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ABSTRACT  

   

Current trends in the Computer Aided Engineering (CAE) involve the 

integration of legacy mesh-based finite element software with newer solid-

modeling kernels or full CAD systems in order to simplify laborious or highly 

specialized tasks in engineering analysis. In particular, mesh generation is 

becoming increasingly automated. In addition, emphasis is increasingly placed on 

full assembly (multi-part) models, which in turn necessitates an automated 

approach to contact analysis.  This task is challenging due to  increases in 

algebraic system size, as well as increases in the number of distorted elements – 

both of which necessitate manual intervention to maintain accuracy and conserve 

computer resources. 

 In this investigation, it is demonstrated that the use of a mesh-free B-

Spline finite element basis for structural contact problems results in significantly 

smaller algebraic systems than mesh-based approaches for similar grid spacings.  

The relative error in calculated contact pressure is evaluated for simple two 

dimensional smooth domains  at discrete points within the contact zone and 

compared to the analytical Hertz solution, as well as traditional mesh-based finite 

element solutions for similar grid spacings.  For smooth curved domains, the 

relative error in contact pressure is shown to be less than for bi-quadratic 

Serendipity elements. The finite element formulation draws on some recent 

innovations, in which the domain to be analyzed is integrated with the use of 

transformed Gauss points within the domain, and boundary conditions are applied 

via distance functions (R-functions).  However, the basis is stabilized through a 
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novel selective normalization procedure.  In addition, a novel contact algorithm is 

presented in which the B-Spline support grid is re-used for contact detection.  The 

algorithm is demonstrated for two simple 2-dimensional assemblies.  Finally, a 

modified Penalty Method is demonstrated for connecting elements with 

incompatible bases.
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Chapter 1 

INTRODUCTION 

The aim of this research is to assess the feasibility of implementing a 

mesh-free Finite Element Analysis (FEA) formulation for use as an automated 

analysis tool within a proposed assembly design system. The research is to be 

carried out by the Design Automation Laboratory (DAL) at Arizona State 

University under the guidance of Dr. Jami Shah.  Once feasibility of the mesh-

free analysis methodology is established, a second phase of research would 

determine the most proper and robust implementation of this methodology within 

the larger framework of the automated assembly modeling program.  The current 

phase, however, will focus solely on the selection and testing of the mesh-free 

system.  A mesh-free analysis is chosen for this effort because it is felt that a truly 

robust assembly design tool should not rely on meshing technology for essentially 

two reasons: 1.) The authors have found that producing a high quality mesh often 

results in manual intervention - depending on the quality of the underlying solid 

model geometry and the desired quality of the mesh. 2.) Many large assemblies, 

when meshed appropriately, result in systems of equations that are too large for 

practical solution (even on today’s powerful PC’s and workstations).   One 

important selection criteria for the automated mesh-free system is that it should 

provide optimal algebraic system size to achieve a desired accuracy.  That is to 

say, for a given exact solution, the numerical approximation should yield a 

desired level of accuracy with a minimum number of equations compared to other 

methods. Within the context of the assembly design system, a major recurring 
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task of the mesh-free tool would be to resolve contact/interface stresses and 

reaction forces.  The precise algorithm for doing this is expected to be novel for 

this application and will also be developed in the course of the investigation. 

What follows is a rough description of the proposed assembly design system, how 

the mesh-free analysis tool fits in with it, a summary of the current state-of-the 

art, and an overview of the structure of this investigation. 

1.1 An assembly design system 

Although mechanical assemblies are very common today (March, 2009), 

their study as design abstractions began only relatively recently (Nevins and 

Whitney 1989).  Assemblies can be regarded alternately as collections of parts, 

hierarchical systems, and networks. The proposed assembly design system would 

maintain a network-centric database utilizing assembly feature models (Bourjault 

1984).  The nodes of this diagram would link to subassemblies and parts, while 

the edges would link to connectivity data (such as feature transforms (Whitney 

2004)).  This information would in-turn be utilized by the mesh-free analysis tool 

(e.g. automatic surface-surface contact detection would not be necessary.  

Surface-to-surface contact information would be captured in the part-connectivity 

algorithm) to calculate interface stresses and forces, as well as part stresses and 

other system response quantities of interest.  A flowchart depicting the top-down 

assembly design philosophy of the proposed system is depicted Figure 1.1. 
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Figure 1.1. Design tool flowchart 

 

1.2 Finite element sub-system architecture 

The field of computer simulation is vast and growing.  Virtually every 

industry linked to product development performs various structural, thermal, 

fluid, or multi-field analyses to their products on a daily basis (or rents this 

service from dedicated consultants).  As this need grows, and computers become 

powerful, the complexity of the products to analyze also grows.  It is not 

uncommon for the solid-model representation of an assembly to contain over 

1000 assembly features.  The increasing number of such features, as well as their 
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increasingly complex geometry, present serious challenges to the structural 

analyst.  To understand why, one must consider the standard practice when 

performing an analysis of a product.  With rare exceptions, the product’s 

geometric and topological characteristics are captured in a 3-dimensional solid 

model (or CAD model) – due to a process often referred to as “bottom up” design 

(the individual parts are designed first, and then placed in an assembly which now 

inherits all the information of its constituents.  This is in contrast to “top down” 

design, in which an assembly’s basic heuristics and functional requirements are 

embodied in a simplified model, whose detailed part descriptions get filled in 

later).  

The following observations extend more broadly to cover 2-dimensonal, 

as well as non-structural products.  However, the current proposal will focus on 

full, 3-dimensional products represented by solid models analyzed for their 

structural behavior. The solid model is a mathematical description, the exact form 

of which is unique to the solid modeling software’s geometry “kernel” or 

“engine”.  This mathematical description is then converted to “neutral”, or  some 

intermediate standard exchange file format, which is then read and interpreted 

from within a special purpose finite element pre-processor.  This pre-processor 

typically relies (like the CAD program) on a commercial geometry kernel.   

The process of geometry/topology transfer from solid model to FE pre-

processor is significantly more reliable when both CAD system and FE program 

utilize the same geometry kernel.  In recent years, this is becoming increasingly 

common, and the geometry transfer step (the “Neutral File” step in Figure 1.2) is 
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being eliminated.  Once the original geometry is reproduced, it must be 

discretized, or “meshed” (the elements defined), and the physics environment 

described (material constitutive laws, loads, boundary conditions).  The system 

equations are then assembled and solved.  Finally, the analyst queries various 

calculated model response quantities from a solution database.  This last step is 

referred to as “post-processing”.  A visual diagram of this procedure is offered in 

Figure 1.2. 

The Finite Element Method (FEM) is by far the dominant mathematical 

framework for structural analysis, however there are others, as will be discussed. 

Most other popular mathematical methods rely on the same procedure as 

described above, differing only in the level of fidelity to the original model’s 

topological features and geometry, and certain details of generating the mesh.   

When considering computational expense, and even solution accuracy, it is often 

expedient to “de-feature” a solid model, removing topological or geometric 

features which are not expected to affect solution, or to replace them with 

reduced-order elements, such as springs, beams, or shells, which accurately 

account for structural behavior but do not reflect the solid model’s true topology 

(spring and beam elements are 1-dimensional.  Shell elements are two-

dimensional).  Such considerations are entirely appropriate and will always be 

necessary for meaningful structural analyses.  However, as computational power 

increases and its corresponding cost decreases, analytical practices tend to favor 

retaining more structurally redundant topological features and analyzing models 

of ever increasing size and complexity.   
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Figure 1.2. Typical structural analysis procedure 

 

This poses serious challenges to the importation and meshing of solid 

models.  These problems are essentially twofold: First, most CAD systems today 

rely on a system that represents solids as volumes bounded by parametric 

“trimmed” surfaces (this is referred to as “B-rep”, for Boundary representation). 

This representation, though very flexible, relies on techniques for generating 

parametric curves that approximate surface-to-surface intersections (the problem 

of parametric surface intersections is a current topic of research in CAGD (Farin 

2002)).  These techniques often differ slightly between CAD systems.  Because of 

this, a particular surface in one CAD system will not be trimmed correctly in 

another CAD system (or FE pre-processor) once it is transferred via a neutral file.  

Thus, as the number of features and surfaces in a model increases, the potential 

for import/export corruption rises.  Second, and perhaps more importantly, 

traditional finite element formulations require that elements fall within a certain 

range of shape quality (usually defined as a ratio between element angles and/or 

edge lengths) to maintain equation stability.  The third and final point is that 

generating a mesh of acceptable quality is often the most time consuming task 
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facing an analyst/designer.  This requirement generates increasingly more 

elements (smaller mesh sizes) as the geometry becomes more complex, thus 

driving up the size of the matrices that are to be generated, stored, and solved.   

Resolution of these difficulties requires a radical change to the process 

shown in Figure 1.2.  Even if problems involving trimmed surfaces are eliminated 

(future CAD systems may employ alternative representations), the meshing 

problems mentioned above still go unaddressed.  Perhaps the best solution to 

these problems involves the incorporation of a robust mesh-free finite element 

formulation.  Furthermore, such a solution should operate directly on the CAD 

geometry, without going through the intermediate export step.  Thus, the system 

that is proposed in this investigation would ultimately take the form of a suite of 

code that would link directly with the CAD geometry kernel as shown in Figure 

1.3.  In particular, all FE pre-processing and post-processing would take place 

within the CAD environment, making extensive re-use of commonly available 

solid-modeling algorithms.   Such pre-processing would include assembly feature 

recognition and part connectivity data. 

1.3 Mesh-free finite element feasibility study 

Before the analysis system described above can be implemented, a mesh-

free methodology must be chosen and tested.  Algorithms utilizing the 

methodology must be developed and optimized.  The current state of research in 

mesh-free finite element formulations has matured (discussed in the next section)  



  8 

 

Figure 1.3. Proposed structural analysis architectural framework 

 

to the point where it is believed at least one proposed technology is a good 

candidate for use in a general-purpose CAD-centric structural analysis system. 

The selection and testing of one these technologies for use in general unilateral 

contact problems forms the thesis of this investigation.  The selection process 

begins by supplying the relevant background in assembly design, structural 

analysis, finite element analysis, and mesh-free technology in  

Chapter 2.  As the primary function of the analysis tool would be the 

determination of contact stresses and displacements, a review of computational 

contact mechanics closes this chapter.   By the end of this chapter, it will be seen 

that the current state-of-the art in particle-based mesh-free technology is not 

robust enough for use in a general assembly design environment.  In Chapter 3, it 

will be seen that there is indeed one mesh-free formulation, investigated by two 

separate research teams, which seems to hold promise.  This is the non-
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conforming tensor-product B-Spline grid similar to that of Shapiro/Höllig 

(Rvachev et al. 2000; K. Hoellig, Reif, U., and Wipper 2001).  This prior work will be 

summarized in the form of a literature review.  In Chapter 4, the system is 

developed and studied for feasibility in a 2-dimensional framework completely 

within Mathematica®.  Problems involving contact between simple solids will be 

analyzed and compared with exact solutions, as well as traditional finite element 

solutions.  The system will be tested to assess its accuracy in calculated stresses, 

as well as the robustness of the contact algorithm. The results of this validation 

study are summarized in Chapter 5.  Chapter 6 will summarize the original 

contributions made by these efforts, and Chapter 7 will outline plans for future 

work. 
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Chapter 2 

BACKGROUND 

Since this investigation seeks ultimately to combine the disciplines of 

Computer-Aided Geometric Design (CAGD) and structural analysis,  the topics of 

CAGD, assembly design, and structural analysis (in which finite element methods 

dominate), which are pertinent to the current research are reviewed to provide 

background.  It will be seen that the current state-of-the-art in structural analysis 

evolved  from a history pre-dating that of CAGD, and the emergence of the latter  

has not had a significant impact on the former.  It is believed this is one reason for 

some of the challenges being faced today in the integration of CAGD and Finite 

Element Analysis (FEA). Research in each of the two domains tends to focus on 

issues historically distinct to those domains and one finds very little synthesis of 

the two in the literature (exceptions are found in the work of Shapiro (Shapiro and 

Tsukanov 1999a), (Hoellig 2003), and Hughes (Hughes, Cotrell, and Bazilevs 

2005)).  However, it is believed this is beginning to change as the challenges 

described in the previous section become more urgent. 

2.1 CAGD, solid modeling, and CAD systems 

The word CAD is an acronym for Computer Aided Design.  Modern CAD 

systems integrate a number of engineering design and manufacturing tasks.  For 

example, most commercial systems today allow the engineer to create a full 3-

dimensional representation of virtually any possible volume (although there are 

certain topological restrictions).  They are also capable of extracting any 

information about this volume (mass properties, volume, feature sizes, etc.) and 
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creating engineering drawings and machine tool paths for actually making the 

part.  As the CAE industry continues to mature, doubtless more functionality will 

be added.  This synthesis of various services and functionality tends to obscure 

the fact that these tasks are usually carried out by entirely separate pieces of 

software (sometimes acquired from other firms), each with its own unique history.  

