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ABSTRACT

Gamma-ray burst observations provide a great opportunity for cosmography in
high redshift. Some tight correlations between different physical properties of
GRBs are discovered and used for cosmography. However, data selection,
assumptions, systematic uncertainty and some other issues affect most of them.
Most importantly, until the physical origin of a relation is understood, one should
be cautious to employ the relation to utilize Gamma ray bursts for cosmography.

In the first part of this dissertation, I use Liang-Zhang correlation to constrain A
Cold Dark Matter standard cosmology and a particular class of brane cosmology
(brane-induced gravity model). With the most probable model being ,, = 0.23
and Q, = 0.77 for flat ACDM cosmology and (), = 0.18 and (2, = 0.17 for flat
brane-induced gravity cosmology, my result for the energy components of these
two models is comparable with the result from SNIa observation. With average
uncertainty of distance modulus being 0.2771, the two discussed cosmologies are
indistinguishable using my current sample of GRB with redshift ranging between
0.1685 and 3.2. I argue that by expanding my sample and adding more low and
high redshift GRBs and also with improvement in using GRB for cosmography,
we might be able to distinguish between different cosmological models and
tighten the most probable model.

Looking into correlation and evolution of GRB prompt emission and afterglow
has many advantages. It helps to open windows to comprehend the physics of

GRBs and examine different GRB models. It is also possible to use GRB
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correlation as an accurate redshift estimator and more importantly to constrain the
cosmological parameters. XRT flares of GRB afterglow are thought to be the
result of central engine activity. Studying this component leads us to understand
GRB flare and central engine nature. In the next part of this dissertation, I study
the correlation and evolution of different prompt emission and afterglow GRB
properties and some GRB flare-based quantities. Considering instrument bias and
selection effect, I conclude some well-correlated correlations and establish some
property evolution. The correlation between average luminosity and isotropic y-
ray energy, energy of plateau and isotropic y-ray energy and luminosity at break
time and break time and evolution of plateau energy are well established. It is also
realized that the apparent evolution of isotropic y-ray energy and average
luminosity is due to the instrumental flux threshold. With expanding the sample
of GRB and accommodating more GRBs with XRT flares to my sample, I can
reevaluate my result more firmly and confirm or rule out some hard to assert
results due to limited number of data.

In search for physically motivated GRB relation, analyzing the thermal
component of GRB prompt emission, I derive two well-correlated relations. They
are between calculated and estimated flux of the GRB thermal component for the
co-moving bolometric and co-moving detector band-pass range of spectrum. In
this study, three samples of Swift, pre-Swift and combined samples are used. The
quality of this correlation is comparable with the Ghirlanda relation in terms of

Spearman rank correlation parameters (correlation coefficient and correlation
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significance) and reduced y2of best fit. These results for the Swift GRB sample
for co-moving bolometric range of spectrum are 0.81, 4.07 x 10~7 and 0.66

respectively. The derived correlations also imply a E), 5, — Egeak relation that

provides physical insight to E,, — Ep,.q) Ghirlanda correlation. Three scaling
coefficients are employed to study these correlations. Monte Carlo statistics
indicates that the existing correlations are independent of these constants. For
Swift and combined sample 73% - 84.8% successes are recorded. Therefore, it is
expected by determining these constants, the tightness of these correlations will

further improve.
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Chapter 1
A REVIEW ON GAMMA RAY BURST

Gamma ray bursts first were discovered in the late 1960s. GRBs are
electromagnetic signals that have most of their output in gamma-ray band at sub
Mev energies. They have a short duration of only tens of seconds. CGRO, Swift
and Fermi are three missions that provide us great information about these
phenomena. Table 1.1 shows the telescopes on board of these satellites with their

energy ranges.

Table 1.1. GRB missions

Mis=ion Telescope Energy range

BATSE 20kern-1000kew

CORO OS5E S0kerv- 100 e
(1991 -2000) COMPTEL 1M ev- 100 ey
EGRET 20hev-30Cev
Swift EBAT 15kerv-1500kew
(2004-present) XRT 0. 2leerv -1 Olkery
W OT 1 70hnm-600nm
Fermi LAT 20Mev-300Gev
{2005-present ) CGBM Sleev-300 e

Swift and Fermi are two ongoing missions at present. Swift is named after a bird,

which chases after insects. Swift is like a quick, small satellite that points here and

1



there to chase after GRBs. Swift instruments pick up x-ray and optical emission.
On the other hand, Fermi (formerly GLAST) looks over the whole sky all the time
and is designed to pick up at the upper end of the Swift range and beyond.

In this chapter, a background on GRB phenomena is reviewed. First, different
GRB components are introduced and their temporal and spectral properties are
discussed. Then, I briefly look at physics of GRBs. Next, two early indications
for cosmological origin of GRBs are discussed. In chapter 2, [ use Liang-Zhang
relation to constrain ACDM standard cosmology and brane-induced gravity
cosmology model. In this chapter, I briefly review a background on these two
cosmological models and discuss the formalism and result of the method to
constrain the energy components of these models using GRB observation. In
chapter 3, I analyze Swift XRT data and examine different GRB properties. Then,
GRB property correlations and their evolution are studied. In the last chapter, it is
shown how I employ the properties of thermal component of GRB prompt
emission to deduce well-correlated relations. I also argue how these relations give
physical insight to the Ghirlanda relation. At present, this relation is widely used
for cosmography. In the last section of each chapter, a prospect for future of the
work is provided.

1.1 Gamma Ray Bust components

Gamma ray burst consists of two components: prompt emission and afterglow.

In this section, first a review of different temporal and spectral properties of these

two components is given.



Prompt emission light curve happens in gamma-ray band. It is very irregular
and erratic with spiky components. A typical light curve of a BATSE GRB is

shown in Figure 1.1 (Fishman et al. 1995).
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Figure 1.1. A typical light curve of a BATSE GRB (Fishman et al. 1995).

On the other hand, afterglows are broadband, detected in the x-ray, the
optical/infrared and the radio band. X-ray afterglow is the most commonly
detected. X-ray light curve consists of four power law segments: steep decay,
shallow decay, normal decay, a fourth segment and a flaring component (Figure

1.2).
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Figure 1.2. A synthetic x-ray light curve based on the observational data from the

Swift XRT. (Zhang et al. 2006)

Prompt emission lasts tens of seconds. GRB duration usually is defined as the
time interval within which 90% of the burst fluence is detected (Tqg). Too span 5
orders of magnitude, from 102 to 10” s. The distribution of duration of GRBs is
bimodal. The bimodal distribution of duration of the BATSE GRBs is shown in
figure 1. 3. Based on this distribution, GRBs are categorized by their duration.
GRBs with duration less than 2s are considered short and GRBs with duration
greater than 2s are considered long. The typical duration of short GRBs is 0.2s.
They consist of about 25% of GRB population and most of their output is in the

soft range of gamma-ray band. The typical duration of long GRBs is 20 s. They



consist of about 75% of GRB population and most of their output is in hard range
of gamma-ray band. Short GRB are thought to be originated from the merger of
binary neutron stars while long GRBs are associated with the death and collapse

of massive stars. The typical value for GRB afterglow is 10 s.

BATSE 4B Catalog
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Teq (s2conds)
Figure 1.3. The bimodal distribution of duration of the BATSE GRBs. (Paciesas

et al. 1999)

Initially, prompt emission spectrum was considered non-thermal. Example of
prompt emission spectrum is shown in figure 1. 4. The prompt emission spectrum

is commonly fitted with a smooth broken power law, known as the Band function.
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I(< E )exp( E) (a —B)Ey = E

4 100kev " E,
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a is low energy photon spectral index, 3 is high energy photon spectral index and
Ey is the transition energy. Transition energy, Eo, is related to Peak energy of the

spectrum, E, by

E():

Typical values of a and B are -11, —2*3 respectively and E,, typically ranges

between 50 and 250kev.
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Figure 1.4. Example of prompt emission spectrum. (Amati et al. 2002)



Ryde et al. (2002) interprets the prompt emission spectrum as composite of a
thermal and a non-thermal component (figure 1.5). We discuss this discovery and
study the thermal component of prompt emission spectrum with more details in

chapter 4.
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Figure 1.5. An example of time resolved spectrum, observed by BATSE, fitted
with the two-component model: composite of a thermal and non-thermal
component. (Ryde 2005)

Afterglow continuum spectrum follows a power law.

F,occv=F
where B is a constant and v is frequency. The optical afterglow of spectrum of
GRBO030329 is shown in figure 1. 6. In chapter 4, we introduce more properties

of GRBs and study their correlation and evolution.
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Figure 1.6. The optical afterglow spectrum of GRB 030329. (Stanek et al. 2003)

1.2 GRB relativistic expansion

GRBs emit photons with very high energies. If the expansion is non-relativistic,
the optical depth, T, of photons would be too large and photons could not be

observed. This is called the compactness problem (Piran et al. 1999). The solution

is that the GRB explosion expansion is relativistic with a lower limit on the
Lorenz factor, Y. Three processes contribute to the optical depth of high energy

photons. They are annihilation of photon pairs, scattering of photon by e or ¢” of
another annihilation and scattering of photon by baryon election. In all these three

processes, for GRBs to be optically thin and decrease optical depth, a lower limit



on Lorentz factor is required (Blandford et al. 1996; Lithwick et al. 2001). This
lower limit shows that the expansion should be relativistic.
1.3 GRB Standard fireball shock model

As it is discussed in the last section, GRB material must move relativistically.
This is the first element of any GRB model. The dynamics of gamma ray burst
can be understood independently from any uncertainty about their progenitors.
GRBs are thought to be the result of a cataclysmic event leading to a
relativistically expanding fireball. (Cavallo et al.; Meszaros et al. 1999)
1.4 GRBs have cosmological origin

BATSE observation in 1991 indicated that GRBs have isotropic and
homogenous distribution and GRB redshift measurement in 1997 showed that
they are at cosmological distance. These two evidences confirmed that GRBs

have cosmological origin.

100, - 2

skl

of bursts

10}

Number
Bursts yr-' {ful

i 10 T
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Figure 1.7. The number of bursts vs. intensity distribution. (Meegan et al. 1992)



Meegan et al. (1992) shows that the number of bursts versus intensity
distribution does not quit follow -3/2 power law expected for a spatially extended

homogenous distribution (Figure 1.7).
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Figure 1.8. The angular distribution of 153 bursts in galactic coordinates.

