurred. Paramount to this scheme is that the erroneous execution can be 

replayed at will. Unfortunately, this is not always the case. In single threaded 

applications, the flow of execution is sequential. When dealing with multi-

threaded programs this property of repeatability is usually lost. In multi-threaded 

Android applications several threads run concurrently and may compete for work 

or to enter critical sections.  The order of execution of these threads also depends 

on the underlying scheduling events, which may change from execution to 

execution of the same application. Also it may be hard (or impossible) to 

regenerate the input (e.g. a key press from the hard keyboard or a touch event 

from the screen of the Android device). Non-determinism may also be due to race 

conditions where multiple threads modify shared data outside a critical section. 
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This form of non-determinism is generally considered an error, or at least a bad 

programming practice. In this thesis, it is assumed that an execution is free of data 

races. This can be verified by one of the existing automatic data race detection 

systems such as [2]. 

This inherent non-determinism makes debugging of multi-threaded 

Android applications very hard. Even with same input to the application, the 

different thread execution order may disallow a bug that appeared in one 

execution instance of the program from appearing in another execution instance 

of the same program. There may also be deadlocks, starvation which are 

conventional issues with multithreaded programs. These should be taken care of 

during the development stage but are often forgotten about. Due to the hurdle of 

using cyclic debugging for such programs, engineers are forced to look into the 

trace data from a failed run and to understand thread dependency. This tactic is 

certainly problematic and time consuming. 

1.1 Motivation 

Recent years have seen rapid evolution of mobile phones as computation 

platforms (beyond the basic voice telephony), which could soon rival traditional 

desktop computing in many respects. This has shifted focus of major players in 

the area of general purpose desktop computing viz. Google, Microsoft, Apple, and 

so on towards mobile computing. 

Such a product from Google is the Android mobile platform which is 

increasingly being seen on mobile devices. The importance and popularity of 

Android in current software systems is increasing day by day. This has 
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necessitated the development of advanced programming tools for writing efficient 

and correct Android applications. Many Android applications are multi-threaded 

Java programs which also receive external inputs like network events/messages, 

windowing events, keyboard events etc. Building tools for such applications is 

non-trivial because of non-determinism in Java and also the aforementioned 

external inputs.  

"It's been proven that when you can simulate the system, you can 

reproduce the same behavior if you apply the same input," Genard noted (Based 

on a survey conducted by Virtutech Distributed at Embedded Systems Conference 

[3]). There are many basic tools available for debugging and profiling Android 

applications. Android Debug Bridge (ADB), Dalvik Debug Monitor Server 

(DDMS), Traceview and logcat [4] among others are some of the tools available. 

They have various characteristic uses like graphically setting up breakpoints in 

your code in your IDE, screen captures on the emulator, thread and stack 

information, and many other useful features. They have been integrated with the 

Eclipse IDE [5] or can be used stand alone. An important element missing is the 

ability to provide a deterministic replay of a non-deterministic execution instance. 

Classical approach of single stepping cannot be used with Android 

applications as it would affect the temporal component of the system while 

interacting with the outside world. This is because; the system interacts with, and 

is sometimes dependent on external real time context. [6] gives a nice example of 

difficulty in keeping temporal component intact. 
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―Breaking the execution will only break the internal execution while the external 

process will continue‖. 

Thus even if we stop execution of our application, the outside world with all its 

evens is still running. With more & more pressure for time-to-market & with 

shorter product cycle, engineers are in fray with inherent non-deterministic nature 

of multithreaded applications & lack of control to replay the program. 

The inability of classical approach to deal with the debugging of multi 

threaded real time software has encouraged several researchers to look into this 

problem. Numerous approaches have been developed and published to deal with 

inherent complexity of debugging such Java applications. Out of those 

mechanisms, one of the most well known approaches is deterministic replay or 

trace based replay. In this sufficient information is collected during one execution 

of a multi-threaded application to ensure that the concurrent behavior can be 

deterministically reproduced. Cyclic debugging can then be used in the same 

manner as for sequential programs. Several solutions have been proposed, that 

capture and deterministically replay the execution of a Java multi-threaded 

application [7-9]. However none of them have talked about applying the 

deterministic replay methods to a multi threaded application in the context of the 

Android platform.  

The proposed replay mechanism is obtained by instrumenting the Dalvik 

Virtual Machine [10]. It runs in two modes: (1) The record mode, wherein, the 

tool records the non-deterministic events made during the first program execution 

and then to impose this order during subsequent executions i.e. (2) replay mode. 
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During the record phase, the main goal is to record the behavior of the program 

with as little intrusion as possible. This ensures that a representative execution is 

recorded. During replay, the main goal is to do a faithful replay of the recorded 

execution. To provide an ordering to events that happened during record phase, 

Lamport Clock [11] is used. It describes a happened before relation that gives the 

partial ordering between different events of the same thread as well as with events 

in other threads. By recording synchronization events and applying this relation 

ordering to them the execution of the program can be reproduced offline. This can 

then be used to monitor the program for finding bugs. This approach is 

independent of the underlying Linux scheduler. Although described in the context 

of Java, this technique can be applied to multi threaded applications with similar 

synchronization primitives. Note that events in a single thread are implicitly 

ordered according to their temporal order during execution of the thread. The 

manner in which non-critical events are scheduled during a replay does not affect 

the execution behavior of the program. 

1.2 Document Outline 

The rest of the document is organized as follows.  

Chapter 2 provides Background information about Android, its architecture, the 

Android application. It also explains some terms to better understand the 

document.  

Chapter 3 talks about the Related Work done in the area of record replay in 

general. It also mentions certain works which describe the specific mechanism of 

record/replay in terms of Java programs.  
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Chapter 4 talks about the design and techniques of the replay debugger as a 

whole. It mentions the different events that we need to record and replay in the 

context of an Android application. 

Chapter 5 describes the implementation details of the debugger. It gives insights 

on the working of critical events and how they are recorded. 

Chapter 6 gives a brief comparison about this tool with other similar tools. It 

concludes the thesis as a whole. 

Chapter 7 presents some features and enhancements that can be done to the 

existing implementation. This will further enhance the tool. 
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CHAPTER 2 

BACKGROUND 

2.1 Multi-Threaded Applications 

These are applications which have more than one thread running 

concurrently. In a single threaded application the flow of execution is in order. On 

a single CPU system, threads are run by interleaving while on multiple CPU 

system all the threads run concurrently, depending on the number of CPU‘s. This 

concurrency is the subtle source of bugs and can lead to a several issues like race 

condition, deadlocks, starvation. The thread execution order is decided by the 

scheduler and some other factors. This introduces inherent non-determinism in 

multi-threaded applications. Multithreaded applications are hard to design and 

harder to debug due to the above reasons. Android applications can be multi-

threaded using Java threads. 

2.2 Non deterministic order of execution 

In a multi-threaded application, the order of execution of threads depends 

on the scheduler and some other factors. There may also be a lot of inter thread 

communication. This order may differ each time the application is run. In a multi 

threaded application it is common that threads share data. If two threads access a 

shared data structure in a non-synchronized manner, where at least one of the 

threads changes the data structure, we say that a race condition occurs [12]. The 

outcome of the program is timing dependent and hence a source of non 

determinism. This is called a data race. Refer Figure 1 for an example of such a 

data race. In this figure, two threads, T1 and T2, are manipulating a common 
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object s, of class S, but there is no synchronization whatsoever between the 

threads. The execution speed of the two threads can vary greatly: the scheduler 

might decide to let one thread run and block the other. One thread may be running 

exclusively on a processor while the other thread needs to share its processor with 

threads from other processes. This timing difference can result in a different order 

of operations of the two threads. In Figure 1 this is illustrated. Here the threads 

perform the same operation on the fields i and j of object s. However after the two 

executions, the final result is different. The threads are said to be ‗racing‘ to 

control the object. In this thesis it is assumed that the application is free of data 

races. 