To begin with, it should be mentioned that computerized engineering drawing 

systems preceded the era of solid modeling.  The  most sophisticated commercial 

CAD systems of the 1970’s offered “wireframe” modeling capability to enhance 

their digital drawing software.  Wireframe  modeling consisted of connecting 

points in space with lines and curves.  Different views could be obtained with 

straightforward projective geometry algorithms.  Although this capability was a 

significant improvement over strict 2D digital drafting, wireframe models could 

be ambiguous, as topological characteristics were not addressed.  In particular, 

there was no clear way to automatically determine whether a point lay inside our 

outside a manifold.  During this time, universities and private research 

organizations were developing the concept of solid modeling.  

The term “solid modeling” encompasses a body of theory and techniques 

focused on the representation of solids by a computer.  In principle, these 

representations should permit any well-defined geometrical property of a solid to 

be calculated automatically (Shapiro 2001).  According to (Requicha and 

Voelcker 1982), “research in solid modeling became visible in the mid 1960’s, 

and by the mid-1970’s a first generation of experimental systems had appeared.”  

The first commercial solid modeling engines were integrated into CAD systems 
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by the early 1980’s and as of this writing, all commercial CAD systems employ 

one of a handful of commercial or proprietary geometry engines. Table 1.2 

provides a list of commercial and experimental solid modeling systems circa 1983 

(Requicha and Voelcker 1983) and 2008.  Systems which survive today are 

highlighted in red (even if the names have changed). New arrivals as of 2008 are 

highlighted in blue.  The attrition is due mainly to the emerging dominance of B-

rep algorithms and corporate mergers.  It is worth noting that Pro/Engineer® 

entered the field in 1988 with its own proprietary B-rep engine and was extremely 

successful. It was the first parametric (the word “parametric” here is used to refer 

to variable dimensions used to drive feature size and placement – not to the 

parameters used in parametric curves and surfaces), feature-based modeler 

(discussed later).  Its arrival probably accelerated the rate of disappearance of the 

other solid modelers in Table 2.1 and forced other CAD systems to adopt a 

similar approach. 
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2.1 A list of solid modeling engines circa 1983 vs. 2008 

1983   2008 

Solid Modeler Type 
 

Solid Modeler Type 

CATIA B-rep 
 

CATIA B-rep 

CATSOFT CSG 
 

    

DDM-SOLIDS B-rep 
 

    

EUCLID B-rep 
 

Open-Cascade B-rep 

GEOMOD-II B-rep 
 

I-DEAS B-rep 

ICEM SOLID 

MODELING CSG 
 

    

ICM GMS B-rep 
 

    

MEDUSA B-rep 
 

    

PADL-1,2 CSG 
 

    

PATRAN-G 

Cell 

Decomp. 
 

    

ROMULUS B-rep 
 

Parasolid B-rep 

SOLIDESIGN B-rep 
 

    

SOLIDS MODELING-

II CSG 
 

    

SYNTHAVISION CSG 
 

    

TIPS-1 CSG 
 

    

UNIS-CAD B-rep 
 

    

UNISOLIDS CSG 
 

    

    
 

ACIS B-rep 

      Pro/Engineer B-rep 

 

 

The systems of the early 1980’s were very successful in their day, and 

opened the door for a much larger second generation of development in the late 

1980’s. Most of the development could be broadly categorized as following under 

one of three basic representational schemes (There are actually 6 known schemes 

(Requicha 1980), but only three find wide usage in engineering systems): 

Constructive Solid Geometry (CSG), Boundary Representation (B-rep), and 
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Domain (or cellular) Decomposition.  This last representational scheme is rarely 

used today and so it is removed from discussion.  The first experimental CAD 

systems used CSG-based schemes.  In the eighties, these were largely abandoned 

in favor of B-rep algorithms.  Even though the CSG approach is no longer used in 

modern CAD systems as of this writing, research in the field continues (see 

(Hartmann 1998), for example) and it has direct theoretical and practical 

applicability to both CAD systems and some mesh-free FE systems (a topic which 

will be discussed later), and so it will be discussed first.  

The major motivation behind the CSG approach was to achieve a 

“correct” and complete definition of a solid based upon a small, finite set of 

algebraic operators on half-spaces.  These half-spaces form an infinite set of the 

form 

 { }( , , ) | ( , , ) 0H x y z f x y z= ≤  (2.1) 

where f is a polynomial function.  Finite subsets of this set (sometimes called R-

sets) are generally accepted as suitable models for solids (Requicha 1980).  A 

further subset of this set (called r-sets) is required for most engineering solids.  

This subset is characterized by the fact that it is “regular” (i.e. it equals the closure 

of its interior).  The theoretical foundation for this representational scheme was 

laid at the University of Rochester in the early to mid-1970’s and expressed in the 

experimental programs PADL 1 and 2 (Voelcker 1974; Voelcker 1978).  One 

advantage of this representational scheme is that all topological information is 

generated automatically as a consequence of Boolean operations on the r-sets (in 

contrast, if a volume is subtracted from another volume in the B-rep scheme, the 
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resulting surfaces must be explicitly created).  A second advantage is that the 

algorithm for representing a particular solid is simple and compact: it involves 

recursive descent down a binary tree – the tree providing the entire database 

necessary to the store the representation. A third advantage is that “correctness” 

of a particular part representation is guaranteed by the mathematical soundness of 

the theory of Boolean operators over sets of type (2.1) (when Boolean operations 

are modified to handle tangent objects).  Figure 2.1 gives a simple example of 

how a solid is represented using the CSG approach on simple “primitives”, such 

as cylinders and hexahedra. 

Opinion seems to differ on why the CSG approach has been abandoned (as 

of this writing.  See (Shapiro 2001) for one such opinion), but it is clear that one 

serious deficiency of the technique lies in the fact that often solids must be 

constructed with surfaces which cannot be described by equation (2.1). 

The B-rep approach involves representing a solid model by defining its 

boundaries in terms of parametric surfaces (usually tensor-product surfaces), 

whose boundaries are in turn defined by parametric trimming curves.  Figure 2.2 

depicts how the same simple solid of Figure 2.1 may be represented using the B-

rep approach. 

The trimming curves are themselves parametric space curves.  NURBS 

(Non-Uniform Rational B-Splines) are a particular mathematical form of 

parametric curves and surfaces.  NURBS curves and surfaces are a generalization 

of a simpler parametric construction called a Bézier curve.  A Bézier curve is  
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Figure 2.1. CSG representation of a simple solid 

 

 

Figure 2.2. B-rep of the same solid 
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space curve defined by a parameter t and n+1 “control points”, P.  The exact form 

is given in equation (2.2): 
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 (2.2) 

The curve always interpolates, and is tangent to, the two end control 

points, C0 and Cn. If control points are joined via straight lines consecutively, they 

form a “control polygon”.  All bézier curves possess what is called the “Convex 

Hull Property”, meaning that the curve is guaranteed to lie entirely within the 

control polygon for parameter values between zero and 1.  As an example, a linear 

Bézier curve would interpolate two control points and yield a straight line 

segment.  As another example, a third-order (n=3) Bézier curve would involve 

four control points and interpolate the first and fourth (P0 and P3), as shown in 

Figure 2.3. 

 

Figure 2.3. Third order Bézier curve with control polygon 
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The curve in Figure 2.3 can be easily manipulated by simply moving the 

control points and re-calculating equations (2.2) based on the new positions.  This 

is a very versatile and computationally efficient scheme for representing geometry 

that may include curves of arbitrary shape. Note also that equations (2.2) 

represent a linear system of equations.  This is convenient for calculating Bézier 

approximations or interpolations of other types of curves.  Furthermore, more 

complicated curves of a given degree can be constructed by joining Bézier curves 

together at their endpoints.  Curve tangency (often referred to as C1 continuity) 

can be ensured by ensuring that line segments Pn-1,Pn on the first curve are 

collinear with points P0,P1 on the second. Similar constructions are possible to 

ensure curvature (C2) continuity.    A tensor-product Bézier surface may be easily 

defined extending the definition (2.2): 

 , , ,

0 0

( , ) ( ) ( )
n m

i n j m i j

i j

u v u v
= =

=∑∑S B B P  (2.3) 

where the points 
ji,P  now represent a three-dimensional “control net”, with the 

points P forming the vertices of this net. The CATIA B-rep solid modeler was 

originally designed to incorporate a hierarchical scheme for defining and joining 

Bézier curves in the manner just mentioned. Surfaces were defined by extruding 

or revolving these curves along Bézier trajectories. In spite of the versatility of 

this form of parametric curve in solid modeling, it was soon discovered that 

adjustments had to made in order to precisely capture certain types of curves such 

as conic sections and other curves involving non-integer exponents.  The 
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adjustment involved replacing the basis functions, B with weighted ratio C of the 

basis: 
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Curves of type (2.4) may also be referred to as Uniform Rational Bezier 

curves (replacement of the Bezier basis, B with B-Splines, N below results in 

Uniform Rational B-Spline curves).  Finally, NURBS were introduced to 

eliminate the cumbersome and unstable practice of Bézier curve joining (unstable 

because changes made to particular Bézier segment would have a significant 

impact on other segments).  The exact form of a NURBS curve, C is shown in 

equation (2.5), and equations of this form are the basis of most modern B-rep 

systems (Farin 2002) 
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The degree, d of this curve and the number, n of control points P are related via 

the expression: 

 1d m n≡ − −  (2.6) 

where m is the number of non-decreasing “knot points” making up the parameter 

space, t.  This parameter space differs from that of Bézier curves in that it need 
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not be restricted to the ordered set of rational numbers between 0 and 1. It can 

incorporate any non-degreasing set of rational numbers (repeated knots are 

permitted and have a special meaning in that they reduce the continuity at that 

parameter by a factor of 1 times each repeated instance).  It can be shown that 

curves of the form (2.5) are actually identical to joined Bézier segments of 

continuity C
p-1

 (Farin 2002).  But the latter formulation tends to be more robust 

and stable than if the Bézier curves are constructed individually and joined later.  

In addition to being able to model more types of geometry than surfaces of type 

(2.1), parametric equations of type (2.4) and (2.5) have another advantage in that 

they possess affine invariance.  That is to say, transformations applied to these 

curves are equivalent to the same transformations applied to their control points.  

This is an extremely useful property for modeling. 

Extension of the NURBS curve definition to tensor-product surface is 

accomplished exactly as in equation (2.3) for a Bézier surface.  An example of a 

NURBS surface with its control net overlaid is shown in Figure 2.4. The black 

grid represents the parametric knot space. 

The study of parametric curves and surfaces is a large field of research in 

its own right.  CAGD is the field of research that covers the limitations, 

applications, and properties of these surfaces and curves.  The field of CAGD was 

developed specifically to overcome the limitations imposed by curves and 

surfaces of the type (1).  It relies heavily on the principles of differential geometry 

and topology, but it typically does not concern itself with solid modeling. 
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Figure 2.4. A NURBS surface (green) with control net (red) 

 

The tensor-product property of parametric surfaces implies that they 

possess a rectangular geometry.  A technique called surface trimming is used to 

overcome this limitation.  Inconsistency among different trimming algorithms and 

solid model data structures is responsible for many solid model transfer problems.  

Surface trimming works by first defining a parametric curve u(t), v(t) in the 

domain of a parametric surface s(u,v).  This curve is then mapped onto the surface 

via c(u(t),v(t)).  Such a surface-mapped curve is sometimes referred to as a Curve-

ON-Surface, or CONS (Woo et al. 1999).  If the domain curve has degree d, then 

the CONS has degree (m+n)d, where m and n are the degree of the tensor product 

surface, s.  Trimming curves must always form closed, non-intersecting loops, 

and a criterion must be used to determine on which side of the trimmed loop the 

surface should be hidden. The popular, free graphics programming language 

OpenGL® uses the criterion that surface points outside of counterclockwise loops 

shall be excluded, and surface points inside of clockwise loops are included (Woo 

et al. 1999). The diagram of Figure 2.5 demonstrates this criterion.  Figure 2.6 
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depicts a third order NURBS surface trimmed by an outer loop consisting of four 

connected piecewise linear segments, and an inner loop consisting of a two 

piecewise linear segments and a third order curve. 

In a typical, modern B-rep solid modeling system, the surface trimming 

curves are estimated based on surface intersections.  For example, the intersection 

of the two cylinders shown in Figure 2.7 results in the trim curve highlighted in 

red in Figure 2.8.  In feature-based CAD modeling, the resulting geometry shown 

in Figure 2.8 is the result of “cutting” the bottom cylinder with the top cylinder.  

