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ABSTRACT 
 

Many expect renewable energy technologies to play a leading role in a 

sustainable energy supply system and to aid the shift away from an over-reliance 

on traditional hydrocarbon resources in the next few decades. This dissertation 

develops environmental, policy and social models to help understand various 

aspects of photovoltaic (PV) technologies. 

The first part of this dissertation advances the life cycle assessment (LCA) 

of PV systems by expanding the boundary of included processes using hybrid 

LCA and accounting for the technology-driven dynamics of environmental 

impacts. Hybrid LCA extends the traditional method combining bottom-up 

process-sum and top-down economic input-output (EIO) approaches. The 

embodied energy and carbon of multi-crystalline silicon photovoltaic systems are 

assessed using hybrid LCA. From 2001 to 2010, the embodied energy and carbon 

fell substantially, indicating that technological progress is realizing reductions in 

environmental impacts in addition to lower module price.  

            A variety of policies support renewable energy adoption, and it is critical 

to make them function cooperatively. To reveal the interrelationships among these 

policies, the second part of this dissertation proposes three tiers of policy 

architecture. This study develops a model to determine the specific subsidies 

required to support a Renewable Portfolio Standard (RPS) goal. The financial 

requirements are calculated (in two scenarios) and compared with predictable 

funds from public sources.  A main result is that the expected investments to 
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achieve the RPS goal far exceed the economic allocation for subsidy of 

distributed PV. 

Even with subsidies there are often challenges with social acceptance. The 

third part of this dissertation originally develops a fuzzy logic inference model to 

relate consumers’ attitudes about the technology such as perceived cost, 

maintenance, and environmental concern to their adoption intention. Fuzzy logic 

inference model is a type of soft computing models. It has the advantage of 

dealing with imprecise and insufficient information and mimicking reasoning 

processes of human brains. This model is implemented in a case study of 

residential PV adoption using data through a survey of homeowners in Arizona. 

The output of this model is the purchasing probability of PV.  
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CHAPTER 

1. INTRODUCTION 

1.1 Climate Change and the Third Wave of Energy Transition 

In the first decade of the new century, renewable energy related issues 

have attracted more global attention than before, especially in the context of 

global warming dilemma. No matter how different people around the world 

perceive the global warming issue, it is definitely a global topic that has drawn 

attention of decision makers in an attempt to address it cooperatively. This 

November Cancun Climate Summit 2010 will be held and provide a platform to 

discuss climate change and relevant topics. To address climate change problems, 

implementing low-carbon technologies is inevitable. Although renewable energy 

is often identified with GHG mitigation, it offers a broader vision. Renewable 

energy also deals with the issues of sustainability of the human society, such as 

shifting paradigm of global energy consumption and national energy security. 

The existence and development of human society relies on energy supply. 

When oil prices exploded in the 1970s, economists began to put more research 

interest on the interrelation between economy and energy. With the falling of the 

oil price, the academic and industrial interest in energy was diminished until 

1990s. At that time, the awareness of environmental changes such as global 

warming; air and water pollution is getting severe.  

Environmental problems are mainly caused by the combustion of fossil 

fuels for power generation and transportation. Fossil fuels such as coal and natural 
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gas are depletable resources which decrease when the resource is being used and 

the stock never increases over time.  

Fossil fuels are the most widely used energy in the industrial world. 

Although an inexpensive electricity source, coal combustion emissions cause 

global warming and air pollution. The technology of clean coal is being improved. 

But the cost of such technological improvement is still too high to make it 

competitive and attractive. Oil and natural gas suffer from high and volatile prices 

which make the supply unstable and insecure.  

Besides depletable resources, hydroelectric power represents a significant 

share of the energy mix in areas that have abundant hydropower. Hydropower is 

renewable resource which can regenerate when the resource is being used and the 

stock can increase over time. The hydroelectric power is also inexpensive. 

However, there are contraversial environmental and societal issues given growing 

awareness of damages to ecosystems and local cultures caused by dams.  

The Hoover Dam created a miracle era in the development of southwest in 

the history. But it is impossible to replicate the story anywhere else around the 

world. Even in China, the proposals of large hydroelectric projects face huge 

protest after the Three Gorges as the awareness of environmental protection of 

both the central government and citizens is increasing. Also, hydropower 

resources are constrained.  

Besides coal, gas and hydropower, another important energy resource is 

nuclear power. It provides more than 70% of electricity in some European 

countries. However, the license expiration date of most the nuclear power plants 
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is 2030. That means aging facilities will need to be replaced, which will require  a 

large amount of investment.  

The nuclear power emits next to no air pollution when it is in normal 

operational condition. It is thus helpful to address issue of global warming. 

However, it always is controversial after the accidents of Three Miles Island and 

Chernobyl. The investment is too huge to be independent from long and painful 

debate of political decision which brings about high risk for the future of nuclear 

energy. In sum, coal, natural gas, oil, hydropower and nuclear are the 

conventional energy resources which represent most of the energy supply in 

current world. 

On the other hand, new energy sources such as solar, wind, biomass and 

geothermal are booming in recent years. Strictly speaking they cannot be  

considered as “new energy”, because people have used them for a long time in the 

human history, much earlier than current conventional energy sources. However, 

with the rising difficulties of conventional energy, “new energy” sources are 

attracting attention from society. In this work, these new energy including solar, 

wind, biomass and geothermal are termed as renewable energy though the 

definition is not restricted. In economy, the solar and wind are actually 

expendable resource which means the regeneration time is rather small that can be 

ignored, the biomass and hydro are renewable resources. To make the notation 

simple, the renewable energy discussed here includes solar, wind, biomass and 

hydropower.  
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In recent years, the role of renewable energy as part of the solution to 

realize more secure and sustainable energy supplies is drawing more and more 

attention and investment. In 2007, global wind generating capacity has increased 

28 percent while solar PV capacity rose 52 percent according to the report of 

Renewable Energy Policy Network for 21st century. The PV module shipment in 

the US has increased 15 times from 1997 to 2006 (Energy Information 

Administration). The production and investment tax credits for renewable energy 

has been extended to 2016, stimulating enthusiasm in investment and stabilizing 

the growing renewable energy market. The main economic obstacle for renewable 

energy is the high price. The main technological obstacle is the low power factor 

which makes the power supply not reliable and creates a need for backup capacity 

and storage equipments. Those obstacles are being overcome by technological 

improvement. The transition from conventional energy to renewable energy is 

happening; even an energy revolution is being conceived and may happen in the 

near future, especially in the big context of global economy crisis. 

1.2 The First and Second Global Energy Transition  

To address the transition to sustainable energy, it would be meaningful 

and helpful to take a retrospective look at the first and second global energy shifts. 

From a historical perspective, the Industrial Revolution can be viewed as a 

response to a concern with the supply of energy. The need for finding substitutes 

for wood-fuel was being signaled in England though rising prices of wood. The 

process of substitution of cheap coal for wood is slow because of technical 
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difficulties of extraction and combustion of coal. The energy crisis forced people 

to find alternative energy. The first global energy shift is from biomass, mainly 

wood, to coal resources. During the period 1800-1913, coal went from providing 

around 10% to over 60% of the world’s total energy requirements. The second 

global energy shift is from coal to oil. The share of world energy provided by 

petroleum rose from 5% in 1910 to around 50% in 1973. 

 

 

Figure 1-1:World Energy Shift (Podobnik, 1999) 

The causes and drivers of the shifts are complex, they are embedded in the 

context of social, political, economic and technological dynamics. This article 

will not discuss the first and second energy shifts in detail. However, the concern 

of political support for coal and oil industries would shed light on the current 

changing of energy pattern. 

At the early stage of coal and oil deployment, promotion and incentives 

from governmental were significant. By the 1830s, British agencies were 

subsidizing domestic iron industries, railroad construction, and the operation of 

steam shipping lines which the coal industry heavily depending on (Headrick, 
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1981). From 1918 to 1970, U.S. energy tax policy provided subsidies to oil and 

gas producers allowing a significant amount of deduction of the tax (CRS, 2007).  

            Looking at contemporary world, energy security and environmental 

concerns call for the third energy shift. More recent outbreaks of military conflict 

in the Middle East repeatedly jeopardized the geopolitical and commercial 

stability of the contemporary world petroleum system. History replicates itself in 

some ways, but not absolutely in the same way. However there is no doubt that 

the energy is essential to the development of human society even in the so-called 

information era. The conventional resources provide energy to power the human 

society to evolve to current situation. Considering the depletable nature of 

conventional resources, they would become an obstacle of development in the 

future. In the long term, it is inevitable to shift from conventional energy to 

renewable energy to sustain the operation of industry and meet the demand of 

society, then achieve a relative steady state of societal pattern in term of energy 

use. In the short term, the shift is a transitional process which has many 

opportunities and challenges. We are in the third wave of energy transition.  

1.3 Booming Renewable Energy Technologies  

Many expect renewable energy including solar, wind and bio-fuels to 

become leading technologies to a sustainable energy supply system and help 

shifting away from over-reliance on traditional hydrocarbon resources in next few 

decades.  
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The production of solar cells has grown at an average annual rate of 37% 

in the past decade (from 77.6 MWp in 1995 to 1817.7 MWp in 2005), and at an 

average annual rate of 45% in the past 5 years (from 287.7 MWp in 2000 to 

1817.7 MWp in 2005) (Eltawil and Zhao, 2010). Wind energy has been suggested 

that installed capacity will increase fivefold over the next 10-year period, to 

exceed 700 GW by 2017, which is possible at current growth rates (Pryor and 

Barthelmie, 2010).  

In 2006, the share of the global energy provided by renewable energy was 

18% (REN21, 2010, p9). A closer look reveals that majority is due to traditional 

biomass and hydro-electric power and a very small remainder can be attributed to 

“new renewable energy technologies” (Hirschl, 2010). In 2008, only 3% of 

electricity generation in the United States is provided by renewable energy 

resources (Sovacool, 2009a). 

Despite of the low penetration level of renewable energies worldwide at 

this moment, aggressive goals are set by lead countries or lead markets. US 

President Barack Obama calls for doubling renewable energy production by 2012. 

Denmark plans to produce 60% of its electricity from renewables by 2025. 

Germany even has the ambitious goal of achieving 100% renewable energy by 

2050.  

  However, optimistic objectives don’t guarantee expected outcomes. If we 

examined backward, something not that optimistic would be revealed. In 1979, 

former President Jimmy Carter expected renewable power to reach 10% of 

electricity in the US by 1985 (Sovacool, 2009a). In 1980, the National Research 
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Council declared that solar energy would account for 38.2% of American 

electricity supply by 2010 (NRC, 1980). Obviously, those goals or projections 

were failed to achieve. It is due to economic, social and technological constraints 

and uncertainties, especially from changing political atmosphere, such as 

administration rotate. 

1.4 Emerging of the Science of Sustainability 

Sustainability science has emerged as the interdisciplinary umbrella for 

addressing human-environment problems (Turner, 2010). The concept was 

proposed in the late 1980s with the release of Sustainable Development of the 

Biosphere (Clark and Munn, 1986). After the publication of the Brundtlandt 

Commission report in 1987, the term “sustainability” became one of the most 

popular target of policy makers. The Brundtlandt Commission defined sustainable 

development as a process meeting “the needs of the present without 

compromising the ability of further generations to meet their own needs” 

(Brundtland, 1987). Sustainable development encompasses the balancing of 

economic growth with ecological integrity (Brown and Sovacool, 2007). In 

academic regime, there are several journals, such as Sustainability Science and 

Management, Sustainability: Science, Practice and Policy and Current Opinion in 

Environmental Sustainability emerged to handle the large growth in the array of 

this research (Turner, 2010). Over the years a wide variety of conceptions of 

sustainability have been developed (Garrera and Mack, 2010). Renn et al. (2007) 

have categorized these conceptions according to the number and quality of 
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dimensions. Of these, single pillar concepts are oldest and focus primarily on the 

impacts on ecology. The second category refers to the three-pillar concepts. These 

are by far the most popular concepts: they define sustainability as a combination 

of ecological, economic and social compatibility. There are other dimensions 

proposed by researchers, such as culture and institutional stability (Renn at al., 

2007). 

There is a variety of research dealing with energy related sustainability 

issues. Afgan and Carvalho (2000) have developed the concept of multi-criteria 

sustainability assessment in regards to sustainability. This approach focuses 

mainly on technical aspects of energy systems, but also considers the social 

indicators. Elghali et al. (2007) argue that sustainable energy technologies should 

meet the well-known three pillar of sustainability: economic viability, ecological 

performance and social acceptance. Garrera and Mack (2010) develop social 

indicator set cover four criteria: security and reliability of energy provision; 

political stability and legitimacy; social and individual risks and quality of life. 

This work does not focus on developing the concept of sustainability 

science, or energy sustainability, or indicators of sustainability. The author’s 

argument is that sustainable energy technologies are critical to achieve the goal of 

sustainability of ecology, economics and society. So the environmental 

assessment, economic viability and social acceptance of sustainable energy 

technologies are three main topics of this dissertation. 
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1.5 Organization of the Dissertation 

The dissertation addresses three questions: (1) how “green” the solar 

energy technologies (photovoltaic) are (2) how effective the policies (economic 

subsidies) supporting sustainable energy adoption (3) how acceptable the solar 

energy technologies (photovoltaic) are to the society. Figure 1-2 shows the 

structure of the dissertation of three pillars (environmental, policy and social). 

Chapter 2 is to answer the first question of how “green” the sustainable 

energy technologies are using photovoltaics (PV) as case study. PV is an 

emerging technology converts sunlight directly to electricity which also known as 

solar electric technology. During the phase of electricity generation, there is no 

emission or fuel requirement by this technology. But during the phase of 

manufacturing and distribution of the products, an amount of energy and materials 

has to be consumed. The consumed energy in the product can be noted as 

embodied energy which is a widely accepted concept. This chapter is using the 

methodology of hybrid life cycle assessment to investigate the embodied energy 

and carbon of multi-crystalline silicon PV from 2001 to 2011. 

Chapter 3 is to answer the second question. The market of solar energy has 

rapid growth in recent years. However, the boom and bust of solar market in 

Spain and some other countries alert us how ill-designed regulations hurt the 

industry. So the question of what the healthy regulations are leads me to the 

second research topic. After a comprehensive review of renewable energy policies 

in the U.S., I found out an underlying relationship among the policies and then 

proposed a three-tier architecture. To address this issue, we develop a model to 
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reveal the subsidies required to support the RPS goal based on two key 

forecasting results: future renewable energy installation and technological 

experience curve-based cost reduction. The study reveals the mismatches among 

policy tiers quantitatively and presents an emphasis on the importance of 

coordinative function among policies. 

