
Towards Effective and Intelligent

Multi-tenancy SaaS

by

Qihong Shao

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved Jan 2011 by the
Graduate Supervisory Committee:

Wei-Tek Tsai, Chair
Ronald Askin
Jieping Ye

Milind Naphade

ARIZONA STATE UNIVERSITY

May 2011

ABSTRACT

Cloud computing has received significant attention recently as it is a new com-

puting infrastructure to enable rapid delivery of computing resources as a utility in

a dynamic, scalable, and visualized manner. SaaS (Software-as-a-Service) provide a

now paradigm in cloud computing, which goal is to provide an effective and intel-

ligent way to support end users’ on-demand requirements to computing resources,

including maturity levels of customizable, multi-tenancy and scalability. To meet

requirements of on-demand, my thesis discusses several critical research problems

and proposed solutions using real application scenarios:

Service providers receive multiple requests from customers, how to prioritize

those service requests to maximize the business values is one of the most important

issues in cloud. An innovative prioritization model is proposed, which uses differ-

ent types of information, including customer, service, environment and workflow

information to optimize the performance of the system. To provide “on-demand”

services, an accurate demand prediction and provision become critical for the suc-

cessful of the cloud computing. An effective demand prediction model is proposed,

and applied to a real mortgage application.

To support SaaS customization and fulfill the various functional and quality re-

quirements of individual tenants, a unified and innovative multi-layered customiza-

tion framework is proposed to support and manage the variability of SaaS appli-

cations. To support scalable SaaS, a hybrid database design to support SaaS cus-

tomization with two-layer database partitioning is proposed. To support secure

SaaS, O-RBAC, an ontology based RBAC (Role based Access Control) model is

ii

used for Multi-Tenancy Architecture in clouds. To support a significant number of

tenants, an easy to use SaaS construction framework is proposed.

As a summary, this thesis discusses the most important research problems in

cloud computing, towards effective and intelligent SaaS. The research in this thesis is

critical to the development of cloud computing and provides fundamental solutions

to those problems.

iii

To my parents and Xuanhui

iv

ACKNOWLEDGMENTS

I wish to express my great thanks to all the people who gave me tremendous

support and help during my Ph.D. study.

First and foremost, I am heartily thankful to my advisor, Prof. Wei-Tek Tsai.

This dissertation would not have been possible without his guidance. From him,

I learned how to find high-impact problems, conduct rigorous research, and make

effective presentations. Dr.Tsai’s brilliance makes my research much more enjoyable.

His persistence and dedication encourage me to go through many obstacles. For me,

Dr.Tsai is not just an advisor in research, but also whole life advisor. He given me

many advises in multiple aspects, especially on how to move beyond my comfort

zone to reach my full potential. I would benefit from all these for my whole career.

I also thank my other dissertation committee members, Dr.Jieping Ye, Dr.

Ronald Askin and Dr.Milind Naphade, for their constructive suggestions for my dis-

sertation and invaluable help for my career. Their suggestions make my dissertation

more complete and accurate. Their recommendations open up many opportunities

for my career.

Furthermore, I am proud to be a member of ASU-SRLab. I benefit a lot from

the discussions with all of the SRLabers, especially, Dr.Yinong Chen, Xin Sun, Jay

Elston, Yu Huang, Wu Li, and Guanqiu Qi. Specially, I appreciate all support from

my best friends, Fang Chen, Ye Jiang, Yang Xiao, Huiping Cao and Hongyu Yu.

Their consistent support in the past five years helps me handle all difficulties in my

research and life.

Finally, I would like thank my mom for her support and encouragement. With-

v

out her consistent mentally support, I could not finish my PhD study. Also I would

like to thank my husband Xuanhui for his love, faith, and confidence in me. This

dissertation is dedicated to all of them.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . xiv

LIST OF FIGURES . xv

CHAPTER

1 INTRODUCTION . 1

1.1. SaaS Maturity Model . 6

1.2. Multi-tenancy SaaS . 12

1.3. Real-Time Service-Oriented Cloud Computing 15

1.3.1. Client-Site Issues . 16

1.3.2. Server Site Issues . 18

2 RELATED WORK . 26

2.1. Compare with Service Oriented Architecture 26

2.2. Research Community in Multi-tenancy SaaS 28

2.2.1. Data Tier Design for Multi-Tenancy Architecture 28

2.2.2. Security . 33

2.2.3. Scalability . 37

2.3. Saleforce.com . 39

2.4. Oracle’s On Demand SaaS Platform 45

2.4.1. Database with Scalability . 46

2.5. Google’s App Engine . 48

2.5.1. Google App Engine . 48

2.5.2. Google File System (GFS) . 53

vii

CHAPTER Page

2.5.3. BigTable . 60

2.5.4. BigTable Overview . 62

2.6. Microsoft’s Azure . 77

2.6.1. Architecture of Azure . 79

2.6.2. Windows Azure Inside . 83

2.6.3. SQL Azure Inside . 88

2.6.4. Windows Azure Platform AppFabric Inside 89

2.7. Amazon’s EC2(Elastic Compute Cloud) 92

3 AN EFFECTIVE SERVICE PRIORITIZATION MODEL 94

3.1. Introduction . 94

3.2. Problem Statement . 98

3.3. Process and Data . 100

3.3.1. Process Description . 100

3.3.2. Data Description . 100

3.4. Customer and Product Attributes Based Ranking Analysis 103

3.5. Customer, Product and Workflow Attributes Based Ranking Analysis 109

3.6. Discussion . 114

3.7. Related Work . 117

3.8. Conclusion and Future Work . 118

4 AN EFFICIENT SERVICE DEMAND FORECASTING MODEL 120

4.1. Introduction . 120

4.1.1. Related Literature . 122

viii

CHAPTER Page

4.1.2. Our Contributions . 123

4.1.3. Problem Definition and Notation 123

4.2. Markovian, Semi-Markovian and Weighted Markovian Predictors . . 125

4.2.1. Markovian Predictor . 126

4.2.2. Semi-Markovian Predictor . 126

4.2.3. Weighted Markovian Predictor 129

4.3. Numerical Results . 130

5 ONTOLOGY-BASED INTELLIGENT CUSTOMIZATION FRAMEWORK

FOR SAAS . 135

5.1. Introduction . 135

5.2. Ontology based Customization . 139

5.2.1. Template Objects . 140

5.2.2. Data Layer . 141

5.2.3. Service Layers . 143

5.2.4. Business Process Layer . 146

5.2.5. GUI Layer . 146

5.2.6. Cross-Layer Relationship . 147

5.2.7. Customization Granularity 149

5.3. Intelligent Recommendation . 150

5.4. OIC System Architecture . 153

5.5. Adaptive Customization Process . 154

5.6. Case Study . 155

ix

CHAPTER Page

5.7. Related Work . 157

5.8. Conclusion . 159

6 TOWARDS A SCALABLE MULTI-TENANCY SAAS 161

6.1. Introduction . 161

6.2. Related Work . 168

6.2.1. SaaS Customization . 168

6.2.2. Scalability and Database Partitioning 169

6.2.3. Recovery Mechanism . 171

6.3. SaaS Customization Framework . 171

6.3.1. Ontology Driven Meta-data Customization 173

6.4. Scalable SaaS with Database Partitioning 175

6.4.1. Review of Database Partitioning Choices 178

6.4.2. P 2: Two-Layer Partitioning Model 180

6.4.3. Scheduling and Load Balance 181

6.4.4. Two-Layer Index for P 2 . 183

6.4.5. Performance Analysis for P 2 186

6.5. Conclusion . 191

7 TESTING SAAS APPLICATIONS . 192

7.1. Introduction . 192

7.2. SaaS Testing Framework . 196

7.2.1. SaaS Maturity Levels . 196

7.2.2. Methodology . 197

x

CHAPTER Page

7.2.3. Platform Support . 202

7.3. Policy Enforcement . 203

7.3.1. Policy Enforcement Triggering Rules 204

7.4. Sample Study: SaaS Scalability Testing 206

7.4.1. Testing Scalability of Cloud Applications 208

7.4.2. Methodology Dimension: Intelligent Testing to Assist Scala-

bility Testing . 212

7.4.3. Platform Support Dimension: Partitioning to Assist Scalabil-

ity Testing . 213

7.5. Conclusion . 214

8 ROLE-BASED ACCESS-CONTROL USING REFERENCE ONTOLOGY

IN CLOUDS . 215

8.1. Introduction . 215

8.2. Role-based Access Control . 221

8.3. Reference Ontology for RBAC in Clouds 222

8.4. Using Ontology for RBAC . 225

8.4.1. Define Roles with Semantic Information 225

8.4.2. Manage Roles Hierarchy with Ontology 226

8.4.3. Solve Role Hierarchy using Ontology Trees 227

8.4.4. Role Numbers and Scalability 230

8.5. Policy Specification and Management 232

8.6. Answering Requests using O-RBAC 234

xi

CHAPTER Page

8.7. Related Work . 235

8.7.1. Research Community on Security 235

8.7.2. Current Industry Security Support in Cloud 237

8.8. Conclusion . 239

9 EASYSAAS: A NEW SAAS ARCHITECTURE 240

9.1. Introduction . 240

9.2. EasySaaS Overview . 243

9.3. Key Components in EasySaaS . 245

9.3.1. Tenants’ Requirements . 245

9.3.2. Service Specification . 246

9.3.3. Intelligent Clustering, Classification and Profiling Mining . . 246

9.3.4. Recommendation Engine: Discovery and Matching 250

9.3.5. Customization Engine . 251

9.3.6. Verification and Validation 252

9.4. Core Designs in EasySaaS . 255

9.4.1. EasySaaS Global Model Design 255

9.4.2. Analysis of EasySaaS Global Design 257

9.4.3. Chunk Partitioning . 259

9.5. EasySaaS Hosting Platform Support 260

9.6. Related Work . 263

9.7. Conclusion . 264

10 CONCLUSION AND FUTURE WORK 266

xii

CHAPTER Page

REFERENCES . 270

xiii

LIST OF TABLES

Table Page

1. Typical Pull-through Rates . 95

2. Sample Data Set . 101

3. Workflow of a Sample Loan . 103

4. Loan Outcome by Credit Score . 103

5. Loan Outcome by Interest Rate . 107

6. Performance of Ranking Models at Initial Status 108

7. Metrics for Ranking Models at Status 10 114

8. Robustness of Ranking Results . 115

9. (MV) model, by attribute, for application X 115

10. (MV) model, by attribute, for application Y 115

11. Average MSRE over Five Snapshots 133

12. Mean Square Root Error . 134

13. Sample Role Definition in IT company 226

14. Roles, Applications and Access Rights 232

xiv

LIST OF FIGURES

Figure Page

1. Cloud Computing . 2

2. Cloud Differentials: Service Models[84] 7

3. SaaS Maturity Levels . 8

4. Multi-tenancy System Architecture Sample 15

5. Comparison of Business Models . 28

6. Design Patterns of Data Tier Multi-Tenancy Architecture 30

7. Databases-Own Schemas . 33

8. Application-Own Schemas . 34

9. Entity Relationship graph for LBAC 35

10. An Example of LBAC . 37

11. SalesForce.com Layered Architecture 40

12. Salesforce.com Architectural Layers 40

13. Comparison between Data-driven and Metadata-driven Databases . 42

14. Description of the schema for a metadata-driven multi-tenant database 44

15. Oracle SaaS Platform Architecture 46

16. Simplified Java GAE Application Architecture 49

17. Google File System (GFS) Architecture 55

18. Google BigTable Architecture . 62

19. Data Model of BigTable . 63

20. Sample Tablet . 65

21. Split Tablet . 66

xv

Figure Page

22. 3-Level Hierarchical Lookup Scheme 67

23. Table Representation . 68

24. Overview of Windows Azure . 78

25. Windows Azure Platform Support 80

26. Running Windows Azure Applications 84

27. Web Roles and Worker Roles . 85

28. SQL Azure . 89

29. Access Control of Windows Azure 91

30. Windows Azure Platform AppFabric Inside 92

31. Lending Process Overview . 96

32. Simplified Workflow Representation 101

33. Precision-Recall Curves at Initial Status 108

34. Precision-Recall Curves with Workflow Attributes 111

35. Precision-Recall Curve for SVM . 111

36. Precision-Recall Curve for LR . 113

37. Precision-Recall Curve for MV . 114

38. Precision-Recall Curve for Initial Status with Relevant Applications

as Closing . 119

39. Precision-Recall Curve for Status 10 with Relevant Applications as

Closing . 119

40. Flowchart of MO Process . 130

41. Multi-Layered Architecture for SaaS Customization 136

xvi

Figure Page

42. Sample Ontology Tree and Customizations in Mortgage Applications 142

43. Sample Database Schemas for Mortgage Applications 142

44. Sample Mortgage Service Domain Ontology 145

45. Sample Mortgage Workflow Customization 145

46. Sample Mortgage UI Customization 147

47. System Architecture of OIC . 148

48. Example of Ontology Cross Layer Reference 149

49. Adaptive Recommendation Process 156

50. Comparison of Three Tenants Customization Samples 157

51. Major Differences of Cloud Computing and Traditional Computing . 167

52. Multi-Layered Architecture for SaaS Customization 172

53. Metadata Driven Database Design 173

54. Two Layer Partitioning Model . 175

55. Example for Two Layer Partitioning Model for Figure 54 176

56. Scheduling System Architecture . 177

57. Sample of DHT (Distributed Hash Tables) 179

58. Balanced Range Allocation . 181

59. The Metadata Table . 182

60. The Data Table . 183

61. Sample B-Tree for Chunks . 185

62. SaaS Testing Framework . 193

63. Continuous Testing Model in SaaS 199

xvii

Figure Page

64. Collaborative Testing . 199

65. Tool Box of Data Mining Algorithms and Data Repositories 201

66. Sample Policy Specifications . 205

67. Difference of Cloud Computing with Traditional Data Centers 216

68. User Based Access Control vs. Role Based Access Control 218

69. A Sample Fragment of Role Hierarchy from Microsoft 219

70. O-RBAC: Using Ontology for Role-Based Access Control Model . . . 222

71. RBAC using Reference Ontology Framework in Cloud 223

72. Sample Ontology Trees Companies 228

73. Ontology Tree Transformation Operations 229

74. # of Permissions using O-RBAC vs. UBAC 231

75. An Example Policy in XACML Tree Presentation 233

76. Process of Service Requests . 235

77. System Architecture of EasySaaS 241

78. Sample Online Shopping Application with Hierarchy Workflow Struc-

tures . 249

79. Sample Global Service Index Table for Figure 78 253

80. Dependency Based Testing in EasySaaS 254

81. EasySaaS Global Index Data Model Design 255

82. Metadata-Driver Multi-tenancy Database Design 259

83. SaaS Hosting Platform Support . 262

xviii

1. INTRODUCTION

With the advent of modern technology, cloud computing becomes a most important

technique on the Internet. Cloud computing is defined as “a computing capability

that provides an abstraction between the computing resource and its underlying

technical architecture (e.g., servers, storage, networks), enabling convenient, on-

demand network access to a shared pool of configurable computing resources that

can be rapidly provisioned and released with minimal management effort or service

provider interaction”, according to NIST (National Institute of Standards and Tech-

nology, Information Technology Laboratory)’s standard[61]. Figure 1 is a sample

architecture of Cloud Computing. It builds on decades of research in visualization,

distributed computing, utility computing, and more recently networking, web and

software services. It implies a SOA (service oriented architecture), reduced overhead

for the end-user and the long-term cost of ownership, provides great flexibility, on-

demand services and unlimited service supply. It extends today’s service-oriented

architectures into business platforms for the next-generation economy.

There are some essential characteristics of cloud computing in NIST Definition

document:

• On-demand self-service. A consumer can have provision computing capabil-

ities, and use resources (server time, network storage and etc.) in a “pay-

as-you-go” way, which is an automatical way without any human interaction

with service providers.

• Infinite computing resources. The services are provided to end customers in a

1

Google

Microsoft

IBM

Yahoo!

Amazon

SAP

Fig. 1. Cloud Computing

rapid and automatic way. The provisioning can be used to support unlimited

resources when consumers can purchase services at any time and with any

quantity according to their requirements.

• Broad network access. The whole cloud can have resources form multiple re-

sources, and the network covers many service providers. The services provided

by different service providers are available over the whole network. It is easy

to access the cloud by heterogeneous platform, from both thin and thick client

platforms through multiple devices, such as mobile phones, laptop, PDA and

etc.

• Resource pooling. A multi-tenancy model is supported by pooling the service

provider’s computing resources together. It can assign or reassign different

physical and virtual resources dynamically according to consumers’ demands.

2

The customers do not need to know the implementation details and exact

locations of the service providers, but simply specify their requests at a very

high level. Also the customers do not need to worry about the manage and

maintenance of services, but use services and resources when they need.

• Measured Service. To measure the usage of services, a metering capability

should be provided at different levels of services, such as storage, processing,

bandwidth, and active user accounts. Service usages and resource utilization

should be recorded, controlled and monitored for both the providers and con-

sumers.

From a technical point of view, cloud computing is the provision of dynamically

scalable and often visualized resources as a service over the Internet on a utility

basis. From a conceptual point of view, cloud computing refers to a paradigm shift

in computing whereby computing resource and underlying technical infrastructure

are abstracted away from the user. Users need not have knowledge of, expertise in,

or control over the technology infrastructure in the “cloud” that supports them.

There are four types of deployment models in Cloud Computing, according to

wikipedia [33]:

• Private cloud. The cloud infrastructure is operated solely for an organization.

It may be managed by the organization or a third party and may exist on

premise or off premise.

• Community cloud. The cloud infrastructure is shared by several organizations

and supports a specific community that has shared concerns (e.g., mission,

3

security requirements, policy, and compliance considerations). It may be man-

aged by the organizations or a third party and may exist on premise or off

premise.

• Public cloud. The cloud infrastructure is made available to the general public

or a large industry group and is owned by an organization selling cloud services.

• Hybrid cloud. The cloud infrastructure is a composition of two or more clouds

(private, community, or public) that remain unique entities but are bound

together by standardized or proprietary technology that enables data and ap-

plication portability (e.g., cloud bursting for load-balancing between clouds).

In public cloud, the service sold is named as utility computing. Current exam-

ples of public utility computing include Amazon Web Services, Google AppEngine,

and Microsoft Azure. Thus, cloud computing is the sum of SaaS and utility com-

puting, but does not normally include private clouds.

Utility Computing(public/hybrid) is preferable to running a private cloud. The

reasons are due to the demand and cost consideration. First of all, service de-

mand could be various over time. Provisioning a data center for the peak time

workload, it must sustain a few days per month under-utilization while other time

over-utilization. Instead, cloud computing lets an organization pay by the hour for

computing resources, potentially leading to cost savings even if the hourly rate to

rent a machine from a cloud provider is higher than the rate to own one. Secondly,

customers’ demands are usually unknown in advance. For example, a web startup

will need to support a spike in demand when it becomes popular, followed poten-

4

tially by a reduction once some of the visitors turn away. Finally, we can calculate

the “cost associativity” [47] of cloud computing and compare with traditional util-

ity data center way. For example, using 1000 EC2 machines for 1 hour costs the

same as using 1 machine for 1000 hours. A web business with varying demand over

time and revenue proportional to user hours, we have captured the tradeoff in a

patch analytic as follows: the expected profit from using Cloud Computing is the

net revenue per user-hour (revenue − costcloud) by the number of user-hours. If

we perform the same calculation for a fixed-capacity data center, which has the net

revenue as (revenue− Costdatacenter
Utilization) by factoring in the average utilization, including

non-peak workloads of the data center, by the number of user-hours. It is easy to

see, considering the average utilization, cloud computing can have a much better

revenue than private data center.

Cloud computing can be classified into three levels of service models according

to NIST document:

• “Software as a Service (SaaS). The capability provided to the consumer is

to use the provider’s applications running on a cloud infrastructure. The

applications are accessible from various client devices through a thin client

interface such as a web browser (e.g., web-based email). The consumer does

not manage or control the underlying cloud infrastructure including network,

servers, operating systems, storage, or even individual application capabilities,

with the possible exception of limited user-specific application configuration

settings.”

5

• “Platform as a Service (PaaS). The capability provided to the consumer is to

deploy onto the cloud infrastructure consumer-created or acquired applications

created using programming languages and tools supported by the provider.

The consumer does not manage or control the underlying cloud infrastruc-

ture including network, servers, operating systems, or storage, but has control

over the deployed applications and possibly application hosting environment

configurations.”

• “Cloud Infrastructure as a Service (IaaS). The capability provided to the con-

sumer is to provision processing, storage, networks, and other fundamental

computing resources where the consumer is able to deploy and run arbitrary

software, which can include operating systems and applications. The con-

sumer does not manage or control the underlying cloud infrastructure but has

control over operating systems, storage, deployed applications, and possibly

limited control of select networking components (e.g., host firewalls).”

Figure 2 shows the main IT companies with their support in cloud comput-

ing, as summarized in [84]. For example, Salesforce.com is a SaaS provider which

supports CRM applications. Google AppEngine and Microsoft Windows Azure are

PaaS, while Amazon EC2 is sitting at IaaS.

1.1. SaaS Maturity Model

Microsoft has proposed the following SaaS maturity levels [29] with each level adds

additional features to the previous level:

• Level 1 - Ad-Hoc/Custom: the simplest level and similar to the traditional

6

Cloud Infrastructure as a Service (IaaS)
Rent processing, storage, network capacity, and other fundamental computing
resources

Cloud Platform as a Service (PaaS)
Deploy customer-created applications to a cloud

Software as a Service (SaaS)
Use provider’s applications over a network

Fig. 2. Cloud Differentials: Service Models[84]

application service provider (ASP) model. At this level, each client has its

own customized version of the application and runs its own instance of the

application on a server. There is no sharing among tenants and each instance

of the software needs to be individually developed. Many existing software

programs will satisfy this level by moving the software to a centralized server

to provide services for clients. Figure 3(a) illustrates this level.

• Level 2 - Configurable: adds flexibility to the software. Each client has its

own customized version of the software; however, at this level a client can

specify configuration choices by choosing various configuration options pro-

vided by the same software. In the previous level, each version of the software

is individually developed for each client, but at this level only one software

7

Tenant 1 Tenant 2 Tenant 3

(a)Ad-Hoc/Custom

Tenant 1 Tenant 2 Tenant 3

(b) Configurable

Tenant 1 Tenant 2 Tenant 3

(c) Configurable,
Multi-Tenant-Efficient

Tenant 1 Tenant 2 Tenant 3

(d) Scalable, Configurable,
Multi-Tenant-Efficient

Load Balancer

Fig. 3. SaaS Maturity Levels

program is developed with many configuration options to be selected by in-

dividual clients. Comparing to the previous level, the software at this level

will be more sophisticated and complicated, however, only one version will be

developed. The management and maintenance will be eventually easier as the

developer no longer need to develop hundreds of thousand versions for each

individual customer. Figure 3(b) illustrates this level.

In general, customization may be lightweight or heavyweight:

1. Lightweight variants: These are services with different options or features,

and the same services are offered to different customers with different

8

policies and/or SLA (service-level agreement). For example, a premium

service with advanced features such as large storage, better use interface,

and allow 24-hours access, and a regular service with standard features

such as limited storage, plain user interface, and accessibility limited to

certain hours only.

2. Heavyweight variants: These are services that provide different under-

lying business processes including industry-specific requirements, infras-

tructure including communication requirements. These services may have

similar names but they are rather different if one examines inside these

services.

• Level 3 - Configurable, Multi-Tenant-Efficient: adds multi-tenancy architec-

ture to the previous level as shown in Figure 3(c). At this level, all clients will

run the same version of the software; however each client can see an initialized

configuration of the same software. Note that in the previous level, each client

will see a customized version and run that version individually, but at this

level, while each client sees a customized version, but in reality each client is

sharing the same software with hundreds of thousands of other clients. It is

easy to see that the SaaS software at this level is even more complex than the

SaaS software at the previous level. In the previous level, while the software

need to be customizable by clients, as only one copy will be used for each

client, the software does not need to handle the runtime management. But

the SaaS software at this level needs to address these new issues. The SaaS

9

software needs to keep track individual configuration for each client, maintain

their databases, and provide customized services at runtime. One can actually

view that the SaaS software at this level has a mini-OS behind it that runs

a database, and partition the workspace for hundreds of thousand individual

customers at runtime.

• Level 4 - Scalable, Configurable, Multi-Tenant-Efficient: The next level of SaaS

adds scalability to the previous level as shown in Figure 3(d). One issue of the

SaaS software of the previous level is that it may not scale up. As each SaaS

software needs to track hundreds of thousands clients, and provides timely

services, the workload at the software may be too heavy. One way to solve the

problem is to have multiple copies of the same SaaS software of level 3, and

each can be called to provide services at runtime. A client will not interact

with the SaaS directly, but will interact with a load balancer first, the load

balancer will dispatch each request to an appropriate copy of the software

for execution. The load balancer constantly monitors the workload of each

software copy, and dispatches any new request from a client to an appropriate

software copy for execution. The number of copies running at the back end can

be increased in case of an increased workload, or decreased in case of a reduced

workload. In this way, appropriate number of copies will be maintained at the

server to provide optimal performance. The cloud environment for this level

will be more complicated than the cloud environment for the previous level as

the load balancer will interact with various SaaS copies at runtime. The cloud

10

environment at this level potentially can provide better services than the cloud

environment at the previous level as it can adjust the resources according to

the changing environment.

SaaS software may also run on a virtual machine (VM), either with or without

multi-tenancy architecture. A VM is an isolated copy of a real machine or system,

and multiple VMs can run on the same physical system. A VM can be as large as

an OS, for example, a physical machine may run multiple OS platforms to serve

different customers. The concept of VM is not new as it has been around for at

least forty years. At that time, machines were expensive, and thus multiple OS

platforms run on top of a physical machine to save cost. Forty years later, while

machines become inexpensive, the VM concept is still heavily used, particularly in

cloud computing for a different reason: as applications and data are more valuable

than physical machines, but many these applications run on certain platforms only,

and thus multiple VMs will be needed for run those applications.

Note that multi-tenancy architecture and VM complement with each other in

cloud computing. Visualization allows different platforms to be provided without

much additional programming, however, multi-tenancy provides scalability in terms

of both software design and programming as only one copy of software will be

developed rather than multiple versions of the software to be developed individually.

It is possible to combine both VM and multi-tenancy architecture for scalability

and flexibility: VMs used for providing a convenient way to establish a platform for

program execution, and multi-tenancy architecture is for software sharing.

11

1.2. Multi-tenancy SaaS

Each SaaS application has a front end and a back end. The front-end stage provides

the opportunities for SaaS consumers to customize their requirements, while the

back-end stage uses a consistent and scalable approach to support client with a low

unit cost. To achieve this goal, multi-tenancy becomes an important feature of SaaS,

in which a single instance of SaaS software supports multiple client tenants. In this

manner, the service provider can support multiple tenants at the same time, while

from a customer point of view; the tenants are isolated and customized for their

unique needs.

Multi-tenancy architecture is different from multi-instance architecture where a

single instance of the software runs on a server serving multiple clients or tenants but

multi-instance architecture has multiple (and different) copies of the software serving

their clients. Multi-tenancy architecture needs to partition the data internally, and

needs to track individual configurations for different clients.

It has been reported that current multi-instance architecture may support

dozens of tenants, while multi-tenancy can support a much larger number of tenants.

However, this comes with a price, as the scalability level increase, the isolation level

decreases. In other words, potentially, multi-tenancy architecture needs to prevent

the QoS of one tenant from being affected by other tenants as they share the soft-

ware and possibly also the database. Note that level 1 and level 2 SaaS mainly uses

multi-instance architecture, this section mainly focuses on level 3 and level 4 SaaS

applications.

Multi-tenancy architecture needs to address the following aspects:

12

• Resource isolation: It is important for a SaaS application to separate the

resources among tenants in a fair manner as all tenants essentially share the

same infrastructure and the software. Each tenant may naturally desire to ac-

cess all the resources needed to achieve the best service performance, however,

in case of resource constraints, this may not be feasible for all the tenants.

Thus, the system may assign priorities to tenants, and provide differential

services for different clients. One simple approach is to assign resources such

as CPU and storage statically to SaaS applications if the client requests are

regular or constant. However, in a cloud environment, this is unlikely to be

true, and thus a dynamic allocation scheme needs to be used. A tenant may

specify its resource requirements such as usage patterns ahead of time, so that

the SaaS application may schedule the resources accordingly.

• Customization: A SaaS application often allows tenants to customize their

services including QoS requirements. For example, Google Doc allows different

users to specify various features including look-and-feel of the software, but

maybe in the future, it may also allow each user to specify the Service-Level-

Agreement (SLA) requirements. Note that in multi-tenancy architecture, each

will use the same instance of the software, and thus any customization infor-

mation need to be stored in a database. The information needs to be retrieved

and used at runtime to provide a customized service. While this adds flex-

ibility to SaaS, this slows down the processing, as additional computation

will be needed at runtime, and adds complexity to the database as individual

13

customization needs to be stored in addition to various data.

• Security: In a multi-tenancy design, software code and data are shared among

tenants, and this creates a significant security risk. A tenant, by accident or

by design, may actually access data that belong to another tenant. Security

issue is indeed one of the most significant issues in cloud computing and SaaS.

• Scalability: From maturity level 1 to level 3, an important scalability con-

sideration is software design and programming issues. Level 3 SaaS allows the

same software to be used by all tenants, and thus saves significant software

design and implementation effort. However, level 3 SaaS applications may

have limited scalability if the infrastructure does not have multiple copies of

the same software that can be dynamically created to provide services.

Figure 4 is a sample architecture framework to help address those challenges of

multi-tenancy architecture mentioned above, which can support transparently multi-

tenancy capabilities both at the built-time and at the running time. The tenants

will use the same application instance without suffering significant performance

downgrading, as well as system security, isolation, and configurability.

There are two types of developers/users in the framework:

• Application-oriented developers (on the top layer): They are responsible for

developing or customizing the content of the UIs (user interfaces), business

processes and services, will not be aware of the multi-tenancy architecture.

• Infrastructure-oriented developers (at the bottom layer): They are responsible

14

workflow

Data
Management

Security
Isolation

Administration
Isolation

Customization

Mapping to 3rd resources

configuration log data

Multi-
tenancy
Layer

business

company 1 company 2

business

company 1 company 2

tenant 1 tenant 2

Tenant 1 Tenant 2 Tenant N
…

Fig. 4. Multi-tenancy System Architecture Sample

to ensure the effectiveness and reliability of applications with minimum costs.

Multi-tenancy enablement layer is the core of the framework and it provides

the separation between the applications and the supporting system resources. The

tenants can get the benefits of multi-tenancy without worrying about the complexity

of implementing multi-tenancy architecture.

1.3. Real-Time Service-Oriented Cloud Computing

In SaaS, software is maintained and updated on a cloud, and presented to the end

users as services on demand, usually in a browser. Many industry service providers

start to support SaaS, for example Google’s recent announcement of its Chrome

OS, an operating system designed to run SaaS applications faster, simpler and more

securely further shows that SaaS is viable. With Chrome OS, users will be able to

listen to music, play games, watch video, and even store their data online.

As SaaS is gaining popularity, people require more and more real-time features

15

for a SaaS application. Popular social SaaS applications, such as Facebook, Twitter,

made further enhancement to enable real-time communication. Major search engines

also jump in the real-time war by providing real-time search results, such as news,

sport results, Facebook and Twitter updates. On the enterprise side, start-ups like

Arithum [6] provide a real-time cloud computing platform and deliver pioneering

real-time consumer and enterprise solutions. Force.com allows real-time integration

with other on-premises applications and other third-party cloud services [118].

Cloud computing is inherently real time, and more specifically soft real time,

as a user will give up if the cloud does not provide the needed services almost

instantaneously. For example, if a popular web-based email system responds slowly,

most users will switch to another service provider or use a traditional email server.

While the failure of the system to respond quickly may not cause any catastrophic

consequences, it might lead to users’ dissatisfaction.

Cloud computing uses SOC(Service Oriented Computing) as one of key tech-

nologies, however, it has other key aspects that SOC often does not address. Specif-

ically, cloud computing emphasizes significantly about its high-performance server

aspects. A cloud environment often has hundreds of thousands of processors with

numerous disks interconnected by dedicated high-speed networks, and the infras-

tructure provides soft real-time computing for Web users.

1.3.1. Client-Site Issues

A cloud client may be a mobile device or a PC that connects to a cloud server.

A good example of a client-side system is the recently announced Chrome OS, a

network OS developed from Linux, and its open-source version Chromium. They

16

are essentially lightweight OS designed for web browsing and SaaS applications.

Figure 2 shows a comparison between traditional OS boot sequence and Chromium

OS fast boot sequence. It takes 14 steps and more than 30 seconds for a traditional

OS to open a browser from being turned on, while it takes only 5 steps and 4 seconds

for Chromium OS to the same.

Not only are they lightweight, but also adaptive. Specifically, the Chrome

software checks the integrity of its code, and if the code is compromised, it will

take actions in a pro-active manner to reboot the system. All applications will be

web services without installation. The system also verifies the digital signatures

of services to ensure that the services are trustworthy. Furthermore, it provides a

highly optimized JavaScript engine for efficient processing, and the data are stored

in local caches for efficient retrieval. Furthermore, only data needed immediately

are retrieved from the Web to avoid unnecessary bandwidth waste. Note that as a

consequence of using services, a client system can be viewed as ”system + the Web”

rather than just the system as it can search services from the Web for execution.

All these designs lead to efficient Web service execution with self-adaptive features.

There are several unique challenges in the client site:

• Efficient client-site execution, caching and pre-fetching: A lot of

feature-rich web applications use JavaScript heavily. The core component

of Chrome OS, Chrome browser has a highly optimized JavaScript engine.

Moreover, services that are often used can be found at the local cache, and

data are also pre-fetched from the Web for better user experience.

17

• Paging: In other words, only retrieve the data that will be used immediately.

The obvious reason is that a lot of resources are wasted as most of the results

returned will be discarded before being used, and it often results longer lags.

• Stream Filtering: Not all requests from the users require computation work.

Sometimes they can be safely ignored; sometimes, the according response can

be found in server-side cache. But utilizing stream filtering and data compar-

ison tools, the performance can be further improved.

• Runtime checking, verification, and recovery: The system keeps on

checking the integrity of its code to ensure that nothing is compromised, and

if compromised, it takes actions in a pro-active manner to reboot the system.

The system also verifies the digital signatures of services to ensure that the

services are trustworthy.

• Environment-aware evolution and adaption: The environment of a client

is the Web, and it depends on search engines to identify the needed services.

As the Web is an open and changing environment, the system is thus open

and dynamic.

1.3.2. Server Site Issues

Compared to a client, a cloud server may be hosted on a data center with hundreds

of thousands of processors and disks interconnected by high-speed networks. One

important feature of SaaS is the multi-tenancy architecture. Essentially, a multi-

tenancy application is a software program that will be shared by multiple tenants,

and the same software can be customized for individual tenants in terms of the

18

user interfaces as well as functionalities. The cloud server will provide the internal

bookkeeping so that data from different clients will be protected. A multi-tenant

application can be compared with multi-instance software where individualized soft-

ware will serve different tenants. The multi-tenancy architecture save significant cost

in terms of software application development, however, it also adds significant over-

head in bookkeeping to ensure that end users can enjoy satisfactory performance.

Some critical issues related to SaaS applications are as follows:

• Customization: As a SaaS application serves multiple tenants, it is impor-

tant that it can be customized for different tenants. This is often done by

storing customization data in a backend database in the cloud environment.

This leads to significant design issues because this involves database design,

concurrent and parallel database processing, and data synchronization. Many

cloud companies thus decide to develop special database management sys-

tems and distributed file systems to support this operation, such as Google’s

BigTable and GFS (Google File System). While they provide key features of

database management such as indexing and query processing, many traditional

database operations are not available for efficient processing. Customization

can be done on the level of individual services and the composition of ser-

vices. The customization can be either tenant-specific or can be multi-tenant

aware and reused by other tenants. Most Cloud computing service provides

can support customization. For example, Salesforce.com [46] offers a platform

(AppExchange platform) that allows tenants to create and deploy their own

19

extensions to the application

• Scalability: Scalability is another feature of multi-tenant SaaS application.

Ideally, the cloud environment should provide additional resources propor-

tional to the customer requests while keeping customer tasks at an acceptable

level of performance. Two kinds of scalability often need to be addressed in-

cluding scale-up and scale-out. Scale-up involves making the processor more

powerful such as using a more powerful CPU with additional cache space;

scale-out involves adding additional processors or networks into the cloud en-

vironment . A SaaS application must have a scalable design to meet the

real-time requirements.

• Auto provisioning: To provide on-demand services to clients, a cloud en-

vironment often provides an automated way to supply the needed resources

dynamically. The cloud environment is constantly monitoring the progress

and status of various applications/services, and if it detects a slowdown of a

process due to the lack of resources, it will automatically allocate resources

for this task. This is done without any intervention from the end users. In

a real-time cloud environment, there are mainly two steps to execute applica-

tion requests, first step is VM provisioning, which consists of generating VM

instances for each application that satisfy its characteristics and requirements.

The second step is to map and schedule requests to physical resources. Cur-

rently, most existing data centers can only support general VM classes for

all types of workload, e.g. Amazon’s EC2 supports only the five basic VM

20

types. In fact, a typical cloud computing can be mixed with heterogeneous

applications, such as longtime running computationally intensive jobs, short-

time sensitive requests, and data intensive analytic tasks. Due to the diversity

and complexity of applications requests, a lack of understanding of applica-

tion requirement is common nowadays, which is insufficient to diverse types

of application requests.

• Autonomous Operation: Provision is just one of many autonomous features

of a cloud server; it also monitors, verifies, and recovers any tasks from failed

processors or storage units. These are done without any intervention of the

end users.

• Scheduling and Prioritization: A cloud environment needs to schedule

numerous tasks, and as a SaaS application software may serve multiple tenants,

it also needs a separate scheduler to schedule tasks to various versions of the

software for execution, and each version also needs to access the data stored

in processor caches, memory, or storage devices.

• Safety and Security: The security issues on a cloud focus primarily on

data confidentiality, data safety and data privacy. Also the malicious attacks

performed in a cloud system, including web service security, Transport Layer

Security. The data security can be addressed by some database authority

control mechanisms, such as filter-based pattern at the application level, and

permission-based pattern at the DBMS level. The system security can be

addressed by some metadata on the service implementation modules, at least

21

for identification purposes.

To meet the requirements of on-demand, several challenges which are not ad-

dresses in the existing research, my thesis will discuss several critical research prob-

lems and propose solutions using real application scenarios. In details:

1. Service Requests Prioritization: service providers receive multiple requests

from customers, how to prioritize those service requests to maximize the busi-

ness values and minimize customers’ dissatisfaction is one of the most impor-

tant issues in cloud. An innovative prioritization model is proposed, which uses

different types of information, including customer, service, environment and

workflow information to optimize the performance of the system. The model

is applied to a real end-to-end mortgage origination process and evaluate the

performance of the model.

2. Service Demand Forecasting : most services experience seasonal or other pe-

riodic demand variation as well as some unexpected demand bursts due to

external events. The only way to provide “on-demand” services, is to provi-

sion in advance. Accurate demand prediction and provision become critical

for the successful of the cloud computing, which reduces the waste of utility

purchase and can therefore save money using utility computing. An effec-

tive demand prediction model is proposed, and apply it to a real mortgage

application.

3. SaaS Customization: to support a significant number of tenants, SaaS ap-

plications need be customizable to fulfill the various functional and quality

22

requirements of individual tenants. A unified and innovative multi-layered

customization framework is proposed to support and manage the variability

of SaaS applications and tenants-specific requirements. Ontology is used to de-

rive customization and deployment information for tenants cross layers. This

framework also has an intelligent recommendation engine to support new ten-

ants to deploy using information from existing deployed SaaS applications. A

case study in mortgage application is used to demonstrate the proposed model.

4. Scalable and Robust SaaS : The multi-tenancy architecture and customization

requirements have brought up new issues in software, such as database design,

database partition, scalability, recovery, and continuous testing. A hybrid

test database design to support SaaS customization with two-layer database

partitioning is proposed. Furthermore, constraints in metadata can be used

either as test cases or policies to support SaaS continuous testing and policy

enforcement.

5. Secure SaaS : security is an important issue due to the increase scale of users.

Current approaches to access control on clouds do not scale well to multi-

tenancy requirements because they are mostly based on individual user IDs at

different granularity levels, however, the number of users can be enormous and

causing significant overhead in managing security. RBAC (Role-Based Access

Control) is attractive because the number of roles is significantly less, and

users can be classified according to their roles. A RBAC model is proposed

using a role ontology for Multi-Tenancy Architecture (MTA) in clouds. The

23

ontology is used as to build up the role hierarchy for a specific domain. An

ontology transformation operations algorithms are provided to compare the

similarity of different ontology. The proposed framework can easy the design

of security system in cloud and reduce the complexity of system design and

implementation.

6. EasySaaS : To support a significant number of tenants, an easy to use SaaS

construction framework is highly desirable. An easy SaaS constructing ar-

chitecture is proposed: an automatic SaaS construction framework. In the

architecture, in stead of starting from scratch and customize applications, the

tenant can publishing their requirements into the global SaaS platform in the

form of application requirement and specification with their unique business

requirements, as well as their expectation of the SaaS outcome and test scripts.

The SaaS providers proposes their SaaS products, customize their services to

meet tenant’s requirements. This framework releases the workload of tenants,

and provide an easier way to customize tenants’ business requirement in a col-

laborative way. The SaaS providers also get benefits from the shared platform,

and fast the development process. A hierarchy global index is used to support

the matching and customization process.

The thesis is organized as follows. Chapter 2 discusses the related work, both in

research community as well as the industry solutions. Chapter 3 proposes a prioriti-

zation model for service request considering different features; Chapter 4 proposes a

demand-forecasting model in cloud ; Chapter 5 paper presents a unified and innova-

24

tive multi-layered customization framework, to support and manage the variability

of SaaS applications and tenants-specific requirements; Chapter 6 proposes a hybrid

two-layer database partitioning to support scalability in multi-tenancy SaaS; Chap-

ter 7 proposes a novel SaaS testing framework that has considered three dimensions:

the SaaS maturity level model, the platform support and the methodology; Chapter

8 proposes a RBAC model for SaaS security using a role ontology for Multi-Tenancy

Architecture (MTA) in clouds. Chapter 9 proposes a novel SaaS construction frame-

work. Chapter 10 summarize the thesis.

As a summary, this thesis discusses the most important research problems in

cloud computing, towards effective and intelligent SaaS. The research in this thesis is

critical to the development of cloud computing and provides fundamental solutions

to those problems.

25

2. RELATED WORK

2.1. Compare with Service Oriented Architecture

SOA is a well know concept and has been interested to the research community for

a long time. The first generation is some network-based service-oriented architec-

tures, such as remote procedure calls (RPC), DCOM and Object Request Brokers

(ORBs) based on the CORBA specifications. Furthermore, the “Grid Computing”

architectures are emerged and many interesting solutions.

SOA is a system architecture in which a collection of loosely coupled services

(components) communicate with each other using standard interfaces and message-

exchanging protocols [60]. These services are autonomous and are platform inde-

pendent. They can reside on different computers and use each other’s services to

achieve the desired goals. A new service can be composed at runtime based on

services. Remote services can be searched and discovered through service brokers

that publish services for public accesses. Web Services implement a Web-based

SOA and a set of enabling standardized protocols such as XML, WSDL, UDDI, and

SOAP. SOA has the following unique features, including dynamic composition and

discovery, standard-based interoperability and dynamic control and scheduling.

SOA splits the developers into three independent but collaborative entities: the

application builders (also called service requestors), the service brokers (or publish-

ers), and the service developers (or providers). The responsibility of the service

developers is to develop software services that are loosely coupled. The service

brokers publish or market the available services. The application builders find the

available services through service brokers and use the services to develop new appli-

26

cations. The application development is done via discovery and composition rather

than traditional design and coding.

SOA can have other variations. Two such variants are Consumer-Centric SOA

(CCSOA) [157] and User-Centric SOA (UCSOA)[26]. In addition to publishing ser-

vice specifications in SOA, CCSOA allow publication of workflows and application

collaboration specifications for discovery, matching, and subscription. Conventional

SOA supports mainly service producers, i.e., service providers develop and publish

their services, and service consumers (application builders) are responsible to dis-

cover the right services published as well as use the services in composition. In

CCSOA, consumers publish their application requirements together with associated

service specifications including the workflow. Once these are published as appli-

cation templates, service providers can submit their software or services to meet

the requirements. This way of computing is consumer-centric because now the ser-

vice providers will look for application needs from service customers. UCSOA is an

extension of CCSOA that allow end users to compose application rapidly.