With this operation, the trimming curve acts as an inner trim loop on the bottom 

cylinder, and an outer trim loop for the top cylinder.  Operations of this sort  

 

Figure 2.5. Diagram depicting display criteria for trimming curves 
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Figure 2.6. Trimmed NURBS surface from the OpenGL Programmer’s Guide 

 

necessitate a fairly complex model data structure which must be capable of 

reflecting a changing model’s topology (and related surface trimmings).  One 

such data structure was proposed by Baumgart (Baumgart 1974).  It is called the 

“Winged Edge” data structure and keeps track of face edges and adjacency (this 

has since  

 

Figure 2.7. Two intersecting cylinders 
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Figure 2.8. Bottom cylinder “cut” by top cylinder 

 

been replaced by the “Half-Edge” dataset.  Increasingly, commercial CAD 

engines, such as ACIS include the full boundary topology dataset). 

Usually, additional data, such as vertex number and location must be 

stored.  With such a scheme, it is clear that a model’s feature history (The part in 

Figure 2.8, for example was created with an extrusion followed by a cut) must be 

maintained, and it must be unambiguously connected to the model’s 

geometric/topological data-structure. An ongoing problem for B-rep solid 

modeling systems is sometimes referred to as the “Persistent Naming Problem” 

(Marcheix and Pierra n.d.).  As features are added to a solid model, some 

previously defined topological entities must be identified after the model is re-

evaluated.  This is a nontrivial problem, which is usually handled via topological 
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ID mapping, but other methods have been tried (Marcheix and Pierra n.d.).  To 

the CAD user, this problem usually manifests itself by the consequences of 

deleting or radically modifying a previously defined feature.  The extent of the 

repair work that must be performed after such an operation is often a measure of 

how robust the CAD system’s topological ID system is (the program must 

evaluate just how much of the model’s feature history depend on the change). 

2.2 Assembly design 

As explained in Chapter 1, the current research is being conducted within 

a larger context involving the integration of CAD modeling, finite element 

analysis, and assembly design principles.  Background to the latter topic is 

presented next, and is largely excerpted with permission of J. Shah (Shah 2009). 

There are many types of assemblies: static, rotational, articulated and 

mixed. The specific design process varies with assembly type and function. Major 

design tasks typically include shape/size design of parts; interfacing of 

components; layout, packaging; kinematic, dynamic, structural analyses; motion 

simulation and interference detection. Auxiliary tasks may include 

manufacturability (DfM) and assemblability (DfA) analysis. In addition to 

nominal design of an assembly, there is also tolerance design which determines 

the GD&T scheme and allowable manufacturing variations to ensure proper 

functioning and assemblability. The project proposed here addresses only nominal 

design of assemblies. 

Contemporary CAD systems support bottom-up assembly design where 

parts must be created before assemblies. This is the opposite process to human 



  26 

designers’ approach for most types of assemblies. Nevertheless, CAD systems are 

excellent for detailed part geometry creation, layout design, part positioning, 

automatically propagating parametric modifications and interference detection. 

Simulation applications, such as FEA, rigid body dynamics, kinematics, are 

available either as separate CAE modules or third party packages. CAE accepts 

geometry data from CAD and then uses it to perform the requisite analysis. This 

separation prevents the designers from incorporating simulation within their 

design process and is compounded by incompatibility between applications and 

specialized expertise needed for FEA.  Figure 2.9 shows a mechanical assembly 

in assembled and disassembled forms. An assembly can be viewed as a hierarchy 

of sub-assemblies and parts, as shown in Figure 2.10. The grouping of parts into  

 

 

Figure 2.9. Unexploded (left) and exploded view of engine assembly 
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Figure 2.10. Engine assembly hierarchy 

sub-assemblies is not unique; it may represent assembly sequence, modularity, 

common degrees of freedom relative to other parts or subassemblies, or 

something else. 

The items enclosed in the boxes represent 'assembly units', the lines represent 

'part-of' relations. The hierarchical model, however, does not have any information 

about mating features. A separate constraint graph is used to code geometric relations 

between faces (against, parallel, etc), axes (collinear, coincident) and size parameters 

(hole_dia = pin_dia). Geometric relations are used for locating parts in assemblies. Lee 

et al (Lee and Andrews 1985; Lee and Gossard 1985) and Rocheleau (Rocheleau 

and Lee 1987) developed transformation matrices for part positioning in assemblies 

which form the basis of assembly modeling in CAD.  Size relations are used for 

propagating dimensional changes from one part to another to maintain compatibility. 

Theoretically, it should be possible to extract kinematic DoFs from the part 

models and mating constraints but CAD systems currently are not able to do that. Instead, 

the user must interactively define “joints” and pairs of local coordinate systems (LCS) 
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associated with part geometry (Figure 2.11), resulting in the Degree of Freedom (DoF) 

representation shown in Figure 2.12. This is typically done in a dynamic analysis module 

or external application. 

Many types of simulation, such as structural, dynamic and thermal, require the 

geometry to be meshed. Major steps for such analyses are: geometry simplification, 

meshing, specification of boundary conditions, and solving and reviewing results. By far 

the most time is consumed in getting good meshes, even though tremendous advances 

have been made in automatic meshers in the past 25 years (see section 2.4.3).  It is not 

uncommon to see the simulation done part by part, rather than for the assembly as a  

 

 

Figure 2.11. Joint definition: reference and moving LCS 
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Figure 2.12. DOF diagram of engine assembly 

 

whole. One reason is that multiple parts will contain a larger number of nodes/elements 

increasing the computational complexity. Another is that including contacting regions in 

models makes the problem non-linear,  requiring iterative solvers. Also, contact modeling 

is based on ad-hoc methods that vary from system to system. The alternative, modeling 

parts individually, has its own set of disadvantages, which include the difficulty of 

accurately estimating boundary conditions at mating regions and inability to optimize at 

the system level. 

Hierarchical models (Figure 2.10) are widely used in commercial CAD systems 

with the addition of geometric relations between pairs of entities on the part being 

positioned and the assembly. These relations are not necessarily mating conditions; in 

fact, relative positioning can be used even with parts not in contact. In the assembly tree, 

interior nodes are sub-assemblies and leaf nodes are individual parts. The leaf nodes are 

essentially pointers to part CAD models and a transformation matrix. Multiple instances 
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of the same part point to the same CAD model but different transformation matrices. 

Another type of assembly representation is a connectivity or liaison graph in which the 

nodes represent parts and the arcs represent contact (Bourjault 1984). This simplistic 

view is incapable of representing multiple contact pairs between the same two parts. 

Kinematic and dynamic analysis packages do not model the detailed geometry; instead, 

each part is abstracted as lines connected at joints  defined by translational and rotational 

DoFs based on reference and moving LCS (Figure 2.11). Structural models of assemblies 

require different types of information; specifically, contact regions, gap, sliding behavior 

and friction condition. Neither kinematic nor structural models can be derived from 

hierarchical or connectivity models. Therefore, the user must define them interactively 

with the help of CAD geometry.  The next sections review some new approaches for 

assembly modeling that not only obviate such manual work but, more importantly, allow 

assembly design compatible with designer thinking.  Proposed advances include top-

down design, design with knowledge structures called Generic Functional Interfaces 

(GFI), automatic completion, recognition and mapping of GFI to support design and 

simulation tasks. 

2.2.1 Generic Functional Interfaces 

A part feature has been defined as a stereotypical shape with certain 

topological and geometric properties (Shah and Mantyla 1995). Similarly, an 

assembly feature is defined as a stereotypical association between two part 

features that are on different parts. Whitehead posits that parts get position from 

location features and keep it with effector features (Whitehead 1954). Although a 

great deal of literature exists on part feature definition and recognition, the same 

cannot be said about assembly features. Brunetti (Brunetti and Golob 2000) 
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developed an assembly model that supports conceptual development according to 

the Pahl & Beitz procedure (Pahl and Beitz 1997). Gupta et. al. (Gupta, C.J.J. 

Paredis, and Sinha 2001) created models for assembly sequence generation. Noort 

et. al. (Noort, Hoek, and Bronsvoort 2002) used assembly features to provide 

multiple views of a product. Liang (Liang and C. Paredis 2003) used a port model 

to define interaction between a component and its environment or interfaces 

between components. DeFazio (De Fazio et al. 1991) proposed a feature-based 

assembly system to specify the mating relations between components and relative 

extraction directions for use in assembly planning. Sodhi (Sodhi and J.U. Turner 

1991) used assembly features for specification of relations between components at 

a high abstraction level.  Boredegoni (Borgedoni and Cugini 1997) classified 

assembly features as attachment, pass-through and connect types.  

The above review, though not comprehensive, is representative of much 

assembly modeling literature. Two themes stand out: most of the work is directed 

at assembly sequence planning when the design is already fixed and not evolving; 

the various assembly feature definitions used require manual input into the ad-hoc 

attribute slots. The latter problem creates a disconnect between 

kinematic/structural simulation and design. The ultimate goal of the current 

research (of which this investigation is one phase) is to go beyond assembly 

features by capturing functional definition of generalized part-part interfaces in 

the form of knowledge structures termed Generic Functional Interfaces (GFI). 

Each part may have many GFIs where it interacts with other parts; they 

combine to produce desired functions. GFIs, like assembly features, encode 
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mutual constraints on mating features' shape, dimensions, position, and 

orientation, but more importantly, GFIs are carriers of functional information. 

Arizona State University’s DAL has previously developed a canonical definition 

of assembly features based on the NIST Open Assembly Model (OAM) (Rachuri 

2005; Rachuri et al. 2003) and screw theory (Mahbub 2008).  Screw theory first 

developed by Sir Robert Ball (Ball 1900), and was applied to assemblies by 

Whitney (Whitney 2004).  A system of screws is a way of representing the 

geometry for motions that a rigid body can undergo or of representing the forces 

and moments exerted on it.   

Screws representing motion are called twists, while screws representing 

forces are called wrenches. A twist or wrench matrix has 6 columns and 1 to 6 

rows, one for each degree of freedom (DoF) being described. Twists and 

wrenches can be used to describe a wide variety of part-to-part constraints. N 

DoFs are represented by N rows, 6 columns each. A twist T={ωx, ωy, ωz, vx vy vz} is 

a screw that describes the instantaneous motion of a rigid body. The first triplet 

represents the angular velocity of the body with respect to a global reference 

frame. The second triplet represents the velocity of a point on the body; at any 

given instant the linear velocity due to the rotational motion is zero on that point.  

Similarly, a wrench W={fx, fy, fz, mx my mz} is a screw that describes the 

resultant load directions possible.  

The first triplet describes the resultant force in a global reference frame; 

the second triplet represents moments. Screw theory permits one to represent in a 

precise mathematical way the interactions between two surfaces or bodies in 
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contact. It can be used to determine the degrees of freedom and the amount of 

under or over-constraint, and directions in which loads can be transmitted. Screw 

matrices are key in the definition of GFIs; screws can be pre-defined (Whitney 

2004) or extracted by mathematical procedures explained below.  Future studies 

at DAL will investigate how the functional capability of GFIs can be fully 

exploited in assembly design and simulation.  Figure 2.13 shows a library of  

GFIs. 

 

 

Figure 2.13 Library of common GFI’s with their respective DOF’s 

 

Although this is not a comprehensive list, it includes the commonly encountered 

ones.  Most GFI’s  involve mating of multiple pairs of surfaces.  For example, the 

prismatic pin in open rectangular slot has a 3 pairs of plane-plane contact; if the 

slot was blind, an additional pair would come into play depending on the pin 

length and slot depth. For the purpose of twist and wrench matrices one does not 

distinguish between contact with or without clearance. It is also observed that 

these common GFIs typically involve simple geometric surfaces (planes, 

cylinders, spheres). Each mating surface pair can be represented by screws. The 
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net DoFs and load transmission directions can be found from the intersection of 

all screws Si representing the mating pairs for a GFI. The same formula can be 

extended to multiple GFIs between parts: 

 ( ) ( )( ){ }1

n

i i i iS Rcp Rcp S==∩ ∪  (2.7) 

where Rcp is Reciprocal; twists and wrenches are reciprocals of each other, that is 

T•W=0. The operations Rcp, ∪, ∩ are mathematically well defined (Davidson and 

Hunt 2005) and computational procedures exist (Whitney 2004).  Figure 2.14 

shows the type of information that can be clustered around GFI definition. This 

goes far beyond what current CAD supports and more comprehensive than 

assembly features; it is not just stand-alone geometric relations associated with 

entity pairs when adding part instances to assemblies. It captures the stereotypical 

properties of different types of interfaces that may be encountered between parts 

in assemblies. It remains to be investigated whether this set of attributes is 

sufficient for design and simulation applications, how to extend this 

representation to more complex GFIs and how to support user defined GFIs. 