(Meegan et al. 1992)

However, the angular distribution of 153 BATSE bursts in galactic coordinates
shows no significant deviation from isotropy (Figure 1.8). Considering these two
evidences, Meegan et al. (1992) argues that these result are inconsistent with the
spatial distribution of any known population of galactic object, but may be

consistent with the bursts being at cosmological distances. Metzger et al. (1997)
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discovered that OTJ065340+79163 is considered the optical counterpart to

GRB970508. The spectrum of OTJ065349 is shown in Figure 1.9.

rin_l_l_'_l_"-ll

F_ O ¥ e pa-? w-l He-l)

i i MR | I 1 T | 1
& i 5, 1HH) s HHI THAEK] EALEL
A LM
-]
4||:|_._._.|...|.....|..,.r
: k- i
Ll e
A iy H
5o M’NP“ I 'l h ]
= wp L . .
Fall Fe I Mgl Mgm | -.

) i i i P R 1 1 | |
AT SAH 4N 4,5 SN 3,200
EN Y

Figure 1.9. The spectrum of OTJ065349+79163. (Metzger et al. 1997)
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The lines with asterisk were identified with absorption line of some redshift
known systems. Table 1.2 shows OTJ065349+79163 absorption lines. The
presence of absorbing system along the line of sight at z=0.835 indicates that its

gamma ray burst counterpart GRB70508 is at cosmological distance.

Table 1.2. OTJ065349+79163 absorption lines. (Metzger et al. 1997)

Foac Unc. W, Une. Aust z Assignment
(A) (A) A

43025 18 13 0.3 23442 0,8354(8) Fe
43507 14 13 0.3 23745 0.8360(6) Fei
43722 15 14 0.2 23828 0.834%(5) Fa
4,746.7 17 10 0.4 2,586.7 0.8350(7) Fei
4,769.7 13 23 0.2 2,600.2 0.8344(5) Fe
48411 1.5 13 0.3 2.796.4 0.7670(5) Mg
49539 15 10 0.4 28035 0.7670(5) Mg
51304 11 27 0.2 2,796.4 0.8346(4) Mg
51440 1 30 0.2 28035 0.8348(4) Mg
52326 13 18 02 2,853.0 0.8341(5) Mg

In chapter 2, it is presented how GRBs may be used for cosmography.
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Chapter 2
CONSTRAIN FROM GRB OBSERVATION FOR COSMOLOGICAL
MODELS

Early attempts to constrain cosmological models using GRB energies were
unsuccessful (Dermer et al. 1992; Rutledge et al. 1995; Cohen et al. 1997). That is
due to the wide distribution, more than three order of magnitude, for isotropic
gamma energy and luminosity (Bloom et al. 2001).

The realization that GRB is a jetted phenomenon led to the discovery that the
collimation-corrected gamma ray prompt emission is nearly constant and can be
used for cosmography.

Bloom et al. (2003) with their sample of 29 redshift-known GRBs shows that
the apparent constancy of the geometry-corrected gamma-ray prompt emission
energy is due to the lack of homogeneity in the current 17 GRB sample of Frail et
al. (2001). They showed that this constancy is the result of compromising 20% of
their GRB sample with energies spanning three orders of magnitude.

The correlation between collimation-corrected gamma-ray prompt emission
energy, E,, and the peak energy in the rest frame prompt emission spectrum, E,
known as the Ghilanda relation is one of the less widely scattered GRB
correlations which is widely accepted and used as standard candle (Ghirlanda et
al. 2004; Friedman et al 2005; Ghirlanda 2009).

Although this correlation is a well-correlated relation, it strongly depends on

some assumptions. The most important assumptions are the unknown density of
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the circumburst medium, the efficiency of converting explosion energy to y-ray,
data selection choices for individual bursts and assumptions in error analysis
(Friedman 2005).

The Liang-Zhang relation (Liang et al. 2005) is a relation between isotropic y-
ray prompt emission energy and rest frame peak energy of prompt emission
spectrum and rest frame break time of afterglow light curve.

In Liang-Zhang relation isotropic gamma-ray prompt emission energy is
involved rather than geometry-corrected gamma-ray involved in the Ghirlanda
relation. Therefore, the two assumptions related to the geometry-corrected y-ray
energy calculation are eliminated. These two assumptions consist of the unknown
density of the circumburst medium and the efficiency of converting explosion
energy to y-rays.

Therefore, here I use the Liang-Zhang relation to constrain two cosmological
models the ACDM standard model and the Brane-induced gravity model. In
section 2.2, I review a brief definition of these two models and their cosmological
dynamics. In section 2.3, the formalism that is used to utilize the Liang-Zhang
relation for cosmography is discussed. In section 2.4, I discuss the results and
conclude in section 2.5. The prospect for this work is also addressed in this
section.

2.1 Lambda Cold Dark Matter versus Brane Induced Gravity Model

Here a brief definition of these two models and their cosmological dynamics is

14



reviewed.

The ACDM model is frequently referred to as the concordance model of big
bang cosmology. Lambda stands for the cosmological constant that is an energy
component with negative pressure and allows the late time accelerated expansion
of the universe. CDM stands for Cold Dark Matter where the dark matter is
explained as being cold. In this model, our universe is four dimensional.

The Brane-induced gravity model is a particular class of brane world models. In
this model our four dimensional universe is a membrane (called brane) embedded
into a higher (five) dimensional bulk space-time (Dvali 2000). This model
explains the late time acceleration of the universe through a large scale
modification of gravity known as leakage of gravity into extra dimension that
causes weaker gravity at cosmological distance (Deffayet 2001).

In ACDM standard cosmology model, for a given content of the universe with

total energy density p (and pressure p), the first Friedman’s equation is

2, kK _ p
H™+ a?  3M% (2.1)
where k = —1,0,1 is curvature and a is scaling factor and M, is plank mass. The

energy-momentum conservation equation for this model is

p+3H(p+p)=0 (2.2)
where
_1lda
H = —— (2.3)
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1s the Hubble constant of the universe.

In the brane-induced gravity model, the first Friedman’s equation is replaced by

2
2 4 k_ p 1.1
H® + a? ( 3M;l + ar? + Zrc> (2.4)

where 1. is crossover scale and defined by

2

r. = Mp,;
c — 2M3
(5)

(2.5)
and M(s) is the 5D reduced plank mass. In the limit where p/Mp2; > 1/12, (2.4)
results in the first Friedman’s equation for ACDM standard cosmology model and

when p/ Mgl <« 1/r?%the result is the de Sitter solution. The energy-momentum

conservation equation is the same as the one for the ACDM model.

In ACDM model the Hubble parameter is
H?(2) = H3H{Q (1 4+ 2)% + Qu(1 + 2)% + Q (1 + 2)30+@d)} (2.6)
where z is the redshift and the normalization factor is
Qe+ Qy+0Q,=1 (2.7)

While in the brane-induced gravity model, the Hubble parameter is

H?(z) = Hg

2
Q1+ 2)%+ ( Q. + \/QTC + Y. 0,1+ z)3(1+wa>> } (2.8)

and the normalization factor is

Qe+ (O + /0 F 2.0,) =1 (2.9)

)’s of matter and curvature are defined in the usual way by

0
Pa
Q —_— 2.10
a 3M12,ngag(1+w“) ( )
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QO = =% 2.11)

~ HZaZ
pY is the energy density of different components labeled by o with constant
equation of state parameters ofw,. The index, 0 , shows the current value of the
quantity.
2.2. Formalism
Here, I use Liang-Zhang relationship (Liang et al. 2005) and perform
regression analysis for a their sample of 15 gamma ray bursts (table 2.1) to search

a possible empirical relation among three observables: E), ;5,, Epand t;, . E, s,
Epand t; are isotropic y-ray energy, restframe peak energy and rest frame break

time respectively. Where

E) = E,(1+2) (2.12)
= Lo 2.13
b™ (1+2) (2.13)

The data is shown in table 2.1 with the following heading: (1) GRB name; (2)
redshift; (3) redshift error; (4) spectral peak energy; (5) spectral peak energy error
(6) low-energy spectral index; (7) low-energy spectral index error; (8) high-
energy spectral index; (9) high-energy spectral index error; (10) y-ray fluence;
(11) y-ray fluence error; (12) lower limit of BAT detector band-pass; (13) higher
limit of BAT detector band-pass; (14) afterglow break time between shallow and

normal segment; (15) break time error.
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Table2.1. GRB data table .

name

Ep

W

&g

L2 TEp Ta Ta ¥ TEy ey z ty Tty
kev  kew ergsem ™ ergsem ™ kev  kev  days days
(1) (2) (3) (4] (5] (6} (7} (8) L (10} (11} (12) (13) (14 (15
BE0T03 0.966 0.0000 254 50,5 -1.31 0.26 -2.096  0.265 22.6 2.3 20 2000 3.4 0.5
000123 1.6 0.0008 TRO.E 619 -0.59 0.08 -2.45 0.97 300 40 40 o0 204 046
0O0s10 162 0.0015 161.5 16.1 -1.23 0.05 -2.50 0.4 19 2 40 700 1.6 0.2
0o0v12 043 0.0004 [ 11 -l.88 007 248 058 6.5 0.2 40 700 1.6 0.2
091216 1.0z 0.0000 3173 634 -1.234 0005  -2184 0265 194 19 20 2000 1.2 0.4
011211 214 0.001 502 7.6 -0.54 0.00 -2.30 0.265 5.0 0.5 40 To0 1.56 002
020124 32 0.004 56.9 15.0 -7 0.15 -2.80 0.265 31 0.8 2 400 ] 0.4
020405 0.69 0.0000 1025 E38 0.00 0.25 -1.87 023 740 o7 15 2000 1.67 052
020813 1.25 0.0000 142 13 0.5 0.03 -1.57 0.035 a7.9 10 2 400 043 006
021211 1.006 0.0000 46.3 5.5 -.86 0.1 -2.158 0.2 3.5 0.1 2 00 1.4 0.5
030226 1.986 0.001 a7 20 -0.59 0.2 -2.90 0265 5.61 0.65 2 400 1.04 012
030328 L2 0001602 1263 135 114 003 -2.09 0.3 v 1.4 2 400 0.8 0.1
030325 01685  0.000004 67.9 22 -1.26 0.015 -2.28 0.055 163 10 2 400 0.5 0.1
030420 2.6564 0.0008 35 9 -1.1 0.25 -2.30 0.265 0.85 014 2 g 1.77 1

The regression model or the Liang-Zhang relationship (Liang et al. 2005) is

~

E, iso =10

where kg, kqand k, are free parameters.

ko ’kl ’k2
Efe)

(2.14)

Then the free parameters and dispersion of this relationship from observation is

determined. For each set of cosmological parameter (Q), kg, kyand k, are

evaluated for the best fit through the least y? (ﬁ) test:

[loyﬁy.iso,i(ﬁ)_lOQEy,iso,i(ﬁ)]

$2(@) = g, Losfres, 2.15)
logEy iso,i(?)
N is the number of GRB's in the GRB sample, lo gEy.isoli(ﬁ) and alzo 9y i50i(0) T€

derived from the Liang-Zhang relationship
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2

o o 2 1/2
Ep.i thi
OlogEyisoi — [(kl E{;t) + (kz K) l /lOg].O (2.16)

and logEy,iso,i(ﬁ) is calculated from the observation

N\ 47TD[2,,i(ﬁ)Sy,iki

Ey iso,i (Q) = (2.17)

1+z;
Dy, ; is luminosity distance, S, ; is the observed fluence that is energy per unit of
area detected by BAT, k; is k-correction and z; is redshift.

