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ABSTRACT

Borda’s social choice method and Condorcet’s social choice method are shown to sat-

isfy different monotonicities and it is shown that it is impossible for any social choice

method to satisfy them both. Results of a Monte Carlo simulation are presented which es-

timate the probability of each of the following social choice methods being manipulable:

plurality (first past the post), Borda count, instant runoff, Kemeny-Young, Schulze, and ma-

jority Borda. The Kemeny-Young and Schulze methods exhibit the strongest resistance to

random manipulability. Two variations of the majority judgment method, with different tie-

breaking rules, are compared for continuity. A new variation is proposed which minimizes

discontinuity.

A framework for social choice methods based on grades is presented. It is based on the

Balinski-Laraki framework, but doesn’t require aggregation functions to be strictly mono-

tone. By relaxing this restriction, strategy-proof aggregation functions can better handle a

polarized electorate, can give a societal grade closer to the input grades, and can partially

avoid certain voting paradoxes. A new cardinal voting method, called the linear median is

presented, and is shown to have several very valuable properties. Range voting, the ma-

jority judgment, and the linear median are also simulated to compare their manipulability

against that of the ordinal methods.
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Chapter 1

INTRODUCTION

1.1 History

Decision theory, or social choice, is the study of all mechanisms by which a group of people

can come to a collective decision from individual preferences. In traditional social choice,

the only input to the decision-making mechanism is each individual’s rank ordering of the

possible alternatives, and the output of any decision making mechanism is a “societal” rank

ordering meant to represent the aggregated wishes of the group.

An example of a well-known and straightforward social decision method is the Borda

Count [5], where the decision among n alternatives is made by assigning n points to each

individual’s favorite alternative, n−1 points to each person’s second favorite, etc., down to

1 point assigned to each person’s least favorite. The points for each alternative are summed

and the alternatives are put in descending order of the total number of points received. This

method was popularized in the late eighteenth century, by Jean-Charles, chevalier de Borda.

A contemporary of Borda, Marie Jean Antoine Nicolas de Caritat, marquis de Con-

dorcet, was of the opinion that the societal rank ordering should match the majority rule as

much as possible. That is, for every pair of alternatives, whichever alternative was preferred

by the most people should be preferred in the societal rank ordering. Condorcet was critical

of Borda’s method for going against the majority rule in many circumstances, but he also

noted that this criterion is not always able to be satisfied; there are cases where alternative

A is preferred to alternative B by a majority, B is preferred to C by a majority and C to A

by a majority. This situation is called Condorcet’s paradox. The Condorcet criterion for

social decision methods says that if there is one alternative that is preferred by a majority to

every other alternative, then it should be selected as the best alternative in the societal rank-

ing. Condorcet suggested a social decision method1 consistent with this criterion2: Points

1See [7] and [16]
2Also known as the Kemeny-Young method [10]
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are awarded to all possible societal rankings in accordance with the number of people who

agree with each of the pairwise outcomes in the ranking. These points are summed and the

ranking with the highest score is declared the societal ranking.

Since the framework of social choice allows any social decision mechanism imaginable,

the space of possible mechanisms is rather large3. There are some notably degenerate

social decision functions. A constant social decision function would always yield the same

societal ranking regardless of what the individual preferences were. A dictatorship is a

social decision function that prefers one individual and always chooses his ranking of the

alternatives as the societal ranking.

1.2 Arrow’s Impossibility Theorem

Here are some standard criteria for evaluating social decision methods:

• Impartiality to individuals - If the preferences of two individuals are exchanged, the

societal ranking should not change.

• Impartiality to alternatives - If two alternatives exchanged position in every individ-

ual’s preference order, the only change to the societal ranking should be those two

alternatives exchanging positions.

• Pairwise unanimity - For each pair of alternatives, if one alternative is preferred to

the other by every individual, then that must be true in the societal ranking as well.

• Independence of irrelevant alternatives - Which alternative of any pair is preferred in

the societal ranking must not change when any individual moves a third alternative

(not in the pair) to a different place in his ranking (leaving the rest of the ranking

unchanged).

The impartiality criteria are natural requirements for any system that is used in practice,

but many times are omitted in theory because they are overly restrictive. Pairwise una-

3Define N as the set of all possible rankings of the alternatives. There are n! when only
strict rank orderings are considered, more if ties are allowed. The possible social decision
mechanisms are all functions from N m to N .

2



nimity is a very weak condition which ensures the societal ranking has some relationship

to the individuals’ preferences. Any sensible social decision method will satisfy pairwise

unanimity. Independence of irrelevant alternatives (or IIA) is a very desirable criterion for

a social decision method; the societal decision between two alternatives should not change

merely when opinions shift about other alternatives.

Table 1.1 shows how well a selection of social decision methods satisfy these criteria.

Impartial to Impartial to Pairwise
Method individuals alternatives unanimous IIA
Borda Y Y Y N

Condorcet Y Y Y N
Constant fn Y N N Y
Dictatorship N Y Y Y

Table 1.1: Social decision method criteria chart

Despite being extremely desirable, independence of irrelevant alternatives is extremely

difficult to satisfy: any social decision method that is pairwise unanimous and IIA must be

a dictatorship. This is Kenneth Arrow’s renowned impossibility theorem [1].

Theorem 1. (Arrow) If a social choice method for three or more alternatives returns a

societal rank-ordering for every possible combination of input rank-orderings, and if it is

pairwise unanimous and independent of irrelevant alternatives, then it is a dictatorship.

Another important and well-studied criterion that is impossible to satisfy is that a social

decision method should not allow manipulation or strategic voting—that is, an individual

should not be able to cause the top-ranked alternative to switch to an alternative he prefers

by changing his ranking away from his honest one to something else. This is known as the

Gibbard-Satterthwaite theorem [9] [13].

Theorem 2. (Gibbard-Satterthwaite) If a social choice method for three or more alterna-

tives is not a dictatorship and for every alternative there is some profile of rankings that

could cause that alternative to win, then there exists some profile where some individual

3



could, by submitting a vote that does not indicate his true preferences, alter the top-ranked

alternative to one he prefers more.

1.3 Organization of this dissertation

Part I of this work examines the concepts of monotonicity and manipulability in well-known

social choice methods from several perspectives. Chapters 2 and 3 take place within the

traditional social choice framework, where each individual submits a ranking of the alter-

natives. In chapter 2, we explore the concept of monotonicity in this framework, which

generally means that no negative effects should come to a candidate when one or more

individuals move that candidate up in their rankings. Another type of monotonicity, for

rankings, is introduced. It is proved that Borda’s method and Condorcet’s method satisfy

different monotonicities and that it is impossible for any method to satisfy them both. In

chapter 3, we examine the manipulability of several social choice functions, including a

relatively new method, the majority Borda method[3]. This method is expected to have

some strong manipulability-resistance properties, but it has not been widely studied. The

manipulability of the different methods is analyzed from a probability standpoint, with the

main original result being some Monte Carlo simulations which give concrete manipula-

bility scores for these methods. The majority Borda method does indeed fare well in some

circumstances, though Condorcet’s method fares the best in general. Chapter 4 examines an

alternative social choice system, based on individuals submitting grades or evaluations of

each alternative instead of ranking them. Some existing social choice methods within this

framework are approval voting, score voting, and the majority judgment. Several variations

of the majority judgment, including a proposed new variant, are analyzed for continuity.

In part II, we introduce a new framework for the analysis of social choice methods

based on grades. It is a variation of the Balinski-Laraki[4] framework, but relaxes one key

requirement and thus admits many more possible ways of aggregating individual grades

into a societal grade. In chapter 5, we provide a new characterization of all aggregation

functions that are resistant to strategic voting. A new method, called the linear median,

is introduced which has several very valuable aggregation properties. Chapter 6 explores
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how to choose the aggregation function that will minimize the distance between the voter

input grades and the aggregated output grade. The linear median is shown to be the opti-

mal aggregation function for this purpose in certain circumstances. Chapter 7 extends this

analysis to other norms. It also examines which aggregation functions will minimize the

influence that a single voter can have on the election outcome. The linear median is shown

to be the unique aggregation function in its class that can minimize the influence of a sin-

gle voter, as measured with the uniform norm (L∞). In chapter 8, we examine the no-show

paradox and how it affects the majority judgment and the linear median. Additionally, three

of the social choice functions that are based on grading, including the linear median, are

examined and simulated to give concrete manipulability scores which are compared to the

ordinal functions computed in chapter 3.

In summary, part II aims to provide a comprehensive analysis of a new social choice

framework. That analysis shows that the linear median and the majority judgment stand out

as the most useful, sensible, and viable of all cardinal social choice methods. We promote

further study of these methods and encourage their implementation in electoral situations

large and small.

1.4 Notations

For alternatives in the abstract, we will generally use upper-case letters A,B,C, etc. .

To indicate that one or more individuals prefer A to B to C, we will use the notation

A ≻ B ≻C.

To indicate individuals who are indifferent to A and B, we will indicate A ≈ B. Two indi-

viduals who prefer A to B to C will be notated as

2 : A ≻ B ≻C.

To indicate that a social choice method gives a societal outcome preferring A to B to C, we

will use to subscripted relation ≻S, as in A ≻S B ≻S C.
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When we refer to “Condorcet’s method” we are referring to the social choice method

generally known as Kemeny-Young, in accordance with the deduction in [16] that this was

probably the method Condorcet had in mind in his writings.

In some places, where it seems more natural, we will refer specifically to the context of

elections. That is, we will refer to alternatives as candidates and to individuals as voters.

All results, however, apply to social choice situations in general, not merely to elections.
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Part I

MONOTONICITY AND MANIPULABILITY OF EXISTING SOCIAL CHOICE

METHODS
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Chapter 2

MONOTONICITY IN TRADITIONAL SOCIAL CHOICE

One of the most basic criteria used to analyze social choice mechanisms is monotonicity.

It seems to be a basic tenet of fairness that when some voters move a candidate up in their

rankings, he should not be negatively affected. When a social choice method allows a

candidate to become worse off when they are ranked higher by some voters, the election

outcomes are never without doubt. Additionally, such methods are susceptible to some

of the most blatant forms of tactical voting, for there will be situations where voters are

tempted to rank candidates lower in order to help them.

In this chapter we examine several different monotonicity criteria. We then turn to an

idea of Peyton Young, that choosing a “best” societal ranking and choosing one “best”

alternative are not fully compatible. We expand on Young’s results with some principles

of monotonicity. The results in this section were published as a joint work with Michel

Balinski and Rida Laraki in November 2009[2].

2.1 Monotonicities

Winner-monotonicity

The most common monotonicity considered in the literature is winner-monotonicity, which

means that the winning candidate should still win if they were to be ranked higher by

some of the voters (with no other changes to the voter preference profile). Borda’s method

clearly satisfies winner-monotonicity, because moving the winner up in some rankings will

increase his Borda score and will decrease or leave unchanged the scores of the other can-

didates, meaning that no candidate can overtake the winning candidate when he is moved

up in ranking by some voters. Similarly, Condorcet’s method is winner-monotone because

moving the winner up in one voter’s ranking will add exactly one point to every ranking

which ranks that candidate over the candidate who was moved down and will subtract one

point from every other ranking. In particular, every ranking which ranks that candidate first
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will have its points increased by one, and no ranking will increase in points by more than

one, so no ranking can overtake the winning ranking when the winner is moved up by one

or more voters.

An example of a method that can fail winner-monotonicity is instant runoff voting. In

a three winner race, for example, there are times when the winner being moved up in some

voters’ rankings will change which candidate is eliminated first and allow the former winner

to be defeated by the other candidate. Here is a specific example:

8 : A ≻ B ≻C 2 : B ≻ A ≻C 5 : B ≻C ≻ A 6 : C ≻ A ≻ B.

C is eliminated in the first round and A defeats B by a score of 14 to 7 in the final round.

If the two B ≻ A ≻C voters move A up so they become A ≻ B ≻C voters, then we have the

following profile:

10 : A ≻ B ≻C 5 : B ≻C ≻ A 6 : C ≻ A ≻ B

where B is eliminated in the first round and then C defeats A by a score of 11 to 10 in the

final round. Thus, with instant runoff voting, a candidate can lose the election by being

ranked higher by some voters.

Choice-monotonicity

A more thorough notion of monotonicity is that moving any candidate up in ranking should

never cause that candidate to lose to someone they defeated before they were moved up.

Formally, we define choice-monotonicity to mean that if a profile of individual preferences

yields a societal ranking with alternative A preferred to alternative B or A tied with B and

then alternative A is moved to a higher rank or B is moved to a lower rank by one per-

son, the societal ranking should (strictly) prefer A to B. Choice-monotonicity can be seen

as a generalization of winner-monotonicity in that winner-monotonicity only requires this

condition to hold for the winning candidate in the original profile. Choice-monotonicity

requires that is be true for every candidate.

Borda’s method also satisfies choice-monotonicity. Again, this is because moving a

candidate up in ranking will strictly increase his Borda points, while decreasing or leaving

9



unaltered the points of every other candidate. Condorcet’s method, on the other hand, is not

choice-monotone. The following profile, P0, shows the failure of Condorcet’s method to

satisfy choice-monotonicity:

4 : A ≻ B ≻C ≻ D ≻ E

4 : B ≻ E ≻C ≻ A ≻ D

2 : D ≻ E ≻C ≻ A ≻ B

1 : D ≻C ≻ E ≻ A ≻ B

1 : D ≻ E ≻ A ≻C ≻ B.

Condorcet’s method will give a two-way tie for first between the societal rankings

A ≻S B ≻S C ≻S D ≻S E and B ≻S E ≻S C ≻S A ≻S D,

so we can create profile P1 from P0 by having one of the voters who ranked C immediately

above A swap them. This causes Condorcet’s method to give a unique best societal ranking

of A ≻S B ≻S C ≻S D ≻S E. We can also create profile P2 from P0 by having the one voter

who ranked A immediately above C swap them, which yields a unique best societal ranking

of B ≻S E ≻S C ≻S A ≻S D. Thus, moving from P1 to P2 is accomplished by having two

voters move C up one rank, which causes C to become defeated by E in the societal ranking

where C had defeated E before.

Rank-monotonicity

A different way to generalize winner-monotonicity is to require that when the winner is

moved up in rank by some voters, the entire societal ranking should stay the same, not just

the winner. This is the definition of rank-monotonicity. Formally, a social choice method

is rank-monotone if whenever P0 is a profile that causes candidate A to win and P1 is

identical to P0 except that A is moved up in some voters’ rankings, then P1 should give

the same societal ranking as P1.