2.2.2 Assembly design scenarios 

With GFIs, three different strategies for assembly design will be possible:  

• bottom-up design with GFIs  

• bottom-up design without GFIs  

• top down design with mapping to GFIs  

 



  35 

 

Figure 2.14. GFI definition 

 

In bottom up design part CAD models are created first, followed by assembly 

design. In contemporary CAD systems generic geometric constraints are used for 

part positioning within assemblies. There are no pre-defined or user defined GFIs 

stored in libraries, such as those shown in Figure 2.14. One possible scenario is to 

define assemblies as they are done today without GFIs, and then to recognize 

them automatically from the assembly CAD model. Another possibility is for the 

designer to use GFIs interactively when defining the assembly. In either case, a 

library of GFIs is required and a neutral (implementation independent) language 

is needed.  

The proposed GFI definition is not ad-hoc but physically based (screw 

theory) which is essential for encoding functions and compatible with kinematic 

applications. The GFI template should contain slots for: part features that 

constitute the GFI; assembly parameters (geometric - defined by two geometric 
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entities directly; algebraic - defined by other parameters, e.g. clearance); and 

constraints (geometric or algebraic). Kinematic and structural relations can be 

derived using screw theory; for predefined features they can be pre-coded. Motion 

limits will need to be derived from collision detection algorithms by simulating 

part motion in each DoF direction. Note that part feature definitions already 

contain face properties and feature dimensions (e.g. pin diameter).  For bottom up 

design with GFIs the following procedure is proposed. The designer will instance 

a GFI and then graphically select one face on each part belonging to part features 

to be mated. Even if the part features contain multiple faces, and they usually do, 

only one face needs to be picked. The faces picked do not have to be mating 

faces. This is because the GFI definition is rich enough to automatically complete 

the part feature by recognizing adjacent faces, using GFI Completion Algorithm. 

Also, the GFI definition can be used to determine if the selected faces are 

consistent with its definition. 

For bottom up assembly design without GFIs, as it is done now, it has 

been  proposed to automatically recognize GFIs. In well-established part feature 

recognition algorithms, attributed face adjacency graphs are used to facilitate 

topological level recognition. To our knowledge, GFI recognition, or even 

assembly feature recognition, has never been done before. A new data structure 

will need to be designed to facilitate GFI recognition and to reduce search space. 

One possible approach would be combine AFAGs of individual parts 

linking with arcs candidate mating faces, which can be found using surface 

proximity algorithm. For most GFIs depicted in Figure 2.13, the mating surfaces 
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are of the same type (plane-plane, cylinder-cylinder, spherical-spherical) and 

these can be searched and recognized with the condition that they be within 

proximity specification, belonging to different parts and having opposite normals 

(material direction), nominally coaxial cylinders, concentric spheres. However, 

there are exceptions, as in the case of the round pin and slot – the mating surfaces 

are of dissimilar geometry. Therefore, more sophisticated GFI recognition 

algorithms will be investigated in the future to handle any set of user-defined 

geometric conditions. To support user defined features, both the Recognition and 

the Completion algorithms must be data-driven. An interesting future possibility 

is discovery of new GFIs from archived assemblies – a process akin to data 

mining. 

2.2.3 Top-down assembly design 

There may be different starting points for top-down design depending on 

assembly type.  For articulated assemblies, the design process begins with 

kinematic synthesis where the linkage configuration, joint types and relative 

spatial location/orientations of joints is determined. This is done in either a 

mechanism synthesis package or on paper. The kinematic model shown in Figure 

2.15 contains links, identified by numbers, and joints, identified by letters. Only 

the parts relevant to kinematics are represented and the only part geometry needed 

is the location of joints.  Kinematic diagrams facilitate motion simulation in terms 

of input/output displacements, velocities and accelerations.  

The DAL proposes to investigate how the kinematic model can be used to 

drive embodiment design of the assembly. The output of kinematic design 
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consists of generic joint types and LCS; key point positions for joint location; link 

lengths and geometric relations (e.g. link 2 is parallel to 8; all revolute joint axes 

are parallel). We want to import this output directly into a CAD assembly and 

develop a mechanism by means of which the designer can conduct embodiment 

design. An algorithm will be developed to automatically create an initial skeleton 

hierarchical assembly model using the links, joint definitions and matching DoFs 

as the basis for the decomposition. Next, the joints will be mapped to 

corresponding GFIs, but these will not contain any parameter values, only 

geometry types and mating constraints. Figure 2.15 depicts this scenario. The 

designer will then add new features to the skeleton geometry of each part and add 

secondary parts while geometric and parametric constraints, inherited from GFIs, 

are maintained as the part geometry evolves. Note that this scenario is the 

opposite of the process supported in CAD today where the detailed part models 

are used for assembly design and then used to define the kinematic simulation 

model. When secondary parts, such as seals, bearings, fasteners, bushing, etc. are 

added by the user, the process can also be supported by the feature based 

assembly design described earlier. One research challenge is how to 

apply/associate constraints defined a priori with geometry that evolves later. 

For top-down design of non-articulated assemblies, such as common 

rotational assemblies (pumps, turbines, gearboxes,..), kinematic synthesis is not 

needed. Instead, the designer would start with a skeleton assembly hierarchy to  
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Figure 2.15. Top-down embodiment design of assembly 

 

define the basic product structure. The assembly constraints, features, GFIs and 

geometric relations would be associated with the parts in the hierarchy before 

proceeding to detailed geometry definitions. The rest of the process will be 

similar to that defined above. 

2.3 Structural analysis 

Structural analysis comprises the set of physical laws and mathematics 

required to study and predict the behavior of structures. The subjects of structural 

analysis are engineering artifacts whose integrity is judged largely based upon 

their ability to withstand loads; they commonly include buildings, bridges, 

aircraft, and ships. Structural analysis incorporates the fields of mechanics and 

dynamics as well as the many failure theories. From a theoretical perspective the 

primary goal of structural analysis is the computation of deformations, internal 

forces, and stresses. In practice, structural analysis can be viewed more abstractly 
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as a method to drive the engineering design process or prove the soundness of a 

design without a dependence on directly testing it (Anonymous n.d.). 

In spite of the generality and insight into structural behavior provided by 

the Theory of Elasticity, with few exceptions, researchers in the 19
th

 century were 

unable to derive exact solutions for generic engineering structures which were not 

“thin”.  Most of the exact solutions provided by the theory were restricted to 

idealized point or line loads acting on infinite or semi-infinite domains.  An 

example of this is the 2-body contact solution provided by Hertz (Hertz 1896).  

Since exact solutions were lacking for most cases, researchers focused instead on 

approximate solutions. 

The 20
th
 century saw work on numerical techniques for solving the 

governing equations of structures provided by the theories of Mechanics of 

Materials, and later the Theory of Elasticity and Continuum Mechanics.  All of 

these involved partitioning the domain in some manner into mathematically 

manageable pieces.  The earliest such methods involved some variant of what 

would today be called a Finite Difference (FD) technique.  In its simplest form, 

this technique requires that the domain in question be subdivided by a uniform 

lattice of points, or nodes.  In two dimensions, the connectivity between these 

nodes is such that each node at position (xi,yj) is connected to four neighbors, (xi-

1,yj),(xi+1,yj),(xi,yj+1), and (xi,yj-1) where the subscripts i and j denote a well-

ordered integer progression of x and y-coordinates as shown in Figure 2.16.   
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Figure 2.16. Structured grid over a rectangular domain 

 

Such a scheme superimposes a rectangular grid over the domain when the 

coordinates are Cartesian and is sometimes called a “structured grid” when there 

are as many rows of points as columns.  The use of such a grid provides a 

straightforward means of replacing the governing differential equation over the 

domain by a difference equation.  For example, the differential expression dy/dx is 

now replaced with (yi-yi-1)/(xi-xi-1) or (yi+1-yi)/(xi+1-xi).   Such an approximate 

solution, though simple to implement, could be very laborious to solve before the 

advent of computing machines.  One limitation is that a minimum of  (O+1)
n
  

nodes are required simply to obtain the solution of a differential equation of 

degree O over a finite domain of dimension n.   Domain topologies which are not 

simply connected, as well as discontinuous loads and boundary conditions, often 

require many more nodes than this because the FD approximation provides 
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solutions only at nodal points.  The resulting domain solution is piecewise linear 

and thus requires many nodes to resolve strong gradients. Early implementations 

of this technique were solved by hand iteratively without the use of matrix 

methods (Felippa 2001).  Another deficiency of the technique is that it produces 

erroneous results near domain discontinuities (it only produces good results 

within smooth, homogeneous continua). 

The dawn of the 20
th
 century saw researchers searching for more efficient 

approximate solutions which could overcome these difficulties. Instead of 

focusing on discretizing the governing equations over a continuum (as had been 

the common practice until then), these researchers focused instead on joining the 

solutions of simpler structural elements together via equations of compatibility.  It 

appears that this approach may be followed along two very different governing 

principles: The first involves assembly of matrix equations F=Kx by adding the 

stiffness contributions of each element.  Here F is the external load vector 

(known), K is the assemble stiffness matrix (known), and x is solved for by 

standard matrix procedures.  This is known as the Direct Stiffness Method (DSM. 

In early works, often referred to as the Matrix Displacement Method, or DM), and 

is the one used in modern FEA systems.  The other principle, however, is the one 

which first caught traction.  It involves several steps.  The first being the assembly 

of system Q=fq, where Q is the global system deformation vector.  f is the total 

system flexibility matrix 1/k, and q are total system internal force vector.   For 

systems which are statically indeterminate (i.e. most systems), this results in an 
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over constrained system.  To alleviate this, degrees of freedom are chosen to 

augment the equations resulting in a positive definite solvable system. 

The final step involves applying compatibility equations via use of the unit 

dummy force method in order to retrieve displacements (from these,  strains may 

be calculated).  This more complicated approach is referred to as the Flexibility 

Method (FM.  In early works, often referred to as the Matrix Force Method – in 

which the same acronym was used.  For an explanation of this method, the reader 

is referred to one of the few sources on this topic still in publication – 

Przemieniecki (Przemieniecki 1968)). 

For other developments in this early period, a nice summary of the 

historical development of structural analysis is given by C.A. Felippa (Felippa 

2001).  For a very readable history of the development of the theory of Mechanics 

of Materials, see Timoshenko (Timoshenko 1983).  For a historical account of 

developments specific to finite element analysis, see (Zienkiewicz 1995).  

Apparently the first published papers dealing with the mechanical analysis of a 

structure by dividing it into several topologically simple pieces, and assigning 

degrees of freedom to each piece, and solving these as a matrix system were due 

to R.A. Frazer and W. J. Duncan in 1934 and 1935 (Duncan and Collar 1934; 

Duncan and Collar 1935).  These papers marked in important milestone in 

numerical analysis in that they are the first true matrix methods, in which matrix 

stiffness terms (or “influence coefficients”)  are derived from known analytical 

solutions.  Such methods provide high accuracy and less labor in solving the 

resulting algebraic systems (solutions equivalent to FD schemes could be found 
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with much smaller equation systems).  This approach, however crucial to the 

subsequent development of finite element analysis seems to be the source of the 

bias in that field toward the construction of a “mesh”, which must interpolate the 

geometric domain.  This bias can be seen in early statements by Courant (Courant 

1943):  “…The vagueness as to the accuracy of the approximation obtained is 

only one of the objections to the Rayleigh-Ritz method that may be raised.  More 

annoying is that a suitable selection of the coordinate functions is often very 

difficult and that laborious computations are sometimes necessary.  For these 

reasons, alternative methods must be studied.”  It doesn’t seem to have occurred 

to researchers in Western Europe, the United Kingdom, and United States that the 

Rayleigh-Ritz method may be saved instead by a suitable modification of the 

basis functions to accommodate boundary conditions.  This is in contrast to the 

former Soviet Union, in which Kantorovich et al championed a method by which 

basis functions are multiplied by weighting functions which equal zero at domain 

boundaries (Kantorovich and Krylov 1958). Further, Kantorovich showed how to 

construct such functions for arbitrary domains defined by implicit functions.  

Although such an arrangement is only capable of solving equations with 

homogeneous boundary conditions, it was clearly an important advance, which 

would ultimately lead to the method of Solution Structures (Rvachev 1975), in 

which any boundary constraint may be exactly represented, regardless of whether 

the basis interpolates the geometric domain or not.  

The finite element method was formally introduced (by general 

concensus) in a paper by Turner et al (M.J. Turner et al. 1956). A important 
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discovery, called the Direct Stiffness Method, was added by Turner in (M.J. 