Chapter 4 is to answer question 3. The related questions are, now that the 

subsidies for renewable energy push the market adoption, how about the 

customers’ side, what the social acceptance of the technologies is. Generally 

speaking, social barriers to the adoption of advanced technologies are high cost, 

high complexity and low familiarity. People tend to describe their opinion toward 

a technology by the imprecise language from human experience. Such 

information of human language is difficult to quantify. Is there a possible way to 

handle the social issues quantitatively? The methodology of fuzzy logic (one of 

soft computing methods) has possibility to handle the problem of social 

acceptance. The reason has two folds: one is that it deals with vague and 

imprecision data; the other is that it manipulates logic reasoning. Researchers 

have begun to notice its potential to solve social problems in the past few years. 

This study implements the methodology of fuzzy logic to evaluate social 

acceptance of distributed solar energy technology (photovoltaics) with the data we 

collected from the survey of urban homeowners.  

Chapter 5 is the summary of the work of Chapter 2,3 and 4. It also talks 

about the further studies in the future which is the extension of the dissertation. 
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Figure 1-2: Structure of Dissertation—Three Pillars 

Research motivations and contributions 

Chapter 2:  

1. Expanding the boundary of LCA to obtain more accurate results 

2. Developing dynamic LCA to investigate technological change of ten years 

Chapter 3: 

1. Presenting the relationship of renewable energy policies 

2. Revealing the mismatch between required investment of achieve targets of 

renewable energy adoption and available sources 

Chapter 4: 

1. Presenting the social acceptance of solar electric energy by survey 

2. Revealing the adoption potential of renewable energy 
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CHAPTER 

2. DYNAMIC HYBRID LIFE CYCLE ASSESSMENT OF ENERGY AND 

CARBON OF MULTI-CRYSTALLINE SILICON PHOTOVOLTAIC (PV) 

SYSTEMS  

The first part of this dissertation advances the life cycle assessment (LCA) 

of PV systems by expanding the boundary of included processes using hybrid 

LCA and accounting for the technology-driven dynamics of environmental 

impacts. Hybrid LCA extends the traditional method combining bottom-up 

process-sum and top-down economic input-output (EIO) approaches. The 

embodied energy and carbon of multi-crystalline silicon photovoltaic systems are 

assessed using hybrid LCA. From 2001 to 2010, the embodied energy and carbon 

fell substantially, indicating that technological progress is realizing reductions in 

environmental impacts in addition to lower module price.  

2.1  Introduction 

Many expect photovoltaic (PV) electricity generation to become a leading 

technology contributing to a sustainable energy supply system. During the 

operation phase of PV systems, no significant material and energy use or 

emissions occur. During manufacturing, installation, maintenance and 

decommissioning, however, energy and emissions are embodied in PV systems, 

and these should be accounted for. Global PV shipments have grown explosively 

in recent years, increasing by more than 50% year over the period 2003-2006 

(EIA, 2007a). Given the potential macroscopic adoption levels in the near future, 
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it is important to characterize the embodied energy and emissions of PV systems 

from a life cycle perspective. 

Life cycle assessment (LCA) is a powerful tool to evaluate the energy 

flows over the entire life of a PV system, from silica extraction during 

manufacturing to end-of-life decommissioning. The embodied energy (also 

known as the gross energy requirement) and energy payback time (EPBT) are 

indicators often used to evaluate the energy balance of PV systems. EPBT is 

defined as the number of years a PV system must operate before it generates 

sufficient energy to equal the amount it consumed in manufacturing (Alsema, 

1998a).  

Net energy analysis and life cycle assessments of PV modules and systems 

have a long history. The earliest literature estimates the EPBT of single-

crystalline silicon (c-Si) PV as 11.6 years (Hunt, 1976). In a 1997 study in Japan, 

the EPBT for c-Si PV was found to be 15.5 years (Kato et al., 1997). EPBT 

calculations for multi-crystalline silicon (multi-Si) PVs under Southern European 

radiation (1700 kWh/m2/yr) have yielded values of of 4-8 years (Alsema et al., 

1998b) and 1.5-2.5 years (Alsema, 2005). Stoppato reports various EPBT values 

for multi-Si PV under different radiation conditions (Stoppato, 2008). Fthenakis 

and Kim (2008) have performed detailed LCA studies on thin-film PV 

technologies, especially those based on CdTe. The variation in EPBT results is 

substantial owing to a combination of factors, such as differences in the sources 

and years for manufacturing process data, solar radiation conditions, and process 

boundaries considered. Pacca analyzes the parameters that influence PV LCA 
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results (Pacca et al., 2007). Sherwani presents a detailed review of LCA results 

for PV technologies including mono-Si, multi-Si, and amorphous-Si PVs 

(Sherwani et al., 2010). The most up-to-date, publicly available results based on 

data measured on production lines are from the European CrystalClear project 

(Alsema et al., 2006b). 

Previous LCA studies of PV systems are based on the process-sum 

method, which constructs energy flows from a bottom-up model of processes in 

the supply chain. By its nature, the process-sum method implies a degree of cutoff 

error because of processes that are excluded when materials input-output data are 

not available. Processes typically excluded from process-sum analysis include: 

1) Manufacturing of capital equipment such as module manufacturing 

machinery,  

2) Residual materials such as industrial gases for cell processing, and  

3) Services such as management and maintenance. 

This study aims to reduce cutoff error by using hybrid LCA, which 

combines bottom-up process-sum and top-down economic input-output (EIO) 

approaches (Williams et al., 2010). EIO models describe environmental impacts 

through a matrix of financial transactions between sectors in (usually national) 

economies.  

When addressing rapidly changing processes and products, LCA studies 

need to characterize the effects of technological progress (Williams et al., 2010). 

The prices of PV panels have fallen steadily due to technological progress 

(Nemet, 2006). However, these falling prices could also signal reductions in the 
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environmental overhead of photovoltaic module manufacturing. Using process-

sum LCA, Alsema and deWild (2007) found steadily falling embodied energy and 

EPBT for c-Si PV panels. In this article we use hybrid LCA to analyze PV 

module manufacturing from 2001 to 2011, the first dynamic hybrid analysis of 

which we are aware.  

Section 2 describes the hybrid method in detail. In Section 3 we analyze a 

multi-Si PV system as a case study. In Section 4, results for embodied energy, 

EPBT, and carbon emissions are presented. In Section 5, the historical and future 

trends of embodied energy and emissions are analyzed using hybrid LCA. 

2.2 Methodology: Hybrid LCA 

  Assessment of the net environmental impacts associated with delivering a 

product or service started in the 1970s with net energy analysis (Bullard and 

Herendeen, 1975), which has since expanded to become a broader field known as 

LCA. The “life cycle” in LCA refers to the attempt to characterize environmental 

impacts from cradle to grave, starting from extraction of resources and moving 

through production of raw materials and parts, assembly, sales, use, and disposal 

of a product. The main LCA methods are process-sum, EIO, and hybrid. The term 

“process-sum” denotes the most common form of LCA as delineated by the 

International Standards Organization (ISO 14040 series). This method is based on 

a bottom-up model of a supply chain in which each constituent process is 

described in terms of material inputs and environmentally significant releases or 

outputs. The inventory compilation method ranges from the simple constituent 
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summing of a supply chain to a matrix formulation that holistically accounts for 

circularity effects (Heijungs, 1994; Suh and Huppes, 2005). EIO LCA is based on 

economic input-output tables. Pioneered by Leontief in the 1940s, EIO is a model 

that describes an economy in terms of financial transactions, inputs and outputs, 

between sectors (Leontief, 1970). The most detailed IO tables in the U.S. divide 

the economy into 400-500 aggregated sectors (Henderickson et al., 1998). The 

completeness and mathematical simplicity of IO tables implies that incorporating 

higher order flows (e.g., use of steel to produce the iron ore needed to make steel) 

can be easily accomplished by matrix inversion. Material use in the supply chain 

or emissions associated with manufacturing a product can be determined by 

multiplying the supply intensity of the relevant sector by the producer price of the 

product (Lave et al., 1995). 

 The bottom-up process-sum LCA method, which is based on facility/site 

level data, can describe elements in a supply chain precisely, but lack of data 

leads to cutoff error due to excluded processes. EIO LCA models (Hendrickson et 

al., 1998), which are based on national sectoral data, are holistic but suffer from 

aggregation error due to coarse graining of processes. The term hybrid LCA 

generically refers to any method that combines process-sum and EIO analysis to 

reduce uncertainty. Several approaches to hybrid LCA exist. The first is the 

additive hybrid, which identifies economic data that covers processes for which 

materials data are unavailable and is associated with sectors in an EIO model 

(Bullard et al., 1978). The economic-balance hybrid calculates the value added in 

a materials process model, subtracts this from the total price, and estimates 
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impacts associated with the remaining value using EIO LCA (Williams, 2004). 

The mixed-unit hybrid model constructs a matrix containing both physical and 

economic quantities (Hawkins et al., 2007). For PV module manufacturing we 

argue that the additive hybrid method is most appropriate, as it depends on full 

cost accounting data, which is available for silicon PV manufacturing. The 

economic-balance method, on the other hand, generates cost-accounting using 

EIO LCA on a representative product sector. In the U.S., PV module 

manufacturing is aggregated into a larger semiconductor sector and thus may not 

be representative. Furthermore, mixed-unit models are data-intensive, and the 

guesses required to implement the model for PV manufacturing could induce 

more uncertainty than is gained from a generalized mathematical framework 

(Hawkins et al., 2007).  

           Therefore, this study uses an additive hybrid method based on the 

fundamental equation: 

                                         ETotal = EP +EEIO                                                       [2-1] 

  ETotal is the total embodied energy of the PV system. EP is the embodied 

energy of the PV system from process-sum LCA and can be expressed as the sum 

of Epi, the energy requirement of the ith procedure of manufacturing: 

                                                EP=∑Epi                                                                                             [2-2] 

EEIO is the embodied energy from EIO LCA, which accounts for those 

components for which relevant economic data (cost, energy intensity, etc.) is 

available. Let j be an index denoting sectors for which such economic data can be 
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obtained, excluding processes already covered in the process-sum piece in 

equation [2-2]: 

                                                   EEIO = Σ Pj ESC
j                                                     [2-3] 

  Pi is the cost (for example, equipment cost in $/Wp), and ESC
j is the energy 

intensity of the relevant sector in MJ/$. Note that Wp refers to peak-Watts, a 

standard measure of PV capacity based on the electricity output of a panel when 

illuminated under standard conditions of 1000 Watts of light per square meter, 

25°C ambient temperature, and a spectrum similar to ground-level sunlight.  

 This additive method differs from previous process-sum studies in the 

second EEIO term, which describes processes, such as equipment manufacturing, 

services, and auxiliary materials, for which materials input-output data are not 

available.  

2.3 Case Study: Multi-Si PV System 

 The embodied energy of PV technology varies substantially among 

different types of PV modules (mono/multi-crystalline silicon, thin-film). This 

study uses multi-crystalline silicon as a case study.  In future work, the authors 

will apply the hybrid LCA method to other dominant technologies, especially 

thin-film PV. 

           This case study implements hybrid LCA to assess embodied energy, 

EPBT, and embodied carbon emissions for a multi–Si PV system. The PV system 

includes the PV modules, inverter, and supporting structure. An inverter is 

necessary to convert direct to alternating current. Batteries are needed in a stand-
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alone PV system but not in a grid-connected system; here we consider a grid-

connected system without batteries. The multi-Si PV system is assumed to be 

13.2% efficient and installed in the 1700 kWh/m2/yr radiation. The hybrid LCA 

base year is 2007 (the process-sum LCA data are adjusted to 2007, and the EIO 

LCA data are from 2007). Table 2-1 describes the features of the PV system and 

module, which are assumed from the data collected for this study (deWild and 

Alsema, 2006a; NREL, 2008). 

Table 2-1: Features of the PV System and Module in the Base Year of 2007 

PV system features   
 Efficiency 13.2% 
 Connection Grid-connected without 

batteries 
 Installation Southern Europe 
 Life span System: 30 years 

Inverter: 10 years 
PV module features   
 Poly-silicon purification Siemens method 
 Wafer thickness 200 µm 
 
Step 1: Separating PV system manufacturing into process-sum and EIO LCA 

The first step in the hybrid LCA method is to separate the PV system into 

process-sum and EIO LCA. Previous PV LCA studies focused on process-sum 

LCA, which covers some parts of the supply chain and excludes others, such as 

equipment and residual material (industrial gases) manufacturing. EIO LCA 

should cover the remaining components according to data availability. Figure 2-1 

shows the boundaries of hybrid LCA using process-sum and EIO methods in the 

multicrystalline silicon PV systems case study. In addition, the inverter is 

analyzed using EIO LCA in this study. Previous studies (Alsema and deWild, 
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2006a; deWild et al., 2006b) have calculated the embodied energy in the inverter 

(1930 MJ/kW), but the authors indicated in their studies that their results 

underestimated the real impacts of inverters (deWild et al., 2006b). 

 

 

Figure 2-1: Hybrid LCA Boundaries 

Step 2: Process-sum LCA to calculate EP  

  This step uses process-sum LCA to calculate EP in equation [2-1]; this 

section describes the data collection, method and results. Only publicly available 

process data from published academic studies are used here. As mentioned in the 

introduction, the most updated and detailed results based on data collection from 

production lines instead of LCA software or literature reviews are the series of 

publications from the Crystal Clear project (Alsema, 2005; deWild and Alsema, 

2006a; Alsema et al., 2006a,b; Fthenakis and Kim, 2008). The research results are 

based on data collected from 11 PV companies in Europe and the U.S., mainly 

between September 2004 and November 2005 (Alsema, 2005). The studies cover 
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processes including silicon mining, poly-silicon production, wafering, cell 

processing, and module assembly. 

Table 2-2 shows the embodied energy in each manufacturing process for 

multi-Si PV modules (data from Figure 2 of Alsema 2006b). The total embodied 

energy is around 3300 MJ/m2, EPBT is 1.8 years, and the embodied equivalent 

carbon is 32 g/kWh (data from Figures 2, 3, and 4 of Alsema 2006b).  The June 

2006 paper (Alsema and deWild, 2006a) gives higher total energy results (3940 

MJ/m2) than the September 2006 paper. Because “the September’s results are 

based on more updated data,” we use these results in our study. From Table 2, the 

most energy-intensive process is silicon purification and wafering.  

This data source assumes wafer thickness to be 285 to 300 µm. However, 

Alsema emphasizes that “wafer thickness has not been updated yet, although 

significant changes have occurred.” Several reports from the U.S. National 

Renewable Energy Lab (NREL) indicate that with present technologies, wafer 

thickness is approximately 200-250 µm (NREL, 2007). Furthermore, the source 

file we use for EIO analysis indicates that the wafer thickness in 2007 was 200 

µm (NREL, 2008). On the basis of this wafer thickness reduction, we adjust the 

embodied energy in poly-silicon purification from 1700 to 1260 MJ/m2 and in 

wafering from 600 to 420 MJ/m2.  