 

Figure 1: Data Race in a Multi Threaded Program. 
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2.3 Synchronization Race 

In order to avoid such data races, sufficient synchronization must be added 

to control the accesses made by threads to shared data structures. Many 

synchronization constructs have been designed for this purpose such as monitors, 

semaphores, mutexes, condition variables, etc. However, the use of 

synchronization operations, introduces another type of race called a 

‗synchronization race‘. To illustrate this, Figure 2 shows an example of a 

synchronization race. Here, two threads, T1 and T2, use a lock to synchronize 

their actions. Only one thread can acquire the lock (indicated by an open bracket) 

at one point in time. Other threads have to wait until the lock is released 

(indicated by a closing bracket) by the thread holding it. Using the lock, the 

accesses to the shared data structures are now mutually exclusive or atomic. Still 

the execution is not deterministic. The threads T1 and T2 are now racing to obtain 

the lock. In the left execution T1 wins, while in the right execution T2 arrives and 

locks first. The result of these two executions is different and as a result the 

execution of the program depending on the value of s could be entirely different 

as well. 

The non-determinism introduced by synchronization is mostly seen as a 

useful feature of a parallel program. Thus it is perfectly normal for these race 

conditions to occur. However they create a big problem while debugging such a 

program. The use of a debugger must not interfere with the program‘s execution 

behavior. Replaying the synchronization operations is an effective solution to this 

problem.  
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Figure 2: Synchronization Race in a Multi Threaded Program. 

2.4 Deterministic Replay 

Deterministic replay is a technique widely used for debugging non-

deterministic applications. Such a technique operates in two phases: record and 

replay. The point of the initial record phase is to capture information about events 

in the monitored application and to record all the data required to reproduce it at 

some later stage. The application is then forced to execute in a similar way by 

using the captured information, during the subsequent replay phases. The main 

challenge (which is an active research topic) with such an approach is in 

determining what all events to capture and the quantity of information that should 

be recorded to ensure deterministic replay.  
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2.5 Lamport Clock 

It is a simple method to define a partial order between events in a 

distributed system. A Lamport Clock is used for the same. It is a logical clock, 

which is actually a monotonically incrementing software counter maintained in 

each process with the following rules: 

1. A process increments its counter (clock) before each event in that process. 

2. When a process sends a message, it includes its counter value with the 

message. 

3. At the receiving end, the process sets its counter to be one more than, the 

maxima of its own value and the received value. 

By following the aforementioned rules, the "happened-before" relation  can be 

observed in the below situations: 

1. If a and b are events in the same process, and a occurs before b, then a  b is 

true. 

2. If a is the event of a message being sent by one process, and b is the event of 

the message being received by another process, then a  b is true. 

3. If ab, bc then ac 

In the Figure 3, T1 and T2 are two threads in an application program. In 

thread T1, there is some critical section in the form of a synchronized block. This 

is synchronized on the object – objA. After some processing, the synchronized 

block ends. The start and end of the block is similar to acquiring a lock and then 

releasing it, in Java. Thread T2 has a block synchronized on the same object – 

objA. Assume that during a recording run, the synchronized block in thread T1 
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starts and ends before that in thread T2 starts. Then a happened before 

relationship is formed between end of synchronized block of thread T1 and start 

of the block in thread T2. 

 

Figure 3: A Happened Before Relation between Events 

For more information on the workings of the Lamport Clock, please refer [11]. 

2.6 Android Architecture 

Android is a software stack for mobile devices that includes an operating 

system, middleware and key applications. Figure 4 shows the major components 

of the Android operating system [13]. Each section is described in more detail 

below. 
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Figure 4: Major Components of Android 

Applications 

Android has included a basic set of applications (Figure 5) like the email 

client, calendar, maps, browser etc. All these applications are written in the Java 

programming language. These applications can be multi-threaded depending on 

their purpose. Other users/developers may add such applications according to 

their need. These are the applications that this tool will be used for.  

 

Figure 5: Application Layer of Android 
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Application Framework 

This includes the programs that manage the phone's basic functions like 

resource allocation, voice applications, window allocation for applications, 

managing lifecycle of applications and keeping track of the phone's physical 

location. This layer is majorly written in the Java programming language. This 

layer is the main Java API used by developers in their applications. Application 

developers are allowed full access to Android's application framework (Figure 6). 

This allows them to take advantage of Android's processing capabilities and 

support features. 

 

Figure 6: Application Framework of Android 

Libraries 

Android has a set of C/C++ libraries used within the Android system by many 

components. These are exposed to developers through the Android application 

framework. Most of the CPU intensive work of the framework is accomplished 

using native C/C++ libraries (Figure 7). Some of the core libraries are: 

 System C library - a tuned implementation of the standard C system 

library (libc), for embedded Linux-based devices 

 Media Libraries - these libraries support playback and recording of many 

popular audio and video formats and image files. 
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 3D libraries - the libraries use either hardware 3D acceleration (where 

available) or the included, highly optimized 3D software rasterizer 

 SQLite - a powerful and lightweight relational database engine. 

 

Figure 7: Libraries Layer of Android 

These libraries have been optimized for embedded use: E.g., fast pthread 

implementation using 4-byte mutex rather than the 12-byte mutex (since there 

may not be as many total threads compared to a desktop environment). 

Android Runtime 

Android has a set of core libraries that provide most of the functionality 

available in the core libraries of the Java programming language. Each Java 

application needs an interpreter for the compiled Java byte code. Every Android 

application runs in its own process, along with its own instance of the Virtual 

Machine [14]. Android has its own Virtual Machine called Dalvik Virtual 

Machine. Refer Figure 8 below. 
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Figure 8: Layers of Android Application 

Dalvik [15] primarily is a process virtual machine. Refer Figure 9 below. 

Dalvik has been written so that a device can run multiple VMs efficiently. The 

Dalvik VM executes files in the Dalvik Executable (.dex) format [16] which is 

optimized for minimal memory footprint. The .dex files are obtained from the 

.class files by the “dx”tool. The VM is register-based, and runs classes 

compiled by a Java language compiler. The Dalvik VM is written in C. The 

Dalvik VM relies on the Linux kernel for functionality such as threading and low-

level memory management. 
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Figure 9: Android Runtime Layer 

Linux Kernel 

Android relies on Linux version 2.6 for core system services such as 

security, memory management, process management, network stack, and driver 

model. The kernel acts as an abstraction layer between the hardware and the rest 

of the software stack. A set of kernel drivers is added as patch to Linux kernel to 

be able to meet some special requirements of Android as a whole. Refer Figure 10 

below. 

 

Figure 10: Linux Kernel in Android 

Hardware Abstraction Layer 

There is an abstraction layer present in between the Linux kernel and 

above layers. This enables certain core default system applications and services to 

be replaced by third party/ custom implementations. Most mobile OEMs have the 

basic drivers to control their audio, video etc. Android defines this hardware 

abstraction layer on top of kernel and standardizes Android‘s interface. This 
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hardware abstraction layer exists as a user-space C/C++ library. This probably 

means that Android implements a standard interface for Audio, irrespective of the 

technology supported by the underlying hardware, just asking implementations of 

features that it needs from the particular hardware.  