In the next section, it is shown that the Liang-Zhang relation can be considered
as luminosity indicator. Next, it is discussed how I use a joint probability to
compute the probability for a cosmology set, Q. Here, I use the approach
introduced in Liang et al. (2005):

1.The probability that the Liang-Zhang relationship can serve as luminosity
indicator for a given cosmology, {1 is

P,(Q) x e2i(D/2 (2.18)

where

A l Eisoiﬁ_l Eisoiﬁ
2 (@) = i, Lo rizad D t00Phiee D) 2.19)
loyEy,iso,i(ﬁ)

. ~ ) )
lo gEy'iso,i(Q) and g, 9y i50,(00) T€ evaluated with k, k; an k, for the best fit
from the empirical relation and lo gEy,isoji(ﬁ) comes from the observation.

2.The probability for parameter set QQ according to the luminosity indicator

derived for Q is
P,(2,8) o« e~23(D)/2 (2.20)
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where

2(0,0) =y, B@om@] 2.21)

o -
logEy is0,i(?)

f; = 2.5[120 + l?llogEl',,l- + lAczlogtl’,,l- — log(4n5y‘iki) + log(1 + Zl-)] —

97.45(2.22)
u; = log(Dy,;/10pc) (2.23)
1/2
2.5 JE’p’i 2 Jt;)'i 2 Usy,i 2 Uki 2 Uzi 2
on = (k) + (k) + (320) + () + ()
(2.24)

These two probabilities are independent; so, the joint probability is found via

P(Q, Q) < P, (Q)P,(Q,0) (2.25)
P(Q, ﬁ)'s are mutually exclusive (they cannot happen at the same time); therefore,
the final probability of a cosmology with the parameter set Q is computed
through summing over Q's

P(Q) x Y5P(Q,0) (2.26)
The normalization factor of the probabilities is not shown. The result for the most
probable model for each cosmology is shown in the next section.
2.3. Discussion
In the previous section, to search for a possible empirical relation and find the

regression model parameters, a multivariable regression analysis is performed.

The result of the regression analysis is shown in table 2.2. For four specific
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cosmologies, the goodness of the best fit is represented by the correlation

coefficient and significance from Spearman rank correlation analysis.

Table 2.2. Result of regression analysis

m=—1 Flat n=—1 Flat
FParameter Oy = 0340, =0.06 Qe = 023,80, = 077 Dy = 026,00, = 0.058 Oy = 0,180, =017
K 47.99 47.00 47.96 47.00
K1 191 201 104 1.99
3 -1.42 -1.42 -1.42 -1.43
Rank Correlation 0.9393 0.9303 0.53093 0.9393
Significance 2.09e-007 2.0%e-7 2.0%e-7 2.00e-7

The correlation coefficient shows how well the relation describes the relationship
between observables and significance represents the likelihood of the correlation
occurring by chance. In my evaluation, a correlation coefficient between 0.55 and
1 is considered an acceptable positive correlation and significance less than 0.001
is satisfactory. Based on the suggested criteria, for all four cosmologies positive
correlation is concluded. In Fig 2.1 and 2.2, it is shown that lo gEy.iso and
logE, ;5 have positive correlation for these four cosmologies. Therefore the

Liang-Zhang relationship can be regarded as a luminosity indicator.
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Figure 2.1. Plot of log E;5,derived from empirical relation versus calculated from
observation for ACDM standard cosmology. Left graph shows the case where a
flat universe is assumed and (), and , are 0.23 and 0.77 respectively. Right
graph shows the case where Q,, = 0.34,Q, = 0.06 and k = —1.
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Figure 2.2. Plot of log E;,derived from empirical relation versus calculated
from observation for brane-induced gravity cosmology. Left graph shows the case
where a flat universe is assumed and Q,, and €, are 0.18 and 0.17

respectively. Right graph shows the case where Q,,, = 0.26, Q,, = 0.08 and
k=-1.
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Table 2.3 and 2.4 present the result for the most probable model for each
cosmological model following the formalism outlined in the previous section.
Table 2.3 shows the result when the curvature of the universe is assumed zero and

table 2.4 is the result for the case when no assumption for curvature is considered.

Table 2.3. The most probable cosmology model with flat unverse assumption

Cosmaological model Do £y or (.. reduced %2
ACDM 0.23 ST .32
Brane-induced gravity 015 017 0.32

Table 2.4. The most probable cosmology model with no assumption for curvature

Cosmological model " pr f3y or 1., reduced %2
ACDM -1 084 0.08 0.33
Brane-induced gravity -1 0.26 0.08 0.33
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Figure 2.3 and 2.4 show the probability for each possible set of cosmology for

ACDM and bran-induced gravity model respectively.
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Figure 2.3. Probability for ACDM standard cosmology.
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Figure 2.4. Probability for brane-induced gravity cosmology.

Figure 2.5 and 2.6 show the contours of liklihood for ACDM and brane-induced

gravity model respectively.
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Figure 2.7 is the graph of distance modulus versus redshift. In this graph, solid
line and dashed line show the Hubble diagram for the most probable model of

ACDM and brane-induced gravity models when curvature of zero assumed.
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Figure 2.7. Hubble diagram for the most probable models with flat
assumption for curvature.
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The circle and dimond show the observation for former and latter cosmology.
This diagram shows that the error bars are large in comparison to the difference
between the two models and these two models are too close to be differentiated.
2.4. Conclusion and Prospect for This Work

For both cosmologies, the results for the flat universe is comparable with
Deffayet et al. (2002) results from SNIa observation. Comparing contours of
liklihood from GRB observations with figure 2.8 (countours of liklihood from
WMAP and WMAP+HST), it is apparent that with improvement in using GRB
for cosmography it might be possible to tighten the most probable model. This is

due to the vertical direction of countours of liklihood from GRB observation.

0.9 O ETTTT
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- E 3
G - ]
06 F .
05 F WMAP <
- — WMAP + HST
D.'d' :||||I|||||||||I|||||||||I|||||||||I||||||||| PRI T O O T O 111
0.1 0.2 0.3 0.4 0.5 0.6

Figure 2.8. Countours of liklihood from WMAP and WMAP+HST. (Spergel et al.
2007)
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Figure 2.9 shows distance modulus versus redshift for different cosmological

models. This graph shows that all different models follow each other closely.
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Figure 2.9. Hubble diagram for a wide range of redshift.
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Lamb et al. (2000) shows that GRBs may be visible to z~20. Therefore, |

regenerate the previous graph for this range of redshift (Figure 2.10).
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Figure 2.10. Hubble diagram for redshift range of 0-20.
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To study this range of redshift more closely, the graph of distance modulus

difference between each pair of discussed models versus redshift is produced.
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Figure 2.11. Distance modulus difference between each pair of dissussed for
redshift range of 0-20.
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The follwing is the description of each line in figure 2.11 and 2.12 which comes
later. The solid dark line is from the difference of the two ACDM models. The
solid light line is from the difference of the two brane-induced gravity model.
The dashed line is from the difference of the two cosmological models with no
assumption for curvature. The dotted line is from the difference of the two flat
models. Figure 2.12 shows the same plot in figure 2.11 over a wider range of

redshift.
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Figure 2.12. Distance modulus difference between each pair of discussed for a
wide range of redshift.

33



Currently, the average error for distance modulus is 0.271 with standard
deviation of 0.0973. With this precision the error for distance modulus is
comparable with the difference between two flat models for redshift greater than
10 but not with the difference between the two models with no assumption for
curvature over any range of redshift less than 20. For the other two differences,
there is a turning point in the middle which makes the lower and higher redshift
GRBs more critical to differentiate the models.

Expanding the sample and including more high and low redshift GRBs help to
improve the result. Another element to create a large sample of GRBs for this

study is to measure break time for GRBs that requires early infrared observation.
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Chapter 3
CORRELATIONS AND EVOLUTION OF GRB PROPERTIES

A Gamma-ray burst output consists of its prompt emission and its afterglow.
Here the GRB's prompt emission and shallow decay of its x-ray afterglow are
used to explore any correlation among prompt emission and afterglow properties
as well as possible GRB property evolution.

3.1 Introduction

Gamma-ray bursts are electromagnetic signals. They were first discovered in
the late 1960s (Klebesadel et al. 1973; Mazets et al. 1974). Prompt emission and
afterglow are the two components of a gamma-ray burst output. Prompt emission
happens in y-ray band at sub Mev energies and lasts only tens of seconds.
Afterglows are broad-band, having been detected in the x-ray, the optical/infrared
and the radio bands. X-ray afterglows are the most commonly detected and last on
average for about 10°seconds.

Looking into correlation and evolution of GRB prompt emission and afterglow
has many advantages. It helps to open windows to comprehend the physics of
GRBs and examine different GRB models. It is also possible to use GRB
correlation as an accurate redshift estimator and more importantly to constrain the
cosmological parameters. XRT flares of GRB afterglow are thought to be the
result of central engine activity. Studying this component leads us to understand
GRB flare and central engine nature.

3.2 Swift XRT data analysis
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My sample includes 28 GRBs observed by Swift. The data is taken from Swift

GRB detection archive by BAT and XRT as of October 11 (Table 3.1).