Table 2-2: Process-Sum LCA Results--Embodied Energy Breakdown for a Multi-
Si PV Module in 2007  

Manufacturing 
processes 

MJ/m2 Notes 

Polysilicon 1260 Siemens process 
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production 
Wafering 420 Adjusted from 600 MJ/m2 

in Alsema 2006b based on 
the wafer thickness change 
from 285 to 200 µm 

Cell processing 550  
Module assembly 350 Glass thickness 3.6 mm 
Frame 150 Aluminum 
Module total 2730 MJ/m2 (20.7 MJ/Wp)  

 
The EP result for process-sum LCA on a multi-Si PV module made around 

2007 is 2730 MJ/m2. Converting to energy per Watt of peak output using 1000 

W/m2 irradiation and 13.2% efficiency yields an EP of 20.7 MJ/Wp.  

Step 3: EIO LCA to calculate EEIO 

The PV supply chain contains some additive components whose energy 

requirements are difficult to obtain from process-sum LCA due to the analysis 

boundary; these include the energy embodied in equipment (such as the poly-

silicon purification reactor) and residual materials (such as industrial gases for 

cell processing). While process data on these components is difficult to find, it is 

possible to obtain economic data such as cost/price, (we use cost data, deducting 

profit and tax from price) which makes EIO LCA feasible.  

Analysis of Cost data -- Pi 

NREL reports detailed economic data in the Manufacturing Cost Model, 

which is a sub-model of the widely-used Solar Advisor Model (NREL, 2008). The 

Manufacturing Cost Model was created for U.S. DOE’s Solar America Initiative 

to demonstrate a common accounting framework. It claims that “the model breaks 

out module manufacturing costs (year 2007) for a representative poly-crystalline 

module relative to generally accepted accounting principles, supplemented by 
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some of the definitions established in SEMI standard.” The model’s spreadsheets 

break down the costs of manufacturing processes, including the costs of 

equipment, residual materials, sales and management, and shipping. Such publicly 

accessible data provide the information needed to calculate Pi in equation [2-3] 

and make our EIO LCA possible. 

The total cost of a multi-Si module is 2.3 $/Wp. Table 3 breaks down this 

cost.  

Table 2-3: Breakdown of Multi-Si PV Module Cost 

Multi-Si PV Cost  2007 $/Wp Should be accounted for in 
embodied energy in EIO 
LCA? 

Equipment 0.14 Yes 
Labor 0.14 No 
Material 0.84 No 
Factory overhead 0.187 No 
Corporate overhead 1 Partly Yes (see Table 2-4) 
Total  2.3 No 
   

 
Equipment cost comes from the Output Summary, which contains 

depreciation data. Residual materials cost comes from Supplies, which has data 

on industrial gases (nitrogen, oxygen, POCL3, and silane). Data on transportation 

(shipping) and services (sales and management) are modified from Global 

Assumptions and Corporate Overhead (1$/Wp in the Output Summary). In 

Corporate Overhead, sales and management and shipping are considered to 

contribute to the embodied energy for PV systems as services and transportation; 

R&D, insurance, and taxes are not accounted for because these components are 
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not very energy intensive. Table 2-4 breaks down the cost of corporate overhead 

for the PV industry. 

Table 2-4: Breakdown of Corporate Overhead Cost for Multi-Si PV Modules 

Corporate overhead cost % sales 2007 
$/Wp 

Should be accounted for in embodied 
energy in EIO LCA? 

R&D 0.5% 0.03 No 
Sales & Management 2% 0.11 Yes 
G&A 5% 0.26 No 
Insurance 0.5% 0.03 No 
Shipping 4% 0.21 Yes 
Taxes 7% 0.37 No 
Total 19% 1  

 
The cost of an inverter is modified from price data from Solarbuzz 

(Solarbuzz, 2009). The average price for an inverter was 0.71 $/Wp in 2009. After 

the  reduction of value added from the total price (electric equipment sector data 

from BEA 2002 Benchmark IO table), the cost is 0.4 $/Wp. Because the life span 

of a PV system is 30 years (from Table 2-1) and the life span of an inverter is 10 

years, 3 inverters are required, and the total cost is 1.2 $/Wp.  

Data of energy intensity -- ESC
j, 

After obtaining cost data, the next step is to find the energy intensity of 

matching sectors.  ESC
j, values are obtained from the EIO LCA model developed 

by Carnegie Mellon University (CMU, 2009).  This model is free and available to 

the public.  

Calculation of embodied energy -- EEIO 

After obtaining cost data for each component and the energy intensity of 

relevant sectors, the embodied energy of each component can be calculated using 

equation [2-3]. Using EIO LCA, the total embodied energy in the components is 
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14.2 MJ/Wp (1870 MJ/m2 under 13.2% efficiency).  Table 2-5 shows the costs of 

these components, the energy intensity of the relevant sector, and the calculated 

embodied energy.  

Table 2-5: EIO LCA in 2007—Cost, Energy Intensity, and Embodied Energy  

Components Cost 
2007 
$/Wp 

Energy 
intensity 
MJ/$ 

Embodied 
energy MJ/Wp 

Relevant sector in the 
EIOLCA model 

Inverters (three) 1.2 5.76 6.91 Miscellaneous electrical 
equipment 
manufacturing 

Module 
manufacturing 
equipment 
(depreciation) 

0.14 7.17 1.00 Semiconductor 
machinery 
manufacturing  

Residual 
materials 
(industrial gases)  

0.0023 46.2 0.11 Industrial gas 
manufacturing 

Transportation 0.21 18.8 3.96 Truck transportation 
Services (sales & 
management) 

0.11 3.09 0.33 Wholesale trade 

Total   12.3 (1624 
MJ/m2) 

 

 
Step 4-- Combining results to calculate ETotal 

The results from the process-sum and EIO LCAs can now be combined to 

estimate the embodied energy of multi-Si PV systems in 2007.  

ETotal = EP +EEIO = 2730 + 1624 = 4354 MJ/m2 

2.4 Combined Results: Embodied Energy, EPBT, and Embodied Carbon 

  The hybrid LCA yields an embodied energy for multi-Si PV systems of 

4354 MJ/m2. To calculate EPBT, features such as solar radiation conditions need 

to be defined; these are listed in Table 2-6. To make our study comparable, the 
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features are the same as in the European process-sum LCA studies we cite 

(Alsema 2005, Alsema et al. 2006b, deWild and Alsema, 2006a).  

Table 2-6: Features Defined for EPBT and Embodied Carbon Calculation  

Features and parameters  
PV module efficiency 13.2% 
PV system performance ratio 75% (fixed axis) 
Solar radiation 1700 kWh/m2/yr 
Electricity to primary energy conversion 11.6 MJ/kWh 
Carbon (CO2 equivalent) embodied in the 
power grid 

520 g/kWh 

 

Table 2-7 compares EPBT and CO2 emissions for hybrid LCA and 

process-sum LCA. The hybrid result is larger by approximately 70%. Because of 

the significant difference when previously excluded processes are included, we 

argue that it is important to transition toward increasing the use of hybrid LCA. 

While total carbon emissions for silicon PV are substantially smaller than those 

for fossil fuels, the difference between the two results is significant if PV is 

adopted on a large scale. For example, if multi-crystalline silicon-based PV grew 

to account for 10% of the electricity production in the U.S. (4157 billion kWh in 

2007) (EIA, 2010), the difference between the hybrid and process-sum result is 

3.3 million tons of CO2, or 0.13% of national emissions in 2007.  

Table 2-7: Hybrid LCA vs. Process LCA—Comparison of Results for a Multi-Si 
PV System in 2007 

 Hybrid LCA Process LCA 
Embodied energy MJ/m2 4354 2730 
EPBT year 2.2 1.4 
Embodied carbon g/kWh 32 24 
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2.5 Historical and Future Trends of Embodied Energy and Emission 

The case study discussed in this study focuses on multi-Si PV in the base 

year of 2007. However, the passage of time will bring many changes. For 

example, the embodied energy should decrease with improvements in technology. 

Wafer thickness is projected to decrease to 150 µm by 2011. We assume the 

embodied energy in poly-silicon (MJ/kg) has not changed obviously.  PV 

efficiencies of 11% in 2001; 12% in 2004; 13% in 2007, and 17% in 2011. We 

assume the The cost of manufacturing PV modules is also decreasing significantly 

due to factors such as plant size and module efficiency (Nemet, 2006). Table 2-8 

to Table 2-10 list the process, EIO, and hybrid LCA results in three-year 

increments from 2001 to 2011. 

Table 2-8: Process LCA Results from 2001 to 2011 

Manufacturing 
processes MJ/m2 

2001 2004 2007  2011 

Polysilicon 
production 

2200 1700 1260 950 

Wafering 1000 600 420 320 
Cell processing 550 550 550 550 
Module 
assembly 

350 350 350 350 

Frame 400 150 150 0 
Module total 4500 3350 2730  2170 
Adjusted from 
sources 

(Alsema, 
2000) 

(Alsema, 
2006a,b) 

(Alsema, 
2006a,b) 

(Alsema,
2006b) 

 

Table 2-9: EIO LCA Results from 2001 to 2011 

 2001 2004 2007 2011 Adjusted from Sources 
Equipment cost $/W 0.24 0.19 0.14 0.09 (Schaeffer, 2004); (NREL, 

2008) 
Inverter cost $/W 0.8 0.6 0.4 0.3 (NREL, 2006); (Solarbuzz, 

2009) 
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EEIO MJ/W 19.9 16.1 12.3 10.8  
 
Table 2-10: Hybrid LCA Results from 2001 to 2011 

 2001 2004 2007 2011 
EP MJ/m2 4500 3350 2730 2170 
EEIO MJ/m2 2193 1934 1600 1835 
ETotal MJ/m2 6693 5284 4330 4005 
EPBT years 4.1 3.0 2.2 1.6 
CO2 g/kWh 60 43 32 23 
 

 
Figure 2-2: Embodied Energy in the Hybrid LCA of a Multi-Si PV System 

Figure 2-2 shows that the embodied energy, EPBT, and embodied carbon 

emission results in hybrid LCA (process-sum plus EIO) are larger than the results 

in process-sum LCA by 60%. However, the embodied energy decreases by almost 

50% from 2001 to 2011. 

2.6  Discussion 

Consideration of uncertainty is very important to establish LCA as a 

rigorous and reliable tool to inform decision-making (Williams et al, 2010). 

Considering the hybrid LCA of PV in this study, we discuss two crucial 
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uncertainties: geographic uncertainty, which relates to the global supply chain, 

and aggregated uncertainty, which relates to EIO LCA.  

The PV industry has spread from a few companies in developed countries, 

such as Japan, Germany, and the U.S., to a worldwide scale. PV companies are 

especially popular in developing countries such as China (Hariharan et al., 2008).  

This study also incorporates aggregated uncertainty and inaccuracy when 

using data on various sectors. For example, the cost data we use for the inverter 

are adjusted from the price data (cost data are hard to find). The calculation of 

embodied energy in equipment chooses semiconductor machinery manufacturing 

as the relevant sector; the calculation of embodied energy in transportation uses 

truck transportation as the relevant sector.  

The expansion of system boundaries using additive hybrid LCA was found 

to significantly increase the life cycle environmental impacts of photovoltaic 

modules. In a previous study of desktop computers, economic balance hybrid 

LCA was found to yield significantly higher impacts than the process-sum 

method (Williams, 2004). These two cases suggest that the hybrid approach could 

be key in assessing the impacts of a broad range of products and technologies.  

Future work is needed to develop hybrid methods and to assess when and how to 

apply them.  

Technological progress significantly reduces the environmental impacts of 

photovoltaic modules. This study only accounted for energy-related flows, but the 

improved efficiency of modules and reductions in material use are also likely to 

mitigate other environmental impacts such as land use and chemical consumption 
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and emissions. Technological progress could significantly affect the 

environmental impacts of renewable energies ranging from other photovoltaic 

materials to biofuels to wind power. Decisions on the development and adoption 

of new energy technologies should be informed by the dynamics of environmental 

impacts. More work is needed to develop methods and explore case studies in 

order to characterize relationships between technological change and life cycle 

impacts.  
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CHAPTER 

3. THE COORDINATIVE FUNCTION OF RENEWABLE ENERGY 

POLICIES—REGULATIONS, FINANCIAL SUBSIDIES AND FUNDING 

SOURCES  

            A variety of policies support renewable energy adoption, and it is critical 

to make them function cooperatively. To reveal the interrelationships among these 

policies, the second part of this dissertation proposes three tiers of policy 

architecture. This study develops a model to determine the specific subsidies 

required to support a Renewable Portfolio Standard (RPS) goal. The model is 

based on two forecasting assumptions: future renewable energy installation which 

realizes the RPS goal and experience curve-based cost reductions. The model is 

applied to the case study of solar energy adoption in the state of Arizona. The 

financial requirements are calculated (in two scenarios) and compared with 

predictable funds from public sources.  A main result is that the expected 

investments to achieve the RPS goal far exceed the economic allocation for 

subsidy of distributed PV. 

3.1 Introduction  

Many expect renewable energy sources including solar, wind and biofuels 

to become leading technologies for a sustainable energy supply system and to aid 

the shift away from over-reliance on traditional hydrocarbon resources in the next 

few decades. Solar cell production has grown at an average annual rate of 37% in 

the past decade and 45% in the past 5 years (Eltawil and Zhao, 2010). It has been 
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suggested that the installed capacity of wind energy will increase fivefold over the 

next 10 years, to exceed 700 GW by 2017, possible if current growth rates 

continue (Pryor and Barthelmie, 2010).  

However, the renewable energy industry growth rate has been falling since 

2008, mainly due to the worldwide economic recession. New investment in 

renewable energy in 2009 was $150 billion down from 2008 plans (REN21, 

2010). Some renewable energy industries have experienced severe boom and bust. 

For example, new PV installations in Spain shot up from 88 MW in 2006 to 2500 

MW in 2008 and then fell back to 70 MW in 2009 (Cameron, 2010). The main 

cause of this cycle is slashed government subsidies. The subsidy policy in Spain is 

designed such that it is especially vulnerable during an economic downturn 

(Voosen, 2009).  

The estimated government support worldwide for both electricity from 

renewables and for biofuels totaled $57 billion in 2009, of which $37 billion was 

for the former. The subsidies to fossil fuels in 2009 was $312 billion (IEA, 2010). 

The most recent report from REN21 shows that renewable energy 

provides 18% of global energy (REN21, 2010, p9). A closer look reveals that 

most of this renewable energy is traditional biomass and hydro-electric power; 

only a very small portion can be attributed to “new renewable energy 

technologies” (Hirschl 2010), such as solar, wind, and geothermal energy. 

Despite the current low penetration level of renewable energy worldwide, 

leading countries and markets have set aggressive goals. US President Barack 

Obama has called for doubling renewable energy production by 2012 
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(Garthwaite, 2009). Denmark plans to produce 60% of its electricity from 

renewables by 2025. Germany even has the ambitious goal of achieving 100% 

renewable energy by 2050 (Burgermeister, 2009). Developing countries such as 

China and India also have renewable energy targets. India has proposed that by 

2012, 10% of annual additions to power generation should be from renewable 

energy (Beck and Martinot, 2004); China is aiming for 20% renewable energy by 

2020 (ChinaDaily, 2009). 