2.7 Android Application Architecture 

Android applications are written in the Java programming language. The 

compiled Java code, all the necessary data and resource files of the application are 

bundled by the “aapt” tool into an Android package. This file has a .apk suffix. 

This file can then be used for installing the application on devices. All the code in 

a single .apk file is considered to be one application.  

Android application sand-box model 

Android uses the process separation provided by Linux kernel as the 

primary means of achieving isolation against other suspicious applications. Each 

application runs in its own Linux process. Furthermore, each managed piece of 

code executes in a virtual machine (DVM). As a result each application is sand-

boxed from the other applications running at any given time. All IPC is achieved 

via the mechanisms provided by Binder.  

A second level of isolation builds upon the capability of underlying Linux 

to strongly isolate data/files of one user from the other. This is achieved by 

allocating a unique user-id to each installed application on a particular system. 

Android starts the process when any of the application's code needs to be 

executed, and shuts down the process when it's no longer needed and other 

applicaitions are in need of resources. Unlike applications on most other systems, 
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Android applications don't have a single entry point for everything in the 

application (no main() function, for example).  

2.7.1 Processes and Threads 

When the application needs to run, Android starts a Linux process for it 

with a single thread of execution. By default, all components of the application 

run in that process and thread. However, additional threads for any process can be 

spawned as and when required. All components are instantiated in the main thread 

of the specified process. Consequently, methods like View.onKeyDown() that 

handle external events like key press are always run by the main thread of the 

process. This means that no component should perform long or blocking 

operations when called by the system, since this will block other components in 

the process. Separate threads can be spawned for long operations. Android may 

decide to shut down a process at some point, when memory is low and required 

by other processes that are more immediately serving the user. A process is 

restarted when there's work for them to do. Android provides the developer the 

functionality to save the state of the application. If the functionality is 

implemented by user the state is recreated, otherwise a new instance is started. 

Android decides which process to terminate based on a number of factors 

like the relative importance to the user. For example, it more readily shuts down a 

process that is not visible than a process which is visible.  

2.7.2 Processes and Lifecycles 

A foreground process is one that is required for what the user is currently 

doing. They are killed only when memory is so low that no one can continue to 
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run. At this point killing some foreground processes is necessary to keep the user 

interface responsive. 

A background process is one holding an activity that is currently not 

visible to the user. These processes do not have any direct impact on the user 

interface. Hence they can be killed more readily to reclaim resources for other 

processes. There may be many background processes running, so they are kept in 

an LRU (least recently used) list. The process that was last seen by the user is 

more likely to be killed. If an activity implements the lifecycle methods correctly, 

then the current state will be saved before killing it. 

Also Android has a concept of “Application Not Responding”(ANR). If 

an application does not respond within a specified time period to the system, 

Android may show an ANR dialog box, asking the user to Force Close the 

application. 

2.7.3 Threading model 

There may be times when an additional thread needs to be spawned to do 

some background work. Since the user interface must always be quick to respond 

to user actions, the main thread should not do time-consuming operations. If 

something cannot be completed in a short period of time, a different thread should 

be spawned for that purpose.  

Threads are created in code using standard Java Thread objects. Android 

provides a number of convenience classes for managing threads. Looper for 

running a message loop within a thread. Handler for processing messages and 

HandlerThread for setting up a thread with a message loop. The Looper and the 
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Handler together are responsible for handling all the messages and data received 

by a thread. This code is run by the main thread itself. There is generally one 

message queue per main thread and hence per application. 

2.7.4 Inter Process Communication 

Android has a lightweight mechanism for Inter Process 

Communication(IPCs) — where a method is called locally, but executed remotely 

(in another process). This involves decomposing the method call and all its 

corresponding data to a level the operating system can understand, transmitting it 

from the local process and address space to the remote process and address space, 

and reassembling and reenacting the call there. This is done by the Binder [17] 

driver running in the kernel. Android provides the necessary code to do that work, 

so that user/developer can concentrate on defining and implementing the IPC 

itself. 

If the call originates in one process and goes back to the same process it is 

executed in the caller thread. However, when the call originates in another 

process, an IPC in the real sense, the method is executed in a thread selected from 

a pool of threads maintained by Android in the same process. It's not executed in 

the main thread of the process. The message is then handed over to the main 

thread. Refer Figure 11 for an illustration of the above explanation. 
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Figure 11: Binder in Action 

In the Java API for Android, for using IPC in Android an interface called 

Parcelable has to be implemented. The IPC is then translated and its state is saved 

into something called a Parcel. A Parcel is essentially a C-Structure representation 

of the protocol understood by the Binder driver. Binder driver then forwards this 

parcel to the destination process. This driver is a character driver, and all forms of 

IPC used in Android user applications are routed through this driver module. It 

has been optimized for embedded use in that it does not use the general purpose 

Java serialization for marshalling objects. Instead a more simplified protocol that 

is sufficient for system level IPC is used. 
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2.7.5 Lifecycle of Application 

Applications have a lifecycle. Lifecycle starts with the beginning when 

Android instantiates them through to an end when the instances are destroyed. 

The following Table 1 lists the lifecycle methods an application can implement. 

They symbolize the various states an application may go through.  

Table 1 

Various states of Android application 

Method Description 

onCreate() Called at start of application. Must be 

implemented by user. The application 

is in foreground. 

onStart() Called when activity becomes visible. 

onResume() Called before user interaction with the 

application. This is the current 

application with user input going to it.  

onPause() Intermediate state. Called when another 

application is going to be started. 

onStop() Called when application is not visible 

to user. Application goes to 

background. 

onDestroy() Called when application is going to be 

destroyed. 
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onRestart() Called when application comes from 

background to foreground. 

 

The entire lifetime happens between the first call to onCreate() through to a 

single final call to onDestroy(). Activity Manager Service [18] is a Java service 

that manages all aspects of the application lifecycle, and sits on top of the window 

manager to tell it what to do with the windows coming from various applications. 
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CHAPTER 3 

RELATED WORK 

This chapter investigates the research that has been done on execution 

record/replay frameworks. It also reviews existing projects relevant to this thesis. 

Based on the discussion before, it is clear that cyclic debugging in the case of 

multithreaded application is difficult. This is because the order of execution may 

be different for subsequent executions. For the record/replay approach to solve 

such an issue, the important thing is how much information should be traced in 

the record phase. On the one hand, enough information should be generated about 

the execution so that a faithful re-execution of the program is possible. On the 

other hand, the amount of information traced and the computation required should 

be minimized as much as possible in time and in space in order to avoid any probe 

effect [19]. 

3.1 General Replay techniques 

On the general topic of replay, some researchers have been relying on 

special hardware to reproduce the program behavior. A noninterference 

monitoring architecture has been developed which collects data about the 

execution of a real-time program without affecting its execution. A replay 

mechanism has been designed to control the reproduction of the program 

behavior. In addition it examines the states of the target system and its behavior 

[20]. The software instruction counter approach [21] records the backward 

branches and is used to identify the exact location of the required event occurs 

(e.g. interrupt). Another technique relies on using a software counter which is 
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used to compute the number of instructions executed between nondeterministic 

events during a normal execution [22]. If a failure or bug occurs, the computed 

instruction counts are used to force the replay of these events at the same 

execution points. The execution of the application can thus be replayed to recreate 

the pre-failure state. Pan and Linton [23] record and replay the values of shared 

objects whenever anyone accesses them. LeBlanc and Mellor-Crummey described 

a system that records the order of accesses based on version counters in Instant 

Replay [24]. In this, the relative order of significant events is saved as they occur, 

not the data associated with such events. Tai et. al. [25] use a source-to-source 

transformation of an Ada program to replay a sequence of synchronization events. 