Turner 1959).  This is a method of assembling element coefficient entries into a 

global system, regardless of element type or dimension, as long as the degrees of 

freedom are compatible.  The method may be stated simply as: 

 

 ( )= +∑e e e e

e

F k x b  (2.8) 

where ke are the element stiffness matrices (representing element stiffness with 

regard to all its degrees of freedom) in the global reference system, xe are the 

element displacements in the global reference, and be are element external forces 

(body forces) expressed in the global reference.  The equations are assembled 

once and then solved.  By the 1970’s, the finite element method seemed to reach 

maturity, producing advances such as general procedures for constructing basis 

functions and constructing algebraic systems associated with the weak form of the 

governing differential equations.  Significant contributions were made by Argyris, 

Turner, Clough, Argyris, Babuska, and others.  Without citing references, some of 

these are discussed in the next section.  Readers who are interested in attributions 

to some of these methods are once again referred to (Zienkiewicz 1995) . 

2.4 The Finite Element Method 

Felippa (Felippa 2001) points out that Matrix Structural Analysis and the 

Finite Element Method share some common points of reference in their historical 

development.  These points may be summarized as Matrix Formulations, Element 

Formulations, and Solution Procedures.  Both MSA and FEM are characterized 

by the fact that they discretize the solution of a partial differential equation, as 
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opposed to earlier techniques which discretized the differential equation itself. As 

such, methods must be chosen to assemble these discrete element solutions.  The 

MSA saw various approaches to doing this in its history, with the main competing 

techniques being the Direct Stiffness Method, and the Flexibility Method. 

The modern FEM relies almost exclusively on the Direct Stiffness Method 

of matrix assembly. The techniques for solving the assembled system of equations 

in MSA had direct application to FEM (indeed FEM may be viewed as simply 

another method of MSA).  The emergence of the digital computer prompted 

research into better matrix system solution algorithms, such as iterative methods, 

as well as the efficient storage and manipulation of sparse systems. Today, these 

efforts continue, focusing largely on efficient parallel and distributed computing.  

Since the key distinguishing features of the FEM are its continuum-based element 

formulations, and its near-exclusive use of DSM in matrix assembly, we discuss 

these a bit further. 

 

2.4.1 The Galerkin formulation 

The element formulations in modern FEM are usually derived by the use 

of a variational formulation.  This may be stated as follows:  The solution of a 

governing differential equation (D) 

  (2.9) 

may be approximated by solving an equivalent (weak) form: 

 

  (2.10) 

( )
( ) ( ) ( )

o
u b f= Ω + ΓD

( )( )
( ) ( ) ( ) ( ) ( ) ( ) 0

o
u v b v d f v d

Ω Γ

Ω − Ω Ω Ω − Γ Ω Γ =∫ ∫D
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where D is some differential operator of degree o, u is the primary variable of 

interest (displacement, in the case of structural analysis), b is a continuously 

distributed load through the domain, Ω, f is a load on the free boundary, Γ (as 

opposed to the portion of the boundary Γd, where essential boundary conditions 

are applied), and v is a “trial” function which, in general, belongs to a space of 

such functions with following properties: 

 
0

: is continuous on , ' is piecewise continuous

and bounded on , and ( )
d

v v v
V

v φ

Ω 
=  

Ω Γ = 
 (2.11) 

The last part of (2.10) is critical to the solution.  It states that the trial 

function must take on values of ϕ0  only on the portion of the boundary, Γd where 

boundary conditions are applied.  This is an important restriction which is usually 

enforced by setting the trial function coefficients (i.e. the nodal degrees of 

freedom) to the value ϕ0 after matrix assembly.  This is possible because of 

property (2.15).  However, in mesh-free methods where the shape functions do 

not interpolate the nodal degrees of freedom directly (and in some cases, there are 

no “nodal degrees of freedom”), care must be taken to modify them in some way 

to satisfy (2.11).  In particular, this is the case with the method of Shapiro/Höllig. 

Integrating equation (2.10) by parts, and making use of the restriction (2.11) on v, 

results in an equation of the form: 

 

( ) ( )( ) ( ) ( ( )) ( ) ( )

( ) ( )

p pu v d v d b v d

f v d

λ
Ω Ω Ω

Γ

∇ ∇ Ω = Ω Ω + Ω Ω Ω

+ Γ Γ Γ

∫ ∫ ∫

∫
 (2.12) 
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The order, p of the del operator ∇ is given by p=o/2.  λ is a linear residual 

term, which may be “left over” from the construction of the bilinear form on 

the left-hand-side, depending on the exact form of the governing equation.  If the 

governing equation D admits a variational form, then the linear form involving λ 

is zero, which will be the assumption in what follows.  This derivation is a 

generalization of one found in (C. Johnson 1992), and is usually referred to in the 

literature as the Galerkin formulation.  The method is characterized by the 

invocation of a trial or weighting function, as in equation (2.10) without appeal to 

variational principles (indeed, the method is more general than the variational 

approach).  The solution represents a minimization of the difference between the 

left-hand side and right-hand side (called the “residual”).  Further characteristics 

of equation (2.12) may be found in a discussion of the variational calculus, such 

as (Heinbockel 2006).  The solution, u is assumed to have the same form as v 

(u∈V) and differ from it by an unknown factor c, such that equation (2.12) 

becomes 

 
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
p p

c v v d b v d f v d
Ω Ω Γ

∇ ∇ Ω = Ω Ω Ω + Γ Γ Γ∫ ∫ ∫  (2.13) 

The unknown c may now be solved directly, as it is the only unkown. The 

next step in the FEM is to discretize equation (2.13).  To make this equation 

useful for domains of arbitrary (not necessarily continuous) topologies, the trial 

function space V is replaced with a finite-dimensional subspace, Vh⊂ V made up 

of orthogonal basis functions, N that interpolate solution values (displacement, for 
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example) at discrete points xi.  If we call the discrete solution values, ϕi=v(xi), the 

discretized version of trial function v may be written: 

 1

( ) ( )

( )

M

i i

i

T

v x N

or x

ϕ
=

=

= Φ

∑ x

v N

 (2.14) 

where M is the total number of discrete points (times the number of degrees of 

freedom at those points) chosen to subdivide the domain.  The functions, N 

belong to an orthogonal function space (Lagrange polynomials are a popular 

choice) which interpolate the discrete solution values φi.  An obvious requirement 

is that v must be C
0
 continuous on Ω.  Another useful property of the shape 

functions N is their so-called “Kronecker-Delta” property (which, as will be seen, 

mesh-free methods do not possess): 

 
1 if j i

( )
0 if j i

j i jiN δ
=

= = 
≠

x  (2.15) 

The discrete points, x in Ω, called “nodes”, are each connected to non-

overlapping finite elements which subdivide, or partition the domain and form  a 

subspace Th={T1,…Tm} of Ω such that 

 
1

m

i

i

T
=

Ω =∪  (2.16) 

This partitioning allows one to re-write equation (2.13) in a discretized form by 

substituting equation (2.14) into equation (2.13) for each element: 
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N  (2.17 a) 
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Note that if the trial function (2.11) is modified to include boundary conditions, 

an additional term is introduced to equation (2.16 a).  For example, if a trial 

function: 

 'v vω φ= +  

is used, where the ω is a weighting function which forces v to zero on the 

boundary, and ϕ captures non-homogeneous effects within the domain, then 

substituting this equation into equation (2.13) and following the same steps as 

before results in: 

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )
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∇ Φ ∇ Φ = − ∇ Φ ∇
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∫ ∫

p p p pN N N

N N

 (2.17 b) 

Using the definition: 

 ( ) ( )p∇ =N A  (2.18) 

and noting that Φ  cancels from both sides of equation (2.17 a), this equation may 

be written: 

 

i i i

T

i i i

T T

dT b dT f d
Γ

Φ = + Γ∫ ∫ ∫AA N N  (2.19) 

Equation (2.19) now represents a linear set of equations for each element Ti.  

Furthermore, the matrix on the left-hand side is symmetric, positive definite for 

static structures (ignoring any gyroscopic effects or fluid interfaces), thus 

guaranteeing a unique solution.  The full system of equations over Ω: 

 
b f

= +Kx r r  (2.20) 
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is assembled using the Direct Stiffness Method (rb and rf are the body and surface 

load residuals, respectively): 

 
1

i

m
T

ij i

i T

K dT
=
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Similarly, 
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∑ ∫ ∫r r N N  (2.22) 

 
2.4.2 Shape (basis) functions 

Many function-interpolating solution function spaces have been used in 

FEM throughout its history – from polynomials, to splines, to trigonometric 

functions.  However, the most popular choice involves interpolating polynomials, 

most of which can be derived using Lagrange Interpolation (or its variant, 

Hermite Interpolation).  Lagrange interpolation works in the following way: 

Given a set of k+1 data points in 1-dimension {(x0,p0),…(xk,pk)}, a polynomial of  

order k, called a Lagrange form, L, may be constructed to interpolate those points: 
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where: 
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−
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The extension to two dimensions is straightforward (and similarly for higher 

dimensions): 
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As a simple example, if one has two points, a and b at x0 and x1, respectively, and 

a linear curve is sought which passes through the two points, equation (2.24) 

yields: 

 

1
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1 0
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x x

x x
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−
=
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−

 (2.26) 

By equation (2.25), the linear segment between x0 and x1 which passes through 

points a and b is given by substituting equation (2.26) into equation (2.23): 

 01

0 1 1 0

( )
x xx x

L x a b
x x x x

   −−
= +   

− −   
 (2.27) 

where l0 and l1 could form the basis for a 1-dimensional line element.  If such an 

element has length L and element origin at x=0, the shape functions of equation 

(2.26) would become: 
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1
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L

−
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 (2.28) 

For higher-dimensional elements, it becomes convenient to find the “natural” or 

“barycentric” coordinates, ξi of the element (see (Cook, Malkus, and Plesha 

1989), Chapter 5).  These coordinates represent the distance from an arbitrary 

point, P on the element to its nodes.  For example, the linear line element with 

origin at x=0 and length L could be interpolated with coordinates ξi, where 

ξ1=L1/L, and ξ2=L2/L, as shown in Figure 2.18.  Since L1+L2=L, the coordinates ξ1 

and ξ2 are not independent.  They satisfy the constraint relation ξ1 + ξ2 = 1.  ξ1 
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and ξ2 can be used to state the position of an arbitrary point P on the line element 

in terms of x1 and x2: 

 2211 xxx ξξ +=  (2.29) 

 

 

Figure 2.17. Barycentric coordinates for a linear line element 

 

As an example, consider P at the centroid of the line element.  In this case, 

ξ1=ξ2=1/2, where x=(x1+x2)/2.  Equation (2.29) may be combined with the 

constraint relation ξ1 + ξ2 = 1, to obtain the system: 

 

1

1 2 2

1 11

x xx

ξ

ξ

   
=    

      

(2.30) 

and its inverse: 
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These equations provide a linear mapping between the x and ξ coordinate 

systems.  Interpolation of a function φ along line 1-2 in terms of nodal values φ1 

and φ2 may now be performed in natural coordinates: 
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2
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ϕ

ϕ
ϕ

 
=  

 
N  (2.32) 

where: 
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This procedure extends generally to 2 and 3-dimensional elements.  For a linear 

triangular element as shown in Figure 2.19, natural coordinates are expressed in 

terms of area ratios: ξ1=A1/A, ξ2=A2/A, ξ3=A3/A.  From this, it is clear that ξ1 + ξ2 

+ ξ3 = 1, and equations (2.32) and (2.33) have the analogs: 
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or: 

 { } { }x ξ= A  (2.35) 

and the inverse: 
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 (2.36) 
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Figure 2.18. Barycentric coordinates for a linear triangle 

 

The functions N are always unity at the nodes (via property (2.14)).  