Workflows are prevalent in diverse applications, which can be scientific experi-

ments, business processes, web services, or recipes. A workflow can be represented

by a directed graph of data flows that connect loosely and tightly coupled (and often

asynchronous) processing components.

As the number and complexity of workflows are dramatically growing, effec-

tive workflow management is attracting more and more attention in the database

community Kepler, Triana and Taverna [112] allow users to simulate, and search

workflow tasks using keywords and regular expressions, respectively.

27

Traditional packaged software Software as a service (SaaS)

Designed for customers to install, manage
and maintain

Designed for delivery as Internet-based
services

Architect solutions to be run by an
individual company in a dedicated
instantiation of the software

Designed to run thousands of different
customers on a single code

Infrequent, major upgrades, sold
individually to each installed base customer.

Frequent small upgrades to minimize
customer disruption and enhance
satisfaction.

Version control, upgrade fee Fixing a problem for one customer
fixes it for everyone

 Fig. 5. Comparison of Business Models

When coming to “cloud computing”, we have to consider more, e.g. how to

use the underlying infrastructure to support the workflow application in the world,

the “on-demand” requirement. More specifically, how to access each individual and

aggregated resources, group resources from different “clouds” together and etc.

Comparisons of traditional software and SaaS [83] as shown in Table 5:

2.2. Research Community in Multi-tenancy SaaS

2.2.1. Data Tier Design for Multi-Tenancy Architecture

Resource isolation is important for multi-tenancy architecture, and solutions can be

from a completely isolated design to a totally shared design. As stated in [5]:

• Separate databases (SD): In this scheme, as shown in Figure 6(a), each tenant

has its own database separated from other databases, thus a completely iso-

lated solution. Note that while data are isolated, computing resources such as

CPUs, storage, and application code may be still shared among tenants. As

28

each database is isolated from other databases, it is relatively easy to extend

the data model for each client as in conventional systems, and to recover from

failures using conventional techniques. This solution is straightforward but

expensive, as separate databases need to be maintained including backup. As

each tenant needs a separate database, if a SaaS application has many ten-

ants, the number of databases will be large, and this adds significant cost and

overhead for the cloud infrastructure. Thus, the scalability of this approach is

limited.

• Shared databases but separate schemas (SDSS): In this scheme, multiple ten-

ants store individual data tables in the same database, as shown in Figure 6

(b), but each tenant has its own database schema and data tables. When a

new tenant comes, the system creates a discrete set of tables and schemas for

it using classic SQL statements. This scheme is easy to implement, easy to

extend. If a tenant likes to change its database model, other tenants will not

be affected as they have separate tables and schemas.

• Shared database and shared schemas (SDSHS): In this scheme, multiple clients

share the same database and they also share their data in the same sets of

tables, as shown in Figure 6 (c). This is a flexible approach as only one set of

schema will serve all tenants, and the system will maintain only one database.

While this is convenient for database design and maintenance, a system fault

can corrupt the entire database, or release the data to a different tenant.

Considering a mortgage database shared by multiple tenants, the Tenant ID

29

DB1 DB2 DB3

DB

Tenant ID Product ID ProductName

123 Jack 546-23-4112

354 Jone 342-34-6547

240 Helen 742-34-2546

DB

Tenant ID Application ID Date

123 Jack 546-23-4112

354 Jone 342-34-6547

240 Helen 742-34-2546

Tenant ID CustomerName SSN

123 Jack 546-23-4112

354 Jone 342-34-6547

240 Helen 742-34-2546

Tenant 1 Tenant 2

Tenant 1 Tenant 2 Tenant 3

(a)Separate Databases(SD)

(b)Shared Databases,
Separate Schemas(SDSS)

(c)Shared Databases, Shared
Schemas(SDSHS)

Fig. 6. Design Patterns of Data Tier Multi-Tenancy Architecture

is the key to represent every tenant and used as a foreign key to associated

different tables. It has low hardware and backup cost as this allows a large

number of tenants to be served by the same database server. However, this

approach will be most complex due to security reasons. This scheme is also

difficult to restore from failures as the entire database need to be recovered

and restored to the previous state, not just the failed parts as the system may

not know exactly which parts in data tables have failed.

From the database perspective, a multi-tenant database system needs to offer

schemas that are flexible in two respects:

1. It should be possible to extend the base schema to support multiple specialized

versions of the application; and

30

2. It should be possible to change or evolve the base schema dynamically, and

the extension should be done while the database is on line. In other words,

the evolution should be done without the involvement of the service provider

to maintain availability.

Mapping multiple single-tenant logical schemas in the application to one multi-

tenant physical schema in the database is not easy because enterprise applications

often allow each tenant to extend its base schema. As discussed in [8], seven tech-

niques are available to design flexible schemas for SaaS applications, and they can

be further classified into two categories:

• The database “owns” the schema (and it is explicitly defined in DDL or data

definition language); and

• The application “owns” the schema (mapped into generic structures in the

database).

This section uses an example to illustrate these techniques. A SaaS application

with three tenants 1, 2, and 3, each has an Account table with Account ID (Aid) and

Name fields. Tenant 1 has extended the Account table with two fields for the hotel

industry: Hotel and Rooms. Tenant 3 has extended the Account table with one

field for the mortgage industry: Brokers. Tenants share the tables using a tenant

ID column (Tenant).

Category 1: Databases-own schemas

User view: Database views can be used to the shared database tables that include

31

only the data for a specific tenant. When a new tenant comes, one can create

a new view for the tenant.

Private tables: Each tenant has its own private instances of the base tables that

can be extended as required as shown in Figure 7 (a). In contrast, in all of

the other mappings, tenants share tables.

Extension tables: The extensions are vertically partitioned into separate tables

that are joined to the base tables along a row ID column. This is shown in

Figure 7 (b).

Sparse columns: Every extension field of every tenant is added to its associated

base table as a sparse column. This is shown in Figure Figure 7 (c).

These techniques in general perform well, but they provide limited support

for schema evolution in the presence of existing data. Moreover they do not scale

beyond a certain level.

Category 2: Applications-own schemas

XML: Each base table is augmented by a column that stores all extension fields for

a tenant in a flat XML document. As these documents may vary by tenants,

they are un-typed. This is shown in Figure 8 (a).

Pivot tables: Each value is stored along with an identifier for its column in a tall

narrow table. This is shown in Figure 8 (b).

Application-own-schemas gives the application complete control over schema

evolution, however it suffers significantly in terms of performance. Specifically, for

32

Aid Name Hotel Rooms

1 Michel Holiday Inn 135

2 Garry Super 8 1012

Aid Name

1 Bill

Aid Name Brokers

1 Smith 65

Account1

Account2

Account3

(a) Private Tables

Tenant Row Aid Name

1 0 1 Michael

1 1 2 Garry

2 0 1 Bill

3 0 1 Smith

Account ext Hotel account

Broker account

Tenant Row Hotel Rooms

1 0 Holiday Inn 135

1 1 Super 8 1012

Tenant Row Brokers

3 0 65

(b) Extension Tables

Tenant Aid Name Sparse

1 1 Michael Holiday Inn 135

1 2 Garry Super 8 1012

2 1 Bill

3 1 Smith 65

Account

Hotel
Hotel

Room
Room

Broker

(c) Sparse Columns
Fig. 7. Databases-Own Schemas

the XML-based solution, it is necessary to parse the XML documents and then

re-assemble the rows to processes those fields in the extension. The performance

degradation is proportional to the number of extension fields. For pivot-tables-based

solution, the performance degradation may be more than an order of magnitude due

to the complexity of processing large tables.

2.2.2. Security

Security mechanisms prevent a tenant from getting the privileges to access data

belonging to other tenants. The goal is to have comparable security assurance for

multi-tenancy applications as traditional software applications. In general, there are

two approaches to realize data security.

33

Tenant Aid Name Sparse

1 1 Michael <ext>
<hotel> Holiday Inn</hotel>
<room> 135</room>

</ext>

1 2 Garry <ext>
<hotel> Super 8 </hotel>
<room> 1012</room>

</ext>

2 1 Bill

3 1 Smith <ext>
<brokers> 65 </brokers>

</ext>

Account

RowKey Name Contact

1 Act1
1 Act2
1 Ctc1
1 Ctc2

[name: Michael, Hotel: Holiday Inn, room:135]
[name: Garry, Hotel: Super 8, room:1012]

[……]
[……]

2 Act1
2 Ctc1

[name: Bill]
[…….]

3 Act1 [name: Smith, brokers:65]

(a) XML

(b) Pivot Table
 Fig. 8. Application-Own Schemas

Filter-based approach at the application level: For the SD or SDSS

approaches, one can use database name or schema name to control the access of the

corresponding tenants. For SDSHS approach, the filter is based on the tenant ID

column in every table to access records associated with the corresponding tenants It

is easy to implement, but leave some opportunity for malicious access, for example,

a hacker can use ‘tenantID=X or 1==1’ to access data of all tenants. A sample

SQL statement is shown as follows:

SELECT *

34

Label
components

Security label

Security
Policy

m n

n

1

m

n

User Table

m

n

1

n

Specify read/write
privilege

Fig. 9. Entity Relationship graph for LBAC

FROM TENANTS TABLE

WHERE TenantID=2 or 1==1

Permission-based approach at the DBMS level: Each tenant is assigned

a dedicated DB access account and each has privileges to access its own data only,

for example, for SD and SDSS approaches. For SDSHS, one needs to leverage the

row-level access control mechanism provided by DBMS, e.g. Label-Based Access

Control (LBAC). For example, assume that a tenant has SELECT privilege on an

application table for its own data, when the tenant executes a SELECT statement,

the Label Security evaluates each row selected and determines whether the tenant

can access it based on the privileges and access labels assigned to the tenant by

the security administrator. Similarly, Label Security can perform security checks on

UPDATE, DELETE, and INSERT statements. In this way, it can prevent potential

SQL injection attacks.

35

Figure 9 shows an ER graph of LBAC. Three types of security labels can be

granted to three types of database objects, including row, column and user re-

spectively. Furthermore, a security label can be composed of several security-label

components. DB2 V9 is an example system that provides this kind of support, and

it uses DB2SECURITYLABEL to hold the security label and attach the security

policy to the table.

One can use the LBAC rule set, that is a predefined set of rules, to compare se-

curity labels. When comparing values of two security labels, one or more rules in the

rule set can be used to determine whether one blocks another. For example, in DB2

V9, there is a single rule set named DB2LBACRULES, there are 16 pre-built security

label components in it. In Figure 10, a sample security policy with name “Securi-

tyPolicy Customer” is generated for the shared table CUSTOMER ORDER, with

a set of security labels inside. There is a column named DB2SECURITYLABEL

in the CUSTOMER ORDER table that can associate each tenant with their own

data. Each security label includes one element selected from one of the 16 labels

components.

When a new tenant comes in, the operator can simply select one unused label,

and grant it to the tenant using the sample SQL statement as follows:

GRANT SECURITY LABEL SecurityPolicy Customer.0001 to USER TenantA for

all access

The advantage of LBAC is that it controls cross-tenant data access at the

DBMS level instead of the application level. However, it has limitation , for example

in DB2, at most 16 security label and 64 elements can be supported, thus the

36

…

…

…

…
..

LC1

LC2

LC16

Elements

e1 e2 e64

Label Components

SecurityPolicy_Customers:0001
Component LC1 ‘e1’

SecurityPolicy_Customers:0001
Component LC1 ‘e2’

SecurityPolicy_Customers:0024
Component LC16 ‘e64’

Security Labels

Tenant A

Tenant B

Tenant X

“Customer_Order”

…
..

Fig. 10. An Example of LBAC

maximum number of tenants is 1024(16*24). For cloud computing, the number

may be too small.

2.2.3. Scalability

Scalability is an important feature of multi-tenancy. With an increased workload,

the resources needed should be proportional to the increase in the workload to

maintain the system performance. Scalability has two kinds:

• Scale-up or vertical scaling: This is done by adding additional resources, such

as CPUs, memory, and disks into a single node in a clustered system. In this

way, a node becomes more powerful by having more resources; and

• Scale-out or horizontal scaling: This is done by adding additional nodes (pro-

cessors) to an existing clustered system. For example, instead of a cluster of

thirty nodes, the system may have fifty nodes instead.

37

The scale-up is easy to use but may not provide linear scalability increase due to

the overhead in resource management. The scale-out provides a more cost-effective

way, where it can incrementally extend the system by adding more resources to a

low-cost hardware set. Furthermore, it can improve the reliability and availability

of the system due to the redundancy.

S1: Database Partitioning

In the scale-up scenario, one can create more than one database partition on

the same physical machine, while in the scale-out scenario, partitions can be cre-

ated in multiple physical machines, and each partition has its own memory, CPUs,

and storage devices. The data inside a database can be distributed across several

partitions. A distribution key is column used to determine the partition in which a

particular row is stored.

There are two types of database partitioning approaches: application-based

distribution keys and tenant-used distribution keys.

1. Application-based distribution keys: This is a traditional way to partition a

database, and this is done by choosing one or more attributes as a distribution

key, according to the domain knowledge. For example, “REGION” attribute

can be used as a distribution key. However, this scheme needs a good distri-

bution key to balance the load among multiple partitions, and this need data

profiling information. This solution also needs to be upgraded to consider the

multi-tenancy architecture, and address the related isolation issues.

2. Tenant-based distribution keys: This scheme stores each tenant’s data in a

38

single partition. It can use TenantID as the distribution key. Using this

method, one can map the tenant with any specific partition freely by assigning

or change the TenantID. As a tenant-aware method, it provides better isolation

than the previous one, as well as the availability. Furthermore, it is possible to

develop load balancing algorithms to ensure the most partitions have similar

loads.

S2: Table partitioning

Table partitioning provides a way to create a table in which ranged of data are

stored separately. The advantage of this partition is to improve the query perfor-

mance and facilitate the table change. For example, one can use ALTER TABLE

statement to modify a table. This requires the users have a clear understanding for

the table storage information, thus this is for advanced users only.

2.3. Saleforce.com

Salesforce.com [46] identifies itself as the enterprise SaaS company. It has been

providing customer relationship management (CRM) using a SaaS model since 2000.

As of 2010, they have over 70,000 paying customers.

The Saleforce.com has developed a set of SaaS applications, platform and infras-

tructure that demonstrate cloud principles of resource scalability and multi-tenancy.

The key features of their architecture are a meta-driven database schema and ap-

plication, a partitioning scheme for their database, and an integrated application

development framework. Salesforce.com’s architecture is a layered as shown in Fig-

ure 11.

39

 Fig. 11. SalesForce.com Layered Architecture

Salesforce.com architecture
layer

Description

Salesforce apps The salesforce.com applications. In Mar 2010, they list
4 apps, SalesCloud2, ServiceCloud2, CustomCloud2,
and Chatter.

Chatter Platform A collection of services and APIs that facilitate the
integration of web “chatter” from social networking
web sites (such as facebook, LinkedIn.com, and twitter)
news outlets and blogs into applications related to sales
force and customer relationship management.

Force.com development
platform

Tools for creating applications, and a platform for
hosting applications.

Force.com infrastructure
platform

Services that the platform uses. The infrastructure
consists of capabilities that support non-functional
aspects of applications, such as performance,
optimization and security, and a multi-tenant kernel.

Fig. 12. Salesforce.com Architectural Layers

The roles of each of the architectural layers is shown in Table 12. Salesforce.com

supports multi-tenancy. Multi-tenancy is the ability for different customers to use

the same basic application, while at the same time not affecting each other. This

multi-tenancy is manifested at all layers in their architecture.

The SaaS layer of salesforce.com consists of its applications. The applications

provide direct benefits to Salesforce.com tenants (customers). For example, the

SalesCloud2 application provides capabilities for a sales organization to manage

40

information about its customers and sales agents. The process that a sales orga-

nization would take to use salesforce.com (and become a tenant) involves a setup

phase and a usage phase. In the setup phase, the organization comes to an agree-

ment about the level of service they need, establish an account with salesforce.com,

configure information about their organization, create accounts for people who will

be using the system, and train their users. Once set up, the new tenant can begin

using the sales force services.

The platform that Salesforce.com runs on contains two layers, a Chatter social

platform and a “development platform” layer. The “chatter” layer is a collection of

services and APIs that facilitate application access and usage of information from

web sites outside of the salesforce.com cloud. Specifically, the chatter layer facilitates

access to social networking web sites (facebook and twitter), google.com, RSS feeds

(from news organizations and blogs), and user groups. One motivating factor for this

layer is that it supports functions to monitor what people are publishing about an

organizations products and service. This information can be used to help a business

stay competitive.

The other part of the salesforce.com platform layer is the Force.com develop-

ment platform. One role of this layer is that of being the host platform for the

tenant-customized applications. But, in addition, force.com is a development envi-

ronment that tenants can use to configure, customize and extend their applications.

The infrastructure layer of the salesforce.com architecture consists of a multi-

tenant kernel and a collection of capabilities that support non-functional aspects of

the system, such as security, reliability, scalability, and optimization.

41

 Fig. 13. Comparison between Data-driven and Metadata-driven Databases

One of the key attributes of the salesforce.com architecture is the way it sup-

ports multiple tenants. It uses a metadata-driven database. Figure 82 contrasts

a traditional database with a metadata-driven database. In traditional database

design, objects and fields are defined that represent abstractions of the real-world

entities that they represent. Separate database tables are created for each type

of object represented. Specific attributes are represented by fields within the ta-

bles. Object instances are represented by rows within the tables. Actual data is

placed into a database by inserting rows into the database tables. Relationships are

represented by fields in one table referring to a key field in another table.

Metadata-driven databases operate somewhat differently. Objects and their

fields are mapped to metadata tables. Actual data is stored in either in a single

data table, or, for large text objects such as documents, in a separate character large

42

object storage (Clobs) area. A series of pivot tables is created to make accessing

the data within the single data table more efficient.

To support multiple tenants, the object and field metadata contains information

about the fields, and also about the tenants. Table 14 describes the schema.

This information is represented as an organization ID of the tenant that defined

the objects and fields. Specifically, the object metadata table contains a unique

object ID (the key field), the object name, and the organization ID of the tenant.

The field metadata table contains a unique field ID (the key field), the field name,

the data type, the object ID of the associated object, whether this is an index needs

to be created for this field, the sequence number of this field in it associated object,

and the organization ID of the tenant that created the field.

The Force.com platform used 4 pivot tables - an Indexes Pivot Table, a Unique

Fields Pivot Table, a Relationship Pivot Table, and a Names Pivot Table. The

Indexes and Unique Fields pivot tables provide ready access to field values for in-

dexing and uniqueness checks, respectively. The indexes tables identify the fields

used as indexes. The unique fields table provides identifies the fields in the database

that have uniqueness constraints. The Relationship table identifies objects and their

relationships, and is used to implement join operations. The Name table is use to

efficiently look up an object name from its ID.

One potential drawback to this type architecture is that all the tenants share

the metadata and data tables, so the database can become a bottleneck. Force.com

solves this by partitioning up the tables. Each tenant has its own set of tables. This

partitioning keeps the database from being a choke point and is what permits their

43

Table Field Description

#ObjID A unique identifier, primary key field for object metadata

OrgID ID of the tenant that defined this object.

Object Metadata

ObjName Name of the object.

#FieldID A unique identifier, the primary key for metadata table.

OrgID The ID of the tenant that defined this field.

ObjID The unique ID of the object that contains this field.

FieldName The name of the field.

Datatype The datatype of the field.

FieldNum The relative sequence of this field as compared to other
fields in the associated object.

Field Metadata

IsIndexed A Boolean value representing whether an index needs to
be created for this field.

#GUID A unique data identifier.,the primary key for the datum.

OrgID The ID of the tenant organization that created this datum.

ObjID The ID of the object this datum is associated with.

Name The natural name of the object.

Data

Value 0
…

Value500

Values of the fields. Each value is mapped to a field as
specified by the FieldNum value in the Field Metadata
table.

#OrgID The ID of the tenant organization.

#ObjID The ID of the object.

#FieldNum The field sequence number of this index field.

GUID The ID of the datum

StringValue If the field type is String, contains the string value

NumValue If the field type is numeric, contains the numeric value

Indexes
Pivot

DateValue If the field type is a date, contains the date value

OrgID The ID of the tenant organization.

ObjID The ID of the object.

GUID The ID of the datum.

RelationID The ID of the relationship

Relationship
Pivot

TargetObjID The ID of the target object.

Fig. 14. Description of the schema for a metadata-driven multi-tenant database

44

solution t scale to the size it has currently grown to.

One last aspect is the development platform. Salesforce.com offers a develop-

ment platform that allows tenants to customize and design their own applications.

One tool they provide is a web-based application that allows tenants to define ob-

jects and fields, and applications that use them. The tool -essentially provides an

easy to learn and easy to use front end to the metadata tables. The metadata-driven

database schema is a key enabler for this development platform. Salesforce.com also

provides other means for creating custom extensions. It has Apex, its own scripting

language, an Eclipse plug in, and a set of web services that tenants can use to create

their own custom applications and extensions based on the Force.com platform.

The Saleforce.com architecture provides an excellent look at issues that confront

cloud computer providers. The meta-driven database and the partitioning scheme

combine to provide a platform for multi-tenancy that is scalable. The metadata

approach also enables the creation of a web-based development that all tenants can

use to create their very own variations of the application.

2.4. Oracle’s On Demand SaaS Platform

The Oracle SaaS platform consists of four major components, includes virtualiza-

tion, middleware, database and systems management. Figure 15 shows Oracle SaaS

Platform Architecture.

The components of Oracle SaaS Platform work with each other and provide

better support for advanced applications. Also each component can be picked up

by service provider to meet their specific requirements.

The services in the platform can be classified as follows:

45

Integration & Process Management
Oracle SOA Suite

Application Container
Oracle WebLogic Aplication Server
Oracle WebLogic Application Grid

Data Platform
Oracle Database, RAC, Partitioning, VPD
Active Data Guard, In-Memory Database

Advanced Data Security

Virtualization
Oracle VM, Enterprise Linux

M
et

er
in

g
&

 B
ill

in
g

O
ra

cl
e

B
ill

in
g

&
 R

ev
en

ue
 M

an
ag

em
en

t

P
ro

vi
si

on
in

g
&

 S
up

p
or

t
O

ra
cl

e
E

M
, B

P
E

L,
 S

er
vi

ce
 A

pp
lic

at
io

ns

In
te

gr
at

ed
 M

an
ag

em
en

t
O

ra
cl

e
E

nt
er

pr
is

e
M

an
ag

er
, G

rid
 C

on
tr

ol
, W

eb
Lo

gi
c

O
pe

ra
tio

ns
 C

on
tr

ol
, A

P
M

In
te

gr
at

ed
 A

pp
lic

at
io

n
D

ev
el

op
m

en
t

JD
ev

el
o

pe
r,

 A
D

F

S
ec

ur
ity

O
ra

cl
e

Id
en

tit
y

&
 A

cc
es

s
M

an
ag

er

Business Intelligence
Oracle BI

User Interface
Oracle Webcenter

Fig. 15. Oracle SaaS Platform Architecture

• Application services: Application and data architecture, Metadata manage-

ment and customization for various applications; Application modeling, in-

stantiation, and packing

• Platform services: runtime engine, tenant aware container and VM ; man-

agement of resource services, policies, configuration of runtime; monitoring of

resource consumption; Security implementation, isolation of tenant data and

runtime

• Platform resource services: computer cycle on nodes; Clustering; Data storage,

database abstraction, Network resources, IP end points

2.4.1. Database with Scalability

The database layer design is a significant challenge in the whole lifecycle of SaaS

development, from design phase, implementation phase and deployment phase. The

ISV(Independent Software Vendor)s have to design the database choice: share every-

46

thing with multi-tenancy data or shored nothing separate database or other choices

between these two.

The decision of database multi-tenancy design depends on many factors, such as

customization requirement, data privacy and security requirement, business model

requirement, scalability requirement and service level agreement.

Oracle Database provides the ideal platform for multi-tenancy due to its sup-

port for grid computing: virtualization and provisioning.

• Virtualization: breaking hard-coded connections between providers and con-

sumers of resources, and supplying a resource to consumers without knowing

how to accomplished. With virtualization, individual resources (e.g. com-

puters, disks, application components and information sources) are pooled

together by type which are available for consumers.

• Provisioning: the system determines how to meet the specific need of the con-

sumer, while optimizing the whole system’s performance. With provisioning,

when consumers request resources through a virtualization layer, a specific

resource is identified to satisfy the request and allocated resources to the con-

sumer at the backend.

The key capabilities of Oracle Database for SaaS include:

• Oracle Real Application Clusters for database grid

• Automated Storage Management for storage grid

• Active DataGuard for disaster recovery

47

• Partitioning for performance and manageability

• Tablespaces for ease of data management

• In-Memory Database Cache

• Virtual Private Database for data privacy

2.5. Google’s App Engine

Google targeted exclusively at traditional web applications, enforcing an applica-

tion structure of clean separation between a stateless computation tier and a state-

ful storage tier. AppEngine’s impressive automatic scaling and high-availability

mechanisms, and the proprietary MegaStore data storage available to AppEngine

applications, all rely on these constraints.

2.5.1. Google App Engine

GAE is [43] a platform for developing and hosting web applications in Google man-

aged data centers. It provides a seemingly unlimited computing resource, and vi-

sualizes applications across multiple servers and data centers. GAE’s infrastructure

allows its hosted web applications to scale easily, and frees developers from hard-

ware configuration and many other troublesome system administration tasks. GAE

handles deploying code to a cluster, monitoring, failover, and launching applica-

tion instances as necessary. GAE is designed to be language neutral, however, it

currently supports only Python, and Java, and JVM compatible languages.

Figure 17 shows a simplified java version of GAE application architecture[161].

Currently, GAE supports JDK 1.5 and 1.6. Google provides an eclipse plug-in to

48

Google
sites

Gmail Google
docs SDC

JVM process

A
dm

inistration C
onsole

MemCache
JDO/JPA

Applications JDK

DataStore

GFS

Mail

Image

URI Fetch

Accounts

Cron

Google App Engine

GAE Services

Enterprise
Data

 Fig. 16. Simplified Java GAE Application Architecture

assist developers to create, develop and deploy GAE powered applications. The

compiled applications are deployed on a read-only file system on a cluster of the

Google cloud. Any persistent data need to be written to a database-like service called

Datastore via JDO/JPA interfaces. GAE provides an admin console dashboard that

allows the application administrators to create GAE applications, monitor their

health, and check the usage/quota information. Through Secure Data Connector

(SDC), GAE allows its apps to retrieve from and write data to their corporate

databases, enabling easy extension from enterprise systems into Google Apps.

2.5.1.1. Services

Google App Engine exposes several services via Java API which are listed as below:

49

• URL Fetch Service: It allows applications to access resources and communicate

with other hosts over the internet using HTTP and HTTPS requests.

• Mail Service: Through GAE’s mail service, applications can send email mes-

sages using Google infrastructure.

• Memcache Service: The memcache service is a distributed in-memory data

cache accessible by multiple instances of applications.

• Image Manipulation Service: The service provides API that allows its users to

manipulate images, such as resize, rotate, rotate, compress and flip images.

• Task Scheduling (Cron) Service: Task scheduling service, also known as “cron

service”, enable an application to perform tasks outside of responding to web

requests at defined times or regular intervals. In another word, applications

can create and run background tasks itself while handing web requests.

• Google Accounts: GAE integrates its applications with Google Accounts for

user authentication, which saves developers the effort of implementing an in-

dividual user account system, and enables the users to start using the appli-

cations faster if they have a google account already.

2.5.1.2. Data Store

GAE uses a data storage service, named datastore, to store and query data. Data-

store is a schemaless object datastore with a query engine and atomic transactions.

The service can be accessed via JDO and JPA implemented by the open source Data

Nucleus Access platform.

50

Datastore is built on top of BigTable, which is built on top of Google Filesys-

tem (GFS), therefore it scales well as the data grow, and has high availability and

reliability.

While GAE datastore possesses some similarities to traditional relational database,

it is not a traditional relational database. First, datastore is “schemaless.” The

structure of data entities is enforced by your application code. Second, compared

to a traditional relational database, certain limitations exist for datastore, such as

no “join” queries, no native many-to-many relationship supports, no grouping, and

other aggregate queries.

GAE datastore is a hierarchical database in the sense that entities form distinct

strict hierarchies within a datastore [13]. An entity either has a parent or no parent

(in this case, the entity is a root entity). A root entity and all of its descendants

form a cluster of entities known as an entity group. Every entity in the datastore

has a key, an identifier unique to the entity across all entities for an application. A

local key of an entity is a combination of its kind and its ID, which is either a name

assigned by the application or a numeric ID assigned by the datastore. For the root

entity, its key is its local key. The key for a descendant entity is a path consisting

of the local keys of its ancestors from the root to the entity itself.

GAE’s datastore’s underlying storage structure used is BigTable. The oper-

ations BigTable supports include: Read, Write, Delete, Single Row Transaction,

Prefix Scan and Range Scan. To utilize BigTable, GAE datastore stores entities

in a distributed fashion by assigning ranges of entities sorted by the key to differ-

ent BigTable servers. Therefore, datastore can also be thought as a shared, sorted

51

array[13]. Members of an entity group stay in the same BigTable server at any given

time. A transaction involving entities in the same entity group can be managed by a

single server and implemented simply and efficiently. Currently, GAE only supports

transactions on one entity group.

Datastore is strong consistent and uses optimistic concurrency control. An

update on entity occurs in a transaction, which means it either succeeds or fails.

The transaction operates at the root level of the entity group. When there are

multiple requests to update entities within the same entity group, a contention

occurs. The winner will perform the update, and the other requests will be retried

a fixed number of times before a timeout. This yields to a better throughput than

a locking concurrency control algorithm according[13].

Datastore by default creates indexes on the kind and all the properties. Com-

posite indexes on multiple properties can be created by configuration files specified

by the users. All the indexes are also implemented using BigTable[13].

Compared to traditional relational database, certain limitations exist for data-

store, such as no “join” queries, no native many-to-many relationship supports, no

grouping and other aggregate queries, etc.

2.5.1.3. Constraints

For security reasons, GAE apps run in a restricted ”sandbox” environment, there-

fore, certain constraints apply:

• GAE apps cannot write to the filesystem. However, reading from the filesystem

is allowed. GAE apps must use datastore service to persist data.

52

• No socket or direct access to another host is supported. HTTP/HTTPS re-

quests should be made through GAE URL fetch service.

• No sub-process or thread is allowed. A web request must be handled in a

single process.

• Response time limit. The handling of a web request has to be finished in 30

seconds, otherwise, it will be terminated.

• No system calls.

2.5.2. Google File System (GFS)

GFS is a file system designed to support searching and Web crawling. It is probably

the largest file system in the world that is in operation. As Google depends on

efficient file access for searching and crawling, the file system needs to be highly

efficient and scalable. Google has reported that the number of users used Google

has grown significantly over time, and sometimes at a rapid rate. GFS has been

a critical technology for Google to provide timely services to their customers, and

significant engineering and re-engineering effort has been spent on GFS. According

to Quilan[93], a Google engineer, GFS has been under significant design changes to

meet the ever changing environment.

An early GFS design is presented in [51], and subsequently many changes have

been made. All the files are divided into chunks of 64 MB, and in most cases, files

are appended at the end or read by users, and thus the GFS is designed to support

these operations. GFS also sits on top of the Google infrastructure with thousands

of inexpensive processors.

53

GFS has made several key design consideration and decisions early:

• The system structure should be simple to save implementation effort;

• The system will use thousands or even hundreds of thousand processors to

support scalable operations;

• There will be no caching as the data will be huge and many of data will be

streaming, and those streaming data do not need to be cached;

• The inexpensive processors used may fail, but the system should mask these

failures by providing at least three replicas. More replicas can be made to

increase system availability;

• It should provide familiar interfaces and APIs, and those APIs should be

designed to support common Google operations such as snapshot and record

append.

• Initial design is high throughput instead of late latency. Note that high

throughput and small latency inherently conflict with each other. According

to the Queuing theory [81], a system with high throughput often experience

high latency, and a system with low latency will have a low throughput.

The first consideration leads to a simple design that allows Google to deploy

the software to the market to capture the market share. However, as more people

use Google for searching and crawling, user experience became a critical issue, and

one key user experience is low latency. Thus, GFS was later changed to address the

latency issue.

54

 Client Master MetadataRequest for metadataMetadata respose Linux FS Linux FS Linux FSChunkserver Chunkserver ChunkserverRead/write requestRead/write response
Metadata

Fig. 17. Google File System (GFS) Architecture

2.5.2.1. GFS System Structure and Operations

The system has two kinds of node, a master node that manages metadata, and

chunksevers that provide data storage; Data transfers happen directly between

clients/chunkservers; Files broken into chunks (typically 64 MB);

The in-memory master server stores and manages the metadata associated with

the chunks:

1. Tables that map files to chunk location (64-bit) addresses;

2. Tables that map files to their replica;

3. Table of processes that read and write a specific chunk;

4. Operation logs to support file persistency, information such as those used in

file replication in case of chunkserver failures, checkpoints for recovery and so

on.

The master server receives periodic updates from chunkservers to update its ta-

ble entries. It is also responsible to create, replicate and re-balance chunks. Chunks

55

need to be re-balanced to improve space utilization and access speed. The master

is also responsible for garbage collection.

Chunkservers store the data files, with each individual file broken up into fixed

size chunks of 64 MB. Each chunk has a unique 64-bit label, and logical mappings of

files to constituent chunks are maintained. Each chunk also has a 64-bit checksum to

detect system failures. Each chunk is replicated at least three times in the system,

but high-demand files may be replicated more often. Chunkservers run Linux and

it also maintain data consistency.

If a process needs to access a specific chunk, it needs to obtain a permission

from the master server first. After examining if the specific chunk is available, that

is, no other processes are using it, the master server will grant a permission for a

process to access a specific chunkserver for a period of time by supplying the chuck-

server address. During that time period, the process can access the chunkserver,

and no other processes can access the same chunkserver to maintain the system

consistency. The process will interact with the chunkserver directly without any

further interference from the master server. If the chunk is modified by the process,

the modification is propagated to replicated chunkservers, and the system will not

commit until it hears acknowledgements back from all the replicated chunkservers.

This is administrated by the primary chunkserver.

Earlier, GFS used at Google has more than 200 clusters, with more than 5000

machine, 5+ PB filesystems, 40 GB/S read/write load in single cluster in the pres-

ence of frequent hardware failures. As more people use Google, the GFS has grown

significantly.

56

Note that GFS is not implemented as a part of the kernel of an OS, and many of

its operations are available to users directly. This is to increase system performance

as any file system access will not need to go through layers of OS function calls.

Traditionally a system call such as a process creation in an OS is an expensive

operation.

2.5.2.2. Lessons Learned for Developing GFS

One important discussion has been centered on the master node. From the begin-

ning, Google knew that the master node will be the single point of failure for the

system, however, Google still decided to implement this way and it was the first

decision made. This decision was made so that GFS can be quickly implemented

and deployed to the market. With respect to this criterion, Google made the right

decision.

However, as more people use Google, many shortcomings became clear. Specif-

ically, the file size increases from a few hundred terabytes to petabytes, and then to

tens of petabytes, the amount of metadata increase significantly at the master node

and so is the workload of the master node. The use of parallel MapReduce does

not help either, as thousands or hundreds of thousand MapReduce operations may

request file accesses at the same time, the workload of the master node increases

dramatically. Note that as the master node needs to stay in the memory all the

time, and the amount of metadata information grows significantly over time.

The single point of failure is also bad for specific applications such as video

serving. Also, initially, the GFS has no automated recovery plan for the master

node, and thus when it fails, it may take a long time for the master node to be

57

recovered. Google’s solution is to make shadow masters where snapshots of the

master node status will be stored for easy recovery.

Furthermore, the initial design goal is high throughput with latency the sec-

ondary consideration, and later low latency is also emphasized. From the queuing

theory, throughput often conflicts with delay, a high-throughput system favors the

server but its customer may experience long delays, while a low-latency system fa-

vors the customers as the system needs to supply extra capabilities to server the

customers quickly. The way to address the low latency is to replicate many opera-

tions to ensure that any failures can be easily masked out, as failures often caused

most of the delays. For example, as a write operation may fail, and the failed write

operation may cause the system to delay significant. Google will have two write logs,

and if one fails, the other one will take over immediately. Also, the mater nodes

have their own shadow masters that store checkpointed states of the mater nodes.

Also, GFS allows concurrent reads and writes with a fault-tolerant mechanism, and

thus its consistency model is more complicated than a typical file system. This is a

source of problems, especially if multiple writers are allowed to execute at the same

time.

Google also tried a multi-cell approach where multiple cells will be created in

a data center, and in this way multiple GFS masters will run on top of a pool of

chunkservers. This also requires applications to partition data into different cells.

2.5.2.3. Other Similar Projects

Other distributed file system are also available. For example, Hadoop HDFS [57],

CloudStore [32]. Both HDFS and Cloudstore were developed around the same time,

58

and HDFS is written in Java while CloudStore back-end is written in C++ to

improve efficiency.

HDFS also stored files as chunks of 64 MB, over a cluster of machines, Similar

to GFS, it achieves reliability via replicating data across multiple hosts. Each host

can communicate with each other to achieve replication. Like GFS, HDFS also

has a unique server, the name node, and if it goes down, the file system becomes

unavailable. When it comes back, it needs to replay all the previous commands to

ensure that the file system is consistent, and the whole process may take a long

time.

CloudStore also has similar architecture as GFS and has three major compo-

nents: (1) Meta-data server: This provides a global namespace; (2)Block server:

Files are stored in chunks like GFS; (3) Client library: This provides the file system

API for application to interface CloudStore.

CloudStore is an open-source program, and it replicates many features of the

Hadoop project including data integrity, access from C++, Java and Python, repli-

cation, and scalability.

One characteristic of HDFS is that a write operation will require writing from

the start of the file to the end of the file, and effectively any write operation will

be a complete re-write of the whole file. However, KFS allows writing any place

where in the file or append something to an existing file. KFS also has a simple

automatic load balancing mechanism as the system will move over crowded nodes

to less crowded nodes, but HDFS does not have such mechanism.

59

2.5.3. BigTable

The BigTable was designed to deal with large amount of semi-structured data for

Web applications. For example, the URLs (including contents, crawl metadata,

links, anchors, and pagerank), the user preference data (including personalized set-

tings, and recent queries/search results), and the geographic locations(including

physical entities such as shops and restaurants), roads, satellite image data and user

annotations). The volume of these data are monstrous as the world has trillions of

URLs, many versions/pages with about 20K bits per page, hundreds of millions of

users, thousands of requests per second, and more than 100TB of satellite image

data. One may use commercial databases, such as Oracle, DB2 and SQL server, for

Web applications, but these database systems are often designed for general busi-

ness computing, rather than Web applications, and many low-level optimizations

are not available. Also, Thus, Google made a decision to develop a database system

BigTable internally. The system has many low-level optimizations optimization such

as storage optimization and data transfer.

BigTable intends to achieve the following goals:

• It can process requests asynchronously and continuously;

• It can support high read/write rate with millions of operations per second, in

some cases;

• It can scan all or interesting subsets of data from the crawled pages to identify

the needed information, and perform a join operation over large one-to-one

or one-to-many data sets. The latter is a a complex computation with many

60

network transfers;

• It can examine and track data change over time. This is useful for crawling,

if a Web page has not changed, it is not necessary to re-crawl the same page

again;

• It can store the historical data of various pages to provide statistics information

for data mining and analysis;

• It can scale up in terms of performance as the number of requests and data

size increase over time, and the data size is expected to grow in the future;

• It can provide reliable and highly available computing and data services with

built-in fault-tolerant mechanisms.

In essence, BigTable is a distributed storage system, rather than a general-

purpose database management system, for managing large amount of structured

data in the range of petabytes of data across thousands of inexpensive servers. Cur-

rently, BigTable handles petabyte data each day with high performance, scalability,

and high availability. The initial design of BigTable started in 2004, and it is cur-

rently widely used in Google’s services including Google Analytics, Google Finance,

Orkut, Personalized Search, Writely, and Google Earth.

2.5.3.1. Building Components Used in BigTable

BigTable was designed with the following software programs or infrastructure avail-

able:

• GFS and this provides scalable Web file system support;

61

Cluster Scheduling Master GFS Lock service

Bigtable tablet server

Bigtable master

Client
library

Bigtable tablet server Bigtable tablet server

infrastructure

Fig. 18. Google BigTable Architecture

• Scheduler and this can schedule jobs cross a large number of machines, and it

also watches any machine failures to reschedule if necessary;

• Lock service and this is a distributed lock manager, and it can reliably hold

tiny files;

• MapReduce and this is used for large-scale data processing, and this is used

to read/write BigTable data.

The BigTable cluster operates a distributed shared pool of machines that run

different types of applications. The cluster management system will schedule jobs to

different machines, manage resources on shared machines, monitor machine status,

and handle failures at runtime. The system architecture is illustrated in Figure 18.

2.5.4. BigTable Overview

2.5.4.1. Data Model

BigTable is essentially a sparse distributed multidimensional sorted map. The index

of the map is a string with three components, a row key, column key, and a time-

stamp, defined as follows:

62

…
…“<html>…”

t3

t5
t7

www.asu.edu

Rows

Columns

Timestamps

“contents”

Fig. 19. Data Model of BigTable

(row:string, column:string, time:int64) → string

For example, in Figure 19, a slice of a table that store Web page of “www.asu.edu”

is provided.

Rows: the row keys are arbitrary strings (up to 64KB, 10-100 bytes for most

users), and the access to data in a row is atomic, supported by transaction process-

ing. The row creation is implicit upon storing data. BigTable sorts the row keys

in lexicographic order, and dynamically partition the row range, usually on one or

a small number of machines. Each row range is named as a tablet, which is the

unit of distribution and load balancing. It is efficient to read and the locality of

access is good in this design, for instance, the web pages in the same domain can

be grouped together into continuous row range by reversing the host name com-

ponents of the URLs. One can store data from www.asu.edu/index.html under the

my.asu.edu/index.html. Storing web pages from the same domain close to each other

takes the advantage of spatial locality and temporal locality. A user who requests

a page is likely to request the related pages (spatial locality) in the near future

63

(temporal locality).

Columns: web pages are grouped into sets, named column families, which

form the basic unit of access control. The column family usually stores data of

the same type. A column family can be created only after the column key is

generated and used in that table, hence the number of distinct column families

is small, and rarely change during operation. The syntax of column key is fam-

ily:[optional]qualifier, where the column family names should be printable, and

qualifiers may be arbitrary strings. For example, one possible family name is lan-

guage, which stores each webpage’s language ID. Access control and disk/memory

accounting are performed at the column-family level, some of them have read base

data privilege, while other can view existing data only.

Timestamps: BigTable can store multiple versions of the same data, which

are indexed by timestamps. The timestamps are 64-bits integers, which either can

be assigned by BigTable, and represent ”real time” in microsecond, or be explicitly

assigned by client applications. To avoid collision, the applications need to generate

unique timestamps. The latest timestamp is stored first, and different versions are

stored in a decreasing order. To collect garbage automatically, the client can specify

either only last N versions of a cell to be kept, or only new enough versions to be

kept.

2.5.4.2. Implementation Structure

Tablets: to spread data on different machines, BigTable breaks large tables into

tablets at row boundaries, which holds contiguous range of rows and served as a

fundamental unit managed by a single machine in a given time. The tablets hold

64

“<html>…
”

asu.ed

“contents”

EN arizona.ed

asu.edu/lib.htm

“language”

Fig. 20. Sample Tablet

the start and end row key with around 100MB to 200MB of data.

Given a serving machine, it may be responsible for about 100 tablets because at

this rate it can perform fast recovery and fined-grained load balancing. For example,

if a machine fails, 100 other machines will recover the failure by each picking up one

tablet from the failed machine. The master can also decide to move some tablets

from one machine to another machine if the former is overloaded. A sample tablet

is illustrated in Figure 20.

When a tablet becomes too large, for example, larger than the expected megabytes,

the tablet is split into two in Figure

Several issues need to be discussed to use tablets:

a) Locating tablets: As tablets move around from a server to another server,

“given a row, how do clients find the right machine?” Each tablet has a start row

and an end row, so one can identify the tablet by examining the tablet range of

each machine. One approach is to use the BigTable master to store the row range

for each machine, but the central server will become the bottleneck of the system

as the number of tablets is huge.