It is a language-based approach to deterministic replay of concurrent Ada 

programs. The approach is to define synchronization sequences of a concurrent 

Ada program in terms of Ada language constructs and to replay such sequences 

without the need for system-dependent debugging tools. Russinovich and 

Cogswell [26] block all threads except one to replay the program. In this way they 

reconstruct the scheduling of an execution on a uniprocessor on the Mach 

operating system. They use a software instruction counter [21], i.e., the number of 

backward control transfers and the current instruction pointer to decide when a 

thread switch should happen. 

The most similar work to this thesis is the Replay Debugger [27]. The 

debugger considers a multithreaded execution as a partially ordered sequence of 

interactions and reproduces the sequence in cyclic debugging process. The record 

framework is a wrapper for IO and IPC (inter-process communication) library 
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calls. This technique is more based on immediate happened before relations, than 

actual Lamport Clock values. Moreover, to make the Replay Debugger more 

practical, the proposed replay mechanism has been incorporated into GDB with 

an extended debugging interface for thread control and observation. 

The following sections describe techniques specifically for the Java 

programming language. 

3.2 DejaVu 

In the specific area of record/replay of Java programs, the first solution to 

achieving deterministic replay of executions of multithreaded Java programs was 

proposed by Choi and Srinivasan [28].  This paper introduces a notion of a logical 

thread schedule, which is based on counting the number of critical events 

occurring between thread switch. Critical events in this context are all 

synchronization events performed by threads, for example monitorenter and 

monitorexit and shared variable accesses. The approach to capturing the logical 

thread schedule is based on using global clocks. This clock ticks at every 

execution of a critical event to uniquely identify each critical event. A local clock 

per thread is used to allow each thread to identify schedule intervals that belong to 

that thread. Their implementation is based on a modified Java virtual machine. 

The approach has been extended to include record/replay of networking events in 

distributed applications [29]. The common thing between this paper and this 

thesis is the modification of the Virtual Machine for record and replay. 
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3.3 JaRec 

JaRec [8] aims at portable replay for multi-threaded Java applications. 

JaRec uses bytecode instrumentation to capture and replay schedules based on 

Lamport clocks for objects. It assumes a data-race free program and, therefore, 

only needs to instrument the synchronization operations. This technique has 

originally been used by the same group to implement RecPlay [30], a tool that 

combines record/replay and data race detection for Solaris. Instrumentation of the 

bytecode is performed on the fly by the virtual machine. This enables dynamic 

loading and replaying of classes over a network and prevents having several 

versions of a class. If present, JaRec uses the JVMPI [31] for instrumentation. 

3.4 JReplay 

JReplay [9] tries to achieve similar functionality to that of DejaVu. It is a 

deterministic replay of multi-threaded applications which forces the application to 

execute according to a specified thread schedule. Solution proposed by JReplay is 

independent of the underlying operating system and of the JVM implementation 

the program is running on. Replay of a schedule is achieved by instrumenting the 

original application according to a given schedule and supplying a library 

containing a replay engine in addition to the instrumented class files to the virtual 

machine at start-up. No separate thread is created to control replay. Rather, each 

application thread performs method calls to the replay engine at appropriate times. 

To achieve deterministic replay, JReplay only allows one thread to run at a time 

with all other threads blocked. The running thread is specified by the given 

schedule. To control which thread is currently running, JReplay assigns a lock 



  29 

object to each thread during the replay of the instrumented program. Threads are 

blocked and unblocked using these locks and Java synchronization mechanism. In 

order to transfer control from one thread to another, JReplay unblocks the next 

thread scheduled to run and then blocks the current thread. No work for the 

record/replay of multi-threaded Android applications has been published to date. 
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CHAPTER 4 

DESIGN OF REPLAY DEBUGGER 

This chapter talks about the overview as well as some details about the 

design of the debugger tool. The technique of the debugger consists of two main 

phases: record and replay. Figures 12 & 13 informally depict the two stages, 

record and replay respectively. The record stage takes place when the application 

is running. The application runs in an environment around it. The environment 

consists of the Dalvik Virtual Machine, other applications running in different 

processes and many other events taking place around the application. The 

application and the external events/inputs that affect its execution behavior are 

part of the captured subsystem. The recorded information is then stored in a file to 

be used during replay. 

 

Figure 12: Record Process Overview 
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In the replay stage, the captured subsystem remains the same. The recorded 

information is then used as input to the application. The data of the recorded 

external events/inputs is fed back to the application. The order of events recorded 

in the Log, is useful when replaying the application. The same order is enforced 

on the application events for faithful replay. 

 

Figure 13: Replay Process Overview  

4.1 Record Replay in Java  

There are essentially two main approaches to record/replay. 

The first approach is a ‗content based‘ record/replay system. During the record 

phase in such a system, all the data that is read by a thread from main memory is 

stored in a trace file. While during replay, the same stored data is fed back to the 

thread. This method is very intrusive since each and every read operation 

performed by the thread is traced. So essentially it generates huge trace files. 

However, the advantage of a content based record/replay system is that there is no 

dependency while replaying. A thread can be replayed without re-executing any 
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other thread. It also automatically traces synchronization races and the input, 

provided that the input is also stored in memory.  

The second approach is ‗ordering based‘ record/replay. Here, only the 

order in which data is exchanged or accessed with the main memory is traced. If 

during replay the same order can be imposed along with the same input, the same 

program execution can be recreated. The amount of data to be traced can be 

varied. The exact order in which all instructions are executed can be logged. This 

becomes a problem on multi-processor systems, where there are many threads 

executing simultaneously.  

The JVM guarantees that the instructions executed by a single thread are 

seen by that thread to happen in program order. However other threads may or 

may not see the same order. The only guarantee is that all operations performed 

by one thread before the release of a lock will be visible to another thread when it 

acquires the same lock [32]. Due to this it is not possible to obtain the total 

ordering of the executed instructions. The other possibility is to record the order 

in which the synchronization operations are executed [24]. If all data accesses are 

properly synchronized (no data race conditions), this approach allows for a 

faithful replay, with much smaller trace files. It is precisely this approach that is 

used in this thesis. The following section will touch upon certain definitions 

which are required to understand the proposed record/replay technique. 
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4.2 Definitions 

Any event that is recorded in the trace file is called a thread interaction 

event, E. It is characterized by type of event (e.g. Thread Creation event, 

Synchronization event and so on), thread ID, Object ID and the Lamport clock. 

Object ID, Oid, identifies the object on which the event takes place or the object 

used for communication between threads. Thread ID, Tid, identifies the thread 

performing or involved in the event. The set of events performed by the same 

thread is called thread event set, TESid for thread Tid, while the set of events 

performed on the same object, Oid, is called object event set, OESid.  

When doing ordering based record/replay, the order in which threads 

perform synchronization operations must be recorded. To accomplish this, A 

Lamport clock is maintained for each Oid or Tid and is equal to the Lamport clock 

of the most recent event happened on Oid or invoked by Tid. LC(a) is a function 

that returns a Lamport clock timestamp taking a parameter as Ei, Oid or Tid. The 

Lamport clock has been explained in previous sections. Every time a thread 

performs a synchronization operation, the Lamport clock value is updated and 

saved in a trace file.  