Equations (2.20) and (2.21) show that element solution variable φ must be 

differentiated and integrated over each element Ti.  The first procedure is easily 

accomplished via the chain rule, and integration is usually carried out via 

Gaussian Quadrature.  For a more detailed explanation of this procedure, see 

(Cook, Malkus, and Plesha 1989).  The determination of higher-order shape 

functions for a triangle (which generalize to simplices of any dimension) is 

straightforward.  One may use the Lagrange Form (equation (2.24)), or simply by 

inspection and solution of constraints on the natural coordinates.  In general, one 

seeks shape functions Ni=Ni(ξ1,ξ2,ξ3) in the relation: 

 { }Tϕ ϕ= N
 (2.37) 
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where {φ}=φi are the nodal degrees of freedom.  In 2 dimensions, φ will be a 

polynomial in x and y such that φ=φ(ξ1,ξ2,ξ3)=φ(x,y) and expressed by the 

expansion: 

 
1 2 3

1

n
q r s

i

i

aϕ ξ ξ ξ
=

=∑
 (2.38) 

in which q, r, s are nonnegative integers that range over the n possible 

combinations for which q+r+s=p.  Thus φ is a complete polynomial of degree p in 

Cartesian coordinates (Cook, Malkus, and Plesha 1989).  For example, for the 

quadratic triangle as shown in Figure 2.20, n=6 and p=2, and: 
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The constants a1 thru a6 are easily found by the requirement that at each node, 

φ=1 and zero elsewhere.  The coefficients a are set equal to φ at the nodes.  Thus 

for the corner nodes, we have: 
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and for the mid-side nodes,  
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Thus, the shape functions for the quadratic triangle are: 
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Figure 2.19. Quadratic triangle 
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2.4.3 Meshing 

Meshes for domains of numerical problems are of two basic types – 

structured and unstructured.  A structured mesh (often referred to as a grid) has 

the property that each node (or vertex) can be addressed by n indices (i,j,k,…,l) in 

n-dimensions.  In addition, each node is mapped to a global coordinate reference 

via (x1,x2,x3,…,xn) = ((i-1)*dx1,(j-1)*dx2,(k-1)*dx3,…,(l-1)*dxn), where the dxi are 

the mesh spacing (here considered constant for each dimension – but this need not 

be the case in general).  Such meshes (a simple example given in Figure 2.16) are 

very convenient for finite difference solutions as the finite differences are easily 

calculated from the grid points.  However, their use in FE applications – 

especially structural problems with complex domains has been problematic.  This 

is because if the grid is to conform to arbitrary domain topologies, no robust, 

consistent, automatic algorithm has yet been proposed to accomplish this.  An 

alternative is to use a non-conforming, structured mesh, but the algorithms for 

such schemes are complicated and suffer from a lack of high accuracy.  Thus, in 

the discussion that follows, we focus on the state-of-the art in unstructured mesh 

creation. 

The previous sections have described how the finite element method is 

capable of modeling field problems in structural mechanics by discretizing the 

weak form of the problem and solving the problem at “nodes”.  These nodes 

usually represent the vertices of simple solids or simplices, which interpolate 

piecewise polynomial (shape) functions over the entire domain.  However, the 
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problem of discretizing, or meshing, the domain is not trivial.  As of this writing, 

the only types of subdomains (elements) which can be automatically generated to 

discretize a 3-dimensional domain for structural problems are tetrahedral.  To 

generate hexahedra, as is required for accuracy in some types of FE problems, the 

analyst must still intervene to manually subdivide the domain into six-sided 

volumes (it should be mentioned that algorithms DO exist for generating 

hexahedra from tetrahedra by simply “gluing” two neighboring tetrahedra 

together.  Algorithms which do this usually generate elements of poor quality, or 

leave a region of tetrahedra somewhere within the interior of the domain). 

Today’s state-of-the art FE programs either utilize their own proprietary software 

for automatic creation of triangles and tetrahedra, or lease it from third parties.  

Most commercial CAD geometry kernels come equipped with tools for 

automatically meshing surfaces and volumes.  What follows is survey of the state-

of-the art in meshing technology based on an online review paper by Steve Owen 

of Carnegie-Mellon University (Owen n.d.). 

 

2.4.3.1 Delaunay triangulation 

The oldest and most widespread automatic tetrahedral meshing algorithms 

are those utilizing the Delaunay criterion (Delaunay 1934).  This approach deals 

mainly with triangulating a given set of points, without consideration of the point 

locations themselves.  Figure 2.21 shows a random set of points in 2D 

triangulated using this approach. 
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Figure 2.20. Random set of 100 points triangulated with Delaunay Criterion 

 

The Delaunay criterion states that any node under consideration as a 

triangle or tetrahedron vertex must not be contained within the circumsphere of 

any other node which is already being used as a vertex.  A circumsphere is 

defined as the sphere passing through the four vertices of a tetrahedron in 3D, or 

the circle passing through the vertices of a triangle in 2D.  In two dimensions the 

algorithm begins by picking three points circumscribed by an “empty circle” – i.e. 

one not containing any other points.  A neighboring point is then chosen and 

another triangle created containing the new point and adjacent edge.  The 

Delaunay condition is now checked by checking if the sum of opposite angles α 

and γ is less than 180° (see Figure 2.22).  If this condition does not hold, the 

adjacent edge is “flipped”.  That is to say the other two vertices of the four points 

in question are used as the adjacent edge – thus producing two different triangles 

containing the same four points which do meet the criterion.  This process is  
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demonstrated in Figure 2.22 thru Figure 2.24.  Once two adjacent triangles meet 

the Delaunay criterion, the next adjacent point is triangulated and the procedure 

continues in this fashion until all points in the set are triangulated. 

 

 

Figure 2.21. Opposite angles α and γ of candidate triangles 

 

 

Figure 2.22. The two triangles do not meet the Delaunay Criterion 
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Figure 2.23. After flipping, the new triangles do meet the criterion 

 

An important feature of the Delaunay triangulation is that in the plane, this 

algorithm maximizes the minimum angle.  Compared to any other triangulation of 

the points, the smallest angle in the Delaunay triangulation is at least as large as 

the smallest angle in any other.  However, the Delaunay triangulation does not 

necessarily minimize the maximum angle.  This algorithm has broad application 

in computer graphics (in generating surface facets for rendering as an example) as 

well as finite element analysis, but in spite of its simplicity and speed, it is 

generally not favored for generating high-quality elements for FE applications.  

One reason for this is that, even though the algorithm produces the best meshes 

for predefined sets of points, far better meshes can be produced by controlling 

point location as well as connectivity.  Here “mesh quality” is somewhat loosely 

defined in FE applications.  It can be defined by aspect ratio (ratio of longest edge 

or angle to smallest edge or angle), or element Jacobian.  In the former case, 

aspect ratios close to 1 are favorable.  In the latter case, values close to zero are 

considered pathological.  Better meshes may be achieved with the addition of a 
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point insertion algorithm on top of the Delaunay triangulation.  See (Owen n.d.) 

for a list of such algorithms. 

2.4.3.2 Octree mesh generation 

The octree technique was primarily developed in the 1980’s by Mark 

Shepard et al (Yerry and Shepard 1984; Shepard and Marcel 1991). With this 

method, cubes containing the geometric model are recursively subdivided until 

the desired resolution is reached.  Figure 2.25 

 

Figure 2.24. Quadtree and associated mesh 

 

shows the equivalent two-dimensional quadtree decomposition of a model.  

Irregular cells are created at surface boundaries.  Tetrahedra are then created from 

the both the irregular cells on the boundary and the internal regular cells. The 

octree technique does not match a predefined surface mesh, as an advancing front 

or Delaunay mesh might.  Instead, surface facets are formed wherever the internal 

octree structure intersects the boundary.  The resulting mesh also will change as 
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the orientation of the cubes in the octree structure is changed.  To ensure element 

sizes do not change too dramatically, a maximum difference in octree subdivision 

level between adjacent cubes can be limited to one.  Smoothing and cleanup 

operations can also be employed to improve element shapes.  ICEM CFD’s 

TETRA  employs this technique in the mesh generator of their baseline product.  

Because it does not depend on surface meshing, this technique can even handle 

poor or broken CAD geometries.  It also tends to produce fewer elements than the 

advancing front technique for a given element size.  However, this comes at the 

expense of element quality. 

2.4.3.3 Advancing front 

The two main contributors to this method are Rainald Lohner (Lohner, 

Parikh, and Gumbert 1988; Lohner 1996) at George Mason University and S.H. 

Lo (Lo 1991a; Lo 1991b) at the University of Hong Kong.  In this method, the 

tetrahedra are built progressively inward from the triangulated surface.  An active 

front is maintained where new tetrahedral are formed.  Figure 2.26 is a simple two 

dimensional example of an advancing front, where triangles have been formed at 

the boundary.  As the algorithm progresses, the front will advance to fill the 

remainder of the area with triangles.  In three dimensions, for each triangular facet 

on the front, an ideal location for a new fourth node is computed.  Also 

determined are any existing nodes on the front that may form a well-shaped 

tetrahedron with the facet.  The algorithm selects either the new fourth node or an 

existing node to form the new tetrahedron based on which will  
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Figure 2.25. Two dimensional depiction of advancing front algorithm (first front 

shown) 

 

form the best tetrahedron.  Also required are intersection checks to ensure that 

tetrahedra do not overlap as opposing fronts advance towards each other.  A 

sizing function can also be defined in this method to control element sizes.  

Lohner (Lohner 1996) proposed using a coarse Delaunay mesh of selected 

boundary nodes over which the sizing function could be quickly interpolated.  

The method is widely considered to produce the best quality meshes of all three 

discussed, but is less robust and relies crucially on B-rep model surface integrity.  

A version of S.H. Lo’s advancing front mesh generator is available with the 

ANSYS® suite of mesh generation tools. 

2.5 Mesh-free methods  (particle-based) 

A search of the literature on mesh-free structural analysis reveals research 

overwhelmingly focused on particle-based methods.  The emphasis on eliminating 

the mesh involved in traditional finite element analysis is motivated usually by the 

desire to analyze physical phenomena that involve large-scale deformation of a 

magnitude that may completely transform geometries and topologies of the 
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systems under consideration, involve topological features that are difficult to 

characterize with existing meshing technology (cracks and dislocations, for 

example), or that involve new topologies that evolve from the phenomena.  In 

such situations, it is of benefit to eliminate the errors incurred by excessively 

distorted elements.  One finds, for example, that these particle-based methods are 

being studied within the context of high-impact, explicit dynamics analyses, 

coupled-field phase change studies, or crack propagation.  Only a small 

percentage of the mesh-free research is focused on design-automation and CAD 

integration (i.e. the focus of  this investigation). On may suspect there is more 

work being done in this area than the literature reveals due to the direct 

commercial implications of such work, and that some such work may be carried 

out in the private sector under a proprietary heading. 

In any case, the field of particle-based mesh-free finite element methods is 

fairly large and growing.  Table 2.2 gives a list of the some of the more common 

particle-based mesh-free methods encountered in the literature.  This section will 

describe the two highlighted in red (and underlined), as these are earliest and most 

fundamental . 

A common feature of all mesh-free particle methods is a weight function.  

A weight function is defined to have compact support, i.e. the subdomain over 

which it is nonzero is small relative to the rest of the domain.  Each subdomain, 

∆Ωi is associated with a node i.  The support is often called the domain of 

influence of a node.  The most commonly used subdomains are discs or balls.  
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These are shown in Figure 2.27.  The following descriptions SPH  and EFG are 

loosely excerpted from (T. Belytschko et al. 1996). 

 

Table 2.2. List of the more common mesh-free techniques 

Common Abbreviation Full Name 

CSPH Corrected Smooth Particle Hydrodynamics 

DEM Diffuse Element Method 

EFG Element Free Galerkin 

FPM Finite Point Method 

GFEM Generalized Finite Element Method 

GMLS Generalized Moving Least Squares 

MFEM Meshless Finite Element Method 

MLPG Meshless Local Petrov-Galerkin 

MLS Moving Least Squares 

NEM Natural Element Method 

PUFEM Partition of Unity Finite Element Method 

RKPM Reproducing Kernel Particle Method 

SPH Smooth Particle Hydrodynamics 

 

 

Figure 2.26. SPH domains with circular support 
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2.5.1 Smooth Particle Hydrodynamics (SPH) 

The original particle method which seems to have the longest continuous 

history is the smooth particle (SPH) method (Lucy 1977).  It was originally used 

for modeling astrophysical phenomena without boundaries such as exploding 

stars and dust clouds. Compared to other methods, the rate of publications was 

very modest for many years and is mainly reflected in the papers of Monaghan 

and coworkers (Monaghan 1982; Monaghan 1988).  In these papers, the method 

was explained as a kernel estimate to provide an approximation for a function 

u(x) over a small compact domain Ωi.  A rationale for this method (Monaghan 

1982)  was provided by invoking an approximation for some  function u(x): 

 
'( ) ( ', ) ( ')

h
u w h u d

Ω

= − Ω∫ xx x x x  (2.47) 

where  x is the coordinate of some point within the local domain Ω, and x’ is the 

coordinate of the particle, or node to be interpolated in that domain.  Here u
h
(x) is 

the approximation, w(x-x’,h) is a kernel or weight function, and h is a measure of 

the size of the support (the subdomain).  According to Monaghan (Monaghan 

1982), the kernel is required to satisfy the following conditions: 

• w(x-x’,h)>0 on a subdomain of Ωi 

• w(x-x’,h)=0 outside the subdomain Ωi 

• A normality property: ∫
Ω

=Ω− 1),'( dhw xx  

• w(s,h) is a monotonically decreasing function,  
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where s=||x-x’||. 