Table 3.1. Swift GRB sample

GEE T = o5 r MH H] bermal tFShallom
{eec) (10~ Tergs em=2) (U0~ Tergs cm—?) (102 cm=2) fo=c) e}
(1) (2 R (4) (5 ] (7} () ()
004164 25 467 047 ans a5 06535 100 OO0
050730 1665 238 1.52 1.8 1 .97 3000 20000
OROE02 19 a0 1.EY 149 066 171 a00 1 00000
OH080E 7.9 .5 1.35 1.8 1.98 0,422 400 00000
0510168 1 rid 0.2 6.2 4.8 09064 100 1 00000
E0108 14.% 169 0.37 1.76 017 203 450 00000
014 Ta0 461 0.53 1.40 1.72 2.30 10000 1000000
06 i R | 0.42 2 o4 4045 100 1000000
G010 55 THE 4.0 1.8% 16.4 a0 000 10000100
nEGid 1067 a4 3.6 165 13 0.1% 2008 100000
OEORITA 1072 a5k 112 164 ¥ %032 ain 100000
DEOTOE 102 484 047 1.4 15 2.4 ) E000AN
00T 14 115 8.3 LET 1.87 1.89 271 a00 100000
(L= ] 116.3 6.1 11 .14 1 0.54 a50 2000000
GE0E 14 145.3 145 2,59 167 ¥ 084 400 1 00000
E1121 1.4 137 1.%9 2.25 2.3 1.314 200 F0O0000
OraE0e LR RS Q.86 220 3.9 1.497 a00 1000000
[ =1 0.9 155 273 2,05 3.8 052 100 00000
o2l 3749 &1 T a1 T 055% 00 S0000
=411 56 264 1 .14 15 1.0% 4000 2000000
030413E &0 a2 1 ans a4 1.10 S A000H
[@odan 162 12 i 242 .46 0750 a0 0000
EOE1E 58 26 o4 R i1 3.4 100 S0000
[B0E10 106 46 2 1.88 0328 335 a00 1 0000
Q80%05B 128 18 2 1.4% 132 2374 200 AD00a0
& 1007 10 T 08 3 6.6 0.5205 200 1000000
(& 1025 ar i1 2 149 027 3847 2000 1 00000
0en102 T 068 0.0% 1.8 T 1545 &0 00000
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The data is shown in table 3.1 with the following heading: (1) GRB name; (2)
BAT Tog; (3) y-ray fluence; (4) y-ray fluence error; (5) low-energy spectral index;
(6) low-energy spectral index error; (7) redshift; (8) start time of normal segment;
(9) end time of shallow segment. This sample is selected out of 65 GRBs. The
sample only includes the redshift-known GRBs that have a well-defined XRT
lightcurve and feature both shallow and normal decay in their x-ray afterglow
light curves. Shallow and normal decay are two of the five Gamma-Ray Burst
XRT light curve segments (Zhang et al. 2006) . These segments have typical
slopes of -0.5 and -1.2 respectively. The time where shallow and normal segment
meet is called break time. Break time is stated in GRB rest frame throughout this
paper. Another component of Gamma-Ray Burst XRT light curve, appearing in
roughly 50% of GRBs, is called flare. Seven GRBs of our sample contain one or
more flares.

The reduced data for X-ray afterglow light curve of each GRB is taken from
Swift Data Product of UNLV GRB group (
http://grb.physics.unlv.edu/~xrt/xrtweb/web/sum.html). In this section, the fit
function for XRT light curves and their flares are introduced.

To study XRT light curve and extract different GRB properties, the light curve

is fitted with a smooth broken power-law:

1/w

L = Lo((xpt)* + (xpt)P®) (3.1)

where
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X, = — (3.2)

tp
t, is the break time between shallow and normal decay segments and w describes
sharpness of the break that is taken to be one here. L, , @ and 8 are other fitting
parameters. Table 3.2 contains smooth broken power-law fitting parameters for
XRT light curve of each GRB and their errors. Table 3.2 also reports the y2of

each fit. Figure 3.1 displays the fit for each light curve.
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Figure 3.1. Smooth broken power-law fit for GRB XRT lightcurves
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Table 3.2. Smooth broken power-law fitting parameters for XRT light curves.

GHB Lp Try T oz, o T ag ¥
(ergs secm1)  (ergs sec™l)  (s2c7!) isecl)

DE04164 A.01EH4E ATEE+4E 1LEOE-0F  1.81E-03 083 017 086 008 093
00730 1.01E+49 1LE4E+48 BEIE-0L  E49E-05 032 016 2E3 008 124
DE0E02 2E4EHT 4 2EE-+H4E 2.05E-04 419E-05 D49 004 197 08 118
DEOA0E 1L2EH4E 1.04E+45 6.2E-05  484E-06 036 003 286 015 283

E101ER 1.59E+45 T.E1E+44 2EE-04 20ZE-04 D07 04 114 D16 11
0108 LEEEHE AIEH48 182E-0d 1.16E-0d4 014 014 151 023 10
0124 L EIEHAT 1LYEE+4T 348E-05 17IE-08 076 013 1495 016 120
(E0206 1LAEE+48 L EIEH4T 1.0EE-0F 42104 048 008 131 008 104
0210 304EH4T 4 AEE-HT 218E-0d 1L0EE-04 D49 012 151 009 113

DEMS0TA L43E+43 6. 20E+46 2EE0L  493E-06 043 001 502 021 380
a6 14 2BBE+44 I 11E+43 149E-05  1.68E-06 016 005 229 011 114
DE0708 L E0EH4E 32346 681E-04  &E51E-04 013 093 133 01v 14y
BE07 14 EAEEHAT QBUEH4T gaeE-04  &03E-04 027 0iE 1487 01k 11y
(E0720 1L.EAEH4E BABE+44 181E-05  1.2YE-6 042 002 154 0083 208
0814 L9EHE 2EEEH45 4E-05  3JA0E-08 0B 002 272 02r 393
1121 LAGE4HAT 1L3ZE+46 Q.00E-05  B.EIE-06 041 002 191 008 219
(70306 LIZEH4T B.EYE+45 612E-05  521E-06 017 003 210 008 143
DY0s08 2 E4EH42 AAPEA44T A0E-0F  464E-04 021 008 139 0 108
oyos21 1LTOEH4E AS0EA445 Ay8E-05  1.7ZE-0 088 004 233 031 113
[E0411 TA4EHAT QELEH4T 27IE-04  1.08E-04 041 018 133 0d 1o

DE0415E 8. 21EH47 LY1E-H47 3.33E-0F  1B53E-03 013 032 10v 005 133
[E0420 3. EEH45 1LA9E+45 1.86E-05 9.23E-0& 050 006 144 016 129
DE0516 A O0EH4E 1E81E+46 2MEE-04  903E-08 040 008 200 058 0GR
[E0310 1LO1IE+42 B.O1E+447 TETE-OL  3O7E-04 052 0l 1T 0 108

OENSIEE 1LEEH48 ATOE4+4T BEOE-04  1.43E-04 015 0008 168 008 1&3
E1007 & 03E+44 3EZEH44 1LE2E-05  8.96E-06 067 005 184 025 1433
[E1020 LTIEH4T 2ETEHE 211E-d 168E-05  4.52 056 042 008 125

0102 4. 33E+46 1.36E+46 TAOEOS  40E-05 087 008 192 1% 136

Using the fitting parameter from table 3.2, luminosity at break time is calculated
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1/w

L, = LO((xbtb)aw + (xbtb)ﬁw)_ (3.3)

The results for L, and its error are shown in table 3.3.

Table 3.3. GRB luminosity at break time

GREB = TobReiF rame ty L oat 1y oy ak by
{moc) {e=c)  (ergesec=!)  (ergs sec!)
i1 i2) (%) i) 5) (4]
0504164 065 151 GEE.28 LO1E+AE 2A0E+46
080730 .07 31.49 171605 EOMEH4E T.I0E+AT
(50802 1.7 T 3304 60 1A2EHAT 218E+46
080803 0.42 a1.81 1502381 EOZEHAS EA0EA+-44
G1016B  0.94 2.07 aT19.63 TOTE+44d TA0E+-44
OE10s 2.0% 4.72 548842 LAFEAAE 1L21E+46
0e0i24 230 2a7.2r 20594.20 LA0EHAT BA0E+46
OECE206 4.05 151 G030 ETAEHAT LAEE+HAT
=LA L] 3.01 51.03 459424 AATEHAT 223E+-4T
0&0EO0TA  3.08 a5.04 481164 TALTEHAT L11E+-46
Oessid 013 96,37 A7140.24 LASE+44 1LEGE+43
OEOT0E .30 3.09 241987 1L.A2E+46 0.99E+-45
oeovid anl 3100 112826 LESEHAT 1LAME+AT
OE0Tad 0.54 TABT SEE15.1% T.RIEHAS 4.32E+44
OeEi1d4 084 Ta.a7 14030,31 1LASE+4B LATE+HAE
061121 1.3 45.13 10101.96 TAREHAE ESEEA-AE
006 1.50 83.00 16323.20 EREE+H4E 435E+45
OTos0s 0.82 11.458 320,12 1LA2E+48 1LEEE+AT
okl 0.55 24.40 11388 51 BANEAAE 215E+-45
0=0411 1.0% 7.5 510.06 FERIEHAT 1.28E+47
@413 1.10 381 28356 BEOEHAT 1LESE+AT
(50430 .76 g1 5186144 1.53E+45 EASEA4-44
=0516 3.20 1.38 4T0.a7 LASE+46 0OTE+4S
=E10 335 2437 130352 BOSEHAT ZAEE+HAT
(80205B 237 3704 178504 BOTEHAT 235E+HAT
=107 0.53 654 GET1E.58 T01E+44 191E+44
(510624 .88 55.70 ATRO. 4T BMEHAE 1.33E+46
0@ii02 155 1060 136598.59 LATE446 1E8E 46
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The data is shown in table 3.3 with the following heading: (1) GRB name; (2)
redshift ; (3) Tgo in the rest frame of the GRB; (4) break time; (5) luminosity at
break time; (6) the error of luminosity at break time.

Another GRB property which is evaluated from XRT light curve is Epjqtequ-
Epiateay 18 the total energy emitted during the shallow decay (plateau). Epjqtequ
is calculated through

Eptatean = Jyy L(D) dt (3.4)
where ¢t 1s the lower point of shallow segment and t;, is the upper point of
shallow segment which is called break time. L(t) is luminosity. The results for
Epiatequ and its error are shown in table 3.4. The data is shown in table 3.3 with
the following heading: (1) GRB name; (2) redshift ; (3) Tqq in the rest frame of
the GRB; (4) Epatequ for normal decay segment; (5) the error for Epjgteqqy for
normal decay.