In addition to the happened-before relation we define an immediate 

happened-before relation, denoted by ― | ‖, for two successive thread interaction 

events as follows. For two thread interaction events Eb and Ea, there is an 

immediate happened-before relation Eb | Ea, if  

1) Eb, Ea ϵ Setid where Setid is OESid or TESid, and 

2) For all Ei ϵ  Setid (i ≠ b) that satisfies 
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LC(Ea) – LC(Ei) > LC(Ea) – LC(Eb) > 0                                                        

According to the above expression, Eb is the last event before Ea in the Setid. 

4.3 Record 

In the record phase, the happened-before relations between events are 

captured by chains of immediate happened-before relations. The Lamport clock is 

updated for each event. The computation of the Lamport clock is as follows 

LC(Ei) = max(LC(Tid), LC(Oid)) + 1  

LC(Tid) = LC(Ei)           

LC(Oid) = LC(Ei) 

Hence, both the thread and the synchronization object get a new clock value that 

is 1 higher than the maximum of their previous clock values. Hence, the logical 

time of this event is bigger than the logical time of any object that was involved in 

this event. In practice, each thread keeps track of its own logical time (increasing 

for every new event), and the logical time of synchronization objects O is used to 

communicate the logical time from one thread to another. A link to the event that 

happened before this event is also stored. The happened before relation is 

established using the immediate happened before relation explained in the 

Definitions section. The unique combination of  <Type of Event, Thread ID, 

Object ID, Event Happened Before, Lamport Clock> is saved in the trace file. If it 

is an external event, then the associated data can be saved too.  

An example of a record phase using Lamport clocks is given in Figure 14, 

which shows an application that is using three threads. These threads have already 

been started by the main thread. Initially the threads have clock values as 
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indicated at the top of the figure. The monitor operations of entering and exiting a 

monitor are given by the brackets opening to the bottom and the top respectively. 

Arrows between monitor operations indicate a dependency, i.e. the source of the 

arrow must precede the target. This dependency in the form of immediate 

happened before is logged for each event. If there is not dependency this is 

marked as -1. Notice that at each synchronization operation two clock values are 

updated: (i) the LC(Tid) field which represents the Lamport clock time stamp of 

the thread performing the synchronization operation, and (ii) the LC(Oid) value, 

representing the Lamport clock time stamp passed from one thread to another 

using the object associated with the synchronization operation. 

 

Figure 14: Identify Ordering of Events 
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After the recording stage, the information collected in the trace file 

represents the partial ordering of events. The partial ordering can be represented 

as a graph G = (V, L), where V is a set of events recorded, L is a set of edges, and 

each l = (E1, E2) ϵ L denotes the immediate happened-before relation between E1 

and E2. So now we have a list of how many events were executed by each thread 

and the partial order/dependency between these events. 

4.4 Replay 

During this phase the operations executed by all threads must be executed 

in the same causal order as during the record phase: this can be guaranteed by 

executing the events in the order they were recorded in the trace file. Each time a 

thread T executes a synchronization operation; its LC value is updated in a way 

similar to that during record. After the event executes, it is marked as 

“executed”, while others are “not-executed”. A thread can only resume its 

execution if all its immediate happened before relations are executed. Threads that 

are not yet allowed to execute the next events are suspended by the replay engine. 

Every time a thread arrives at a critical event, it calls the replay engine before 

executing the event and waits [27]. The replay engine then checks the immediate 

happened before relations for that event and thread, using the trace file 

information. The replay engine goes through all the suspended threads one by 

one. If a thread is running, it is not touched. It looks for the first non executed 

event for these threads. These events correspond to the events that the threads are 

waiting to execute. 



  37 

If the relation has been satisfied i.e. the happened before event has 

executed then the replay engine signals the waiting thread to move ahead. If not, 

the thread is kept waiting till the relation has been satisfied.  

The replay phase for the example from Figure 14 is given in Figure 15. 

 

Figure 15: Using Ordering of Events for Replay 

Assume that replay is at a state with clock values (4,8,5) for the three 

threads respectively. All threads may execute up to the point where they would 

perform their first recorded synchronization operation. Assume that T1 is the 

main thread. All threads are allowed to execute. Each time a thread executes an 

event, its Lamport Clock is updated. When Thread T3 arrives at the event at 

Lamport Clock 7, the immediate happened before relation is checked using the 

trace file. If Thread T1 has executed event at Lamport Clock 6, then T3 is allowed 
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to move ahead. Similarly for T2, replay system checks if T1 has executed event at 

Lamport Clock 7. If yes, T2 is allowed to move ahead. This continues until all 

threads have exhausted the values available from the trace and have replayed the 

original synchronization order faithfully. 

4.5 Recording Events 

As explained previously, the ordering based approach of record/replay is 

used. The events recorded to generate the trace information which are later used 

for deterministic and faithful replay are mentioned below. 

4.5.1 Synchronization 

Synchronization events can potentially affect the thread execution order 

and thus are a source of non-determinism. Android applications are written in the 

Java language. Java provides several flavors of synchronization. 

Synchronization construct 

The main synchronization construct in Java is a ‗monitor‘. It suffices to 

record the use of the monitors to be able to perform a faithful replay of an 

application. A monitor in Java is basically a block of statements guarded by a lock 

on an object. Entering the monitor means that the lock on the guarding object is 

taken. Leaving or exiting the monitor means the lock is released. The same object 

may be used to guard multiple monitors. Each time a monitor is entered by a 

thread Ti, the lock on the object O guarding the monitor is acquired by Ti. Another 

thread Tj trying to enter a monitor with the same guard, object O, has to wait until 

the lock on O is released by Ti. 

In Java, a monitor can be expressed in two ways. 
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1. The synchronized(O){block} statement.  

2. A synchronized method. 

The design for recording and replaying the synchronized construct is shown in 

Figure 16 & 17. The logging of data and the actual event should be atomic. The 

reason is explained in the oncoming sections. In Java, entering a synchronized 

section is indicated by the MONITOR ENTER bytecode, while exiting it is done 

by MONITOR EXIT. As discussed before, we have to log the immediate 

happened before event, update the Lamport Clock 

 

Figure 16: Instrumentation of MONITOR ENTER 

and log to the buffer. However, all of this has to be done atomically since there 

are many threads running concurrently. Hence the updating has to be unique and 

atomic. During Replay, we enforce the ordering of events to achieve faithful 

replay. Hence there should be a call to the replay engine before the event actually 

executes. The replay engine will then decide based on the trace information, 

whether to allow the thread to move ahead or block it to ensure correct ordering. 
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Figure 17: Instrumentation of MONITOR EXIT 

4.5.2 Wait/Notify 

Wait/notify can be used to co-ordinate the execution order of multiple 

threads. A thread T can execute a wait() method on an object O. This puts the 

thread in wait state and releases the lock on the object O. Thread T can execute 

wait on an object O, only when it has acquired the lock on object O. Hence it is 

necessary that T has a lock on object O before it can invoke the wait() method on 

that object. It is also necessary that a thread has a lock on the object on which it 

invokes the notify(). Invoking notify() on an object O sends a signal to a thread 

waiting in the queue of object O. Upon receiving such a notification, T once more 

competes to reacquire the lock on O. As soon as the lock is acquired, T will 

continue its execution in the monitor. Hence, wait and notify have an effect on the 

order of thread execution. Also, notify wakes up a thread waiting on an object O. 

This does not guarantee, that the signaled thread will start running immediately. 