Instead, one can store special tables that contain tablet location information

in BigTable. A “3-level hierarchical lookup scheme” for tablets is proposed in the

65

Wall-street.com

Zippo.com

…

Wall-street.com

Zippo.com

Youtube.com

youtube.com/videos?

…

…

Splitting

 Fig. 21. Split Tablet

66

Point to
Meta0

Stored at the
lock service

(1st level)

Root tablet

(2nd level)

METADATA Actual
tablets

(3rd level)

 Fig. 22. 3-Level Hierarchical Lookup Scheme

following way (as shown in Figure 22): location is represented as ip:port of relevant

server. At the 1st level, it bootstrapped from lock server, points to owner of root

tablet. At the 2nd level, one can use root data to find owner of appropriate META-

DATA tablets. At the 3rd level: METADATA table holds locations of tablets of all

other user tables.

Specially, to avoid the root tablets becomes the bottleneck, aggressive pre-

fetching and cache technique is applied.

b) Tablet Serving: To store Bigtable data, Google SSTable file format is

used. An SSTable provides a persistent, ordered immutable mapping from keys

to values, and both keys and values are defined as arbitrary byte strings. The

persistent state of tablets are stored in GFS, as shown in Figure 23. To update,

the current committed ones are stored in memory in a buffer, the older update are

67

Write buffer
in memory

(random-access)

(Append-only) log
on GFS

SSTable
on

GFS

SSTable
on

GFS

SSTable
on

GFS

GFS

Memory

Write
operation

Read
operation

Fig. 23. Table Representation

stored in a set of SSTables, a commit log recorded all the mutations that have not

yet been committed. When a write operation arrives at the tablet server, the server

checks whether it is well-formed, and the sender has the authority to perform the

mutation. After the write has been committed, the contents are inserted into the

memory. When a read request comes, the server has also check the well-formedness

and the authority. A valid read operation is executed on a merged view of the set

of SSTable and memory.

c) Tablet compactions: Each tablet state is represented as a set of immutable

compacted SSTable files with the tail of log buffered in the memory. BigTable offers

two types of compactions: the minor compaction and major compaction respectively.

The first one occurs when in-memory state fills up, the system can pick the tablet

with most data and write contents to SSTable in the GFS. The second one can

periodically compact all SSTables into new base SSTable on the GFS.

Tablet servers: BigTable is designed to process thousands of tablet servers,

68

and assuming each server can hold 100 tablets, there will be 1M tablets. All the

tablets on one machine share a log; otherwise, one million tablets in a cluster will

result in too many files to write, and 1M logs being simultaneously written will

perform badly.

By using shared logs, each tabler server has a write log for all the tablets

stored in it, and updates for multiple tablets coming in same log file. As each chunk

contains 64 MB, and thus a new log chunk will be created frequently as the updates

keep on coming.

One problem is that during recovery, server needs to read log data to apply mu-

tations for a tablet, and this can cause significant wasted I/O if many machines need

to read data for numerous tablets from same log chunk. The recovery mechanism

of shared log is as follows: When a machine goes down, the master redistributes

its log chunks to other machines to process, and these machines store the processed

results locally. The machines that pick up the tablets then query the master for the

location of the processed results to update their recently acquired tablet, and then

go directly to the machine for their data.

2.5.4.3. APIs

The BigTable API supports functions call for creating and deleting tables and col-

umn families, changing cluster, table, and column family metadata, such as access

control privilege. Also BigTable support querying values from individual rows, or

iterate over a subset of the data in a table.

Example 2.5.1 The following is a piece of C++ code that uses a RowMutation

69

abstraction to perform a series of updates.

// Open the table

Table *T = OpenOrDie(”/bigtable/web/webtable”);

// Write a new anchor and delete an old anchor

RowMutation r1(T, ”edu.asu.www”);

r1.Set(”anchor:lib.asu.edu”, ”ASU”);

r1.Delete(”anchor:www.arizona.edu”);

Operation op; Apply(&op, &r1);

The call performs an atomic mutation to the Webtable: it adds one anchor to

www.asu.edu and deletes a different anchor.

There are several features supported in BigTable, and users can manipulate

data in diverse and complicated ways as follows:

1. Single-row transactions: This performs atomic read/write/update sequences

on data stored under a single row key. Note that, BigTable currently does not

support general transactions across row keys, but it provides an interface for

batching writes across row keys at the clients.

2. BigTable allows cells: used as integer counters.

3. Execution of client-supplied scripts in the address spaces of the servers, using

Sawzall scripts developed at Google.

70

2.5.4.4. Refinement

To achieve better performance, availability and reliability, BigTable has the following

refinements and optimizations:

Locality Groups: In BigTable, columns are easy to create and are created

implicitly, but column families are heavy to create because one need to specify

things like type and attributes. To optimize access, column families can be split

into locality groups. This increase performance because small frequently accessed

columns can be stored in a different spot than the large infrequent columns.

Compression: there are many opportunities for compression, for example, many

similar values in the same row/column at different timestamps, similar values in

different columns, similar values across adjacent rows and etc. Within each SSTable

for a locality group, encode compressed blocks can keep blocks small for random

access (64KB compressed data), exploit fact that many values very similar, and

needs to be low CPU cost for encoding/decoding. Two building blocks here:

1. BMDiff: the input is a dictionary with some source text that needs to be

compressed, when depressing one can use the dictionary. The output is the

sequence of COPY¡x¿ bytes from offset ¡y¿ and LITERAL(¡literal text¿). It

stores hash at every 32-byte aligned boundary in the dictionary. For every new

source byte, it computes incremental hash of last 32 bytes in a slide window,

and lookup in hash table. If it hits, then check and verify the 32 bytes in he

dictionary or earlier in the text.

2. Zippy: a LZW-like algorithm works at local level, deal with small size of

71

redundancy, for example, store hash of last 4 bytes in 16K entry table. It is

differences from BMDiff, which has much smaller compression window (local

repetitions), and the hash table is not associative.

Other Database Approaches

Note that GFS and BigTable were designed specifically for Web-based cloud

computing, and thus their designs were not constrained by conventional database

management design or file systems. As Google did not have existing database man-

agement systems or file systems, and thus they could start a new design from the

scratch. Cattel has survey many other similar database systems designed with

similar goals and objective, and he characterized these as datastores rather than

databases as these systems do not provide full features of traditional database man-

agement systems. These modern datastores have some common features:

• Support call level interface (rather than binding to SQL statements), thus

applications may have direct control over database storage;

• Effective index for large data for efficient processing;

• Able to horizontally (by rows) scale throughput over servers: For example,

some rows can be assigned to one node, while other rows can be assigned to

other nodes for processing;

• Support dynamic data schema: Thus, different tenants can have different data

schema requirements but they can still share the same datastore and schema

table;

72

• Indexes are often cached in memory for scalable accesses: This may also dis-

tribute and/or replicate indexes among different nodes;

These datastores may store data according to:

• Key-value stores: The system stores data based on a designer-defined key;

• Document stores: The system stores indexed documents rather than specific

items in the documents are indexed;

• Extensible record store: The system stores extensible records and they are

partitioned across different nodes, and this is sometimes referenced as column-

oriented database;

Examples of these modern datastores include SimpleDB and Cassandra.

Another approach is to extend an existing database management system for

Web applications. For example, the Oracle Real Application Clusters (RAC). While

it was evolved from traditional database management system for Web applications,

it has many new features. Specifically, RAC, a clustered database, allows multiple

processors to run the database software while accessing a single database. A clus-

tered database is essentially a database that runs on top of a cluster of processors,

taking advantages of the scalability and availability of these inexpensive processors.

Note that GFS and BigTable were designed specifically for Web-based cloud

computing, and thus their designs were not constrained by conventional database

management design or file systems. As Google did not have existing database man-

agement systems or file systems, and thus they could start a new design from the

73

scratch. However, other approaches are also possible, and one such design is Oracle

Real Application Clusters (RAC). While it was evolved from traditional database

management system for Web applications, it has many new features. Specifically,

RAC, a clustered database, allows multiple processors to run the database software

while accessing a single database. A clustered database is essentially a database

that runs on top of a cluster of processors, taking advantages of the scalability and

availability of these inexpensive processors.

Clustered databases can be classified as two categories:

• Share nothing: Each participating node owns a subset of data, and each will

operate on its own subset of data, however, the node can communicate with

each other to exchange data.

• Share everything: Each processor can access any data in the database.

In both cases, each node is connected with each other via a high-speed network

such as infiniBand or Myrinet Having a high-speed network connecting the cluster

with storage is critical. Initially, a clustered database uses a storage device such as

a disk to transfer data, and this will slow down the operation as the storage device

may have the slowest speed. This problem is addressed when system communicate

with storage via dedicated communication systems such as Fibre Channel. Fibre

Channel is a network technology developed for storage networking that is capable

of delivering at the speed of gigabit, and it is a common technology for storage area

networks (SAN). In 2008, this technology is able to deliver 21.04 GBaud with a

throughput at 5,100 MBps.

74

Currently, both share-nothing or shared-everything architectures require three

different interconnections:

• Ethernet for management;

• InfiniBand or Myrinet for internode communication. InfiniBand is a commu-

nication technology mainly used for high-performance computing connecting

a computing node with storage devices. Myrinet is high-performance commu-

nication technology used in high-performance systems in a cluster; and

• Fibre channel for block storage communication.

Both share-nothing and share-everything clustered databases require careful

application partition to achieve optimal performance.

The scalability of this share-nothing architecture depends on the data parti-

tioning scheme. One problem of this approach is that if a node crashes, some portion

of data will not be available, and thus often the data are partitioned so that data

are actually stored in multiple disks in the background, so that if one of them failed,

the other disk can restore the data automatically. This share-nothing clustered

database approach is used by many database systems such as IBM DB2, Microsoft

SQL Server, MySQL Cluster, and Bizgres MPP.

In the shared-everything or shared-disk architecture, the physical layout usu-

ally involves network-attached storage, in which all nodes communicate with a sep-

arate shared disk such as a RAID via a high-speed interconnection network such

as Fibre Channel. In this architecture, there may be contentions among various

75

processors when they try to access the same database simultaneously. RAC is one

such database. Each processor has its own cache and it is necessary to coordinate

various concurrent reads and writes by using the high-speed network to maintain

system cache consistency. RAC has a mechanism called Cache Fusion. In general,

a database system will face:

• Concurrent readers;

• Concurrent readers and writers on different nodes; and

• Concurrent writers on different nodes.

The first case is not an issue as multiple readers can read data concurrently

without any conflict. However, to handle the 2nd and 3rd case, the Cache Fusion

keeps a global controller that maintains the status of each cached block at each

node. If there is a conflict, the the global controller will maintain the consistency

by asking the holding node to transfer the most recent data over the high-speed

network to a receiving node without going through the disk system. Actual data

writing to disk will happen, when the cache data are being replaced or during

checkpointing. Essentially, the concurrency control that was done in traditional

database management system is now done at the cache level supported by high-

speed network systems that support both processor-to-processor and processor-to-

storage communication. A global data controller will maintain the data consistency

via a complex protocol that involves cache management, data communication, and

concurrent reads and writes. Each writer still need to declare some exclusivity and

other writers must yield and wait for the operation to complete, except when the

76

modified data are available, they will be transmitted via a high-speed network from

one cache to another cache if they reside in different nodes. As most of operations

done by the global data controller are done either at a computing node or via

the high-speed communication systems, the operations are more efficient than the

traditional approach via the participating disks. As concurrent writers will still take

more time than concurrent readers, this share-everything approach is more suitable

for applications with mostly read operations. If the multi-tenancy application have

many writers, data partitioning becomes a critical issue as synchronizing multiple

writers still take more time than synchronizing readers.

The shared-everything approach is used by IBM DB2 for z/OS, and IBM DB2

pureScale, Sybase Adaptive Server Enterprise, Cluster Edition.

2.6. Microsoft’s Azure

Windows Azure [9] is a cloud services operating system that serves as the develop-

ment, service hosting and service management environment which is written using

.NET libraries and compiled to the Common Language Runtime. It is designed for

utility computing, and provides facility for developers to write apps, to host apps for

compute, to manage apps, and to store data. It provides developers with on-demand

compute and storage to host, scale, and manage web applications on the internet

through Microsoft data centers. It can support multiple languages and integrates

with existing on-premises environment. Developers can use existing Microsoft Visual

Studio, as well as integrate popular standards, protocols and languages including

SOAP, REST, XML, Java, PHP and Ruby. Windows Azure is intermediate between

application frameworks like Google AppEngine and hardware virtual machines like

77

ServiceBusAccessControl Workflow… DatabaseReporting Analytics…Compute Storage Manage IdentityDevices Contacts… ……
Applications

Fig. 24. Overview of Windows Azure

Amazon EC2.

Windows Azure serves as the development, run-time, and control environment

for the Windows Azure Platform. It can handle load balancing, resource manage-

ment and life cycle management of a cloud service based on requirements that the

owner of the service established. When one wants to deploy an application in Win-

dows Azure, he can specify the service topology, including the number of instances

to deploy and any configuration settings, then Windows Azure would deploy the

service and manage upgrades and failures to maintain availability.

The overview of main components in Windows Azure is shown in Figure 24.

Several components are contained in the framework, for example, .NET services

support service bus, access control, workflow management and etc. The SQL services

support database, analytic, reporting and etc.

78

2.6.1. Architecture of Azure

Microsoft’s Windows Azure platform is a group of cloud technologies, each providing

a specific set of services to application developers. As Figure 25 shows, it can be

used both by applications running in the cloud and by on-premises applications.

Three key components of Azure are:

• Windows Azure: a host platform for cloud-based windows applications, which

provides a Windows-based environment for running applications and storing

data on servers in Microsoft data centers.

• SQL Azure: a set of services that provide access to a cloud-based SQL server.

It supports a range of data oriented functions such as reporting, analytic and

synchronization. SQL Azure consists of SQL Azure Database, which allows

cloud and on-premises applications to store relational and other data.

• Azure AppFabric: provides a way for non-cloud applications (such as on

premises applications) and cloud applications (running on Azure) to commu-

nicate. AppFabric also provides services that local, on premises applications

can use to access cloud storage. It provides two functionalities, messaging and

access control, in which messaging is provided by a service bus and the access

control part handles authentication of clients, both cloud and on-premises.

There are two types of applications in Azure: cloud applications and on-

premises applications (applications that run inside an organization). Cloud ap-

plications are created specifically for the cloud, while on-premises applications are

not required to be scalable, but has to interact with cloud applications or resources.

79

Cloud
Applications

On-Promise
Applications

Windows Azure SQL Azure
Azure AppFabic

Windows / Linux / MacOs/…

Compute
Services

Storage
Services

Fabric

Cloud Applications

Configuration

….

SQL Azure
Database

Other
(Feature)

Service
Bus

Access Control

 Fig. 25. Windows Azure Platform Support

Both of them have data and control relationships with the key Azure components

as shown in Figure 25.

2.6.1.1. Windows Azure

The zoom-in view of Windows Azure is shown in the left bottom dashed rectangle

of Figure 25. Windows Azure runs on a large number of machines, all located at the

Microsoft data centers and accessible through internet. It has two types of services,

compute and storage:

The compute services are based on Windows and provide a virtual windows

operating environment for cloud applications to run on. Developers can build their

own applications using the .NET Framework, or other approaches. It supports

multiple programming languages (such as C#, Visual Basic, C++ and Java) and

different development tool(e.g. Visual Studio). Applications can run as independent

background processes, or combine the two.

80

The storage services provide access to cloud storage, both Windows Azure

applications and on-promised applications can access the Windows Azure storage

service in the same way by using RESTful approach. A Window Azure fabric

layer monitors cloud applications and processing power into a unified whole. Each

application has a configuration file, which specifies various aspects of an application’s

behavior, e.g. the number of application instances. The configuration file can be

manually or programmatically modified. Application behavior is monitored by the

fabric layer.

To allow customers generate, configure, and monitor applications, Windows

Azure provides a browser-accessible portal. A customer can provide a Windows

Live ID, then chooses whether to create a hosting account for running applications,

a storage account for storing data, or both.

2.6.1.2. SQL Azure

The goal of SQL Azure is to offer cloud-based services for storing and working

with data. SQL Azure will eventually include a range of data-oriented capabilities,

including data synchronization, reporting, data analytic, and others, the first SQL

Azure component to appear is SQL Azure Database, as shown in the middle bottom

of Figure 25.

SQL Azure Database provides a cloud-based database management system

(DBMS), which allows both on-premises and cloud applications store relational and

other types of data in Microsoft data centers. A tenant can pay only for what it

uses, while increases and decreases usage (and cost) as their needs change. Using

a cloud database also allows converting what would be capital expenses (such as

81

investments in disks and DBMS software) into operating expenses.

SQL Azure Database is built on Microsoft SQL Server, which offers a SQL

Server environment with indexes, views, stored procedures, triggers, and etc. The

data can be accessed using ADO.NET and other Windows data access interfaces.

Customers can also use on-premises software (such as SQL Server Reporting Ser-

vices) to work with their cloud-based data.

Tenants can use SQL Azure Database as a local DBMS, but the management

requirements are significantly reduced. Rather than monitoring disk usage and

servicing log files, a SQL Azure Database customer can focus on the data only. To

use SQL Azure Database, one can go to a Web portal and provide the necessary

information.

2.6.1.3. Windows Azure Platform AppFabric

Windows Azure platform AppFabric is proposed to provide cloud-based infrastruc-

ture services.It is composed of two parts:

• Service Bus: To expose an application’s services on the Internet simpler, one

can make an application expose endpoints that can be accessed by other ap-

plications, no matter on-premises or in the cloud. Each exposed endpoint is

assigned a URI, which clients can use to locate and access the service. Service

Bus also handles the network address translation and getting through firewalls

without opening new ports for exposed applications.

• Access Control: allows a RESTful client application to authenticate itself and

to provide a server application with identity information. Then the server can

82

use this information to decide what this application is allowed to do.

2.6.2. Windows Azure Inside

Windows Azure does two main things: runs application and stores data.

2.6.2.1. Running Applications

An application on Windows Azure typically has multiple instances, each running a

copy of all or part of the application’s code. Each instances runs in its own Windows

virtual machine (VM) which are provided by a hypervisor specifically designed for

cloud usage.

The developer does not have to explicitly know how to create VMs, or worry

about run and maintain Windows OS. He can create applications using roles (Web

roles and/or Worker roles) to tell Windows Azure how many instances of each role

are needed. Windows Azure will do the left, in which it generates a VM for each

instances, run application in the corresponding VMs.

The process is shown in Figure 26. Windows Azure provides built-in load

balancing to spread requests across Web role instances that are part of the same

application. The Web role instance accepts incoming HTTP (or HTTPS) requests

via Internet Information Services (IIS) 7. It can be implemented using ASP.NET,

WCF, or another technology that works with IIS. The Worker role instance is quite

similar to a Web role instance. The key difference is that a Worker role doesn’t have

IIS pre-configured to run in each instance, and aren’t hosted in IIS. A Worker role

can still accept requests from the outside world, however, and developers can even

run another Web server, such as Apache, in a Worker role instance. The comparison

83

Windows
Windows

Windows
Windows

Compute
Services

Storage
Services

Fabric

Cloud Applications

….

Load
Balancer

IIS Web role instanceWeb role instance Worker role instanceWorker role instance
Agent Agent

HTTP

Zoom-in view of “compute services”

Blob Tables Queues

Zoom-in view of “storage services”

Fig. 26. Running Windows Azure Applications

of web role and worker role is shown in Figure 27.

Worker role instances can communicate with Web role instances in various

ways:

• Use Windows Azure storage queues. A Web role instance can insert a work

item in a queue, and a Worker role instance can remove and process this item.

• Worker roles and Web roles can set up direct connections via Windows Com-

munication Foundation (WCF) or another technology. No matter it runs a

Web role instance or a Worker role instance, each VM also contains a Win-

dows Azure agent that allows the application to interact with the Windows

Azure fabric. The agent exposes a Windows Azure-defined API that lets the

instance do things such as find the root of a local storage resource in its VM

84

Storage ServiceStorage Service
Public InternetPublic InternetWorker RoleWorker RoleStorage ServicesStorage Services

Public InternetPublic InternetWeb RoleWeb RoleLoadBalancer
(a) Web role (b) Worker role

 Fig. 27. Web Roles and Worker Roles

instance.

The size of VMs are four types: one core, two cores, four cores, and eight cores.

Since each VM is assigned one or more cores, applications can have predictable

performance. The application’s owner can increase the number of running instances

by modifying the application’s configuration file to increase the performance. Then

the Windows Azure fabric will spin up new VMs, assign them to cores, and start

running more instances for this application. This process is not automatically, in

which the fabric doesn’t do this automatically with load changing, but provides

APIs to support an application do this itself. The fabric can also detect the failure

of a Web role or Worker role instance, then start a new one.

To be scalable, Windows Azure Web role instances must be stateless. The

client-specific state would be written to Windows Azure storage, sent to SQL Azure

Database, or passed back to the client in a cookie. The stateless requirement is also

85

mandated by Windows Azure’s built-in load balancer since it doesn’t allow creating

an affinity with a particular Web role instance. No guarantee that multiple requests

from the same tenant will be sent to the same instance. Both Web roles and Worker

roles are implemented using standard Windows technologies. Hence moving existing

applications to Windows Azure requires a few changes.

2.6.2.2. Data Processing

There are three types of data are stored and managed in “storage services” as a

zoom-in view in Figure 26:

• Blobs: A storage account can have one or more containers in a hierarchy

structure, each of which holds one or more blobs which can be as big as

a terabyte. To make transferring large blobs more efficient, blobs can be

subdivided into blocks. If a failure occurs, retransmission can resume with the

most recent block rather than sending the entire blob again. Blobs can also

have associated metadata. A content delivery network (CDN) is provided to

make distributed access to blob data more efficient, which can store frequently

accessed data at locations closer to the applications using it. The other way

to use Blobs is through Windows Azure XDrives, which can be mounted by

a Web role instance or Worker role instance. The underlying storage for an

XDrive is a blob, and so once a drive is mounted, the instance can read and

write file system data that gets stored persistently in a blob.

• Tables: which are not classic relational tables. The data is stored in a set

of entities with properties without defined schema. The properties can have

86

various types, such as int, string, boolean, or DateTime. In stead of using

SQL, an application can access a table’s data using ADO.NET Data Services

or LINQ. A single table can have a large size, with billions of entities holding

terabytes of data, and Windows Azure storage can partition it across many

servers if necessary to improve performance.

• Queues: provide a way for Web role instances to communicate with Worker

role instances. For example, a user might submit a request to perform some

compute-intensive task via a Web page implemented by a Windows Azure Web

role. The Web role instance that receives this request can write a message

into a queue describing the work to be done. A Worker role instance which

is waiting on this queue can then read the message and carry out the task it

specifies. Any results can be returned via another queue or handled in other

way.

All data in Windows Azure storage is replicated three times. This replication

allows fault tolerance. The system guarantees consistency, hence an application that

reads data it has just written will get what it expects. Windows Azure storage can

be accessed either by a Windows Azure application or by an application running

somewhere else. In both cases, all three styles(blobs, tables, and queues) use the

conventions of REST to search and expose data. Everything is named using URIs

and accessed with standard HTTP operations.

87

2.6.3. SQL Azure Inside

An application using SQL Azure Database can run on different platforms, such as

Windows Azure, an enterprise’s data center, on a mobile device, or somewhere else.

Wherever it runs, the application accesses data via a protocol, Tabular Data Stream

(TDS), which is the same protocol used to access a local SQL Server database, and

so a SQL Azure Database application can use any existing SQL Server client library

(e.g. ADO.NET, ODBC, and PHP). It is more like an ordinary SQL Server system,

standard tools can also be used, including SQL Server Management Studio, SQL

Server Integration Services, and BCP for bulk data copy.

The SQL Azure administration is handled by Microsoft, and the service doesn’t

expose physical administrative functions. A customer can not shut down the system

or interact directly with the hardware it runs on. It is more robust than a single

instance of SQL Server providers, since all data are duplicate three times as discussed

earlier in this section. It is strong consistency, when a write returns, the data is

made persistent.

The maximum size of a single database in SQL Azure Database is 10 gigabytes.

An application whose data is within this limit can use just one database, while an

application with larger data needs to create multiple databases. Figure 28 shows

two applications with different database size. With a single database, an application

can only see one set of data, and SQL queries can be used as usual. With multiple

databases, the application must divide its data among them. Each tenant can only

operate/search its own data, and can no longer issue a single SQL query that accesses

all data in all databases. For the application that works with multiple databases, it

88

SQL Azure
Database

Other
(Feature)

SQL Azure Database

Database Database

Database

Application 2

Application 1

Zoom-in view of “SQL Azure Database”

TDS

Fig. 28. SQL Azure

will need to be aware of how that data is divided.

To support parallel queries, applications with smaller amounts of data can also

choose to use multiple databases. Multi-tenant application might choose multiple

databases.

2.6.4. Windows Azure Platform AppFabric Inside

The goal of Windows Azure platform AppFabric is to help make applications con-

nections with others. It contains two main components: service bus and access

control.

2.6.4.1. Service Bus

After building up an application inside one organization, the next step is to connect

this service through the internet with outside organizations. There are many chal-

lenges here, for example, how can clients in other organizations find endpoints to

connect to inside organization? Registry may be need to in this case. Once outside

organization finds the service, how can requests get through the inside service? Due

89

to the network address translation, some applications usually does not have a fixed

IP address, how can external application get and go through the firewall? Service

bus provides solutions.

Web services are built with Windows Communication Foundation (WCF), the

main process works in the following steps:

• Step 1: WCF service registers one or more endpoints with Service Bus

• Step 2: For each registered endpoint, Service Bus exposes its own correspond-

ing endpoint. Service Bus also assigns a URI root for the application, which

can be named in a hierarchy way and allow endpoints to be assigned a dis-

coverable URIs. Network Address Translation can be solved since traffic on

the open connection with Service Bus will always be routed to a specific ap-

plication. Also there would be no problem to pass firewall which would not

be blocked.

• Step 3: search Service Bus registry to find out the endpoint using Atom Pub-

lishing Protocol, and returns an AtomPub service document with references

to the endpoints Service Bus

• Step 4: The client can invoke operations on the services exposed through these

endpoints

• Step 5: For each request Service Bus receives, it invokes the corresponding

operation in the endpoint exposed by WCF service

• Step 6: Service Bus establishes a direct connection between an application

90

Access Control ServiceAccess Control Service<Any ID Provider><Any ID Provider>Live ID UsersLive ID UsersXYZ Domain UsersXYZ Domain Users UIUIServiceBusServiceBus WorkflowWorkflowDataData
Customers

Apps

“Who is the caller?” “What can they do?”

Fig. 29. Access Control of Windows Azure

and its client whenever possible, making their communication more efficient.

2.6.4.2. Access Control

The access control of Azure is shown in Figure 29. A UI(User Interface) for cre-

ating and managing collections of access control rules. The client API provides a

programmatic way to manage collections of access control rules. The service (STS)

which is a hosted service that issues tokens can developer interact with the service

via the “Geneva” framework.

To communicate with a particular server application, the access control works

as follows:

• Step 1: The client must first get a token issued by that contains identity

information about this client. This information is expressed as one or more

claims, each of which describes the client application in some way.

• Step 2: Once the client application has authenticated itself, the Access Control

service creates another token containing identity information for this client

• Step 3: Once the new token is created, its sent back to the client application

91

Service
Bus

Access Control

Client
On-Promise/Cloud

Applications

WCF Services
On-Promise

Registry
1. Register
service
endpoint

2. Expose service
bus endpoint

3. Discover service
bus endpoint

4.Invoke operation on
service bus endpoint

5. Invoke operation
on service endpoint

RESTful Client
Applications

RESTful Client
Applications

Rules

5. Verify signature,
use token to do next
operations

2. Generate token
according to rules1. Authenticate client

application

3. Return tokens

4. Present token

 Fig. 30. Windows Azure Platform AppFabric Inside

• Step 4: The client sends this signed token to the server.

• Step 5: Validates the tokens signature and uses the claims it contains

2.7. Amazon’s EC2(Elastic Compute Cloud)

Amazon EC2 is at one end of the spectrum. An EC2 instance looks much like

physical hardware, and users can control nearly the entire software stack, from

the kernel upwards. This low level makes it inherently difficult for Amazon to offer

automatic scalability and fail-over, because the semantics associated with replication

and other state management issues are highly application-dependent. At the other

extreme of the spectrum are application domain specific platforms such as Google

App Engine.

As a successful example, Elastic Compute Cloud (EC2) from Amazon Web

92

Services (AWS) sells 1.0-GHz x86 ISA “slices” for 10 cents per hour, and a new

“slice”, or instance, can be added in 2 to 5 minutes. Amazon’s Scalable Storage Ser-

vice (S3) charges 0.12to0.15 per gigabyte-month, with additional bandwidth charges

of 0.10to0.15 per gigabyte to move data in to and out of AWS over the Internet.

Amazon’s bet is that by statistically multiplexing multiple instances onto a single

physical box, that box can be simultaneously rented to many customers who will

not in general interfere with each others’ usage.

The API exposed is “thin”: a few dozen API calls to request and configure

the visualized hardware. There is no a priori limit on the kinds of applications

that can be hosted; the low level of virtualizationraw CPU cycles, block-device

storage, IP-level connectivity allow developers to code whatever they want. On

the other hand, this makes it inherently difficult for Amazon to offer automatic

scalability and failover, because the semantics associated with replication and other

state management issues are highly application-dependent.

93

3. AN EFFECTIVE SERVICE PRIORITIZATION MODEL

Service providers receive multiple requests from customers(consumers), how to prior-

itize those service requests to maximize the business values and minimize customers’

dissatisfaction is one of the most important issues in cloud computing.

In this chapter, we proposal an innovative prioritization model, which uses dif-

ferent types of information, including customer, service, environment and workflow

information to optimize the performance of the system. The large state-space of the

workflow makes the ranking problem challenging. We propose a workflow attribute

with a reduced state-space based on the number of visits to a particular step or

re-work. We find that incorporating this workflow attribute results in improvement

of the density modeling techniques that we develop over those that incorporate only

customer and service specific attributes by 8− 9 percent in Average Precision. We

apply this model to a real application, an end-to-end mortgage origination pro-

cess and evaluate the performance of the model. Further, our results indicate that

these models perform better than classification based models like Support Vector

Machines for ranking, showing a 8 percent improvement in Average Precision.

3.1. Introduction

Cloud Computing is an on-demand process, in which service providers received

multiple service requests from consumers and process them in a first in first serve

way at most cases. Unfortunately, this is not the desirable way to handle the

customers’ requests for the following reasons: first of all, some requests should

have a high priority than others, since they can bring more business profits to the

service providers than other requests, e.g. banks should process the big customer

94

Channel Pull-through
Branch 0.33-0.56
Phone Banking 0.24-0.52
Internet Banking 0.06-0.51
Broker 0.76

Table 1

Typical Pull-through Rates

with millions dollars first, in stead of small individual transaction, which can bring

more benefit to the bank. Secondly,customer service providers should reduce the

dissatisfaction of customers as much as possible, which requires in-time service.

More and more service providers realize the importance of prioritization service

requests, and they call for effective prioritization models in real applications. We

investigate a real application in mortgage services, and propose an efficient model

which can provide an effective solution to service prioritization.

Mortgage Origination (MO) is the end-to-end process beginning with the sub-

mission of a mortgage application to a lender and ending in closing (lender approves,

applicant accepts and lender funds the loan) or non-closing (either lender disap-

proves, or applicant withdraws or refuses approved offer by lender). Below, we use

the terms mortgage application and loan interchangeably to refer to an application

submitted by a customer to a lender for approval. We are interested in developing

models for ranking applications, taking into account customer and product-specific

attributes of the applications as well as their history or workflow. Developing rank-

ing models not only enables process efficiency but also allows for identification of

applications that may have a high likelihood of non-closing but whose likelihood of

closing may be improved through “corrective action”. The specific nature of correc-

95

Fig. 31. Lending Process Overview

tive action is dependent on the lending institution. It could include change in the

attributes of the mortgage product being offered. It is hoped that such an action

would lead to a higher conversion rate of applications submitted into applications

closed. This pull-through rate is defined as the ratio of the number of applications

that close to those that are submitted.

Our study is motivated by the following two observations: (1) The typical pull-

through rates in the industry may be quite low for some channels (see Table 1)

thus offering considerable scope for improvement. (2) The MO process may involve

96

several dozens of tasks or status’ and thus the problem of ranking applications in

the process in order of likelihood of closing, at an intermediate status, may be non-

trivial. In fact, as we will see, several applications re-visit their status, making the

ranking problem involved.

As stated above, each application contains customer attributes like Credit Score

and product specific attributes such as Interest Rate, Loan Amount, etc. However,

what makes the problem of ranking applications particularly interesting is the work-

flow history that we incorporate to rank applications. Let us describe this in more

detail through an illustrative example. Consider the Underwriting-Pending Ap-

proval Completion task in the MO process of a service provider (see Figure 31 for

an overview of the process). Suppose that there are two applications, A and B, wait-

ing to be reviewed at this status. For simplicity, we consider only credit score and

workflow history while comparing the two applications. Suppose that application

A has a credit score of 712 while application B has a credit score of 662. However,

the history of application A, so far, reveals that it has undergone considerable re-

work, i.e., it has traversed the loop, Underwriting-(Initial) Review, Underwriting

- Pending Approval Completion and Underwriting - Exception Review two times,

possibly due to insufficient employment proof. On the other hand, application B

has undergone no re-work. The question arises as to how we might compare the

likelihood of closing of applications A and B. Thus, the large state-space of the

workflow attribute makes the problem of ranking applications, in order of likelihood

of closing, challenging.

We now summarize the main contributions: we propose a workflow attribute

97

with a reduced state-space based on the number of visits to a particular step or

re-work. We find that incorporating this workflow attribute results in improvement

of the density modeling techniques that we develop over those that incorporate only

customer and product specific attributes by 8 − 9 percent in Average Precision.

The simple and scalable density modeling techniques allow for easy identification

of applications that are likely to non-close and consequent corrective action such

as change in the attributes of the mortgage product being offered. Further, our

results indicate that these models perform better than classification based models

like Support Vector Machines for ranking, showing a 8 percent improvement in

Average Precision.

3.2. Problem Statement

In this section, we introduce the relevant notation and state the problem of ranking

applications at any status taking into account the customer, product and workflow

attributes of applications. We first represent the MO process by a directed graph

whose vertices are the status’ or tasks of the process and edges are possible transi-

tions between status’. Associated with each application is a unique identifier. We

present the problem of prioritizing applications at each status as an optimization

problem, whose objective function is a metric for ranking models and decision vari-

ables are ranks associated with each application waiting at the status of interest. In

order to state the problem, we introduce the notion of history of the applications at

an epoch of time to be a set that contains information pertaining to the sequence

of status’ visited by all applications up to that time.

Let us now state the problem formally. We represent the workflow of the MO

98

process by a strict digraph, G. Let V (G) and E(G) denote the set of vertices and

edges of G respectively. We define the history of applications at time T , HT to be

the set of triplets of the unique identifier corresponding to the loan, status’ and entry

times into those status’. HT uniquely determines the history of all applications that

have been processed and those that are being processed till time T . We refer to HT

as the state of the process at time T :

HT = {(i, v, tiv) | tiv ≤ T i ∈ S, v ∈ V (G)}, (3.1)

where S is the set of unique identifiers of all applications.

Let PTv be the set of unique identifiers of applications waiting to be processed

at status v at time T . Let the cardinality of PTv be n. Let 1 ≤ y(i) ≤ n, where

y(i) is an integer, be the rank of application i1. In particular, if y(i) < y(j), then

application i has a higher rank than application j at status v.

To measure the performance of a ranking model, several metrics have been

proposed. We will discuss some of these metrics in detail later in the paper. Let M

be a metric that we are interested in maximizing. Then, the objective is to assign

a rank to each application at status v at time T in order to maximize M , i.e.,

max
y(i),i∈PTv

M.

subject to

y(i) ̸= y(j) ∀ i, j ∈ PTv.

1Allowing abuse of notation, we refer to the unique identifier i of an application
as application i.

99

3.3. Process and Data

The data used for the experiments in this paper comes from a real lending process.

Details of the data set source is withheld for confidentiality reasons. In section 3.3.1,

we describe the process that we study in detail. Section 3.3.2 describes the data

that we use for the analysis.

3.3.1. Process Description

The end-to-end MO process of the lender that we study involves 57 status’. Figure

32 is a simplified representation of the process flow with all the closing and non-

closing status’. There is one closing status (Shipping - Final Action, status 49) and

five non-closing status’:

• 43. Loan Number Used in Error.

• 45. Withdrawn.

• 44. Approved Not Accepted.

• 46. Closed for Incompleteness.

• 47. Declined.

3.3.2. Data Description

The analysis and models that we develop are based on 279 mortgage applications

that were made available to the authors. For each of these applications, it is known

whether the application has closed or not. Customer specific attributes that are

available for analysis do not include any attributes that are related to the identity

of the customer, such as such as name, age, address, etc. The data attributes that

100

Closing In
Process (23)

Post Closing
(28)

Shipping Final
Action (49)

Loan No. Used in
Error (43)

Withdrawn (45)

Approved Not
Accepted (44)

Closed For
Incompleteness
(46)

Pre-app in
Process (1)

Underwriting
Initial Review
(10)

Approved Clear
Conditions (18)

Declined (47)

Approved
Conditions
Cleared (22)

Fig. 32. Simplified Workflow Representation

Unique Identifier Credit Score Interest Rate Loan Amount ... Outcome
14652345 777 5.625 170,905 49
3540600 661 5.875 253,700 44
54482483 675 5.625 215,718 49
45615239 790 5.5 239,400 49
90006327 741 5.875 159,315 46

Table 2

Sample Data Set

are available to us may be classified into three types (an illustration of the data set

in provided in Table 2):

1. Customer-specific attributes: (1) Credit score. (2) (Assets - Liabilities) /

Income. If income is considered on a per monthly basis, then (Assets - Li-

abilities) / Income corresponds to the number of months of income that are

required to accrue the net assets of the individual. (3) Appraised Value - Sale

Price. The appraised value of a property corresponds to its assessed value by

a qualified appraiser. The sale price pertains to the price that is being paid for

the property. Thus, the difference between Appraised Value and Sale Price,

i.e., Appraised Value - Sale Price corresponds to the “benefit” that is realized

by paying less for the property than what it is worth.

101

2. Product-specific attributes: (1) Rate Type. A variable interest rate is one

that is linked to the movement of an index of interest rates. A fixed interest

rate, on the other hand, is pre-determined and does not change during the

tenure of the loan. Rate type is a binary variable corresponding to whether

a loan has a variable interest rate or a fixed interest rate. (2) Interest Rate.

(3) Property Type. Applying for a secured loan to pay off a different loan

secured against the same asset is called refinancing. Property type is a binary

variable corresponding to whether a loan is purchase or refinance. (4) Loan

amount is the amount of the loan requested. (5) Cashout is a binary variable

corresponding to whether the applicant receives money or pays money at the

end of the transaction, if accepted.

3. Process history attributes. Data pertaining to the history of status changes

of applications along with the time that status is entered is available. Con-

sider, for example, the sequence of status changes of an application up to a

certain epoch of time (see Table 3) along with a description of the status’ and

corresponding entry times.

As a first step to building models to rank applications at any status, we first

study how to rank applications at the initial status. The reader may note that all

applications are processed through the initial status and work flow related informa-

tion is unavailable at that point. At this status, applications contain information

pertaining only to customer and product-specific attributes. Based on the insights

that we derive from the initial status analysis, we study ranking models at any in-

102

Unique Identifier Status Description Date & Time

40267891 7 Set up - In process 10/8/2008 14:00:07

40267891 10 Underwriting - Initial Review 10/8/2008 18:30:29

40267891 11 Underwriting - Second Review 10/9/2008 16:02:01

40267891 15 Underwriting - Pending Approval Com 10/9/2008 19:40:26

40267891 18 Approved - Clear Condition 10/22/2008 13:24:59

40267891 21 Approved - Exception Review 10/22/2008 19:34:16

40267891 10 Underwriting - Initial Review 10/22/2008 19:34:29

40267891 11 Underwriting - Second Review 10/22/2008 19:41:27

40267891 13 Application Pending 10/22/2008 20:00:48

40267891 18 Approved - Clear Conditions 10/22/2008 20:05:48

40267891 22 Approved - Condition Cleared 10/24/2008 20:09:45

40267891 23 Closing - In Process 10/24/2008 20:09:58

40267891 50 Closing - Document Out 10/27/2008 21:12:20

40267891 51 Closing - Funds Requested 10/28/2008 14:06:45

40267891 52 Closing - Funds Approved 10/28/2008 17:01:15

40267891 56 Closing - Exception Review 12/1/2008 14:51:26

40267891 52 Closing - Funds Approved 12/1/2008 14:55:36

40267891 53 Funded - Funds Disbursed 12/1/2008 14:56:09

40267891 28 Post Closing - In process 12/1/2008 14:56:18

Table 3

Workflow of a Sample Loan

Credit Score #Closing Loans #Non-closing Loans Fraction of Closing Loans

(450,500] 0 1 0.00
(500,550] 0 2 0.00
(550,600] 0 1 0.00
(600,650] 2 11 0.15
(650,700] 12 8 0.60
(700,750] 10 15 0.40
(750,800] 29 17 0.63
(800,850] 26 6 0.81

Table 4

Loan Outcome by Credit Score

termediate status incorporating attributes based on the history of the applications.

3.4. Customer and Product Attributes Based Ranking Analysis

We begin with a discussion of the problem of ranking applications at the initial status

with customer and product attributes of applications. The results and analysis that

we present in this section are based on the data set that is available to us, which is

randomly partitioned into a training data set and a test data set which contain 141

and 138 applications respectively2.

2The test data set contains 59 non-closing applications and 79 closing
applications.

103

We outline our approach and then detail the specifics. If the training data set

is large enough, we can estimate the joint cumulative distribution function (c.d.f.)

of X1, X2, ...Xm of all applications that close, where {X1, X2, ..., Xm} is the set

of customer and product specific attributes. We can leverage this distribution to

prioritize the applications using an appropriate Scoring function and sorting the

applications according to their scores. One such intuitive Scoring function may be

the joint c.d.f. or probability density function (p.d.f.) itself. We will discuss the

functional form of the scoring function in detail below.

Firstly, given the limited size of our data set, we assume that X1, X2, ...Xm

are independent in order to estimate the joint c.d.f. For simplicity of discussion,

let us restrict ourselves to one variable, for example, Credit Score and ask whether

it might be better to use either the c.d.f. or p.d.f. for scoring. We first note that

Credit Score is positively correlated with a Bernoulli random variable which equals

one when the outcome is close and zero if it is non-close (Table 4 provides the

fraction of closing applications, by Credit Score intervals, in the training data set.).

Consequently, using a scoring function that is monotone increasing in the credit score

may be preferable for prioritizing applications. Similarly, for some other variables

(for example, interest rate), using a scoring function that is monotone decreasing

in the interest rate may be preferable for prioritizing applications (Table 5 provides

the fraction of closing applications, by Interest Rate, in the training data set.).

The set of customer and product specific attributes may be partitioned into

two sets, I and D, such that the scoring function is increasing (decreasing) in each

variable in I (D) independently. Thus, based on our assumption of independence

104

of attributes, we score an application with Xi = xi, i = 1, 2, ...,m by

∏
i∈I

Fic(xi) ·
∏
i∈D

(1− Fic(xi)), (3.2)

where Fic(.) is the c.d.f. of Xi estimated from the training data set and corre-

sponding to the applications that close only. We refer to this ranking method as

Multivariate Likelihood (MV).

The reader may note that (MV) does not consider the distribution of non-

closing applications in the scoring function. This could lead to unwarranted results,

in come cases. Consequently, we may also score an application with Xi = xi, i =

1, 2, ...,m by

∏
i∈I Fic(xi) ·

∏
i∈D(1− Fic(xi))∏

i∈I Fin(xi) ·
∏

i∈D(1− Fin(xi))
, (3.3)

where Fin(.) is the c.d.f. of Xi estimated from the training data set and correspond-

ing to the applications that non-close only. We refer to this ranking method as

Multivariate Likelihood Ratio (LR).

The reader may note that (MV) and (LR) are simple and scalable ranking

models. These models also allow for easy identification of attributes that cause an

application to non-close with a high likelihood and suggest corrective action. We

will discuss this in detail later in the paper (see Section 6).

We compare the performance of MV and LR with Support Vector Machines(SVM)3

and that of a perfect ranking model, i.e., a model that ranks all non-closing applica-

tions above closing applications and a first-in-first-out (FIFO) model, i.e., a model

3We use classification methods such as SVM to train, ranking applications in the
test data set by their likelihood of closing.