To investigate XRT flare properties, a Gaussian function is used as fitting
function. p, o and A are the fitting parameters and represent the mean, standard
deviation and total area of the Gaussian curve. Table 3.5 contains the fitting
parameters of the fit along with the y? for each flare fit. The data is shown in
table 3.5 with the following heading: (1) GRB name; (2) the number of XRT
flares visually detected on GRB light curve from left ; (3) constant; (4) mean of

the fitted Gaussian curve ; (5) sigma of the fitted Gaussian curve; (6) the total area
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of the fitted Gaussian curve; (7) y2. Figure 3.2 shows the Gaussian fit to the flares

of XRT light curves.
Table 3.4. Afterglow plateau energy
CRE E TonfereFrame  Eplatean TEpagaa,
fmec) (=ra=) (ergs)
(1) i) 3 (4 (s}
CEO4LEA 055 151 JUEEH4)  120E 448
050730 487 31.49 DHE451  LEIEHED
ostEn 1 7.01 L15E+451  207E449
050808 042 g181 BOOE45) 5 11E+48
0510168 .04 2oy L d4EH48 A B1IEHAT
060108 208 472 2GE450  LEEEH49
060124 230 20727 LIE+52  LTIEHED
060206 A5 151 LOTE451  S.EIE449
060210 401 5109 TEEE4EL  ERIEL4
OGOBOTA 408 25,04 SWE+S]  LEIEHED
060614 0,13 96,37 1LATE4H49 3.72EAAT
OB0TE 2.30 .00 GME+49 481E+48
0TI 27 31,00 4FE+S)  17SE+49
060729 054 8T TATE4S)  0.63E-448
0B0E14 084 78.07 EUTE4E)  144E 449
061121 18 3519 LRIE4E]  262E440
070006 150 81,00 L7IE+51  36IE440
[ 0.82 11.48 EBEE4E0  T.10E448
070E2L 00553 24.40 SAOE45)  86SE-H48
080411 108 2750 LOSE451 3. 7IEH49
WOLIE 11 181 LBE450  37IEH48
080490 0,780 6. 2AIE4E)  BESEH48
080516 4.9 1.38 JASE4E)  1HE 40
080s10 135 24.57 1.88E+51  G.DEE449
WO0EE 2374 37.04 2WE4S]  BSIEH4
0ELO0T 05205 654 SAEE44)  30TE-4H48
0810 3847 5570 SEIE4E) 8 .20E+49
00102 1548 10,60 L85E451  48EEH40
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Table 3.5 Gaussian fit parameters for GRB XRT flares

GRB # of Hare constant it T area 2
(ergfsec)  (sec)  (sec)  (ergs)

(1) (2) (3) (4) (5) (6) (7)
050730 1 3.60E+49 4649 -0.84 -G41E449 530
050730 2 1.61E+49  B6.62 7.80 T.83E4+50 9.99
050730 3 1.82E+49  138.05 3.26 1.26E+450 9.50
060124 1 231E450 17339 4.00 1.14E452 21.31
060124 2 2.70E450  213.69  3.69 5.56E+51 G.48

060607A 1 4.23E4+49 2532 1.38 513E+50 7.56
060607A 2 3.20E+49  63.54 4.05 1.16E451 9.39
060714 1 1.0TE449 3749 2.26 3.90E4-50 4,86
060714 2 Z14E4+49 4704 1.84 3.05E+50 3.00
060729 1 LO4AE+49 11762 4.17 5.98E4+49 5.12
060514 1 2.75E4+49 7215 213 9.59E+49 5.67
080810 1 1.OTE449  49.82 2.34 1.47TE+50 6.99

To study the flares with respect to the underlying XRT light curve power-law,
a "Ratio" is defined. If t,,,, 1s the time where flare's Gaussian fit is maximum,
"Ratio" is defined as:

Ratio — Lflare(tmax) (35)

power—law(tmax)
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where Lfigre (Emax) and Lyower—1aw (Emax) are flare Gaussian fit at t,,4,.and
Underlying power-law fit at t,,,,, respectively. The results for the ratio and
corresponding luminosities are presented in table 3.6. The data is shown in table
3.5 with the following heading: (1) GRB name; (2) the number of XRT flares
visually detected on GRB light curve from left ; (3) redshift; (4) Tqq in the rest
frame of the GRB ; (5) value of the flare Gaussian fit at the mean of the fitted
Gaussian curve for the flare; (6) value of the underlying powerlaw at the mean of

the fitted Gaussian curve for the flare; (7) Ratio of (5) over (6).

Table3.6 XRT flare and light curve comparison by “Ratio”

GREB # of flare Redshift To0RestFrame Lpiare Lt dertying Dightonrs Ratio
(sec) (erg/sec) (erg/sec)

(1)= @® (3)° (4)4 (5) (6)E (7)E
050730 1 3.97 31.49 6.67E449 3.26E449 2.05
050730 2 3.97 31.49 5.61E4+49 2.66E449 2.11
050730 3 3.97 31.49 3.37E+49 2.28E449 1.48
060124 1 2.30 227.41 1.32E449 1.34E+451 101.71
060124 2 2.30 227.41 1.12E+49 8.7T1E4+50 77.46

060607TA 1 3.082 25.04 1.90E+450 1.34E449 14.14
060607A 2 3.082 25.04 1.46E+50 9.01E448 16.21
060714 1 271 31.00 1.26E+48 1L10E450 87.31
060714 2 D71 31.00 1.17TE+48 8.7TE449 75.13
060729 1 0.54 T4.87 3.14E4-46 1.61E4+49 513.17
0605814 1 0.84 78.97 3.TTE+47 4.55E449 120.67
080810 1 3.35 24.37 5.50E+48 3.57E449 6.50

48



GREXSOTE ]

Figure 3.2. Gaussian fit to XRT flares.

49



||||||||||||||||||||||||||||||

Figure 3.2. Continued.
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3.3 Correlations between GRB properties

Correlations among GRB properties are evaluated by Spearman’s rank
correlation method. Correlation coefficient, p, and significance (null hypothesis
probability) ,r, are the two parameters that describe this method. In our evaluation,
correlation coefficient between 0.55 and 1 with a significance less than 0.001 is
satisfactory for a positive correlation. Furthermore, correlation coefficient
between -0.55 and -1 with a significance less than 0.001 yields negative
correlation. Based on these criteria, the following correlations are concluded:

1- Central engine average y-ray luminosity, Zy, and total isotropic emission

energy in the y-ray prompt emission, E,, ;5, have positive correlation (Figure 3.3).

L, comes from

L,=—to (4.6)

T90,Rest Frame

Where

__Tyo
T9O,Rest Frame — 7 (4-7)

Also, no correlation is shown between E, ;5, and Tqq. Therefore, the above
correlation shows that more energetic central engine is due to intrinsically higher
brightness not longer duration.

2-Total energy emitted during the shallow decay, Ep;4¢equ. and total isotropic
emission energy in the y-ray prompt emission , E,, ;5, have positive correlation

(Figure 3.4). This means that a more energetic central engine yields a more
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energetic afterglow. This result is consistent with similar radiative efficiency for

all kinds of bursts, short and long (Zhang et al. 2007).
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Figure 3.3. Central engine energy against central engine brightness.
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Figure 3.4. Plateau energy against estimated isotropic energy
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3-Luminosity at break time and break time have negative correlation (Figure 3.5).
Break time could be estimated as shallow decay duration. Therefore, this negative
correlation shows that luminosity at break time decreases as shallow decay

duration increases.

1{]"-9 T T T T T TT7T T T T T T TT1 T T T T T 17171

-
S
I
HH
I

i

Luminosity at t, (erg/sec)

f b

I'D_ 1 1 1 1 1 111 | 1 1 1 11 111 | 1 1 1 1 1
10° 10° 10* 10°
t, (sec)

Figure 3.5. Break time luminosity against breaktime
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3.4 Evolution of GRB properties

Correlations between GRB properties and redshift are also evaluated by
Spearman’s rank correlation method. The criteria for correlation are the same as
described in the previous section. The following are the existing correlation based
on our evaluation:

1-Epjatean and redshift are positively correlated (Figure 3.6). This means that

GRB afterglow energy increases with redshift.

2-Both E,, ;5, and EV are also positively correlated with redshift. Figure 3.7
and 3.8 show the graph of E,, ;5, and Zy versus redshift respectively. However,
this increase of E), ;5, and Zy with redshift could be due to instrumental flux
threshold (Liang et al. 2007). Maximum redshift for a given luminosity is

determined by:

Fep = ar Zmax (3-8)
Zmax 18 maximum redshift for a given burst with luminosity L and Fyj, is the
instrumental flux threshold. So for higher redshift, the detectable luminosity

increases given the same flux threshold of the detector.
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Figure 3.6. Plateau energy against redshift
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Figure 3.7. Central engine energy against redshift
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Figure 3.8. Central engine brightness against redshift

3.5 Discussion

58



In the previous section some GRB property correlations and some GRB
property evolution are identified. However, some other correlations and
evolutions especially the ones that the defined "Ratio" is involved are hard to
assert. For these cases, the correlation coefficient and significance value are close
to the values of the suggested criteria and including more GRBs with recognizable
flare will validates or disqualifies the relations.

3.6 Conclusion

In this chapter, I examine GRB property correlations and their evolution. some
GRB flare-based quantities are also introduced and their correlation with GRB
properties and their evolution are studied. The correlation between average
luminosity and isotropic y-ray energy, energy of plateau and isotropic y-ray
energy and luminosity at break time and break time and evolution of plateau
energy are well established. It is also realized that the apparent evolution of
isotropic y-ray energy and average luminosity is due to the instrumental flux
threshold. Expanding the GRB sample and including more GRBs with XRT flares
will provide a chance to reevaluate the discussed correlations and confirm or rule
out the hard to assert result due to the limited number of data especially in the

cases where x-ray afterglow flare is involved.
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Chapter 4
IN SEARCH FOR A RELATION WITH PHYSICAL ORIGIN FOR GRBS

Gamma-ray burst observations provide a great opportunity for cosmography in
high redshift. Some tight GRB correlations are already known. The relations with
physical origin will have a better potential to utilize GRBs for cosmography. We
show here, that analyzing the thermal component of the GRB prompt emission
leads us to well-correlated relations. I also perform Monte Carlo tests and show
that these correlations are acceptably insensitive to our assumptions. Our
correlation looks similar to Ghirlanda's in quality, and provides some physical
insights to this relation.
4.1 Introduction

The prompt emission of gamma-ray bursts is commonly modeled as a smoothly
broken power law which has been known as the Band function (Band et al. 1993).
It was first known that the spectra of Gamma-ray bursts have a non-thermal
character over a broad energy range (Fishman & Meegan 1995). This was found
to be consistent with the predictions of optically-thin synchrotron emission from a
power-law distribution of energetic, relativistic electrons (Katz et al. 1994, Tavani
et al. 1996). In spite its success; there are difficulties that the purely non-thermal
emission models face (Ghirlanda et al 2003). Introducing an additional optically-
thick thermal component that may contribute to the spectrum helps correcting
these issues (Meszaros et al. 2002). Ryde et al. (2002) identified a few bursts
which are consistent with thermal emission throughout the burst. These bursts
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were interpreted as the bursts in which the initial conditions are such that the
optically-thick thermal photospheric emission component dominates over the
optically-thin emission from the dissipated energy. Therefore, the prompt
emission spectrum is interpreted as a composite of a thermal component in
addition to the non-thermal one.

Most GRB outflow models assume a single non-thermal dominant component.
Thompson et al. (2007) assumes that a second thermal component is essential for
undersatnding of the prompt emission of GRBs. They demonstrate that this quasi-
thermal model has implications for limitimg the GRB jet Lorenz factor and the
mass and radius of the stellar progenitor. The Amati,Ghirlanda, Fermani and
Liang & Zhang correlations are also studied within the context of thermalization
in relativistic outflow.