            However, optimistic objectives do not guarantee positive outcomes. 

Indeed, a retrospective look reveals many disappointments. In 1979, former 

President Jimmy Carter predicted renewable power would provide 10% of 

electricity in the US by 1985 (Sovacool, 2009a). In 1980, the National Research 

Council declared that solar energy would account for 38.2% of the American 

electricity supply by 2010 (National Research Council, 1980). Obviously those 

goals were not achieved. From 2004 to 2009, the share of global shipments from 

photovoltaic manufacturers in the U.S. decreased from 10% to 5% (Mints, 2010). 

Barriers to renewable energy adoption arise due to various economic, social, 

technological, and policy uncertainties and constraints. Among those 

uncertainties, renewable energy policy and relevant subsidies play an important 

role. 

           The family of renewable energy support policies includes a variety such as 

Renewable Portfolio Standard (RPS) adopted in the U.S., Feed-in Tariff (FIT) 

adopted in Germany and Spain, tax and grant subsidies, and R&D support. 

Several researchers have proposed methods to categorize these policies (Beck and 
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Martinot, 2004; Sovacool, 2009b; Laird and Stefes, 2009). However, multiple 

policies must work together to support renewable energy. In particular, RPS 

(which sets adoption targets), tax credit and rebate programs (which provide 

financial incentives), and sources of funds (which finances incentive programs) 

must coordinate with each other to support renewable energy adoption, especially 

in the mid- to long term.  

          In previous studies, research on the coordinative functions of renewable 

energy policies is lacking. In this study, the authors emphasize the relationships 

between renewable energy policies and present them in a three-tier architecture. 

          The three policy tiers must be coordinated to support renewable energy 

adoption. For example, many public utilities offer rebates or similar programs to 

support solar energy adoption (DSIRE, 2010). To sustain the rebate programs, 

they need a source of funds. This source is usually money (such as environmental 

surcharge benefits) collected from ratepayers of the public utility. Having a 

financial source that is sufficient to support the required rebates is critical to the 

achievement of RPS goals. Consider the state of Arizona as an example. Its 

largest public utility, Arizona Public Service Corp (APS), provided rebates for 

residential solar energy (photovoltaics) at 3 $/W until 2010 July, after which the 

rebate dropped to 1.95 $/W because the funding source for this program was 

being depleted (Randazzo, 2010). Meanwhile, the APS 2009 Renewable Energy 

Compliance report states that despite best efforts the company is failing to achieve 

the RPS target for distributed renewable energy adoption (APS, 2009). Obviously, 

there is a mismatch among policy tiers. 



 

36 
 

Based on our proposed policy architecture, this study builds a model 

which clarifies the amount of financial subsidies required to support RPS goals. 

The model uses two key forecasting elements: future renewable energy 

installation capacity and experience curve-based cost reduction. The model is then 

employed to analyze the case study of solar energy adoption in the state of 

Arizona by 2025 under two scenarios: extension or termination of federal tax 

credits after 2016. Given these and other assumptions, the required subsidies are 

calculated using the model. As will be seen subsidies are much larger than the 

amount of funding predicted to be available from public sources.  

Section 2 reviews renewable energy support policies and discusses the 

inter-relationships among them. Section 3 presents the methodology behind the 

model to calculate the funding required to support renewable energy adoption. 

Section 4 describes the case study of Arizona and the state’s renewable energy 

policies. It also illustrates the solar energy price trend using an experience curve. 

Section 5 applies the model to the case study of Arizona.  The financial 

requirements are calculated (in two scenarios) and compared with predicted 

funding from public sources. Section 6 discusses the problem caused by the 

mismatch among policy tiers using the case study results. It also explores ways to 

deal with the problems.  
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3.2 Three-tier Architecture of Renewable Energy Policies 

3.2.1 Literature Reviews of Renewable Energy Policies 

A wide variety of policies support renewable energy adoption. Beck and 

Martinot (2004) summarizes them with three categories: price-setting and 

quantity-forcing policies, which mandate prices or quantities, such as Feed-in-

Tariff (FIT) and Renewable Portfolio Standard (RPS); investment cost reduction 

policies, which provide incentives in the form of lower investment costs, such as 

income and property tax credits; and public investments and market facilitation 

activities, a wide range of public policies that reduce market barriers and facilitate 

or accelerate renewable energy markets, such as net-metering. 

Menz (2005) arranges U.S. policies according to their 

geographic/administrative scales. The federal government establishes regulations 

relevant to the electricity market that favor renewable energy, R&D funding, 

demonstration grants, and financial incentives; state and local policy instruments 

include financial incentives, rules and regulations, and voluntary measures. 

Toke and Lauber (2007) emphasize two financing types to promote 

renewable energy in Europe. One is the so-called ‘market-based’ renewable 

obligation in the UK, which issues renewable energy generators ‘renewable 

obligation certificates’ (ROC) and requires electricity suppliers to supply a target 

portion of their electricity from renewables or suffer penalties. The underlying 

rationale is that the establishment of a market for the certificates will cause 

suppliers to make an effort to purchase the cheapest renewable energy. By 
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contrast, in Germany, Spain, and other countries, laws set the prices that 

renewable electricity generators are paid; this mechanism is called a ‘command 

and control’ renewable energy FIT. 

Sovacool (2009b) lays out the impediments to renewable energy in 

financial, political, cultural and aesthetic categories and then details the four most 

favored policy mechanisms: eliminating subsidies for conventional and mature 

electricity technologies; pricing electricity accurately; passing a national feed-in-

tariff; and implementing a nationwide systems benefit fund to raise public 

awareness, protect lower income households, and administer demand-side 

management programs. Sovacool emphasizes that these policy mechanisms must 

be implemented comprehensively, not individually, if the barriers to renewable 

energy are to be overcome. 

The categorization of renewable energy policies is important to 

understanding their functions and to designing policies. However, previous 

studies lack research on the cooperative functions of such policies. For example, 

RPS is a powerful mechanism for setting an adoption target, but without a proper 

financial support mechanism, such as a tax credit or rebate program, and a 

sufficient financial source to fund the support mechanism, it is difficult to achieve 

the target. Cooperation between relevant policies is critical to renewable energy 

adoption, especially in the mid- to long term.  
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3.2.2 Three-tier Architecture of Renewable Energy Policies 

In this study we describe levels and relationships between renewable 

energy policies as a three-tier architecture:  

1. Top tier—regulations, rules or guidelines   

2. Middle tier—financial subsidy programs 

3. Bottom tier—financial source or funds collection 

Figure 3-1 shows the three-tier policy architecture and how the tiers work 

with each other. The top tier (regulation and rules) sets renewable energy 

adoption targets. To achieve these targets, financial subsidy programs must be set 

up.  For the subsidy programs to function properly, a certain amount of money 

must be fed into them. The key point of this study is that the three tiers must 

coordinate with each other to support a successful renewable energy adoption. 

However, in practice, the design of each tier tends to be isolated. The bottom tier 

is especially difficult to match to the target of the middle tier, as often insufficient 

money is available for subsidy programs (the question mark in Figure 3-1).  
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Figure 3-1: Three-tier Architecture of Renewable Energy Policies 

A discussion of each policy tier follows:  

1. Regulatory policies or guidelines set quantitative adoption targets such as RPS, 

which has been adopted in 90% of U.S. states (DSIRE, 2010). 

No federal-level regulation or rule in the U.S. requires a certain quantity of 

renewable energy adoption. The most prevailing renewable energy policy at the 

state level is RPS, which ensures that a minimum amount of renewable energy 

(such as wind, solar, biomass, or geothermal energy) is included in the portfolios 

of electricity-generating resources (Yin and Powers, 2010). The renewable 

electricity can be generated in-state or purchased from other states to meet the 

requirements, which vary by state (Wiser and Barbose, 2008; Yin and Powers, 

2010). For example, California requires 33% by 2020, New York requires 25% by 

2013, and Nevada requires 20% by 2015 (Sovacool and Cooper, 2006). Arizona, 
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which is among the states with the most abundant solar radiation, requires 15% by 

2025. Many states have specific technology carve-outs or distributed generation 

set-asides. The popularity of set-asides for solar or distributed energy has 

increased dramatically in recent years. In 2007 alone, Delaware, Maryland, New 

Hampshire, New Mexico, and North Carolina created targets with solar or 

distributed energy carve-outs (Wiser and Barbose, 2008). 

2. Financial subsidy programs, which are mainly cost-reduction policies, such as 

subsidies and rebates, tax credits, accelerated depreciation, etc.  

At the federal level, the most effective renewable energy support 

mechanism is energy tax credits. Although support for tax credits has varied in a 

cyclic pattern during the past few decades (Medonca et al., 2009), the present 

atmosphere favors renewable energy. In 2008, tax credits for renewable energy 

technologies were extended. Investment Tax Credit (ITC) provides a 30% tax 

credit for renewable energy systems and has no cap (DOE, 2009). Besides tax 

credits, the federal government has also funded research grants and R&D 

investment for renewable energy (Herrera, 2009). 

At the state level, financial subsidies mainly come from the rebate 

programs of public utilities, governmental tax credits, and loan programs. 

Generally subsidies from utilities cover from one-third to half of the cost of 

renewable energy systems (as discussed in detail later). The Database of State 

Incentives for Renewables and Efficiency (DSIRE, 2010) provides detailed 

information on policies in each U.S. state. In California (the most remarkable 

renewable energy market in the U.S.), for example, utilities have rebate, loan, and 
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grant programs, whereas the state has rebate, grant, loan, and tax credit programs. 

There are also innovative leasing programs such as the Property Assessed Clean 

Energy (PACE) program. In Arizona, the main support for renewable energy 

(especially solar energy) at the state level comes from public utilities.  

3. Financial sources, which raise money from “environmental surcharges” and 

other fees. These surcharges have generally been implemented as volumetric fees, 

such as a charge per kilowatt-hour collected from all electricity users.  

Once collected, these funds can be distributed in various ways (Wiser and 

Pickle, 1998). In California, from 2002 through 2007, major utilities collected a 

“public goods surcharge” on ratepayer electricity use to fund renewable energy of 

$135 million annually, then reduced the collections to $65.5 million annually 

beginning in 2008 (DSIRE, 2010). Currently, the surcharge is approximately 

0.0016 $/kWh in California. In Arizona, APS has a similar program to raise 

money to promote renewable energy, but the surcharge was only 0.000875 $/kWh 

prior to 2010 (APS, 2010a). To fulfill the RPS, the surcharge from January 2010 

forward is 0.00866 $/kWh (capped at 3.46 $/month) (APS, 2010b). The total 

amount allocated to support residential renewable energy in 2010 is $44 million 

(Randazzo, 2010).  Other financial sources to fund subsidies include ‘green 

electricity programs’ that allow customers to buy electricity from renewable 

energy voluntarily at a higher price than electricity from nonrenewable sources. 

Options for financing renewable energy installation include subsidies such as 

rebates, loans and leasing programs. Leasing programs such as PACE are 

becoming quite popular. PACE financing allows property owners to borrow 
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money to pay for renewable energy installations. The amount borrowed is 

typically repaid over a period of years via a special assessment on the property.  

In general, local governments that choose to offer PACE financing must be 

authorized to do so by state law (PACE, 2010).  

It is essential to determine how much money is required to support 

financial programs that promote renewable energy (the question mark in Figure 3-

1). 

3.3 Modeling Financial Requirements to Support Renewable Energy Adoption  

In this section we lay out a general method to estimate the future 

requirements for funding of renewable energy subsidies. We first explain the two 

key methodologies in the model: scenario analysis and experience curves. 

Scenario analysis is a common methodology in which researchers assume 

different growth rates or incentive levels in energy-related policy analysis (Palmer 

and Burtraw, 2005; IEA, 2006). Scenario analysis has a fundamental philosophy 

of “if-what”, that is, it focuses on what effects or results are if assumptions are 

true. Several scenarios are proposed based on assumptions about different drivers 

or variables. The assumptions are subjective and have a certain level of possibility. 

But as a methodology scenario analysis does not emphasize the subjectivity of 

assumptions or likelihood of each scenario. The emphasis is on presenting a big 

picture of multiple causes and their mapped effects.  

            Experience curve or learning curve applications can be traced back to 

Wright (1936), who estimated the relationship between total labor hours and 
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cumulative airplane production. Many researchers have used this methodology to 

evaluate the cost reduction over time with increasing cumulative output of 

renewable energy products. In this model, the photovoltaic (PV) price is based on 

forecasting using the experience curve methodology. The most common 

conclusion drawn using the learning curve or experience curve (Neij, 1997; 

Nemet, 2006; Papneau, 2006; van Sark and Alsema, 2008; Bhandari and Stadler, 

2009) for the PV industry is that with each doubling of cumulative capacity, PV 

module price decreases to roughly 80% of its previous level. Several learning 

factors can contribute to such a reduction, including increases in module 

efficiency and plant size as well as the cost reduction of poly-crystalline silicon. 

We discuss the history of price reductions in PV technology and the forecasting of 

prices in detail in Section 4. 

           From Figure 3-1, we know that policies in the top tier, regulation, often set 

targets for renewable energy adoption that requires financial support to achieve. 

Thus, we first develop a timeline of adoption quantities using the particular 

regulation as guide. For example, we can determine the total required installation 

capacity to achieve a RPS target. Then, we calculate the total required financial 

investment using Equation [3-1]. 

Required investment ($) = PV Price ($/Watt) * Installation capacity (Watt)               

[3-1] 

Financial support programs in the bottom tier have different scales, so we 

break down the required investment by stakeholder—federal government, public 

utilities, and customers. Federal government subsidies are in the form of tax credit 
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programs. Public utilities can offer various types of subsidies, but the prevailing 

one is rebate programs. In addition, the state government covers a part of the 

investment (because it is a small amount, the calculation will take it into account, 

but we do not list the equation here). After all these subsidies are factored in, 

customers pay for the rest of the investment. 

The calculation of federal tax credits is denoted as Equation [3-2], utility 

rebates as Equation [3-3], and customer payments as Equation [3-4]. 

 

Federal tax credit subsidies ($) = X% * renewable energy installation price after 

utility rebate ($/Watt) * Installation capacity (Watt)                                                        

[3-2]                                                                        

Public utility subsidies ($) = Rebate rate ($/Watt) * Installation capacity (Watt)       

[3-3] 

Customer payments ($) = Total required investment ($) – utility subsidies ($) –  

Federal government subsidies ($)                                                                               

[3-4] 

To break down the required investment into government, public utility and 

customer portions, we have to assume different scenarios. The calculation of 

required subsidies requires forecasting that embodies several uncertainties, such 

as existence of federal tax credits after 2016, utility rebate level, cost of renewable 

technologies, and customers’ willingness to pay for renewables. In this scenario 

analysis, we do not consider the uncertainties in the cost of renewable 

technologies, and we consider customer acceptance to be constant. Thus, the 
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scenarios we propose here are based on two assumptions about federal tax credits 

(exist or expire after 2016).  For each scenario, we determine the required utility 

rebate and the funding available from known financial sources.  