105

that ranks applications at a status in the order in which they are received at that

status. We compute non-parametric estimates of the attributes to estimate the per-

formance of (MV) and (LR). We also examine whether some attributes belong to

well-known parametric distribution families. A chi-squared test at 95 percent signif-

icance reveals that (Assets−Liabilities)/Income is normally distributed. However,

we are unable to determine the distribution of several attributes at 95 percent sig-

nificance. We also compute estimates of the distribution of all attributes, assuming

them to be Normal and independent. Since the performance of our models with

the the non-parametric assumption is inferior to that with the Normal distribution

assumption, the results for that case are omitted. Below, we refer to models with

the Normal distribution assumption as LR and MV.

To evaluate the performance of our ranking methods, we use Precision-Recall

curves. Precision and Recall are two widely used measures for evaluating the quality

of results in information retrieval and statistical classification. Precision represents

the ability to retrieve top-ranked applications that are relevant while recall evalu-

ates the ability of the search to find all of the relevant applications in the corpus.

Formally, precision and recall are defined as follows:

Precision =
Number of relevant applications retrieved

Number of applications retrieved
,

Recall =
Number of relevant applications retrieved

Total number of relevant applications
.

In our setting, we are interested in retrieving two ranked lists, one with non-closing

applications as relevant and the other with closing applications as relevant. In the

main body of the paper, we restrict ourselves to the first case, i.e., the non-closing

106

Interest Rate # Closing Loans # Non-closing Loans Fraction of Closing Loans

3.75 1 0 1.00
3.875 1 0 1.00
5 7 0 1.00
5.125 5 2 0.71
5.25 11 0 1.00
5.375 2 4 0.33
5.5 9 6 0.60
5.625 8 4 0.67
5.75 17 7 0.71
5.875 8 6 0.58
6 3 5 0.38
6.125 3 3 0.50
6.25 2 9 0.18
6.375 0 2 0.00
6.5 2 11 0.15

Table 5

Loan Outcome by Interest Rate

applications are relevant. The insights for the second case are similar in terms of

which models perform better. Therefore, we merely include the results for this case

in the Appendix, for ease of presentation.

In order to enable comparison of two Precision-recall curves, I and II, we note

that curve I dominates curve II if the precision, at every value of recall, is lower

for curve II than curve I (see [113] and [38]).

We now discuss the performance of MV, LR and SVM. The Precision-recall

curves for these three methods, along with FIFO and Perfect is provided in Figure

33. Our results indicate that each of the three methods, MV, LR and SVM dominate

FIFO. Among the three methods, SVM is dominated by both MV and LR.

Different metrics have been used for evaluating the performance of ranking

models, the two most popular of which are Average Precision and R-precision (see

[7]). In our setting, Average precision is the average of the precisions of all non-

107

Average Precision R-Precision
Perfect 1.00 1.00
MV 0.85 0.48
LR 0.85 0.50
SVM 0.78 0.47
FIFO 0.47 0.45

Table 6

Performance of Ranking Models at Initial Status

closing applications while R-precision is the precision at rank R. We present our

results for the case where R is the number of non-closing applications. The results

corresponding to evaluation of the metrics for MV, LR and SVM are provided in

Table 6. The insights from this table are similar to those derived from Figure 33.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

P
re

ci
si

o
n

Perfect FIFO MV LR SVM

Fig. 33. Precision-Recall Curves at Initial Status

Based on the ranking models for the initial status, we next develop models

for intermediate processing. The analysis incorporates not only the product and

customer specific attributes that were used for the initial status analysis but also

workflow attributes. We discuss this in detail in the next section.

108

3.5. Customer, Product and Workflow Attributes Based Ranking Analysis

While the results of the previous section are encouraging, an interesting question

arises while ranking applications at an intermediate status - Can we improve the

performance of our ranking models that use only customer and product-specific

attributes by leveraging historical state information? The following analysis answers

this question. Throughout this section, we use status u as a generic status for which

we are developing a ranking model.

Recall that the historical information available at time T is given by

HT = {(i, v, tiv) | tiv ≤ T i ∈ S, v ∈ V (G)}. (3.4)

The large state space of the history of the applications makes the analysis intractable.

Thus, we collapse the state space to a single dimension for each application. The

reduced state space that we consider captures information pertaining to the number

of visits to status u, the status for which we are building the ranking model. Clearly,

the reduced state space that we consider may not be a sufficient statistic.

Define the number of visits to status u by application i as

liu = |{(i, u, tiu) | tiu ≤ T i ∈ S, u ∈ V (G), (i, u, tiu) ∈ HT }|,

where |Y | denotes the cardinality of set Y . In the sequel, we drop the subscripts u

and i and refer to liu as Visits, for ease of presentation.

The attribute Visits was chosen for two reasons: (1) Domain experts that we

interacted with pointed out that applications which have considerable re-work are

the ones that are likely to non-close, and (2) the data supported this hypothesis for

109

several status’ that we considered (A table supporting observation (2) is excluded

for confidentiality reasons).

We first discuss how to construct the test data set. We begin with the test

data set, DA that we used for evaluating our models in Section 5. For ease of

exposition, we do not introduce additional notation to explain this construction.

Recall that we are building our ranking models at time T at status u. Thus, we are

interested in constructing a subset of the applications of DA that that are waiting to

be processed at status u at time T , irrespective of whether they have been processed

at status u before time T or not. Unfortunately, this constraint reduces the number

of applications in the test data set DA significantly since (1) the data set contains

applications over a six month period and, at any time, only a fraction of applications

are being processed, and (2) the process contains over four dozen tasks and at any

time, of the fraction being processed, only a fraction are at status u.

To alleviate this problem, we construct an approximate test data set. We relax

the constraint (2) and consider all applications that are being processed at time T

and belong to DA. We could adopt an alternative approach, i.e., relax constraint

(1) and consider all applications with either one entry or multiple entries in the

test data set corresponding to each visit to status u. However, the alternative

approach introduces additional uncertainty without any obvious benefits over the

first approach (If we were to include one entry corresponding to each visit to status

u for each application, the question of which entry it would be has to be addressed.

Similarly, if we were to include all entries in the test data set, it becomes biased

towards applications with multiple visits to status u).

110

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

P
re

ci
si

o
n

Perfect FIFO MV(workflow) LR(workflow) SVM(workflow)

Fig. 34. Precision-Recall Curves with Workflow Attributes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

P
re

ci
si

o
n

Perfect FIFO SVM(workflow) SVM

Fig. 35. Precision-Recall Curve for SVM

Let us now discuss how to incorporate the workflow information pertaining to

Visits into the MV and LR models that we discussed in Section 5. For the purpose of

building the model, Visits may be thought of “just another independent attribute”

and added to these models. However, while evaluating the score of an application

at time T , the fact the the number of visits information that is available is “partial”

needs to be considered, i.e., if we know at time T , an application has made two

prior visits to status 10, all we know is that it will make two or more visits by the

time it is processed. Thus, while evaluating the score of an application based on

this partial information, the conditional probability of the number of visits to state

111

u has to be incorporated. Suppose that l visits were made to status u prior to time

T . Then, the following term when multiplied by the score of the MV model, i.e.,

expression 3.2, provides the new score:

∞∑
j=l

P (Lc = j/Lc ≥ l) · Scorev(Lc = j), (3.5)

where Lc is a random variable corresponding to the number of visits made by a

closing application to status u and Scoreu(Lc = j) is the score if exactly j visits

were made to status u. Similarly, the following term when multiplied by the score

of the LR model, i.e., expression 3.3, provides the new score:∑∞
j=l P (Lc = j/Lc ≥ l) · Scoreu(Lc = j)∑∞

j=l P (Lnc = j/Lnc ≥ l) · Scoreu(Lnc = j)
, (3.6)

where Lnc is a random variable of the number of visits made by a non-closing

application to status u and Scoreu(Lc = j) is the score if exactly j visits were made

to state u. Similar to the logic that we applied in Section 5, we define

Scoreu(X = x) = P (X ≥ x).

Next, we describe how to incorporate the workflow information pertaining to Visits

into the SVMmodel that we discussed in Section 5. As in the case of MV and LR, for

the purpose of training the model, Visits may be thought of “just another attribute”.

However, while evaluating the score of an application at time T which has made l

visits to state u and whose predicted score by the trained model is Scoresvm(L = l),

we make the following correction to account for the partial information observed:

∞∑
j=l

P (L = j/L ≥ l) · Scoresvm(L = j), (3.7)

112

where L is a random variable corresponding to the number of visits made by an

application to status u.

We now discuss the performance of the three methods, MV, LR and SVM with

workflow attributes4 for one epoch of time at status 10 at which the test data set

was constructed5 (see Figures 34 - 37). In each of these figures, when the legend has

workflow included in parenthesis, it refers to the model with workflow attributes;

otherwise, the model does not incorporate workflow attributes. We first note that

Precision-Recall curve of none of these methods with the workflow attribute domi-

nates the curve without the workflow attribute. However, for both the metrics that

we consider, the Average Precision and R-precision, each method performs better

with the workflow attribute (see Table 7), with some metrics giving as much as a

nine percent improvement. We thus conclude that the workflow attribute that we

consider, Visits has significant explanatory power for ranking.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

P
re

ci
si

o
n

Perfect FIFO LR(workflow) LR

Fig. 36. Precision-Recall Curve for LR

4We find that Visits is a Geometric random variable with parameter 0.7 through
a chi-squared test.

5The test data set contains 21 non-closing applications and 44 closing
applications.

113

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

P
re

ci
si

o
n

Perfect FIFO MV(w orkflow) MV

Fig. 37. Precision-Recall Curve for MV

Model Average Precision R-precision
Perfect 1.00 1.00
MV(workflow) 0.88 0.45
LR(workflow) 0.87 0.44
SVM(workflow) 0.82 0.40
MV 0.81 0.44
LR 0.81 0.43
SVM 0.79 0.35
FIFO 0.54 0.33

Table 7

Metrics for Ranking Models at Status 10

Finally, recall that the results pertaining to the ranking models that we pre-

sented above were for one snapshot of time. To evaluate the robustness of our

results, we repeat our experiments at four epochs, say, t1, t2, t3, t4 at status 10 for

(MV) with the workflow attribute. A summary of the results (see Table 8) shows

that the performance is comparable at all four epochs.

3.6. Discussion

Not only are MO service providers interested in developing models for ranking but

also see value in identifying attributes that are “responsible” for an application

to non-close. Further, if the identified attributes were actionable, i.e., they are

114

Epoch Average Precision R-precision
t1 0.92 0.65
t2 0.81 0.45
t3 0.78 0.32
t4 0.65 0.50

Table 8

Robustness of Ranking Results

Attribute Attribute Value Score
Credit Score 595 8E(-5)
Property Type 1 0.56
Interest Rate 5 0.72
Cashout 1 0.70
Loan amount 120000 0.18
Appraised Value - Sale Price 0 0.44
(Assets -Liabilities)/Income -49.93 0.19

Table 9

(MV) model, by attribute, for application X

not exogenous, then appropriate corrective action be suggested so as to increase

the likelihood of closing, thus improving the pull-through rate. Consequently, we

examine this issue in the context of our analysis and results.

The results presented in Sections 5 and 6 clearly demonstrate that the likeli-

hood and likelihood ratio based distribution function estimation models outperform

Attribute Attribute Value Score
Credit Score 736 0.24
Property Type 1 0.56
Interest Rate 6.5 0.01
Cashout 0 0.03
Loan amount 160000 0.32
Appraised Value - Sale Price 0 0.44
(Assets -Liabilities)/Income 11.54 0.83

Table 10

(MV) model, by attribute, for application Y

115

classification techniques such as Support Vector Machines. Not only do these mod-

els perform better but also have the added advantage of allowing “attribute-wise

comparison”. We explain what we mean by this below.

We begin by suggesting one intuitive scheme for resolving the problem of at-

tribute identification for (MV) at the initial status: Let si be the score associated

with attribute Xi = xi, i = 1, 2, ...,m for some application, i.e., si = Fic(xi) ∀ i ∈ I

and si = 1−Fic(xi) ∀ i ∈ D. For ease of presentation and without loss of generality,

we assume, in this section, that s1 ≤ s2... ≤ sm. The corrective action that we

suggest is to increase / decrease the value of attribute X1, keeping other attribute

values fixed, so that s1 = s2.
6

We discuss how this scheme works through two examples below: Consider two

applications, say X and Y , which have been deemed likely to non-close at the initial

status. The attribute values and the corresponding scores are provided in Tables

9 and 10. Based on the scheme suggested above, Credit Score and Interest Rate

are the identified attributes for applications X and Y respectively. However, since

Credit Score is exogenous, we suggest lowering the interest rate offer for application

Y and no action for application X. Clearly, one can think of other schemes as well.

A similar scheme may be suggested for the (LR) model by defining the individ-

ual attribute scores in terms of their likelihood ratios. The details directly follow

from our discussion above and are, hence, omitted.

6If X1 is a discrete random variable, then we would change the value of the
attribute just enough such that s1 ≥ s2. For ease of exposition, this issue is ignored
in the paper.

116

3.7. Related Work

There is a vast literature on ranking models. Both supervised and unsupervised

techniques have been widely used for classification and ranking. We refer the reader

to [54] and [133] for details of two popular supervised techniques, regressions and

support vector machines respectively. Likelihood and likelihood ratio based models

have also been widely used. In fact, likelihood ratio is the minimum probability-

of-error decision scheme for classification (see [111]). Unsupervised techniques have

been applied to a number of different domains as well. For example, [65] use Behavior

Shift Models to determine exceptions in the Travel and Entertainment Expenses of

a company.

Much of the literature applying classification techniques to the mortgage in-

dustry focuses on mortgage delinquency. [166] study the problem using Logistic Re-

gressions. [69] discusses the performance the Radial Basis Function (RBF), which

combines the mathematical complexity of neural networks with a comprehensive

visualization in IBM’s Intelligent Miner for mortgage scoring. [50] is a case study

of various data mining models to assess mortgage risks pertaining to delinquency.

The extant literature on modeling, execution and optimization of workflows is

vast (see [27, 2, 34]). For example, [130] study the problem of optimizing workflow

by reducing the number of steps to resolution in the context of problem tickets and

resolution groups.

Related to our study is the problem of prioritizing multi-class applications or

jobs that arrive to a queue. Associated with each class are due dates and service

level penalties. Most of these models either leverage scheduling heuristics such as

117

Shortest Processing Time, Earliest Due date First, etc. (see [108]) or asymptotic

properties of Service Systems (see, for example, [134]).

3.8. Conclusion and Future Work

In this chapter, we present an investigation of different ranking models that incor-

porate customer, product and workflow attributes at any status in the MO process.

We propose a workflow attribute with a reduced state-space based on the number

of visits to a particular step or re-work. We find that incorporating this workflow

attribute results in improvement of the density modeling techniques that we develop

over those that incorporate only customer and product specific attributes by 8− 9

percent in Average Precision. The simple and scalable density modeling techniques

allow for easy identification of applications that are likely to non-close and conse-

quent corrective action such as change in the attributes of the mortgage product

being offered. Further, our results indicate that these models perform better than

classification based models like Support Vector Machines for ranking, showing a 8

percent improvement in Average Precision.

A promising future research direction is the development of other attributes

with a reduced state-space apart from Visits. For example, consider the number of

status’ visited by an application prior to time T or the duration the application has

been in process. Extending the reduced state-space beyond a single dimension to

two dimensions would also be of interest.

The prioritization model can be applied to other application, such as credit card

processing as well. Correspondingly, we can consider different features to improve

the prediction accuracy and maximize the business benefit.

118

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Perfect FIFO MV LR SVM

Fig. 38. Precision-Recall Curve for Initial Status with Relevant Applications as
Closing

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

P
re

ci
si

o
n

Perfect FIFO MV(workflow) LR(workflow)

SVM(workflow) MV LR SVM

Fig. 39. Precision-Recall Curve for Status 10 with Relevant Applications as Closing

119

4. AN EFFICIENT SERVICE DEMAND FORECASTING MODEL

We study the problem of forecasting service request volumes, by task, of a cloud ser-

vice process. We model the evolution of service volumes as a discrete time stochastic

process. We develop two predictors to forecast requests volumes. The first predictor,

which we refer to as Semi-markovian Predictor (SMP) is based on the assumption

that the underlying stochastic process is Semi-markovian. Since the standard ap-

proach to evaluate forecasts under a Semi-markovian assumption requires either

a recursive computation or simulation, we develop an approximate expression to

evaluate the forecasts easily. The second predictor, which we refer to as Weighted

Markvovian Predictor (WMP), is based on classifying loans into two types, those

that are predicted to close and those that are predicted to not close, and assuming

each of these loan types follows a Markovian process. We benchmark the perfor-

mance of the two predictors that we develop against a predictor based on the as-

sumption that the underlying stochastic process is Markovian (MP). Our numerical

experiments indicate that SMP performs better than MP when the forecast duration

is small (Average improvement percentage in Mean Square Root Error of SMP over

MP is 42.5 %). A mortgage origination is applied as the application scenario in this

chapter.

4.1. Introduction

An end-to-end Mortgage Origination (MO) process begins with the submission of a

mortgage application by an applicant to a lender and ends with one of the following

outcomes: closing, i.e., loan approved by the lender and accepted by the applicant

or non-closing, i.e., loan either rejected by the lender, or approved by the lender and

120

not accepted by the applicant. The outcome of the loan is primarily dependent on

the characteristics of the loan such as Credit Score, Income, Assets, etc. (a detailed

discussion of the characteristics is provided later in the paper). The MO process is

composed of several pre-defined tasks, each of which may require specialized skills.

A mortgage application passes through different tasks during its lifecycle, the next

task possibly dependent on the current task (for example, a loan may be routed

to third party evaluators for independent assessment in case of insufficient proof of

income).

MO managers are interested in long-term loan volume forecasts to make intelli-

gent hiring decisions as well as short-term forecasts for shift scheduling. Long-term

loan volume forecasts at a task-level depend on exogenous factors such as federal

interest rate, since the number of loans at a particular task would depend on the rate

at which new loans enter the MO process. On the other hand, short-term weekly

forecasts may be assumed to be independent of exogenous factors. The reader may

note that hiring decisions, usually made quarterly and shift scheduling, typically

done weekly, are critical activities for MO managers as the skills required for the

different tasks are not always transferrable. The focus of this paper is the develop-

ment of easy-to-evaluate short-term forecasts of loan volumes for the MO process.

The remainder of the section is organized as follows: In Section 4.1.1, we review

the relevant literature. We summarize the main contributions of our work in Section

4.1.2. In Section 4.1.3, we introduce the notation and formally state the problem.

121

4.1.1. Related Literature

In this section, we briefly summarize the relevant literature on forecasting. We first

summarize the work on Markovian predictors. We then review papers that assume

a Semi-markov process for forecasting.

The Markovian assumption is widely used in many domains such as as telecom-

munications and manufacturing systems. Here, we briefly refer to two such papers.

Chong et al. [28] use a Markov model to predict the demand of storage space in

a soft drink company. Mannila et al. [88, 89] also use a Markovian approach for

telecommunication alarm management.

A Semi-markov process based predictor has also been widely used by researchers.

For example, Mcclean et al. [91] use a Semi-markovian approach to model a hu-

man resource system, which combines a duration dependent stay in a grade with

a transition matrix of movements between grades, to predict the system’s future

development. Trivedi et al. [148] develop a Semi-markov model to study transi-

tions of physicians, nurse practitioners, and physician assistants between different

settings and locations within a geographic area. Lee et al. [82] model user mobility

in WLANs by a Semi-markov process, and obtain the transition probability matrix

from the association history of WLAN users. With the steady-state characteriza-

tion of user mobility in WLANs, they estimate the long-term wireless network usage

among different access points. Several papers provide comparisons of Semi-markov

122

and Markov based predictors, for example, see Valliant et al. [160].

We also allude to some classification methods that have been widely used (see,

for example, Linear Regression [54], SVM (Support Vector Machines) [133], and

Likelihood Ratio [131]) for discrete choice modeling (for example, to predict whether

a loan closes or not).

4.1.2. Our Contributions

We develop two new predictors to forecast loan volumes in this paper. We now

discuss how these predictors contribute to the literature on forecasting. Our first

predictor, SMP, is based on the assumption that the underlying stochastic process

in Semi-markovian. While several papers make this assumption for forecasting, they

employ either a recursive computation or a simulation driven approach to estimate

the forecasts. Our approach, on the other hand, is focused on developing an approx-

imate expression, which is easy to evaluate for forecasting. Our second predictor,

which we refer to as WMP, incorporates a classification model such as Regression,

SVM, etc. into standard classical forecasting models under the Markovian assump-

tion. To the best of our knowledge, this is the first such attempt in the literature.

4.1.3. Problem Definition and Notation

The MO process consists of several tasks that may be thought of as the nodes of

a directed graph whose edges are transitions between tasks. The reader may note

that a loan may be in only one task at a time and may transition to another task

123

depending on the current task.

Let the MO process consist of n tasks, which are indexed as 1, 2, , n. Associated

with each loan is a loan number, which is a unique identifier for the loan. On any

given day, a loan is at one of the tasks (we are interested in forecasting loan volumes

at the granularity of one day) in the process. We are interested in studying the

evolution of the number of loans at each task with time. In order to study this,

we define a stochastic process whose state is the n-dimensional vector of volumes at

each task. We first introduce some notation. Let Si,t be the set of loan numbers at

task i on day t. Let St be the set of all loans on day t, i.e.,

St =
∪

i∈{1,2,...,n}

Si,t.

Let loan k be at task Zk
t on day t. Then, the volume of loans at task i on day t is

given by

Xi,t =
∑
k∈St

I{Zk
t = i}, (4.1)

where I(.) is the indicator function defined as I(x = y) = 1 if x = y and 0 otherwise.

We use

Yt = (X1,t, X2,t, ..., Xn,t)

to denote the evolution of the n-dimensional vector of loan volumes by task.

On day T , we have historical information regarding the task associated with

each loan as well as the characteristics of the loan. Given the loan history up to time

124

T , the problem is to forecast the loan volume m > 0 days hence. We will denote

the estimate of loan volumes on day T +m by

ŶT+m = (X̂1,T+m, X̂2,T+m, ..., X̂n,T+m) (4.2)

where X̂i,T+m is the forecast of loan volumes at task i m days into the future (on

day T +m).

Several metrics have been used to evaluate the performance of forecasting poli-

cies, the most popular of which is Mean Square Root Error (MSRE). We use this

metric to evaluate the predictors that we propose. The expression for MSRE is

given by √∑n
i=1 (Xi,t − X̂i,t)

2∑n
i=1Xi,t

. (4.3)

The reminder of the paper is organized as follows: In Section 4.2, we introduce

three predictors. We evaluate the performance of the predictors that we develop

numerically in Section 4.3.

4.2. Markovian, Semi-Markovian and Weighted Markovian Predictors

In this section, we introduce several predictors to forecast loan volumes. Since the

stochastic process Yt may depend on the history of sequence of tasks of loans as

well as the loan characteristics, estimating the transition probabilities is intractable

without making assumptions on the evolution of the stochastic process Yt. In Section

4.2.1, we introduce a forecasting model assuming that Yt is Markovian. Section 4.2.2

125

assumes that Yt follows a Semi-markov process. Finally, in Section 4.2.3, we classify

the loans into two classes, close and non-close, and incorporate the likelihood-to-

close (Given the loan characteristics, how likely is the loan to close) information to

forecast loan volumes.

4.2.1. Markovian Predictor

We first introduce a simple Markovian model in order to predict loan volumes. Under

the assumption that Yt is Markovian, we estimate the m day steady-state transition

probability matrix, P = {pij}n×n of Yt. We can then forecast loan volumes (we refer

to this forecasting rule as MP) on day T +m by

X̂MP
i,t+m =

n∑
j=1

pji ·Xi,t. (4.4)

The advantage of MP is that it is easy to evaluate but this comes at the cost

of making strong assumptions on Yt. Such an approach does not incorporate the

fact that loans are heterogeneous, i.e., they transition from one task to another

depending on their likelihood-to-close. In fact, as noted by Shao et al 2009 [131],

the sequence of paths followed by a loan is correlated with whether the loan will close

or not. Thus, incorporating this information may reduce forecast errors. Further,

the Markovian assumption itself may be poor. Below, we introduce two forecasting

models, the first relaxes the Markovian assumption while the second incorporates

the fact that the loans are not homogeneous.

4.2.2. Semi-Markovian Predictor

In this section, we assume that Yt follows a Semi-markov process. Recall that a

Semi-markov process is a continuous time stochastic process in which the embedded

126

jump chain (the discrete process that determines the next task for any given task) is

a discrete time Markovian process and the time between transitions (holding times

or time between between jumps) are generally distributed random variables (which

may depend on the two tasks between which the move is made).

Before we introduce our Semi-markov process based loan volume predictor, we

first introduce an assumption and some notation. We assume that the duration a

loan spends at a task is independent of the characteristics of the loan as well as

next task that a loan transitions to. This assumption does not always hold - for

example, discussions with Subject Matter Experts have revealed that Underwriters

spend more time on loan applications with less documentation on applicant assets.

However, this assumption simplifies our analysis significantly.

Let Fi(.) be the cumulative distribution function of the random variable Di

corresponding to the duration (in days) that is spent by a loan at task i. Given that

a loan k has been in state i for dk days and is currently in state i, the probability

that the loan will still be in state i after m days is given by

αi
k(m) =

P{Di ≥ dk +m}
P{Di ≥ dk}

=
1− Fi(dk +m)

1− Fi(dk)
.

Let βjk(u) be the probability that loan k will be in task j on day T +1, T +2,...,

T + u− 1 and will transit from task j on day T + u, given that it was in task j on

day T , i.e.,

βjk(u) = αj
k(u− 1)− αj

k(u).

127

We may predict loan volumes without making any further assumptions. How-

ever, such an approach would require a recursive computation or a simulation driven

approach. Since we are interested in developing easy-to-evaluate predictors, we next

make another assumption that will allow evaluation of our forecasts easily, for ex-

ample, using a spreadsheet. We only consider loans that were at task i on day T

or loans that transitioned from any task j directly to task i. In particular, we do

not consider loans that transitioned from task j ̸= i to task k ̸= i to task i before

T +m. With this assumption, we estimate loan volumes on day T +m by

X̃SMP
i,t+m =

∑
k∈Si,T

αi
k(m)

+

n∑
j=1,j ̸=i

∑
k∈Sj,T

∑
1≤u≤m

βjk(u) · pji · α
i
k(m− u).

The first term on the right hand side of the above equation corresponds to the event

that a loan will stay at task i up to T +m, given that it was at task i on day T . The

second term corresponds to the event that a loan will transition to task i from any

other task. We note that the above expression is not exact since it ignores events

with more than one transitions from task j to task i between time T and time T+m.

The reader may recall that since we are interested in making near-term forecasts

only, we expect the above approximation to be good, especially for shorter forecast

durations.

In order to develop a predictor that is easy to evaluate, we develop an upper

128

bound for X̃SMP
i,t+m. Note that

A :=
∑

1≤u≤m

βjk(u) · α
i
k(m− u)

=
∑

1≤u≤m

(αj
k(u− 1)− αj

k(u)) · α
i
k(m− u)

≤
∑

1≤u≤m

(αj
k(u− 1)− αj

k(u)) · 1

= 1− αj
k(m),

where the second equality follows from the definition of βjk(u), the inequality from

the fact that P{Di ≥ dk +m} ≤ P{Di ≥ dk} and the last equality from a recursive

computation. The above analysis allows us to develop the following predictor (we

refer to this forecasting rule as SMP):

X̃SMP
i,t+m ≤ X̂SMP

i,t+m

=
∑

k∈Si,T

αi
k(m)

+

n∑
j=1,j ̸=i

∑
k∈Sj,T

(1− αj
k(m)) · pji.

4.2.3. Weighted Markovian Predictor

In this section, we incorporate the heterogeneous nature of loans in our predictions

by considering two classes of loans: those that close and those that non-close. Our

approach allows us to use any classification model that predicts whether a loan

will close or not depending on the attributes of the loan. Several classification

and ranking models have been used in the context of loan origination (see Shao

et al. 2009). Below, we present an approach that combines the likelihood-to-close

estimates of loans and the attribute independent Markovian forecasting predictor

129

Application
Submitted by

Customer

Application
Approved by

Lender

Application
Rejected by

Lender

Approved
Application

Cancelled by
Customer

Approved
Application

Closes

Application
Submitted by

Customer

Application
Approved by

Lender

Application
Rejected by

Lender

Approved
Application

Cancelled by
Customer

Approved
Application

Closes

Fig. 40. Flowchart of MO Process

MP. We estimate two transition probability matrices, one for loans that close and

one for loans that do not close. We denote the estimates of the m-day transition

probability matrix of loans that close and those that do not by P c = {pcij}n×n and

Pnc = {pncij }n×n respectively. Let Xc
i,t and X

nc
i,t be the volume of loans at task i that

are predicted to close and non-close respectively. We suggest the following rule (we

refer to this rule as the Weighted Markovian Prediction or WMP) for estimating

the loan volume at day T +m:

X̂i,t+m =

n∑
j=1

(pcji ·Xc
i,t + pncji ·Xnc

i,t). (4.5)

4.3. Numerical Results

In this section, we investigate the efficacy of the predictors that we develop for a

real lending process. The forecasting methods that we develop in this paper are

evaluated for a MO process consisting of 58 tasks. A graphical representation of the

process is provided in Figure 49.

130

The analysis that we present is based on 1332 mortgage applications that were

made available to the authors. For each of these applications, it is known whether

the application has closed or not as well as the duration each loan spent at a partic-

ular task. For each application, we have data pertaining to three types of attributes:

Customer, Product and Environment. Below, we merely summarize the attributes

that are available for our analysis. We refer the readers to Shao et al [131] for details

on attribute definitions.

• Customer-specific attributes: (1) Credit score. (2) (Assets - Liabilities) /

Income. (3) Appraised Value - Sale Price. (4) Debt to Income.

• Product-specific attributes: (1) Rate Type (variable inter-est rate or a fixed

interest rate) (2) Interest Rate. (3) Property Type (Purchase or refinance).

(4) Loan amount. (5) Cashout. (6) Loan to Value. (7) Finance charge.

• Environment attributes: The U.S. federal interest rate is extracted from the

Federal Reserve website biweekly.

Shao et al [131] compare different classification and ranking techniques, for ex-

ample, SVM, Regressions and Likelihood-ratio in order to predict whether loans are

likely to close or not using the above attributes. For this data set, they find that

the Likelihood-ratio based technique performs better than SVM and Regressions.

We use the same technique to evaluate SMP in this paper.

131

We evaluate the performance of the SMP (using the non-parametric duration

distribution estimates) and WMP predictors (using the Likelihood Ratio classifier)

on the metric that we discussed in Section 1.3: MSRE. We benchmark the perfor-

mance of these predictors against the MP predictor. Our numerical experiments are

presented for five different dates as the snapshots to make forecasts. Table 1 pro-

vides a summary of the results, providing average improvements in SMP and WMP

over MP for a given forecast duration across all snapshots that we consider (for each

snapshot, we refer to these percentage improvements as PSMP and PWMP). The

detailed error percentages for each predictor for one, two, three, four and five day

forecasts for each snapshot is provided in the appendix.

We first note that, on average, each of the SMP and WMP predictors performs

better than MP for some forecast durations and worse for others. However, the bet-

ter of the SMP and WMP predictors performs at least as well as the MP predictor.

We now comment on the performance of both our policies with the forecast

duration. We note that the average error percentage improvement of SMP over MP

is decreasing with the forecast duration. The reader may recall that we ignore more

than one transitions between tasks during the forecast horizon when developing the

expression for the SMP predictor. This assumption is good for small forecast dura-

tions but poor for larger forecast durations. Also, we observe that the average error

percentage improvement of WMP over MP is increasing with the forecast duration.

The intuition behind this observation is that the sequence of future tasks depends on

132

Forecast Duration (days) Average PSMP Average PWMP
1 59 -29
2 24 -12
3 - 3 0
4 -18 9
5 -28 14

Table 11

Average MSRE over Five Snapshots

the characteristics of the loan. Further, this information captures greater predictive

power when the forecast durations are larger since more loans transition during a

larger forecast duration.

We summarize our results by forecast duration interval as follows: For small

forecast durations (1-2 days), the average percentage improvement in MSRE of SMP

over MP is 42.5%. For large forecast durations (4-5 days), the average percentage

improvement in MSRE of WMP over MP is 11.5%. Based on these results, we rec-

ommend using SMP when the forecast duration is small, WMP when the forecast

duration is large and MP for medium forecast durations.

133

Snapshot Forecast duration (days) MP SMP WMP PSMP WSMP
1 1 7.14 1.40 9.66 80.39 -35.29
1 2 6.04 2.81 7.60 53.48 -25.83
1 3 5.15 4.29 6.38 16.70 -23.88
1 4 4.15 4.51 4.21 -8.67 -1.45
1 5 4.38 4.54 3.46 -3.65 21.00
2 1 7.25 2.07 9.73 71.45 -34.21
2 2 7.58 5.00 9.01 34.04 -18.87
2 3 5.76 5.34 5.87 7.29 -1.91
2 4 4.91 5.35 4.49 -8.96 8.55
2 5 4.79 6.17 4.25 -28.81 11.27
3 1 7.45 3.48 9.89 53.29 -32.75
3 2 6.23 5.00 6.94 19.74 -11.40
3 3 6.55 7.50 6.09 -14.50 7.02
3 4 6.28 8.24 5.69 -31.21 9.39
3 5 6.00 8.54 5.16 -42.33 14.00
4 1 5.75 2.21 7.21 61.57 -25.39
4 2 6.72 6.99 6.39 -4.02 4.91
4 3 6.09 7.06 5.59 -15.93 8.21
4 4 6.71 8.31 5.69 -23.85 15.20
4 5 6.74 8.88 5.73 -31.75 14.99
5 1 6.04 4.27 7.05 29.30 -16.72
5 2 5.55 4.55 5.91 18.02 -6.49
5 3 8.17 8.80 7.35 -7.71 10.04
5 4 7.85 9.34 6.98 -18.98 11.08
5 5 8.20 10.87 7.60 -32.56 7.32

Table 12

Mean Square Root Error

134

5. ONTOLOGY-BASED INTELLIGENT CUSTOMIZATION

FRAMEWORK FOR SAAS

Software as a Service (SaaS) with multi-tenancy architecture is a popular approach.

To support a significant number of tenants, SaaS applications need be customizable

to fulfill the various functional and quality requirements of individual tenants. This

paper presents a unified and innovative multi-layered customization framework, to

support and manage the variability of SaaS applications and tenants-specific re-

quirements. Ontology is used to derive customization and deployment information

for tenants cross layers. This framework also has an intelligent recommendation

engine to support new tenants to deploy using information from existing deployed

SaaS applications. A case study in mortgage application is used to demonstrate the

proposed model.

5.1. Introduction

Software as a Service (SaaS) with multi-tenancy architecture (MTA) is a model for

software delivery where a software provider publishes a copy of their software on

the Web Internet to support multiple tenants or customers in a cloud environment.

The cloud environment centrally operates, maintains and supports its customers via

SaaS. Notable Saas applications include Salesforce.com provides on-demand Cus-

tomer Relationship Management (CRM) services; People-Soft On-Demand from

Oracle provides SaaS infrastructure for enterprise applications; Google maps and

apps (mails, docs, and sites.) supports millions of customers; Microsoft announces

Office Web Apps in early 2010.

MTA allows multiple tenants to share a software service with customization so

135

Layer 1
GUI

Layer 2
Business Process
(Workflow)

Layer 3
Service (& Composition)

Layer 4
Data

Fig. 41. Multi-Layered Architecture for SaaS Customization

that each tenant may have its own GUI, data, and user interaction. As a conse-

quence, the SaaS software may appear to each tenant as if it is the sole tenant (e.g.,

keeping confidential data private), while allowing multiple tenants to use the same

software (to achieve economy of scale). A maturity model with four levels is pro-

posed [29], and the highest level of SasS is configurable and scalable, and has MTA.

A configurable SaaS is often achieved by customization, and a scalable SaaS by du-

plicating software to meet the increased load. This chapter addresses customization

mechanisms with MTA.

The SaaS customization need to meet multiple goals: SaaS providers need to

support tenants/customers with a multitude of options and variations using a sin-

gle code base, such that it is possible for each tenant to have a unique software

configuration. Also they need to ensure that the configuration is simple and easy

136

to satisfy tenants’ specific requirements without extra development or operation

costs. The SaaS customization is not only related to functionality but also related

Quality-of-Services (QoS), e.g., some tenants require an application to be highly

available and are willing to pay a premium for it, while other tenants are not inter-

ested in high availability but care more about the price. As the functionality and

quality requirement from individual tenants can be different, SaaS providers face

two goals and try to balance between them: cater more tenants (with varying re-

quirements by providing tenant-specific adaptation and deployment), and maintain

enough commonalities (to exploit the economies of scale).

Indeed, a fully customizable SaaS application has a layered architecture, as

shown in Figure 41. All the aspects for an application can be configured through

a platform, from the top to the bottom layer, including Graphic User Interfaces

(GUI), workflows, services and data respectively. Tenant-specific customization of

a SaaS application affects all layers, from functional requirements such as designs

and texts in GUI, customized business processes to database schemas design.

One solution is to develop a set of customization mechanisms to allow tenants

expressing their requirements with the following features: easy to use (template

objects are provided as default); layered architecture (from GUI, workflow, service

and data layers); semantic oriented (using domain ontology to help the customiza-

tion process); intelligent (recommendation supported by mining knowledge from

tenants community and profiling); and adaptable (periodic maintain the framework

to improve performance).

Existing SaaS customization solutions do not satisfy these requirements. They

137

do not provide a unified and mechanism for SaaS customization. It is difficult for

tenants to generate individual applications, especially the new application scope of

organization may be broad, and the customer requirements are diverse. They require

that tenant organizations to master customized points, and this can be difficult.

Domain knowledge such as ontology is not well integrated into the customization

process. In addition, the customization process needs to be an incremental process

with automation support.

Take a scenario of creating a mortgage application as example. A new mort-

gage company customizes its own business requirements using mortgage SaaS may

encounter difficulty due to the intricacy relationship among layers. It is difficult

for the company to customize its GUI, business processes, services and data if the

customization process is complicated.

Furthermore, MTA brings in new challenges as the same code base will be

used for all tenants with individual customizations. There are several challenges,

such as how to recommend candidate components to tenant based on his profile

information? How to use domain knowledge, e.g. ontology information to help with

customization?

This chapter proposes OIC, a multi-layers ontology based intelligent customiza-

tion framework. Four layers from GUI, business process, service and data layers, are

modeled in a multi-layered architecture, and ontology information is used at each

layer to guide the customization process. According to the multi-layered model, a

framework is provided which can be applied in the development of SaaS. Based on

this framework, the SaaS providers are supported in their decision. The proposed

138

ontology-based layered framework for customization with the following features:

• This chapter exploits a multi-layer structure of SaaS applications, analyzes

their inherent relationships, as well as cross-layer relationship using ontology

information. To the best of our knowledge, this is the first customization

framework that uses ontology to guide the customization process.

• This chapter uses template objects as default, and recommends candidate

components at different possible layers (GUI, workflow, service and data) using

collaborative filtering techniques to provide a cost effective way to customize

tenants’ specific individual requirements.

• This chapter uses a case study in mortgage application to demonstrate the

proposed framework which can effectively improve customization in SaaS.

The chapter is organized as the following: Section 5.2 develops customization

algorithms with each layer using ontology; Section 5.3 uses data mining algorithms

to recommend similar components for tenants as references; Section 5.4 presents

the the multi-layered framework; Section 5.5 discusses the adaptive process of the

proposed framework; Section 5.7 discusses the related work in customization; and

Section 5.8 concludes this chapter.

5.2. Ontology based Customization

The framework has four layers: data layer, service layer, process layer, UI layer

respectively. The data layer and the service layer are the foundation and they

establish the data structure and operations for applications. The process layer

manages collaboration mechanisms, organizes services into the process to achieve

139

complex tasks. The GUI layer provides the interface between systems and end

users, accepts input from users and returns results back to users.

The customization process is assisted by domain Ontology [99], and this speci-

fies domain vocabulary and their relationships. All layers have their own ontology

information, thus data ontology, service ontology, business process (workflow) on-

tology, and GUI ontology, which describes the concepts and relations in that layer.

The following sections will discuss issue in each layer first, then discuss cross-layer

relationships and customization granularity.

5.2.1. Template Objects

It is helpful if a user can search objects (data, service, work-flows) in a repository,

and then reuse, include or modify them as needed when designing new ones, so that

the design phase will be easier and be shortened comparing with designing new ones

from scratch. But it is impossible to build generalized SaaS software to fulfill all

needs from diverse tenants due to the complexity.

To deal with the commonality of tenants, a set of templates (standard) objects

is provided for designers to assist SaaS customization. The template objects store

at different repositories at all layers (including data repository, service repository,

workflow repository and UI repository). 1 Given ontology information for a partic-

ular application domain, OIC use template objects as an initial starting point, and

support customization in a cost effective way. Also the recommendation engine can

1Some SaaS providers, e.g. saleforce.com can provide built-in objects, for things
as name, address, phone numbers, and email address, contains almost all possible
features in a domain and can be customized to meet individual special requirements.
OIC can easily integrate and reuse them. The notion of templates this chapter is
more general.

140

provide a list of candidate according to tenant’s profiling.

5.2.2. Data Layer

In a domain, multiple data ontology systems can be defined by different commu-

nities [48]. Existing research have discussed how to define ontology in a specific

domains, compare and integrate ontology systems between different communities.

For example, ACM and IEEE are two large communities and each has its own stan-

dards and practices. Even though they are similar but still distinct, and thus if the

corresponding ontology systems will be similar but distinct, Ontology integration

[109] is developed to solve these heterogeneities, which refers to build a larger and

complete ontology at a higher level using existing ontology systems.

As a concept structure of domain knowledge, ontology is usually represented

as a tree. Comparing the concepts of two nodes in the tree, can be easily estimated

by domain experts. For instance, “people” and “human being” are referring to the

same meaning with a similarity degree of 1. “faculty” and “professor” are very

similar in university domain, with similarity degree 0.95, which means around 95%

occasions these two are describing the same concept. Some research have been done

in determining conceptual similarity in a knowledge context[162].

Data layer customization is guided by ontology information. After searching

for the domain ontology, e.g. mortgage domain, one can find the template, and

customize it using ontology to guide the customization process. Take a mortgage

application as an example, Figure 42 shows a sample of ontology-based customiza-

tion process. As one can see, given the ontology tree T (Figure 42(a)), two mortgage

companies A and B can customize their own templates by picking up desirable com-

141

Mortgage

Customer Product

Credit
Score

Asset LiabilityIncome

RateType

Fix Variable

DebtTo
Income

Property
Type

Purchase Refinance

CashOut

Investment
Fund

Saving
Account

Investment
Account

LoanAmt

CurrentAmt FutureAmt

Mortgage

Customer
Rate
Type

FixCredit
Score

Mortgage

Customer Rate
Type

Variable
Credit
Score

Income

(b) Customization 1

(c) Customization 2(a)Sample Ontology Tree

Income

AssetLiability

DebtTo
Income Fig. 42. Sample Ontology Tree and Customizations in Mortgage Applications

Customer Credit
Score

Income

1 675 80,000

2 712 110,000

Mortgage Company A Mortgage Company B

590

720

712

675

Credit
Score

Tenant
ID

Customer Income Sparse

1 1 80,000 (NULL)

1 2 110,000 (NULL)

2 1 70,000 120,000 280,000 4

2 2 56,000 58,000 200,000 3.57

Multi-tenancy Data Schema

Asset DebtToIncomeLiability

200,000

280,000

Liability

58,000

120,000

Asset

56,000

70,000

IncomeCustomer Credit
Score

DebtTo
Income

1 720 4

2 590 3.57

Asset Liability DebtToIncomeAsset Liability

DebtToIncomeAsset Liability Fig. 43. Sample Database Schemas for Mortgage Applications

142

ponents in T optionally, the customized template for A is shown in (Figure 42(b)),

while company B in (Figure 42(c)). Both of them have some similarity, e.g. credit

score and income (in dashed circle), as well as differences where company A has

more attributes to consider, including asset, liability and debtToIncome.

Furthermore, the ontology semantic information can be matched to database

logic designs. The domain objects can represent a large proportion of meta-data

that are serialized into the data repository. Multiple database schemas can be used

in MTA[8], such as XML, sparse table, views, tenants can choose any database

schemas as needed.