Unlike choice-monotonicity, it will be fairly rare for a social choice method to satisfy

rank-monotonicity. Borda’s method fails it, because raising the winner in some voters’

rankings will decrease the score of any candidates who are moved down in the process, and
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this will commonly cause a re-ordering of the non-winners in the societal ranking. In the

following profile

3 : A ≻ B ≻C 2 : C ≻ B ≻ A,

the candidates A, B, and C receive 11, 10, and 9 Borda points respectively, giving the

societal ranking A ≻S B ≻S C. If the two voters who rank A last were to raise him one

position, this would reward A with two Borda points at the expense of B, giving a societal

outcome of A ≻S C ≻S B

Condorcet’s method, however, meets this criterion for the same reason that it satisfies

winner-monotonicity: it assigns points to the various societal rankings, and moving the

winner up in one voter’s rankings will add one point to the winning societal ranking and

can not add more than one points to any other ranking, so the winning societal ranking must

remain the same.

Rank-order-monotonicity

Yet, another form of monotonicity is rank-order-monotonicity, which means that no candi-

date will move down in the societal ranking when he is moved up in the rankings of one or

more voters. This is another criterion, like choice-monotonicity, that is identical to winner-

monotonicity when it is applied only to the winner. In fact, rank-monotonicity is between

choice-monotonicity and winner monotonicity. Any method that is choice-monotone is

necessarily rank-order-monotone, and any method that is rank-order-monotone is necessar-

ily winner-monotone. Although it appears to have more to do with ranking than pairwise

comparison, rank-order-monotonicity is more closely related to choice-monotonicity than

rank-monotonicity.

Borda’s method satisfies rank-order-monotonicity, as it is choice-monotone, but Con-

dorcet’s method does not. Here is a counterexample which is very similar to the counterex-
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ample for choice-monotonicity. It uses six candidates instead of five:

4 : A ≻ B ≻C ≻ D ≻ E ≻ F

4 : B ≻ E ≻ F ≻C ≻ A ≻ D

1 : F ≻ D ≻ E ≻C ≻ A ≻ B

1 : F ≻ D ≻ A ≻C ≻ E ≻ B

1 : D ≻C ≻ E ≻ A ≻ F ≻ B

1 : D ≻ E ≻ F ≻C ≻ A ≻ B.

Condorcet’s method will give a two-way tie for first between

A ≻S B ≻S C ≻S D ≻S E ≻S F and B ≻S E ≻S F ≻S C ≻S A ≻S D,

so we construct a pair of profiles P0 by having one voter move A above C and P1 by having

one voter move C above A. Then this pair illustrates a failure of rank-order-monotonicity

failure because two voters moving C above A will cause C to move from third to fourth in

the societal ranking.

In [2], we prove that for Condorcet’s method, it is impossible to find a counterexample

for rank-order-monotonicity with five or fewer candidates. We also prove that finding a

counterexample for choice-monotonicity in Condorcet’s method is impossible with four or

fewer candidates.

2.2 Incompatibility

It was observed by Peyton Young [15] that choosing a “best” societal ranking of all al-

ternatives and choosing one “best” alternative are distinct, and not necessarily compatible,

goals. For instance, an algorithm to produce a ranking of sports teams might reasonably

choose the one that minimizes the number of upsets in the past season. Such an algorithm

would not necessarily rank first the team that had the highest probability of defeating all

other teams. In a probabilistic sense the “best” alternative that comes from the preferences

of the individuals may be different than the top-ranked alternative in the “best” ranking that

comes from those same preferences. Young showed that Condorcet’s method was the opti-
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mal method for choosing a societal ranking and Borda’s method was optimal for choosing

one alternative.

From the definitions above, we can examine Young’s observation from a monotonicity

perspective. If a social decision method is good for selecting a societal ranking, then it

should be rank-monotone, because it seems that the societal ranking should be stable if

some voters decide to move the winner up. Choice-monotonicity is desirable for a choosing

a societal winner because it ensures relatively stable pairwise outcomes. As noted above

Borda’s method is choice- but not rank-monotone and that Condorcet’s method is rank- but

not choice-monotone.

Theorem 3. (Balinski, Jennings, Laraki) There is no social choice method that is both rank-

and choice-monotone that is also impartial to individuals and alternatives and respects

unanimity (for at least three alternatives and at least two individuals).

Proof. Let 2k+ i equal the number of voters, with i either 0 or 1, and P be the profile

k : A ≻ B ≻C ≻ A1 ≻ ·· · ≻ An k : B ≻C ≻ A ≻ A1 ≻ ·· · ≻ An

i : A ≈ B ≈C ≻ A1 ≻ ·· · ≻ An.

By impartiality, the profile

k : B ≻ A ≻C ≻ A1 ≻ ·· · ≻ An k : B ≻C ≻ A ≻ A1 ≻ ·· · ≻ An

i : A ≈ B ≈C ≻ A1 ≻ ·· · ≻ An

implies A ≈S C. The profile P is obtained when the first k voters move A above B. By

choice-monotonicity, profile P must imply A ≻S C.

Similarly, the profile

k : A ≻ B ≻C ≻ A1 ≻ ·· · ≻ An k : B ≻ A ≻C ≻ A1 ≻ ·· · ≻ An

i : A ≈ B ≈C ≻ A1 ≻ ·· · ≻ An
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implies A ≈S B and changes into profile P when the second group of voters move C above

A. Thus the profile P must imply B ≻S A. Unanimity now determines the complete out-

come for P to be B ≻S A ≻S C ≻S A1 ≻S · · · ≻ An.

By rank-monotonicity, the profile

k : B ≻ A ≻C ≻ A1 ≻ ·· · ≻ An k : B ≻C ≻ A ≻ A1 ≻ ·· · ≻ An

i : A ≈ B ≈C ≻ A1 ≻ ·· · ≻ An,

must imply the same outcome as P , including A ≻S C, which contradicts the earlier impar-

tiality result (A ≈S C) for this profile.

In [2], we give examples of social choice methods that are rank- and choice-monotone

and respect unanimity if one is willing to give up either impartiality towards voters or

impartiality towards candidates.

2.3 Conclusion

Monotonicity is one of the most basic properties of social choice systems that can be stud-

ied. Methods that fail the most basic type of monotonicity, which is winner-monotonicity,

are manipulable and can be difficult to study mathematically. There are many possible ways

to extend winner-monotonicity into different types of monotonicity that can be analyzed.

Borda’s method and Condorcet’s method satisfy different monotonicities. That Condorcet’s

method satisfies rank-monotonicity and Borda’s method fails it, while Borda’s method but

not Condorcet’s satisfies choice-monotonicity, gives us further insight into Peyton Young’s

result that Condorcet’s method is more appropriate for choosing a societal ranking and

Borda’s method is more appropriate for choosing one winner.
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Chapter 3

MANIPULATION IN TRADITIONAL SOCIAL CHOICE

Significant complication is added to the analysis of social choice methods by the consider-

ation of strategy. Many social choice methods which work well with voters that are honest

can fail miserably if participants try to manipulate the results. For situations as consequen-

tial as political elections, we must assume that some voters will do everything within their

power to affect the outcome. The tools of game theory can be of some help in studying strat-

egy in social choice methods, but their application is limited where there is collaboration

and elections tend to be highly collaborative environments. In addition, voters often have

incomplete and outdated information, and it is unclear that elections in real-life situations

ever reach equilibrium.

In an ideal social choice method, no voter would ever be able to benefit from submitting

a rank-ordering of the candidates that was not honest. Then, without any incentive to be

dishonest, voters could be instructed to vote honestly. After the election, all participants

could trust that no group of voters took unfair advantage of the election. The voter opinions

expressed could be assumed to be honest, allowing further analysis to be performed on the

election results as well as providing sample data for understanding the statstical properties

of an honest voter profile. Unfortunately, no such system exists. As indicated in chapter 1,

the Gibbard-Satterthwaite theorem proved that there will always be cases where a voter can

benefit by submitting a dishonest vote. Additionally, a social choice method which fails any

of the monotonicities in the previous chapter, but especially if it fails winner-monotonicity,

will be susceptible in some way to rewarding voters who vote dishonestly.

Even if the ideal social choice method that perfectly incentivized honest voting existed,

there is another form of manipulation that would need to be considered: strategic nom-

ination. Since Arrow’s impossibility theorem proves that the outcome of the election can

depend on which candidates are running, even those who have very little chance of winning,

there will always be an incentive for political parties and other powerful groups to influence
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whether or not certain candidates enter the race or drop out in an attempt to maximize their

advantage, but a good voting system would minimize this effect to the maximum degree

possible.

3.1 Random manipulability

Though it is an extremely important topic to study, manipulability has proven very difficult

to actually quantify. Usually it has been studied using criteria, and social choice methods

are evaluated as either satisfying a given criterion or not. Because of the variety of im-

possibility theorems that indicate the futility of trying to satisfy all theoretical criteria at

once, it seems that it would be more useful to have a probabilistic model that indicated how

often each social decision method was susceptible to different types of manipulability. The

primary difficulty with a probabilistic model, however, is finding the right distribution over

which to sum. Even when selecting the honest preferences of many voters, it is not clear

which probability distribution should be used to select the preferences. A common way

to solve this problem is to model one, two, or n-dimensional issue spaces with Euclidean

geometries, randomly placing the candidates and the voters within the space and choosing

a suitable norm to compute the rank-ordering for each voter from the distances to the can-

didates. As useful as these models are, they still seem unrealistic in many ways, and leave

questions about the applicability of the results to real-life elections.

Once the honest profiles are selected, they should be adjusted to account for voter strat-

egy. Especially when trying to quantify manipulability, one should be careful to simulate

voters who are making an attempt to act strategically, but this brings with it a whole new

set of complications. Voters have imperfect information. Some voters will choose not to

strategize, and others will use suboptimal strategies. Groups of voters will collude even

when it may be against their best interest, and they can consider both the past and the future

when making their decisions about the current election. As a result of these difficulties, it

becomes almost impossible to truly simulate strategic voters in a way that will be widely

accepted as neutral and reasonable.

A recent paper by Friedgut, Kalai, and Nisan [8] takes a completely different approach.

16



It ignores all of these difficulties, not even attempting to simulate realistic honest prefer-

ences, and considers only the uniform distribution. Their measure of manipulability, which

we call here random manipulability, calculates how likely it is that a voter in a random

voter profile (chosen uniformly over all possible voter profiles), by changing his preference

to a random dishonest ranking, will effect a profitable manipulation—that is, will change

the winner of the election to someone he prefers more (in terms of his original ranking,

which is assumed to be his honest ranking). It is unclear whether the authors intended their

manipulability measure to be used in practice or only theoretically, but we use it later in

this chapter to make actual empirical measurements of several different methods. That this

manipulability measure makes no attempt to divine a proper probability distribution for the

voting profiles may be seen as a strength instead of a weakness; if it is not realistic, at least

it is not contrived. It won’t tell us everything about the various social choice methods’

manipulability, but surely it tells us something.

The main result of [8] is that elections can be manipulated “often”. Regardless of the

social choice method used, there will be a voter who can manipulate the election with

probability at least on the order of 1/n.

3.2 Voter manipulability

We propose a companion measure to random manipulability called voter manipulability

which calculates how likely it is for a voter in a random profile (again chosen uniformly over

all possible voter profiles) to have any available rank-ordering to which he could change his

vote that would change the winner to one he prefers more. In other words, once an honest

voter profile is chosen, random manipulability is concerned with the probability that a se-

lected voter might profit by changing his vote randomly, and voter manipulability measures

the probability that he might profit by carefully choosing to which rank-ordering he should

change his vote. For a specific number of voters and candidates the voter manipulability

score of a method will always be greater than or equal to its random manipulability score.

The ratio between the two manipulability scores can tell us something about how careful

a voter must be when trying to manipulate, whether there are many available dishonest
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votes that will benefit the voter or whether he needs to be very selective in choosing his

manipulation.

There are several ways that these manipulability measures are imperfect. As mentioned

above, they assume that the voters’ honest preferences come from a uniform distribution,

which is not the case for most real-life situations, and they assume that all voters except one

maintain their honesty while only one voter changes his rank-order to a dishonest one. In

addition, voter manipulability assumes that the manipulative voter has perfect knowledge of

the rest of the voters’ preferences and is allowed to act on that information. In spite of these

shortcomings, we still feel that these two manipulability metrics have value, especially for

their simplicity and transparency.

3.3 The Borda Majority method

In a forthcoming book, Balinski and Laraki suggest a social decision method called the

Borda majority method [3]. The alternatives are assigned collections of points according

to their positions in each individual’s rank-ordering, as they are with the traditional Borda

Count, but instead of summing those points, they are analyzed using the majority judgment

method, where the sets are ordered by their median grades1. The tie-breaking process, if

there are ties, is discussed in chapter 4.

The median function is an example of a function that is strategy-proof, meaning that any

voter who submitted a grade higher than the societal output grade would not be able to raise

the societal grade if he could alter his submitted grade. Nor could any voter who submitted a

grade lower than the societal output grade lower the societal grade by altering his submitted

grade. This property is the basis for several valuable strategy-resistance properties of the

majority judgment, though it does not imply that the majority judgment is perfectly resistant

to strategy. Further, any strategy-resistance that the majority judgment does have will not

necessarily not transfer directly to the Borda majority method. Since the Borda majority

method is based on rank orderings, it is not possible to raise one candidate’s point value

1If the number of grades is even, however, the lower middlemost value is used.
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without lowering another. Still, it is theorized[3] that the Borda majority method will likely

inherit some resistance to strategic voting. We desired to test this hypothesis.

3.4 Simulations

In order to collect data about the manipulability of various methods, a Monte Carlo simula-

tion was performed. For each trial, each voter’s rank ordering was chosen at random from

the set of possible rank orders. The winner was computed for each social choice method.

Any ties were broken lexicographically, so each method produced one unique, strict rank

ordering.

Then, one voter was chosen and his vote was changed to another rank order at ran-

dom. For each method, it was recorded whether or not this changed the winner to someone

the voter liked better, in terms of his original rank order, for the random manipulabilibity

measurement.