            Finally, a comparison of available and necessary financial sources is 

presented. This allows us to draw a conclusion about the feasibility of supporting 

financial subsidies to renewable energy adoption if we assume other factors do 

not change. We do this by applying the model to the case study of distributed 

renewable energy adoption in Arizona. 

3.4 Case Study of Arizona  

3.4.1 Social Context of Arizona and RPS 

Solar energy adoption scenarios must be based on the geographic and 

social context of a region. The average solar radiation in Arizona is 2092 

kWh/m2/yr, whereas the average US level is 1800 kWh/m2/yr. Electricity demand 

is projected to grow at a rate of 30% (APS, 2006) from 80,000 GWh in 2010 to 

104,000 GWh in 2020. Electricity is largely produced from conventional 

resources: coal contributes 39.6%, natural gas contributes 28.5%, and nuclear 

power contributes 25.4% (EIA, 2007b).  

  Arizona’s RPS (called the Arizona Renewable Energy Standard) requires 

regulated utilities such as Arizona Public Service (APS) to obtain 15% of their 

electricity from renewable resources by 2025 (RES, 2006). Unregulated utilities 

such as Salt River Project (SRP) also have set goals to obtain 15% of their 

electricity from renewable resources by 2025 (SRP, 2007). Distributed renewable 
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generation includes biomass or biogas electricity generators, geothermal 

generators, fuel cells that use only renewable fuels, new hydropower generators of 

10 MW or less, solar electricity resources, and wind generators of 1 MW or less 

(RES, 2006).  

            Although Arizona has abundant solar radiation, deployment of solar 

energy technologies remains low. The installation capacity of photovoltaics in 

Arizona in April 2009 was 14 MW (2.5 MW in 1-5 kW scale), whereas in 

California it is currently 500 MW (100 MW in 1-5 kW scale) (OpenPV, 2010). 

3.4.2 Roadmap of Distributed PV Installation Capacity   

To achieve Arizona’s RPS goal by 2025, 15% of electricity should be 

generated from renewable resources, of which 30% should be from distributed 

renewable resources. Considering the natural resources in Arizona it is reasonable 

to make the assumption that the distributed renewable energy will come from 

solar energy. Among distributed photovoltaic installations, while there is no 

regulatory requirement a presentation by Arizona Commissioner indicates the 

plan that 50% are to be commercial and 50% residential installations. (Newman, 

2010). The annual yield ratio from PV in Arizona is 1.62 MWh/kW assuming a 

south-oriented PV system with 13% efficiency and system performance ratio of 

75% (PVWatt, 2010). Table 3-1 presents the adoption roadmap for renewable 

energy and distributed photovoltaic generation as well as the installation capacity 

required by the Arizona RPS. 
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Table 3-1: Roadmap of Renewable and Distributed Solar Energy Adoption 
Required by the Arizona RPS 

RPS requirement 2010 2015 2020 2025 
Percentage of energy from 
renewables 

2.5% 5% 10% 15% 

Electricity from renewables 
GWh 

2,800 6,180 13,660 22,620 

Distributed PV GWh 280 928 2,730 6,790 
Distributed PV capacity MW 172 574 1,690 4,196 

 
The installation capacity of distributed photovoltaic systems (residential 

scale) required by the RPS is calculated to be 2098 MW. As noted, the 1-5 kW 

residential scale installation capacity was approximately 2.5 MW in April 2009. 

Thus, to achieve the goal, the deployment of PV needs to be much faster than it is 

currently. Such desired explosive adoption of photovoltaic technologies requires 

political, financial and social support. Subsidies from government and utilities 

play an important role. However, the huge monetary investment required  poses a 

challenge to reach the RPS deployment goal.  

3.4.3 Trend of PV System Price and Experience Curve 

           According to Equation [3-1], to determine the required investment, the 

price of the PV system also needs to be estimated. The cost of the PV system 

mainly comes from the PV module cost and installation cost. Most residential 

systems are multi-crystalline silicon PV modules. Installation cost includes the 

cost of inverters, controllers, and other electric components as well as the labor 

cost for installation and maintenance. Lawrence Berkeley National Laboratory 

released a report in 2009 summarizing the installed cost of photovoltaics in the 

U.S. from 1998-2007 (Wiser et al., 2009) that stated, “Among all PV systems in 
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the dataset from nearly 37,000 residential and non-residential PV systems, 

average installed cost—in terms of real 2007 dollars per installed watt and prior to 

receipt of any direct financial incentives or tax credits—declined from 10.5 $/W 

in 1998 to 7.6 $/W in 2007. The overall decline in installed costs is primarily 

attributable to a reduction in non-module cost, which fell from 5.7 $/W in 1998 to 

3.6 $/W in 2007.” In addition to reports summarizing practical observations and 

data collected from PV installations, researchers also have developed empirical 

models that fit past PV cost reduction trends.  

            The most common model used to illustrate the relationship between 

technology adoption and price reduction is the learning curve or experience curve 

(Neij, 1997; Nemet, 2006; Bhandari and Stadler, 2009). In the PV industry, with a 

doubling of the cumulative capacity, the PV module price decreases to roughly 

80% of its previous level (or the learning ratio is 0.8). However, this rough 

conclusion is based on empirical data in a relatively long-term observation. A 

look at the solar industry recently shows that a notable price increase occurred 

around 2007 because of booming demand and a feedstock shortage (Mints, 2009). 

However, non-module cost exhibits a consistent downward trend, due to inverter 

price reduction and accumulation of installation experience.  

            Two PV installation companies were surveyed about PV system price in 

November 2009. Both gave the same answer of 6 $/W for the cost of installing a 

residential PV system in Arizona. 

            To estimate necessary future investment in PV installation, we must 

forecast the PV system price, which suffers from uncertainties. The theory of 
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learning curves as applied to PV mainly focuses on PV modules. Although non-

module components may have different learning ratios, we assume they are the 

same as the module learning ratio—0.8 in our calculation. The PV installation 

capacity projections are based on the targets of the International Energy Agency, 

which are 118 GW in 2020 and 447 GW in 2030 worldwide (IEA, 2009). The PV 

price forecasting results are listed in Table 3-2. 

Table 3-2: PV System Price Trend from 2005 to 2025  

PV system price 2005 2010 2015 2020 2025 
2010 $/W 9 6 4 3.5 3 
 

3.4.4 Calculation of Total Required Investment 

           Using the required PV installation based on the RPS and the PV system 

price trend, we have calculated the total required investment from Equation [3-1]. 

As shown in Figure 3-2, the annual investment in 2025 is almost $700 million 

(assuming the discount rate is zero). 

 
 

Figure 3-2: Annual Residential PV Installation and Investment to Achieve 
Arizona’s RPS Target 
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3.5 Breakdown of Required Investment  

  Several components contribute to the total required investment to achieve 

the RPS goal, including tax credits from federal and state governments, rebates by 

public utilities, and purchases by customers. Thus government, utilities, and 

customers are considered the three stakeholders in the PV adoption process. In 

this section, we break down the investments by the three stakeholders. 

3.5.1 Renewable Energy Policy at Federal, State and Utility levels 

           At the federal government level, the Investment Tax Credit (ITC) covers 

30% of the investment in a PV installation after rebates from utilities, as shown in 

Equation [3-2]. ITC has been extended to 2016. It should be noted that when 

calculating the 30% tax credit, it is not the total investment but the investment 

after rebates from utilities. Equation [3-2] in the section of Methodology also 

indicates that.  

At the state government level subsidies include the Arizona Income Tax 

Credit of 25%, which is capped at $1000; the Arizona Solar Device Sales Tax 

Exemption; and accelerated depreciation. 

           At the utility level rebates are provided. Arizona Public Service (APS) 

provides a 1.95 $/W rebate for residential PV systems, and Salt River Project 

(SRP) provides 2.15 $/W. 

Table 3-3 summarizes subsidies by level for residential PV systems in 

Arizona.  
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Table 3-3: Incentives for Residential PV Installation 

Incentives for residential PV installation Data sources 
Federal level 
 Federal Tax 

Credit 
30% (capped at $2000 
until 1/1/09, then 
uncapped) 

SEIA Guide to federal tax 
incentives for solar energy  
 
DOE website 
(http://www.energy.gov/ta
xbreaks.htm) 
 

State level 
 Arizona Income 

Tax Credit 
25% (capped at $1000) Arizona Solar Center 

website 
(http://www.azsolarcenter.
com/econ.html)  

 Arizona Solar 
Device Sales 
Tax Exemption 
and accelerated 
depreciation 

No state sales tax Arizona Solar Center 
website 
(http://www.azsolarcenter.
com/econ.html) 

Utility level 
 APS rebate $1.95 per installed DC 

watt 
APS website 
(http://www.aps.com/main
/green/choice/choice_2.ht
ml) 

 SRP rebate $2.15 per installed DC 
watt (up to $13,500) 

SRP website 
(http://www.srpnet.com/e
nvironment/earthwise/sola
r/) 

 
Next we show an example calculation that breaks down the investment in 

a residential PV system in Arizona. For example, a 4 KW residential 

polycrystalline silicon PV system costs 6 $/KW. The total cost is $24,000. Table 

3-4 shows the investment breakdown before and after 2010 July, when APS 

reduced its rebate level from 3$/W to 1.95 $/W.  

Table 3-4: Breakdown of Investment for a 4 KW PV System before and after 
2010 July in Arizona 

4KW * 6 $/Wp Before July 2010 After July 2010 
Total cost  $ 24,000 24,000 
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Federal ITC $  3,600 4,860 
State Income Tax Credit $ 1,000 1,000 
Utility rebate $ 12,000 7,800 
Installed price after incentives $ 7,400 10,340 

 

3.5.2 Two Investment Breakdown Scenarios Considering Different Subsidies 

From a short review of renewable energy history in the U.S., especially 

tax credit policies, the establishment and expiration cycle is clear. In 1992, the 

Energy Policy Act provided a PTC (Production Tax Credit) for renewable 

technologies. In 1999 the PTC expired, causing a 93% drop in wind development 

the following year. The PTC also expired in 2001 and 2003, resulting in drops 

larger than 70% in 2002 and 2004 (AWEA, 2007). The inconsistent policies for 

renewable energy have created boom and bust cycles, making it difficult to obtain 

financing for projects (Wiser, 2007). 

Table 3-5 presents a brief timeline of federal energy policies to illustrate 

their history. 

Table 3-5: Federal Energy Policies in the U.S. from 1970 to 2008 

Year Energy policy 
1918-1970 Tax credits promote the oil and gas industries 
1978-1990 Public Utility Regulatory Policies Act (PURPA) 
1978 Tax credits for renewable energy established 
1985 Tax credits expire 
1992 Production Tax Credit (PTC) reestablished 
1999 2001 2003 PTC expired 
2005 Investment Tax Credit (ITC) established 
2008 ITC extended to 2016 
            

 In 2008, tax credits for renewable energy technologies were extended. 

PTC received a one-year extension and ITC an eight-year extension. The ITC 

provides a 30% tax credit for renewable energy systems and has no cap (DOE, 
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2009). In addition to tax credits, the federal government also provides grants and 

R&D investment for renewable energy technologies (Herrera, 2009). Clearly the 

political atmosphere today favors renewable energy.  However, it is difficult to 

predict whether PV tax credits will continue after 2016. Thus, we propose two 

scenarios:  

Scenario 1—federal tax credit is not extended after 2016 

Scenario 2—federal tax credit is extended after 2016 

           In Scenario 1, we assume that subsidies from federal tax credits are not 

extended after 2016 and that payments from customers do not change obviously 

after 2010. The utilities have to subsidize the rest of the investment.  
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Figure 3-3: Scenario 1—Breakdown of Investments in PV by Utility Rebates, 
Federal Tax Credits and Customer Payments 

 
Figure 3-3 shows the trend of this breakdown through 2025. In Scenario 1, 

the level of federal tax credits steadily decreases from 2010 through 2016, when it 

drops to zero. If customer payments do not change obviously, the public utility 

financial support programs must have sufficient subsidies to make up the 

difference. APS provided 3$/W to buy down the PV system cost before 2010 

July, then reduced the rebate to 1.95 $/W. Because the PV system cost decreases, 

the rebate level can be reduced to 0.45 $/W by 2016. However, if the federal tax 

credit is not extended, the rebate must increase again to 1.15$/W in 2020. 

In Scenario 2, we assume that federal tax credits are extended after 2016. 

If customer payments do not change after 2010, then utilities must subsidize the 

rest of the investment.  
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Figure 3-4: Scenario 2—Breakdown of Investments in PV by Utility Rebates, 

Federal Tax Credits and Customer Payments 
 
             Figure 3-4 shows the trend of this breakdown through 2025. The federal 

tax credit level remains at 30%, and the amount steadily decreases from 2010 

through 2025. If customer payments do not change, then public utility financial 

support programs must have sufficient subsidies.  Because the PV system cost is 

decreasing, the rebate level can be reduced to 0.45 $/W by 2015, 0.25 $/W by 

2020, and zero after 2025.  

3.5.3 Comparison Between Required Subsidies and Predicted Financial Sources 

            In last section, we discussed the breakdown subsidies per Watt of PV. To 

explore the relationship between required monetary input and predicted financial 

sources, it is necessary to know the subsidies to the PV installation at macro-scale 

(in this case study, it is the state of Arizona). Using Equations [3-2] and [3-3] and 

the PV installation roadmap based on RPS, total subsidies in the form of utility 

rebates are calculated in both scenarios and shown in Figure 3-5. 
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Figure 3-5: Comparison Between Required Rebates and Predicted Funding 

 In scenario 1, the amount of required rebates from utilities to achieve the 

RPS target explosively increase from $170 million (year 2010) to $800 million 

(year 2025). In scenario 2, the amount is between around 100 to 200 million from 

2010 to 2020. 

The predicted financial source cannot support the necessary rebates in 

either case. In 2008, APS collected $41.4 million from public benefit funds to 

support renewable energy (APS, 2009), much less than needed.  

From the analysis of the three-tier architecture of renewable energy policies in 

previous section, which is essential to support renewable energy adoption is to 

make sure the policies function cooperatively. Specifically, whether there are 

sufficient financial funds to feed into rebate programs is worth questioning, 

especially because the analysis in this section shows a gap between required 

subsidies and sources of funds (the question mark in Figure 3-1 is ‘probably 

NOT’ in this case). 
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3.6 Conclusion 

Although this case study uses data from Arizona, it parallels the situation 

in many states. In the analysis of the three tiers of policies with RPS at the top, 

clearly the policies themselves are inherently isolated from each other. RPS offers 

no guidelines about how to design the financial support or subsidy tiers. Rebate 

programs do not include mechanisms to collect sufficient funds to support them. 

This is why a utility can set a generous rebate level at the beginning and then 

reduce it suddenly and dramatically. APS has argued that it reduced its rebate 

level suddenly because the distributed renewable energy market is overheated 

(Randazzo, 2010). But APS also stated in its annual compliance report that the 

distributed renewable energy target of RPS has not been achieved because of 

customers’ lack of acceptance.  