Example 1: The mortgage loan application process, each mortgage com-

pany(lender) is treated as independent tenant and processes loan applications from

end customers everyday. Suppose two mortgage companies try to build their own

mortgage business applications, where company A choose the default template, and

company B uses customized data schemas (mapping to ontology tree in Figure 42).

Sample data tables for {customer} entity is shown in Figure 43 for each company

(on top), as well as the multi-tenancy database schema support (at bottom). Note

that to explicitly demonstrate the customization process in the data schema, we

choose sparse representation for demonstration purpose, all other possible schema

designs, e.g. XML can also be used here.

5.2.3. Service Layers

The service could be atomic services and composite services. An atomic service

is the basic service which accomplishes fundamental operations, while a composite

service involves several related atomic services to conduct more complex tasks.

143

The atomic service customization is the easiest case. To differentiate a service,

one has to understand the unique parts in a service in a description/profile. Every

service represents an underlying capability under specific terms and conditions. The

capability offered can satisfy the customer’s requirements with certain constraints.

The terms to offer including several aspects as properties [102], e.g. cost, discounts,

availability, QoS, convenience to use and etc.

More complicated task can be achieved by ontology. Semantic Web community

has made efforts in the development of expressive languages to describe web service

ontology based on artificial intelligence technology, including RDF, DAML+OIL,

and OWL.Researchers have developed automated reasoning machinery to address

more difficult tasks including automated Web Service discovery, semantic translation

and automated Web Service composition.

Example 2: The mortgage company tries to “find the closest bank partner

to finish the financial status checking step for a loan application”. The domain

ontology for bank service is shown in Figure 44. The functionality branch contains

a classification of service capabilities, one for finding bank partner and the other

for calculating distances between two locations. Using the sample service ontology,

the task can be customized and automated. The right services can be selected

automatically from a collection of services. Ontology provides a flexible selection

which can retrieve services that partially matching a request but are potentially

interesting.

144

Service

Functionality

Zipcode Financial
Checking
Provider

Product

Data Structure

Location

FindFinacial
CheckSupplier

Compute
Distance

Finacial
Status

Bank Credit
Union

City

…

ByZipcode ByCity BySupplier BetweenZip
codes

Between
Cities Fig. 44. Sample Mortgage Service Domain Ontology

Setup
Underwriting-
Initial review

Underwriting-
Approval
Completion

Clear
Conditions

Approval

Underwriting-
2nd review

Pending
Counter Offer

Pending
Decline

Decline

Pending
Withdrawal

Withdrawal
Exception
Review Customer

Accept

Customer
Reject

Setup
Underwriting-
Initial review

Underwriting-
Approval
Completion

Clear
Conditions

Approval

Underwriting-
2nd review Decline

Withdrawal

(a) Loan Application Workflow

(b) Simplified Version with Customization
Fig. 45. Sample Mortgage Workflow Customization

145

5.2.4. Business Process Layer

In this layer, the services and participants have been organized to achieve more

complex business tasks, workflows, which consist by a set of activities and represent

business processes. Tenants can search a workflow repository using keywords and

retrieve the relevant ones according to their interests. The customization process

is based on the business domain knowledge in multi-layered workflow with a series

of steps or transformation from template objects. Data pass information through

flows, and act as the step transformation conditions.

Example 3: The mortgage origination is an end-to-end process beginning with

the submission of a mortgage application to a lender and ending in closing (lender

approves, applicant accepts and lender funds the loan) or non-closing (either lender

disapproves, or applicant withdraws or refuses approved offer by lender). A sample

workflow template is shown in Figure 45(a). As a new open mortgage company

comes in, it may only need some basic functionality, hence it can utilize workflow

search engine [132] to get a customized workflow as in Figure 45(b), which returns

informative and concise search results, defined as the minimal views of the most

specific workflow hierarchies. The choice of workflow is made depending on domain

ontology information.

5.2.5. GUI Layer

A UI ontology can be built to provide the concepts, relationships, reasoning, and

searching for UI-related elements. The ontology should include UI classification in-

formation includes[151]: data collection, data presentation, monitoring, command-

and-control, and hybrid (combination of two or more types). Much easier UI

146

Setup

Clear Conditions

Approval

Underwriting-Review

Decline

Mortgage Application System

Online shopping
template

Mortgage Application
template

UI Composition Points

Setup Underwriting-Review

…

UI Repository

Setup UI Underwriting -
Review UI

… Fig. 46. Sample Mortgage UI Customization

customization is to change and configure the appearance and the UI available to

the users, including adding/editing/deleting the icons, colors, fonts, titles in pages,

menus and page-sections.

Example 4: A sample UI customization is shown in Figure 46 outlines for

mortgage application. The application template on the upper right is specified by

the workflow at upper left. The UI Composition points are where the application

interact with tenants and accept customization. Searching UI repository, one can

find candidate template objects according to individual preference.

5.2.6. Cross-Layer Relationship

The cross-layer relationships appear between data layer and service layer, service

layer and workflow layer, UI layer and other three layers. Recall the hierarchy model

in Figure 41, three types of relationship are embedded in the multi-layered model,

include: (1) Feed: between data and service layer, representing the data information

147

workflow

Service

GUI

…

M
ul

ti-
te

na
nc

y
C

on
te

xt

Data

O
nt

ol
og

y
R

ef
er

en
ce

Web portals Desktops Mobiles

Information Delivery
Service (GUI)

Integration Service
(Workflows)

Metadata Service

Data ServiceD
es

ig
n

an
d

M
an

ag
em

en
t S

er
vi

ce
s

Ad
m

in
is

tra
tio

n
D

ev
el

op
m

en
t S

er
vi

ce
s

Business Users

Developer Administrator

Role-based Access Control

R
ec

om
m

en
da

tio
n

En
gi

ne

Repositories

Fig. 47. System Architecture of OIC

as the input of certain services and the storage of results from them. For example,

the data mining service needs plenty of data and writes the analysis results back

the data storage. (2)Composition: Data and services serve as the participants of

business process. Data acts as the information passed through the workflow, and the

conditions judged by the transformation between steps. Services are the composite

units for the business process. (3)Interaction: Data services and processes have to

interacted with users. Pages acquire the input information and injunction, expose

the result of services and examine the states of the executing process.

Ontologies are related to and referenced each other as shown in Figure 48. For

example, a service ontology as candidate solutions for the workflow ontology. On-

tologies also cross references with each other. Specifically, a workflow ontology may

reference specific services in service ontology that are applicable to the business ap-

plication. For example, a mortgage application may reference the following services:

underwriting review, clear conditions, and etc. In this way, a tenant can identify

148

UI1Data1 S1

UI2
Data2 S2

UI3
Data3 S3

UI4
Data4 S4

UI5
Data5 S5 Fig. 48. Example of Ontology Cross Layer Reference

the related objects quickly for customization.

5.2.7. Customization Granularity

Two types of variants for customization: lightweight and heavyweight. For lightweight

variants, e.g. service flavor changes [67], in which the same enterprise service can

be offered to diverse customers. The capability in lightweight variants remains the

same, while the terms at which the object is offered becomes varied. Another vari-

ations is heavyweight, in which the inherent variability in the underlying business

process, requirement specifications, customer requirement and etc. are all different.

It causes all layers changed. The heavyweight variants bring more challenges in

SaaS model and result in inherent variation in the business process, rules, industry

requirements and tenant specific requirements.

From the lightweight to heavy weight, the customization granularity can be

classified into four categories, as the following four levels: Level 1 Parameter cus-

tomizable: simplest case, least flexibility. Tenants can only utilize the templates by

editing parameters of entities. Level 2 Entity customizable: Tenants are authorized

to create their own business entities or fields with the help of templates and wizards.

More difficult than level 1, with more flexibility. Level 3 Composition customizable:

149

Tenants can compose a new business process using relative data and services to

accomplish new tasks. Tenants have to think over more relations during the cus-

tomization process. Level 4 Implementation customizable: professional tenants can

develop their own objects with the toolkit. Tenants are have the greatest freedom

of customization process. The most comprehensive flexibility and complicity layer

in all.

Based on the multi-layered customization model, the SaaS providers can have

a better understanding of the essences for SaaS customization. Before starting their

own SaaS design, they can consider existing resources and make design choices. A

hybrid SaaS service provides different customization granularity according to busi-

ness requirements.

5.3. Intelligent Recommendation

To provide more intelligence support, customization can get help from recommen-

dation, which works at all layers to provide more candidate templates for tenants.

The knowledge can be mined from similar community in the repository or tenants’

own history behaviors. The opinions of a community to help individuals in the

community identify content of interest from a potentially large set of choices more

effectively. Industry partners, such as Amazon have shown that a retail experience

can be substantially enhanced by statistically correlating macro patterns in buying

and browsing behavior. Tenant’s behavior history captures his preferences infor-

mation well and can be used to predict his future actions. Basically, two types of

methods can be used here:

Collaborative Filtering (CF) [53], the process of filtering information/patterns

150

using techniques involving collaboration among multiple agents, viewpoints, data

sources, etc. The intuition of CF is that similar users vote similarly on similar

items. Hence if similarity is determined between users and items, a potential pre-

diction can be made for the vote of a user for a given items. The common insight is

that personal tastes are correlated: for example, both mortgage companies A and B

prefer templates {T1, T2} and A prefers T3 then B is more likely to prefer T3. Given

tenant B’s existing template choices, the system can recommend new templates to

him with high confidence to cater for his taste.

As the preparation for CF, one has to explore tenants similarity, social networks

can be used to identify potential friends and community of interest for tenants.

Several memory-based algorithm can be used, including k-Nearest Neighborhood

(kNN)[126], Pearson Correlation, and Cosine Similarity [138]. Formally, given vi,j

is vote of tenant i on template j, Ii represents items for which tenant i has voted,

the mean vote for i is vi =
1
Ii

∑
j∈Ii vi,j . To predict an active tenant a’s vote, which

is defined as

paj = va + κ

n∑
i=1

ω(a, i)(vi,j − vi) (5.1)

where κ is normalizer, and ω(a, i) is the weights of n similar users. Specially, the

ω(a, i) can be defined by kNN (in Eq.5.2), Pearson Correlation (in Eq.5.3), and

Cosine Similarity in (Eq.5.4) as following:

ω(a, i) =


1 if i ∈ neighbour(a),

0 otherwise.

(5.2)

151

ω(a, i) =

∑
j(va,j − va)(vi,j − vi)√∑

j(va,j − va)2
∑

j(vi,j − vi)2
(5.3)

ω(a, i) =
∑
j

va,j√∑
k∈Ia v

2
a,k

vi,j√∑
k∈Ii v

2
i,k

(5.4)

Content-Based Recommendation uses the tenants’ profiling[20], such as

tenant configuration files, and tenant context (initial loaded from tenant’s config-

uration files and updated accompany with tenant’s information) to make recom-

mendations. Many classification algorithms, e.g. naive bayesian, decision tree, and

supported vector machine (SVM), can be used to predict the category of a ten-

ant. For instance, tenants can be classified into different clusters, and a new tenant

from mortgage domain will share similar features from tenants in the same domain.

The system can predict new tenant’s preference accordingly using classification al-

gorithms.

Example 5: Take service layer as an example, a tenant provides his require-

ments using a semantic document which may vary from service description and QoS

parameters. The system compares the tenant’s request with existing service tem-

plates in the repository, provides a list of available candidate services for the tenant

to choose according his preference using either CF or content methods. Based on

users’ feedback, the recommendation system orders the list and presents to the ten-

ant with a desirable service. At last, the user may provide a rating to this service

using given metric which indicates user’s satisfaction level. It can be stored in a

repository and used as an input for the recommendation in future.

152

5.4. OIC System Architecture

The OIC architecture is shown in Figure 77 with four main parts for different roles in

SaaS applications: (i) for developers, the design and management layer(left most);

(ii)for administrator, the infrastructure administration and configuration layer (right

most);(iii) for business users, the end-users access tools layer (top); and (iv) the core

services layer (central rectangle).

The design and management layer contains services (left most virgule) to design

models and manage development projects for developers. This layer offers an on-

demand design in order to ensure platform integrity which simplifies the deployment

process and easy access to the development environment. It reduces the installation

time and cost for development infrastructures.

The infrastructure administration and configuration layer (right most virgule)

offers a web-based tool for administrators to manage users accounts, configure ser-

vices and report platform usage and performance information.

The end-users access tools layer (top most) contains client applications for

business users to access the platform. Many different applications can be supported,

e.g. mobile technologies, web services, and desktop tools.

The core services layer support customization requirements used by different

users. Four essential services (in light green) mapping to the proposed multi-layered

model: (i) the information delivery service(IDS) is an abstraction level to support

multi-tenants interfaces and technologies (e.g., web browser, mobile, office tools). (ii)

the integration service (IS), which offers an ad-hoc way to define data integration

jobs, workflows, etc. (iii) the meta-data service (MS), which facilitates information

153

sharing and exchange between all services, with meta-data and business information

definition support. (iv) data services(DS), which explores business data information,

and communicate with other services to support business requirements.

Several customization components(in blue vertical virgule): (i) role-based ac-

cess control: determines which resources and functions each user should be allowed

to access lies with the tenant. Users are grouped into different roles according to

the organizational structure and ontology, and the access control privileges can be

configured accordingly (More details in [153]). (ii)multi-tenancy context: analyzes

the context information of new SaaS application, e.g. location, requester informa-

tion, application domains and etc. All those can be used later for recommendation

and mining. (iii)ontology reference: provides the fundamental semantic support for

customization. Cross layer relationship has hidden correlation by ontology refer-

ences. (iv)recommendation engine: use data mining techniques to recommend the

most similar services/templete in the repository. (v) repositories: each component

has a repository in SaaS platform, which store template objects, including workflow

repository, service repository, and etc.

5.5. Adaptive Customization Process

The OIC framework works in an adaptive way, as shown in Figure 49. At differ-

ent layer, customers can customize and modify the “component” (e.g. datatable

attributes, service components and etc.) in the template according to individual

requirement. The customization process can be subdivided into two major parts,

template retrieval and adaptation process. The first part is to retrieve templates

from the repository using intelligent recommendation or default setting by keyword

154

search. The second step is an iterative procedure which performs the necessary

adaptation of the retrieved base-template if it does not fully fulfill customer’s spe-

cific demands.

In most cases, template retrieved may not match the customer’s specific de-

mand, the components in template which is not desirable as tenant requirements,

named as “ undesirable components (UC)”, can be replaced with other suitable

components. An iterative procedure then works through all UCs and retrieves the

more suitable components from component databases. If needed, the component

can be configured, updated and altered to satisfy with desirable features. Specially,

to ensure the quality of the customization, a validation process is also offered after

each new component is updated. Finally, after all the components are configured,

updated and validated, the new product is formed.

5.6. Case Study

This section uses a mortgage application system to illustrate how to customize

SaaS in real business scenarios. Assume three mortgage companies S,M,L are

trying to use OIC to customize their own mortgage application systems with diverse

requirements as follows:

• S, a small start-up company, wants to build up a simple mortgage system in a

short time, and can afford limited cost. Hence, it can use all default templates

in different layers provided by OIC easily.

• M , a middle size mortgage company, owns hundreds of customers and increases

its business scale gradually recently. It decides to move to SaaS model with

155

Basic Template
Retrieve

Template
DB

Component
Selection

Basic
Templates

Undesirable
Component

Validate
Component

Component
Retrieval

Component
DB

Alternative
Component Component

Update

Updated
Product

Product
Validation

Policies

SLA, QoS

Final
Product

 Fig. 49. Adaptive Recommendation Process

some unique requirements in mind, represented as ontology at different layers.

OIC can support its customization from data layer, up to UI layer in a cost

effective way.

• L, a large mortgage company, has more than thousands of customers every

month, with a high availability and scalability requirement. It can afford high

cost of usage for high performance services.

The template choices sample in each layer for all three companies are shown in

Figure 50. Take L as an example, given its business domain of mortgage application,

OIC starts customization from data layer, matches its ontology to database schemas,

and extended database templates with more customized tables and attributes as

described in Section 5.2.2. Then OIC searches the service repository, and pick more

156

S M L

UI layer

Workflow Layer

Service Layer

Data Layer
(DB schema)

S1 S1 S2 S1 S2 Sn

D1 D1 D2 D1 Dn

UI1 UI2 UI3 UI1 UI2 UI3

…

W1 W1 W2 W1 W2 W n

…

… Fig. 50. Comparison of Three Tenants Customization Samples

advanced services, such as “approval but reject”, “approval and accept” to satisfy

his unique requirements as in Section 5.2.3. Up to workflow layer, by searching the

working repository, L can modify the workflow according to its advanced business

requirements using methods proposed in Section 5.2.4, finally OIC searches for UI

repository to get the matching templates with more modification methods as in

Section 5.2.5.

5.7. Related Work

Software customization has been a research problem for a long time, but SaaS cus-

tomization using the same code base is a new issue. Traditional customization

include parametrization, AI rules, file-based customization, and template-based cus-

tomization such as Template Method in OO design patterns [49]. Customization

may be done manually, automatically, and adaptively[92]. Customization may be

based on software running history, current workload including file size and memory

157

requirements, or user experience such as GUI and user interactions.

Traditional customization is often reflected in products offered in different pack-

ages, e.g., one package offers one set of features, while the other different set of

features. Service-oriented architecture (SOA) offer a new way of customization as

a new application may be re-composed from an existing application by using dif-

ferent services. Furthermore, this can be extended to GUI composition, test script

composition, and dynamic process composition in a community ([157, 152]). Thus

it introduces a new customization mechanism, e.g. service replacement.

SaaS customization has mainly addressed data-level customization, specifically

data schema design. Specifically, the data architecture of multi-tenant [29] is iden-

tified as three distinct approaches (Separate Databases, Shared Database Separate

Schemas and Shared Databases Shared Schema). [164] proposed a new schema-

mapping technique for multi-tenant data named Chunk Folding. But they have not

touched other layers in customization. Another group of researches touched service

level, for example, Zhang [170] proposed a novel SaaS customization framework us-

ing policy through design-time tooling and a runtime environment. Mietzner [95]

described the notion of a variability descriptor which defines variability points for the

process layer and related artifacts in a service-oriented manner. Li [85] considered

the multi-layer and cross layer relationship, and used multi-granularity models to

compose customization tasks. Essaidi [44] presented an open source infrastructure

to build and deliver on-demand customized business intelligence services.

These existing projects either discussed solutions in certain layer of customiza-

tion or did not investigate the relationship cross layers based on ontology informa-

158

tion. Also, no recommendations are provided to tenants as the guide to configure

the process. Thus, the task of customization is still difficult.

Existing industry partners support SaaS customization in their own ways. For

instance, Google App Engine (GAE) [43] offered the customization at the program

layer using a deployment description file in which users can change the parameters

such as servlet, URL paths, jsps, and security methods. GAE also supports service

layer customization in which users can set up service names and domains, control the

billing budgets. However, workflows and date are not customizable at GAE. Amazon

EC2 [41] offers similar customization capabilities as GAE, but it does not offer the

workflow layer. Salesforce.com [46] offers a flexible customization framework, in

which users can customize the UI, workflow and data inside their framework, but

semantic information, e.g., ontology is not integrated into customization.

Ontology based customization has been applied to other domain such as Rets-

chitzegger [119], and often they used a context reasoning module to analyze ontology

information to guide customization rule engine. Yarimagan [167] proposed a cus-

tomization tool for the Universal Bushiness Language. But these are not related to

SaaS.

5.8. Conclusion

In this chapter, we have introduced OIC, a multi-layer ontology-based intelligent

customization framework to support and manage the variability of SaaS applica-

tions and tenants-specific requirements. Ontology is used to derive customization

and deployment information for tenants cross layers. Intelligent recommendation

engine is used to support new tenants to deploy using information from existing

159

deployed SaaS applications. For the future, we plan to investigate the database par-

titioning and scheduling algorithm to work together with the proposed customization

framework, as well as loan balancing, recovery mechanism in SaaS.

160

6. TOWARDS A SCALABLE MULTI-TENANCY SAAS

Software-as-as-Service (SaaS) is a new approach for developing software, and it

is characterized by its multi-tenancy architecture and its ability to provide flexi-

ble customization to individual tenant. However, the multi-tenancy architecture

and customization requirements introduce many new issues in software, such as

database design, database partition, scalability, recovery, and continuous testing.

This chapter proposes a hybrid test database design to support SaaS customization

with two-layer database partitioning. The database is further extended with a new

built-in redundancy with ontology so that the SaaS can recover from ontology, data

or metadata failures. Furthermore, constraints in metadata can be used either as

test cases or policies to support SaaS continuous testing and policy enforcement.

6.1. Introduction

Software-as-a-service (SaaS) is software that deployed over the internet and often

run on a cloud platform. With SaaS, a software provider licenses an application

to customer as a service on demand, through a subscription or a “pay-as-you-go”

model. A common SaaS application is CRM (Customer Relationship Management).

Notable SaaS applications include Salesforce.com which provides on-demand CRM;

Peoplesoft from Oracle which provides SaaS infrastructure for enterprise applica-

tions; Google maps and Google apps (such as Google docs, gmail); and Microsoft

Office Web Apps. As a proliferating software model, more application developers

will embrace the SaaS model. However, it also faces new challenges.

(1) Multi-Tenancy Architecture (MTA) Support: Multi-tenancy refers

to a principle where a single instance of the software runs on a server, serving

161

multiple client organizations (tenants), which is often used in SaaS. With MTA, a

software application is designed to virtually partition its data and configuration, so

that each client works with a customized virtual application instance. Although all

tenants share the same software, they feel like they are the sole user of the software.

A maturity model for SaaS with four levels is proposed in [29] with, the highest

level of SaaS being configurable, scalable, and having MTA. A configurable SaaS is

often achieved by customization and a scalable SaaS is often achieved by duplicating

software to meet the increased load. The MTA requires SaaS providers to support

a huge number of applications. In 2009, Salesforce.com [163] reported that it is

supporting 100,000 distinct applications using 10 databases running on top of 50

servers in two mirror-sites with just one software base. Due to the unique features

of MTA, a realistic SaaS application needs to address the following issues:

• Scalability: The algorithm should adjust according to the changing load of

system. Specifically, if the workload increases, resources (such as processors,

memory, and disk space) should be allocated to handle the task, and if the

workload decreases, resources should be re-allocated to other tasks. In this

way, resources can be dynamically allocated and re-allocated at runtime. Ide-

ally, the increase (decrease) in resources should be proportional to the increase

(decrease) in workload, while keeping the performance of each task at an ac-

ceptable level;

• Database partitioning and consistency: Tenant data need to be partitioned

well in the back-end database to support real-time high performance comput-

162

ing;

• Fault-tolerant computing: The failures of processors or storage should not

affect the operation or data because they may represent business transactions

that will bring in revenue for the company.

• Security and fairness: Tenant data should be isolated from each other, and

tenants of the same priority should receive the same level of services and

resources as multiple tenants will share the same software and possibly also

the same database in MTA;

• Parallel processing: It is highly desirable that the tasks can be processed in

parallel such as done by Map-Reduce to take advantage of the massive number

of processors, memory and storage units available in a cloud environment;

• Isolation: Any changes in a tenant’s data should not affect any other tenants;

• Performance and availability: As one SaaS program potentially needs to serve

hundreds of thousands or even millions of tenants or applications, it is critical

that SaaS software can provide real-time performance and availability with

automated data migration, backup and restoration and isolation.

Note that cloud computing has changed computing significantly due to massive

number of processors will be used to support real-time applications that require

high availability and reliability. Data must be reliably stored and restored in case

of data failure. A cloud need to allocate resources to a computing task in case of

raising workload and re-allocate resources when the workload decreases. In cloud

163

computing, system availability, performance, reliability and security will be more

important than minimizing system resources. To appreciate the scale scope of cloud

computing, one can take look of the existing cloud infrastructure. For example,

Google data center [21] reports that it can host 45K servers in 45 containers in

one single data center as reported in 2009. Microsoft [63] also reported their data

center version 4.0 recently where there will be no side walls so that processors can be

exposed to air, and containers of processors can be added to the data center to meet

the increased workload. These massive numbers of servers will be used to provide

real-time computing with automated reconfiguration and recovery mechanisms.

In [156], we proposed a four-layered architecture for SaaS customization. This

chapter further extends the four-layer architecture, with an additional data layer, to

provide a scalable framework for SaaS. This chapter discusses the possible database

partitioning choices for SaaS in the data layer. For each choice, this chapter discusses

what types of application is suitable for taking advantage and their trade-offs. This

chapter also proposes the related load-balancing algorithms to address the schedul-

ing problem when data are partitioned. More details will be discussed in Section

6.4.

(2)SaaS testing with new challenges: Testing SaaS is different from testing

software services as SaaS involves customization, configuration, and scalability while

services involves only calling and responding with QoS constraints. Currently the

testing of SaaS software often uses the traditional software testing practices. As

only a single copy of the software is maintained for multiple sharing tenants and

each having different requirements. Furthermore, a new tenant may be added into

164

SaaS, and bring new requirements after SaaS deployment, and thus SaaS testing may

need to continue after deployment. In fact, as the SaaS being deployed, it needs to

be continuously verified to support the SaaS. This feature has been used by Google

Chrome OS where continuous verification is a key feature. As SaaS being developed,

it also needs to be tested and evaluated, and thus SaaS requires a continuous testing

model throughout its entire lifecycle. iTKO [64] is a new SaaS testing enterprise

that uses the continuous testing when building up their DevTest Cloud. iTKO’s

continuous validation service (CVS) feature orchestrates the testing and validation

aspects of IT, Integration workflows and SOA Governance, to ensure reliability and

instill trust throughout the lifecycle of the application.

This chapter proposes a built-in continuously testing SaaS testing framework

from ontology and metadata to support QoS (Quality of Services) and SLA (Ser-

vice Level Agreement). Besides continuous testing, testing SaaS software can also

be collaborative by nature since it is usually developed with a service oriented ar-

chitecture. In this chapter, a collaborative testing environment by generating test

scripts in a collaborative manner. The schema integrates continuous testing with

the storage layer, by leveraging database triggering rules. Integrating testing and

intelligent testing can also be conducted within the framework.

(3) Ontology-based analysis and development: Ontology can have a sig-

nificant role in service applications and SaaS development, and it can be used for

specification, references, reasoning, and even customization [156]. In the customiza-

tion framework, each layer is supported with its own ontology for discovering similar

templates and conducting intelligent mining.

165

As a summary, cloud computing and SaaS provide new requirements for scal-

ability, and robustness. Knowing the key differences between cloud computing and

traditional computing can help to better understand the issues in SaaS. Comparing

with traditional computing, cloud computing has several major differences, as shown

in Table 51: In terms of scalability, cloud computing provides on-demand resource

scaling, which allows the cloud users to scale their applications dynamically accord-

ing to application workloads. It is the most cost-effective way for users to scale

since they do not need to worry about the management of resources and hardware

costs. While in traditional computing, users need to support scalability either by

scaling up (upgrading the configuration of the hardware) or scaling out (buying and

adding more compute nodes into the system). This is not cost-effective when what

the users want to deal with is only temporary workload changes. In traditional

computing, usually one issue is considered when conducting the computing. For

example, fault-tolerant computing concerns more about availability, while real-time

computing concerns more about application performance. However in cloud com-

puting, all the issues, such as fault-tolerance, reliability, application performance,

resource management, need to be taken into consideration at the same time. This is

a new type of software engineering. In traditional computing, people concerns more

about efficient resource utilization and management, while in cloud computing, the

reliability of the cloud system becomes a serious concern. The importance of the

read/write operations is also changed. Write operations are considered to be more

important in cloud computing because a write update may represent a customer

order [39], while it is the opposite case in traditional computing where efficient

166

 Traditional Computing Cloud Computing

Scalability Provides scalability by

scaling-up or scaling-out.

Need to buy / update hardware

to scale to satisfy increasing

demand. Resource might be

wasted as idle.

Provides “on-demand”

scalability to users of the

cloud. The resources can be

dynamically allocated and

released. User can scale with

low hardware costs.

Software Architecture Usually focuses on a single

facet, such as fault-tolerant

computing, real-time

computing. Traditional

software engineering

principles can be applied.

A new kind of software

engineering: Many separate

issues, such as fault-tolerant

computing, real-time

computing, database, are all

involved together in the cloud.

Frequency and priority of

operations (Read/Write)

Read operations are

considered more important

than write operations

Write operations are

considered more important

than read operations

System Metrics Resources are considered to be

more important. The efficient

management of resources is

highly valued.

Reliability is considered to be

more important than

resources. Efficient

reallocation of the resources is

highly valued.

Fig. 51. Major Differences of Cloud Computing and Traditional Computing

execution is the primary concern.

The contribution of this chapter is five-fold:

• This chapter tackles the scalability problem in SaaS framework by extending

the previous four-layer SaaS customization framework with additional data

layer.

• This chapter investigates a two-layer partitioning schema with effective index

to support scalability in SaaS applications.

• This chapter incorporates the feature of continuous testing in the proposed

SaaS framework, which provides embed testing support.

• This chapter exploits the usage of ontology in providing support for customiza-

tion, recovery and continuous testing in SaaS.

This rest of the chapter is structured as follows: Section 6.2 discusses the

167

related works. Section 6.3 presents the SaaS framework with data layer to support

scalable SaaS. Specific database partitioning schemes and related issues are discussed

in Section 6.4. Section 6.5 concludes this chapter.

6.2. Related Work

This chapter is related to several perspectives, including SaaS customization, database

partitioning, SaaS recovery and testing. The following sections will discuss these

topics in turn.

6.2.1. SaaS Customization

Existing SaaS customization has mainly addressed data-level customization, specif-

ically data schema design. Specifically, the data architecture of multi-tenant [29] is

identified as three distinct approaches (Separate Databases, Shared Database Sepa-

rate Schemas and Shared Databases Shared Schema). [164] proposed a new schema-

mapping technique for multi-tenant data named Chunk Folding. But they have not

touched other layers in customization. Another group of researches touched service

level, for example, Zhang [170] proposed a novel SaaS customization framework us-

ing policy through design-time tooling and a runtime environment. Mietzner [95]

described the notion of a variability descriptor which defines variability points for the

process layer and related artifacts in a service-oriented manner. Li [85] considered

the multi-layer and cross layer relationship, and used multi-granularity models to

compose customization tasks. Essaidi [44] presented an open source infrastructure

to build and deliver on-demand customized business intelligence services.

These existing projects either discussed solutions in certain layer of customiza-

tion or did not investigate the relationship cross layers based on ontology informa-

168

tion. In our previous work [156], we addressed the problem of customizable SaaS

with MTA by providing a four-layer architecture. This chapter further extends the

four-layer architecture, with an additional data layer, to provide a scalable frame-

work for SaaS.

Existing industry partners support SaaS customization in their own ways. For

instance, Google App Engine (GAE) [43] offered the customization at the program

layer using a deployment description file in which users can change the parameters

such as servlet, URL paths, jsps, and security methods. GAE also supports service

layer customization in which users can set up service names and domains, control the

billing budgets. However, workflows and date are not customizable at GAE. Amazon

EC2 [41] offers similar customization capabilities as GAE, but it does not offer the

workflow layer. Salesforce.com [46] offers a flexible customization framework, in

which users can customize the UI, workflow and data inside their framework, but

semantic information, e.g., ontology is not integrated into customization.

6.2.2. Scalability and Database Partitioning

Data partitioning is a well-studied problem in database systems (e.g., [94, 121,

22, 87, 40]). In the literature, many partitioning schemes have been studied; e.g.,

vertical partitioning vs. horizontal partitioning, round-robin vs. hashing vs. range

partitioning [23]. Past work has noted that partitioning can effectively increase

the scalability of database systems, by parallelizing I/O [87] or by assigning each

partition to separate workers in a cluster [94]. H-Store [141] presents a framework

for a system that uses data partitioning and single-threaded execution to simplify

concurrency control. G-Store [37] extend this work by proposing several schemes

169

for concurrency control in partitioned, main memory databases, concluding that

the combination of blocking. The discussion of vertical partitioning, e.g. column

based database has been introduced recently, including MonetDB [18], C-Store [140],

which can provide performance improvement on read-intensive analytical processing

workload, such as in data warehouse.

To support scalability of cloud, data partitioning becomes a widely accepted so-

lution. Parallel DBMSs with emerging cloud data management platforms is provided

by industry partners, such as ([19, 35, 39, 98]) (such as efficient data partitioning, au-

tomatic fail over and partial re-computation, and guarantees of complete answers).

In the database community recent work compared the performance of Hadoop ver-

sus the more traditional (SQL-based) database systems [106] which focusses on

read-only, large scale OLAP workloads, and [77, 78] focused on OLTP workloads.

Berkeley’s Cloudstone [137] specifies a database and workload for studying cloud

infrastructures and defines performance and cost metrics to compare alternative

systems.

In this chapter, a novel two-layer model for partitioning is provided, which

first partitions horizontally by tenants, and then vertically partitions by columns.

The model can benefit both read and update operations comparing with horizontal-

partitioning only or vertical-partitioning only methods. Effective indexes, DHT

and B-tree are used at each layer respectively to help with the load balancing and

scheduling.

170

6.2.3. Recovery Mechanism

Traditionally, data recovery is achieved by adding / storing some redundant infor-

mation so that whenever the data is corrupted / lost, it can be reconstructed using

the redundant information. For example, in different filesystems, checksum is usu-

ally computed for each data block to verify that the operation is performed correctly.

In RAID 1, it simply uses mirroring to store additional copy of the data. In RAID

2, 3, 4, 5 and 6, they use different kinds of parity as redundant information so that

the failure of one disk can be recovered. However, there are disadvantages in these

approaches. First, the filesystem approach can not tolerate the failure of the entire

disk. Second, the hardware is expensive. Most of the cloud computing platform

use cheap commodity machines as nodes for computation, and thus RAID is usually

not available on these commodity machines. Third, the redundant information is

centralized. If power outage happens to the node having the RAID array, all the

data will be unavailable.

To provide better availability, replication is a frequently adopted technology in

the cloud. However, such recoverability is provided outside of the SaaS framework.

In some cases it might be desirable that recoverability can be embedded in the SaaS

framework. This chapter proposes a solution which can recover different data type

with the assist of ontology information.

6.3. SaaS Customization Framework

A multi-layer customization framework OIC is proposed in [156]. In the chapter,

all the aspects for an application can be configured through a platform, and tenant

specific customization of a SaaS application affects all layers, from functional require-

171

Layer 1
GUI

Layer 2
workflow

Layer 3
service

Layer 4
data

Layer 5
storage

O
ntology R

eferences

Fig. 52. Multi-Layered Architecture for SaaS Customization

ments in Graphic User Interface(GUI), customized business processes to database

schemas design. The customization process is assisted by domain ontology [99], that

specifies domain vocabulary and their relationships. All layers have their own ontol-

ogy information, thus data ontology, service ontology, business process (workflow)

ontology, and GUI ontology, that describes concepts and relations in that layer.

OIC allows users to search for objects (data, service, workflows) in a repository,

and then reuse, include or modify them as needed when designing new ones, so that

the design phase will be easier and be shortened comparing with designing new ones

from scratch. To deal with the commonality of tenants, a set of templates (standard)

objects is provided for designers to assist SaaS customization. The template objects

are stored at different repositories at all layers (including data repository, service

repository, workflow repository and GUI repository). Given ontology information

for a particular application domain, OIC uses template objects as an initial starting

point, and support customization in a cost effective way. Also the recommendation

172

objects
Database Tables

objects

(1st level) (2nd level)

Metadata Data Pivot Index

Traditional DB Design

Metadata Driven DB Design

Fig. 53. Metadata Driven Database Design

engine can provide a list of candidates according to tenant’s profiling.

This chapter further extends OIC with an additional storage management

layer, as shown in Figure 77, responsible for database partitioning, load balanc-

ing, and scheduling.

6.3.1. Ontology Driven Meta-data Customization

In traditional database design, objects and fields are defined to provide abstrac-

tions of the real-world entities that they represent. Separate database tables are

created for each type of object represented. Specific attributes are represented by

fields within the tables. Object instances are represented by rows within the tables.

Actual data is placed into a database by inserting rows into the database tables.

Relationships are represented by fields in one table referring to a key field in another

table.

173

To support MTA, a metadata-driven databases operate somewhat differently.

Objects and their fields are mapped to metadata tables. Actual data is stored

in either in a single data table, or, for large text objects such as documents, in

a separate character large object storage (Clobs) area. A series of index tables

is created to make accessing the data within the single data table more efficient.

To support multiple tenants, the object and field metadata contains information

about the fields, and also about the tenants. The comparison of metadata driven

databases and traditional database designs are shown in Figure 53, similar as in

Salesforce.com.

In details, three types of data in MTA with diverse features[165]:

• Metadata: Objects and their fields are mapped to metadata tables.

• Data: Actual data is stored in either in a single data table, or, for large text

objects such as documents, in a separate character large object storage (Clobs)

area.

• Pivot Index: make accessing the data within the single data table more ef-

ficient. To support multiple tenants, the object and field metadata contains

information about the fields, and also about the tenants.

Ontology semantic information can be matched to database logic designs and

help metadata generation. The domain objects can represent a large proportion of

meta-data that are serialized into the data repository. Multiple database schemas

can be used in MTA[8], such as XML, sparse table, views. Tenants can choose any

database schemas as needed.

174

Partition 0 Partition 1 T2

T1

T3

Tenant Level
(Horizontal Partition)

Chunk Level
(Vertical Partition)

T1.B

T1.D

T1.A T2.A T3.B

T2.D

Central
server

T1.C T2.C

Fig. 54. Two Layer Partitioning Model

6.4. Scalable SaaS with Database Partitioning

In MTA, the shared database architecture design [29] calls for effective scalability

support. In the ideal case, the maximum number of tenants should be proportional

to the increase of resources, while keeping the performance metrics of each tenant

at an acceptable level. There are two types of scaling: scale-up and scale-out. The

scale-up or vertical scaling is done by adding additional resources, such as CPUs,

memory, and disks into a single node in a clustered system. In this way, a node

becomes more powerful by having more resources. The scale-out or horizontal scaling

is done by adding additional nodes to an existing clustered system. For example,

instead of a cluster of thirty nodes, the system may have fifty nodes instead. The

scale-up is easy to use but may not provide linear scalability increase due to the

175

Tenant
ID

Cust
omer

Credit
Score

Incom
e

Sparse

1 1 720 70,000 120,000 280,000 4

1 2 590 56,000 58,000 200,000 3.57

Asset DebtToIncomeLiability

DebtToIncomeAsset Liability

(NULL)110,00071222

(NULL)80,00067512

Tenant
ID

Custo
mer

Credit
Score

1 1 720

1 2 590

2 1 675

2 2 712

Tenant
ID

Custo
mer

Income

1 1 70,000

1 2 56,000

2 1 80,000

2 2 110,000

Tenant
ID

Custo
mer

Asset

1 1 120,000

1 2 58,000

Tenant Level
(Horizontal
Partition)

Chunk Level
(Vertical
Partition)

Chunk 1 Chunk 2 Chunk 3

… … …

Fig. 55. Example for Two Layer Partitioning Model for Figure 54

overhead in resource management. The scale-out provides a more cost-effective

way, where it can incrementally extend the system by adding more resources to a

low-cost hardware set. Furthermore, it can improve the reliability and availability

of the system due to the redundancy. In the scale-up scenario, one can create more

than one database partition on the same physical machine, while in the scale-out

scenario, partitions can be created in multiple physical machines, and each partition

has its won common memory, CPUs, and disks.

With the increase of tenant’s traffic, SaaS application can be easily scaled out

by adding new instances, but database server becomes the bottleneck of the system

scalability [37]. While most traditional database systems (e.g., DB2, Oracle 11, SQL

Server, MySQL, Postgres) uses traditional data structures (e.g., dynamic program-

ming, B-tree indexes, write-ahead logging), the differences in the implementation of

SaaS are immense.

Database Partitioning [165] can improve the system performance, scalability

176

Fig. 56. Scheduling System Architecture

and availability of a large database system in a multi-tenant way. For example,

given a tenant’s information, the query optimizer only has to access the partitions

containing the tenant’s data rather than the entire table or index, using “partition

pruning”. Data partitioning is a proved technique that database systems provide

to physically divide large logical data structures into smaller and easy manageable

pieces(chunks). The data inside a database can be distributed across one or more

partitions. A distribution key is the column used to determine the partition in

which a particular row is stored. Instead of having one database server controlling

the whole system, the database is logically partitioned and each of them can be

controlled by a separate server. Indexes play an important role in improving over-

all performance together with partitioning. Different types of indexes are built to

provide efficient query processing for different applications.

177

6.4.1. Review of Database Partitioning Choices

Many partitioning schemes have been studied; e.g., vertical partitioning vs. hori-

zontal partitioning, round-robin vs. hashing vs. range partitioning [23]. Two most

widely used methods are horizonal partitioning and vertical partitioning.

Row Stores and Horizontal Partitioning Key-value stores (row stores) is

inherent to be the preferred data management solutions in cloud, such as Bigtable

[25], PNUTS [35], Dynamo [39], and their open-source HBase [59]. These systems

provide various key-value stores and are different in terms of data model, availability,

and consistency guarantees. The common property of these system is the key-value

abstraction where data is viewed as key-value pairs and atomic access is supported

only at the granularity of single keys. This single key atomic access semantics

naturally allows efficient horizontal data partitioning, and provides the basis for

scalability and availability in these systems.

Horizontal partitioning is widely used in existing cloud computing products,

such as IBM DB2 V9 [31], Force.com [46] and etc. Two horizontal database par-

titioning approaches are available: application-based distribution keys (choosing

one or more attributes as a distribution key according to domain knowledge) and

tenant-used distribution keys(stores each tenant’s data in a single partition).

Update in row partition is simple and supported as follows: the storage key

(SK), for each record is explicitly stored in each partition. A unique SK is given to

each “insert” of a tuple in a table T.

Column Store and Vertical Partitioning Column store is a read-optimized

solution, any fragment of projections can be broken into its constituent columns,

178

AHED3424 523D123Z 46042821Keys

H(i) H(j) H(k)Hash
Functions

Data Morgage The mortgage
company
increases
profits by 3%

The mortgage
company
enhances
profits by 3%

Central server

Fig. 57. Sample of DHT (Distributed Hash Tables)

and each column is stored in order of the sorted key for the projection. There

are several possible encoding schemas considering the ordering and proportion of

distinct values it contains, including:

1. Self-order, few distinct values: represented using triple (val, 1st, occur) such

that val is the value stored in the column, 1st is the position where val first

appears, occur is the number of occurrence of val in the column.

Clustered B-tree indexes can be used over this type of columns. With large

disk blocks (e.g. 128k), the height of this index can be small.

2. Foreign-order, few distinct values, represents as (val, bmp) such that val is

the value stored in the column, bmp is a bitmap index, which can indicate

the positions the value is stored. Each bitmap is sparse, one can run length

encode to save space. To find the ith value, “offset indexes” B-tree can be used

to map values contained in the column.

3. Self-order, many distinct values: represent delta value of the previous value

179

in the column. The first entry of every block is a value in the column and its

associated storage key.

4. Foreign-order, many distinct values: not necessary to encode.

Update in column store is more complicated, one has to join values cross

columns, in which join indexes are used to connect various projection in the same

table.

Chunk is a single physical unit: the logical tables are partitioned into chunks

that are folded together into different physical multi-tenant tables and joined as

needed. For example, in BigTable, GFS, and other similar Web databases or file

system, each chunk is about 64 MB. Tenants can have multiple chunks distributed

at different databases and share resources.

As a summary, row store and horizontal partitioning is writeable operation

preferable, while column store and vertical partitioning is optimal for read oper-

ations. This chapter proposes a hybrid approach as SaaS involves both read and

write operations.

6.4.2. P 2: Two-Layer Partitioning Model

The hybrid two-level scheme combines both read-optimized column store and an

update oriented writeable store as shown in Figure 54: At the top level, there is a

partition for each tenant, which can support high performance inserts and updates.

At the lower level, a larger component for column partitions are supported, which

can optimize for reading and batching with the tenant’s attribute level. As one can

see, tenant A,B,C share same physical databases, and each of them has its own

180

2b-1
0

ID(A) = 10..

ID(B) = 20..A

B

C

D

ID(C) = 30..

ID(D) = E0..

Fig. 58. Balanced Range Allocation

physical chunks associate with it respectively.

Originally, a master server is used to maintain the global index. All queries

are sent to the master server to search the global index and then forwarded to

corresponding servers. The size of the global index is proportional to the size of the

data and concurrent requests, the master server risks being a bottleneck, hence one

can further distributes the global index across servers. Each server only maintains

a portion of the global index. The distributed approach improves scalability and

fault tolerance. The global index is build on top of the local indexes. To search

local data efficiently and make the local balancing, B-tree is used for local chunks.