Two commonly used weight functions are the exponential and the cubic 

spline.  Consider the isotropic, or polar weight functions, where the supports are 

circular as shown in Figure 2.27.  The argument of w(x) is s = ||x – x’||; let s̄  = 

s/smax, where smax is the radius of the support. Examples of exponential and cubic 

weight functions for this support are: 
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The exponential weight is actually C
-1

 continuous since it is not equal to 

zero at s̄ =1, but for numerical purposes it resembles a weight with C
1
 continuity 

or higher.  Early researchers seemed to prefer the exponential weight function 

(Monaghan 1992), but Belytschko et al have found that this function is 

computationally more demanding than cubic and quartic functions (T. Belytschko 

et al. 1996), which are constructed to have C
2
 continuity. 

For developing approximations, discrete analogs of equation 2-45 are 

needed.  The discrete form of this equation is obtained by numerical quadrature of 

the right-hand side. Since the idea is to obtain a simple formula for u
h
(x) in terms 

of nodal values uI=u(xI), I=1 to nN, the most straightforward quadrature 
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approaches are usually used.  Thus, in one dimension the quadrature can be 

performed by the trapezoidal rule, which gives: 

 ( ) ( )h

I I I

I

u x w x x u x= − ∆∑  (2.50) 

The sum need be taken only over the points xI where w(x-xI)>0. In multiple 

dimensions, the quadrature is more difficult to come to grips with.  Generally, 

formulas of the type: 

 ( ) ( )h

I I I

I

u w u V= − ∆∑x x x  (2.51) 

are used, where ∆VI is some measure of the domain surrounding node I.  One 

difficulty in applying equation (2.50) is the development of robust techniques for 

assigning ∆VI to each of the nodes.  Typically, a grid is superimposed on the set of 

nodes and basis functions purely for the purpose of performing quadradure.  Once 

quadrature is performed, the approximation can then be written in a form readily 

recognized: 

 ( ) ( )h

I I

I

u uϕ=∑x x  (2.52) 

where: 

 III Vw ∆−= )()( xxxφ  (2.53) 

The φI(x) are the SPH shape functions of the approximation.  In most cases, 

uI≠u
h(xI), so the parameters, uI cannot be treated exactly like nodal values, and the 

shape functions are not true interpolants since they do not pass through the data 

(T. Belytschko et al. 1996).  As mentioned previously, there are numerous 

different particle-based formulations, but they can all be classified as “kernel” 
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methods (like SPH), or related to MLS (that is: their shape function formulation 

follows a Moving Least Squares procedure (T. Belytschko et al. 1996)).  Table 

2.3 lists some common formulations: 

 

Table 2.3. Common mesh-free shape function formulations 

Method Discrete Form 
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So far, the discussion of mesh-free methods has focused on formulations.  

Other distinguishing features of the various methods involve generating the 

discrete system equations.  There are essentially two basic types of algorithms: 

Point Collocation and the Galerkin Method.  Point collocation is the most 

straightforward and works as follows:  At any node J, one determines the nodes 

which contain node J within their domain of influence. In SPH, the construction 

of the discrete form of the Poisson equations then simply involves calculating the 

second derivatives of the shape functions of all relevant nodes at node J, i.e. at x = 

XJ.  This procedure is very fast for most formulations, but Belytschko et al (T. 
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Belytschko et al. 1996) claim that it suffers from instability.  The Galerkin 

Method is described next. 

2.5.2 Element-Free Galerkin (EFG) 

The application of a particle-based mesh-free method to problems in 

elastostatics requires some scheme to generate the discrete system equations.  In 

addition to the point collocation method just described, variational or Galerkin 

methods are also very popular.  Discretization by the Galerkin method follows 

essentially the same procedure as described in section 2.4.  Namely, it requires a 

weak form or variational principle.  The procedure simply involves substituting 

one of the shape functions of Table 2.3 into equations 2.12 thru 2.20. 

One major problem in mesh-free methods involves how to evaluate the 

integrals in equation 2.17.  Belytschko (T. Belytschko et al. 1996) identifies three 

approaches: 

1.) Nodal integration, where the integral is evaluated by 

∑∫
=Ω

∆=Ω
Nn

I

II Vfdf
1

)()( xx x  

2.) Cell or octree quadrature, where a regular array of domains in 

the background is used for quadrature 

3.) A background finite element mesh is used for quadrature 

In the methods 2) and 3), the quadrature points do not need to coincide 

with the nodal degrees of freedom.  The first method is the fastest, but “like nodal 

collocation appears to suffer from instability” (T. Belytschko et al. 1996).  The 

second method is stable but less precise than the third method.  The third method 
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is the most precise of the three but suffers from all the drawbacks of traditional 

meshing. 

2.5.3 Boundary conditions in particle methods 

One the biggest problems remaining in the mesh-free particle methods is 

the accurate application of essential boundary conditions.  The problem arises 

because of the non-interpolatory character of the mesh-free approximation.  That 

is, the approximation does not pass through the nodal parameters - the shape 

functions do not obey the Kronecker-Delta property introduced in section 2.4 

(equation (2.15)).  As a consequence, the imposition of boundary conditions on 

the dependent variable, i.e. Dirichlet or essential boundary conditions, is quite 

awkward.  The following methods have been used by various researchers to 

address the problem: 

1.) Lagrange Multiplier approaches (T. Belytschko, Y.Y. Lu,  

and Gu 1994) 

2.) Modified variational principles (T Belytschko, Y.Y Lu,  

and Gu 1994) 

3.) Penalty Methods 

4.) Perturbed Lagrangian (Chu and Moran 1995) 

5.) Finite Element Coupling (Krongauz and T. Belytschko 1996) 

The disadvantage of the first approach is that the discrete equations for a 

linear self-adjoint PDE are no longer positive definite nor banded. However, of 

the five methods listed, the Lagrange multiplier method is the most accurate 

method for imposing Dirichlet boundary conditions and is therefore quite useful 
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for smaller problems, such as smaller two-dimensional problems where the cost of 

solving the equations is immaterial (T. Belytschko, Y.Y. Lu, and Gu 1994).  The 

approach based on the modified variation principle results in banded equations, 

but the boundary conditions are not imposed with as high a degree of accuracy.  

For practical purposes, the coupled EFG/finite element approach appears to be 

most satisfactory. In this approach, elements are placed around the boundary of 

the domain and the mesh-free approximation is coupled to the finite element 

approximation, and essential boundary conditions are applied to finite element 

nodes by standard methods. This approach is particularly useful when finite 

elements are used as a background mesh for quadrature, since then a finite 

element mesh is already available. Note however, that only the elements adjacent 

to the boundary are used for purposes of approximation.  Another approach to 

imposing boundary conditions has been developed by Gosz  (T. Belytschko et al. 

1996) who imposes the condition by forcing the weight function to go to zero on 

Dirichlet boundaries. In this technique, nodes cannot be placed near the boundary. 

It should be mentioned that Gosz seemed unaware of the similar method 

articulated in (Kantorovich and Krylov 1958), not to mention (Rvachev 1975). 

2.5.4 Particle methods overview 

The differences between most of the methods listed in Table 2.2 have to 

do with formulation of the interpolating functions.  Of these, only SPH was 

described as the details of particle-based interpolating functions do not directly 

concern this research.  These details are however relevant to the history of mesh-
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free methods in general, and so the following offers a condensed overview – the 

details of which we will not be pursued. 

A parallel path to SPH in constructing meshless approximations, which 

commenced in the early nineteen-nineties, is the use of moving least-square 

approximations. Nayroles et al. (Nayroles, Touzot, and Villon 1992) were 

evidently the first to use moving least square approximations in a Galerkin 

method called the diffuse element method (DEM). Belytschko et al. (T. 

Belytschko, Gu, and Y.Y. Lu 1994) refined and modified the method and called 

their method EFG, element-free Galerkin. This class of methods is consistent and 

in the forms proposed quite stable, although substantially more expensive than 

SPH.  Later, Oden (Duarte and Oden 1995) and Babuska and Melenk (Babuska 

and Melenk 1996) recognized that the methods based on moving least squares are 

specific instances of partitions of unity.  This unified the field somewhat and gave 

birth to another strand of research into particle-based methods known as PU or 

PUFEM (Partition-of-Unity Finite Element Method). 

We conclude by noting that all the particle-based methods seem to suffer 

from a lack of linear consistency (T. Belytschko et al. 1996).  That is to say, for a 

2nd order partial differential equation (such as is encountered in elastostatics), 

linear and constant pressures are not reproduced exactly (the patch test is failed).  

Furthermore, in the EFG approach, the assembled system matrices suffer from 

high condition numbers, as well as inefficient assembly and inaccuracy when non-

uniform node spacing is used. 

 



  76 

2.6 Contact mechanics 

Any comprehensive assembly design/analysis system must incorporate a 

method of resolving the stresses and strains induced at regions where component 

surfaces touch one-another. Such problems are frequently encountered in 

structural analysis, and are generally referred to as “contact problems”.  Finite 

element methods have been used for years to solve contact problems (Zienkiewicz 

and Taylor 2000) and the traditional finite element approach to such problems is 

well-established and mature.  According to Zienkiewicz, 

“…contact problems are inherently nonlinear since, prior to 

contact, boundary conditions are given by traction conditions 

(often the traction being simply zero) whereas during contact 

kinematic constraints must be imposed which prevent penetration 

of one boundary through the other, called the  

‘impenetrability condition’.  The solution of a contact problem 

involves first identifying which points on a boundary interact and 

second the insertion of appropriate conditions to prevent the 

penetration.”  

As will be seen, the second part of the problem gives rise to two popular methods 

– the “Penalty Method”, and the “Lagrange formulation”.  However, before 

discussion of these methods can begin, some important results from the Theory of 

Elasticity, due to Hertz (Hertz 1896) should be discussed. 
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2.6.1 The Hertz contact problem 

When the region of contact between two bodies is simply connected, 

smooth, easily identified, and resulting displacements are small, Hertz discovered 

an analytical solution under the following additional assumptions: 

• Loading is perpendicular to the surface.  That is, the effect of 

surface shear is neglected. 

• The contact area dimensions are small compared to the radii of 

curvature of the bodies under load. 

• The radii of curvature of the contact areas are very large compared 

to the dimensions of these areas. 

• The shape of the resulting contact region is an ellipse 

Hertz’s work was the first to give a reasonable analytical description of the 

elastic fields resulting from two smooth bodies in contact under a compressive 

load.  In particular, his solution predicted the extent of the resulting contact 

surface, as well as the displacements, stresses and strains within this ellipsoidal 

“contact zone”.  A full discussion of this solution is beyond the scope of the 

present work, but some of the important results are summarized below, as these 

are essential in assessing the accuracy and validity of any numerical contact 

analysis procedure.  The following results, based on Hertz’s solution, can be 

found in accessible form in (Harris 1991) (and the equations presented below are 

taken directly from this source).  Major and minor diameters, a and b of the 

contact ellipse, are given by: 
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The maximum normal displacement within the contact zone is given by: 
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= +  

Σ   
 (2.56) 

where Q is the applied force over the contact surface, ν1, ν2, E1, and E2 are 

Poisson’s ratio and the elastic modulus associated with contact surfaces 1 and 2, 

respectively.  Σρ is the “curvature sum” of the two surfaces defined by: 

 
1 2 1 2

1 1 1 1

I I II II
r r r r

ρΣ = + + +  (2.57) 

where r is the radius of curvature at the center of contact, and the indices I and II 

indicate principle directions of curvature. The dimensionless quantities a* and b* 

are defined as: 

 

1/3
2

* 2
a

κ

π

 ℘
=  
 

 (2.58) 

 

1/3

* 2
b

πκ

℘ 
=  
 

 (2.59) 

 

1/3

*

2

2

2

π
δ

π κ

 ℑ
=  

℘ 
 (2.60) 

Here, κ=a/b, and ℑ and ℘are the complete elliptic integrals of the first and 

second kind, respectively: 
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1/2
/2

2

20

1
1 1 sin d

π

ϕ ϕ
κ

−
  

ℑ = − −  
  

∫  (2.61) 

 

1/2
/2

2

20

1
1 1 sin d

π

ϕ ϕ
κ

  
℘= − −  

  
∫  (2.62) 

Equations (2.61) and (2.62) can be performed numerically, and used to produce 

tables for the dimensionless parameters a*, b*, and δ*, which may then be 

interpolated to calculate the contact ellipse properties.  Once this is done, the 

maximum scalar contact stress (or pressure) is given by: 

 
max

3

2

Q
p

abπ
=  (2.63 a) 

for two spheres in contact, or: 

 
max

2Q
p

aπ
=  (2.63 b) 

for two cylinders with coincident common axis.  Furthermore, the normal stress 

within the contact zone is given by: 

 

1/2
2 2

3
1

2

Q x y
p

ab a bπ

    
= − −    

     
 (2.64 a) 

for two spheres, or: 

 

1/22
2

1
Q x

p
a aπ

  
= −  

   
 (2.64 b) 

for two cylinders, from which it is easily seen that the maximum contact stress 

occurs at the center of the ellipse (x=y=0). 
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2.6.2 Weak form – Lagrange Multiplier Approach 

The general static structural contact problem is most commonly 

approached by stating the weak form of the problem with the use of Lagrange 

multipliers.  The following form of the problem may be found in (Bhatti 2006) 

(Chapter 10).  Consider two elastic bodies in contact, as shown in Figure 2.28.  