The authors’ point of view is that the true problem is that renewable 

energy policies have not been designed to work with each other well. If 

governments want renewable energy to reach a certain level of adoption (as RPS 

requires), relevant financial sources should be developed that are sufficiently 

supportive. If there are no sufficient financial sources, no matter how attractive 

the target is, the program will inevitably fail.  

The support mechanisms of Feed-in Tariff (FIT), in contrast, require not 

only a particular subsidy level (premium price from renewable generators) but 

also pass the cost of subsidies to all consumers. Although this mechanism also 

suffers shortcomings and criticisms, its ability to ensure sustainable financing is 

notable. While we do not take the stance that FIT is a better policy, we argue that 
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renewable energy policy options should be considered and evaluated with the 

objective of providing stable financial support.  

A system stable over reasonable time scales promotes confidence in renewable 

energy adopters. To make renewable energy policies stable, explicit analysis of 

how each tier of policies coordinate with each other is needed. 
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CHAPTER 

4. ANALYSIS OF SOCIAL ACCEPTANCE OF DISTRIBUTED SOLAR 

ENERGY USING FUZZY LOGIC MODEL  

Social acceptance plays a role in the adoption of residential photovoltaic 

and other renewable energy technologies. Even with subsidies there are often 

challenges with social acceptance. The third part of this dissertation originally 

develops a fuzzy logic inference model to relate consumers’ attitudes about the 

technology such as perceived cost, maintenance, and environmental concern to 

their adoption intention. Fuzzy logic inference model is a type of soft computing 

models. It has the advantage of dealing with imprecise and insufficient 

information and mimicking reasoning processes of human brains. This model is 

implemented in a case study of residential PV adoption using data through a 

survey of homeowners in Arizona. The output of this model is the purchasing 

probability of PV. It also quantifies the sensitivity of purchasing probability to the 

perception variables. 

4.1 Introduction 

One of the barriers to the adoption of renewable energy technologies has 

been their relatively higher cost. The policy-supporting mechanisms are designed 

to promote renewable energy. In U.S. multi-level policies and regulations are 

supporting the adoption from federal and state governments, as well as public 

utilities. The cost of electricity generated from solar electric system—photovoltaic 
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(PV) is still higher than the one from power grid (around 0.1-0.15 $/kWh). In 

Table 4-1 we calculated that before subsidies, the electricity cost (levelized cost) 

from photovoltaic is around 2 to 2.5 times higher than electricity from power grid.  

However, after subsidies, more than half of the installation cost of PV is covered.  

Table 4-1: Levelized Cost of PV System before and after Subsidies 

 2010 2015 2020 2025 
Levelized cost of PV ($/kWh) 0.232 0.165 0.148 0.131 
Levelized cost of PV with subsidies ($/kWh) 0.063 0.055 0.058 0.058 
 

However, even with very generous subsidies, the adoption situation of 

distributed PV is not optimistic. Arizona Public Service (APS)—one of the largest 

public utilities in the U.S. states in their 2008 annual report (APS, 2009) stated 

that “despite the company’s best effort to encourage customer participation in 

incentive programs, APS fell short of the distributed energy requirement of 

50,580 MWh by a total of 33,256 MWh.” It seems like the utilities and 

governments have tried their best to stimulate the adoption of distributed 

renewable energy. But why the adoption level is still low? Many researchers have 

argued that the barriers of social and cultural relevant issues are critical 

(Wustenhagen et al., 2007; Zoellner et al., 2008; Sovacoool, 2009a,b; Claudy et 

al., 2010). If those barriers are not well perceived, the adoption of renewable 

energy is hard to be successful.  

             Most of existing studies qualitatively illustrated the social acceptance of 

the renewable energy adoption (Wustenhagen et al., 2007; Sovacool, 2009a,b). 

Some other studies quantitatively analyze the relationship of social acceptance 

and demographic characteristics (such as age, gender, educational level and etc) 
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using statistical tools (Zoellner et al., 2008; Claudy et al., 2010). However, the 

attitudes of society towards the renewable energy technologies (such as social 

familiarity of the technology, environmental awareness) are difficult to 

quantitatively analyze. This study attempts to evaluate the social acceptance of 

distributed solar energy using a quantitative methodology—fuzzy logic. The 

fuzzy logic is good at using linguistic value rather that numerical value to 

describe a problem. Some pioneers have attempted to implement this engineering-

based methodology into energy related interdisciplinary study (Kaminaris et al., 

2006; Doukas et al., 2007).  

In Section 2, we present a literature review of social acceptance of 

renewable energy adoption. In Section 3, we illustrate the design of survey and 

the analysis of the results (such as purchasing probability) using logistical 

regression model In Section 4, we present the methodology of fuzzy logic and the 

reason we implement it. In Section 5, we apply the fuzzy logic model to the 

handle the data from the survey. In Section 5, the analysis of the results using 

fuzzy logic model are presented. There is a discussion section in Section 6.  

4.2 Literature Review: Social Acceptance of Renewable Energy Adoption 

No matter researchers, policy decision-makers or industrial investors in 

this field are attempting to figure out the adoption roadmap of renewable energy 

technologies and the relevant challenges and opportunities. Especially the 

adoption of solar energy is highly dynamic. The cost of PV modules is 

fluctuating, policy of incentives is unstable, technology seems to have 
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breakthrough quite often. Those dynamic phenomenon are countless, some are 

technological, some are social, others are political. Some have instant and 

intensive impact, others have continual and modest impact. To understand the 

underlying knowledge of those phenomenon, it is meaningful to categorize them. 

Previous literatures from other researchers provided insightful knowledge.  

The article presented by (Wustenhagen et al., 2007) introduces the issue 

on social acceptance of renewable energy innovation. It is a collection of best 

papers at an international research conference. By summarizing the points of view 

towards social acceptance. The paper presents three dimension of this concept, 

namely socio-political, community and market acceptance. In term of market 

acceptance, it emphasis the role of consumers has changed to investors when 

distributed energy is adopted. The ownership of the renewable energy devices, 

such as solar panels becomes a question. 

Sovacool in his insightful article (Sovacool, 2009a) asked a question that 

“if renewable power systems deliver such impressive benefits, why do they still 

provide only 3% of national electricity generation in the United States?” After 

181 interviewing with a diverse array of stakeholders, he presented a 

comprehensive network of impediments from technological, social, political, 

regulatory, and cultural aspects which he termed as socio-technical. He found that 

social or cultural barriers are critical, such as, utility operators reject renewable 

resources because they are trained to think only in terms of big, conventional 

power plants.  
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Sovacool in another article (Sovacool, 2009c) discovered the cultural 

impediments to renewable technologies by conducting interviews at more than 82 

institutions. The study finds that the apparent disconnect between how electricity 

is made and how it is socially perceived perpetuates public apathy and 

misinformation about it; also that deeply held values related to consumption, 

abundance, trust, control and freedom shape American attitudes toward energy. 

Psychologists and economists, for instance, have observed the following: people 

hold a strong preference for the status quo, and once familiar with a particular 

energy product, it attains higher value (conflicting with the view that people will 

invest in changing their lifecycles if it maximizes self interest). 

Other researchers such as Medonca (Medonca et al., 2009) analyzed in 

more detail about the adoption of renewable energy in Denmark and the U.S. He 

also brought the term “innovative democracy” which reflects the healthy 

renewable energy situation in Denmark. Because not only the aggregated number 

is impressive, 20% of electricity from wind energy, more important thing is 80% 

of wind turbines are owned by households in a way of cooperatives, that means 

residents get most of the benefits from investing to renewable energy. The success 

of renewable energy adoption is not only to achieve how many percent is from 

renewables by building large scale of wind or solar farms, but to make it more 

beneficial (both environmental and economic) to residents. However, large scale 

adoption of residential renewable energy technologies face the social and cultural 

constraints that centralized one may not face.  
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A research lead by National Renewable Energy Lab (Farhar and Coburn, 

2000) interviewed more than 3000 single-family in Colorado about the questions 

of installing PV system on their roof-top. In the question of favorability of PV 

system, score is 7.5 (full score is 10). In the question of familiarity of PV system, 

score is 3.2. The survey also shows that the first concern of benefits from PV 

installation is long-term energy cost savings. The most important outcome of this 

survey is that the main barriers of PV adoption are residents are not willing to 

install it until they know more information about PV system (how they work, how 

they save electricity bill, what other users experience is). Electricity is so easy and 

cheap to use. It is even hardly to notice the existence of power grid. Why should 

costumer choose a complicated product that is might help them to save money, 

except a tiny amount of tree-huggers?  

This concern brings me back to Roger’s classic technology adoption 

model which discusses social acceptance including the consideration of 

technology’s relative advantage, complexity and triability. Mallett (Mallet, 2007) 

explains the solar water heater adoption in Mexico City using this model and 

emphasis the importance of cooperation of participants.  

Tsoutsos et al., (2005) summaries the barriers as: technological factors, 

government policy and regulatory framework, cultural and psychological factors, 

demand factors, production factors, infrastructure and maintenance, undesirable 

societal and environmental effects, economic factors. Among cultural and 

psychological factors, he mentioned that unfamiliarity with the new technologies 
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and possible failures or bad examples (broken or run-down wind turbines) lead to 

skepticism. 

Besides those qualitative research mentioned above, there are several 

quantitative analysis towards social acceptance of renewable energy. 

Zoellner et al., (2008) investigated the public acceptance of residents 

toward renewable technologies in Germany using the statistical regression 

methodology. The regression analysis of the data shows the economical 

estimation of the technology appears to be the strongest predictor for a reported 

acceptance. Other factors include procedural justice, reliability estimation, risk 

evaluation, etc. Those factors also show somewhat positive relationships with the 

acceptance of renewable technologies. 

Claudy et al., (2010) assessed the consumer awareness towards distributed 

renewable energy in Ireland also using the statistical regression methodology. It 

revealed the relationship between consumer awareness and demographic 

variables, such as gender, internet access, age, household size, employment status. 

It found out that men, older people, educated people, full employed people were 

significantly more likely to have heard of such technologies and have higher 

awareness of renewable energy technologies. 

4.3 Survey of Customers’ Perceptions toward Solar Panels 

4.3.1 Survey Design and Questions 

In September 2010 a survey was developed to identify the social 

perceptions to solar electric power technology (photovoltaic or solar panels) in 
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Phoenix Metropolitan Area, Arizona, U.S. A pilot-study was conducted to verify 

the questions. The study was distributed by a professional market research 

company. The survey targeted to the group of homeowners who are in the panel 

of “pro-green energy”. As a “green” technology, solar panels are more likely to 

diffuse among people who have higher environmental concern. However, since 

this technology is still in the early adoption stage, the percentage of adoption 

among households is less than 1%. 

The survey has collected 487 completed responses, among them, 454 are 

non-adopters, 21 are adopters (have installed grid- connected PV); others are PV 

adopters but their houses do not use electricity from power grid and PV system is 

in a off grid connection mode (their purchasing motivation is considered to be 

different with grid power customers, so in this study their responses are not 

included for analysis).  

The questionnaire was designed in two parts. One part is for early-

adopters, the other part is for non-adopters. The questions in each part are 

designed to be equipotent. Take the question of asking perceived cost for 

example, the question for the adopters is “Before you purchased them, did you 

think that solar panels would save you money over the years you would own 

them?”; and the question for the non –adopters is “Do you think that solar panels 

would save you money over the years you would own them?”. 

From literature review, we notice that among the barriers, other than 

higher cost, the convenience of using power grid electricity and lacking of 

familiarity of the solar panels are other important barriers. For example, 
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customers do have to worry about the operation and maintenance (O&M) of 

power plants; but if they install solar panels, they have to take charge of O&M, at 

least, to call professionals to address the problems. So in the survey we design the 

question about maintenance to understand this issue. 

For the complete questionnaire, see the Appendix A. 

4.3.2 Descriptive Results From the Survey (Demographic variables and 

Perception variables) 

For the demographic variables, this study examines age, income, 

educational level. Table 4-2 shows the descriptive statistics of the demographic 

variables. 

Table 4-2: Descriptive Statistics of Demographic Variables  

Demographic 
variable 

 Mean Standard 
deviation 

T Sig.  
(2-tailed) 

Means’ 
difference is 
significant or not 
(at the 95% 
level)? 

Age  Adopter 58.36 10.67 2.012 0.056 No 
 Non-

adopter 
53.51 12.94    

Income Adopter 5.20A 1.91 0.731 0.472 No 
 Non-

adopter 
4.88A 1.86    

Education Adopter 3.25B 1.65 -0.109 0.914 No 
 Non-

adopter 
3.19B 1.67    

A: scaling from 1-10 (low to high), for detail, see Figure 4-1 
B: scaling from 1-5 (low to high), for detail, see Figure 4-1 
 

Since the two samples are highly unequal, so the t-test may not be robust 

in this case. The frequency distribution of the demographic variables are shown in 

Figure 4-1 to present a visualized description. 
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Figure 4-1: Frequency Distribution of Demographic Variables 
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The survey has asked a question about “How much would the following 

factors affect your decision to purchase solar panels?” For adopters, the question 

is “How have the following factors affected your decision of purchasing solar 

panels?” The factors included the rankings by non-adopters and adopters are 

listed in Table 4-3. 

Table 4-3: Rankings for the Affecters of Purchasing 

 Non adopters Adopters 
Cost of solar panels 1 2 
Amount of time to break even investment 2 3 
Environmental benefits 3 1 
Maintenance requirement 4 5 
How long I would stay in the same house 5 4 
Convenient loan program 6 7 
Solar panel aesthetics on my rooftop 7 6 

 
The frequency distribution of the other variables are shown in Figure 4-2 

to present a visualized description. 
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Figure 4-2: Frequency Distribution of Perception Variables 

From the statistical test of survey results (Table 4-4), we can notice that 

the social aspects of customers such as perceived cost of solar panels, perceived 

maintenance requirement, and environmental concern are significantly different 

between early adopters and non-adopters. We call them perception variables in 

this study. Table 4-5 shows the relevant questions of each variable and the scaling 

of them. In the questions, the scaling is from 1 to 7. In order to handle the data 

using mathematical models (both regression model and fuzzy logic model), the 

scales are stretched linearly to a new one (0 to 10). 
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Table 4-4: Descriptive Statistics of Perception Variables 

Perception 
variable 

 Mean 
(weighted 
scaling) 

Standard 
deviation 

T Sig. 
(2-
tailed) 

Means’ 
difference 
is 
significant 
or not (at 
the 0.05 
level)? 

E 
(Environmental 
concern) 

Adopter 7.66 2.81 2.316 0.030 Yes 

 Non-
adopter 

6.20 2.96    

C (perceived 
Cost) 

Adopter 2.09 1.89 -
4.009 

0.001 Yes 

 Non-
adopter 

3.82 2.65    

M (perceived 
Maintenance 
requirement) 

Adopter 1.64 2.02 -
4.890 

0.000 Yes 

 Non-
adopter 

3.86 2.29    

 
Table 4-5: Relevant Questions of Each Variable and Scaling Explanation 

Perception 
variable 

 Questions Scaling (1-7) Stretching 
scales 
linearly (0-
10) 

E  Adopter How much do you think 
solar panels benefit 
environment 

1: No benefit 
7: A lot of 
benefit 

0: No 
benefit 
10: A lot of 
benefit 

     
 Non-

adopter 
How much do you think 
solar panels benefit the 
environment? 