In this chapter, I examine the physical properties of GRB thermal component in
order to search for a physically motivated correlation among GRB properties. In
section 4.2, the physics of blackbody radiation is employed and GRB thermal
component flux is calculated. The flux is also estimated for this component. In
section 4.3, the analysis of the relations deduced in section 4.2 is presented. I use
the Spearman rank correlation analysis to evaluate these relations. I also study the
best linear fit for each relation. The derived relations depend on three scaling
factors. In section 4.4, the Monte Carlo test is used to examine the sensitivity of
my analysis to these scaling factors. I also discuss the implication of these

relations. I conclude in section 4.5.
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4.2 Thermal emisson component in GRB prompt emission

The Stefan-Boltzmann law states that the power emitted per unit area of the
surface of a thermal (blackbody) radiation is directly proportional to the fourth
power of its absolute temperature. That is

Fgp = oT* 4.1)

where Fgp is the power radiated isotropically per unit area by blackbody surface
and T is the temperature and ¢ = 5.67 X 10"8Wm™2K ~* is the Stefan-
Boltzmann constant. Wien's displacement law states that there is an inverse
relationship between the wavelength of the peak of the emission of a black body

and its absolute temperature. That is

b
Amax = T (4.2)

where A,,,,, 1S the peak wavelength, T is the absolute temperature of the
blackbody and b = 2.90 X 10~3mK is Wien's displacement constant. By

substituting T from (4.2) into (4.1)

bo\%
Fop = 0 ( ) (4.3)
The peak wavelength, 1,,,,, and the peak energy of the blackbody component,

Epeak,pp, are related through

=< (4.4)

Epeak,BB

/1max

Where ¢ = 3 X 108ms ™1 is speed of light and h = 6.63 x 1073%js is Planck's

constant. By substituting (4.4) into (4.3)
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Fas = o (b 2zecien)’ (4.5)

The gamma-ray power radiated per unit area by the thermal and non-thermal

component of GRB, 13'[51' E,] can approximately be estimated as

=] _ Eiso,[El,Ez]
F[El'EZ] - 47TR2T90/(1+Z) (4'6)

where Ty is the time interval whitin which 90% of the burst fluence is detected
and R is the photospheric radius where the thermal radiation occurs. [Ey, E,] is the
co-moving bandpass and Ej, g, £,] 1S the estimated isotropic gamma-ray energy

radiating from GRB. That is

4mkDE S|

Eiso,[El,EZ] - (1+Ze)1,e2] (47)

where D; is the luminosity distance at the redshift z, k is a k-correction factor to
correct the observed gamma-ray fluence at an observed bandpass [e;, e,] to a
given bandpass in the cosmological rest frame [E;, E,].

To eliminate the uncertainty due to the k-correction in Ej, g, £, calculation,
the more accurate estimation of the flux comes from the fluence in the detector
bandpass [ey, ;]

Py _ 4TD}S(e, e,)/(142)
(ELE2] — T amR2Toy/(142)

(4.8)

where Ef = e;(1 + z) and E; = e,(1 + z) and S}, _,] is the detector bandpass
fluence.
Fig: g51,88 also can be calculated from the integral of the Planck function over

co-moving gamma-ray bandpass.
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E*
FBB,[EI,E;] =T EZ BV (T)dv (49)

1
where

2hv3/c?

Bv (T) - exp(hv/KT)-1

(4.10)

is the Plank function and k = 1.38 X 10723m?kgs~2K ! is the Boltzmann

constant and v is the frequency of radiated photon. Substituting (4.4) into (4.2)

b
T = aEpeak,BB (4.11)

and replacing hv by E in (4.10)

_ 2E3/c?h?

Bg(T) = exp(chE /kbEpeak,pp)—1 (4.12)
and substituting it into (4.9) results in a new form of the Plank function.
Therefore,

_ E; 2E3/c?h3
Fo e e) =T fE1 exp(chE/kbEpeakpp)—1 dE (4.13)

All the above fluxes are calculated or estimated at the photosphere of the burst.
In the next section, I introduce some scaling factors. By assuming a representative
value for each constant, I look into the correlation between calculated and
estimated thermal flux. I later examine the sensitivity of my analysis to these
scaling factors.

4.3 Analysis

I peform my analysis for three samples of GRBs: a sample of Swift, a sample

of pre-Swift and a sample consisting of the two preceding samples. For the

sample of Swift GRBs, I use the Butler et al. (2007) catalog. My sample contains
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27 redshift known GRBs with defined upper and lower limits of peak energy from

the catalog.

Table 4.1. Swift GRB Sample

GRB z Tag oy, S[15,360] T8 )16 550] o oot a Thcta® Epeak  TEpea”  ©l el
() (=1 (10~ %rgs em™2) (10~ %rgs em™2) (keV') (k')

(8] (2) (3) (4 (5) (6] (7 (8) 9 (1) (11} (1z) (13)  (14)
050318 1.44 3 0.1 1.41 0.11 -1.2 0.4 -2.3 0.46 50 10 15 350
050406 2.44 5 1 0.071 0.011 3 2.45 -2.3 .46 25 21.79 15 350
050525 0.61 9.1 0.07 15.6 0.3 -0.5 0.1 -2.3 0.46 &1 F 15 350
050514 5.3 28 3 0.5 0.1 0 1 -2.3 0,46 64 36.33 15 350
050022 2,198 4.6 0.2 2.7 0.24 -1 0.3 -2.3 0.46 153 121.18 15 350
051109a 2.346 4.9 0.5 1.56 0.11 1 1.73 =201 0079 110 106,92 15 350
0511098 0.08 8.3 0.7 017 0,024 o] 141 -2.3 0.46 50 14.14 15 350
051111 1.55 17 1 7 0.75 -1 0.3 -2.3 0.46 233 184.07 15 350
060115 3.53 110 1 1.9 0.24 -1.1 0.6 -2.3 0.46 65 25.40 15 350
060124 2,206 8.2 0.3 Q.45 0.03 5] 2 -2.01 0,20 &3 92.09 15 350
060206 4045 6.1 0.3 1.04 0,030 -1.2 0.3 -2.3 0.46 53 23.66 15 350
060218 0.0331 1258 4 0.79 0.12 0.5 1.005 -2.3 0.46 41 2258 15 350
060223a 4.41 3.4 0.4 0.68 0.0875 -1 0.6 -2.3 0,46 5 20,585 15 350
0604250 0.348 20 1 0.36 0.05 5 51 -3.1 0.55 20 10,95 15 350
0605106 4.9 230 4 4.4 0.49 -1.4 0.4 -2.3 0.46 TE 34.64 15 350
060522 511 T4 4 1.2 0.25 -0.7 0.59 -2.3 0.46 a0 TE.06 15 350
060605 3.78 14 1 0.61 0.12 -0.3 0.79 -2.3 0.46 142 133.08 15 380
06060Ta 3082 103 4 3T 0.45 -1 0.3 -2.3 0.46 139 94.54 15 350
060707 3.425 7h 3 1.9 0.37 0.7 0.5 -2.3 0.46 G4 18.71 15 350
060705 1.8 7.5 0.8 0.65 0,034 -1 0.5 -2.3 0.46 ] 58,45 15 350
0609048 0703 752 0.4 1.9 0.39 -1 0.7 -2.3 0.46 83 56.57 15 50
060005 2,43 15.5 0.3 4.1 0.4 0.8 0.3 -2.3 0.46 161 E2.14 15 350
060927 5.6 23 0.4 1.32 0.19 0.8 04 -23 046 73 16.61 15 350
070208 1.165 52 1 0.57 011 0 L41 -2.3 0.46 G6 T6.86 15 350
070419 0.97 160 14 0.54 0.085 0 2 -2.3 0.46 r 17.43 15 350
070506 2.31 3.6 0.3 0.2 0.01 5 3 -2.01 0.06 71 48.73 15 350
070508 0.82 219 0.4 33 1 x| 0.1 -2.3 046 208 BEE.82 18 350

* when asymetric errors are reported, 0 = Voo~ is assumed.
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The data is shown in table 4.1 with the following heading: (1) GRB name; (2)

redshift; (3) BAT Tqg; (4) BAT Ty error; (5) y-ray fluence; (6) y-ray fluence

error; (7) low-energy spectral index; (8) low-energy spectral index error; (9) high-

energy spectral index; (10) high-energy spectral index error; (11) spectral peak

energy; (12) spectral peak energy error; (13) lower limit of BAT detector band-

pass; (14) higher limit of BAT detector band-pass.

Table 4.2. Pre-Swift Data Sample

GRE z Tao S|¢1 3] TS pen,e) o i 2 Theta  Epean a2
(=) (10~ %ergs em™2) (10_691-@:5 em™2) (keV')

970228 0.695 a0 i1 1 -1.54 008 28 0.4 115 700
970828 0.057  146.50 06 9 -0 008 -207 037 208 2000
971214 3.42 a5 8.8 0.9 -0.76 01 2T 1.1 155 700
980425 00085 37.41 3.8 0.4 -1.266 043 -23 0.46 118 2000
930613 1.096 20 1 0.2 -143 024 27 0.6 03 700
980703 0.866 10237 23 2 -1.31 014 239 026 255 2000
990123 16 100 aoo 40 -0.80 008 245 007 751 700
900506 13066 220,38 190 20 -1.37 0DAs -Z15 0 038 283 2000
200510 1.619 ] 19 2 -123 nos o -2 0.4 163 700
Qa0T05 0.543 42 ] a8 -1.05 0.21 -2.2 01 159 oo
990712 0.43 20 6.5 0.3 -LB8 007 -248 056 G5 700
991216 1.02 249 190 20 -1.234 013 <218 039 318 2000
000131 4.5 1101 42 4 -0.688 008 -20Y 037 130 2000
000214 0.42 10 14 0.4 -162 013 21 0.0 a2 700
000911 1.0558 500 220 20 -111 012 -z32 04l 579 8000
010222 1.473 130 a3 3 -1.35 018 -164 002 358 To0
010521 0.45 M6 10 1 -148 016 23 0.0 106 700
020124 3.2 TE.G 6.8 0.7 -1.0 011 -23 041 110 400
020405 0.65 0] T4 T -0L0 0.25 -1.87 0.23 364 2000
020813 1.25 a0 100 10 -los 011 23 0.0 211 400
021211 1.01 241 22 0.2 -0.85 008 -237 D42 47 400
030226 1.098 TE.8 6.4 0.6 -0.05 0.1 -2.3 0.0 108 400
030328 1.52 140 26 2 -1.0 011 -23 0.0 110 400
030328 01685 23 110 10 -1.26 002 -2.28 005 63 400
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For pre-Swift GRBs, Ghirlanda et al. (2004) data is used. In my sample, I
eliminate the GRBs whose spectral indices, peak energy, duration or fluence is
missing. The data is shown in table 4.2. This sample consists of 24 pre-Swift
GRBs. It should be noted that all GRBs in my samples are considered long.