Also, for the same voter profile and the same voter, all the other possible possible rank

orders were tried. For each method, it was recorded whether or not there was any rank order

that changed the winner to someone the voter preferred in his original ranking, for the voter

manipulability measurement.

Simulations were run for 3, 4, and 6 candidates and 10, 32, 100, 320, and 1000 voters.

Between sixty thousand and three million trials were run for each combination of candidates

and voters. The data is provided in appendix A, and charts are shown in figure 3.1.

3.5 Conclusion

The most salient trend in this manipulability data is that the Condorcet methods, Schulze

and Kemeny-Young, consistently have the best scores for both random manipulability and

voter manipulability. It is also interesting to note that Borda’s method performs well with

respect to the random manipulability measure but fares poorly in voter manipulability. This

indicates that the susceptibility of Borda’s method to strategic voting depends heavily on

the amount of information that the voters have. Borda’s method should be considerably

more strategy-resistant in situations where voters truly have no idea which candidates are
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Random Manipulability

Voter Manipulability

Figure 3.1: Manipulability of different social choice methods
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popular and how others are voting than it is when voters are somewhat informed of who the

front-runners are.

Majority Borda, the new method invented by Balinski and Laraki, seems to improve in

strategy-resistance relative to other methods as the number of candidates increases. Indeed,

it is the only one of the methods benchmarked which is competitive with the Condorcet

methods in voter manipulability for 6 candidates and 1000 voters. It appears that more than

four candidates are needed for the strategy-resistance properties of the median to have a

significant effect.
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Chapter 4

SOCIAL CHOICE BASED ON GRADING

Since 1978, social choice theorists have also studied mechanisms that are outside of the

traditional framework. They don’t limit the individual inputs to a rank ordering of the

alternatives. Instead, they allow each individual to submit a grade for each alternative.

Each alternative’s set of grades is then aggregated separately, so it is impossible for the

grades given to one alternative to affect another alternative’s final grade.

4.1 Existing methods

• Approval voting [6] - Each individual submits a binary grade for each alternative,

“approve” or “disapprove”. Each alternative’s aggregate grade is the fraction of indi-

viduals who approve it.

• Range voting [14] - Each individual submits a number from some pre-determined

real interval as a grade for each alternative. Each alternative’s aggregate grade is the

arithmetic mean of its grades.

• Majority-judgment [4] - Each individual submits a grade from a pre-determined fully-

ordered set (need not be numeric). Each alternative’s aggregate grade is the median

of its grades when the number of grades submitted is odd, and when the number of

grades submitted is even, it is the lower of the two middlemost values. This is number

is called the majority-grade.

Each of these methods respects unanimity: if one alternative is graded strictly higher

than another by all individuals, then it ends up with a higher aggregate grade. They are

also independent of irrelevant alternatives in the sense that one or more people changing

the grade of one alternative will affect neither the final grades nor the order of finish among

the other alternatives. None of them is a dictatorship. Thus, Arrow’s impossibility theorem

is avoided in each case.
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However, it is not entirely accurate to consider approval voting and range voting as pure

cardinal methods. Much of the existing literature on approval voting assumes a context of

ordinal voting, imagining the voter to have a preferred rank ordering of the candidates

and needing to choose how many candidates he should approve to maximize his expected

influence on the election outcome. If voters indeed behave this way, then it is possible for

the addition or deletion of candidates (and for candidates fading in and out of legitimacy)

to affect the voters’ evaluations of the other candidates, and thus for approval voting to fail

the IIA criterion. A similar complication occurs with range voting, where it is practically

universal to assume that every voter should focus mostly on electable candidates and should

re-scale their grades to utilize the full grading spectrum in order to avoid wasting voting

power. This also ruins independence of irrelevant alternatives because the evaluations of

all candidates may change when any candidate is added, deleted, or achieves perceived

legitimacy.

In contrast, the inventors of the majority judgment system devote considerable attention

to the importance of convincing the voters to evaluate the candidates independently.[3]

While this ideal will probably never be fully achievable1, it is the goal that we must aim for

if we desire a social choice method that is truly independent of irrelevant alternatives.

4.2 Arrow’s theorem and cardinal voting

It is instructive here to elaborate how these cardinal voting systems fit into the traditional

ordinal framework. Technically, if we consider a version of Arrow’s theorem that allows ties

in the inputs and outputs of the social decision functions, then approval voting falls under

the definition of a social decision function with a restricted domain. Each voter’s approved

set of candidates can be converted into a rank-order with two ranks: the approved candidates

are all tied, and are preferred to the non-approved candidates, who are also all tied. By

failing to meet the unrestricted domain criterion, approval voting can be simultaneously

pairwise unanimous, non-dictatorial, and independent of irrelevant alternatives.

1For each voter, there is probably someone in the world regarded so highly (or poorly)
that were he to declare candidacy, the voter would adjust his other grades.
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Range voting and the majority judgment, on the other hand, can not be forced to satisfy

the traditional definition of a social decision function. Any voter preference profile from a

range voting or majority judgment ballot can be converted into a rank-ordered voter profile

if ties are allowed, but this mapping is not one-to-one, so a given rank-ordered voter profile

usually maps back to multiple different cardinal voter profiles. Since each one of these

cardinal profiles may have a different societal ranking outcome when resolved with a cardi-

nal voting method (range voting or the majority judgment), it is impossible to classify and

analyze these functions within the traditional social choice framework where each ordinal

voter profile must result in at most one societal ranking.

4.3 Majority judgment tie-breaking rules

The remainder of this chapter will be devoted to an analysis of the tie-breaking rule of the

majority-judgment. Balinski and Laraki suggest a tie-breaking rule to go with the majority-

judgment [3]. In the case of ties, the majority-grade is removed from the set of grades (only

one instance of it is removed if there are multiple), and the majority-grade of the new set is

calculated. This is repeated until all ties are resolved.

This rule is sensible whether there are few individuals or many, but if there are many

individuals then it can be characterized more efficiently. For grades ā = (a1, . . . ,an), let

α(ā) be the fraction of grades strictly greater than the majority-grade and β (ā) be the

fraction of grades strictly less than the majority-grade. Define

γ0(ā) =


α(ā), if α(ā)> β (ā)

−β (ā), if α(ā)≤ β (ā).

For two alternatives with the same majority-grade, ties are broken in favor of the one with

the greater γ0 value. (If the γ0 values were the same, further tie breaking rounds would be

necessary, but with many individuals, such ties are very rare.) γ0 is shown in figure 4.1.

David Gale suggested an alternative tie-breaking rule [11],

γ1(ā) = α(ā)−β (ā),
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Figure 4.1: Standard tie-breaking rule for majority judgment

and we suggest a third possible tie-breaking rule,

γ2(ā) =
α(ā)−β (ā)

2(1−β (ā)−α(ā))
.

γ1 is shown in 4.2 and γ2 is shown in 4.3.

γ0 seems the least susceptible to strategic manipulation, since almost everywhere it

is locally constant with respect to either α or β . Its major shortcoming seems to be it’s

discontinuity at α = β . Table 4.1 shows an example of five candidates with the same median

grade where the societal ranking is A ≻S B ≻S C ≻S D ≻S E, but if one voter changes his

grade for A from above the median grade to below it, then A will fall past the other four

candidates with their widely varying γ0 scores to the bottom of the societal ranking.

If we desire a continuous tie-breaking rule, then at first, γ1 seems better in this regard,

but γ1 exhibits discontinuity where there is a transition to a higher or lower majority-grade

(see figure 4.4). Table 4.2 shows an example where a candidate can rise or fall past several
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Figure 4.2: Gale’s tie-breaking rule for majority judgment

candidates at once with the change of one voter’s grade (moving between profile A and

A′). In order to be continuous at the interface between grades, a tie-breaking rule must

achieve 0.5 when α equals 0.5 and must approach −0.5 as β approaches 0.5. γ0 satisfies

this requirement, and it is shown in figure 4.5 that despite the continuity at α = β , γ0 is

continuous at the transition between grades (the transition between the solid and dashed

lines).

Candidate Votes above median Votes below median γ0 γ2

A 41 40 0.41 0.026
B 30 20 0.30 0.100
C 12 7 0.12 0.031
D 7 12 -0.12 -0.031
E 20 30 -0.30 -0.100
A′ 40 41 -0.41 -0.026

Table 4.1: Discontinuity of γ0 for five candidates with the same median grade (100 voters)
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Figure 4.3: Suggested tie-breaking rule for majority judgment

Grade distribution Tie-breaking rule
Candidate Excellent Good Fair Poor Maj. grade γ1 γ2

A 40 11 9 40 Good -0.09 -0.409
B 35 20 11 34 Good -0.10 -0.250
C 29 25 13 33 Good -0.17 -0.340
D 35 12 26 27 Fair 0.20 0.385
E 24 21 26 29 Fair 0.16 0.308
A′ 40 10 10 40 Fair 0.10 0.500

Table 4.2: Discontinuity of γ1 for five candidates (100 voters)

γ2, on the other hand, exhibits continuity on the entire interior of the domain as well as

at the transitions between grades (see figure 4.6). The only point of discontinuity for γ2 is

where 1−α −β is zero. But α ≤ 0.5 and β < 0.5, so this situation is outside the set of

achievable α and β values, though it is on the boundary. Indeed, 1−α −β indicates the

fraction of grades that are identical to the majority-grade, which can never be zero because,
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Figure 4.4: Discontinuity of Gale’s rule at the transition to different grades (the transition
between the solid-line area and the dashed-line areas)

by construction, the majority-grade (the median) comes from the set of input grades. And

since, α ≤ 1−α and β ≤ 1−β , it follows that |α−β | ≤ 1−α−β , so γ2 is indeed bounded

between −0.5 and 0.5 on the entire domain. We record these observations as Theorem 4,

below.

Theorem 4. (Jennings) γ0 is continuous at the transition between grades, but not on the

line α = β .

γ1 is continuous on the line α = β , but not at the transition between grades.

γ2 is continuous on the interior of the domain and at the transition between grades, but

has a discontuity at α = β = 0.5.

In fact, since tie-breaking functions are really only relevant when the number of voters

is large and the set of grades is small and discrete, the probability that any of the grades will
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Figure 4.5: Continuity of the standard rule at the grade transitions (the interface between
the solid-line area and dashed-line areas). The discontinuity at α = β remains, however.

be awarded zero times is negligible, so it does no great harm to bound the domain away

from this point of discontinuity. Tables 4.1 and 4.2 each have a column indicating the γ2

tie-breaking value for two problematic voter profiles introduced above. In both of these

specific examples, the continuous tie-breaking rule would re-order the existing winners

so that profiles A and A′ are adjacent in the societal ordering. Thus, with the continuous

tie-breaking rule, niether of these one-voter changes would change the societal candidate

ordering at all.

Both of the examples above involved a highly polarizing candidate who had lots of

extreme grades and relatively few middling grades leapfrogging multiple other candidates

who had fewer extreme grades and lots of middling grades. It seems that this is the most

problematic scenario. Although γ2 is continuous, it is still very steep near α = β = 0.5 (the

most polarized distribution of grades). By making the polarization even more extreme than
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Figure 4.6: Continuity of the suggested rule in the interior and at the transitions

the two examples above, it is possible to concoct scenarios with γ2 where one polarizing

candidate jumps over multiple non-polarizing candidates with a very small change in his

grade distribution.

4.4 Conclusion

The study of social choice functions based on voter grades instead of voter rank-orderings

is a promising field of research. These functions allow social decisions that are pairwise

unanimous, non-dictatorial, and independent of irrelevant alternatives, which is not possible

in the traditional social choice framework. Three promising such methods are approval

voting, range voting, and the majority judgment.

An analysis of the majority judgment tie-breaking rule shows that it is not continuous.

While this, of itself, is not of great concern since we are always dealing with a finite number

of voters and a discretization of the tie-breaking function anyways, an example was given
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where a one-voter change in the profile can cause a candidate to fall several rankings in the

societal output, past candidates that had tie-breaking scores that were some distance apart.

An alternative rule, suggested by Gale, has a different discontinuity and a different example

of a one-voter change to a profile which changes the societal output significantly was given

for this rule.

A third rule was presented which is continuous everywhere and behaves better in the

two example cases above. It is not possible, however, to fully eliminate the problem of large

changes in the societal output ranking from small changes in the grade distribution. As a

result, it is unclear how significant is the benefit to using this continuous tie-breaking rule,

especially since it requires sacrificing one of the advantages of the original rule: that it is

locally constant almost everywhere with respect to either α or β , which definitely decreases

its manipulability.
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Part II

WEAK MONOTONICITY AND THE LINEAR MEDIAN
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Chapter 5

AGGREGATION FUNCTIONS AND STRATEGIC MEDIANS

We desire to explore cardinal voting methods in general. Any cardinal voting method that

seeks independence of irrelevant alternatives should be based on a process that generates

a societal grade for a given alternative based only on the grades given to that alternative,

not on the grades given to any of the other alternatives. In this chapter, we formalize this

concept in the form of aggregation functions. We also introduce the concept of strategy-

proofness, whereby a cardinal voting method can avoid rewarding voter dishonesty. We

characterize all possible strategy-proof aggregation functions. An aggregation function

called the linear median is presented as an example of strategy-proofness. In later chap-

ters, the linear median will be shown to have several important qualities and ultimately it

emerges as a very valuable cardinal voting method.

5.1 Aggregation functions

A function, f from Rm to R is an aggregation function if it satisfies the following three

properties:

• Unanimity - For all r, f (r, . . . ,r) = r.

• Anonymity - Permuting the entries of the input vector preserves the value of f .

• Monotonicity - If si ≥ ri for all i, then f (s̄)≥ (r̄).

Balinski and Laraki define an aggregation function similarly, but include a condition

of strict monotonicity which requires that when all components of the input vector are in-

creased, the output of f must strictly increase. [4] In this work, we explore the space of

social choice functions that are based on aggregation functions that are not strictly mono-

tone.

33



5.2 The linear median

Define the linear median, M : [0,1]n → [0,1], by

M (a1, . . . ,an) = sup


y ∈ [0,1]
#(ai ≥ y)

n
≥ y

.

The function M gives the largest value y such that the proportion of the input arguments

that are at least y is greater than or equal to y. This function is motivated by considering

a game where n actors submit approval votes with each actor attempting to make the out-

put equal to some personal target grade. The outcome indicated by M (a1, . . . ,an), where

a1, . . . ,an are the personal target grades of the actors, is a Nash equilibrium for this game.