  

C  Adopter Before you purchased 
solar panels, did you 
think that solar panels 
would save you money 
over the years you would 
own them? 

1: Save a lot 
7: Cost a lot 

0: Save a lot 
10: Cost a 
lot 

 Non-
adopter 

Do you think solar panels 
would save you money 
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over time? 
M  Adopter Before you purchased 

solar panels, how 
frequently did you think 
solar panels would 
require maintenance from 
professionals? 

1: Once in 
more than 10 
years 
7: Several 
times a year 

0: Once in 
more than 
10 years 
10: Several 
times a year 

 Non-
adopter 

How frequently do you 
think solar panels would 
require maintenance from 
professionals? 

  

 
The questions in Table 4-5 are designed to understand the perception of 

each variable, such as “how do you think the solar panels can benefit 

environment?” However, they do not reveal the effects of the variable on 

customers’ (potential) decision making process. To understand such effects, a 

question of “How much the factors affect your decision to purchase solar panels?” 

is designed. From, the responses of the survey, adopters consider environment 

benefit is the most important factor of their decision making (the mean value is 

5.81 higher than non adopter’s 5.45); while for non-adopters, cost is the most 

important factor. Table 4-6 shows the mean values for each variable. 

Table 4-6: Effects of the Perception Variables on Decision Making 

Perception variable  Mean value of the answers  
(“How much the factors affect your decision to 
purchase solar panels?” 
1: Not affect, 7: Greatly affect) 
 

E Adopter 5.81 
 Non-adopter 5.45  
C Adopter 5.25 
 Non-adopter 6.26 
M Adopter 5.42 
 Non-adopter 4.38 
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4.3.3 Logistic Regression Model 

To analyze relationship between dependent variable and several 

independent variables, the regression models are widely used. The dependent 

variable in this study is binary (0 or 1, not purchase or purchased). The logistical 

regression model is implemented for analysis (Claudy et al., 2010). Table 4-7 

shows the coefficients of each variable and the significance of them. 

Table 4-7: Logistical Regression Analysis of Purchasing Activity  

Perception variable Coefficient Sig. (P value) 
E 0.154 0.072 
C -0.190 0.118 
M -0.524 0.000 
Constant -2.237 0.004 
 

The purchasing probability (Prob) can be expressed using Equation.4-1 

and 4-2.  

                                                                                              [4-1]                                                                      

                             [4-2] 

                                        

The purchasing probability can be calculated using the equations and is 

shown in figures of probability distribution (Figure 4-3).  
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Figure 4-3: Purchasing Probability Distribution Using Logistic Regression Model 
The regression analysis can hardly show the reality of purchasing 

activities in this study. The ideal value of purchasing probability for adopters 

should be 100%, and for non-adopters should be 0%. The distribution figure of 

adopters (right figure) shows that their purchasing probability fall into the range 

from 0 to 30%. The result is far away from reality (that adopters have already 

purchased). The logistic regression model is not valid enough to describe or 

predict customers’ purchasing activities. There are several reasons for this 

invalidity. One possible reason would be the samples of adopters and non-

adopters are different in numbers severely. Another reason would be, some of the 

independent variables are not significantly correlated to dependent variables.  

An alternative model is required to implement. 

4.4 Model of Fuzzy Logic           

4.4.1 Why Use Fuzzy Logic 

To understand the social acceptance to technologies, it is not easy to carry 

out a controlled experiment to obtain precise data and the problem is not easily to 

be expressed in a formula and to achieve an exact solution. To quantitatively 
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address this issue, it is helpful to use the tool of soft computing, which is good at 

dealing with complex system with uncertain information. It includes: neural 

networks, probability (Bayesian) networks, fuzzy logic, expert system, 

knowledge-based system, genetic algorithm and etc. The concepts and 

methodologies are originally from computer science however are applying to 

various disciplines, such as medicine, biology, social science and management. 

The existing literatures state the social aspects in a qualitative way. Others 

related economical estimation and demographic characteristics to social 

acceptance in a quantitative way. However none of them have analyzed these 

social aspects to social acceptance in a quantitative way. To forecast the future 

adoption of renewable energy technologies, it is worthwhile to quantify those 

social aspects in a logic and reasonable way. It is difficult. It is a complex issue, 

some aspects are easy to be quantified, such as cost of PV system; others are not 

easy to be quantified, such as familiarity of PV system. We can describe the cost 

as 1 $/W or 2 $/W, but we can only describe familiarity using language like “I 

think I feel familiar with solar panels” or “I’m not sure with solar panels”. Such 

statement can be defined using linguistic variables, which are critical in 

methodology of Fuzzy logic to describe imprecision human knowledge (Doukas, 

et al., 2007). 

Before we begin to introduce methodology of Fuzzy logic, we would start 

with a simple example to demonstrate how Fuzzy logic works and why we choose 

it for this study. To simplify the problem of PV adoption, it becomes to examine 
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whether a target family is willing to install PV system on their rooftop (because 

PV adoption can be considered as the aggregated behavior of each consumer). 

If there are only two factors determines the acceptance of consumers: cost and 

familiarity of PV system. It is reasonable to draw the logic analysis below. 

Table 4-8: Simplified Social Acceptance of Solar Energy Reasoning              

Acceptance of 
solar energy 

Cost 

 Cheap Expensive 
Familiar Yes Not sure 

 
 Familiarity 

Not 
familiar 

Not sure No 

 
However, the “familiar or not familiar” or “cheap or expensive” boundary 

is fuzzy instead of crispy, different people have different understanding. The 

reasoning of acceptance of the solar panels is based on human knowledge and 

experience. This knowledge and experience suffer from ambiguous concepts. 

Fuzzy logic provides the mathematical tools to handle such imprecise description 

instead of precise one; and linguistic variables instead of numerical variables. 

            For example, cost of PV system ranges from 1 $/W to 10 $/W, traditional 

logic will treat it like 1-5 $/W considered as cheap, 5.1-10 $/W considered as 

expensive. But in fuzzy logic, it treat this problem as 1 $/W is 1-degree-cheap, 4 

$/W is 0.75-degree-cheap, something like that. The degree-of-cheap can be 

denoted as membership function. Figure below shows the membership function of 

cost. 

Why to implement fuzzy logic in the study of social acceptance to 

renewable energy adoption? 
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1. Social acceptance study involves imprecise description form human 

experience and knowledge. For example, “some consumer believes PV 

system is hard to maintain; some others consider it is easy to maintain”. 

Either “hard” or “easy” is vague and imprecise description. Also the 

information obtained from survey or interviews are impossible to reflect 

the complete decision-making process. 

While, fuzzy logic is designed to handle the imprecision and insufficient 

information system. 

2. Most of the existing studies of social acceptance are qualitative analysis. 

However, in some case, quantitative analysis is necessary to make, for 

example, to forecast the adoption potential of a certain technology 

quantitatively. 

While, fuzzy logic is a methodology of quantitative variables and 

mathematical operations. 

3. The existing quantitative studies focused on statistically revealing the 

relevance between demographic characters (such as age, income) and 

social acceptance and renewable energy, however, fail to explain the logic 

reasons of that relevance.  

While, the methodology of fuzzy logic is mimicking the logic inference 

process of human being and can reasons how the multiple social 

characteristics (such as familiarity of renewable energy technology and 

environmental aware) relates to social acceptance. 
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4.4.2 Basic Concepts of Fuzzy Logic and Literature Review 

The term fuzzy logic has been used in two different senses. In a narrow 

sense, fuzzy logic refers to a logical system that generalizes classical two-valued 

logic for reasoning under uncertainty. In a broad sense, fuzzy logic refers to all of 

the theories and technologies that employ fuzzy sets, which are classes with 

unsharp boundaries (Yen and Langari, 1999). The idea of fuzzy sets was born in 

1964 by Lofti A. Zadeh, a professor of electrical engineering and computer 

science. Even though there was strong resistance, scholars and scientists in a wide 

variety of fields—ranging from engineering to sociology have been exploring this 

methodology. During the past decades, especially after 1990, fuzzy logic has been 

implemented broadly in the field of engineering, from fuzzy control to fuzzy 

model identification. After he proposed the concept of fuzzy logic more than 40 

years, Professor Zadeh, in the article stated “Fuzzy logic may be viewed as an 

attempt at formalization/mechanization of two remarkable human capabilities. 

First, the capability to converse, reason and make rational decisions in an 

environment of imprecision, uncertainty, incompleteness of information, 

conflicting information, partiality of truth and partiality of possibility-in short, in 

an environment of imperfect information. And second, the capability to perform a 

wide variety of physical and mental tasks without any measurements and any 

computations. (Zadeh, 2008). 

The core methodology of fuzzy logic is based on four concepts: (1) fuzzy 

sets: sets with smooth boundaries; (2) linguistic variables: variables whose values 

are both qualitatively and quantitatively described by a fuzzy set; (3) possibility 
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distributions: constraints on the value of a linguistic variable imposed by 

assigning it a fuzzy set; (4) fuzzy if-then rules: a knowledge representation 

scheme for describing a functional mapping for a logic formula that generalized 

an implication in two-valued logic. 

There are several existing researches are trying to implement fuzzy logic 

to address energy issues.  

Kaminaris et al., (2006) assessed three renewable energy technologies 

(PV, wind, small hydro of their life cycle cost, emissions and etc using fuzzy 

logic to aid decision making. However, he didn’t emphasis on the risks or 

dynamics of the projects. And the variables and membership functions are also 

not effective or sufficient to capture the features of sustainability and resilience.  

Chedid et al., (1999) presents a fuzzy multi-objective linear programming 

approach to solve energy resource allocation problem. The objectives include 

minimizing cost, maximizing efficiency, maximizing the use of local resources 

and etc. It is mainly in the rural area and most of the electricity consumption can 

be powered by local resources, such as wood and solar thermal. 

Doukas et al., (2007) uses multi-criteria decision making and linguistic 

variables (fuzzy logic) to evaluate power generation technologies. It also develops 

several improved methods based on weighted operator and realizes them by 

computer programming. 

However, these existing research have analyzed the features of power 

system in a static way and not considering the risks and resilience of the system. 
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 Medina and Morero, (2007) evaluates risks in Colombia electricity 

market using fuzzy logic considering regulatory risk, electric risk and social-

political risk. However, his focus is merely on electricity cost (how risks affect 

cost), and the risks are very Colombia-based. 

Phillis and Andriantiatsaholiniaina (2001) evaluate the vague concept—

sustainability measuring ecological indicators and human indicators. In the aid of 

fuzzy logic, it combines all indicators to an overall measure. The output of this 

model is a degree of sustainability of a certain country. 

4.5 Application of Fuzzy Logic to Social Acceptance (Purchasing Probability) 

of Solar Energy  

After introduction of fuzzy logic and literature reviews of the energy 

relevant application of this methodology, we will describe the problem of social 

acceptance and the solving method using fuzzy logic step by step. 

4.5.1 Problem Identification and Variables  

The problem we are attempting to solve is to evaluate the social 

acceptance of distributed solar energy using fuzzy logic by interpreting the results 

from the survey we conducted. From the Section of Survey of customers’ attitude 

toward solar energy, we know there are several perception variables of customers 

such as Environmental concern (E), perceived Cost of solar panels (C), and 

perceived Maintenance requirement (M) are significantly different between early 

adopter (N1 samples) and non-adopter (N samples).  
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We define these two groups as: 

A(N1)—Early-adopters 

B(N)—Non-adopters 

Each sample has its own characteristics, the functions (they are called 

membership functions) denoted as: 

 Ai {E,C,M}, i∈(1,N1) 

 Bj{E,C,M}, j∈(1,N) 

Perception variables: 

E--Environmental concern, 

C--perceived Cost of solar panels, 

M--perceived Maintenance requirement 

4.5.2 Fuzzy Logic Model Structure 

The purpose of the evaluation is to figure out the purchasing probability 

(prob) of distributed solar energy among the non-adopters, denoted as: Bj {prob} 
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Figure 4-4: Fuzzy Logic Inference Model for Purchasing Probability Analysis 

Figure 4-4 illustrates the flow of fuzzy logic methodology. The inputs are 

survey data from adopters and non-adopters. The outputs are the evaluation of 

purchasing probability for each sample. The model is constructed by fuzzy logic 

inference which will be discussed in detail step by step. Similar as other 

mathematical models, the methodology provides a structure of models. To 

validate the model, parameters and rules have to be tuned to satisfy certain 

criteria. The criteria are important to control the modeling process. Only if the 

criteria are satisfied, the model is validated to implement. Otherwise, parameters 

and rules are kept tuning. 

The model can be presented as:      

Ai {prob}= Fuzzy logic inference (Ai {E,C,M}),    j∈(1,N1)                                           

Bj {prob}= Fuzzy logic inference (Bj {E,C,M}),    j∈(1,N)                                              
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4.5.3 Fuzzy Sets and Membership Functions 

A set in classical set theory always has a sharp boundary. Fuzzy set is a set 

with smooth boundary. For example, if the cost of PV system is $20,000, we can 

say it is high, and $5,000 is low; however, the cost $10,000 is somewhat high or 

low. A fuzzy set is thus defined by a function that maps objects in a domain of 

concern to their membership value in the set. Such function is called the 

membership function. The membership function of a fuzzy set A is denoted as µA, 

and membership value of x in A is denoted as µA(x). The most common shapes of 

membership functions are triangular and trapezoidal ones, which are practiced 

effectively and efficiency among the community of fuzzy logic.  

In this study for each variable E,C,M; the fuzzy set can be {Low, Middle, 

High}. The shape of membership functions can be triangular or trapezoid. How to 

understand the membership functions? Taking the perceived maintenance 

requirement (M) of solar panels for example, we assume 

If M is less than 2, Then we consider it as low 

If M is higher than 7, Then we consider it as high 

If M is between 2 and 7, Then we consider it as somewhat low and somewhat 

high (it can be defined using membership function). 

We now translate this human language to fuzzy logic. 

MatchingDegree (M, Low) = µLow(M) 

MatchingDegree (M, Middle) = µMiddle(M) 

MatchingDegree (M, High) = µHigh(M) 
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So, for example  

If M=1; Then 

MatchingDegree (1, Low) = µLow(1) = 1;  

MatchingDegree (1, Middle) = µMiddle(1) = 0; 

MatchingDegree (1, High) = µHigh(1) = 0; 

If M=2.4; Then 

MatchingDegree (2.4, Low) = µLow(2.4) = 0.5;  

MatchingDegree (2.4, Middle) = µMiddle(2.4) = 0.5; 

MatchingDegree (2.4, High) = µHigh(2.4) = 0; 

If M=8; Then 

MatchingDegree (8, Low) = µLow(8) = 0;  

MatchingDegree (8, Middle) = µMiddle(8) = 0; 

MatchingDegree (8, High) = µHigh(8) = 1; 

The membership functions in this study are shown in Figure 4-5. 