In the global index, a DHT index is used to make the uniform distribution among

servers.

6.4.3. Scheduling and Load Balance

To do better load balancing among partitions to optimize the overall database per-

formance, an effective algorithm is highly desirable, that can migrate, distribute

and duplicate tenants among partitions through monitoring the load. Most cloud

scheduling algorithms and database solutions address their problems independently.

However, most of cloud components and functionalities are interconnected. Specifi-

cally, a task scheduling algorithm need to consider database partitioning to provide

181

DB Schema

OrgID TableName ColumnName Type Length IsIndexed MaxValue MinValue

1 Customer Income Integer 64 0 10,000

1 Customer CreditScore Integer 32 1 1000 0

2 Cusomter DebtToIncome Float 64 0 100.0 0.0

2 Customer Liability Integer 64 1 1,000,000 1000

Triggers

Trigger_Schema Trigger_Name Created Action_Condition Action_Statement Definer

Customer Test_Income 08/01/10 Income < 10,000 Warning Paul

Customer Test_CreditScore 07/25/09 CreditScore < 0 Warning Tim

Customer On_Insert_Liability 06/30/10 Insert Check_Liability Tim

Fig. 59. The Metadata Table

an efficient solution for performance and scalability. More specific, a task assigned

to a processor should host the appropriate data partitions otherwise data updates

and migration among caches and processors can be expensive.

The most scalable MTA requires a SaaS scheduler that can dispatch tasks to

multiple copies of the same software in a data center [30]. As the same version of

the software is used, user customization must be stored in databases, and thus an

integrated solution must address both scheduling and database partitioning together

as shown in Figure 56.

Different strategies have been adopted to allocate data partitions in the cloud.

One allocation strategy permits a single copy of the database to be stored in the

network, non duplication. The partitions are allocated to the nodes to minimize the

overall system communication cost, query response time, and other criteria depend-

ing upon the objective of the designer[22, 121]. Another strategy is to store multiple

182

Customer Credit
Score

Income

1 675 80,000

2 712 110,000

Mortgage Company A Mortgage Company B

590

720

712

675

Credit
Score

Tenant
ID

Customer Income Sparse

1 1 80,000 (NULL)

1 2 110,000 (NULL)

2 1 70,000 120,000 280,000 4

2 2 56,000 58,000 200,000 3.57

Multi-tenancy Data Schema

Asset DebtToIncomeLiability

200,000

280,000

Liability

58,000

120,000

Asset

56,000

70,000

IncomeCustomer Credit
Score

DebtTo
Income

1 720 4

2 590 3.57

Asset Liability DebtToIncomeAsset Liability

DebtToIncomeAsset Liability Fig. 60. The Data Table

copies of all or a part of duplications. Although this reduces transmission cost and

improve response time, it increases data redundancy, storage costs, and update costs

to keep data consistency. To solve this problem, sharing everything among tenants

provides a solution. This chapter adapts a sharing everything framework to support

scheduling and load balancing in a cost effective way.

6.4.4. Two-Layer Index for P 2

To scheduling requests and balance loads using our P 2 model in Section 6.4.2, a

correspondingly two-layer index mechanism is proposed as follows:

DHT at Tenant Partitioning Level : DHT(Distributed Hash Tables) [146]

can be adopted in the upper layer of partitioning for nodes among tenants.

Given a key, DHT can map the key onto a tenant’s data block as shown in

Figure 57. Inherent from consistent hashing [72, 139] to assign keys to blocks,

the consistent hashing supports balance load, since each node received roughly the

same number of keys, and involves relatively little movement of keys when add or

183

delete chunks from the system. Several good features are maintained in DHT, e.g.

balances load with high probability (all nodes receive roughly the same number

of keys), minimize maintain cost (when an N th node added/deleted, only O(1/N)

faction of the keys are moved to a different node). Each node maintains information

only about O(logN) other nodes, and a lookup takes O(logN) time.

One can use unsigned integers to match to the output of cryptographic hash

function. It is convenient to visualize the key space as a ring of values, support b bit

in the ring, starting at 0 and increase clockwise until they get to (2b − 1) and then

overflow back to 0. Figure 58 shows a ring representation of Pastry-style routing

[120], in which key space is divided into evenly sized sequential ranges, each node

has one range, and ranges are assigned in the order of nodes, sorted by hash ID.

Hence data are uniformly distributed among the nodes.

B-Tree Index at Chunk Partitioning Level To allocate and schedule

chucks at the second level at least the following approaches can be applied:

(a) Allocate tenant’s data with fixed partitions periodically or asynchronously:

given the number of tenants k in a cloud, and the number of partitioning blocks

at each tenant, it can partition the available database chunks into groups based on

resource constraints and user requests. This method will decrease the contention,

and each partition will be allocated to a certain copy of the software. As the

workload changes, a re-allocation needs to be done. One way is to perform the

update periodically, whenever the changes or the rates of changes exceed certain

thresholds, or when the system slows down significantly due to unbalanced workload

among different tenants.

184

604020

15105 3025 57555045 80757065

604020

15105 302625 57555045 80757065

(B) Add chunks without split

60554020

15105 302625 5045 585755

(C) Add chunks with split index operations

80757065

(A) B-Tree for chunks

Fig. 61. Sample B-Tree for Chunks

(b) Flexible partitioning and re-partitioning. Unlike the previous approach, the

partitions will be dynamically maintained as the workload changes. For example,

one may use a scheme similar to B-tree to organize data partition accordingly. A

B-tree allows a congested partition to double the resource, and a lightly loaded

partition to reduce its resources by half, and it may be served together with another

light partition in the same processor. In this way, a busy tenant can have its needs

met, and a light tenant will not occupy idle resources by sharing with fellow light

tenants. By using this approach, the resource can be automatically maintained and

balanced.

Example: a sample B-tree for chunk partitioning is shown in Figure 61.

The B-tree is used to maintain all chunks. At the beginning, each tenant can be

allocated 20 chunks, and more chucks can be allocated to them when necessary. To

add a chuck, either simple add operations (in Figure 61(B)) or split operations on

185

the index page in B-tree (in Figure 61(C)) are needed.

6.4.5. Performance Analysis for P 2

To analyze the performance of P 2, this chapter first analyzes the performance of

row-store and column-store. Then it further compares the performance of P 2 with

these two schemes.

Operations Composition Based Analysis: The performance of a storage

mechanism can be evaluated using the access patterns. There are three types of

access pattern: read mostly, write (update) mostly, and a hybrid of read and write

operations.

To have a better understanding of P 2, one can start from the simple cases,

and analyze the performance of row-store and column-store. The comparison of

row-store and column-store is easier. At the beginning, all are update operations

with no read operations (read = 0%, update = 100%), row-store has a shorter

average response time than column-store, since update operations are only influence

certain tuples in row-store, while column-store needs to update multiple columns in

different chunks with join operations. As the read operation percentage increases to

an extreme degree, all read operation and no update (read = 100%, update = 0%),

column store beats row store due to its easy access to certain columns, especially

when queries are focus on some specific attributes, e.g. credit score. When the

distributions of read and update operations are close to each other, there would be

some points, row-store and column-store have similar performances.

The case for two-layer is more complicated:

186

1. Mostly write-only operations: When update operations dominated the whole

set of operations, the first layer of row-partitioning data will be used to store

update changes. To ensure data consistency at the chunk level, similar as

Dynamo’s “always writeable” strategy, one can be maintained and postponed

the chunk level update to back-end. At the meanwhile, the query operations

are supported by two-level indexes, which can easily find out matching data,

hence the average response time for the whole operation sets(both read and

update operations) are shorter than row-store only, even much better than

column-store.

2. Mostly read-only queries: When read operations dominate the whole operation

sets, two-level indexes can support better query response time than others,

and considering the mix of column store’s high update costs, the average of

two-layer model is better than column-store, even much better than row-store.

3. Mix of read and write operations: write operations are few but important,

while read operations are frequent but less important. To satisfy the priority

requirements of write operations, one can optimize write operations by adapt-

ing to some database transaction isolation models, to change the execution

order of read/write operations without violating the consistency constraints.

Hence, using the proposed two-layer partition model with two-level indexes,

one can improve the overall system performance.

Specially, some interesting observations here: suppose the total number of write

operations is |w| and the total number of reading operations is |r|, it is easy to see

187

that |w| ≤ |r|, since most of operations for tenants are getting data and few update to

save their utility costs. After commit the initial data, the tenant may seldom update

the data when necessary. On the other hand, the priority of write operations can

be represented as p(w), and the priority of read operations is p(r), as we discussed

in Section 6.1, since write operations have a high priority than read operations, one

can get p(w) > p(r). There is a conflict between the two arguments, as shown in Eq.

6.1, in another words, write operations are few but important, while read operations

are frequent but less important. Balancing the frequency and importance of these

two types of operations is an interesting problem. Readers may notice that P 2 is

a natural solution for this conflict: the first level horizontal partitioning can fit for

the priority requirement of p(w) > p(r), since update operations are favored at this

level, hence one can write easily. While the second level of vertical partitioning

works for |w| ≤ |r|, in which read operations dominate the system in most of the

time.

Conflict(occur, p) =


|w| ≤ |r|

p(w) > p(r).

(6.1)

To satisfy the priority requirements of write operations, one can optimize write

operations by adopting to some database transaction isolation models, to change

the execution order of read/write operations without violating the consistency con-

straints. New business requirements in cloud applications force service providers

to loosen the rigid constraints and adopt a more relaxable approach in transaction

isolation. It is important to ensure that the relaxation of isolation does not cause

188

difficult-to-find problems.

The write priority optimization algorithm is suitable for cloud applications for

the following reasons: In some circumstances, read operations are not necessary to

get the most recent updates or it can even read data which are entered later. For

example, in an online shopping application, reading customer’s product list will not

affect the shopping cart data. Hence one can move write operations forwards, in

another words, change the order of read/write operations to adapt to high priority

write operations.

On the other hand, there are specific read operations could not be postponed,

due to the isolation affect. For example, a customer may want to know many books

have been ordered in the shopping cart, and he/she can use “read” before issuing

another write, but the write can move forward, and the read will read the most

recently updated data. Another example, if a customer found that an order has

been placed (for a read operation issued before the write) or an order has been

removed, the customer can re-issue the read for double confirmation. This type of

read as “double-confirmation-read” instead of read. Hence, three kinds of operations

existing in cloud applications, including read, double-confirmation-read, and write.

It is easy to see that write operations can move forward before any read operation,

but not before double-confirmation-read. As we do not have too many double-

confirmation-read, the optimization algorithm can be easily developed. Double-

confirmation-read can be easily identified by checking whether a read operation is

issued after the write operation from the same user on the same data.

When adjust the execution order of read/write operations, one can explore the

189

traditional database concurrency issues [115] and design an optimization algorithm

for write-priority operations without violating certain constraints accordingly. The

three concurrency issues includes:

• Dirty Reads: one transaction reads data written by another uncommitted

transaction

• Non-repeatable Reads : one transaction read the same data twice and one

write operation modify the data in between the two reads, which cause the 1st

read operation got the non-repeatable value

• Phantom Reads : when one read operation gets a range of data more than once

and a write operation inserts/deletes rows that fall within that range between

the first transaction’s read attempts, hence “phantom” rows appear/disappear

Usage View Analysis: There are two types of usage views for P 2, one

is tenant-specific view for each customers, the other is cross-tenant view by cloud

service providers, such as system monitoring, auditing, and performance control.

For the cross-tenant system level view, the three types of operations co-exist

as well, and read operations dominate the system in most of the time. Most of

operations for service providers are monitoring, and auditing, hence the system can

get the statistic information of any chunks easily using P 2’s partitioning model.

For the tenant-specific operations, as we discussed earlier, there are three types

of operations including read/write/mix operations, and one can find out the benefit

of using P 2 easily.

190

6.5. Conclusion

SaaS is characterized by its multi-tenancy architecture and its ability to provide

flexible customization to individual tenant, which brought up various challenging

problems, such as the testing of software developed with the SaaS model and built-

in recoverability. This chapter presents a unified and innovative multi-layered cus-

tomization framework supporting continuous testing and recoverability. Different

database partitioning strategies are offered for customization. Ontology is used to

derive customization and deployment information to tenants and to support con-

tinues testing and recoverability. In the future, more testing techniques will be

investigated to further improve the robustness of SaaS framework. A simulation of

two-layer partitioning model will be investigated to further evaluate the proposed

model performance.

191

7. TESTING SAAS APPLICATIONS

Cloud computing has attracted significant attention recently and the issue of testing

cloud applications also becomes important because many mission-critical applica-

tions will be deployed on the cloud. This chapter first discussed the unique features

and challenges in testing cloud applications, and then proposed a novel SaaS testing

framework that has considered three dimensions: 1) the SaaS maturity level model

2) the platform support and 3) the methodology used. The framework supports

continuous testing, intelligent testing, multi-tenancy testing, scalability testing and

customization testing. Scalability testing is illustrated in detail to demonstrate the

advantage of the proposed framework.

7.1. Introduction

Cloud computing has received significant attention recently as it is a new comput-

ing infrastructure to enable rapid delivery of computing resources as a utility in

a dynamic, scalable, and visualized manner. SaaS (Software as a Service), that is

often deployed on a cloud, is a new way to deliver software. In SaaS, software is

maintained and updated on a cloud, and presented to the end users as services on

demand, usually in a browser. With SaaS, a software provider licenses an application

to customer as a service on demand, through a subscription or a “pay-as-you-go”

model. Saas also involves difficult design issues such as customization, multi-tenancy

architecture, and scalability, and these three features are represented in the three

maturity levels for SaaS proposed in [29].

Cloud computing has not only changed the way of obtaining computing re-

sources, infrastructure, platform, and software services, but also changed the way

192

Customization

Multi-tenancy

Scalability

SaaS Maturity Levels

Collaborative

Testing

Intellig
ent

Testing

Continuous

Testing

Simulation

Monitorin
g

Automatic Test

Case Generation

Profilin
g

Recovery

Application

Testing

Methodology

Resource
Allocation

Load
Balance

Scheduling Prioritization
Access
Control

Query
Processing

Duplication Partitioning

Platform Support

Cloud Applications

Data

Service

Workflow

GUI

Fig. 62. SaaS Testing Framework

of managing technology and solutions for all participants, which inherently leads to

new challenges and opportunities for software testing and maintenance. Requiring

up to 70% of software development costs, testing has always been a cost-intensive

operation in the software development process, and even more for mission-critical

applications. While most research communities start to investigate the cloud ar-

chitecture, technology, data model and design, as well as management in cloud

application, how to effectively test cloud applications is still an open question, and

a new subject.

Comparing with traditional testing and web-based service systems, testing

cloud applications has several unique advantages: cost-effective (cloud computing

reduces hardware and software costs by leveraging cloud resources in a pay-as-you-

193

go way using virtual resources), on-demand (real time large scale online validation

and verification), automatic (dynamic online testing without manual cost), scalable

(supporting multi-tenancy), and continuous (testing services work at anytime as

“365 days-24 hours”).

Testing cloud applications involves testing and measurement activities in a

cloud environment by leveraging cloud technologies and solutions. Four different

levels of testing in cloud are considered:

• Testing SaaS - this ensures the quality of a SaaS on its functional and non-

functional requirements, e.g. SLA, and QoS.

• Testing cloud from an external system - this validates the quality of a cloud

by evaluating specified capabilities and service features.

• Testing clouds from the internal - this checks the internal infrastructures of

a cloud and specified cloud capabilities. Only cloud providers can perform

this type of testing because they are the ones having accesses to internal

infrastructures and SaaS.

• Testing over clouds - this tests cloud-based service applications over clouds,

including private, public, and hybrid clouds based on system-level application

service requirements and specifications.

Currently testing cloud applications often uses the traditional software testing

practices. However, current software testing frameworks have not considered the

features brought by SaaS and cloud computing which include:

194

• Scalability: The algorithm should scale up or out as the task requests may

change significantly at runtime. Ideally, the increase in resources should be

proportional to the increase in tenants or their requests, while keeping the

performance of each task at an acceptable level;

• Database partitioning and consistency: Tenant data should be partitioned well

in the backend database to support real-time high performance computing;

• Fault-tolerant aspects: The failures of processors or storage should not affect

the operation or data.

• Security and fairness: Tenant data should be isolated from each other, and

tenants of the same priority should receive the same level of services and

resources;

• Parallel processing: It is highly desirable that the tasks can be processed in

parallel such as done by Map-Reduce;

• Isolation: One tenant’s change should not affect all other tenants;

• Performance and availability: The data migration, backup and restore is iso-

lated between tenants.

This chapter proposes a novel SaaS testing framework that considers three di-

mensions: 1) SaaS maturity levels, 2) testing methodology, and 3) platform support

for testing. There three dimensions work together in a “cross product combina-

tion” way, where components/methodologies in each dimension can be combined

with components from the other two dimensions dynamically to get specific support

195

accordingly. For example, to support customization feature in the first level in the

SaaS maturity model, one can choose to use any methodology, such as continuous

testing, intelligent testing, and collaborative testing in the entire SaaS application

life cycle. Similarly, to support customizable SaaS, multiple platform support com-

ponents can be considered, such as different mechanism to allocate resources to

multiple tenants, prioritize customer requests, and schedule their tasks.

The rest of the chapter is structured as follows: a novel SaaS framework is

proposed in Section 7.2. Section 7.4 discusses a sample study of scalability testing

in the framework. Section 7.5 concludes the chapter.

7.2. SaaS Testing Framework

The testing framework has three dimensions as shown in Figure 7.1. Each dimension

has a cross product combination relationship with other dimensions. More items

can be added in each dimension as more technical issues are discovered later.

7.2.1. SaaS Maturity Levels

A maturity model for SaaS with four levels is proposed in [29] with, the highest

level of SaaS being configurable, support Multi-tenancy architecture (MTA), and

scalable. A configurable SaaS is often achieved by customization and a scalable SaaS

is often achieved by duplicating software to meet the increased load. To support

customization, an ontology based intelligent customization framework is proposed

in [156], which considers the customization process from GUI, business process,

services and data layers using ontology information. The MTA refers to a principle

where a single instance of the software runs on a server, serving multiple client

organizations (tenants). With MTA, a software application is designed to virtually

196

partition its data and configuration, so that each client works with a customized

virtual application instance. Although all tenants share the same software, they feel

like they are the sole user of the software.

7.2.2. Methodology

Diverse testing methodologies can be used including continuous testing, intelligent

testing, collaborative testing, profiling, and monitoring. Specially, the following

methodology are essentially helpful in testing cloud applications:

• Continuous Testing: This feature is needed as a cloud system often keeps on

changing. The number of users and the number of tenants keep on changing,

and new features and new software services will arrive at the cloud. These

new features and new services need to be tested continuously to ensure the

quality of software and services. For example, if a new software service is

available on the cloud, and its specifications indicate that it can be used in

100 cloud applications. If any of the application uses the new service, the

new application needs to re-validated with the new software service. As a

cloud platform may receive many new services on a daily basis, the cloud

essentially performs testing continuously. As shown in Figure 63, a cloud can

use excess cycles on a developer’s workstation to continuously run tests in the

background, providing rapid feedback about test failures. Continuous testing

is a feature introduced by Google Chrome OS, a new network system.

An effective model of automated testing is continuous testing. It can also

be part of the TDD (Test-Driven Development) process. Continuous testing

197

implements continuous processes of applying quality control - small pieces of

effort applied frequently, in the process of software development. Continuous

testing has been proposed and can be applied in various aspects in software

development. For example, as proposed in [136], tests run 24 hours a day, 7

days a week and the results of these testings are efficiently processed. While in

[122], continuous testing is integrated into eclipse as a tool for continuous code

verification when source code changes. It uses excess cycles on a developer’s

workstation to continuously run tests in the background, providing rapid feed-

back about test failures as source code is edited. A radical design choice in the

Google Chrome OS is its incorporation of continuous verification. Given the

extensive usage of continuous testing, its desirable that the SaaS framework

also provides built-in continuous testing capability.

Besides continuous testing, testing SaaS software can also be collaborative

by nature since it is usually developed with a service oriented architecture.

In the framework proposed in this chapter, we proposed to embed built-in

testing capability in the SaaS framework. We provide a collaborative testing

environment by generating test scripts in a collaborative manner. We integrate

continuous testing with the storage layer, by leveraging database triggering

rules. We also propose algorithms so that integrating testing and intelligent

testing can be conducted within our framework. Figure 63 show the evolution

of different models, from SOA, SaaS to continues testing model.

• Collaborative Testing: Testing SaaS software can be collaborative by na-

198

Databases …

…Workflows

Services …

Continuous Testing by Trigger Rules

triggers

Continuous Testing by Obtaining Input/Output

triggers

(c) Continuous Testing in SaaS

Fig. 63. Continuous Testing Model in SaaS

Tenants cluster

Test Requirement
Evaluation

Test Case
Generation

Test
Planning

Test
Monitoring

Test
Analysis

Test
Execution

Fig. 64. Collaborative Testing

ture since it is usually developed with a service oriented architecture. A collab-

orative testing environment can generate test scripts in a collaborative manner

as shown in Figure 64. Test scripts can be contributed by different parties or

automated generated in a multi-tenancy way.

• Intelligent Testing: SaaS data(such as code bases, execution logs, mailing

lists, and bug databases) is a good wealth of information about an appli-

199

cation’s lifecycle. Using data mining techniques, one can fully explore the

potential of this valuable data, and manage their projects in a cost effective

way, produce higher-quality software systems with less bugs. Two types of

information are available as data resources as shown in Figure 65: (1)Histor-

ical repositories: including source control repositories, bug repositories, and

communications records of project evolution and etc. It captures dependencies

between project artifacts (e.g. functions, documentation files, and configura-

tion files). Not only handling static or dynamic code dependencies, one has

to consider implicitly dependency, e.g. change of writing data may require

reading data code change implicitly. Also it can be used to track the history

of a bug or a feature, determine the expected resolution time according to

previously closed bug resolution history. (2)Real-time repositories: includ-

ing deployment logs with execution information and system usage logs from

multi-tenancy. By monitoring the execution, one can find out the dominant

execution or usage from logs, and tune the system performance accordingly.

Similarly, one can mine the dominant APIs usage patterns by monitoring code

repositories.

• Automatic Test Cases Generation from Metadata: Test cases can be

generated by examining metadata, e.g. Income length of customer must be

64 bits or so, hence some simple test cases will be randomize with 64 bits.

One can generate a collection of customers of 64 bits, another collection with

128 bits or any other bits. Random number from 0 − (264 − 1), e.g. another

200

Source
control

Bug
Development

Logs
Usage
Logs

Historical Real-Time

Cross reference

Associate
Rule

Classification Clustering

Frequent
Pattern

Graph
Mining

Text
Mining

Markov
Model

Data mining tool box

Data repositories

 Fig. 65. Tool Box of Data Mining Algorithms and Data Repositories

set is negative numbers, and greater than 264 − 1, so we have three set of

values, one valid and other two are invalid. The boundary value test cases

can be generated from {-2, -1, 0, +1, +2} around boundary of the constraints,

specifies by the metadata. For example, credit score > 0 is an invalid testing

put, credit score = 0, 1 are boundary test values. Several test case generations

from ontology including constraints has been proposed [11, 10] and can be used

in our framework.

• Test Cases Ranking Based on the WebStra’s framework, test cases can be

ranked[159], and based on the importance, and history, test result oracle can be

established by voting[12], test case dependency can be automatically analyzed

using the test results based on statistic techniques. without canalizing software

201

structures, a large collection of test cases can be constructed, ranked and

evaluated on a continuous bases.

7.2.3. Platform Support

To support the other two dimension, platform has to provide sufficient supports as

shown in Figure 7.1. Take scheduling and recover as examples:

• Scheduling: Manage processors to handle testing tasks properly. Different

scheduling strategies can be suitable for a local cluster managed by a processor

or a virtual machine (VM) to improve its SLAs with users, such as FCFS

(First Come First Serve), EDF (Earliest Deadline First), weighted queue (with

priority), selective (based on ratio of (wait time + run time) and run time)

and etc. Map-Reduce can be used to scheduling testing jobs in a decentralized

way.

• Prioritization: Request prioritization presents a challenge in MTA Tenant

may have individual (local) prioritization requirements, and these require-

ments can be different for different tenants. The shared application must

use a global priority scheme for requests from all the tenants. [154] proposes

an effective model to prioritize service requests from multiple tenants while

preserving local priorities from individual tenant requests. The Crystalline

Mapping (CM) algorithm which maps local priorities from individual tenants

to global priorities. The algorithm also maximizes revenues within the local

to global priority mapping constraints.

• Recovery: SaaS calls for its built-in recoverability, a tripartite scheme [155],

202

i.e., ontology, metadata and data, is proposed to support recoverability. Speci-

cally, any information in one aspect, such as ontology, metadata and data, can

be used to recover data in other aspects. For example, ontology information

can be used to recover metadata, and metadata information can be used to

recover ontology, and data can be used to recover ontology and metadata.

In the following discussion, a sample case of scalability testing with intelligent,

and platform support are provided.

7.3. Policy Enforcement

Policies represents the expected software behavior, which are enforced at runtime to

ensure that the software execution conforms to the requirements. They are derived

from business goals and service level agreements(SLA) in enterprises, which are

“rules governing the choices in behavior of a system” [135]. Policies includes obli-

gation policies(event triggered condition-action rules), authorization policies(define

what services or resources a subject can access) and etc. This chapter is focus on

obligation policy to manage SaaS testing process. The Obligation Policy (OP)

defines a tenant’s responsibilities, what activities a subject he must(or must not)

do. In general, obligation policies are event-condition-action rules (ECA) as trigger

rules, in the format of

On Event If Condition Do Action

The event part specifies when the rule is triggered; the condition part deter-

mines if the data are in a particular state, in which case the rule fires; the action

part describes the actions to be performed if the rule fires. ECA systems receive

203

inputs (mainly in the form of events) from the external environment and react by

performing actions that change the stored information (internal actions) or influence

the environment itself (external actions).

Two general ways to address the faults using trigger rules, one emphasized

prevention, e.g. developing a formal trigger rule to ensure the decidability and

completeness of a trigger rule system, which prevents anomalies. The second is to

design a mechanism for handling various faults or failures during the execution of

trigger rules, e.g. develop sophisticated plans for any possible results, which either

eliminate the adverse effects or minimize the bad effects. This chapter uses the

second method, and proposes policy enforcement framework, which not only uses

trigger rules, but also contingency plans.

SaaS are applied to increasing complicated, non-conventional application areas

with real-time constraints, the probability of faults during the execution of trigger

rules increase greatly. A trigger service in SaaS become increasingly complicated

in handling the faults, such as failures and aborts, which may occur during the

execution of SaaS customization. This chapter models failures, aborts and other

fault situations as events in the ECA paradigm, hence the contingency plans for

handling fault events can be modeled as trigger rules.

7.3.1. Policy Enforcement Triggering Rules

Policies are often enforced in service application when a service is been involved, for

example, WS policy, XACML [96] and other policy standards, however, the policy

used in the chapter are derived from constraints, in the metadata and they may need

to be enforced whenever data are changed, other than a service is involved[150], and

204

Inst obligation PolicyName{

On event ;

Subject [<type>] domain-scope-expression;

[Target [<type>] domain-scope-expression;]

Do obligation-action–list ;

Catch exception-specification

When constraints-expression;

}

Inst obligation systemFailure{

On system_failure;

Subject s = /Tenants/Admin;

Do sanity_check ;

}

Inst obligation newServiceEnter{

On new_service_enter;

Subject s = /Tenants/Admin;

Do sanity_check ;

}

Inst obligation useService {

On new_service_enter;

Subject s = /Tenants/Admin;

Do { isolation_check ;

store input/output;

update profiles;}

}

(a) System failure

(b) New service enters

(c) After use services

Policy Template

Fig. 66. Sample Policy Specifications

also in the SaaS environment, multiple threads and services may be active at a

given time, and may cause multiple data to be access or updated concurrently, and

thur one needs different policy triggering rules, other than the traditional service

invocation events. The following events are selected sample of policy enforcement

triggering events.

1. There is a failure in the system somewhere, this is for sanity check; (Figure66

(a))

2. Before a service will be used (to ensure that the service is in a good shape,

this is similar to acceptance testing); (Figure66 (b))

3. after a service has been just used (to ensure that the running does not affect

the software), and store the input/output pair, to update the profile;(Figure66

(c))

4. Whenever a new service with the same service specification arrives;

205

5. Whenever a new application is created to specify that it intends to use the

service (this is equivalent to testing during development)

6. If the service is replaced by another one as the previous one has some bugs or

performance issues;

7. Certain time period has passed. For example, one week has passed, and the

system is not sure that something is wrong, this is more like a sanity checking;

8. Whenever the new resources are added into SaaS during execution; new re-

sources may cause issues, and need to work on scalability issues (scale out);

9. Whenever an existing resources is removed from the SaaS during execution, a

reduce resource may cause issues, and need to work on scalability issues (scale

in);

10. Whenever the cloud platform has a change in configuration: to ensure scala-

bility issues (scale up and down), to maintain performance and so on

11. Whenever the output produced des not match with the predicted output;

12. Whenever a new input that has not occurred before arrive, and the new input

may reveal new bugs not known;

Some sample rules can be specified as shown in Figure 66.

7.4. Sample Study: SaaS Scalability Testing

One of the important issues and challenges in cloud computing and SaaS is sys-

tem scalability and performance testing. In the past decades, there were numerous

206

researches focusing on scalability and performance testing and evaluation ([79, 68,

105, 142, 144, 145, 143]). Most frequently used three related kinds of metrics re-

ported in [68] are: speedup (how the rate of doing work increases with the number

of processors R, compared to one processor), efficiency (the work rate per proces-

sor (E(R) = S(R)/R)) and scalability (from one scale R1 to another scale R2 is

the ratio of the efficiency figures for the two cases: ψ(R1, R2) = E(R2)/E(R1).).

Most of them are not suitable for cloud-based application systems since they mostly

address the scalability evaluation and performance validation for software applica-

tions in pre-configured homogeneous or heterogeneous distributed and/or parallel

environments.

There are several reasons why these metrics are not enough for scalability test-

ing in the cloud. First, the complexity in the cloud environment is not considered

in these metrics. Second, different workload runs on the cloud application might

demonstrate different performance, the scalability metrics should keep these per-

formance variance in consideration. More specifically, the following facts of SUT

(SaaS Under Test) and applications in cloud infrastructures make the cloud-based

testing more complicated than traditional testing: (1) Operated under a scalable

testing environment - For a cloud-based application, a testing environment usu-

ally is online and scalable environment in a third-party cloud or private cloud. It

must be supported with scalable computing resources auto-provisioned by a cloud

or over clouds. (2) Applied with virtual and real-time traffic data - Each SaaS and

cloud-based application must be validated online with both simulated and real-time

traffic data and user accesses. (3) Targeted at any evolved software and its opera-

207

tion contexts - In cloud testing, the validation target is not only software itself but

also its operation contexts, including software hardware/software configurations and

organizations, its meta-data, and supporting database.

To address all these challenges in cloud application, this chapter proposes a set

of preliminary metrics for testing cloud applications.

7.4.1. Testing Scalability of Cloud Applications

Different scalability metrics can be used to measure the scalability of a system.

Following is a preliminary set of possible scalability metrics.

1. T (processing time), which reflects the traditional speed-up

2. R ∗ Tr (resouce consumption, which reflects the resouce usage in the system

3. PRR (performance resource ratio), which will be defined in the following and

reflects the relationship between performance and the resources used.

4. Metric variance, such as the variance of speed-up, variance of resource con-

sumption and variance of PRR. The variance fo PRR will be defined later in

this chapter.

7.4.1.1. Performance/Resource Ratio (PRR) Measurement.

The performance of system running on the cloud needs to be measured considering

not only the time it requires to do the computing, but also the resources consumed

in the process. Therefore, this chapter considers the performance/resource ratio

(PRR) for measuring the performance of the SUT in cloud. To define PRR, Tw and

208

CR are defined as follows.

Tw = Tq + Te

CR =
∑

Ri ∗ Ti

where Tw represents the waiting time, Tq the queueing time and Te the execution

time, Ri is the allocation of resource i, which can be I/O bandwidth, CPU and

memory usage and Ti is the time resource i is used. PRR is defined as:

PRR =
1

Tw
∗ 1

CR

Given PRR, the scalability of the SUT is measured by the PC (Performance

Change) when workload changes.

PC =
PRR(t)W (t)

PRR(t′)W (t′)

with the ideal PC equals to unity.

However, the cloud system is so complex that the PC measured from the SUT

might vary between different test runs. Therefore, not only should PC be considered,

but also the performance variance PV . Given the performance change PC, the

performance variance PV effectively measures the scalability of the SUT when the

workload changes. In the ideal case, after multiple run of the same testing workload,

a small PV shows that the SUT has a good scalability. A truly scalable system

should have both PC close to unity and PV close to 0. The PV can be computed

by the standard variance of the PC in multiple runs of the same workload as follows.

PV = E[(PCi −
1

n

n∑
i=1

PCi)
2]

209

Now we illustrate the metrics used in this chapter through several examples.

Example 7.4.1 Suppose that the system have a total work of W = 100 to be pro-

cessed. The waiting time Tw = 2 and the resource consumption CR = 2, the PRR in

this case is 1
2 ∗

1
2 = 1

4 . When the workload increases to W = 200, suppose Tw is now

4 and CR stays the same, then the PRR is 1
8 . In this case, then PC =

1
4
∗100

1
8
∗200 = 1,

which shows that the SUT has a good scalability since intuitively, if the workload

increases without adding resource, the performance should degrade proportionally.

Measuring the performance variance of PC shows whether the performance change

is stable for the SUT.

Example 7.4.2 Considering the case when workload doubles, in this case W (t′) =

2W (t). If the system needs to allocate 4 times resources to keep the waiting time the

same, P (t′) = 1
4P (t). According to the definition of PC, now the value of PC is 2,

which shows the scalability of the system is not good enough.

Example 7.4.3 Considering the case when workload does not change, and twice

resources are allocated and the waiting time remains the same. In this case W (t′) =

W (t) and P (t′) = 1
2P (t). According to the definition of PC, the value of PC is 2,

which shows the scalability of the system is not good enough. This is consistent with

the intuition that adding resource should improve the system performance

Given measurement x of the PC of a system, the scalability of them system

can be observed by the regression of x. The distribution of x might be the indicator

of the scalability mechanisms in the cloud. Different cloud scalability mechanism

exist, such as

210

1. Lazy and mean allocation (on demand), which allocates resources as late as

possible and as little as possible.

2. Lazy but generous (on demand), which allocates resources as late as possible,

but more generous such as doubling the resources each time (like B-tree).

3. Lazy but intelligent (on demand), which allocates resources as late as possible,

and allocates by estimating the workload using profiling information.

4. Estimate, which estimates the resource needed and allocates accordingly.

The list above describes just some possible mechanisms. The increase function

of PC might have some correlations with the scalability mechanisms used in the

system. By finding the correlations between the trend of PC and the scalability

mechanism, useful information might be discovered for guidance of the scalability

mechanisms should be used in the given system.

Example 7.4.4 For example, for the first lazy and mean allocation scalability mech-

anism, the observed performance change might be quadratic to x while the lazy but

generous mechanism can have a linear performance change. However, resources

come at a price. The price factor might also be added into the scalability metric.

7.4.1.2. Significant Test for Scalability Analysis

To determine whether model M(before the scalability test) has significant difference

with model M’ (after the scalability test) , one can adopt standard T-test. Let X

represent the distribution of model M on PRR(M), where X ∼ N(µ1, σ
2
1), and

Y to represent the distribution of M ′ on PRR(M ′) where Y ∼ N(µ2, σ
2
2), and

211

µ1, µ2, σ
2
1, σ

2
2 are unknown variables. First, make a hypothesis: the means of these

two normally distributed model M and M ′ are equal, which is H0 : µ1 = µ2.

PRR(M) and PRR(M ′) can be treated as a sample from the whole space. The

number of independent instances of X is denoted as m, which is equal to the size

of PRR(M); and the number of independent instances of Y is n, which is equal to

the size of PRR(M ′). Their means and variances as following: X = 1
m

∑m
i=1Xi,

Y = 1
n

∑n
i=1 Yi, S

2
1m = 1

m

∑m
i=1(Xi−X)2, S2

2n = 1
n

∑n
i=1(Yi−Y)2.. The t statistic

can be calculated as follows:

t =
X − Y√

mS2
1m + nS2

2n

√
mn(m+ n− 2)

m+ n
, (7.1)

where s21m and s22n are unbiased estimators of the variances of two sets. Compare the

calculated t-value with the threshold chosen for statistical significance α (usually α

is 0.10, 0.05, or 0.01 level). If |t| ≤ tα
2
, then the hypothesis that the two models do

not differ is accepted.

7.4.2. Methodology Dimension: Intelligent Testing to Assist Scalability Testing

Given the history of system scalability testing, many intelligent testing can be ap-

plied to further assist testing process. One can find out the bottleneck of the scala-

bility using feature selection algorithms, also association rule can used to mine the

correlation among parameters, as well as mining input-out relationship to reduce

test case numbers.

Case 1: Feature Selection to mine the bottleneck in scalability testing Let’s

consider a sample result from scalability testing using PRR measurement in Section

7.4. There are more than 50 features (CPU, memory, network bandith, database

212

partitioning, and etc.) which could affect the scalability, how can one decide which

ones are key features decides the scalability performance, and only testing those

features can reduce the complexity of testing scalability, as well as find out the

solution to improve the system performance. One may have a better understanding

of the cloud applications by using intelligent testing in this way.

Case 2: Association Rule to decide correlation among parameters and scalability

One can mine the association rule of different parameters and their relationships with

scalability using testing data. For example, when both workloads of network and

number of tenants increase, the scalability decreases.

Case 3: Mining Input-output relationship to reduce test cases A list of input

attributes relevant to a single output (in a single-objective model) or to several

outputs (in a multi-objective model). This list can be usually derived from the

structure of the induced model. As shown in [128], the knowledge of input-output

relationships can significantly reduce the amount of test cases.

7.4.3. Platform Support Dimension: Partitioning to Assist Scalability Testing

At the platform support dimension, different components can be applied to help with

the scalability testing. To support scalability testing in cloud, data partitioning

becomes a widely accepted solution. A novel two-layer model for partitioning is

provided [155], which first partitions horizontally by tenants, and then vertically

partitions by columns. The model can benet both read and update operations

comparing with horizontal- partitioning only or vertical-partitioning only methods.

Effective indexes, DHT and B-tree are used at each layer respectively to help with

the load balancing and scheduling.

213

7.5. Conclusion

This chapter proposes a novel testing framework for SaaS, which has considered

three dimensions: 1) the SaaS maturity level model 2) the platform support and 3)

the methodology used. Testing capability is built-in in the SaaS testing framework.

A collaborative testing environment by generating test scripts in a collaborative

manner. Scalability testing is illustrated in detail to demonstrate the advantage of

the proposed framework. In future, we will further investigate the correlations of

different dimensions, as well as more testing methodology to support SaaS maturity

model.

214

8. ROLE-BASED ACCESS-CONTROL USING REFERENCE

ONTOLOGY IN CLOUDS

In cloud computing, security is an important issue due to the increasing scale of

users. Current approaches to access control on clouds do not scale well to multi-

tenancy requirements because they are mostly based on individual user IDs at dif-

ferent granularity levels. However, the number of users can be enormous and causes

significant overhead in managing security. RBAC (Role-Based Access Control) is

attractive because the number of roles is significantly less, and users can be classified

according to their roles.

This chapter proposes a RBAC model using a role ontology for Multi-Tenancy

Architecture (MTA) in clouds. The ontology is used to build up the role hierarchy

for a specific domain. Ontology transformation operations algorithms are provided

to compare the similarity of different ontology. The proposed framework can ease

the design of security system in cloud and reduce the complexity of system design

and implementation.

8.1. Introduction

Cloud computing receives significant attention recently. Public clouds are avail-

able from Amazon, Google, Yahoo!, Microsoft, Salesforce.com and others. Private

cloud technologies, in which the cloud software is loaded locally are available from

VMware, Eucalyptus, Citrix, and there are thousands of vendors offering “cloud

solutions”.

However, storing valuable business data online creates a situation similar to

storing “money”, attracting frequent assaults by malicious attackers. As a result,

215

Data Center

Enterprise LAN

Office users

Remote users
Cloud Provider

Enterprise LAN Enterprise LAN

Tenant 1 Tenant 2

Internet Internet

(a) Traditional Data Center (b) Data Center in Cloud Computing
Fig. 67. Difference of Cloud Computing with Traditional Data Centers

security is a high priority issue in clouds. Several interesting concerns are often

embedded in customers’ mind, such as: Can cloud employees/administrators be

trusted to not to look at private data or change it? Can other customers of the

cloud access private data by any means including hacking? The security and privacy

violations of business data can be devastating. Several cloud security accidents had

already happened. One of the notable security incidents occurred in March 2009 with

Google Docs, when a system failure allowed the content of private documents to be

exposed to everyone for a brief period of time. As a result of this security breakdown,

The Electronic Privacy Information Center (EPIC), filed a detailed complaint with

the Federal Trade Commission to request an injunction against Google offering

their cloud service until “safeguards are verifiably established” claiming. Google’s

inadequate security is a deceptive business practice.

216

Cloud security and vulnerability are similar to the traditional issues in net-

working and applications. In a cloud environment, security mostly depends on the

security mechanisms supplied by cloud providers. They control the hardware and

the hypervisors on which data are stored and applications are run. A cloud and

conventional data center share many characteristics. However, in the cloud, due

to multi-tenancy architecture (MTA), data from multiple clients are stored and

managed by the same software [5]. When the software makes a mistake, potentially

millions of clients may access private data of other clients. Furthermore, data stored

in a cloud may be available to cloud administrators and they may access or modify

data for their own benefits. Figure 77 illustrates these issues.

The MTA has increased the security risk due to the sharing of software, data

and data schemas by multiple tenants. As these collocated tenants may be com-

petitors, if the barriers between tenants are broken down, one tenant may access

another tenant’s data or interfere with their applications. The cloud providers are

responsible for ensuring that one customer cannot break into another customer’s

data and applications.

A simple access control mechanism is user based access control (UBAC) as

shown in Figure 68 (A). An authorization states whether a subject can perform

a particular action on an object which are stated according to the access control

policies of the organization. The system can accept query “Can user U perform

action A on resource R?” and return Yes(Y) or No(N) answer. Unfortunately,

UBAC is not suitable for cloud computing. As cloud applications usually contain

millions of users and resources, instead of specifying policies for individual tenants,

217

Login
(ID, passwd)

User-Based
Access Control

(UBAC)action

resource

Passwd file Policy

Login
(ID, passwd)

Role-Based
Access Control

(RBAC)action

resource

Passwd file Policy

Role
Assignment

Role tables

UserID

UserID Role

(A) User Based Access Control(UBAC)

(B)Role Based Access Control(RBAC)
Fig. 68. User Based Access Control vs. Role Based Access Control

it is more practical to specify policies relating to groups of entities with similar

functionalities. It is helpful to cluster the policies pertaining to the duties of a role

within an organization such as a project manager, and senior developers.

Another approach is to use role-based access control (RBAC) as shown in Figure

68 (B). A RBAC system has two phases in assigning a privilege to a user: in the

first phase, the user is assigned one or more roles; and in the second phase, the roles

are checked against the requested operations. In RBAC, permissions are associated

with roles rather than users, thus separating the assignment of users to roles from

the assignment of permissions to roles. Users acquire access rights by their roles,

and they can be dynamically re-assigned or removed from roles without changing

the permissions associated with roles. The number of roles is typically much smaller

than the number of users.

Roles may have a hierarchical structure, and it reflects the organization’s lines

of authority and responsibility. For example, Figure 69 is a sample fragment of role

218

Chairman (Chief Software Architect)

SVP & CTO
(strategy and policy)

VP(global health strategy)

VP (trustworthy computing strategy)

VP(technical computing)

SVP & CTO(platform and technology)

SVP (technical strategy)

SVP (engineering excellence)

SVP (Microsoft Research)

VP (Microsoft Research)

VP (R&D China)

GM(Microsoft Research)

VP (MSR India)

CTO
(Influence Services)

CEO

President(business division)

COO(Chief Operation Officer)

VP, unified
Communication Group

VP(exchange server)
GM

VP(distributed meetings)

VP (windows product)

GM

VP (business application)

SVP
(office product)

GM

VP(shared service)

VP (server group)

VP (authoring service)

VP (data & BI)

CFO(business division)

GM

Fig. 69. A Sample Fragment of Role Hierarchy from Microsoft

hierarchy from Microsoft. Different roles, such as CEO, CTO, and VP are arranged

in the diagram, where junior roles appear at the bottom and senior roles at the top.