In fact, the function M is strategy-proof : no actor can benefit (bring the output closer to

his target grade) by lying about his target grade. If the actors know that the grades given will

be aggregated with M , then all actors responding honestly (revealing their target grade) is

a Nash equilibrium of pure strategies.

5.3 Strategic medians

Balinski and Laraki proved [3] that the only strategy-proof strictly-monotone aggregation

functions are the order statistics (the functions that return, respectively, the maximum argu-

ment, the second-highest argument, the third-highest argument, etc., down to the minimum

argument). If the strict monotonicity condition is omitted, then there is a larger class of

strategy-proof aggregation functions, including the linear median, M , that are available.

A function, f : [0,R]n → [0,R], is a strategic median if there exists an increasing function

g : [0,R]→ [0,1] with g(x)> 0 for x > 0 and

f (x) = sup


y ∈ [0,R]
#(xi ≥ y)

n
≥ g(y)


.

We call g the grading curve (or grading function) of f . A fixed grading curve will generate

a family of strategic medians, one for each n.

A strategic median based on grading function g will give the largest value of y such that

the proportion of the input arguments that are at least y is greater than or equal to g(y). The

order statistics are strategic medians with constant grading curves.
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5.4 Characterizing strategy-proof aggregation-functions

Theorem 5. (Jennings) All strategic medians are aggregation functions.

Proof. Let f be a strategic median.

(anonymity) f is anonymous because the formulation

f (x) = sup


y ∈ [0,R]
#(xi > y)

n
≥ g(y)


is a function of #(xi > y), which is anonymous.

(unanimity) Let z in [0,R], define z = (z,z, . . . ,z). and consider f (z). Since for every y

with y > z, #(zi≥y)
n = 0 < g(y) and for all y ≤ z, #(zi≥y)

n = 1 ≥ g(y), it follows that we have

f (z) = sup([0,z]) = z.

(monotonicity) Let r = (r1, . . . ,r j, . . . ,rn) and r′ = (r1, . . . ,s, . . . ,rn), and suppose that s

is strictly greater than r j. Then,

#(ri ≥ y)≤ #(r′i ≥ y), (for all y ∈ [0,R])
y ∈ [0,R]

#(ri ≥ y)
n

≥ g(y)

⊆


y ∈ [0,R]
#(r′i ≥ y)

n
≥ g(y)


sup


y ∈ [0,R]
#(ri ≥ y)

n
≥ g(y)


≤ sup


y ∈ [0,R]

#(r′i ≥ y)
n

≥ g(y)


f (r)≤ f (r′).

Lemma 6. (Jennings) Let f be a strategic median. Let r,s ∈ [0,R]n differ only in dimension

i. If f (r) is outside of the interval between ri and si, then f (r) = f (s).

Proof. For x in [0,R]n, define hx : [0,R]→ [0,1] by hx(y) =
#(xi≥y)

n . Then

f (x) = sup{hx ≥ g}.

We note that hr and hs differ only on the interval between ri and si (closed on the right).

For convenience, we name this interval (m,M].

If f (r)< m, then m > sup{hr ≥ g}, so hr(m)< g(m). hs(m) = hr(m)< g(m), so [m,R]

is disjoint from {hr ≥ g} and {hs ≥ g}. Since hr and hs are identical on [0,m), it follows

that {hr ≥ g}= {hs ≥ g} and f (r) = f (s).
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If f (r) > M, then choose M < x < f (r). x < sup{hr ≥ g}, so hr(x) ≥ g(x). We have

hs(x) = hr(x) ≥ g(x), so [0,M] is a subset of both {hr ≥ g} and {hs ≥ g}. Since hr and hs

are identical on (M,R], it follows that {hr ≥ g}= {hs ≥ g} and f (r) = f (s).

Theorem 7. (Jennings) The strategic medians are strategy-proof.

Proof. Let f be a strategic median. Let r in [0,R]n and j in 1, . . . ,n. Suppose r j > f (r). Let

s = (r1, . . . ,r j−1,s j,r j+1, . . . ,rn).

If s j ≤ r j then monotonicity of f gives f (s)≤ f (r). If s j > r j > f (r), then lemma 6 gives

f (s) = f (r).

Lemma 8. (Jennings) Let f be a strategy-proof aggregation function. Let r,s∈ [0,R]n differ

only in dimension i. If f (r) is outside of the interval between ri and si, then it is true that

f (r) = f (s).

Proof. Suppose f (r) is outside of the interval between ri and si.

Case (i): (ri < si) By monotonicity, f (r) ≤ f (s). If f (r) < ri, then by the definition of

strategy-proof, f (s) ≤ f (r). If f (r) > si, then si < f (s) and by the definition of strategy-

proof, f (r)≥ f (s).

Case (ii): (ri > si) By monotonicity, f (r) ≥ f (s). If f (r) < si, then f (s) < si and by

the definition of strategy-proof, f (r)≤ f (s). If f (r)> ri, then by the definition of strategy-

proof, f (s)≥ f (r).

We conclude that f (r) = f (s).

Lemma 9. (Jennings) Let f be a strategic median or a strategy-proof aggregation function.

If r,s ∈ [0,R]n differ only in dimension i, then | f (s)− f (r)| ≤ |si − ri|.

Proof. By lemmas 6 and 8, if f (r) or f (s) is outside of the interval between ri and si,

then f (r) = f (s), so f (s) and f (r) can only differ if they are both within this interval. We

conclude that | f (s)− f (r)| ≤ |si − ri|.
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Theorem 10. (Jennings) If f is a strategic median or a strategy-proof aggregation function,

then f is continuous.

Proof. Let ε > 0. Choose r,s in [0,R]n such that |ri − si|< ε

n .

| f (r)− f (s)| ≤
n

∑
i=1

| f (s1, . . . ,si−1,ri, . . . ,rn)− f (s1, . . . ,si,ri+1, . . . ,rn)|

≤
n

∑
i=1

|ri − si| (by lemma 9)

<
ε

n
·n = ε.

Lemma 11. (Jennings) Let f be a strategy-proof aggregation function. Let r in [0,R]n and

j in 1, . . . ,n. Suppose r j > f (r). For s j in [ f (r),R],

f (r1, . . . ,r j−1,s j,r j+1, . . . ,rn) = f (r).

Proof. For s j in ( f (r),R], this is immediate from lemma 8. The conclusion for s j = f (r)

follows from continuity of strategy-proof aggregation functions.

For any grading curve g and n > 0, we define the grading values of g to be the n− 1

real numbers αi = supg−1([0, i
n ]) for i = 1, . . . ,n−1. Then we can prove that the output of

fg is the same as that given by computing the median of the n voters’ grades combined with

these n−1 grading values. For notational convenience, we define α0 =−∞ and αn =+∞.

Lemma 12. (Jennings) Let n > 0. Let g be a grading curve and fg be the strategic median

based on g. Let α0, . . . ,αn, be the grading values of g as defined above. Then for every

input vector (x1, . . . ,xn), the output of fg is governed by one of the following two rules:

(I) If there is i in 1, . . . ,n− 1 such that #(xk < αi) ≤ n− i and #(xk > αi) ≤ i, then

fg(x) = αi.

(II) If there is i in 1, . . . ,n and j in 0, . . . ,n− 1 such that xi is strictly between α j and

α j+1, #(xk < xi)≤ n−1− j, and #(xk > xi)≤ j, then fg(x) = xi.
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Proof. (I) Suppose there is i in 1, . . . ,n−1 with #(xk < αi)≤ n− i and #(xk > αi)≤ i. For

any s < αi,
#(xk ≥ s)

n
≥ #(xk ≥ αi)

n
≥ i

n
≥ g(s),

so fg(x)≥ αi. For any t > αi,

#(xk ≥ t)
n

≤ #(xk > αi)

n
≤ i

n
< g(t),

so fg(x)≤ αi.

(II) Suppose there is i in 1, . . . ,n and j in 0, . . . ,n− 1 such that α j < xi < α j+1, and

#(xk < xi)≤ n−1− j, and #(xk > xi)≤ j. Since xi < α j+1, we have g(xi)≤ j+1
n and

#(xk ≥ xi)

n
≥ j+1

n
≥ g(xi),

so fg(x)≥ xi. For any t > xi,

#(xk ≥ t)
n

≤ #(xk > xi)

n
≤ j

n
< g(t),

so fg(x)≤ xi.

(III) It remains to be shown that these two cases are exhaustive. Let x be given. For

i = 0, . . . ,n−1, we define C(i) = #(xk ≤ αi+1)+ i+1. Let

j = min{i ∈ 0, . . . ,n−1|C(i)≥ n}.

(The set is non-empty because C(n−1) = #(xk ≤ αn)+n = n+n = 2n.)

If #(xk < α j+1)+ j < n, then #(xk < α j+1)< n− j so #(xk < α j+1)≤ n− j−1. Also,

by the definition of j, #(xk ≤ α j+1)+ j+1 ≥ n so #(xk > α j+1) ≤ j+1. This satisfies the

conditions for case (I) above (with i = j+1).

On the other hand, if #(xk < α j+1)+ j ≥ n, then #(xk ≥ α j+1)≤ j. We choose i so that

when x1, . . . ,xn are put in ascending order, xi is in position n− j. Then #(xk ≤ xi) ≥ n− j

and #(xk ≥ xi) ≥ j + 1, which is equivalent to #(xk > xi) ≤ j and #(xk < xi) ≤ n− j − 1.

Since j is the smallest number with C( j)≥ n, it follows that n >C( j−1) = #(xk ≤ α j)+ j.

Equivalently, #(xk ≤ α j) < n− j. This means that #(xk ≤ α j) < #(xk ≤ xi) and also that

#(xk ≥ α j+1) < #(xk ≥ xi), from which it follows that α j < xi < α j+1. This satisfies the

conditions for case (II) above.
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In [12], Hervé Moulin proved that any strategy-proof aggregation function is equivalent

to calculating the median of the n input arguments together with n−1 constants. The above

lemma confirms that our characterization, the strategic medians, agrees with his. Although

the other half of our characterization is redundant with Moulin’s result, it is re-proved here

(in our notation) because of its significance.

Theorem 13. (Moulin) Any strategy-proof aggregation function is a strategic median.

Proof. Let f be a strategy-proof aggregation function.

Define g : [0,R]→ [0,1] by

g(y) =


0, y = 0

min


#(xi≥y)
n : x ∈ f−1(y)


, otherwise.

(Because of unanimity, f−1(y) contains at least one element, (y,y, . . . ,y).)

First, we show that g is increasing. Let 0 < y ≤ z ≤ R.

Let p = n · g(z) = min


#(xi ≥ z) : x ∈ f−1(z)


. Choose x in [0,R]n with f (x) = z and

#(xi ≥ z) = p. By applying lemmas 8 and 11, we can turn this into

f (z, . . . ,z  
p

,0, . . . ,0  
n−p

) = z

By monotonicity and unanimity, we know that f (y, . . . ,y  
p

,0, . . . ,0  
n−p

) ≤ y. If it were true

that f (y, . . . ,y  
p

,0, . . . ,0  
n−p

) was less than y, repeated application of lemma 8 would give

f (z, . . . ,z  
p

,0, . . . ,0  
n−p

) = f (y, . . . ,y  
p

,0, . . . ,0  
n−p

)

and we would have

f (z, . . . ,z  
p

,0, . . . ,0  
n−p

)< y ≤ z,

a contradiction. Thus, f (y, . . . ,y  
p

,0, . . . ,0  
n−p

) = y.

This implies that p is in


#(xi ≥ y) : x ∈ f−1(y)


. And we have that

g(y) = min


#(xi ≥ y)
n

: x ∈ f−1(y)

≤ p

n
= g(z),
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which proves that g is increasing.

It remains to show that

f (x) = sup


y ∈ [0,R] :
#(xi ≥ y)

n
≥ g(y)


.

Fix r in [0,R]n. Then r ∈ f−1( f (r)), so g( f (r))≤ #(ri≥ f (r))
n . Thus,

f (r)≤ sup


y ∈ [0,R] :
#(ri ≥ y)

n
≥ g(y)


Let φ > f (r), and let s be an element of f−1(φ). If #(ri ≥ φ) were greater than or equal

to #(si ≥ φ), applying lemmas 8 and 11 repeatedly (in each dimension) would give

f (r) = f (s) = φ > f (r),

a contradiction.

Thus, #(ri ≥ φ)< #(si ≥ φ). Since s was arbitrary, we have

#(ri ≥ φ)< min


#(xi ≥ φ) : x ∈ f−1(φ)

.

Equivalently,
#(ri ≥ φ)

n
< g(φ).

So φ is not in


y ∈ [0,R] : #(ri≥y)
n ≥ g(y)


. Since φ > f (r) was arbitrary,

f (r)≥ sup


y ∈ [0,R] :
#(ri ≥ y)

n
≥ g(y)


.

We conclude that

f (r) = sup


y ∈ [0,R] :
#(ri ≥ y)

n
≥ g(y)


.

5.5 Conclusion

Aggregation functions, as introduced in this chapter, provide a broad framework to analyze

all possible cardinal voting systems. Any function from Rn to R which is anonymous, unan-

imous, and monotone can generate a cardinal voting system that is potentially independent

of irrelevant alternatives. Our framework is similar to one presented by Balinski and Laraki

in [4], except we use a weaker monotonicity requirement.
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We focus on aggregation functions that are strategy-proof, which means a voter can

never, by submitting a dishonest grade, force the societal grade to move towards his honest

grade. We have characterized all such strategy-proof aggregation functions. Each one can

be characterized as the function that finds the intersection of the cumulative grade distri-

bution with a specific grading curve. We relate our characterization to one provided by

Moulin[12] which characterizes the strategy-proof aggregation functions as the functions

that compute the median of the n input grades with n− 1 specific fixed values. This ex-

tension of Moulin’s characterization into a characterization in terms of grading functions is

significant because it allows us to do three things. First, we can generate a family of ag-

gregation functions that each apply to a different number of voters. Second, we can better

understand the role of the n−1 fixed constants in the aggregation process. Third, it provides

a basis for us to find the optimal aggregation function with respect to different criteria, as

we will do in later chapters.