Not all physical quantities involved in the calculated and estimated fluxes
derived in section 4.2 are known. To use these equations, we consider the
following assumptions:

First, Ryde et al. (2009) finds that for their sample of 56 long BATSE GRBs
the ratio of the thermal (blackbody) flux over the total flux is approximately 30%-
50%. The thermal flux is the bolometric integrated blackbody flux and the total
flux is integrated over the energy band ~25-1900 kev. Therefore, the ratio found
is the upper limit to the true unknown bolometric ratio. Ryde et al. (2009) also
notes that this ratio varies in time and no strong trend is observed. Here, I assume
40% for the ratio

Fpp [E,5,] = AFE, B, (4.16)
where A = 0.4.

Second, the photospheric radius is the radius above which the flow becomes
optically thin to scattering by the baryon related electrons. All of the GRBs in our
sample are considered long. Long GRBs are associated with the death of massive
stars. Typical the radius of a massive star is 10-100R . Also, Pe'er et al. (2010b)

shows that the photospheric radius of GRB090902B, which is also considered to
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be a long GRB, is roughly 6.1 — 7.8 X 10%m. Here, I take a representative
photospheric radius to be 10Rg

R = CRg (4.15)
where Rg = 6.955 X 108m and C = 10. Later in section 4.4, the estimation of
photospheric radius is discussed in more details.

Third, Ryde et al. (2009) also shows that the peak energy of GRB
spectra, Epeqr, is defined by the thermal component peak energy, Epeqr pp -
However, they do not necessarily coincide. Combination the of thermal
component with the positively-sloped power law non-thermal component shifts
the peak energy of GRB thermal component to a higher energy. Therefore, I make
the assumption that E} . pp is a large fraction of E, 4 in the range of ~80%-
100%. Here I take 90% for this fraction.

Epeakpp = DEpear (4.16)
where D = 0.90.

Some of the above assumptions may seem to be the result of
oversimplification. However, I carefully consider the possible range for each
scaling factor. Then in the next section, I apply a Monte Carlo test and evaluate
my correlation results.

Some remarks about my notation might be helpful. All F's are the flux from
either Planck's law integration or the Stefen-Boltzman law which is the result of
integration of Planck' law over the full range of spectrum and all the F's are from

the flux estimation. Any quantity for the thermal component is shown by a BB
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index. If no index is shown, it means that quantity belongs to combination of
thermal and non-thermal component. Also if a specific range of energy does not
come in the index of a quantity, that quantity is bolometric. In this work, I
evaluate the following relations:

1- Applying the third assumption, (4.5) results in the bolometric integrated
blackbody flux

(4.17)

DEpeak(1+z))4

FBB - G(b ch

DEyeqr (1 + z) replaces the comoving peak energy for the thermal component.
Epear 1s peak energy of GRB spectra. From equation (4.6) and applying the first

and second assumption, the estimated flux for co-moving bandpass 1 — 10* kev
is

E; 4

PN [1kev,10*kev]

P — 4 —soltkeviokev] 4.18
BB,[1kev,10%*kev| 4TC2R2Toy/(1+2) ( )

and

Eiso,[lkev,lo‘l'kev]

Fgp = AB 4TC2R2Ty/(1+2)

(4.19)

where Fgp is the estimated thermal flux and B is the ratio of bolometric thermal

flux over isotropic gamma-ray flux for co-moving bandpass 1 — 10* kev

B=—_f88 (4.20)

Fpp [1kev,10%kev]
where

- f104kev 2E3/c%h3
1kev  exp(chE/KkbDEpeqx(1+2))—1

FBB,[lkev,104kev] =

dE 4.21)
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B equals to one to 5 degrees of magnitude. Therefore, co-moving bandpass 1-10*

kev is considered as bolometric bandpass for GRBs.

E.
A iso,[1kev,10%kev]
Fgp =4 4TC2R2Tyg/(1+2) (4.22)

By comparing (4.17) and (4.21), it is apparent that gamma-ray isotropic enery
is directly proportional to the fourth power of comoving peak energy if the
correlation between Fgp and Fgp exists.

2- Use of K-correction in calculation of Ejs, g, ,] Causes uncertainty in the
flux calculation. Bloom et al. (2001) shows, the typical estimated uncertainty on a
given k-corrected energy is ~20%. To eliminate this source of uncertainty, I use
the flux in the co-moving bandpass [e; (1 + z),e,(1 + z)]. [e4, e,] is the detector
bandpass . Therefore, from equation (4.7) and applying the first and third

assumption

4TDE (e, e,1/(1+2)

Fep fe;a+2)e,1421 = A opar o (4.23)

also from equation (4.13) and applying the third assumption, the integral of the

Planck function over the co-moving bandpass [e; (1 + z),e,(1 + z)] is

T[fez(l‘l'Z) 2E3/C2h3
e1(1+2) exp(chE/kbDEpeqi(1+2))—1

FBB,[e1(1+z),e2 (1+2)] dE (4.24)

In the case of the correlation between Fgp [¢ (142),e,(1+2)] and
Fy B,le;(142),e,(1+2)]> the proportionality between gamma-ray isotropic energy and

the fourth power of comoving peak energy seen before is investigated here. By

changing the variable in the integral in equation (4.24)
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_ 2m (kbDEpeqx(1+2) 4 Uy u
Fgple,(1+2),e,(1+2)] = Czh3( = ) et (4.25)
where
chE
= kaEpeak(1+z) (426)
_ cheq
- (4.27)
and
_ che,
Uy = o (4.28)

By comparing (4.18) and (4.24) and also (4.22) and (4.24), it can be seen that Ej,

and S are directly proportional to Egeak respectively, if the flux correlation exists.

u

However, the integral limits of f:f du depend on Ej.q. Therefore, to

exp(w)-1
claim these proportionalities the dependency of this unitless integral on Epeqx
should be examined.

Using Spearman rank correlation analysis, I evaluate the discussed correlations
for the tree samples in the next section. In this analysis, the same value is
considered for each scaling constant for all GRBs. Then, each scaling constant
for each GRB is randomly picked from its possible range in the Monte Carlo test
and the correlation is examined by the Spearman rank correlation analysis. In
section 4.4, We also study the best linear fit and the scatter of data for the two
correlations.

4.4 Discussion
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Ghirlanda's relation (Epeak — E,,) is one of the less wide scattered GRB
correlations which is widely accepted and used as standard candle (Ghirlanda et
al. 2004; Friedman et al. 2005; Ghirlanda et al. 2009). This correlation is between
rest frame peak energy and collimation corrected energy of GRB. GRBs are
thought to be collimated sources. In other words, the energy per unit of steradian
in the jet is assumed to be uniform inside half-angle, 6;,; and zero outside
(Rhoads 1997). Therefore, under the standard GRB model assumptions the jetted
outflow should produce a break in the afterglow light curve decay. This break
time , tje¢, allows to deduce the jet openning angle, ;...

E, = Eiso(1 — cosjer) (4.29)
The geometry-corrected E,, reduces the large dispersion of Epeqx — Eis, relation
(Ghirlanda et al. 2009).

As discussed in the last section, we examin Fzp — Fpp and
Fgp le,(142),e,(142)] — F'BB,[el(1+z),e2(1+z)] relations. For convenience , we refer to
these two relations as "bolometric" and "detector band-pass" respectively. The
result of Spearman rank correlation analysis for these two relations for each set of
data is presented in table 4.3, 4.4 and 4.5. Correlation coefficient of greater than
0.55 accompanied by correlation siginificance of less than 0.001 is considered
criteria for a positive correlation. The result for all three samples shows that a
positive correlation certainly exists in both cases. However, All three samples

show "detector band-pass" is better correlated. This could be due to the
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elimination of K-correction and more accurate use of Ty, in the estimation of
"detector band-pass" flux. As it is mentioned in the last section, using k-correction
for estimating "bolometric" flux introduces some uncertainity. Also, Tqq is the
time interval within which 90% of the burst fluence is detected. So, it is most

accurate to use it for the estimation in the fluence detector band-pass.

Table4.3. Spearman Rank Correlation Analysis for Swift Data

Calculateded Estimated Correlation Coefficient Correlation Significance
logFer logF 0.a1 4.07 = 10-7
100F R (151 42} kev 35001 ts)hev] OO BB [15(14 5 kew 350(1 42 )kev] 0.81 3.05 % 107

Table4.4. Spearman Rank Correlation Analysis for pre-Swift Data

Calculateded Estimated Clorrelation Coefficient Correlation Significance
logFgg logF 0.70 1.56 % 10—4
l09Fpp |1(142),e20142)]  L99F BB [a1(142) 02014 5)) 0.74 4.06 > 107
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Table4.5. Spearman Rank Correlation Analysis for All Data

Calculateded Estimated Clorrelation Coefficient Correlation Significance
logFeR logFE 0.73 1.03 = 10—2
09FpE [c1(14s),0(142)]  LOIF BB [o1{1e 021 45)] 0.77 58D x 10— 1

Friedman et al. (2005) evaluates the geometery-corrected Ghirlanda's relation
in the co-moving bandpass [1 — 10*] kev for their sample of 19 Swift and pre-
Swift GRBs by Spearman rank correlation analysis. Their result is 0.83 for the
correlation coefficient and 1.2 X 10™° for the correlation significance. This result
is comparable with my result for Swift sample. Correlation coefficient is 0.81 for
both correlations and 4.7 X 1077 and 3.05 X 10~7 for "bolometric" and "detector
band-pass" respectively. The Spearman rank correlation analysis result for the
other two samples is still considerable. Correlation coefficient ranging between
0.70 to 0.77 and correlation significance better than 1.56x 10~* is significant.
However, Friedman et al. (2005) considers the Geometry-corrected energy in their
analysis. Collimation-corrected energy might improve my result the same way it
does for Epeqr — E), in respect to Epeqr — Eiso-

I also study the best linear fit for each relation and look at the scatter of data.