 

Figure 4-5: Membership Functions of Variables: E, C, M  and Probability 
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4.5.4 Fuzzy If-Then Logic Inference 

After the fuzzy variables and membership functions have been defined. 

The next step is to define If-Then logic inference. 

For example, if the relative cost of solar panel is low, the familiarity of solar 

panels is high, the moving frequency is low and environmental awareness is high, 

then the acceptance of this technology is considered to be high logically. 

To translate this reasoning into fuzzy logic: 

IF E is High, AND C is Low, AND M is Low,  

THEN Probability is Very high (5). 

IF E is Middle, AND C is Low, AND M is Low,  

THEN Probability is Somewhat high (4). 

IF E is Low, AND C is Low, AND M is Low,  

THEN Probability is Neutral (3). 

IF E is Low, AND C is High, AND M is Low,  

THEN Probability is Somewhat Low (2). 

IF E is Low, AND C is High, AND M is High,  

THEN Probability is Very Low (1). 

. 

. 

. 

Because the fuzzy set of each variable has 3 values {high, middle, low}, 

and there are 3 variables (E, C, M), so there are 27 (3*3*3) combinations. We 

also should define the probability into similar way: 
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{100%, 75%; 50%; 25%; 0%} = {5,4,3,2,1} 

Table 4-9 shows the rules of fuzzy logic reasoning which have been tuned for 

validity. 

Table 4-9: Rules of Fuzzy Logic IF-THEN Inference  

 IF           AND AND THEN 
 E C M Probability 
1 high low low 5 
2 middle low low 4 
3 low low low 3 
4 high middle low 4 
5 middle middle low 3 
6 low middle low 3 
7 high high low 3 
8 middle high low 2 
9 low high low 2 
10 high low high 3 
11 middle low high 2 
12 low low high 1 
13 high middle high 2 
14 middle middle high 1 
15 low middle high 1 
16 high high high 1 
17 middle high high 1 
18 low high high 1 
19 high low middle 4 
20 middle low middle 3 
21 low low middle 2 
22 high middle middle 3 
23 middle middle middle 2 
24 low middle middle 2 
25 high high middle 2 
26 middle high middle 1 
27 low high middle 1 

 
The steps of methodology mentioned above have defined the functional 

operations of fuzzy logic. The function of fuzzy logic reasoning is like the engine, 

now we fuel the input data into the engine to make it run. 
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For a fuzzy system whose final output needs to be in a crisp form, a step is needed 

to convert the final combined fuzzy conclusion into a crisp one. This step is called 

the defuzzification. There are two major defuzzification techniques: (1) the Mean 

Maximum (MOM) method and (2) the Center of Area (COA) (Yen and Langari, 

1999, p44). 

4.5.5  MATLAB Programming and Tuning of Rules 

In this study, a software toolbox in MATLAB is implemented: Fuzzy logic 

Toolbox, especially, Fuzzy Inference System (FIS) editor. It provides default 

parameters of membership functions (the shapes are chosen by modelers). The 

membership functions are shown in Figure 4-5. In this study, the parameters are 

not tuned because the default ones can satisfy the criteria. In practice, models 

usually choose to tune rule first then membership functions. The criteria for 

validating the model is to make the difference of mean values of the two groups 

maximized. By adjusting the membership functions and rules, modelers have 

accumulated expertise of modeling. After that, a maximized difference of 30% is 

achieved.  

4.6 Results and Analysis 

The results of purchasing probability distribution after model validation 

are shown in Figure 4-6. We must notice that comparing with the one using 

logistic regression model, the results from fuzzy logic model represent reality in a 

much more proper way. The peak of the purchasing probability distribution of 
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adopters is at 100%, for non-adopters, it is at 20%. The difference between mean 

value of the probability is 30%.  

 

Figure 4-6: Purchasing Probability Distribution Using Fuzzy Logic Model 

There is a 3-D graph shown in Figure 4-7 of purchasing probability of 

both adopters and non-adopters with the variables. The three variables represent 

the X,Y,Z axis and the size and color of the scattering dots represent the 

probability (the larger and lighter the dot, the higher the probability). 
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Figure 4-7: 3-D Purchasing Probability Scattering Using Fuzzy Logic Model 

To understand the sensitivity of the purchasing probability to variables, 2-

D graphs can help to observe the gradients (Figure 4-8). Discontinuous change of 

purchasing probability (thresholds, stacking) may reflect the decision making 

process but need more work to prove. 
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Figure 4-8: 2-D Purchasing Probability with the C and M variance  

(left: E is 6, right: E is 8) 

The purchasing probability distribution not only tells us the pattern of 

adoption. It also provides insights to investigate the adoption potential in the 

future. For example, then mean value of the purchasing probability of adopters is 

0.72; while for non-adopters, it is 0.42. So it is arguable to state that 0.72 can be a 

future target for non-adopters if we consider the adoption process be a dynamic 

one. Of course, the target here is not set by individual customers. It can be guide 

for policy design. 

Obviously, to achieve 0.72 (adopters’ mean value), from this model, there 

are three ways: to increase E, decrease C or decrease M (Figure 4-9). 

 



 

92 
 

 

Figure 4-9: Purchasing Probability of Adopters and Non-adopters 

 

 

Figure 4-10: Purchasing Probability with Variance of M (Keep C Constant) 

Decreasing C means to lower solar panels cost (assuming electricity rate 

keep constant). Decreasing M means to lower the maintenance requirement of 

solar panels. We need to notice that the variables here are perceived the cost or 

maintenance requirement. They are highly depending on customers’ knowledge to 

the products. For example, the mean value of the perceived cost of non adopters is 

3.3 (1-7 scales after weighted). That means they have optimistic attitude to cost-

benefit of solar panels (benefit is higher than cost, equal at 4). In reality, the pay-
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back time of PV is around 21 years (the life time is 25 years). So the benefit is 

higher than cost, but not too much, the customers’ perception can basically reflect 

the reality. However, the mean value of perceived maintenance requirement is 3.3 

(requiring professional maintenance around once in 5 years). In reality, the 

maintenance requirement from professionals are once in 10 years (replacing 

inverters). There is huge potential for providing customer knowledge of 

maintenance to reduce M.  
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5. CONCLUSIONS 

The first part of this dissertation advances the life cycle assessment (LCA) 

of photovoltaic modules by expanding the boundary of the included processes 

using hybrid LCA and accounting for the technology-driven dynamics of 

embedded energy and carbon emissions. Hybrid LCA is an extended method that 

combines bottom-up process-sum and top-down economic input-output (EIO) 

methods. In 2007, the embodied energy was 4,354MJ/m2 and the energy payback 

time (EPBT) was 2.2 years for a multi-crystalline silicon PV system under 1700 

kWh/m2/yr of solar radiation. These results are higher than those of process-sum 

LCA by approximately 60%, indicating that processes excluded in process-sum 

LCA, such as transportation are significant. Even though PV is a low carbon 

technology, the difference between hybrid and process-sum results for 10% 

penetration of PV in the U.S. electrical grid is 0.13% of total current grid 

emissions.  Extending LCA from the process-sum to hybrid analysis makes a 

significant difference. Dynamics are characterized through a retrospective 

analysis and future outlook for PV manufacturing from 2001 to 2011.  During this 

decade, the embodied carbon fell substantially, from 60 g CO2/kWh in 2001 to 21 

g/kWh in 2011, indicating that technological progress is realizing reductions in 

embodied environmental impacts as well as lower module price.  
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Although the PV technologies are proved to have less environmental 

impacts, they are suffered from higher cost. To promote the adoption, 

governments establish regulations and provide subsidies.  

The second part of the dissertation proposes three tiers of policy 

architecture: the top tier includes regulatory policies such as the Renewable 

Portfolio Standard (RPS); the middle tier is composed of financial support 

mechanisms, such as tax credit and rebates; and the bottom tier comprises policies 

that provide funding sources, such as Public Benefit funds. Such funds usually are 

collected from ratepayers of a public utility. Financial source must be sufficient to 

support the required subsidy if regulatory goals are to be achieved. However, 

researchers have often neglected the bottom tier. To address this issue, this 

research develops a model to reveal the subsidies required to support the RPS 

goal based on two key forecasting results: future renewable energy installation 

and  experience curve-based cost reduction. The model is applied to the case 

study of solar energy adoption in the state of Arizona by 2025. The required 

installation capacity of distributed PV is targeted to 4200 MW by 2025, the price 

of the distributed PV system is forecasted to be 3 $/W. The annual investment in 

2025 is almost $700 million (assuming the discount rate is zero).  The financial 

requirements are calculated (in two scenarios) and compared with predictable 

funds from public sources. In scenario 1, the amount of required rebates from 

utilities to achieve the RPS target explosively increase from $170 million (year 

2010) to $800 million (year 2025). In scenario 2, the amount is between around 

100 to 200 million from 2010 to 2020. The predicted financial source cannot 
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support the necessary rebates in either case. In 2008, APS collected $41.4 million 

from public benefit funds to support renewable energy, much less than needed.  

The study reveals the mismatches among policy tiers quantitatively and presents 

possible solutions.  

The subsidies from the governments and utilities push down the cost of 

solar energy technologies. However, at customers’ side, there are other social 

barriers for the adoption of solar energy. 

To reveal the customers’ attitude to solar energy, the survey was designed 

and distributed to homeowners of Phoenix, Arizona. There are many variables 

affect customers’ decision making process of purchasing solar panels. The survey 

shows the top three variables are perceived cost (C), perceived maintenance 

requirement (M) and environmental concern (E). Here we identify them as 

perception variables. The statistics test show them are significantly different 

between adopters and non-adopters. To investigate the relationship between 

purchasing probability and the perception variables, statistic regression model is 

the most common tool to use. However, in this case, as we discussed, the model is 

not suitable. We develop a model of fuzzy logic inference and implement it to this 

case. The results show that the fuzzy logic inference model can reflect the reality 

and be validated. The purchasing probability distribution of adopters and non-

adopters are the output of the model. To understand how the variables affect 

customers’ decision making process, a sensitivity study is presented. For example, 

one of possible outcomes from the model can be, if we keep the cost constant, 

how the maintenance affects the purchasing probability.   By providing enough 
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information, the perceived maintenance has potential to decrease, so the 

purchasing probability has potential to increase from 40% to 63% from the model. 

However, if a higher purchasing probability is pursued, the efforts to increase 

environmental concern or decrease cost must be made. 
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6. LIMITATIONS AND FUTURE WORK 

Understanding the limitations of research is important to help make future 

improvements. Generally speaking, limitations can come from methodology, data, 

and research scope. The limitations of each aspect involve uncertainties and 

caveats of explanation of results. In this section I discuss the main limitations of 

each chapter in this dissertation (three research topics). 

 In Chapter 2, the methodology is hybrid LCA combining process and 

economic input-output (EIO) LCA. A main uncertainty of EIO LCA is the 

aggregation uncertainty. Aggregation uncertainty arises from coarse graining of 

processes into sectors of EIO table. For example, the Miscellaneous Electrical 

Equipment sector used to describe inverter manufacturing aggregates many types 

of equipment. Also, the calculation of the embodied energy in transportation 

considers the Truck transportation as the only mode. 

 The process LCA assumes the technology of poly-silicon purification is 

Siemens method. However, the UCC-Fluidized Bed Reactors (FBR) for silicon 

deposition has been improved in recent years. It is very difficult to find data 

describing the share of solar grade silicon produced by different purification 

technologies.  The embodied energy of silicon purification process using FBR is 

much lower than Siemens methods. It is worthwhile to incorporate the technology 

progress of silicon purification methods into LCA study.  

Other than methodology limitations, in Chapter 2, the research scope is 

also limited to the case study of multi-Si PV. It is the mainstream PV products 

(more than 90% market share). For other types of PV technologies, such as thin 
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film, which have quite different manufacturing and operation procedures, are 

making more market share, it is necessary to assess the environmental impacts of 

them in further study. Not only the embodied energy and carbon have 

environmental impacts, the impact from material flow, such as Cadmium (using 

in thin film PV) cannot be ignored. 

The development of renewable energy manufacturing in developing 

countries, especially China, India and Brazil, is remarkable.  The geographical 

structure of the supply chain has shifted dramatically which entails many 

uncertainties. Taking the embodied carbon for example, since more and more 

purified silicon is manufactured in China, and electricity in China is relatively 

carbon intensive, the embodied carbon must be higher for products made in 

developed countries. The study of this dissertation does not consider such 

geographic dynamics. In further study, a comparison of embodied energy in the 

products of different countries will be made. 

Technological progress significantly reduces the environmental impacts of 

photovoltaic modules. This study only accounted for energy-related flows, but the 

improved efficiency of modules and reductions in material use are also likely to 

mitigate other environmental impacts such as land use and chemical consumption 

and emissions. Technological progress could significantly affect the 

environmental impacts of renewable energies ranging from other photovoltaic 

materials to biofuels to wind power. Decisions on the development and adoption 

of new energy technologies should be informed by the dynamics of environmental 

impacts. More work is needed to develop methods and explore case studies in 
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order to characterize relationships between technological change and life cycle 

impacts. 

In Chapter 3, one important assumption of the calculation of future 

investment requirement is the progress ratio of PV learning curve keeping 

constant. Since the price has significant impact on investment forecasting, more 

than one scenario of price reduction (various learning ratio) will be considered in 

future work. 

Also, as a research topic, Chapter 3 raises a question of insufficient 

financial support, however, does not discuss the solutions. To promote the 

adoption robustly, there are two possible solutions which I want to propose in 

future work. One is to enact laws, such as a Feed-in Tariff; another is to set 

market tools, such as a carbon tax. It would be helpful to compare market-based 

policies with command and control-based policies for example in Germany and 

China. It is also interesting to understand how countries are racing in the battle of 

energy and trying to win out using various tools. 

In Chapter 4, I discussed the relationship between the purchasing 

probability and the three variables. However, there are many other variables 

affecting customers’ attitude, for example, the survey shows moving plan, 

appearance of solar panels, financial programs and regulation from Homeowner 

Association are among the factors affecting customers’ attitude. In the future, a 

more advanced fuzzy logic model can be developed to include more variables. 

The fuzzy logic inference model provides an alternative solution to address the 

social issue of technology adoption. However, due to its characteristics of dealing 
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with imprecise and insufficient information, it has potential to implement in 

domain of social science. 

One important caveat in the study of Chapter 4 is data limitation-- that the 

sample for adopters is relatively small (the adoption of PV is in early adoption 

stage). To validate the model and provide policy implications, a larger sample is 

required by undertaking a larger survey study. The contributions of this study is to 

explore the applicability of soft computing model to social acceptance issues, and 

discuss potential policy implications. To make concrete policy suggestions, more 

work is needed in the future, from to improve data (larger sample) and 

methodology (more refined model). 
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