The linear median was a specific strategy-proof aggregation function introduced in this

process. It is significant because it arises naturally from a simple continuous approval

voting model, yet it is disallowed from the Balinski-Laraki framework because it is not

strictly monotone. In the next few chapters it is shown to be quite an important aggregation

function which generates a valuable cardinal voting system.
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Chapter 6

EVALUATING GRADING CURVES WITH THE EUCLIDEAN NORM

One great advantage to dropping the strict monotonicity requirement and considering the

broader class of strategic medians, instead of only the order statistics, is that they can better

handle polarized situations. If all individuals submit maximal or minimal grades, then any

order statistic also yields an extreme grade. In these polarized cases, it may be more useful

to know how many individuals submitted high grades and how many submitted low grades

than it is to know the median of the grades submitted. Aggregation functions that mediate

polarity serve this function. M is an example of a strategy-proof aggregation function that

mediates polarity. When all voters give extreme grades, it yields the arithmetic mean of

those input grades.

On the other hand, eliminating the strict monotonicity requirement admits all possible

strategic medians as acceptable, and requires accepting the responsibility of distinguishing

which ones are best for any given situation. One way to evaluate the suitability of an aggre-

gation function, f , is to determine the distance between the input values and the aggregated

output value, with respect to some norm. Since f takes an n-length vector as input and

yields a real number, we refer to ||(x1, . . . ,xn)− f (x) · (1, . . . ,1)|| as the distance between

the aggregation function’s inputs and outputs (with respect to any norm).

This chapter will briefly examine the aggregation functions that minimize the lq-norms

pointwise for q ≥ 1, but the bulk of the chapter will consider how to choose the strategy-

proof aggregation function that will minimize the l2 distance between the inputs and the

output. It will be shown that if the input grades come from a uniform distribution, then the

ideal aggregation function is the linear median. Otherwise, we give a formula for generating

the optimal grading curve from the input grade distribution.

6.1 Notes on the grading language

At this point, it is evident that care should be taken in choosing the grading language to

use with a strategic median. With Moulin’s characterization of the strategic medians (as
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the median of the n votes along with n− 1 fixed values), it could make sense to use any

fully-ordered set as the grading language, as long as we had a sensible way to choose

the n− 1 fixed values. Our characterization of the strategic medians as the intersection

of the input grade distribution with a grading curve indicates that the strategic median is

closely related to the distribution and meaning of the input grades. And now, as we discuss

distances between grades, it becomes even clearer that the grading language should be an

interval scale, a numerical scale where the difference between two values is meaningful in

a consistent manner along the entire scale. Which scale should be used will be explored

later, but for now, we proceed with the general idea that we are working with an interval

scale.

6.2 Minimizing input-output distance

Let x = (x1, . . . ,xm) be a vector of input values.

For an aggregation function f , the l1-norm distance between the inputs and outputs

at x is minimized when ∑
m
i=1 |xi − xout | is minimized, which happens when it is true that

#(xi < xout) = #(xi > xout). If m is odd, then xout must be the median of x1, . . . ,xn. If m is

even then xout can be any value in the closed interval between the two middlemost input

values. So we note that the majority-grade is one aggregation function that everywhere

minimizes the l1-norm between its inputs and outputs. Strategy-proofness basically comes

for free in this case. As will be shown below, there is no other lq norm where minimizing the

distance between the inputs and output on a pointwise basis will produce a strategy-proof

aggregation function!

The l2-norm distance between the inputs and outputs of f at x will be minimized when

∑
m
i=1(xi − xout)

2 is minimized, which happens if and only if xout is the arithmetic mean of

x1, . . . ,xm. Thus the arithmetic mean is the unique aggregation function that everywhere

minimizes the l2-norm between its inputs and outputs. Since the arithmetic mean is not

strategy-proof, there is no strategy-proof aggregation function that everywhere minimizes

the l2-norm between its inputs and outputs.

In fact, for any q greater than 1, the following theorem and corollary show that we can
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minimize the lq-norm distance between the inputs of f and its output on a pointwise basis

to form an aggregation function.

Theorem 14. (Jennings) If d : R → R is a strictly convex function with a minimum at

0, then the function f : Rm → R that minimizes ∑
m
i=1 d(xi − y) on a pointwise basis is an

aggregation function.

Proof. Fix x = x1, . . . ,xm. Then u(y) = ∑
m
i=1 d(xi − y) is strictly convex in y with a unique

minimum, so f is well-defined.

The function f is anonymous by construction. It is unanimous because if all of the xi

values are equal, then u(y) will be minimized at the common value.

Let ymin be the y value that minimizes u(y). Let x̂ be identical to x except strictly larger

in the ith component. We define û(y) = ∑
m
i=1 d(x̂i − y). For any y < ymin, because of the

convexity of d,

û(y)−u(y) = d(x̂i − y)−d(xi − y)> d(x̂i − ymin)−d(xi − ymin) = û(ymin)−u(ymin),

which means that it is impossible for the minimum to move to the left. This establishes the

monotonicity of f .

Corollary 15. For q> 1, the function f that minimizes ∑
m
i=1 |xi− f (x1, . . . ,xm)|q on a point-

wise basis is an aggregation function.

Theorem 16. (Jennings) For q > 1, the function f that minimizes ∑
m
i=1 |xi − f (x1, . . . ,xm)|q

on a pointwise basis is not strategy-proof.

Proof. Fix x = x1, . . . ,xm. Let d(y) = |y|q and u(y) = ∑
m
i=1 d(xi − y). Let ymin be the y

value that minimizes u. Let x̂ be identical to x except strictly larger in the ith component,

and let û(y) = ∑
m
i=1 d(x̂i − y). Since q > 1, d is differentiable everywhere, with increasing

derivative, hence d′(x̂i − y)> d′(xi − y).

û′(ymin) = u′(ymin)− d′(x̂i − y)+ d′(xi − y) < 0. Since û has a unique minimum, this

minimum must be to the right of ymin.
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This proves that f is strictly monotone in each of the input components, which means

it cannot be strategy-proof.

Theorem 17. (Jennings) For 0 < q < 1 and m > 3, the function that minimizes the ex-

pression ∑
m
i=1 |xi − f (x1, . . . ,xm)|q pointwise (restricted to the domain where the unique

minimum exists) is not monotone, hence doesn’t qualify as an aggregation function.

Proof. Let u(y) = ∑
m
i=1 |xi − y|q. First, we note that for any interval a < b, if none of

x1, . . . ,xm falls between a and b, then the minimum of u on [a,b] occurs at one of the

endpoints. This results from the fact that u is concave on (−∞,0) and (0,∞), so when there

are no x values between a and b, then the function u on [a,b] is the sum of m concave

functions, hence is concave itself. From this, it follows that to find the minimum of u we

need only check the xi values. For convenience, we again define d(y) = |y|q.

Case (i): If m is even, let x1 = · · ·= x m
2
= 0, x m

2 +1 = · · ·= xm−1 = 1, and xm = 1+ ε .

u(0) =
m
2

d(0)+
m

2
−1


d(1)+d(1+ ε) =
m

2
−1


d(1)+d(1+ ε)

u(1) =
m
2

d(1)+
m

2
−1


d(0)+d(ε) =
m
2

d(1)+d(ε)

u(1+ ε) =
m
2

d(1+ ε)+
m

2
−1


d(ε)+d(0) =
m
2

d(1+ ε)+
m

2
−1


d(ε)

In this case, u(0) is less than u(1) because d(1+ ε)< d(1)+d(ε). And

u(0)<
m
2

d(1+ ε)< u(1+ ε),

so y = 0 is the unique global minimmum.

If we create x̂ by moving the first component of x down from 0 to −ε , and the last

component down from 1+ ε to 1, we have the reflection of the above situation, and y = 1

is the unique global minimum for x̂.

Case (ii): If m is odd, we assign the first m−1 input arguments as in the even case above.

The last input argument, xm, we assign to a large positive number N. Since the derivative of

d goes to 0 as y goes to infinity, we can choose N large enough so that d(N)−d(N−(1+ε))

is as small as we like. In particular, we choose N large enough that y = 0 is still the global

minimum for x and y = 1 is still the global minimum for x̂.
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6.3 Minimizing distance in the strategy-proof space

In general, we desire to find the strategy-proof aggregation function that, over the domain of

input values, minimizes the lq-norm distance between its inputs and output. This requires

choosing a separate norm to apply as we integrate the lq-norm over the domain of input

values. The Lq-norm, weighted by the probability distribution from which the input values

are drawn, is the natural choice. The analysis below proceeds using this norm.

Because of the ubiquity of the l2-norm, we examine the l2L2 case first. As mentioned

above, the aggregation function that minimizes the l2-norm is the arithmetic mean, which

is by far the most common way to aggregate a set of data.

Let p be a probability distribution with compact support. Define the lower endpoint

m = inf{x|
 x
−∞

p(y)dy > 0} and the upper endpoint M = sup{x|


∞

x p(y)dy > 0}. Define Ep

for a,b in (m,M) as

Ep(a,b) =
 b

a t p(t)dt b
a p(t)dt

.

Ep(a,b) is the expected value of a number drawn from distribution p given that it is between

a and b. Technically Ep is undefined where
 b

a p(t)dt = 0, but we will overlook this fact

since we are only concerned with Ep(m, ·) and Ep(· ,M), where Ep is always well-defined.

Define Gp on the interval (m,M) as

Gp(x) =
x−Ep(m,x)

Ep(x,M)−Ep(m,x)
.

We note that limx→m+ Gp(x) = 0 and limx→M− Gp(x) = 1, and that Gp is continuous.

Theorem 18. (Jennings) If Gp is monotone, then the strategic median that uses Gp as

its grading function is the unique strategy-proof aggregation function that minimizes the

l2-norm distance from the input arguments over the probability distribution p.

6.4 Interpretation of Gp

For any value of x between m and M, notice that

x = (1−Gp(x))Ep(m,x)+Gp(x)Ep(x,M).
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So Gp(x) indicates the relative placement of x between Ep(m,x) and Ep(x,M). In fact, x

is the expected value of the mean of a data set where Gp(x) is the proportion of the data

values greater than x.

Thus, when the grading curve can be chosen to equal Gp (which is whenever Gp is

monotone), the corresponding strategic median will always give the expected value of the

mean of the input arguments, as it will return x whenever the proportion of the input ar-

guments greater than x is Gp(x). As mentioned above, the l2-norm prefers the arithmetic

mean, so it is natural that this is the best strategic median according to the l2-norm.

6.5 Proof of theorem 18

Proof. Fix n. Our goal is to choose f from the family of strategy-proof aggregation func-

tions that minimizes:

E( f , p) =
 M

m
· · ·
 M

m

n

∑
i=1

( f (x)− xi)
2

n

∏
i=1

p(xi)dxn . . .dx1

Let f be a strategy-proof aggregation function with grading curve g. Let α0, . . . ,αn be

the grading values of g as in lemma 12. We use lemma 12 and symmetry to rewrite E as:

E((α1, . . . ,αn−1), p) =

n−1

∑
j=1

n!
j!(n− j)!


α j

m
· · ·


α j

m  
n− j

 M

α j

· · ·
 M

α j  
j

n

∑
i=1

(α j − xi)
2

n

∏
i=1

p(xi)dxn . . .dx1

+
n−1

∑
j=0

n!
j!(n− j−1)!


α j+1

α j

 x1

m
· · ·
 x1

m  
n− j−1

 M

x1

· · ·
 M

x1  
j

n

∑
i=1

(x1 − xi)
2

n

∏
i=1

p(xi)dxn . . .dx1

Note that the only form in which f or g shows up in this expression is by way of the real

numbers α1, . . . ,αn−1. Let us consider this set of variables to be our primary parameters.

We fix k in 1, . . . ,n−1, and differentiate with respect to αk:

Eαk((α1, . . . ,αn−1), p) =
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n!
k!(n− k)!


αk

m
· · ·


αk

m  
n−k

 M

αk

· · ·
 M

αk  
k

n

∑
i=1

2(αk − xi)
n

∏
i=1

p(xi)dxn . . .dx1

We note that Eαk does not depend on any of the other αi’s, so minimizing E is simply a

matter of optimizing each αi independently. First we scale Eαk to remove constants.

Êαk((α1, . . . ,αn−1), p) =


αk

m
· · ·


αk

m  
n−k

 M

αk

· · ·
 M

αk  
k

n

∑
i=1

(αk − xi)
n

∏
i=1

p(xi)dxn . . .dx1

Now we change variables. Define P(x) =
 x

m p(a)da. Then let χi = P(xi) and we have

dχi = p(xi)dxi. For notational ease, we define φ = P(αk).

Êαk((α1, . . . ,αn−1), p) =


φ

0
· · ·


φ

0  
n−k

 1

φ

· · ·
 1

φ  
k

n

∑
i=1

(αk −P−1(χi))dχn . . .dχ1

= n


φ

0
· · ·


φ

0  
n−k

 1

φ

· · ·
 1

φ  
k

αkdχn . . .dχ1

−∑
n
i=1


φ

0
· · ·


φ

0  
n−k

 1

φ

· · ·
 1

φ  
k

P−1(χi)dχn . . .dχ1

= nφ n−k(1−φ)kαk

−∑
n−k
i=1 φ n−k−1(1−φ)k  φ

0 P−1(χi)dχi

−∑
n
i=n−k+1 φ n−k(1−φ)k−1  1

φ
P−1(χi)dχi

= nφ n−k(1−φ)kαk

−(n− k)φ n−k−1(1−φ)k  αk
m xp(x)dx

−kφ n−k(1−φ)k−1 M
αk

xp(x)dx

= φ n−k−1(1−φ)k−1n


φ(1−φ)αk − (1− k
n)(1−φ)


αk
m xp(x)dx− k

n φ
M

αk
xp(x)dx


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Since φ =P(αk)=


αk
m p(x)dx is strictly positive for αk >m and 1−φ is strictly positive

for αk < M, we consider E as a function of αk on (m,M). This function is increasing when

φ(1−φ)αk −


1− k
n


(1−φ)


αk

m
xp(x)dx− k

n
φ

 M

αk

xp(x)dx > 0.

Equivalently, (since φ =
 ak

m p(a)da and 1−φ =
M

ak
p(a)da)

αk
m xp(x)dx

αk
m p(x)dx

−
M

αk
xp(x)dxM

αk
p(x)dx


k
n
>


αk
m xp(x)dx

αk
m p(x)dx

−αk.