In the case of more than one threads waiting, the notify on an object wakes up an 

arbitrary thread waiting on the same object. The thread woken up is based on 

scheduling policy. Thus for wait(), there have to be two recordings, one before 
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wait and one when the thread starts running after wait. On the other hand one 

recording event suffices for notify(). 

 

Figure 18: Instrumentation of Wait/Notify 

Figure 18 illustrates the recording policy to be used in case of wait/notify. 

As previously mentioned, recording for wait has to be done twice while once 

suffices for notify. Since wait is a blocking event (i.e. the thread that executes 

wait() will suspend and hence cannot proceed until some another thread does a 

notify). If we make it atomic, this will result in a deadlock. Refer Figure 19 

below. 
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Figure 19: Incorrect Handling of Wait/Notify 

T1 does not leave the atomic section since it executes a wait. T2 which is 

supposed to execute a notify, cannot do so because T1 is present in the atomic 

section. This causes a deadlock. A thread can successfully invoke wait on an 

object only if it is inside a synchronized block. Similarly, a thread can invoke 

notify inside on an object when it already owns the object in a synchronized 

block. Because of this, wait or the code for record need not be inside an explicit 

atomic section. A global log lock is only required while writing to the log, since 

some other thread can log an unrelated event to the log. 

 Currently, only the recording of wait/notify has been derived. The 

algorithm for replay of wait/notify events has yet to derived. 

4.5.3 Thread Creation 

In Java and thus in Android, threads are supported by the language itself – 

the java.lang.Thread class. A new thread is created by using the ―new‖ keyword.  

Thread thr = new Thread(); 
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The above line of code will only create a Thread object. This does not correspond 

to the actual start of the thread.  

thr.start(); 

The above line will issue the actual starting or running of the created thread. This 

event should be recorded and stored in the trace to be used later on during the 

replay. 

 

Figure 20: Instrumentation of Thread Start 

Figure 20 illustrates the design for record and replay of thread start. The 

explanation is same as mentioned in previous sections. 

4.5.4 Message Passing between threads 

In Android, there is one main/UI thread which handles all the UI 

components of the application. No other thread is allowed to access the UI part of 

the application. This is to avoid inconsistent display of UI components, e.g. two 

threads updating the contents of a Textbox simultaneously will result in incorrect 

data being displayed. If any other thread wants to update the UI of the application, 

it has to communicate with the main thread. Every main thread in an application 

has a Queue associated with it. The main thread keeps checking this Queue for 
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messages. A Looper and Handler class; together are responsible for handling of 

messages. They are run by the main thread.  

Rather than storing the content of the messages, the order of each access 

of the Queue is stored. This is because the data/message sent will be the same 

during replay. This reduces the size of the trace file generated during recording of 

the application. Any other message passing between the application threads also 

takes place using this Message Queue. Figure 21 illustrates the record and replay 

strategy for message passing. 

 

Figure 21: Instrumentation of Message Passing 

4.5.5 External Events 

Recording of external events is essential to replaying of an Android 

application. For a faithful replay, the time of the external event and the data 

associated with it should be the same during replay, as it was for record. Also, a 

bug may be caused by a particular execution order of threads interrupted by an 

external event. Hence it is necessary to store the order of these events relative to 

others along with the data associated with it. During replay the I/O event can be 

played back using this information during the re-execution of a program.  
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In Android, external events are delivered to the application by the Android 

system. The part of the Android system that takes care of reading and dispatching 

events runs in a process called System Server. This runs in a separate process and 

VM instance. The System Server is a process that is important to the core of 

Android system. It provides important services like Activity Manager, Power 

Manager, Alarm Manager etc to all the Android applications. Each service runs in 

a separate thread. There is a service called Window Manager Service which opens 

input devices and dispatches the raw event data into events delivered to the 

application windows. The Window Manager Service starts two threads, viz Input 

Device Reader and Input Dispatcher Thread. Input Device Reader actually reads 

from a Linux device ―/dev/input‖ and enqueues the data. The Input Dispatcher 

Thread reads from this queue and dispatches event to currently focused 

application window. Since the Android application runs in another process, 

conveying of the event involves inter process communication. The way of inter 

process communication in Android is Remote Procedure Calls. This involves 

copying data from the System Server address space to the address space of the 

Android application. All this functionality is provided by Android using the 

Binder utility. To handle this RPC in the Android application, a group of threads 

called Binder threads are provided. These are similar to daemon threads, in that 

they provide some service to the main application. These Binder threads then 

communicate to the main thread of the application regarding the event.  

The main thread runs special code called event handlers to handle the 

communication between the Binder threads and the application. Currently, the 
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external events are key press events generated by the keyboard of the device. 

Only the application threads are recorded for a faithful replay of the application. 

To put all of the above discussion in perspective, consider the figure 22 below. 

 

Figure 22: Overview of Working of Android 
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CHAPTER 5 

IMPLEMENTATION 

On a uniprocessor system, execution behavior of an application can be 

uniquely identified by the sequence of execution events. Events could include 

thread creation events, synchronization events, message passing, external events 

and so on. Therefore, two execution behaviors of an application are identical if 

their execution sequences are identical. For a multi-threaded application, events 

can be executed by different threads. Here, the order of execution of events 

matters along with the thread executing them.  

In Java, an (execution) event can be defined as an execution of a Java 

bytecode by an interpreter. Android applications are written in the Java language. 

The Java language is an interpreted language. The Java files are compiled into 

bytecode, which is then interpreted in the virtual machine. Android has its own 

version of this virtual machine called Dalvik Virtual Machine. All Java code goes 

through this Dalvik VM. Record and replay is achieved by adding code to the 

Dalvik Virtual Machine. This is where the instrumentation for record and replay 

mechanisms is present. 

As explained in previous sections, each Android application has its own 

instance of the Dalvik Virtual Machine. Before the actual application starts, the 

Virtual Machine should be up and running. It is here that record/replay 

mechanism is initialized and started. The initialization or startup of the Virtual 

Machine is required before the application. 
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5.1 Initialization 

Initialization is the list of things to do before the actual execution of a 

program starts. There are many things that need to be set up before an instance of 

the Dalvik VM starts. For instance, the garbage collector thread needs to be set up 

and started, certain classes need to loaded etc. There are many methods called in 

sequence for initialization of the VM. It is in one of these methods that the 

specific method for record/replay is called. For record, initialization includes 

allocating two identical sized buffers for double buffering scheme used for 

logging the events. Initializing certain data structures and fields to their start 

values, to be used in recording is also done. It also creates the Logger thread, 

which would be responsible to dump the data from buffer to a dump file when 

buffer is full. During replay, the scheduler thread is created, which ensures the 

partial order of events is maintained as it was during recording. The memory 

dump file created during record is read. Certain data structures which are used to 

determine the happened before relations of an event are initialized with the correct 

values from the file. 

All these essential things should be completed. They are done in a 

function at the start of the VM. It is in this function after all the necessary VM 

initialization; the record/replay initialization code is added. 

A double buffering mechanism is implemented for the logging process. 