However, it is not clear how to define roles for a specific application domain.

For example, if a tenant from a start-up company tries to build up its own access

control model for its application, it is difficult to start from scratch and define role

hierarchy and related policies.

Our strategy is to use RBAC model to control MTA in cloud. Intuitively, one

may find that ontology information can be used to map users to roles and build

up the role hierarchy. This chapter proposes a reference ontology framework, in

which users can search ontology database given a specific domain to find out rele-

vant candidate role hierarchy templates, and further get the corresponding policies

associated with the templates to help with their own designs.

219

There are several challenges in applying RBAC model in this problem. For

instance, how to define and manage the roles in a cloud? Given a specific domain,

there are more than one ontology systems provided by different applications, how

to compare the similarity between ontology systems? How to transfer one ontology

to another? How to define the policies associated with different roles? This chapter

investigates these issues and designs a reference ontology framework using ontology

for RBAC that generates good recommendations and ease the security management

process. In summary:

• This chapter proposes a reference ontology framework for access control in a

cloud to facilitate the design of security system and reduce the complexity of

system design and implementation.

• This chapter exploits the possibility of RBAC to support MTA in a cloud.

Ontology information is used to build up the role hierarchy. Ontology trans-

formation operations algorithm is used to compare the similarity of different

ontology.

• This chapter investigates different policy models and each of them can be used

as a component in the proposed framework.

• This chapter discusses impact of RBAC in applications using a case study.

The chapter is organized as the following. Section 8.2 discusses RBAC and its

components; Section 8.3 presents the architecture of reference ontology framework;

Section 8.4 define the role definition using ontology information, and the trans-

formation operations in ontology trees; Section 8.5 investigates the possible policy

220

strategies can be used in a cloud; Section 8.7 discuss the related work; and Section

8.8 concludes this chapter.

8.2. Role-based Access Control

Motivated by the need to simplify authorization administration and to directly rep-

resent access control policies of organizations, RBAC was first proposed by Sandhu

[125] and it has been further developed [101, 124, 117, 104, 3] ever since.

A role represents a specific function within an organization and can be seen as

a set of actions or responsibilities associated with this function. In a RBAC model,

all grant authorizations deal with roles, rather than being granted directly to users.

Users are then made members of roles, thereby acquiring the roles’ authorizations.

User access to resources is controlled by roles; each user is authorized to play certain

roles and, based on his own role he can perform accesses to the resources and

operate them correspondingly. As a role organizes a set of related authorizations

together, it can simplify the authorization management. Whenever a user needs a

certain type of authority to perform an activity, s/he only has to be granted the

authority of a proper role, rather than directly assigned the specific authorizations.

Furthermore, when she changes her function inside the organization, she needs to

revoke the permission function of the role. Complicated cascaded authorization

revoke operations are no longer needed.

RBAC ensures that only authorized users are given access to certain data or

resources. It also supports three well-known security principles: information hiding,

least-privilege, and separation of duties.

Role hierarchy in RBAC is a natural way of organizing roles to reflect the orga-

221

Tenants
(T)

Roles
(R)

Permission
(P)

m n m n

Sessions
(S)

Constraints
(C)

Tenant
Assignment

Permission
Assignment

Role
Hierarchy

Access
Policy

Security
Policy

Ontology
(O)

Fig. 70. O-RBAC: Using Ontology for Role-Based Access Control Model

nization’s lines of authority and responsibility. By convention, junior roles appear at

the bottom of the hierarchic role diagrams and senior roles at the top. The hierarchic

diagrams are partial orders, so they are reflexive, transitive, and antisymmetric.

Several RBAC models are provided when integrate constraints, sessions and

other information into the basic model. A general family of RBAC models was

defined in [125].

8.3. Reference Ontology for RBAC in Clouds

This chapter proposed a reference ontology framework using Role-Based Access

Control (O-RBAC) model which provides an appropriate policy with a specific role

instead of specific tenant.

Figure 70 shows the proposed O-RBAC model with basic components, includes:

• Tenant: a user in the cloud or a human being

• Role: a named job function within the company which describes the authority

and responsibility conferred on a member of the role. A role is classified

according to the security requirement in the system.

• Permission(authorization, access right, privilege): an approval of a particular

222

Ontology
Comparator

Role
Evaluator

Role
Generator

HR
DB

Role
DB

Context
value

Environment
Attribute

Tenants

Reference
Ontology

Ontology
DB

Context
Collector

Policy
Control

Policy
DB

Fig. 71. RBAC using Reference Ontology Framework in Cloud

mode of access to one or more objects in the system. Policy is used as an

extention of permission in the framework, including access policy, security

policy are etc.

• Constraints: restricting conditions which might be applied to the policies.

When applied, constraints are predicates that return a value of acceptable or

not acceptable.

• Sessions: users establish sessions during which they may activate a subset of

the roles they belong to. Each session maps one user to possibly many roles.

Note that one tenant can have multiple roles in different sessions, and it could

happen in reality, for example, a tenant becomes sick or out of town for business,

also some employee may work in branch A in the morning and branch B in the

afternoon, in that case, a role is defined in certain session, the model can avoid

conflict of interest very well.

Several differences from traditional RBAC: the role hierarchy is based on do-

223

main ontology, and can be transferred between different ontology. Also, the per-

missions are composed of policies, including access policy and security policy, and

specific policies may become components of a role according to the role’s charac-

teristics, such as priority and business values. The access authority of each tenant

can be assigned to tenants by various policies without any changes, the appropriate

policies can be operated/updated accompany to tenant changes.

The cloud service provider consists of two modules: the real service module

which provides tenants various types of services such as e-commerce, and the security

module which offers security check functionalities before providing services.

The overall architecture of the proposed security module is shown in Figure 71.

To build up a new security model for access control of an application in cloud, instead

of from scratch, one can search for the ontology database according to its specific

application domain, e.g. IT company, business company, academic university.

“Reference Ontology” module provides a list of candidate ontology template

from the existing ones to the tenants. If the tenant already has his own role archi-

tecture design, the tenant may import the his ontology template into the system,

and use “Ontology Comparator” model to compare the similarity of its own ontology

with other candidates. He can refer to the most similar one with highest score, and

reuse the policy template from the existing ones. On the other hand, if the tenant

is totally new, without his own ontology well defined, a default ontology template,

as well as policy template in his specific domain is provided for reference.

When a tenant is trying to access to a protected service/data, the Context

Collector module collects various contextual information from both the environment

224

and tenants. The Role Evaluator module uses context information quantify these

values and interact with role databases and policy database to determine the security

level. According to the security level, role, and access policy, the Policy Controller

determines the appropriate security services, includes granting, denying or revoking

access. And then, the result of this security service can be delivered to the service

model, and perform actions according to this security checking process.

8.4. Using Ontology for RBAC

8.4.1. Define Roles with Semantic Information

The first question is how to define roles given a specific domain. Ontology[99], a

conceptual structure which contains knowledge in a domain and their relationships,

provides useful and valuable information for cloud computing. It specifies a con-

ceptualization of a domain in terms of concepts and their relationships, which is

used to generate a commonly agreed vocabulary for information exchange without

ambiguity.

Consider an IT company in cloud, in which access control is critical issue in

the customers data. In general, according to the semantic in a specific domain,

roles are defined as a combination of the official positions, job functions, and etc.

Typical official positions could be that of the ordinary member, group manager,

regional manager and etc. Functions represent the user’s daily duties such as being

a developer, testing engineer and etc. Additionally the organizational unit to which

a user belongs is used as an access control criterion for certain applications. All

these data are defined and maintained in the human resources (HR) database as

shown in Figure 77. Thus, a RBAC system has an accurate image of the current

225

RoleID Description
1 Chairman (Chief Software Architect)
2 SVP & CTO (strategy and policy)
3 CEO
4 COO(Chief Operation Officer)
5 CFO(business division)
6 VP (global health strategy)
7 ...

Table 13

Sample Role Definition in IT company

organizational status and existing roles. Each employee can be assigned to one or

more roles. A sample role definition is shown in Table 13, e.g, CEO has a unique

roleID = 3.

8.4.2. Manage Roles Hierarchy with Ontology

In a domain, multiple possible role hierarchies are defined by ontology systems from

different communities[48]. Examples of possible role hierarchies in an IT company

are shown in Figure 72.

Existing research have discussed how to define an ontology in a specific domains,

compare and integrate ontology systems between different communities.

In practices, for a given domain, multiple reference ontology systems from var-

ious communities may in that domain. For example, ACM and IEEE are two large

communities and each has its own standards and practices, and they are similar but

still distinct, and thus if the corresponding ontology systems will be similar but dis-

tinct. Such heterogeneity is common. Ontology integration [109, 110] is developed

to solve these heterogeneities, which refers to build a larger and complete ontology

at a higher level using existing ontologies.

226

As a concept structure of domain knowledge, ontology is usually represented

as a tree. A formal definition of ontology tree will be discussed in Section 8.4.3.

Comparing the concepts of two nodes in the tree, can be easily estimated by do-

main experts. For instance, “people” and “human being” are referring to the same

meaning with a similarity degree of 1. “faculty” and “professor” are very similar

in university domain, with similarity degree 0.95, which means around 95% occa-

sions these two are describing the same concept. Some research have bee done in

determining conceptual similarity in a knowledge context[162, 58].

Previous researchers use editing cost from one tree to another to measure two

trees [42, 4, 55], which focus on the structural and geometrical features of trees,

considering the number of nodes affected when editing the trees.

In the following discussion, a formal definition of ontology tree, similarity of

ontology tress, and transformation operation between ontologies tree will be dis-

cussed.

8.4.3. Solve Role Hierarchy using Ontology Trees

Role hierarchies impose restrictions which can generate a simpler tree structure

(i.e., a role may have one or more immediate ascendants, but is restricted to a single

immediate descendant). To extend the traditional definition of trees for an ontology

in a specific domain, formally one can define the ontology tree as below:

Definition 8.4.1 Ontology Tree(OT).

An unordered and labeled Ontology Tree is a tuple OT = (V,E) where V is a

finite set of nodes, E is a set of edges where E ⊂ V × V represents relationship

227

Company 1

Branch Engineers Other Staffs

Project
Manager

Developer Test
Engineer

HR
Manager

Sales
Manager

Project
Supervisor

HR
Member

Sales
Member

Company 2

Product Human

Project
Manager

Developer Test
Engineer

HR
Manager

Sales
Manager

Project
Supervisor

HR
Member

Sales
Member

WA CA

Windows Office

(a) Ontology tree T1

(b) Ontology tree T2
Fig. 72. Sample Ontology Trees Companies

between nodes. If (u, v) ∈ E, u is the parent of v, denoted as u = parent(v) and

v is the child of u, as v = child(u). The ancestor and descendent relationship can

be defined similarly. Any node in V except root node, has one and only one unique

parent node.

In addition, several auxiliary notations are used, include LV , a set of labels for

nodes, M is the injective mapping from V to label set LV , M : V → LV , each node

vi has a unique label Lvi .

Definition 8.4.2 Similarity of OTs (Sim(OT1, OT2)).

Sim(OT1, OT2) is a real number, defined as Sim(OT1, OT2) : L
V1 ×LV2 → R ∈

(0, 1].

228

A

B V

C D

A

B C D

A

B C D

A

B V

C D

A

B V

C D

A

B V’

C D

(a) remove node V (b) insert node V (c) re-name node V to V’
Fig. 73. Ontology Tree Transformation Operations

As one can see, the larger the Sim(OT1, OT2) value, the closer the two ontology

trees and Sim(OT1, OT2) = 1 means the trees are identical.

Ontology Tree Transformation Operations

To transform one tree to another tree or compare the similarity of two ontology

trees, three basic operations are needed [17] as shown in Figure 73. All other more

complex operations can be treated as compositions of these three operations.

1. Delete node v: eliminate the node from the tree, make its children nodes be

direct children of parent(v).

2. Insert node v: add a new node, some of child(u)(represented as CS′(u)) be-

come child(v), which can be decided according to context information.

3. Rename v: relabel v with a new name v’, the tree structure does not change.

Formally, the tree transformation operations map tree OT to OT ′. Suppose

the children set of v is CS(v).

• Delete node v: OT ′ = (V ′, E′) where V ′ = V − {v}, E′ = E − {(u, v)|u =

parent(v)− {(v, vc)|vc ∈ CS(v)}}+ {(u, vc)|u = parent(v) ∧ vc ∈ CS(v)}.

229

• Insert node v: OT ′ = (V ′, E′) where V ′ = V + {v}, E′ = E + {u, v} +

{(v, uc)|uc ∈ CS′(u)} − {(u, uc)|uc ∈ CS′(u)}, CS(u)′ ⊆ CS(u)

• Rename v: LV ′
= LV + l′v − lv, where lv is the old label of v, and l′v is the new

label.

[17] defines cost of each transformation operations, this chapter uses consistent

notations and definitions as follows: suppose the labels in OT are chosen from a

finite alphabet Σ. Let λ /∈ Σ, which is a special blank symbol and Σλ = Σ∪λ. Cost

function γ is defined as γ : (Σλ ×Σλ) \ (λ, λ) → R. For l1, l2, l3 ∈ Σλ, the following

conditions are satisfied: (1) γ(l1, l2) ≥ 0, γ(l1, l1) = 0 (2) γ(l1, l2) = γ(l2, l1) (3)

γ(l1, l3) ≤ γ(l1, l2) + γ(l2, l3).

The cost of a sequence S = s1, ...sk of operations is given by γ(S) =
∑k

i=1 γ(si).

Hence, the edit distance between OT1 and OT2 is formally defined as

δ(OT1, OT2) = min{γ(S)} (8.1)

where S is a sequence of edit operations transforming OT1 to OT2.

Indeed, the transformation of two OTs can be treated as an “ordered edit dis-

tance problem” which was introduced by Tai[147], further improved by others[169].

Klein [75] used dynamic programming to solve the problem.

8.4.4. Role Numbers and Scalability

In general, the total number of possible roles is the product of every category di-

mension, for example, in an IT company, one needs to consider official positions,

and their job functions. However, the actual number of roles is a subset of these

combinations, because some roles will not be needed.

230

0100002000030000400005000060000700008000090000100000
10 100 1000 10000 100000O-RBAC UBAC #of users

of permissions

Fig. 74. # of Permissions using O-RBAC vs. UBAC

For example, as reported from a Enropean bank[127], there are around 65

positions that can range from an ordinary clerk in a branch, though the department

manager, to the super manager, in a partial order of hierarchy structure. And there

are around 368 different job functions provided by HR database, the total possible

role set 23920(= 65 * 368), but the actual number of roles is around 1300, which is

much smaller than expectation. Also, RBAC2000 Workshop[117] suggests that the

number of roles in a role-based system is approximate 3 - 4% of the user population.

To learn the benefit of O-RBAC, this chapter simulates the scale change of

role based model using a random number between 3 - 4% and compare the total

number of permissions using O-RBAC with UBAC, the result is as shown in Figure

74. To simplify the comparison, assume each user/role needs a single permission.

As one can see, with the increase of number of users, O-RBAC (in dashed line) can

reduce the number of permissions operations greatly, comparing with user based

access control. In another words, using O-RBAC, one can make the access control

process in cloud much easier and efficient than using UBAC.

231

RoleID Application Access Right
...
100 Market Instruments {1,2,3,4}
101 Customer Instruments {1,2,3,7,10}
102 Employee Instruments {1,4,8,12}
... ...

Table 14

Roles, Applications and Access Rights

8.5. Policy Specification and Management

As another improvement of traditional RBAC, the proposed framework uses policies,

as an extension of permissions in the access control. In fact, user membership is

inherited top-down, and role permissions are inherited bottom-up. Both of them

have a co-related ontology architecture behind.

Policies are derived from business goals and service level agreements(SLA) in

enterprises, which are “rules governing the choices in behavior of a system” [135].

Policies includes obligation policies(event triggered condition-action rules), autho-

rization policies(define what services or resources a subject can access) and etc.

The Authorization Policies (AP) define a tenant’s rights which give him

permissions to perform certain actions. In general, an authorization policy could

be positive(permitting) or negative(not permitting, prohibiting). These policies are

defined together with roles. The policy enforcer uses there properties to decide

whether access are allowed or denied. For example, Table 14 shows that one with

roleID= 100 has as many ore more access rights in the market instruments and etc.

The Obligation Policy (OP) defines a tenant’s responsibilities, what activi-

ties a subject he must(or must not) do. In general, obligation policies are event-

232

PS1 First-App

P1
permit-override

P2
permit-override

R1
(Project Manager)

(write) OR(read)
(Review)

Permit

R1
(Developer)

(read)
(Review)

Permit

R3
(Any)
(Any)
(Any)
Deny

R4
(Testing Engineer)

(write)
(Review)

Permit
Fig. 75. An Example Policy in XACML Tree Presentation

condition-action rules (ECA), in which obligate a tenant to perform action A is trig-

gering event E occurs and condition C is satisfied. The OASIS standard XACML[52]

is an expressive, general purpose XML-based language (with significant deploy-

ment1) that is used to specify policies on web resources. XACML enables the

use of arbitrary attributes in policies, allows for expressing negative authorization,

conflict resolution algorithms and enables the use of hierarchical Role Based Access

Control, among other things. Figure 75 shows a sample of policy using XACML

presented in graphical form. In this example, there are three security roles, Project

Manager, Developer and Testing Engineer; one resource: Review; and two actions:

read, write.

The proposed reference framework support sophisticated authorization policy

specification and management, which is particularly useful for cloud computing ap-

plications. Multiple policies may apply to the proposed O-RBAC model, including

authorization policies, obligation policies and etc.

233

8.6. Answering Requests using O-RBAC

A O-RBAC system has two phases in assigning a privilege to a user: in the first

phase, the user is assigned one ore more roles, and in the second phase, the roles

are checked against the requested operation. When a user starts an application

the O-RBAC delivers the security profile that tells the application which individual

access rights the user possesses.

For example, in Figure 76, an existing mortgage loan applicant wants to discuss

his personal loan application situation with the branch’s financial advisor. The

advisor and the client sit in the same office in the mortgage company with a personal

computer. The advisor identifies and authenticates himself to the machine using an

employeeID and his password. He launches an application that allows him to enter

the records of his client which are stored on a central server in cloud.

When the application is launched it issues a request to the host, querying

which rights the advisor has within the application domain. The application request

contains the personnel number, which was obtained during the identification and

authentication process. Also the application identifier is submitted to obtain the

relevant authorization profile for the application.

Once the O-RBAC has used these data to deliver the security profile, the appli-

cation knows which access rights are assigned to the role of the user and allows him

to execute his access rights accordingly. In this particular case information about

the relevant organizational unit to which the advisor belongs will prohibit him from

accessing account data outside his branch. His access rights are confined within the

organizational domain of the branch. However, other applications can be used from

234

Financial Agent PC Application RBAC

Verify ID

Confirmation

Launch Application

Access Control

Request Security Profile

Response Security Profile
Fig. 76. Process of Service Requests

access points all over the mortgage company, as the access rights which are granted

for them do not depend on any local information.

The proposed reference ontology framework works together with business ser-

vice modules to support secure access control in cloud.

8.7. Related Work

8.7.1. Research Community on Security

Database Security The multi-tenancy architecture have increased the risk expo-

sure of databases and, thus, data protection is today more crucial than ever. Three

types of data security problems: confidentiality (protect unauthorized data obser-

vation) using encryption techniques [66]; integrity (prevent incorrect data modifi-

cation) using semantic correctness; availability (recover from malicious attack) using

recovery and concurrency control mechanism.

There are mainly two different views of access control models: role based access

control, and content based fine-grained access control model.

235

1)Role Based Access Control (RBAC) models represent arguably the

most important recent innovation in access control models. RBAC has been moti-

vated by the need to simplify authorization administration and to directly represent

access control policies of organizations.

RBAC models have been widely investigated. A standard has been devel-

oped [124] as well as an XML-based encoding of RBAC [16]. Relevant extensions

of RBAC include: administration models development [36, 74, 76]; temporal con-

straints of TRBAC model [14, 70]; and security analysis techniques [86]. RBAC

models are also supported by commercial DBMSs [116]. However, commercial im-

plementations provided as part of DBMSs are very limited and only support a simple

version of RBAC, referred to as flat RBAC, that does not include role hierarchies

or constraints. RBAC is also used in Web-service architectures, such as the Permis

system [24].

2)Content-based and Fine-Grained Access Control requires access con-

trol decision based on data contents. To support content-based access control, views

is organized into prtection views and sharehand views [15], and filtering based la-

bel are used in access control. Fine-grained mechanisms are able to support access

control from object to tuple level [100]. The object-level security is provided by

profiles which is represented by metadata to group users with common data access

requirements. It contains a set of permissions for every object defined in the sys-

tem. These permissions determine the privilege of access control for each object.

Record-level security is layered on top of object-level security, which restricts access

to data based on record ownership.

236

Access Control Policy There has been a great amount of attention to ac-

cess control policy languages for web services which accommodate large, open, dis-

tributed and heterogeneous environments like the Web. Policy languages, such as

WS-Policy [129] (a W3C submission), which specifies the constraints and capabilities

of web services, and the more general eXtensible Access Control Markup Language

(XACML)[52].

Many extension of XACML are investigated by research community. Zhao et al

[171] present a formalization of RBAC based on the description logic ALCQ. Mas-

sacci [90] formalizes RBAC using multi modal logic and presents a decision method

based on analytic tableaux. Hughes et al. [62] propose a framework for automated

verification of access control policies based on relational First-Order Logic.

Network Security Both authentication and encryption techniques are widely

discussed in the current literature on computer network security and we refer the

reader to [73] for details on such topics. We will, however, discuss the use of encryp-

tion techniques in the context of secure outsourcing of data, as this is an application

of cryptography which is specific to database management.

8.7.2. Current Industry Security Support in Cloud

Saleforce.com Force.com provides a multilayered approach to data security[103],

from object-level to record-level. It can support four level of filters: (1) Object

Permissions, which ensures that the requesting user is authorized by its profile to

take the desired action on this object.(2) Field Accessibility, in which he requesting

user’s profile is consulted again to determine whether there are fields included in the

request that are read-only or hidden.(3) Sharing Model, which evaluates whether the

237

user is not the owner of this record or otherwise privileged with an administrative

profile, organization-wide defaults are applied. (4)Sharing Reasons, which over-

rides the organization-wide defaults. The owner of the requested record is matched

against a list of sharing reasons relevant to its group affiliation. If a sharing reason

is found, access is granted. Groups are defined as simple lists of users and other

groups or as a hierarchy, allowing permissions of subordinates to be inherited by

their superiors.

IBM DB2 V9 uses two approaches to realize data security, filter-based ap-

proach at the application level (based on tenant ID) and permission-based approach

at the DBMS level (based on dedicated DB access account) or row-level access con-

trol, e.g. Label-Based Access Control (LBAC). The advantage of LBAC is that

it controls cross-tenant data access at the DBMS level instead of the application

level. However, the maximum number of tenants is limited and could not support

multi-tenancy requirement.

Amazon EC2 Security within Amazon EC2 is provided on multiple levels: The

operating system (OS) of the host system, the virtual instance operating system or

guest OS, a stateful firewall and signed API calls. Each of these items builds on the

capabilities of the others. The goal is to ensure that data contained within Amazon

EC2 cannot be intercepted by non-authorized systems or users and that Amazon

EC2 instances themselves are as secure as possible without sacrificing the flexibility

in configuration that customers demand.

Amazon SimpleDB Security APIs provide domain-level controls that only per-

mit authenticated access by domain creator, therefore the customer maintains full

238

control over who has access to their data. SimpleDB access can be granted based

on an AWS Account ID. Once authenticated, a subscriber has full access to all user

operations in the system. Access to each individual domain is controlled by an inde-

pendent Access Control List (ACL) that maps authenticated users to the domains

they own.

As one can see, no matter what techniques applied in those cloud providers,

either RBAC model or UBAC, none of them can provide a reference model to end

users. The proposed framework can benefit users with recommendation role and

policy template given an application domain and greatly shorten the design time.

8.8. Conclusion

A reference ontology role-based access model is proposed in this chapter. To de-

sign a security mechanism in a multi-tenancy architecture, instead of starting from

scratch, a reference role-based access control template is provided. Specially, On-

tology information are used as heuristic to build up the role hierarchy. An effective

ontology transformation operations algorithms are provided to compare the simi-

larity of different ontology. The impact of role based access control model in real

application, a case study of IT company is provided.

As future works, a new back-end database schema to support role-based access

control will be investigated. Also it would be interesting to analyze the role/user

ratio according to the position hierarchy, to measure the scalability of the O-RBAC,

with respect to number of roles, number of permissions, size of role hierarchy, limits

on tenant-role assignments, and etc.

239

9. EASYSAAS: A NEW SAAS ARCHITECTURE

Software as a Service (SaaS) with multi-tenancy architecture is a popular approach.

To support a significant number of tenants, an easy to use SaaS construction frame-

work is highly desirable. This paper introduces an easy SaaS constructing architec-

ture: an automatic SaaS construction framework. In this architecture, in stead of

starting from scratch and customize applications, the tenant can publishing their

requirements into the global SaaS platform in the form of application requirement

and specification with their unique business requirements, as well as their expecta-

tion of the SaaS outcome and test scripts. The SaaS providers proposes their SaaS

products, customize their services to meet tenant’s requirements. This framework

releases the workload of tenants, and provide an easier way to customize tenants’

business requirement in a collaborative way. The SaaS providers also get benefits

from the shared platform, and fast the development process. A hierarchy global

index is used to support the matching and customization process.

9.1. Introduction

Cloud computing has received significant attention recently as it is a new computing

infrastructure to enable rapid delivery of computing resources as a utility in a dy-

namic, scalable, and visualized manner. Public clouds are available from Amazon,

Google, Amazon, Microsoft, Salesforce.com and others. Private cloud technologies,

in which the cloud software is loaded locally are available from VMware, Eucalyptus,

Citrix, and there are thousands of vendors offering “cloud solutions”.

SaaS (Software as a Service), that is often deployed on a cloud, is a new way

to deliver software. In SaaS, software is maintained and updated on a cloud, and

240

Customization
Engine

Global Index
Repository

…

O
nt

ol
og

y
R

ef
er

en
ce

SaaS Providers
Classification

Tenants

Recommendation
Engine

Verification and Validation

Tenant
Classification

Recovery

Scheduling

Fault-tolerant

MaintenanceAccess Control

SaaS

Applications

Problem Solve

SaaS Provider

…
SaaS Provider

Service
Delivery
Platform
Runtime

Master

Fig. 77. System Architecture of EasySaaS

presented to the end users as services on demand, usually in a browser. With SaaS,

a software provider licenses an application to customer as a service on demand,

through a subscription or a “pay-as-you-go” model. Saas also involves difficult

design issues such as customization, multi-tenancy architecture, and scalability, and

these three features are represented in the three maturity levels for SaaS proposed

in [5].

To generate a SaaS application, different providers try to easy the life of cus-

tomers(tenants) by providing templates, such as Salesforce.com [46] proposed a set

of objects, such as customer, and account. Customers can reuse and customize the

objects according to their own business requirements. However, the workload of

customization and SaaS construction is still on the customer side.

241

This paper proposes a novel SaaS constructing framework, in which can leverage

customers in a collaborative way. Different from the conventional SaaS framework

as presented in [46], in which SaaS providers develop and publish their services, and

consumers are responsible for searching and designing the desirable services as well

as for customize their own applications.

In EasySaaS system, customers can publish their application requirement to-

gether with associated service specifications including the workflow and cooperation

requirement. Once such structures and templates are published, any SaaS providers

can submit their software or services to meet the application requirements. This way

of computing is in a consumer-centric way, since SaaS providers will actively search

for customers’ requirements and needs. In stead of passively waiting for requests,

SaaS providers are compete in an active way.

There are several challenges in EasySaaS, for example, how to provide a global

platform for SaaS providers and tenants to communicate? How to make recom-

mendation according to tenant’s specific requirement? How to use the profiling of

tenant and SaaS providers to easy the constructing process? How to search for

the desirable workflows/servuces/data schemas in the customization process. This

paper will propose solutions for these questions in turn.

In summary:

• This paper proposes an automatic SaaS construction framework. In stead of

starting from scratch and customize applications, the tenants can publishing

their requirements into the global SaaS platform in the form of application

242

requirement and specification with their unique business requirements, as well

as their expectation of the SaaS outcome and test scripts. The SaaS providers

proposes their SaaS products, customize their services to meet tenant’s re-

quirements. This framework releases the workload of tenants, and provide an

easier way to customize tenants’ business requirement in a collaborative way.

• This paper designs a hierarchy global index which is used to support the

matching and customization process. By searching the global index, one can

find out the desirable workflow/services/database design in a cost-efficient way.

• This paper provides intelligent support for constructing process, including pro-

filing mining of tenants/SaaS providers, clustering services, as well as service

classification. With these intelligent support, EasySaaS can leverage the con-

structing process.

• This paper uses customization and recommendation engine to support the

SaaS construction, a four layer customization model with keyword search en-

gine of semantic dewey index is provided to fast the query processing.

The paper is organized as the following. Section 9.2 provides an overview of

EasySaaS; Section 9.3 discusses its key components in the framework; Section 9.4

investigate the core algorithms in EasySaaS; Section 9.6 discuss the related work;

and Section 9.7 concludes this paper.

9.2. EasySaaS Overview

EasySaaS provides a framework for collaboration-oriented service specification, dis-

covery, matching, verification, validation, and composition. The EasySaaS architec-

243

ture is shown in Figure 77.

A EasySaaS ’s global index stores not only service specifications, but also appli-

cation templates and collaboration patterns. Once a tenant publishes an application

template to the platform, the SaaS providers will be informed and they can develop

SaaS for the new application. Once a new SaaS is developed for a published tem-

plate, the tenant will be informed to test and evaluate the newly available SaaS.

The detail steps are listed below:

1. A tenant(consumer) who needs a SaaS application, first develops an appli-

cation template, which includes information on customization information in-

cludes GUI specification, workflow specification, service specification, database

design, service acceptance criteria, and application acceptance criteria.

2. The application template is published and stored to the global index database.

3. SaaS providers subscribed to the application registry are informed the new

requirement from customer’s new templates.

4. The ontology are used by the customization engine, which automatic matches

between the requested and registered application templates.

5. The SaaS provider develops a SaaS application according to the application

template and submits it to the platform administrator. Each service submitted

will be evaluated by validation and verification module, to meet the service

acceptance criteria.

6. If a service passes the evaluation, the SaaS providers will be notified.

244

7. Using the binding information from the coordinator, the application builder

(customer) test and evaluate the service.

8. If the services pass the application acceptance testing, the application builder(customer)

will bind the service into the target application.

9. If all required services are available, the application building is completed.

10. At both the SaaS provider and customer sides, a classification module is used

to easy the search and customization process. Both of them can be classified

by their profiling, e.g. mortgage domain, health care domains, and etc.

9.3. Key Components in EasySaaS

9.3.1. Tenants’ Requirements

Requirement from each tenant is one of the most important issues in EasySaaS in

which it defines customer’s requirement precisely. EasySaaS , several aspects are

considered, each aspect a certain functionality of the SaaS application. For example,

a mortgage SaaS, EasySaaS will consider both the applicants and lenders: for the

applicants, the submission loan application process dataflow, for the lender, the

approvel/denial workflow are considered.

Dividing applications into aspects have the following benefits: first it simplify

the the specification process in a divide and conquer way; secondly, given a service

one can focus on a specific functionality and avid the ambiguity caused by other

services; thirdly, different aspects may have different impact in the application, and

can be weighted. The more important ones will be arranged a higher and more

245

strict in the verification and validation module, while less important one can be

loose managed.

9.3.2. Service Specification

In EasySaaS , current service specification can be further extended as follows:

• Use scenarios: Collaboration among tenants can be described using service use

scenario Under EasySaaS architecture, a use scenario for a service specifies how

a service could be used by other applications and the requirements when using

the service.

• Workflow specification : OWL-S and PSML-S can be used to integrate mod-

eling and specification language supporting a set of analyze capabilities such

as C&C analysis, model checking, simulation, and etc.

• Service property specification: Certain service properties, such as the service

classification information, service provider information with its “service his-

tory”, and constraints that the application requires for the service. All these

properties together with the other parts of the service specification mentioned

above contribute to the final service collaboration and discovery/matching

process.

9.3.3. Intelligent Clustering, Classification and Profiling Mining

SaaS is usually composed of a large number of services, data mining can be applied

to two sets of data and assist the process of SaaS construction. Two types of data

can be used: service metadata in the service registry, and service access logs with

246

pre-gathered tenants’ profiles. Hence two types of mining algorithms can be applied,

service mining (searching for appropriate services based on metadata) and service

usage mining (searching for associations, usage pattern). By utilizing knowledge

mined from those patterns, intelligent SaaS providers can generate desirable services

more quickly with less effort.

9.3.3.1. Profiling Mining

In addition to the application aspect workflow description, one also need the applica-

tion classification information in order to classify the application in an ordered way.

Profiling of each requirement can be analyzed by different data mining methods.

Application requirement content contains descriptions of the SaaS application

requirement, such as what is the functionality of the SaaS, which area it will be

applied to, etc. Predicting the SaaS application category and reuse, customize

existing applications, given only its profile, can be treated as a classification problem,

where the profile content can be parsed with well-known algorithms (e.g. support

vector machine (SVM)[133], k-nearest neighbor[71]) to create a feature vector, which

in turn can be mapped to an application domain the class label.

Furthermore, to capture the semantic similarity between requirement contents,

one can use the Vector Space Model (VSM), a commonly used method in information

retrieval [123]. With VSM, the content of each specification is represented by a

vector in a multi-dimensional space, where each dimension corresponds to a natural

language unit, such as a word or a phrase. In this study, unigram model is used in

which each unique word is a dimension.

As a first step, specification contents are preprocessed with, for example, stop-

247

word removing, word stemming [1], etc. After preprocessing, one can use the bag-of-

words approach to convert each specification to a vector. Formally, assume there are

|D| specifications in the training data set, and V represents the specification content

vocabulary. For each specification content τi in D, one can have a |V |-dimensional

vector −→τ i = ⟨vi1, ..., vi|V |⟩, where

vij = log(c(τi, tj) + 1) log(
|T |+ 1

dfj
).

Here, c(τi, tj) is the frequency of term tj occurring in content τi; dfj is the number

of specifications in the training data that contain term tj .

Given two vectors derived from contents, τi and τj , one can compute their

cosine similarity as:

sij = cos(τi, τj) =
−→τ i · −→τ j

||−→τ i|| · ||−→τ j ||
. (9.1)

It is obvious that 0 ≤ sij ≤ 1, where sij = 1 indicates that the two specifications

are about the same requirement, while sij = 0 means they have no keywords in

common.

9.3.3.2. Service Classification

Classification first categorizes previously unseen data, based on a model built with

the existing data set. A model usually contains a function of several important

attributes and can be built by classification techniques such as decision tree[168]

and Bayesian Networks [107] using training set. Using classification techniques, one

can classify services based on their contents(service category, service description)

and metadata.

248

Log in
0.0

Search
for items

0.1

Quation
requrest

0.2

Order
Request

0.3

Make
Payment

0.4

Search lists
0.1.0

By Categroy 0.1.1

Gene Sequence
Processing 0.1.6

Add to shopping
Bag 0.3.0 Save

0.3.2

In stock
0.3.1.0

Out of stock
0.3.1.1

Update amount
0.3.1.2

Report error
0.3.1.3

Fill in information
0.4.0.0

Welcome
Email
0.4.1.2

Layer 3

Layer 2

Layer 1

Online shopping
0

By Brand 0.1.2
By color 0.1.3

By Price 0.1.4

Check
Description 0.1.5

Choose
Color 0.2.0

Choose
size 0.2.1

Purchase
Amount

0.2.2
Check availability

0.3.1

Log in
0.4.1

Payment
Card 0.4.2

New
Register 0.4.0

Card verification
0.4.3

Make parment
0.4.4

Activate
Account 0.4.0.1

Layer 0

 Fig. 78. Sample Online Shopping Application with Hierarchy Workflow Structures

9.3.3.3. Service Dependency and Clustering

EasySaaS has a 1:N mapping between application and SaaS implementation. Simi-

larly a service implementation may subscribe to multiple applications, hence EasySaaS

infrastructure can maintain this M:N mapping mode.

Clustering algorithms can be used in linking relationship between services.

Given service is chosen, one can find out its closely related services by examining

possible inclusions in the new applications. Furthermore, one can form a “service

pool” in the platform, and set up a “service cluster master” to integrate services

in the cluster. The most important part in clustering algorithms is the distance

calculation. Two common calculations are the Manhattan distance[169] and the

Euclidean distance[75]. The Manhattan Distance (MD) is the sum of the differences

of their corresponding components, e.g. MD between a point X = (X1, X2, ...Xn)

and a point Y = (Y1, Y2, ..., Yn) is MD =
∑n

i=1 |xi − yi|. The Euclidean dis-

249

tance(ED) function measures the ’as-the-crow-flies’ distance, e.g. ED between a

pointX = (X1, X2, ...Xn) and a point Y = (Y1, Y2, ..., Yn) is ED =
√∑n

i=1(xi − yi)2

Clustering techniques can be utilized in EasySaaS to identify similar services

and similar service consumers(tenants).

9.3.4. Recommendation Engine: Discovery and Matching

In addition to the service discovery and matching in traditional SOA[157], EasySaaS

has discovery and matching also for application templates and/ collaboration pat-

terns. The discovery/matching process has a four-layer architecture: interface level

(GUI), process level(workflow), service level, and data level.

9.3.4.1. GUI Discovery

Interface level discovery is based on the service interface specification, which is

similar to WSDL approach. It is required to have an exact match between the

interfaces of the service implementation and the service specification in the applica-

tion template. Indeed this ensures the essential syntax validity for the application

integration.

9.3.4.2. Workflow and Service Discovery

Workflow level discovery and matching is based on service process specification.

Workflow is composed of services and has a hierarchy structure, named as workflow

hierarchy, which provide multi-resolution views of workflows in order to ease the

analysis and maintenance of workflows. Figure 78 is a sample online shopping

service workflow for illustration. As one can see, a workflow hierarchy contains

nested service graphs in multiple layers, thus forms a three dimensional structure.

For instance, in layer 1 of the online shopping process, after log in to the system, the

250

customers can search for items, then quote their request, make an order and at last

check out with payment. A service in the hierarchy can be atomic or composite. A

composite task can be zoomed-in to reveal the detailed procedure of how to perform

it, represented by a directed graph consisting of a set of services and their dataflows

shown in the layer immediately beneath. Dotted lines, connecting a composite task

to its expansion, are referred as expansion edges. A composite service “search for

items(0.1)” is zoomed into a graph as pictured in the leftmost box in layer 2 which

consists of seven services. Each node n in the workflow hierarchy is assigned a

unique label NID(n). To explore the ancestor-descendant relationships of nodes to

generate results, one can use the Dewey labeling scheme, as shown underneath each

node in Table 78 for the sample application.

One can use keyword search to find out the desirable workflow or services, e.g.

one would issue a query to the service repository using “quotion request, check avail-

ability, activate account” Workflow matching is done when the application template

places a process requirement on the service. Thus, a process level requirement is

placed on the candidate services: only the services whose process specification match

the application’s requirement will be selected.

9.3.5. Customization Engine

EasySaaS has a customization engine, as in [156], an ontology intelligent customiza-

tion framework is proposed. which can customize application templates and col-

laboration patterns. The customization process has a five-layer architecture under

EasySaaS: interface level, process level, service level, data level, as well as and col-

laboration level (both use scenario and collaboration specification matching).

251

With the customization mechanism in [156], tenants can express their require-

ments with the following features: easy to use (template objects are provided as

default); layered architecture (from GUI, workflow, service and data layers); seman-

tic oriented (using domain ontology to help the customization process); intelligent

(recommendation supported by mining knowledge from tenants community and pro-

filing); and adaptable (periodic maintain the framework to improve performance).

To meet all these requirements, OIC, a multi-layers ontology based intelligent

customization framework. Four layers from GUI, business process, service and data

layers, are modeled in a multi-layered architecture, and ontology information is used

at each layer to guide the customization process. According to the multi-layered

model, a framework is provided which can be applied in the development of SaaS.

Based on this framework, the SaaS providers are supported in their decision. The

proposed ontology-based layered framework for customization with the following

features: (1) a multi-layer structure of SaaS applications, developers can analyze

their inherent relationships, as well as cross-layer relationship using ontology infor-

mation. (2) use template objects as default, and recommend candidate components

at different possible layers (GUI, workflow, service and data) using collaborative

filtering techniques to provide a cost effective way to customize tenants’ specific

individual requirements.

9.3.6. Verification and Validation

Before a SaaS provider can register a service into global index database to support an

application template/collaboration pattern published by an application tenant, the

service need to be verified and validated by the master against the service acceptance

252

Index Service_Name Service_Description
0 Online shopping Generate an online shopping service
0.0 Log in Take username and password to logo into system
0.1 Search for item Give the item name, search for the item
0.1.0 Search lists List all possible search options
0.1.1 By category Search item by product category
0.1.2 By brand Search item by product brand
… … …
0.2 Question Request Pick up the desire sub categories, e.g. size, color ..
0.2.0 Choose color Make selection of product color
… … ….

Fig. 79. Sample Global Service Index Table for Figure 78

criteria.

The master has multiple Service Verification and Validation Agent (SVVA) that

can verify and validate services. When one service provider requests to subscribe

to an application template/collaboration pattern, the SVVA firstly retrieves the

test cases provided by the application builder or other parties from the repository.

Then, it performs unit testing on the service being registered. In addition to gen-

eral unit testing for functional validation, the test agent may need to perform other

property-specific testing according to different requirements from the application

builder. The property-specific testing could include reliability testing, security test-

ing, robust testing, and performance testing. Once unit testing and property-specific

testing are completed, the test agent performs inter-operability testing to validate

the collaboration capabilities of this service. Only if the subscribing service passes

both phases of testing, it can register to the application template/collaboration

pattern.

Whenever changes are made to the services, regression testing needs to be

performed to validate the revised component services. When composing a new

253

… ……

“Search for Item”

SP1

SPn

“Login” “Quation
Request”

Fig. 80. Dependency Based Testing in EasySaaS

service, SOSE (Service-Oriented System Engineering) [149] tools can be applied for

integration testing and evaluation in a distributed environment, and the V&V can

be done on all the domains of the EasySaaS framework.

9.3.6.1. Dependency Based Testing

When a new service joins EasySaaS, it first has to pass the verification embedded.

There are multiple testing methods can be used in the process, e.g. unit testing,

regression testing, mutation testing. One kind of valuable information here is the

dependency between services, which can be applied to evaluate the new coming

services, as shown in Figure 80.

Basically, there are three types of dependencies [97]: Input Dependency (ID),

Input/Output Dependency (IOD), and Output Dependency (OD). Service Depen-

dency Graph[80] is used to capture the service dependency using an AND/OR graph.

Tsai. [26] further consider the dependency in a user-centric SOA.

An interesting way to validate a new coming service, is to plug it into the

existing workflows to test its collaborative with other services. For example, as

254

Customer Workflow Tables
Customer Service Tables MetaData Tables

10002

10001

10001

Tena
ntID

….Ticketing1002

Generate
an online
shopping
workflow

…

Online
shopping

1001

W_DespWNameWID

0.1

0.0

SID

000491001

000351001

ServiceIDWID

Stringpasswd0.01001

StringuserID0.01001

TypeAttributeSIDWID

Tenant ID Product ID ProductName

123 Jack 546-23-4112

354 Jone 342-34-6547

240 Helen 742-34-2546

Tenant ID Application ID Date

123 Jack 546-23-4112

354 Jone 342-34-6547

240 Helen 742-34-2546

Tenant ID CustomerName SSN

123 Jack 546-23-4112

354 Jone 342-34-6547

240 Helen 742-34-2546

ServiceID URL_Provide
r

WSDL

00035 http://...........

ServiceID URL_Provider WSDL

00035 http://...........

Global Service Index Global Multi-tenancy Data Table

Specialized Pivot Tables

Worflow Services Data

Fig. 81. EasySaaS Global Index Data Model Design

shown in Figure 80, support a new “search for item” service, named as X, enters

EasySaaS, before allowing it join the global platform, X has to pass the validation

first. Suppose X has the same interface as all other services in “search for item”

service set S (SP1, ...SPn), it has to test with all the dependency of S. As long as X

passes all tests, it can be proceeded to the next step.