Here we note that

m ≤


αk
m xp(x)dx

αk
m p(x)dx

≤ αk

and

αk ≤
M

αk
xp(x)dxM

αk
p(x)dx

≤ M,

so our condition for E to be increasing becomes:

k
n
<

αk −
 αk

m xp(x)dx αk
m p(x)dxM

αk
xp(x)dxM

αk
p(x)dx

−
 αk

m xp(x)dx αk
m p(x)dx

= Gp(αk).

Similarly, E as a function of αk on (m,M) will be decreasing when

k
n
>

αk −
 αk

m xp(x)dx αk
m p(x)dxM

αk
xp(x)dxM

αk
p(x)dx

−
 αk

m xp(x)dx αk
m p(x)dx

= Gp(αk).

If Gp is one-to-one, E will be decreasing when αk < G−1
p ( k

n) and increasing whenever

αk > G−1
p ( k

n), so E will have one minimum, at αk = G−1
p ( k

n). This must hold for all k from

1 to n−1, and since n was arbitrary, it must be true for all n.

Since αk is defined as supg−1([0, k
n ]), it follows that g = Gp is the unique grading

function that will minimize the l2 norm between the inputs and the output.

6.6 Example

p(x) = 3x2 on [0,1] with m = 0 and M = 1.
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Ep(0,x) = 3
4 x

Ep(x,1) = 3
4


1+x+x2+x3

1+x+x2


Gp(x) = x

3(1+ x+ x2)

See figure 6.1.

Figure 6.1: p(x) = 3x2 (left) and its grading function Gp (right)

6.7 Uniform Distributions

If the input distribution is uniform on a certain interval [m,M], then the Gp will be the

line that goes through points (m,0) and (M,1). So if the input distribution is uniform on

[0,1], then Gp(x) = x, and if the input distribution is a uniform distribution on [0.5,1], then

Gp(x) = 2(x−0.5). It is instructive to observe how Gp changes as we move between these

two distribtions. Consider the family of split uniform distributions

ps(x) =

 s ,0 ≤ x < 1
2

2− s , 1
2 ≤ x ≤ 1

as we vary s from 0 to 1. The grading functions for s = 0, 1
100 ,

1
10 ,

1
2 ,1 are shown in figure

6.2.

6.8 Non-monotone Gp functions

The distributions in figure 6.2 with s = 0.1 and s = 0.01 are examples of distributions that

result in non-monotone Gp functions. Consider the case when s = 0.1:
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s = 1

s = 0.5

s = 0.1

s = 0.01

s = 0

Figure 6.2: Five piecewise uniform distributions (left) and their corresponding Gp functions
(right)
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p(x) =


1
10 ,0 ≤ x < 1

2

19
10 , 1

2 ≤ x ≤ 1
with m = 0 and M = 1.

Ep(0,x) =


x
2 ,0 ≤ x < 1

2

38x2−9
76x−36 , 1

2 ≤ x ≤ 1

Ep(x,1) =


29−2x2

40−4x ,0 ≤ x < 1
2

1+x
2 , 1

2 ≤ x ≤ 1

Gp(x) =


20x−2x2

29−20x ,0 ≤ x < 1
2

38x2−36x+9
20x−9 , 1

2 ≤ x ≤ 1

Non-monotonic Gp functions do not qualify as grading functions. A non-monotonic Gp

function indicates that for certain values of y, the set G−1
p (y) has more than one value, in

which case there is more than one local minimum in attempting to minimize the l2-norm.

Therefore, the appropriate way to convert Gp into a one-to-one function is to go back to the

construction of Gp in the proof of theorem 18 and choose the global minimum from among

the local minima. Specifically, one must compute the following integral


(φ(t)1−y(1−φ(t))y)n


t − (1− y)

 t
m xp(x)dx t
m p(x)dx

− y
M

t xp(x)dxM
t p(x)dx


dt,

between the two local minima. If the integral is positive, then the leftmost minimum is the

global minumum. Otherwise the rightmost minimum is the global one.

Notice that this integral depends on n, so for a given probability function, it is possible

for Ĝp to depend on n, the number of voters. In fact, for the split uniform distribution with

s = 0.08, the solutions to Gp(x) = 1
3 are x = 0.373, x = 0.536, and x = 0.596. The middle

one represents a local maximum. 0.373 is the global minimum when n = 3 and k = 1 and

0.596 is the global minumum when n = 6 and k = 2. The error functions that we seek to

minimize in these cases are shown in figure 6.3.
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k = 1,n = 3

k = 2,n = 6

Figure 6.3: Error functions for a piecewise uniform distribution for 3 and 6 voters. Chang-
ing the number of voters can change the relative vertical positions of the local minima, thus
altering the global minimum.
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6.9 Distribution of distributions

Suppose, instead of knowing that the input grades are drawn from a certain distribution,

we have a family of probability distributions {pd}d∈D from which one distribution will

be chosen, and then all the input grades will be drawn from that distribution. Ideally, we

would be able to collapse the family of distributions into one master distribution and find

the grading curve with the Gp formulation given above. Unfortunately, this approach is

unsuccessful. The grading function must be found by adding the error terms for all the

probability distributions and re-solving for n
k as in the proof of theorem 18. For generality,

we suppose that Pd is the probability with which pd will be chosen as the grading input

distribtution. Then, the total error term is

Êαk =


d∈D
Pd


αk

m
· · ·


αk

m  
n−k

 M

αk

· · ·
 M

αk  
k

n

∑
i=1

(αk − xi)
n

∏
i=1

pd(xi)dxn . . .dx1dd

=


d∈D
Pdφ

n−k
d (1−φd)

kn


αk − (1− k

n)


αk
m xpd(x)dx

φd
− k

n

M
αk

xpd(x)dx

1−φd


dd.

Thus, the formula for the master grading function is

GD =


d∈D Pdφ

n−k
d (1−φd)

k


αk −
 αk

m xpd(x)dx
φd


dd

d∈D Pdφ
n−k
d (1−φd)k

 M
αk

xpd(x)dx
1−φd

−
 αk

m xpd(x)dx
φd


dd

.

We note that the grading function in this situation, varies with n, the number of voters.

6.10 Conclusions

It is natural to seek an aggregation function where the output value is representative of

the input data. Any aggregation function must be unanimous, anonymous, and monotone,

which ensures at least a minimal level of correspondence between its inputs and output.

Using the lq-norms to measure the distance between the inputs and output of an aggregation

function allows us to examine more deeply the quality of the data aggregation.

For q ≥ 1, we can generate an aggregation function pointwise by minimizing the appro-

priate norm for each vector of input values in the domain. For q > 1, this generates a unique

54



aggregation function that is not strategy-proof. For q = 1 this generates a family of satis-

factory aggregation functions, including the majority judgment, which is strategy-proof.

It is also possible consider just the strategy-proof aggregation functions and find the one

that minimizes the lq distance between the inputs and the output. In this chapter, we have

done so for the l2-norm and found a formula that gives the optimal grading curve for a given

input probability distribution. The formula will generally yield monotone grading curves

that are independent of the number of voters, but for some grading distributions, it will

yield non-monotone grading functions which must be monotonized. The monotonization

procedure is outlined, and in this case the optimal grading curve may change depending on

the number of participating voters. The next chapter will cover other lq-norms.

For the specific case when the input grades come from a uniform distribution, the opti-

mal grading curve for the l2-norm is the diagonal grading curve, which corresponds to the

linear median. This Euclidean norm is one of the most commonly used norms, which gives

additional weight to the linear median. Additionally, our determination that the strategic

medians require an interval scale for the grading language indicates that the distance be-

tween grades has an important meaning that should be consistent through the entire grading

scale. As such, we should be biased towards treating the input distribution as uniform and

towards using the linear median if at all possible.
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Chapter 7

EVALUATING WITH OTHER NORMS

While the l1 and l2 norms are the most interesting because they are the most common, in

this chapter we continue the analysis of the previous chapter in minimizing the lq distance

between the inputs and the output of strategy-proof aggregation functions. We also exam-

ine how much influence one voter is able to have in swaying the final grade, seeking to

minimize this quantity with respect to different Lq norms.

7.1 Minimizing the input-output distance for various norms

As in theorem 18, when we are dealing with probability distribution p below, we define

P(x) =
 x

m p(a)da.

Theorem 19. (Jennings) For q ≥ 1, the grading curve that minimizes the lqLq-norm within

the space of strategy-proof aggregation functions, for input coming from probability distri-

bution p is

Gp(x) =

1+

M
x (t−x)q−1 p(t)dtM

x p(t)dt x
m(x−t)q−1 p(t)dt x

m p(t)dt


−1

if it is monotone.

Proof. We desire to minimize E( f ) =
M

m · · ·
M

m ∑
n
i=1 |xi − f (x)|q ∏

n
i=1 p(xi)dxm . . .dx1.

Fix n a natural number. Let f be a strategy-proof aggregation function with grading

values α1, . . . ,αn−1 as in lemma 12. We use this lemma and symmetry to rewrite E( f ) as:

E( f ) =
n−1

∑
j=1

n!
j!(n− j)!

 a j

m
· · ·
 a j

m  
n− j

 M

a j

· · ·
 M

a j  
j

n

∑
i=1

|xi −a j|q
n

∏
i=1

p(xi)dxn . . .dx1

+
n−1

∑
j=0

n!
j!(n− j−1)!

 a j+1

a j

 x1

m
· · ·
 x1

m  
n− j−1

 M

x1

· · ·
 M

x1  
j

n

∑
i=1

|xi − x1|q
n

∏
i=1

p(xi)dxn . . .dx1.

We differentiate with respect to ak:

Eak( f ) =
q ·n!

k!(n− k)!

 ak

m
· · ·
 ak

m  
n−k

 M

ak

· · ·
 M

ak  
k

n−k

∑
i=1

(ak − xi)
q−1

n

∏
i=1

p(xi)dxn . . .dx1
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− q ·n!
k!(n− k)!

 ak

m
· · ·
 ak

m  
n−k

 M

ak

· · ·
 M

ak  
k

n

∑
i=n−k+1

(xi −ak)
q−1

n

∏
i=1

p(xi)dxn . . .dx1

and set that equal to zero:

0 = (n− k)P(ak)
n−k−1(1−P(ak))

k
 ak

m
p(x)(ak − x)q−1dx

−kP(ak)
n−k(1−P(ak))

k−1
 M

ak

p(x)(x−ak)
q−1dx

(n− k)(1−P(ak))
 ak

m
p(x)(ak − x)q−1dx = kP(ak)

 M

ak

p(x)(x−ak)
q−1dx

n− k
k

=
P(ak)

M
ak

p(x)(x−ak)
q−1dx

(1−P(ak))
 ak

m p(x)(ak − x)q−1dx

k
n
=

1+

M
ak

p(t)(t−ak)
q−1dtM

ak
p(t)dt ak

m p(t)(ak−t)q−1dt ak
m p(t)dt


−1

As in theorem 18, if the right-hand side is monotone, then it generates the unique grad-

ing curve that minimizes the lq norm:

Gp(x) =

1+

M
x (t−x)q−1 p(t)dtM

x p(t)dt x
m(x−t)q−1 p(t)dt x

m p(t)dt


−1

.

This result generalizes, and agrees with, the l2-norm result proven in theorem 18. As

in that theorem, if Gp generates a non-monotone candidate grading function, it can be

monotonized with a similar process.

In the case where we are dealing with the uniform distribution, Gp becomes

Gp(x) =
1

1+
M−x

x−m

q−1 ,
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which is consistent with our earlier results that Gp(x) = 1
2 when q = 1 and Gp(x) = x−m

M−m

when q = 2. As q goes to ∞, the grading curve will approach the step function: 0 , if x < m+M
2

1 , if x > m+M
2

.

An actual step function is not a true grading curve, as it fails to satisfy g(y) > 0 for all

y > 0. Even if we replace the 0 with some very small positive number, such a grading curve

is not very useful, because it will yield a strategic median that almost always gives the same

output grade. If the step is at x = s, for instance, then the strategic median will output the

grade s whenever at least one of the input arguments is less than s and at least one of the

arguments is greater than s. For large n, this is practically all of the time. When all of the

arguments are less than s it will return the maximum of the arguments and when they are

all greater than s it will return the minimum argument.

One could argue that a grading curve that is close to a step function, but still continuous,

generates an aggregation function that is reminiscent of approval voting. In the case of the

function above, any input grade above m+M
2 is considered approval and any grade below

that point is considered disapproval and the output grade is an increasing function of the

number of approvals received. It would be silly to actually run an approval election this

way, asking voters to submit grades on a scale between m and M and choosing the winner

to be the one who received the most grades above m+M
2 , because it asks the voters to submit

so much more information than is actually used. It does, however, have the advantage of

being able to break ties if more than one candidate is approved by everyone (choose the one

with the highest minimum grade) or if all candidates are disapproved by everyone (choose

the one with the highest maximum grade). In any case, this relationship between strategic

medians in the limit and approval voting may indicate that there is some sense in which

approval voting is the system that minimizes the l∞L∞ distance between the input grades

and the output grade. In truth, this step function is being chosen as the ideal grading curve

for the l∞L∞ norm not because of any relationship to approval voting, but because of its

degenerate behavior of almost always assigning a societal grade of m+M
2 .
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In summary, the ideal strategic median for keeping the output grade close to the input

grades depends on the norms used when integrating over the possible profiles. To use the

l1L1-norm is to minimize the expected value of the absolute difference between the output

grade and the input grades, which is accomplished best with the majority judgment voting

method (a horizontal grading curve). As we minimize the distance between inputs and

outputs for the general lqLq-norm, the optimal grading curve gets steeper with increasing q.

We note that if q = 2 and we are dealing with a uniform distribution for the input grades,

then the ideal grading curve is the diagonal one (corresponding to the linear median). At

q = ∞, the ideal grading curve is a step function, with the step at the midpoint between the

extents of the grading language.

7.2 Manipulability

For this section, we restrict the the range of grades is 0 to 1. Consider the cumulative grade

distribution function d(x1, . . . ,xn;y) = #(xi≥y)
n . This comes from the definition of a strategic

median, and it is what gets compared against the grading curve in order to determine the

output grade.

If one voter drops out of the electorate and his grade was r, this cumulative distribution

function will shift downwards to the left of r and upwards to the right of r by a magnitude of

no more than 1
n−1 . If a voter is added to the electorate, the cumulative distribution function

will shift upwards to the left of his vote and downwards to the right of it, by no more than

1
n+1 . If a voter changes his vote, the cumulative distribution function will shift upwards or

downwards on the interval between his old vote and his new vote, by no more than 1
n .