The idea behind double buffering is to divide the buffer into two segments and to 

present these two segments as two separate buffers. When the first buffer fills up, 

data is written into the second segment while the Logger thread is writing out the 
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contents of the segment that is full to a dump file. When the second segment 

becomes full, the Logger should have finished writing out the contents of the first 

segment to disk and therefore the first segment is now available for writing data 

into it. However, it should be noted that the double buffering has its limitations 

and there are problems, which cannot be solved with double buffering. These 

problems arise from situations where the traced application generates execution 

data to be recorded at a much higher rate than the rate with which these data can 

be written to disk. In this case, both buffer segments will become full before the 

Logger thread will be able to write one of them to disk. The way round these 

situations is to block the recorded application and therefore prevent it from 

generating any more data before the Logger has an opportunity to write out the 

buffer segment to disk. Whilst this solution has an adverse effect on performance, 

the situations causing this problem are unlikely to occur very often. The 

implementation of double buffering uses a well known producer-consumer model, 

which employs condition variables (pthread library). Once the application to be 

recorded starts running, the Logger thread takes on the role of the consumer 

whereas the application threads are the producers. The Logger thread sits in a 

while loop, waiting for a signal if none of the buffers are full. Once any of the 

buffers‘ is full, the Logger thread is signaled. The Logger thread breaks from the 

while loop when the application goes to the background. It also logs the half filled 

buffers to the file for the last time. Refer Figure 23 for above explanation. 
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Figure 23: Double Buffering while Recording Events 

During replay, the initialization code will create the scheduler thread.  

5.2 Record 

Since multiple threads execute these events and update the same global 

clock, the following three actions must be executed as a single atomic action 

during the record phase: 

Logging of Event and associated data to trace file. 

Update immediate happened before relation 

Updating the Lamport clock 

The actual event. 

The thread executing the above actions may be interrupted for a couple of 

reasons, and there may be a thread switch. Some other thread may update the 

Lamport Clock and log another event. This will cause an incorrect order of events 

to be recorded. Since this log is used while replaying, the events and threads may 

be executed in an incorrect order. Hence there is no deterministic replay. To avoid 

such things, the above must be atomic while recording. 

5.2.1 Synchronization in Java 

As discussed in previous section, the synchronized construct is used to implement 

critical sections in Java. This can be a synchronized block or a method. Java‘s 
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byte code has two instructions to help implement critical sections: monitor enter 

and monitor exit. In the Dalvik Virtual Machine, the critical sections for 

synchronized methods and blocks are implemented using monitor enter and 

monitor exit. Each MONITOR ENTER/EXIT results in a call to the methods 

dvmLockObject and dvmUnlockObject respectively. The methods in turn 

correspond to a pthread_mutex_lock/unlock respectively, in the underlying code 

of the Dalvik Virtual machine. This is shown in Figure 24. Each of these are 

events have to be recorded. Reproducing the same order in which threads enter a 

critical section is necessary to reproduce the same order in which threads access 

shared variables within the critical section. Since we are interested in the partial 

order of events, the instrumented code will be as follows for entering of 

synchronized section: 

Monitor enter 

Log to buffer 

Update immediate happened before relation 

Update Lamport Clock. 

And for leaving the synchronized section 

Log to buffer  

Update immediate happened before relation 

Update Lamport Clock 

Monitor Exit 
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Figure 24: Synchronization in Android 

We are interested in the partial order of events and not the exact order. Hence we 

need to maintain the correct happened before relation pertaining to 

locking/unlocking using an object. The order of locking/unlocking of one object 

with respect to that of another object is of no consequence. Only one thread is 

allowed to enter the critical section pertaining to a particular object, at the same 

time. We achieve implicit atomicity while locking/unlocking of the same object. 

Hence no explicit lock/mutex is required for ensuring atomicity. 

5.2.2 Message Passing 

Message passing between Android application threads takes place through 

a Message Queue. This is associated with the main thread. All accesses to this 
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queue are synchronized. Hence, the recording of events takes place through 

recording of synchronized access of the queue, as explained in the above section.  

 

Figure 25: Message Passing in Android 

Also the order of each queue access is recorded instead of the actual message 

content. This reduces the size of the trace file. Since each queue access is 

synchronized the recording takes place in a similar way as actual synchronization. 

Figure 25 illustrates this mechanism. 

5.2.3 Thread Creation 

In Android, every Java thread is mapped to a native thread. There is a one 

to one mapping between Java threads and native threads. Since the Java bytecode 
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is interpreted by the DVM, every thread creation call gets interpreted in the DVM 

as well. Each Thread.start() method ultimately becomes a pthread_create() 

method call as shown in Figure 26. This pthread_create is responsible for 

creating and starting a native thread corresponding to a Java thread. Inside the 

Dalvik VM, a Thread structure is maintained for each thread. This structure 

maintains all the information about the thread, like the actual Thread object 

corresponding to the thread, thread id, a pthread_t handle to the thread, current 

status of the thread and so on. This is where the instrumentation code for logging 

to buffer and updating Lamport Clock is placed. 

 

Figure 26: Thread Creation in Android 

For all the above, it is necessary to ensure that the atomicity conditions mentioned 

at the start of this section are met. This is done using a global mutex lock from the 

pthread library around the necessary lines of code. 

All this instrumentation for record/replay is inside the DVM. To make 

sure that only a particular application is recorded, the following is done. 
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Instrumentation of the java.lang.Thread class. 

This helps to determine which threads and hence which application should 

be recorded. The instrumentation includes addition of a field and a setter method 

to assign a value to this field. The application should include a single line of code 

for each thread, setting the value of this field appropriately. Underneath the VM, 

the value of this field is the deciding factor on whether to record a particular 

event. If the event is invoked by a thread whose field value is set, that event is 

recorded. The other methods possible are addition of an extra Thread constructor, 

with the value of the field as the parameter. For this to work every application will 

have to change the way threads are created. In contrast to this just a single line of 

code with a call to the said method would suffice. 

In the Dalvik Virtual Machine, a table is maintained for each application 

thread and each synchronization object, storing essential data like the current 

Lamport Clock and previous event executed or immediate happened before event. 

This is logged and updated after each event execution. Even though the thread ID 

of the application threads remains the same in each run of the application, there is 

no consecutive ordering of threads IDs. Hence a mapping of thread IDs is 

required to identify application threads in subsequent runs of the application. 

5.2.4 Wait/Notify 

Wait/notify are Java language constructs that can be used to coordinate the 

execution order of multiple threads. A thread that has executed a wait on an object 

must wait till a different thread executes notify on the same object. These 

constructs can change the order of thread execution and introduce non-
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determinism in an application. Hence these must be recorded and used to replay 

the same partial order of threads. 

In Android, each wait/notify is handled by the Dalvik Virtual Machine 

running underneath each application. In the Dalvik VM, each wait/notify is 

handled by the methods dvmObjectWait/Notify. To summarize, each wait/notify 

boils down to a pthread_cond_wait/signal call. Refer Figure 27. These methods 

are instrumented accordingly for record and replay. The instrumentation code and 

the actual event should be atomic to maintain the partial order.  

 

Figure 27: Wait/Notify in Android 

The recording of wait/notify events is done inside the DVM as specified in the 

wait/notify section of the Design chapter. The wait event has to be recorded twice, 

once before the actual wait and once after the thread wakes up and reacquires the 

lock. As mentioned the actual mechanism is using pthread_mutex_lock and 

pthread_cond_wait. The implementation of the methods dvmObjectWait/Notify is 
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used to our advantage for atomic logging. Currently, only recording of wait/notify 

can be achieved. However, replay of wait/notify is yet to be achieved. 

The flow of the record phase is as shown below: 

Initialize the buffers, Logger thread and certain other data structures essential for 

record when the VM starts up. 

Start the application execution. 

Whenever application thread arrives at significant events, check whether they 

should be recorded. 

 If Yes, record, update immediate happened before relation and update the 

Lamport clock 

Log to buffer. 

If current buffer is full 

Then switch buffer and signal the Logger thread 

Continue this till end of application. 