9.4. Core Designs in EasySaaS

9.4.1. EasySaaS Global Model Design

Hierarchical Global Index (HGI)

To search and match services from different service provides in EasySaaS, global

index is used to assist in the whole lifecycle. This paper proposes a three-level

hierarchy analogous to that of a B+- tree to store global index at each layer (workflow

255

index, service index and data schema index.) as shown in Figure 81.

HGI is built on several other pieces of services at the infrastructure level. It uses

the distributed storage services to store log and data files. A HGI can be operated

in a shared pool of machines that run other types of applications. HGI also depends

on other services, such as scheduling services to manage resources, recovery services

dealing with machine failures, monitoring services for machine status, maintenance

and continuous testing.

Figure 81 shows the basic components in HGI. The first level is workflows index

that contains the information of the workflows. Each workflow tablet contains the

location of a set of user workflows. The second level is service index, matching to

the services layer in the OIC framework, which composes workflows. As one can

see, each workflow in the first level has a composite graph of services, as shown

in Figure 78, hence one workflow instance has multiple tuples in the service index

tables. The third level is metadata schema index, matching to the data layer in the

customization framework, which records both the workflow and services information,

as well as the database schema design for a specific service.

The global cache is maintained. If the client does not know the location of

a component(workflow, service, database schema), or if it discovers that cached

information is incorrect, then it recursively moves up the index hierarchy. If the

client’s cache is empty, the searching algorithm requires three network round-trips.

If the client’s cache is stale, the searching algorithm could take up to six round-trips,

because stale cache entries are only discovered upon misses. Although global index

are stored in memory, also can be pre-fetched to cache to fast the query processing

256

time.

Global Service Sharing: A global service index(GSI) is maintained, all

verified services are stored in the table, with its provider information and WSDL to

uniquely identify a service from similar services.

Considering the customization process, when SaaS providers build up the work-

flow and decide the composed services, they can access the GSI to search for service

components, they can simply issue queries in for GSI to get all candidate services,

and pick up one according his specific requirement from end customers. Then SaaS

providers can build up customizable services in a cost effective way. One service in

GSI can be used by multiple SaaS providers in diverse customizable SaaS applica-

tions.

Specialized Pivot Table When SaaS providers create custom application

(tables), metadata table in the third level concerning their objects, their fields, rela-

tionship and other characteristics. Meanwhile, specialized pivot tables can used to

maintain de-normalized data that makes the combined data set extremely functional.

For example, one can build up UniqueFields pivot table to capture the feature that

an object containing unique values, which can fast the query processing, as well as

secure the system, e.g. when an application attempts to insert a duplicate value into

a field which marked as uniqueness, it would report errors. Cross reference tables

can be user to provide “relationship” among object/attributes.

9.4.2. Analysis of EasySaaS Global Design

Multi-level Customization Support: as one can see in Figure 81, the proposed

global design can effective support customization process cross workflow, services,

257

and data layer. The top blocks shows the semantic model cross layers, while the

middle blocks shows the logic design of the tables, including customization work-

flow tables, customizer services tales, metadata tables, as well as data tables. The

mapping from the semantic model and the logic model are explicitly demonstrated

in the figure.

UCSOA Style Support in Service Evolution: In UCSOA [26] framework,

it maintains the link between the solution specification and implementations. Since

multiple implementations (workflows) can serve the same specification, the UCSOA

infrastructure maintains this one-to-many links from the solution specification to

multiple implementations. Similarly, a service implementation may contribute to

multiple applications(workflow), and UCSOA also maintain this one-to-many links

from a service implementation to applications.

The EasySaaS global design uses one-to-many links in a similar way as UCSOA,

as shown in the left (pink) shadowed part with dashed circle . The customization

workflows and services can use any services in the global services in the repository.

In this case, one can easily find the cross reference relationships between workflows

and services.

Multi-tenancy Database Design Support: In saleforce.com[103], a multi-

tenancy database with metadata tables, data tables and pivot tables are supported,

which is metadata-driven. Figure 82 contrasts a traditional database with a metadata-

driven database. In traditional database design, objects and fields are defined

that represent abstractions of the real-world entities that they represent. Separate

database tables are created for each type of object represented. Specific attributes

258

 Fig. 82. Metadata-Driver Multi-tenancy Database Design

are represented by fields within the tables. Object instances are represented by rows

within the tables. Actual data is placed into a database by inserting rows into the

database tables. Relationships are represented by fields in one table referring to a

key field in another table.

The EasySaaS global design can also support the multi-tenancy database design

as shown in Figure 81 right (yellow) shadowed part with dashed circle.

Dynamic Code Generation with flexibility : The code generated from

EasySaaS is in a dynamic way, in which workflows, services, and data are dynamic

constructed in the customization process.

9.4.3. Chunk Partitioning

Database Partitioning can improve the system performance, scalability and avail-

ability of a large database system in a multi-tenant way. When using HGI, one

259

has to consider partition the tables into chunks, and distribute chunks into differ-

ent nodes in cloud. For example, given a tenant’s information, the query optimizer

only has to access the partitions containing the tenant’s data rather than the en-

tire HGI table, using “partition pruning”. Data partitioning is a proved technique

that database systems provide to physically divide large logical data structures into

smaller and easy manageable pieces(chunks). The data inside a database can be

distributed across one or more partitions. A distribution key is the column used to

determine the partition in which a particular row is stored. Instead of having one

database server controlling the whole system, the database is logically partitioned

and each of them can be controlled by a separate server. Indexes play an important

role in improving overall performance together with partitioning. Different types of

indexes are built to provide efficient query processing for different applications.

9.5. EasySaaS Hosting Platform Support

To support the SaaS application constructing, service delivery platform has to pro-

vide sufficient functionality, including access control, scheduling, maintenance, prob-

lem solving, fault-tolerant, and recovery, as shown in Figure 83.

Access Control: Security is an important issue due to the increase scale of

users. Current approaches to access control on clouds do not scale well to multi-

tenancy requirements because they are mostly based on individual user IDs at dif-

ferent granularity levels, however, the number of users can be enormous and causing

significant overhead in managing security. RBAC (Role-Based Access Control) is

attractive because the number of roles is significantly less, and users can be clas-

sified according to their roles. Tsai. [153] proposed a RBAC model using a role

260

ontology for Multi-Tenancy Architecture (MTA) in clouds. The ontology is used as

to build up the role hierarchy for a specific domain. An ontology transformation

operations algorithms are provided to compare the similarity of different ontology.

The proposed framework can easy the design of security system in cloud and reduce

the complexity of system design and implementation.

Scheduling: To do better load balancing among partitions to optimize the

overall system performance, an effective algorithm is highly desirable, that can mi-

grate, distribute and duplicate tenants among partitions through monitoring the

load. Most cloud scheduling algorithms and database solutions address their prob-

lems independently. However, most of cloud components and functionalities are

interconnected. Specifically, a task scheduling algorithm need to consider database

partitioning to provide an efficient solution for performance and scalability. More

specific, a task assigned to a processor should host the appropriate data partitions

otherwise data updates and migration among caches and processors can be expen-

sive. Tsai[154] proposed a crystalline mapping method which can prioritize service

request in a fair way.

Problem Solving: services are working in a collaborative way, and when an

error occurs, it is mainly caused by one service failure during the process. How

to identify the root cause of the service failure calls for effective resolution. [130]

investigate a real application in IT problem management, and address the possibility

of improving the efficiency of problem solving by mining resolution sequences and

text contents.

Fault Tolerant: Traditional testing practices need to conduct testing activ-

261

SaaSSaaS ApplicationsApplications

Security Log Helpdesk/
Call Center

Maintenance LogPerformanceAvailabilitySecuritySLA Monitoring

Provisioning

Access Control SaaS Hosting Platform RuntimeScheduling Problem SolvingMaintenance Fault-Tolerant
Continuous
Testing

RecoveryMetadata & data
… … … …

 Fig. 83. SaaS Hosting Platform Support

ities after all development activities are completed. To test the modified part of

a software can cost longer time, as well as costs more labors. Such a sequential

develop-test process is insufficient to satisfy the requirement fast involvement posted

by the MTA and SaaS model. Therefore, this paper proposes an embedded capa-

bility of continuous testing in the SaaS framework, to address the testing challenges

introduced by SaaS model.

Recovery: The tripartite recovery model (TRM) [155] uses three major com-

ponents: OC (ontology component), MC (metadata component) and DC (data com-

ponent) for data and metadata recovery. In a traditional cloud environment, data

and meta- data are often at least triplicated into different chunks to ensure relia-

bility and availability. This is good as long as at least one chunk is available in

case of failures, while data lost can be troublesome, metadata lost can cause sig-

nificant issues for a cloud. This paper extends the traditional approach by having

262

redundant metadata information among the three components so that metadata can

be recovered in case all the metadata chunks are lost. Any information stored in

each component will have redundancy. Note that currently, a cloud environment

does not have an OC, but it can be added for customization, service specification,

classification, and now metadata and data recovery.

9.6. Related Work

SOA application construction

The conventional SOA is producer-centric because service providers publish

their services and service consumers must search available services to compose their

applications. consumer-centric service-oriented architecture (CCSOA) [157]is differ-

ent as it allows consumers publish their needs including workflows and services, and

let producers to produce services to meet the requirements. Based on CCSOA, [26]

introduces a new user-centric service oriented architecture (UCSOA) that allows

end users to compose applications. UCSOA is an extension of CCSOA, which is an

extension of conventional SOA. UCSOA provides support for end users. An appli-

cation builder is an engineer who has both domain and programming knowledge,

while an end user has little knowledge on programming and thus UCSOA needs to

allow nontechnical persons to compose their applications. Global Software Enter-

prise (GSE)[158] proposed a new software constructing architecture: the software

construction starts from the consumers’ publishing their requirements in the form

of application or service specification which they exactly want. The consumer also

publishes the expectation for the services the application needs in the form of collab-

oration specification and test scripts. The service providers then produce services

263

that meet the needs of the applications. This new approach reduces the workload

for the consumer and the communication between the consumer and provider. It

also extends the design and code sharing, and thus further improves the software

productivity.

Dependency Analysis and Testing

[45] uses a functional tree method to test the input parameters with constraints,

which is based on the traditional boundary value analysis in black-boxing testing.

This method solves the limitation of the traditional approach which does not cover

the dependency relationship between different parameters. [114] proposed a dy-

namic dependency analysis framework which is used to extract dependencies in

component-based system. It can analyze different components’ dependencies, which

were developed by different developers. Based on the dynamic characteristics, it can

capture runtime information between different components. [56] analyzed the depen-

dency at the code level, the formal analysis has been proposed to identify input-data

dependencies in the code based on abstract interpretation. A formal description of

the abstract-interpretation framework is provided by the whole language. It also

demonstrates the process of finding input dependencies.

In this chapter, EasySaaS uses dependency between services to validate the

new coming services, which can easy the testing process.

9.7. Conclusion

This chapter proposes a new SaaS framework EasySaaS, which consider the con-

sumers as the center of the development by leverage the workload of searching and

customization. The framework is different from current SaaS framework, in stead

264

of starting from scratch and customize applications, the tenant can publishing their

requirements into the global SaaS platform in the form of application requirement

and specification with their unique business requirements, as well as their expecta-

tion of the SaaS outcome and test scripts. The SaaS providers proposes their SaaS

products, customize their services to meet tenant’s requirements. This framework

releases the workload of tenants, and provide an easier way to customize tenants’

business requirement in a collaborative way. The SaaS providers also get benefits

from the shared platform, and fast the development process. A hierarchy global

index is used to support the matching and customization process.

265

10. CONCLUSION AND FUTURE WORK

My thesis discusses several critical research problems in supporting effective and

intelligent multi-tenancy SaaS, including:

1. Service Requests Prioritization: service providers receive multiple requests

from customers, how to prioritize those service requests to maximize the busi-

ness values and minimize customers’ dissatisfaction is one of the most impor-

tant issues in cloud. An innovative prioritization model is proposed, which uses

different types of information, including customer, service, environment and

workflow information to optimize the performance of the system. The model

is applied to a real end-to-end mortgage origination process and evaluate the

performance of the model.

2. Service Demand Forecasting : most services experience seasonal or other pe-

riodic demand variation as well as some unexpected demand bursts due to

external events. The only way to provide “on-demand” services, is to provi-

sion in advance. Accurate demand prediction and provision become critical

for the successful of the cloud computing, which reduces the waste of utility

purchase and can therefore save money using utility computing. An effec-

tive demand prediction model is proposed, and apply it to a real mortgage

application.

3. SaaS Customization: to support a significant number of tenants, SaaS ap-

plications need be customizable to fulfill the various functional and quality

requirements of individual tenants. A unified and innovative multi-layered

266

customization framework is proposed to support and manage the variability

of SaaS applications and tenants-specific requirements. Ontology is used to de-

rive customization and deployment information for tenants cross layers. This

framework also has an intelligent recommendation engine to support new ten-

ants to deploy using information from existing deployed SaaS applications. A

case study in mortgage application is used to demonstrate the proposed model.

4. Scalable and Robust SaaS : The multi-tenancy architecture and customization

requirements have brought up new issues in software, such as database design,

database partition, scalability, recovery, and continuous testing. A hybrid

test database design to support SaaS customization with two-layer database

partitioning is proposed. Furthermore, constraints in metadata can be used

either as test cases or policies to support SaaS continuous testing and policy

enforcement.

5. Secure SaaS : security is an important issue due to the increase scale of users.

Current approaches to access control on clouds do not scale well to multi-

tenancy requirements because they are mostly based on individual user IDs at

different granularity levels, however, the number of users can be enormous and

causing significant overhead in managing security. RBAC (Role-Based Access

Control) is attractive because the number of roles is significantly less, and

users can be classified according to their roles. A RBAC model is proposed

using a role ontology for Multi-Tenancy Architecture (MTA) in clouds. The

ontology is used as to build up the role hierarchy for a specific domain. An

267

ontology transformation operations algorithms are provided to compare the

similarity of different ontology. The proposed framework can easy the design

of security system in cloud and reduce the complexity of system design and

implementation.

6. EasySaaS: To support a significant number of tenants, an easy to use SaaS

construction framework is highly desirable. An easy SaaS constructing ar-

chitecture is proposed: an automatic SaaS construction framework. In the

architecture, in stead of starting from scratch and customize applications, the

tenant can publishing their requirements into the global SaaS platform in the

form of application requirement and specification with their unique business

requirements, as well as their expectation of the SaaS outcome and test scripts.

The SaaS providers proposes their SaaS products, customize their services to

meet tenant’s requirements. This framework releases the workload of tenants,

and provide an easier way to customize tenants’ business requirement in a col-

laborative way. The SaaS providers also get benefits from the shared platform,

and fast the development process. A hierarchy global index is used to support

the matching and customization process.

There are many interesting research problems in multi-tenancy SaaS, for ex-

ample, how to further extend the prioritization framework to Hadoop and evaluate

the general performance of the model. Also, integrating this scheme with diverse

possible scheduling policies in the cloud to find solutions for prioritizing requests.

How to design a collaborative database partitioning and scheduling algorithm to

268

work together with the proposed customization framework, as well as loan balanc-

ing, recovery mechanism in SaaS. How to further improve the robustness of SaaS

framework. I will continue work on these interesting research topics in the future.

269

REFERENCES

[1] Kjersti Aas and Line Eikvil. Text categorisation: A survey., 1999.

[2] R. Agrawal, D. Gunopulos, and F. Leymann. Mining process models from
workflow logs. In EDBT, pages 469–483, 1998.

[3] Gail-Joon Ahn and Ravi Sandhu. Role-based authorization constraints speci-
fication. ACM Trans. Inf. Syst. Secur., 3(4):207–226, 2000.

[4] Julien Allali and Marie france Sagot. Novel tree edit operations for rna sec-
ondary structure comparison. In Proceedings of the 4th Workshop on Algo-
rithms in BioInformatics (WABI),Lecture Notes in Computer Science, pages
412–425. Springer-Verlag, 2004.

[5] Microsoft Multi-Tenancy Architecture. http://msdn.microsoft.com/en-
us/library/aa479086.aspx.

[6] Arithum. http://www.arithum.com/, 2010.

[7] J. Aslam, E. Yilmaz, and V. Pavlu. A geometric interpretation of r-precision
and its correlation with average precsision. SIGIR, 2005.

[8] Stefan Aulbach, Torsten Grust, Dean Jacobs, Alfons Kemper, and Jan Rit-
tinger. Multi-tenant databases for software as a service: schema-mapping
techniques. In SIGMOD ’08, pages 1195–1206, New York, NY, USA, 2008.
ACM.

[9] Windows Azure. http://www.microsoft.com/windowsazure/windowsazure/,
2010.

[10] Xiaoying Bai, Shufang Lee, Wei-Tek Tsai, and Yinong Chen. Ontology-based
test modeling and partition testing of web services. In ICWS ’08, pages 465–
472, Washington, DC, USA, 2008. IEEE Computer Society.

[11] Xiaoying Bai, Yongli Liu, Lijun Wang, Wei-Tek Tsai, and Peide Zhong. Model-
based monitoring and policy enforcement of services. In SERVICES I, pages
789–796, 2009.

270

[12] Xiaoying Bai, Yongbo Wang, Guilan Dai, Wei-Tek Tsai, and Yinong Chen.
A framework for contract-based collaborative verification and validation of
web services. In CBSE’07, pages 258–273, Berlin, Heidelberg, 2007. Springer-
Verlag.

[13] Ryan Barrett. 2008 google i/o session videos and slides.

[14] Elisa Bertino, Piero Andrea Bonatti, and Elena Ferrari. Trbac: A temporal
role-based access control model. ACM Trans. Inf. Syst. Secur., 4(3):191–233,
2001.

[15] Elisa Bertino and Laura M. Haas. Views and security in distributed database
management systems. In EDBT ’88, pages 155–169, London, UK, 1988.
Springer-Verlag.

[16] Rafae Bhatti, Elisa Bertino, Arif Ghafoor, and James B. D. Joshi. Xml-based
specification for web services document security. Computer, 37(4):41–49, 2004.

[17] Philip Bille. A survey on tree edit distance and related problems. Theor.
Comput. Sci., 337(1-3):217–239, 2005.

[18] Peter A. Boncz, Marcin Zukowski, and Niels Nes. Monetdb/x100: Hyper-
pipelining query execution. In CIDR, pages 225–237, 2005.

[19] Matthias Brantner, Daniela Florescu, David Graf, Donald Kossmann, and
Tim Kraska. Building a database on s3. In SIGMOD ’08, pages 251–264, New
York, NY, USA, 2008. ACM.

[20] Hong Cai, Ke Zhang, MingJun Zhou, Wei Gong, JunJie Cai, and XinSheng
Mao. An end-to-end methodology and toolkit for fine granularity saas-ization.
In CLOUD ’09, pages 101–108, 2009.

[21] Google Data Center. http://www.youtube.com/watch?v=zrwpsfplx8i.

[22] S. Ceri, S. Navathe, and G. Wiederhold. Distribution design of logical database
schemas. IEEE Trans. Softw. Eng., 9(4):487–504, 1983.

[23] Stefano Ceri and Giuseppe Pelagatti. Distributed databases principles and
systems. McGraw-Hill, Inc., New York, NY, USA, 1984.

271

[24] David W. Chadwick, Alexander Otenko, and Edward Ball. Role-based access
control with x.509 attribute certificates. IEEE Internet Computing, 7(2):62–
69, 2003.

[25] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gru-
ber. Bigtable: a distributed storage system for structured data. In OSDI ’06,
pages 15–15, Berkeley, CA, USA, 2006. USENIX Association.

[26] Mark Chang, Jackson He, Wei-Tek Tsai, Bingnan Xiao, and Yinong Chen.
Ucsoa: User-centric service-oriented architecture. In ICEBE ’06: Proceedings
of the IEEE International Conference on e-Business Engineering, pages 248–
255, Washington, DC, USA, 2006. IEEE Computer Society.

[27] I-Min A. Chen and Victor M. Markowitz. Modeling scientific experiments
with an object data model. In International Conference on Data Engineering,
pages 391–400, 1995.

[28] Wai-Ki Ching, Eric S. Fung, and Michal K. Ng. A multivariate markov chain
model for categorical data sequences and its applications in demand predic-
tions. IMA Journal of Management Mathematics, 2002.

[29] Frederick Chong and Gianpaolo Carraro. Architecture strategies for catching
the long tail. 2006.

[30] Frederick Chong, Gianpaolo Carraro, and Roger Wolter. Multi-tenant data
architecture, June 2006.

[31] IBM Cloud. http://www.ibm.com/developerworks/data/library/techarticle/dm-
0712taylor/index.html.

[32] CloudStore. http://kosmosfs.sourceforge.net/index.html.

[33] Cloud computing(wiki). http://en.wikipedia.org/wiki/cloud computing.

[34] J. Cook and A. Wolf. Discovering models of software processes from event-
based data. ACM Trans. Softw. Eng. Methodol., 7(3):215–249, 1998.

[35] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silber-
stein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and
Ramana Yerneni. Pnuts: Yahoo!’s hosted data serving platform. Proc. VLDB
Endow., 1(2):1277–1288, 2008.

272

[36] Jason Crampton and George Loizou. Administrative scope: A foundation
for role-based administrative models. ACM Transactions on Information and
System Security, 6:201–231, 2003.

[37] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. G-store: a scalable
data store for transactional multi key access in the cloud. In SoCC ’10, pages
163–174, New York, NY, USA, 2010. ACM.

[38] J. Davis and M. Goadrich. The relationship between precision-recall and roc
curves. Technical Report, University of Wisconsin-Madison, 2006.

[39] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: amazon’s highly available key-value
store. In SOSP ’07, pages 205–220, New York, NY, USA, 2007. ACM.

[40] George Eadon, Eugene Inseok Chong, Shrikanth Shankar, Ananth Raghavan,
Jagannathan Srinivasan, and Souripriya Das. Supporting table partitioning
by reference in oracle. In SIGMOD ’08, pages 1111–1122, New York, NY,
USA, 2008. ACM.

[41] Amazon Elastic Compute Cloud (Amazon EC2).
http://aws.amazon.com/ec2/, 2010.

[42] Marie Gu Egan, Marie Gugan, and Nicolas Hern. Recognizing textual paral-
lelisms with edit distance and similarity degree, 2006.

[43] Google App Engine. http://code.google.com/appengine, 2010.

[44] Moez Essaidi. Odbis: towards a platform for on-demand business intelligence
services. In EDBT ’10: ICDT Workshops, pages 1–6, New York, NY, USA,
2010. ACM.

[45] Wenying Feng. A generalization of boundary value analysis for input param-
eters with functional dependency. Computer and Information Science, ACIS
International Conference on, 0:776–781, 2010.

[46] Force.com. http://force.com/.

[47] Armando Fox. The potential of cloud computing: Opportunities and chal-
lenges.

273

[48] Mark S. Fox, Mihai Barbuceanu, and Michael Gruninger. An organisation
ontology for enterprise modeling: preliminary concepts for linking structure
and behaviour. Comput. Ind., 29(1-2):123–134, 1996.

[49] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley
Professional, 1995.

[50] R. Gerritsen. Assessing loan risks: A data mining case study. IT Pro, 1999.

[51] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file
system. SIGOPS Oper. Syst. Rev., 37(5):29–43, 2003.

[52] S. Godik and T. Moses. Oasis extensible access control markup language
(xacml) version 1.1. oasis committee specification. July 2003.

[53] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Using
collaborative filtering to weave an information tapestry. Commun. ACM,
35(12):61–70, 1992.

[54] W. Greene. Econometric analysis. Prentice Hall, Inc, 2000.

[55] Sudipto Guha, H. V. Jagadish, Nick Koudas, Divesh Srivastava, and Ting
Yu. Approximate xml joins. In SIGMOD ’02: Proceedings of the 2002 ACM
SIGMOD international conference on Management of data, pages 287–298,
New York, NY, USA, 2002. ACM.

[56] J. Gustafsson, B. Lisper, R. Kirner, and P. Puschner. Input-dependency anal-
ysis for hard real-time software. pages 53 – 53, oct. 2003.

[57] Hadoop. http://hadoop.apache.org/.

[58] Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2005.

[59] HBase. Hbase: Bigtable-like structured storage for hadoop hdfs, 2009.

[60] http://asusrl.eas.asu.edu/srlab/.

[61] http://csrc.nist.gov/groups/SNS/cloud computing/index.html.

274

[62] Graham Hughes and Tevfik Bultan. Automated verification of access control
policies using a sat solver. Int. J. Softw. Tools Technol. Transf., 10(6):503–520,
2008.

[63] Microsoft Building New Data Center in Quincy.
http://www.datacenterknowledge.com/archives/2010/05/19/microsoft-
building-new-data-center-in-quincy/.

[64] iTKO. itko lisa.

[65] V. Iyengar, I. Boier, K. Kelley, and R. Curatolo. Analytics for audit and
business controls in corporate travel and entertainment. Sixth Australasian
Data Mining conference, 2007.

[66] Bala Iyer, Sharad Mehrotra, Einar Mykletun, Gene Tsudik, and Yonghua Wu.
A framework for efficient storage security in rdbms. In In EDBT, 2004.

[67] Harshavardhan Jegadeesan and Sundar Balasubramaniam. Differentiating
commoditized services in a services marketplace. In SCC ’08, pages 153–160.
IEEE Computer Society, 2008.

[68] P. Jogalekar and M. Woodside. Evaluating the scalability of distributed sys-
tems. IEEE Transactions on Parallel and Distributed Systems, 11(6):589–603,
2000.

[69] G. John and Y. Zhao. Mortgage data mining. Computational Intelligence in
Finanacial Engineering, 232-236, 1997.

[70] James B. D. Joshi, Elisa Bertino, Usman Latif, and Arif Ghafoor. A general-
ized temporal role-based access control model. IEEE Trans. on Knowl. and
Data Eng., 17(1):4–23, 2005.

[71] K. Schliep K. Hechenbichler. Weighted k-nearest-neighbor techniques and
ordinal classification. Technical report, Ludwig-Maximilians University, 2007.

[72] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine,
and Daniel Lewin. Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the world wide web. In STOC ’97, pages
654–663, New York, NY, USA, 1997. ACM.

[73] C. Kaufman, R. Perlman, and M. Speciner. Network Security: Private Com-
munication in a Public World, second ed. 2002.

275

[74] Axel Kern, Martin Kuhlmann, Rainer Kuropka, and Andreas Ruthert. A meta
model for authorisations in application security systems and their integration
into rbac administration. In SACMAT ’04: Proceedings of the ninth ACM
symposium on Access control models and technologies, pages 87–96, New York,
NY, USA, 2004. ACM.

[75] Philip N. Klein. Computing the edit-distance between unrooted ordered trees.
In In Proceedings of the 6th annual European Symposium on Algorithms (ESA,
pages 91–102. Springer-Verlag, 1998.

[76] M. Koch, L. V. Mancini, and F. Parisi-Presicce. Administrative scope in the
graph-based framework. In SACMAT ’04: Proceedings of the ninth ACM sym-
posium on Access control models and technologies, pages 97–104, New York,
NY, USA, 2004. ACM.

[77] Donald Kossmann, Tim Kraska, and Simon Loesing. An evaluation of alter-
native architectures for transaction processing in the cloud. In SIGMOD ’10,
pages 579–590, New York, NY, USA, 2010. ACM.

[78] Tim Kraska, Martin Hentschel, Gustavo Alonso, and Donald Kossmann. Con-
sistency rationing in the cloud: pay only when it matters. Proc. VLDB En-
dow., 2(1):253–264, 2009.

[79] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to parallel com-
puting: design and analysis of algorithms. The Benjamin/Cummings, 1994.

[80] Qianhui Althea Lang and et al. And/or graph and search algorithm for dis-
covering composite web services, 2005.

[81] Stephen S. Lavenberg. Computer Performance Modeling Handbook. Academic
Press, Inc., Orlando, FL, USA, 1983.

[82] Jong-Kwon Lee and Jennifer C. Hou. Modeling steady-state and transient
behaviors of user mobility: formulation, analysis, and application. In MobiHoc
’06: Proceedings of the 7th ACM international symposium on Mobile ad hoc
networking and computing, pages 85–96, New York, NY, USA, 2006. ACM.

[83] W. Lehner and K.-U. Sattler. Database as a service (dbaas). pages 1216 –1217,
mar. 2010.

[84] Wolfgang Lehner and Kai-Uwe Sattler. Database as a service (dbaas). In
ICDE, pages 1216–1217, 2010.

276

[85] Hongbo Li, Yuliang Shi, and Qingzhong Li. A multi-granularity customization
relationship model for saas. In WISM ’09, pages 611–615, Washington, DC,
USA, 2009. IEEE Computer Society.

[86] Ninghui Li and Mahesh V. Tripunitara. Security analysis in role-based access
control. ACM Trans. Inf. Syst. Secur., 9(4):391–420, 2006.

[87] Miron Livny, Setrag Khoshafian, and Haran Boral. Multi-disk management
algorithms. SIGMETRICS Perform. Eval. Rev., 15(1):69–77, 1987.

[88] H. Mannila and D. Rusakov. Decomposition of event sequences into indepen-
dent components. In Proc. 1st SIAM Conf. Data Mining, pages 1–17, 2001.

[89] H. Mannila, H. Toivonen, and A. Verkamo. Discovery of frequent episodes in
event sequences. Data Mining and Knowledge Discovery, 1(3):259–289, 1997.

[90] Fabio Massacci. Reasoning about security: a logic and a decision method for
role-based access control. In In ECSQARU-FAPR, pages 421–435, 1997.

[91] Sally Mcclean. Semi-markov models for human-resource modelling. IMA Jour-
nal of Management Mathematics, 4(4):307–315, 1992.

[92] M.O. McFaddin. Adaptive Customization: New Design Opportunities in Or-
thopedics, Driven by the Merging of Imaging and Surgery. 45(4), 2007.

[93] Marshall Kirk McKusick and Sean Quinlan. Gfs: Evolution on fast-forward.
Queue, 7(7):10–20, 2009.

[94] Manish Mehta and David J. DeWitt. Data placement in shared-nothing par-
allel database systems. The VLDB Journal, 6(1):53–72, 1997.

[95] Ralph Mietzner and Frank Leymann. Generation of bpel customization pro-
cesses for saas applications from variability descriptors. In SCC ’08, pages
359–366, Washington, DC, USA, 2008. IEEE Computer Society.

[96] Tim Moses. extensible access control markup language tc v2.0 (xacml), Febru-
ary 2005.

[97] OASIS. http://www.oasisopen.org/committees/uddispec/doc/tcspecs.htm.

277

[98] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and
Andrew Tomkins. Pig latin: a not-so-foreign language for data processing. In
SIGMOD ’08, pages 1099–1110, New York, NY, USA, 2008. ACM.

[99] Ontology. http://en.wikipedia.org/wiki/ontology (information science).

[100] Oracle. The virtual private database in oracle9ir2, 2008.

[101] Sylvia Osborn, Ravi Sandhu, and Qamar Munawer. Configuring role-based
access control to enforce mandatory and discretionary access control policies.
ACM Trans. Inf. Syst. Secur., 3(2):85–106, 2000.

[102] Justin O’Sullivan, David Edmond, and Arthur H. M. ter Hofstede. Formal
description of non-functional service properties. In Technical Report FIT-TR-
2005-01, Queensland University of Technology, Australia., 2005.

[103] Jason Ouellette. Development with the Force.com Platform: Building Business
Applications in the Cloud. Addison-Wesley Professional, 2009.

[104] Joon S. Park, Ravi Sandhu, and Gail-Joon Ahn. Role-based access control on
the web. ACM Trans. Inf. Syst. Secur., 4(1):37–71, 2001.

[105] L. Pastor and J.L. Bosque. An efficiency and scalability model for heteroge-
neous clusters. In cluster, page 427. Published by the IEEE Computer Society,
2001.

[106] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. De-
Witt, Samuel Madden, and Michael Stonebraker. A comparison of approaches
to large-scale data analysis. In SIGMOD ’09, pages 165–178, New York, NY,
USA, 2009. ACM.

[107] Judea Pearl. Bayesian networks: A model of self-activated memory for eviden-
tial reasoning. In Proceedings of the 7th Conference of the Cognitive Science
Society, University of California, Irvine, pages 329–334, August 1985.

[108] M. Pinedo. Scheduling theory, algorithms and systems. Prentice Hall, Inc,
1995.

[109] Helena Sofia Pinto and Martins. Ontologies: How can they be built? Knowl.
Inf. Syst., 6(4):441–464, 2004.

278

[110] Helena Sofia Pinto and ao P Martins, Jo˙ A methodology for ontology inte-
gration. In K-CAP ’01: Proceedings of the 1st international conference on
Knowledge capture, pages 131–138, New York, NY, USA, 2001. ACM.

[111] V. Poor. An intorudction to signal detection and estimation. Springer texts
in Electrical Engineering, 1994.

[112] Taverna Project. http://taverna.sourceforge.net/.

[113] F. Provost, T. Fawcett, and R. Kohavi. The case aainst accuracyestimation
for comparing induction algorithms. Proceedings of the Fifteenth International
Conference on Machine Learning, 1998.

[114] Binbin Qu, Qian Liu, and Yansheng Lu. A framework for dynamic analysis
dependency in component-based system. volume 4, pages V4–250 –V4–254,
apr. 2010.

[115] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems.
2007.

[116] Chandramouli Ramaswamy, Ravi Sandhu, Ramouli Ramaswamy, and Ravi
S. Role-based access control features in commercial database management
systems. In In Proceedings of 21st NIST-NCSC National Information Systems
Security Conference, pages 503–511, 1998.

[117] Role-Based Access Control 2000 Workshop RBAC, 2000.

[118] Salesforce.com real time feature. http://www.salesforce.com/platform/cloudinfrastructure/
integration.jsp, 2010.

[119] Werner Retschitzegger, Franz Phretmair, and Gerhard Nussbaum. Towards
an ontology-based cutomization approach for supporting people with special
needs.

[120] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized ob-
ject location, and routing for large-scale peer-to-peer systems. IN: MIDDLE-
WARE, pages 329–350, 2001.

[121] Domenico Sacca and Gio Wiederhold. Database partitioning in a cluster of
processors. ACM Trans. Database Syst., 10(1):29–56, 1985.

279

[122] David Saff and Michael D. Emst. Continuous testing in eclipse. In 2nd Eclipse
Technology Exahcange Workshop (eTX), Barcelona, Spain, March 2004.

[123] Gerard Salton and Michael J. McGill. Introduction to Modern Information
Retrieval. McGraw-Hill, Inc., New York, NY, USA, 1986.

[124] Ravi Sandhu, David Ferraiolo, and Richard Kuhn. The nist model for role-
based access control: towards a unified standard. In RBAC ’00: Proceedings
of the fifth ACM workshop on Role-based access control, pages 47–63, New
York, NY, USA, 2000. ACM.

[125] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.
Role-based access control models. IEEE Computer, 29(2):38–47, 1996.

[126] Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and John T. Riedl.
Application of dimensionality reduction in recommender system- a case study.
In In ACM WebKDD Workshop, 2000.

[127] Andreas Schaad, Jonathan Moffett, and Jeremy Jacob. The role-based access
control system of a european bank: a case study and discussion. In SACMAT
’01: Proceedings of the sixth ACM symposium on Access control models and
technologies, pages 3–9, New York, NY, USA, 2001. ACM.

[128] Patrick J. Schroeder and Bogdan Korel. Black-box test reduction using input-
output analysis. SIGSOFT Softw. Eng. Notes, 25(5):173–177, 2000.

[129] WS-Policy. Web services policy framework (ws policy). http://www-
106.ibm.com/developerworks/library/specification/wspolfram/.

[130] Qihong Shao, Yi Chen, Shu Tao, Xifeng Yan, and Nikos Anerousis. Efficient
ticket routing by resolution sequence mining. In KDD ’08: Proceeding of
the 14th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 605–613, New York, NY, USA, 2008. ACM.

[131] Qihong Shao, Anshul Sheopuri, Milind Naphade, Chitra Dorai, Daniel John-
son, and Jane Hoffman. Ranking mortgage origination applications using
customer, product, environment and workflow attributes. Cloud’09, pages
198–205, 2009.

[132] Qihong Shao, Peng Sun, and Yi Chen. Wise: A workflow information search
engine. In ICDE ’09, pages 1491–1494, Washington, DC, USA, 2009. IEEE
Computer Society.

280

[133] J. Shawe-Taylor and N. Cristianini. Support vector machines and other kernel-
based learning methods. 2000.

[134] A. Sheopuri, S. Zeng, and C. Dorai. A new policy for the service request
assignment problem with multiple severity level, due date and sla penalty
service requests. Winter Simulation Conference, 2008.

[135] Morris Sloman. Policy driven management for distributed systems. Journal
of Network and Systems Management, 2:333–360, 1994.

[136] E. Smith. Continuous testing. In Proceedings of the 17th International Con-
ference on Testing Computer Software, 2000.

[137] Will Sobel, Shanti Subramanyam, Akara Sucharitakul, Jimmy Nguyen, Hu-
bert Wong, Arthur Klepchukov, Sheetal Patil, O Fox, and David Patter-
son. Cloudstone: Multi-platform, multi-language benchmark and measure-
ment tools for web 2.0, 2008.

[138] Ellen Spertus, Mehran Sahami, and Orkut Buyukkokten. Evaluating similarity
measures: A large-scale study in the orkut social network. In KDD ’05, pages
678–684, New York, NY, USA, 2005. ACM.

[139] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans
Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: a scalable peer-
to-peer lookup protocol for internet applications. IEEE/ACM Trans. Netw.,
11(1):17–32, 2003.

[140] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch
Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Samuel R. Mad-
den, Elizabeth J. O’Neil, Patrick E. O’Neil, Alexander Rasin, Nga Tran, and
Stan B. Zdonik. C-store: A column-oriented dbms. In VLDB, pages 553–564,
Trondheim, Norway, 2005.

[141] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos,
Nabil Hachem, and Pat Helland. The end of an architectural era: (it’s time
for a complete rewrite). In VLDB ’07: Proceedings of the 33rd international
conference on Very large data bases, pages 1150–1160. VLDB Endowment,
2007.

[142] X.H. Sun. Scalability versus Execution Time in Scalable Systems* 1. Journal
of Parallel and Distributed Computing, 62(2):173–192, 2002.

281

[143] X.H. Sun, Y. Chen, and M. Wu. Scalability of heterogeneous computing.
In Parallel Processing, 2005. ICPP 2005. International Conference on, pages
557–564. IEEE, 2005.

[144] X.H. Sun and L.M. Ni. Scalable problems and memory-bounded speedup.
Journal of Parallel and Distributed Computing, 19:27–37, 1993.

[145] X.H. Sun and D.T. Rover. Scalability of parallel algorithm-machine combina-
tions. IEEE Transactions on Parallel and Distributed Systems, pages 599–613,
1994.

[146] Distributed Hash Tables. http://en.wikipedia.org/wiki/distributed hash table.

[147] Kuo-Chung Tai. The tree-to-tree correction problem. J. ACM, 26(3):422–433,
1979.

[148] Vandan Trivedi, Ira Moscovice, Richard Bass, and John Brooks. A semi-
markov model for primary health care manpower supply prediction. Manage.
Sci., 33(2):149–160, 1987.

[149] Wei-Tek Tsai. Service-oriented system engineering: a new paradigm. pages 3
– 6, oct. 2005.

[150] Wei-Tek Tsai, Yinong Chen, Ray Paul, Xinyu Zhou, and Chun Fan. Simula-
tion verification and validation by dynamic policy specification and enforce-
ment. Simulation, 82(5):295–310, 2006.

[151] Wei-Tek Tsai, Qian Huang, Jay Elston, and Yinong Chen. Service-oriented
user interface modeling and composition. In ICEBE ’08: Proceedings of the
2008 IEEE International Conference on e-Business Engineering, pages 21–28,
Washington, DC, USA, 2008. IEEE Computer Society.

[152] Wei-Tek Tsai, Qian Huang, Jingjing Xu, Yinong Chen, and Ray Paul.
Ontology-based dynamic process collaboration in service-oriented architec-
ture. In SOCA ’07, pages 39–46, Washington, DC, USA, 2007. IEEE Com-
puter Society.

[153] Wei-Tek Tsai and Qihong Shao. Role-based access-control using reference on-
tology in clouds. Technical Report ASU-CS-TR-xxx, Arizona State University,
June 2010.

282

[154] Wei-Tek Tsai, Qihong Shao, and Jay Elson. Prioritizing service requests on
cloud with multi-tenancy. Int. Conf. on e-Business Engineering (ICEBE’10).

[155] Wei-Tek Tsai, Qihong Shao, Yu Huang, and Xiaoying Bai. Towards a scalable
and robust multi-tenancy saas. In Internetware’ 2010, 2010.

[156] Wei-Tek Tsai, Qihong Shao, and Wu Li. Oic: Ontology-based intelligent
customization framework for saas. In SOCA, 2010.

[157] Wei-Tek Tsai, Bingnan Xiao, Yinong Chen, and Raymond A. Paul. Consumer-
centric service-oriented architecture: A new approach. In SEUS-WCCIA
’06: Proceedings of the The Fourth IEEE Workshop on Software Technologies
for Future Embedded and Ubiquitous Systems, and the Second International
Workshop on Collaborative Computing, Integration, and Assurance (SEUS-
WCCIA’06), pages 175–180, Washington, DC, USA, 2006. IEEE Computer
Society.

[158] Wei-Tek Tsai, Bingnan Xiao, Ray Paul, Qian Huang, and Yinong Chen.
Global software enterprise: A new software constructing architecture. In
CEC-EEE ’06: Proceedings of the The 8th IEEE International Conference
on E-Commerce Technology and The 3rd IEEE International Conference on
Enterprise Computing, E-Commerce, and E-Services, page 55, Washington,
DC, USA, 2006. IEEE Computer Society.

[159] Wei-Tek Tsai, Xinyu Zhou, Raymond A. Paul, Yinong Chen, and Xiaoying
Bai. A coverage relationship model for test case selection and ranking for
multi-version software. HASE, 0:105–112, 2007.

[160] Richard Valliant and George Milkovich. Comparison of semi-markov and
markov models in a personnel forecasting application. Decision Sciences,
8(2):465–477, 1977.

[161] Guido van Rossum. Google app engine presentation.

[162] Martin Warin, Henrik Oxhammar, and Martin Volk. Enriching an ontology
with wordnet based on similarity measures. In In: MEANING-2005 Work-
shop, 2005.

[163] Craig Weissman. Behind the scenes: Salesforce.com chief technology officer
on cloud architecture, 2009.

283

[164] Craig D. Weissman and Steve Bobrowski. The design of the force.com mul-
titenant internet application development platform. In SIGMOD ’09, pages
889–896, New York, NY, USA, 2009. ACM.

[165] Craig D. Weissman and Steve Bobrowski. The design of the force.com mul-
titenant internet application development platform. In SIGMOD ’09, pages
889–896, New York, NY, USA, 2009. ACM.

[166] J. Wong and L. Fung. Residential mortgage default risk and the loan-to-value
ratio. Hong Kong Monetary Authority Quarterly Bulletin, 2004.

[167] Yalin Yarimagan and Asuman Dogac. Semantics based customization of ubl
document schemas. Distrib. Parallel Databases, 22(2-3):107–131, 2007.

[168] Yufei Yuan and Michael J. Shaw. Induction of fuzzy decision trees. Fuzzy Sets
Syst., 69(2):125–139, 1995.

[169] K. Zhang and D. Shasha. Simple fast algorithms for the editing distance
between trees and related problems. SIAM J. Comput., 18(6):1245–1262, 1989.

[170] Kuo Zhang, Xin Zhang, Wei Sun, Haiqi Liang, Ying Huang, Liangzhao Zhen,
and Xuanzhe Liu. A policy-driven approach for software-as-services customiza-
tion. ICEBE, 0:123–130, 2007.

[171] Chen Zhao, Nuermaimaiti Heilili, Shengping Liu, and Zuoquan Lin. Repre-
sentation and reasoning on rbac: A description logic approach. In In ICTAC,
pages 381–393, 2005.

284

BIOGRAPHICAL SKETCH

Qihong Shao was born in Dandong city, Liaoning province, People’s Republic

of China. She attended Renmin University of China (RUC), where she earned

the bachelor of engineering in computer science in 2003. She received scholarship

every year during her undergraduate study in RUC. Subsequently she entered the

graduate school of RUC waived of entrance exam due to excellent academic record,

and obtained her master of science degree in computer science department in 2006.

Qihong further pursued her doctoral degree in the area of cloud computing at

Arizona State University(ASU) under the supervision of Dr. Wei-Tek Tsai. She

published around 20 papers in top conferences and journals.

285