In any of these cases, if the grading curve is horizontal, then a small vertical shift in

the distribution function can cause a large shift in the output grade. However, if we choose

the diagonal grading curve (the linear median), then adding a voter, removing a voter, or

allowing one voter to change his vote can only change the output grade by 1
n−1 , 1

n+1 , or 1
n

respectively.

In general, we define ∆(g,ε) to be the maximum horizontal change in a grading curve,

g, caused by moving up or down by ε . Then, for the strategic median generated by grading
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curve g, adding a voter, removing a voter, and allowing a voter to change his vote can only

change the output grade by ∆(g, 1
n−1 ), ∆(g, 1

n+1), and ∆(g, 1
n) respectively.

There are many possible definitions of manipulability. If manipulability is defined to be

the maximum effect on the final grade that one voter can have by changing his grade, over

all possible voter input profiles, then the linear median is the strategy-proof aggregation

function that minimizes manipulability.

Theorem 20. (Jennings) The linear median is the unique strategy-proof aggregation func-

tion that minimizes maxx1,...,xn−1∈[0,1] f (x1, . . . ,xn−1,1)− f (x1, . . . ,xn−1,0) for any dimen-

sion n.

Proof. Fix the dimension n. First we will show that every aggregation function (includ-

ing non-strategy-proof ones) has maxx1,...,xn−1∈[0,1] f (x1, . . . ,xn−1,1)− f (x1, . . . ,xn−1,0)≥ 1
n .

Let f be an aggregation function.

1 = f (1, . . . ,1)− f (0, . . . ,0)

= ( f (1, . . . ,1)− f (1, . . . ,1,0))+ · · ·+( f (0, . . . ,0,1)− f (0, . . . ,0))

≤ n ·maxx1,...,xn−1∈[0,1] f (x1, . . . ,xn−1,1)− f (x1, . . . ,xn−1,0)

(The arithmetic mean is an example of an aggregation function that is not strategy proof

that achieves this minimal manipulability.)

Now if f is a strategy-proof aggregation function, we obtain its grading curve g and its

grading values α1, . . . ,αn−1. Again, for convenience, we define α0 = 0 and αn = 1. For

each i in 1, . . . ,n, there is an input profile where one voter can cause the output grade to

move from αi−1 to αi. Namely, if n− i voters give grades of 0 and i−1 voters give grades

of 1 then the last voter will be able to swing the output grade between αi−1 and αi. Also,

since the aggregation function can be formulated as the median of the n submitted grades

along with α1, . . . ,αn−1, it will be impossible for any one voter to unilaterally move the

output grade across any of the α j values, so

max
x1,...,xn−1∈[0,1]

f (x1, . . . ,xn−1,1)− f (x1, . . . ,xn−1,0) = max
i∈1,...,n

αi −αi−1.
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This indicates that the α j values should be spaced evenly within to open interval from 0 to 1.

The diagonal function is the unique grading curve that accomplishes this for all dimensions

n.

The fact that the linear median minimizes this measure of manipulability is indepen-

dent of the distribution of the input grades. Minimizing this “maximum” manipulability is

equivalent to minimizing the L∞-norm (uniform-norm) distance between f (x1, . . . ,xn−1,1)

and f (x1, . . . ,xn−1,0) on [0,1]n−1. We can also attempt to minimize a different Lq-norm.

Theorem 21. (Jennings) Fix the dimension n, and fix q > 1. For input coming from prob-

ability distribution p, if there is a unique strategic median f that minimizes the Lq-norm

distance between f (x1, . . . ,xn−1,1) and f (x1, . . . ,xn−1,0) on [0,1]n−1, then the correspond-

ing grading values α1, . . . ,αn−1 satisfy:

j
n− j

=


1−P(α j)

P(α j)

  α j+1

α j


1−P(x)

1−P(α j)

 j

(x−α j)
q−2dx


α j

α j−1


P(x)

P(α j)

n− j

(α j − x)q−2dx

, for j = 1, . . . ,n−1.

Proof. We desire to minimize

E =
 1

0
· · ·
 1

0
( f (x1, . . . ,xn−1,1)− f (x1, . . . ,xn−1,0))q

n−1

∏
i=1

p(xi)dxn−1 . . .dx1.

We divide the integral into four pieces depending on whether f(. . . , 1) and f(. . . , 0) are

equal to one of the xi values or one of the αi values, again using lemma 12 and symmetry

to simplify:

E =
n

∑
k=1

n!
(n−k)!(k−1)!


αk−1

0
· · ·


αk−1

0  
n−k

 1

αk

· · ·
 1

αk  
k−1

(αk −αk−1)
q

n−1

∏
i=1

p(xi)dxn−1 . . .dx1

+
n

∑
k=1

n!
(n−k)!(k−2)!


αk

αk−1


αk−1

0
· · ·


αk−1

0  
n−k

 1

x1

· · ·
 1

x1  
k−2

(x1 −αk−1)
q

n−1

∏
i=1

p(xi)dxn−1 . . .dx1

+
n

∑
k=1

n!
(n−k−1)!(k−1)!


αk

αk−1

 x1

0
· · ·
 x1

0  
n−k−1

 1

αk

· · ·
 1

αk  
k−1

(αk − x1)
q

n−1

∏
i=1

p(xi)dxn−1 . . .dx1
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+
n

∑
k=1

n!
(n−k−1)!(k−2)!


αk

αk−1

 x1

αk−1

 x2

0
· · ·
 x2

0  
n−k−1

 1

x1

· · ·
 1

x1  
k−2

(x1 − x2)
q

n−1

∏
i=1

p(xi)dxn−1 . . .dx1

For j = 1, . . . ,n−1, we can take the partial derivative with respect to α j. (Knowing that

the original integrand, f (. . . ,1)− f (. . . ,0) was continuous, we can avoid worrying about

the boundaries of these integrals and just differentiate the integrands.)

Eα j = q n!
(n− j)!( j−1)!


α j−1

0
· · ·


α j−1

0  
n− j

 1

α j

· · ·
 1

α j  
j−1

(α j −α j−1)
q−1

∏
n−1
i=1 p(xi)dxn−1 . . .dx1

− q n!
(n− j−1)! j!


α j

0
· · ·


α j

0  
n− j−1

 1

α j+1

· · ·
 1

α j+1  
j

(α j+1 −α j)
q−1

∏
n−1
i=1 p(xi)dxn−1 . . .dx1

− q n!
(n− j−1)!( j−1)!


α j+1

α j


α j

0
· · ·


α j

0  
n− j−1

 1

x1

· · ·
 1

x1  
j−1

(x1 −α j)
q−1

n−1

∏
i=1

p(xi)dxn−1 . . .dx1

+ q n!
(n− j−1)!( j−1)!


α j

α j−1

 x1

0
· · ·
 x1

0  
n− j−1

 1

α j

· · ·
 1

α j  
j−1

(α j − x1)
q−1

n−1

∏
i=1

p(xi)dxn−1 . . .dx1

= q n!
(n− j)!( j−1)! P(α j−1)

n− j(1−P(α j))
j−1(α j −α j−1)

q−1

− q n!
(n− j−1)! j! P(α j)

n− j−1(1−P(α j+1)
j(α j+1 −α j)

q−1

− q n!
(n− j−1)!( j−1)! P(α j)

n− j−1  α j+1
α j

(1−P(x)) j−1(x−α j)
q−1 p(x)dx

+ q n!
(n− j−1)!( j−1)!(1−P(α j))

j−1  α j
α j−1

P(x)n− j−1(α j − x)q−1 p(x)dx

We integrate these two integrals by parts with dv = (1−P(x)) j−1 p(x)dx for the first

integral and dv = P(x)n− j−1 p(x)dx for the second integral, which eliminates the first two

terms and leaves

Eα j =−q(q−1) n!
(n− j−1)! j! P(α j)

n− j−1


α j+1

α j

(1−P(x)) j(x−α j)
q−2dx

+q(q−1) n!
(n− j)!( j−1)!(1−P(α j))

j−1


α j

α j−1

P(x)n− j(α j − x)q−2dx

We set this to zero:

P(α j)
n− j−1

j


α j+1

α j

(1−P(x)) j(x−α j)
q−2dx = (1−P(α j))

j−1

n− j


α j

α j−1

P(x)n− j(α j − x)q−2dx
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j
n− j

=


1−P(α j)

P(α j)

  α j+1

α j


1−P(x)

1−P(α j)

 j

(x−α j)
q−2dx


α j

α j−1


P(x)

P(α j)

n− j

(α j − x)q−2dx

This gives us n−1 equations to solve for α1, . . . ,αn−1 (since α0 = 0 and αn = 1). Each

equation relates α j−1,α j, and α j+1, and the equations are generally well behaved. For fixed

α j−1 and α j+1, the right hand side of the equation is continuous for α j in between those

values. It approaches infinity as α j approaches α j−1 from above and zero as α j approaches

α j+1 from below, so there will be a unique α j that satisfies the equation. It is probable,

though unproven, that there is always a unique solution to this system of equations.

Theorem 22. (Jennings) For any dimension n, and for probability distribution p, the

strategic median f that minimizes the L1-norm distance between f (x1, . . . ,xn−1,1) and

f (x1, . . . ,xn−1,0) on [0,1]n−1 is characterized by grading values α1, . . . ,αn which are all

equal, with the common value that satisfies


α

0 p(t)dt = 1
2 .

Proof. For q = 1, the Eα j equation from the proof of theorem 21 would be:

Eα j = q n!
(n− j)!( j−1)! P(α j−1)

n− j(1−P(α j))
j−1

− q n!
(n− j−1)! j! P(α j)

n− j−1(1−P(α j+1)
j

− q n!
(n− j−1)!( j−1)! P(α j)

n− j−1  α j+1
α j

(1−P(x)) j−1 p(x)dx

+ q n!
(n− j−1)!( j−1)!(1−P(α j))

j−1  α j
α j−1

P(x)n− j−1 p(x)dx

= q n!
(n− j)!( j−1)! P(α j−1)

n− j(1−P(α j))
j−1

− q n!
(n− j−1)! j! P(α j)

n− j−1(1−P(α j+1)
j

− q n!
(n− j−1)! j! P(α j)

n− j−1((1−P(α j+1))
j − (1−P(α j))

j)

+ q n!
(n− j)!( j−1)!(1−P(α j))

j−1(P(α j)
n− j −P(α j−1)

n− j)

Setting this to zero, we get:

0 =−(n− j)P(α j)
n− j−1(1−P(α j))

j + jP(α j)
n− j(1−P(α j))

j−1
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j
n
= 1−P(α j)

This indicates a decreasing grading function, y = 1−P(x). Of course, this is not a valid

grading curve, and it indicates that all of the αi values coalesce to the same real number and

the relevant function is a step function. So we proceed with the assumption that all of the

αi values equal a common value, α .

We go back to the definition of E:

E =
 1

0
· · ·
 1

0
( f (x1, . . . ,xn−1,1)− f (x1, . . . ,xn−1,0))

n−1

∏
i=1

p(xi)dxn−1 . . .dx1

=
 1

0
· · ·
 1

0
f (x1, . . . ,xn−1,1)

n−1

∏
i=1

p(xi)dxn−1 . . .dx1

−
 1

0
· · ·
 1

0
f (x1, . . . ,xn−1,0)

n−1

∏
i=1

p(xi)dxn−1 . . .dx1

f will return the common α value when at least one of the input arguments is less than

α and at least one is greater than α , so

E =


α(1− (1−P(α))n−1)+(n−1)

 1

α

x(1−P(x))n−2dx


−


α(1−P(α)n−1)+(n−1)


α

0
xP(x)n−2dx


= α(P(α)n−1 − (1−P(α))n−1)+(n−1)

 1

α

x(1−P(x))n−2dx−


α

0
xP(x)n−2dx


Setting the derivative equal to zero:

0 = Eα = (P(α)n−1 − (1−P(α))n−1)+α p(α)(n−1)(P(α)n−2 +(1−P(α))n−2)

+(n−1)α p(α)(−(1−P(α))n−2)−P(α)n−2)

= (P(α)n−1 − (1−P(α))n−1)

P(α) =
1
2
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As was the case earlier, a step function emerges as the ideal grading curve not because

of any coincidental relationship to approval voting, but because it causes the aggregation

function to return the same grade practically all of the time. This does technically mini-

mize the expected value of a lone voter’s ability to influence the output grade, but only by

completely ruining the expressiveness of the aggregation process.

These three theorems indicate the grading curves that will minimize the effect one voter

can have on the output grade as different Lq norms are used to measure the effect. Using

the L1-norm is equivalent to minimizing the expected value of one voter’s influence, which

is done by using a step function as the grading curve, with the step occurring at the point

where an input grade is equally likely to be above as below. As q is increased, the optimal

grading curve gets less and less steep until it becomes diagonal at q = ∞. Using the L∞-

norm is equivalent to minimizing the maximum possible influence that one voter may have,

which is accomplished by the linear median (a diagonal grading curve) independent of the

distribution of the input grades.

7.3 Conclusion

In this chapter, we were able to determine the grading curves that will minimize the dis-

tance between aggregation function inputs and outputs for norms other than the Euclidean

norm. Additionally, we determined the grading curves that minimize the influence of single

voters according to different Lq norms. The linear median is the strategy-proof aggregation

function that minimizes single voter influence according to the L∞ norm.

In our exploration of aggregation functions, especially in focusing on strategy-proof

ones, we have discovered that the linear median is quite a valuable aggregation function.

The specific advantages discovered up to this point are:

• The linear median is strategy-proof.

• The linear median handles polarized situations well, returning the arithmetic mean of

the input grades.
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• If the input grades are assumed to come from a uniform distribution, then among

all strategy-proof aggregation functions, the linear median minimizes the Euclidean

norm distance between inputs and output.

• Regardless of the distribution of the input grades, the linear median is the unique

strategy-proof aggregation function that minimizes the worst-case (L∞) influence that

one voter may have on the outcome. It achieves the theoretical minimum possible for

any aggregation function (even non-strategy-proof ones).1

A further advantage of the linear median with a grading language of 0-100 is that it is

probably the easiest strategy-proof aggregation function to understand outside of the order

statistics. (In this case, the linear median will be the largest number, x, where x percent of

the voters gave a grade of x or higher.)