The result is shown in table 4.6, 4.7 and 4.8.
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Table4.6. Best Linear Fit for Swift Data

Calculateded Estimated a oa b Reduced )._2
logFgg logk 0.82 0008 047 0.66
109F BB [15(14 s)kew, 350(1 4= kev]  1OOF BB [15(145)kev 350(1 4o Jkew) 077 0.007 175 0.71
Table4.7. Best Linear Fit for Pre-Swift Data
Calculateded Estimated a oa b Reduced \;9
logFgg logF 040 015 057 1.94
[00F BB [e1(145).c2(1+5)] IOQFBB.[e1¢1+-.;.,e9.;1+=_1| 050 014 5.20 1.20
Table4.8. Best Linear Fit for All Data
Caleulateded Estimated a aa 5] Reduced _'12
logFgg logF 066 000 4.75 0.04
l0gFBE [c1{142),e2{142)] 509F55.|e1q1-|-:;. =314z 064 D05 522 0.93

Here, the calculated value of flux is considered as independent variable while the

estimated value is considered as independent variable. In the tables the slope of

75



the linear fit, a, and its uncertainity, y-intercept and the reduced y? is presented. If
there was no assumption for the values of the three scaling constants, A, B and C,
and their value was accurate, the slope and y-intercept are expected to be one and
zero respectively. However, to study the existence of the discussed correlations
and for simplification I consider the same fixed values of scaling constants for all
GRBs. Although the slope and y-intercept values are not exactly as they were
expected especially in the fit for the pre-Swift sample, the reduced y? (x?/the
number of GRBs in sample -3)) ranging from 0.66 to 1.24 is satisfactory.
Friedman et al. (2005) result of the reduced y? for geometry-corrected
Ghirlanda's relation in the co-moving bandpass [1, 10*] kev for their sample of 19
Swift and pre-Swift GRBs is 4.15. Ghirlanda et al. (2009) shows the reduced x?
value of 1.4 for their sample of 29 GRBs. Figure 4.1 shows the best linear fit for
the best correlated relation which is the "bolometric" correlation in the analysis
for Swift sample (solid line). The criteria for the best correlation is the best
Spearman rank correlation test result and the one whoes slope and y-intercept for
its linear fit is closest to one and zero and its reduced y? is the least. For the Swift
sample, the "bolometric" correlation results in correlation coefficient of 0.81,
correlation significance of 4.07 x 1077, slope of 0.82, y-intercept of 0.47 and
reduced y? of 0.66. The dashed line in this graph shows the ideal case when the
slope is one and there is no y-intercept. If the real value of each scaling constant

for each GRB is used, the fit will be close to the dashed line.
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Figure4.1. Graph of estimated bolometric flux versus calculated bolometric flux
for Swift data. Solid line shows the best linear fit for the data. Dashed line shows

the ideal case when the slope is one and there is no y-intercept.

A Monte Carlo test is performed to evaluate the discussed correlations. Every

scaling constant for each GRB is randomly picked from its possible range. These
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ranges consist of: 0.30 < A4 <0.50,1 <€ <100and 0.80 <D < 1. Table 4.9,

4.10 and 4.11, shows the test result for each sample.

Table 4.9. Monte Carlo Test Result for Swift Data

Calculateded Estimated Number of experiments Number of successes*
logFpp logF 1000 836
09 FR B [15(142)kev 350(1 4 z)kew]  [O9FBE [15(142) kew 350{1 4= Jkev] 1000 848

" The success for the test is defined as correlation coefficient being greater than 0.55 and
correlation significance is less than 0.001 simultaneously.

Table 4.10. Monte Carlo Test Result for Pre-Swift Data

Calculateded Estimated Number of experiments Number of successes
logFpn logF 1000 245
logFp B [15(142)kev 35014 3)kev]  LOOFBE [15(14s)kev, 350( 145 Jheu| L1000 argt

* This is the number of experiments that fulfill both success conditions. 440 experiments
satisfy only correlation coefficient criteria.
® This is the number of experiments that fulfill both success conditions. 594 experiments
satisfy only correlation coefficient criteria.

Table 4.11. Monte Carlo Test Result for All Data

Caleulateded Estimated Number of experiments MNumber of successes
logFag logF 1000 732
100F B 150142 kev 350014 sjken] (OGP BE 1501 4) kew, 3500142 hev] 1000 818
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The success for the test is defined as correlation coefficeint being greater than
0.55 and correlation significance being less than 0.001 simultaneously. The
number of success of the test for 1000 experiments shows that the correlations are
acceptably insensitive to the values of scaling constants for Swift and combined
sample. The experiments with success for these data sets include %73-%84.8 of
the experiments. However, the result for the pre-Swift data is not satisfactory.
Figure 4.2 shows the histogram for the outcome of the Monte Carlo test. The

vertical dashed line shows the correlation coefficeint of 0.55.

Drenaty p

10|

Comelaton Coefficient Correlation Cosfficient

Figure4.2. Histogram of correlation coefficient for Monte Carlo test. Left graph
shows the result for "bolometric" correlation and right graph belongs to "detector
band-pass" correlation. The vertical dashed line shows the correlation coefficient
of 0.55. In both graphs, for all the experiments on the right side of the dashed line.
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In a fixed range of co-moving energy as the integrated thermal flux increases
with increase of temprature of blackbody, the energy where the thermal spectrum
peaks, Epeqr, increases. This also can be seen in (4.17). Comparing (4.17) and
(4.18) implies Ghirlanda's relation Epeqx — E,,. "Bolometric correlation” shows
that the gamma-ray energy for bolometric co-moving bandpass 1 — 10* kev is
proportional to the fourth power of peak energy. The existence of such a relation
is also examined in "detector band-pass" correlation. Comparing (4.18) and (4.24)

and also (4.22) and (4.24), it can be seen that E;, and S are directly proportional

u

. . - 2
to E;*eak respectively. However, the integral limits of f;l du are

exp(w)—1

expressed in terms of Epq) as it is shown in (4.27) and (4.28). Therefore, the
dependency of this unitless integral on Ej, .4 should be examined. Figure 4.3
shows the graph of this integral verus E, ., for Swift and Pre-Swift sample. This
integral, I, is calculated for both "bolometric" and "detector band-pass"
correlations. Figure 4.3 shows that the integral for bolometric band-pass is a
constant for both Swift and pre-Swift samples. In the case of detector band-pass,
it is also shown that the value of the integral, I, for Swift peak energy greater than
50 kev and pre-Swift peak energy greater than 100 kev, is roughly a constant. For
the Swift sample, the mean of the integral for peak energy greater than 50 kev is
6.20 with a standard deviation of 0.20. For pre-Swift sample, the mean of the
integral for peak energy greater than 100 kev is 6.11 with a standard deviation of

0.44.
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section (2.3).

du is a part of calculated "detector band-pass" as it is shown in

81



Although the E{,‘eak — E, ;5o relation that we resulted in "bolometric" correlation,
we can still clearly see that there is a relation between peak energy and isotropic
gamma-ray energy or fluence in "detector band-pass" correlation. Besides peak
energy, the integral limits of I depends on the band-pass energy as it is shown in
(4.27) and (4.28). Since I is independent of peak energy for the"bolometric"
correlation, It can be speculated that the integral for the "detector band-pass"
correlation is also independent of peak energy and its deviation from a constant
value could be due to the band-pass energy in the integral limit, not peak energy.
One source of inacuracy in calculating I comes from the fact that this integral
depends on Epeqx pp Which is equal to DEj, .4y, rather than depending on solely
Epeak- In our calculations, we consider D to be a constant while it might be
different for each GRB. Therefore, a more accurate conclusion can be reached,
when D is estimated for each GRB accurately. For now, it can only be deduced
that in the "detector band-pass" correlation analysis the Egeak — E, iso relation
exists for Swift GRBs with Ey,.q greater than 50 kev and pre-Swift GRBs with
Epeai greater than 100 kev.

4.4 Conclusion and Future Analysis

Analyzing the thermal component of GRB prompt emission, we have derived
two physically motivated correlations for GRB properties. The first one is the
correlation between estimated bolometric flux and the calculated thermal flux

using the Stephan-Boltzman equation. The next correlation is between estimated
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thermal flux in the comoving detector band-pass and the calculated thermal flux
in the comoving bandpass by using the Planck function integration. In both
relations, Wien's displacement law is applied. The quality of the discussed
correlations are comparable with Ghirlanda, E,-E,, relation and provide physical
insight to it. These correlations contain three scaling constants. A Monte Carlo
test shows that these correlations are independent of the scaling constants.

It is possible to evaluate the three scaling constants. Estimating A, C and D
help to examine the discussed correlations more precisely. Based on the Monte
Carlo test predication, more acuurate values of the scaling constants should
improve the correlations. By determining A, C and D, it is possible to look into
the implication of our correlations for Ghrilanda's more closely. The following is
how each scaling constant can be approached:

1- D is the ratio of the thermal component peak energy over the prompt

emission spectrum peak energy:

D = Epeakpp/ Epear (4.29)
Epear 1s already known from the Band function fit to the prompt emission
spectrum. To find E,.qx g, the spectrum first should be fitted to a
function with a thermal and a non-thermal component. E} .4 gg 1 the peak
energy of thermal component.

2- A is the ratio of the thermal flux over the total flux for a co-moving

bandpass:

A= FBB,[El,EZ]/F[El,EZ] (4.30)
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Fgp [k, £, can be calculated from integral of the Planck function:

sz 2E3/c?h3
E1 exp(chE/kbEpeakpp)—1

FBB,[El,EZ] =T dE (431)

where [E}, E,] is the co-moving bandpass. This bandpass is [1, 10*] kev for
the "bolometric" relation and [e; (1 + z), e(1 + z)] kev for the "detector
band-pass" relation. [e, e,] is the detector bandpass. Fig, f,] can be
calculated from the integral of the Band function:
E
F[ELEZ] =T fElz (p(E)dE (432)

@ (E) is the Band function. Where

) - (¢ —B)E, 2 E
o(E) = (1?221;2-0 :—pﬁ)( Eo) o\ ’ RS
100kev] exp(f — a) (100kev) (a —B)Ey <E

a is the low energy photon spectral index, B is the high energy photon
spectral index and Ej is the transition energy and equals to Eeqx /(2 + ).
3- C s the scaling constant for photospheric radius estimation.

R = CRg (4.34)
where Rg = 6.955 X 108m. Pe'er et al. (2010b) demonstrate how they use
the connection between thermal and non-thermal parts of the spectrum and
determine the values of the free model parameters (Lorenz factor, total
luminosity of GRB fireball wind and initial radius of GRB, which is defined
as the last stable orbit around the central black hole or the sonic radius) and

ultimately deduce a Lorentz factor range and photospheric radius. There
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are two issues that should be considered if this method is used for

photospheric radius estimation. This method results in a range for the radius

rather than a constant radius. Also the dependency of the radius on GRB

luminosity and its effect in the studied correlations should be examined.

Lastly, here the y-ray isotropic energy is used in the discussed correlations.

Girlanda (2009) shows that using the geometry corrected y-ray isotropic energy
improves the Ghirlanda correlation. Therefore, it is interesting to pursue this study
for the geometry corrected isotropic energy and examine the effect of this

correction on the discussed correlations.
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