5.3 Replay 

 Replay is achieved by enforcing the ordering of events using the 

information in the trace file. During replay, all the non-deterministic choices 

made during recording are applied while executing the application. The replay is 

carried out in a way similar to that described in the Design chapter. The replay 

mechanism is the same for all the events recorded.  

Similar to the record phase, the decision of whether to replay an 

application is taken by the value of a particular field in the Thread class. If this 

field is set to a particular value, all the critical events executed by that particular 
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thread are replayed. Whenever such a thread arrives at a critical event, it calls the 

replay engine and waits for the replay engine to get back. The replay engine is 

implemented in a separate thread running in the DVM instance. This thread is 

called the scheduler thread. This thread goes over the trace information and 

checks the immediate happened before relations for the waiting threads. If the 

relations are satisfied, that particular thread is signaled to move ahead with its 

execution. Else if a particular thread is running, the scheduler thread does not 

interfere with it. Thus the scheduler thread decides which thread should proceed 

and which should not based on the trace information. This thread does not 

interfere with the underlying Linux scheduler. All threads including the scheduler 

thread are handled by the Linux scheduler. The scheduler thread can be thought of 

a VM level scheduler. 

The flow of replay phase is as below: 

Arrive at critical event 

Call replay engine 

Wait for signal from Replay Scheduler thread 

Replay Scheduler thread consults recorded log 

Checks for immediate happened before relations 

If all immediate happened before events are executed OR If none found 

Signal application thread to proceed. 

Repeat till end of program. 
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5.4 Lifecycle of Application 

The Lifecycle of an Android application is very different from a normal 

Java application. A normal Java application has a fixed entry point in the form of 

a main method. When the main method ends, it signifies the end of the 

application. However for an Android application, there are more than one entry 

and exit points. An important and unusual feature of Android is that an 

application process's lifetime is not directly controlled by the application itself. 

Instead, it is determined by the system through a combination of the parts of the 

application that the system knows are running, how important these things are to 

the user, and how much overall memory is available in the system. Currently, 

recording of the application takes place from the Start of a new instance of the 

application till it goes to the background. The Start of a new instance is marked by 

execution of the onCreate() method of the application, that has been explained 

before. There is no exit button for an Android application. The user does not have 

any control on exiting the application. The application becomes a background 

process when triggered by the back key press. This back key press is recorded to 

mark the end of application recording. The replay is done till all recorded events 

are executed. 

5.5 Log Structure 

The recorded information for critical events is stored in a file called 

memory dump. The recorded information is stored in a particular format so that 

later on it can be used in the replay phase. Each entry in the log is of a fixed size 

and format. The log structure has the following fields 
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Serial Number – Stores the serial number of the recorded event. Serial numbers 

start from 0 and are incremented for each event. These are later on used during 

replay to identify happened before events. 

Event Type – Helps identify the type of event. The recorded event may be a 

Thread creation event, a synchronization event or an external event and so on. 

Thread ID – Signifies the unique ID of the thread that executed the event. This 

helps to decide which thread should be scheduled to execute the event.  

Lamport Clock – The Lamport Clock value associated with that particular event. 

It may not be the same as the Serial Number field. 

Event Index – This helps identify the type of a particular event. The Event Type 

field signifies the type of event e.g. Synchronization event. This field will 

symbolize whether it is Synchronization lock or Synchronization unlock. The sign 

of the field is used for the same. 

Different Thread Dependency –This defines the immediate happened before 

relation. It points to the event this current event is directly dependent on. 

Status – This particular field is more helpful during replay. Before Replay, this 

field of all events is initialized to NOT_EXECUTED. As replay progresses, all 

events executed are marked as such. 
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CHAPTER 6 

COMPARISON AND CONCLUSION 

Multi-threaded programs are in general non-repeatable due to races. This 

makes debugging multi-threaded programs very hard. Android applications are 

such multi-threaded Java programs.  

In this thesis, the mechanisms that allow deterministic execution of multi 

threaded Android applications for debugging purposes have been presented. The 

contributions by this tool are enhanced debugging capabilities by tackling non-

deterministic events like synchronization constructs, wait & notify, message 

passing between threads & external events like key press. Currently, record/replay 

of synchronization construct, message passing between application threads and 

thread creation have been considered. All these contribute to non-determinism 

like synchronization races. The deterministic replay is achieved by using a 

modified Dalvik Virtual Machine. The tool uses Lamport‘s happened before 

relation among events to establish a partial order. This partial order is then 

enforced on the thread execution during replay. Tools have been presented for 

multi threaded Java applications but none specifically for Android applications. 

Notable among these are JReplay, JaRec and DejaVu. 

JReplay is similar to DejaVu as it tries to achieve deterministic replay of 

multi threaded applications by forcing the applications to execute according to a 

particular thread schedule. But instead of modifying the VM similar to this 

research, it instruments the bytecode of the original program. Solution of the 

JReplay is similar to this thesis, in that it is independent of the underlying 
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operating system. But it is also independent of the JVM. JReplay takes care of 

thread switches in the bytecode invocations. However, JReplay allows only one 

thread to run at a time according to the schedule compared to this research which 

only controls execution order of threads. Hence even if two threads normally run 

concurrently, they run one at a time during replay. This may be a block for 

performance reasons. Also, the information to record location of thread switches 

is assumed to be provided. It does not specify how to achieve this information. 

JaRec achieves replay by instrumenting Java class files at load time. This 

causes a lot of record/replay overhead in the form of bytecode size increase. That 

increases the file size by 20% in record phase and 15% in replay phase, while the 

worst case increase is 120%. Increase in the number of synchronization 

operations, will increase the bytecode size by a considerable amount. All the 

instrumentation in this research is inside the Virtual Machine. Hence, there is no 

concern of increase in bytecode size. Also, the instrumentation takes place using 

JVMPI. All VM‘s do not support this feature, especially the Dalvik Virtual 

Machine. This could be a deterrent in using this system.  

DejaVu is another notable tool designed for deterministic replay of Java 

applications. DejaVu was the first such tool to replay Java applications. It has also 

been extended for distributed applications. The approach presented in this thesis is 

similar to DejaVu, in that the replay is achieved by instrumenting the VM. 

However it does not use Lamport’s happened before relation for keeping track 

of events, instead a combination of local clock and global clock is used. Also, 
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none of above mechanisms takes into account I/O operations, which are likely to 

impact the execution of the program.  

This is the first such tool, capable of value additions in the form of 

deterministic replay of Android applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  64 

CHAPTER 7 

FUTURE WORK 

In this research a tool is presented to replay multi threaded Android 

applications which have been written in Java. The debugger uses Lamport‘s 

principle of happened before relation, to form a partial order of events. This 

partial ordering leads to smaller size of record logs along with correct order of 

events.  

Currently, the recording takes place from start of application till it goes to 

the background. An enhancement worthy of consideration is to continue recording 

even after the application goes to the background. In this way, if that particular 

application is resumed by Android, a complete recorded picture can be obtained. 

Recording should stop only when the application process is killed by Android. 

Future implementation will undertake recording of the application for the entire 

lifecycle. It will involve recording of the application when it moves from 

background to foreground in addition to the current implementation. 

External events considerably add to the non-determinism as has been 

explained. Logging of external events is orthogonal to recording of other events. 

Also, as an enhancement for further accurate recording of an application, it is 

essential to implement the record/replay of external events along with replay of 

wait/notify. This will widen the range of applications that can use this debugger 

tool for development. 
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