The main disadvantage to the linear median is that it requires an interval scale. This

means we need to choose a numeric grading scale, but it also means that we need to choose

one that the voters are likely to use linearly. This is a psychological question as much

as a mathematical one. We propose that a scale of 0 to 100 be used, and that the voters

are instructed to indicate “what approval rating they give each candidate”. The 100-point

scale is used, in large part, because using any other grading scale with the linear median

will be far more difficult to explain. This scale, however, does carry the risk that some

people in the United States will interpret as it is used in the educational system, where 75

means “acceptable” and 50 means “failing”. We hope that instructing voters to give their

approval rating for each candidate will help them avoid this trap. We also hope that time

and experience with the linear median will help people become familiar with the 100-point

scale in an election context and use it more linearly over time.

1Although there is at least one non-strategy-proof aggregation function, namely the
arithmetic mean, which achieves this same theoretical minimum.
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Chapter 8

CARDINAL SYSTEMS IN A COMPETITIVE CONTEXT

In chapter 5, we examined the criterion of strategy-proofness and found all aggregation

functions where no voter can, by submitting a dishonest grade, move the societal grade

closer to his honest grade. This implies that honesty is a dominant strategy for voters deal-

ing with a strategy-proof aggregation function. In chapter 7, we analyzed the manipulability

of aggregation functions in another way. We measured the influence one voter could have

on the election outcome if all the other votes remained unchanged. Both of these methods

of analyzing manipulability apply to the process of aggregating n grades into one societal

grade. We desire here to examine strategies and incentives in an election context, where

grades are being aggregated for multiple candidates simultaneously.

In a competitive environment such as an election, a voter’s utility does not depend only

on the final scores of the candidates and how close they are to the voter’s personal scores.

It also depends on the election outcome. This means that even when we use a strategy-

proof aggregation function, which incentivizes honesty in the single output case, there are

profiles in the multi-candidate case where a voter can gain an advantage by voting dishon-

estly. Indeed the criterion we have called “strategy-proofness” is, in [4], more accurately

called “strategy-proofness-in-grading”. It is distinguished there from “strategy-proofness-

in-ranking”, which would be a voting system where it is never possible for any voter to

change the winner to one he likes better by submitting a dishonest vote. In [3], Balinski and

Laraki prove that there is no strategy-proof-in-ranking aggregation function.

As an introduction to competitive context, we will examine the no-show paradox. Then

we present random-manipulability and voter-manipulability simulation data for range vot-

ing, majority judgment, and the linear median in the same vein as that presented for ordinal

systems in chapter 3.
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8.1 The no-show paradox

One criticism that has been raised against the majority judgment method is that it is sus-

ceptible to the no-show paradox, where the addition of a voter who prefers candidate A to

candidate B can cause A to lose and B to win. Here is an example:

6 : A−90 B−40

5 : A−10 B−40.

Here A has a majority-grade of 90 and B has a majority grade of 40, but if another voter is

added who grades them both very poorly but slightly prefers A:

1 : A−10 B−0,

then A’s majority-grade falls to 10 and B’s remains at 40. So the addition of a voter who

prefers A to B indeed causes the winner to change from A to B. Range voting is not suscep-

tible to this no-show paradox.

One of the contributors to the no-show paradox in majority judgment is that there are

profiles where the majority-grade changes drastically with the addition of just one voter. As

shown in chapter 7, we can choose a strategy-proof aggregation function where a lone voter

has considerably less influence on the election outcome, thereby decreasing the likelihood

of the no-show paradox. In the above example, the linear median of the scores of candidates

A and B before the addition of the twelfth voter are 54.5 and 40, respectively, and after the

addition of the last voter they are 50 and 40, so the no-show paradox is avoided by the linear

median in this case.

It is not possible, however, to eliminate the no-show paradox entirely. Here is an exam-

ple of a profile where the no-show paradox will occur with the linear median:

7 : A−100 B−69

3 : A−0 B−69.

With this profile A’s score is 70 and B’s score is 69, so A wins. If another voter shows up

who prefers A to B, but grades them both relatively poorly:

1 : A−60 B−50,
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then B’s score remains at 69 but A’s score decreases to 63.6, so now B wins. Again, the

addition of a voter who preferred A to B has caused the winner to change from A to B.

In both of these cases, if the additional voter had given A a high enough grade, then A

would’ve remained the winner, so in addition to illustrating the no-show paradox for their

respective voting systems, these profiles show a case where a voter would have the incentive

to vote dishonestly.

8.2 Random and voter manipulability

As a simple measure of how manipulable are these cardinal voting systems, we use the same

measures used in chapter 3, namely random manipulability and voter manipulability. For

cardinal systems, of course, instead of their preferences being drawn from the set of possible

candidate orderings as they were for ordinal voting systems, the voters’ evaluations of the

candidates are chosen uniformly from the set of grade tuples. It is then determined how

likely it is for a random manipulation or a deliberate manipulation by one voter to change

the winner to a candidate more preferred by that voter. In the three systems examined,

range voting, majority judgment, and linear median, the deliberate manipulation is devised

by giving a maximal score to anyone the voter prefers to the candidate who would win if he

voted honestly and a minimal score to the rest.

For each system, there is some ambiguity about whether a continuous or discrete in-

terval should be chosen for the set of possible grades, and if a discrete interval is chosen,

whether the voter is allowed to have preferences among candidates to whom he gives iden-

tical grades. We chose to use the grades for each system which we feel are most likely to

be used in real elections. For range voting, we used the integers from 0 to 10. For majority

judgment, we used six different grades. And for the linear median, we used the integers

from 0 to 100. For range voting and the linear median, whenever a voter gave identical

grades to two or more candidates, we simulated him as being indifferent between them.

That is, a random or deliberate manipulation that switches the winner to a candidate with

the same grade as the original winner is not considered a profitable manipulation. For ma-
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jority judgment, the grading language seemed too coarse for this approach1, so instead we

simulated each voter’s opinion of each candidate on an integer scale from 0 to 11. These

opinions were then converted into the six-term grading language for purposes of simulating

elections, but for creating the voter’s deliberate manipulation and determining whether a

manipulation was profitable, the voter’s original opinion (on the scale from 0 to 11) was

used.

The results are shown in figure 8.1, and the corresponding data is found in appendix A.

The manipulability scores of the ordinal systems from chapter 3 are shown in a shaded grey

region for comparison.

8.3 Results

For random manipulability, range voting performs best and the linear median worst, with

majority judgment in between. The cardinal systems seem to become more competitive

with the ordinal ones as the number of candidates increases. For three candidates, they are

competitive only with the most manipulable ordinal methods, but in six-candidate situa-

tions, they are competitive with the least manipulable ordinal methods.

For voter manipulability, majority judgment performs best, and the linear median is

close behind. Again the cardinal methods become more competitive with the ordinal ones

as more candidates are introduced. For three candidates, the best cardinal methods are

more manipulable than the worst ordinal methods, but when there are six candidates, the

best cardinal methods are almost as good as the best ordinal methods.

When performing the manipulation simulations on these cardinal systems, there are

several parameters that can be adjusted, mostly having to do with the grading language

used, as detailed above. We tried to choose configurations that would represent the likely

dynamics of real elections. It does seem like the linear median might be disadvantaged by

having such a large grading language, but the best way to correct this bias is not clear and

1that is, it would’ve been unfairly advantageous to the majority judgment by disallowing
too many profitable manipulations
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Random Manipulability

Voter Manipulability

Figure 8.1: Manipulability of cardinal voting systems. Shaded areas indicate the manipula-
bility range of ordinal systems examined in chapter 3 (see figure 3.1).
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should be the topic of further research. Still, these simulations give us a rough idea of the

manipulability of these cardinal systems and how they compare to the ordinal ones.

8.4 Conclusion

In previous chapters, it was shown that the linear median has many nice aggregation and

strategy-resistance properties when it is aggregating the grades for one issue or candidate

into a societal grade. In this chapter we explored the dynamics that were introduced when

grades are being aggregated for multiple candidates simultaneously. Although the linear

median is susceptible to the same no-show paradox that afflicts the majority judgment in

competitive situations, the linear median is more effective at limiting the effect that can be

had by one voter, so it should be able to decrease the frequency of the no-show paradox.

The majority judgment and the linear median, as well as range voting, were simulated in

mutli-candidate elections to determine how they fare in terms of random manipulability and

voter manipulability, the two manipulability measures introduced in chapter 3. The results

showed that with six candidates, the majority judgment and the linear median are compet-

itive with the best ordinal voting methods in terms of minimizing manipulability. Since

they satisfy so many theoretical and practical criteria and they offer the hope of elections

where each candidate is truly evaluated independently on his own merits, it is clear that

these two methods should be included in the canon of acceptable social choice mechanisms

and should be attempted in actual elections so we can determine how well they achieve the

improvements to social choice and public governance that they promise in theory.
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Appendix A

MANIPULABILITY SIMULATION DATA
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A.1 Random manipulability - Ordinal Systems

3 candidates
Number of voters

10 32 100 320 1000
Plurality 0.0204 0.0143 0.0087 0.0052 0.0030

Borda 0.0155 0.0093 0.0054 0.0032 0.0017
IRV 0.0135 0.0107 0.0067 0.0038 0.0024

Kemeny-Young 0.0096 0.0060 0.0036 0.0021 0.0011
Schulze 0.0097 0.0061 0.0037 0.0021 0.0011

Majority Borda 0.0188 0.0136 0.0088 0.0057 0.0031
Elections Simulated 2,721,270 2,456,231 988,385 65,978 286,190

4 candidates
Number of voters

10 32 100 320 1000
Plurality 0.0305 0.0196 0.0124 0.0074 0.0040

Borda 0.0225 0.0130 0.0079 0.0042 0.0026
IRV 0.0226 0.0196 0.0126 0.0078 0.0044

Kemeny-Young 0.0156 0.0102 0.0066 0.0035 0.0021
Schulze 0.0158 0.0105 0.0067 0.0036 0.0023

Majority Borda 0.0266 0.0167 0.0098 0.0058 0.0030
Elections Simulated 62,894 155,325 71,989 124,683 115,376

6 candidates
Number of voters

10 32 100 320 1000
Plurality 0.0409 0.0263 0.0160 0.0096 0.0058

Borda 0.0286 0.0183 0.0108 0.0064 0.0037
IRV 0.0428 0.0341 0.0241 0.0162 0.0089

Kemeny-Young 0.0262 0.0169 0.0114 0.0067 0.0039
Schulze 0.0265 0.0186 0.0114 0.0068 0.0044

Majority borda 0.0361 0.0249 0.0129 0.0074 0.0042
Elections Simulated 60,939 60,901 61,062 60,862 61,910
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A.2 Voter manipulability - Ordinal Systems

3 candidates
Number of voters

10 32 100 320 1000
Plurality 0.0511 0.0354 0.0219 0.0132 0.0074

Borda 0.0779 0.0466 0.0272 0.0157 0.0085
IRV 0.0316 0.0232 0.0141 0.0087 0.0049

Kemeny-Young 0.0293 0.0169 0.0095 0.0053 0.0030
Schulze 0.0292 0.0167 0.0095 0.0054 0.0029

Majority Borda 0.0594 0.0389 0.0242 0.0144 0.0080
Elections Simulated 2,721,270 2,456,231 988,385 65,978 286,190

4 candidates
Number of voters

10 32 100 320 1000
Plurality 0.1052 0.0715 0.0457 0.0270 0.0156

Borda 0.1498 0.0897 0.0521 0.0296 0.0169
IRV 0.0672 0.0532 0.0322 0.0196 0.0115

Kemeny-Young 0.0595 0.0358 0.0209 0.0113 0.0065
Schulze 0.0594 0.0353 0.0205 0.0109 0.0062

Majority Borda 0.1097 0.0589 0.0310 0.0172 0.0096
Elections Simulated 62,894 155,325 71,989 124,683 115,376

6 candidates
Number of voters

10 32 100 320 1000
Plurality 0.1839 0.1369 0.0876 0.0524 0.0311

Borda 0.2536 0.1492 0.0872 0.0515 0.0280
IRV 0.1361 0.1090 0.0740 0.0485 0.0274

Kemeny-Young 0.1127 0.0695 0.0422 0.0239 0.0134
Schulze 0.1130 0.0693 0.0404 0.0232 0.0131

Majority Borda 0.1541 0.0873 0.0488 0.0258 0.0144
Elections Simulated 60,939 60,901 61,062 60,862 61,910
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A.3 Random manipulability - Cardinal Systems

3 candidates
Number of voters

10 32 100 320 1000
Range voting 0.0217 0.0130 0.0074 0.0042 0.0024

Majority judgment 0.0289 0.0167 0.0090 0.0050 0.0028
Linear median 0.0360 0.0211 0.0119 0.0063 0.0035

4 candidates
Number of voters

10 32 100 320 1000
Range voting 0.0253 0.0152 0.0088 0.0051 0.0029

Majority judgment 0.0331 0.0198 0.0108 0.0059 0.0034
Linear median 0.0418 0.0253 0.0144 0.0078 0.0043

6 candidates
Number of voters

10 32 100 320 1000
Range voting 0.0288 0.0178 0.0106 0.0060 0.0036

Majority judgment 0.0382 0.0247 0.0134 0.0074 0.0042
Linear median 0.0480 0.0297 0.0172 0.0094 0.0052

Each probability represents a simulation of at least one million elections.
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A.4 Voter manipulability - Cardinal Systems

3 candidates
Number of voters

10 32 100 320 1000
Range voting 0.2095 0.1253 0.0720 0.0406 0.0231

Majority judgment 0.1222 0.0668 0.0368 0.0203 0.0113
Linear median 0.1280 0.0723 0.0414 0.0230 0.0130

4 candidates
Number of voters

10 32 100 320 1000
Range voting 0.2523 0.1508 0.0872 0.0493 0.0278

Majority judgment 0.1471 0.0807 0.0447 0.0246 0.0138
Linear median 0.1543 0.0878 0.0502 0.0280 0.0161

6 candidates
Number of voters

10 32 100 320 1000
Range voting 0.3056 0.1841 0.1070 0.0604 0.0346

Majority judgment 0.1791 0.0989 0.0549 0.0301 0.0168
Linear median 0.1882 0.1070 0.0613 0.0344 0.0194

Each probability represents a simulation of at least one million elections.
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