The bodies meet in a surface making up the contact zone, denoted by Γ, whose 

center is marked P.  One body is denoted as the master (body 1 in Figure 2.28  

This is the body whose surface-normal is used for integration), while the other is 

called the slave (body 2).  The variational form for the deformation of both bodies 

may be expressed as: 

 ( ) ( , ) 0Hδ δ+ Π =
c

u g F  (2.65) 

where δH contains the combined elastic deformation of the target and contactor 

(slave and master, respectively) bodies: 
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Figure 2.27. Two elastic bodies in contact.  Inset depicts a point P
1
 on body 1 (the 

master), and its nearest neighbor, P
2
 on body 2. 

 

 2 1( ) ( ) ( )H H Hδ δ δ= +u u u  (2.66) 

and the variation δΠ contains the deformational energy owing only to the 

contacting surfaces of both bodies.  For simplicity, we assume that the contact is 

frictionless. 

 
2 2 1 1( , ) ( , ) ( , )

c c n n c n n
δ δ δΠ = Π + Πg F u F u F

 (2.67) 

The Lagrange multiplier approach imposes the contact constraint (the 

constraint imposed by the contacting surface of one body on the other) by 

applying the reaction force necessary to impose the constraint (and solving for 
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that instead of the displacement-based constraint).  Thus the functional associated 

with the contacting surfaces takes the form: 

 c

c n

A

F gdAΠ = ∫  (2.68) 

where g is the contact gap (about which more is said in the next section): 

 
2 1

n n
g u u= −  (2.69) 

The variation δH is familiar from the Theory of Elasticity and given by: 

 ( ) ( ) ( )( )

q

T T T

V V A

H dV dV dAδ δ δ δ= − −∫ ∫ ∫u ε σ u b u f  (2.70) 

Thus, for the target (slave) body, the internal and contact terms may be combined 

to yield 

 

( ) ( )

( )

2 2

1

2 2 2 2 2 2 2

2 2 2 2 2 2

( ) ( , )

( )

q

T T

c

V V

T

n n n n

A

H dV dV

dA u F u F dA

δ δ δ δ

δ δ δ
Γ

+ Π = −

− + +

∫ ∫

∫ ∫

u u F ε σ u b

u f
 (2.71) 

and for the contactor (master), we do the same, but note that the contact forces are 

equal and opposite: 

  (2.72) 

Which, in turn yields: 

  (2.73) 

Combining the two: 

2 1 0n nF F+ =

( ) ( )

( )

1 1

1

1 1 1 1 1 1 1

1 1 1 1 1 1

( ) ( , )

( )

q

T T

c

V V

T

n n n n

A

H dV dV

dA u F u F dA

δ δ δ δ

δ δ δ
Γ

+ Π = −

− − +

∫ ∫

∫ ∫

u u F ε σ u b

u f
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( ) ( )

( ) 2 1 2 1

( ) ( , )

( ) ( ) 0

q c c

T T

c

V V

T

n n n n n n

A A A

H dV dV

dA u u F dA u u F dA

δ δ δ δ

δ δ δ δ

+ Π = −

− + − + − ≥

∫ ∫

∫ ∫ ∫

u g F ε σ u b

u f
 (2.74) 

The inequality arises due to the fact that the last term must be greater than or 

equal to zero in order to impose an impenetrability constraint.  That is to say, if 

the gap becomes negative (within the course of iterative calculation), the gap 

constraint force must also become negative (δF≤0) in order to keep the residual 

positive: 

 
1

2 1( ) 0
n n n

u u F dAδ
Γ

− ≥∫  (2.75) 

It is thus convenient to separate the displacement-based variational terms from the 

force-based terms into two independent equations:  

 

( ) ( )

( )
1

2 1

( ) ( , )

( ) 0

q

T T

c

V V

T

n n n

A

H dV dV

dA u u F dA

δ δ δ δ

δ δ δ
Γ

+ Π = −

− + − =

∫ ∫

∫ ∫

u u F ε σ u b

u f

 (2.76) 

 
1

2 1( ) 0
n n n

u u F dAδ
Γ

− ≥∫  (2.77) 

 

2.6.3 The finite element formulation 

A  typical finite element implementation of equations (2.76) and (2.77) 

may proceed as follows.  The nodal  displacements and displacement variations 

are given by: 

 T Tδ= ⇒ =u N d u N  (2.78) 
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However, the contact forces must also be explicitly interpolated (the choice of 

shape function NF depends on the particular formulation): 

 1 1 2 2 ... T

n F F F
N F N F= + + =F N F  (2.79) 

Where F=F1+F2+F3+… are the nodal forces at the contact interfaces.  The normal 

displacements, un can be computed by taking the dot product of displacements 

with the normal vector.  So, for the slave surface (superscript 2): 

 2 1 2 1 2 2 2 1 2( ) ( ) ( ) ; ( ) ( )T T T T T

n n
uδ= = ⇒u n u n N d n N

 

 
2 2 2 2 2( ) ( )T T

n F n F
δ= ⇒ ⇒F N F F N

 

 
1 1 1

2 2 2 2 2 1 2 2 2 2( ) ( ) ( )T T T

n n n n F c
dA dA dAδ δ

Γ Γ Γ

= = =∫ ∫ ∫u F F u N n N d k d

 

 

1 1

1

2 2 2 2 2

2 1 2 2 2 2

( ) ( )

( ) ( )

T T

n n n F

T T

F c

dA dA

dA

δ δ
Γ Γ

Γ

=

= =

∫ ∫

∫

u F u N F

N n N F k F  

And similarly, for the master surface: 

 1 1 1 1 1 1 1 1( ) ( ) ; ( ) ( )T T T T T

n n
uδ= = − ⇒ −u n u n N d n N  

 1 1 1 1 1( ) ( )T T

n F n F
δ= ⇒ ⇒F N F F N

 

 
1 1 1

1 1 1 1 1 1 1 1 1 1( ) ( ) ( )T T T

n n n n F c
dA dA dAδ δ

Γ Γ Γ

− = − = − = −∫ ∫ ∫u F F u N n N d k d
 

1

1

1 1 1 1 1

1 1 1 1 1 1

( ) ( )

( ) ( )

T T

n n n F

T T

F c

dA dA

dA

δ δ
Γ Γ

Γ

− = −

= − = −

∫ ∫

∫

u F u N F

N n N F k F
 

The combined contact stiffness contribution (from both bodies) is: 
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 (2.80) 

Thus, equation (2.74) becomes: 

 
T

b q− − + =cKd r r k F 0  (2.81) 

where the usual finite element formulation gives: 

 T

V

dV= ∫K ACA   

where the matrix C corresponds to a constitutive relation, and: 

 

 
b

V

dV= ∫r Nb

  

 c

f

A

dA= ∫r Nf

  

Equation (2.77) becomes: 

 
1

2 1( ) 0
n n n c

u u F dAδ
Γ

− ≥ ⇒ ≤∫ k d 0  (2.82) 

Equations (2.81) and (2.82) are combined to give: 

 

T

c

c

  =   
    

≤    

d rK k

F 0k 0
 (2.83) 

These equations can be assembled using the usual finite element assembly 

process.  This method is completely general and does not require the slave and 

master surfaces to have conforming meshes.  One drawback is that the method 

involves inequalities, which necessitate some optimization technique. 

 

 

1 1

2 1 2 1 1 1( ) ( ) , ( ) ( )T T T T

c F F
dA dA

Γ Γ

  
= − 
  
∫ ∫k N n N N n N
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2.6.4 Gap monitoring 

The contact surface reaction force, F in equation (2.81) is an unknown 

which must be solved for iteratively. The particular choice of starting value for F 

will in general depend on an assessment of the gap between contacting surfaces.  

Note, however, that the form of the gap relation (equation (2.67)) depends on 

master and slave normal deformations only.  This form may only be usefully 

employed once two surfaces have already made contact and local deformation 

results.  

Thus, any iterative solution to equation (2.81) must also constantly 

monitor which surfaces or elements have come into contact.  Indeed, this is a 

prerequisite to solving (2.81).  Such a calculation involves determining points on 

element surfaces which may be in potential contact.  One requirement for such 

surfaces is that the element normals on the target and contactor surfaces are equal 

and opposite: 

 
2 1= −n n  (2.84) 

This requirement would be met, for example, at point P
1
 in Figure 2.28 once the 

gap becomes zero.  The requirement (2.83) allows a single normal surface (the 

master suface) to be used for the gap normal direction.  The total distance 

between such potential contacting points is then calculated.  This can be written 

as: 

 

2 1

0

2 1 1

0

( )

( )

i

i i i i i

i i i i

g g

g

= − ⋅ +

= − ⋅

u u n

x x n
 (2.85) 

where the subscript i ranges over the number of element pairs in potential contact. 
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Various criteria have been used (see (Wriggers 2002)) to determine which 

elements on each body should be monitored for potential contact (stored as pairs, 

applying equation 2.85 to assess the gap value).  This monitoring process leads to 

constraint application according to: 

 , 0c

i i
g= + ≤K K k  (2.86) 

 

2.6.5 The Penalty Method 

As seen in equation (2.81), the Lagrangian contact formulation leads to a 

larger system of equations than would otherwise be seen for two or more elastic 

bodies.  In particular, an additional term is required for every degree of freedom 

on the contacting surfaces.  One way around this is, instead of treating the contact 

force as an unknown, to associate this force with a penalty parameter, β such that: 

 
2 1

0 0

( ) 0
n

n n

if gap
F

u u if gapβ

>
= 

− ≤
 (2.87) 

Where the gap is computed as described above.  Thus the last term of equation 

(2.76) becomes: 

 1 1 1

2 1 2 2 1 1( )
n n n n n n n

u u F dA u u dA u u dAδ δ δ β δ β
Γ Γ Γ

− = −∫ ∫ ∫   

where, for the slave surface: 

 
1 1

2 2 2 1 1 2 2 2 2( ) ( )T T

n n p
u u dA dAδ β β

Γ Γ

= =∫ ∫ N n n N d k d

  

and for the master surface: 

 
1 1

1 1 1 1 1 1 1 1 1( ) ( )T T

n n p
u u dA dAδ β β

Γ Γ

− = − = −∫ ∫ N n n N d k d
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(Recall that the minus sign comes from the gap condition (2.84) and (2.85)).  

Thus, the matrix, 
c

pk  is calculated as: 

 
1 1

1 1

1 1 1 1 1 1 1 2

1 1 1 2 2 1 1 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T T T

c

p
T T T T

dA dA

dA dA
β Γ Γ

Γ Γ

 −
 

=  
−  
 

∫ ∫

∫ ∫

N n n N N n n N

k
N n n N N n n N

 (2.88) 

The corresponding residual vector is: 

 
1

1

1 1

2 2

c

p

g dA

g dA
β Γ

Γ

 
 

=  
−  
 

∫

∫

N n

r
N n

 (2.89) 

The equations of equilibrium may now be written in simplified form: 

 ( )
p

+ =K k d r  (2.90) 

No additional equations are needed (the constraint force is now captured in the 

penalty term).  This equation is of the same size as would be obtained for two or 

more elastic bodies with no contact.  However, proper choice of penalty factor, β 

is now crucial.  If β is too large, the equations may have difficulty converging in 

an iterative solution.  If it is too small, excessive penetration may occur. 

2.6.6 Implementation 

Several issues arise when implementing equation (2.81) or (2.90) in a 

finite element model.  These may be categorized as issues relating to contact 

region discretization, and issues relating to solution algorithm.  In the second 

case, as mentioned in section section 2.6.3, the Lagrangian contact problem is one 

of constraint optimization.  If the Penalty Method is chosen, a traditional Newton-

Raphson-type solution algorithm may be employed (Wriggers 2002), but 
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additional logic (and potentially additional computer resources) must be added to 

enforce the constraint condition (2.87). 

In the case of problems relating to discretization, most of the issues have to do 

with calculation of a non-ambiguous normal direction for gap calculations, and 

with the connectivity of dissimilar meshes (other issues relate to contact 

constitutive laws, which are beyond the scope of this research).  Of these the latter 

problem is a topic of ongoing research, with the latest entry being that of the so-

called Mortar Methods (Wriggers 2002; Wriggers and Panagiotopoulos, P.D. 

1999).  The most popular method currently employed to connect two dissimilar 

contact regions is the node-to-surface contact method, described in the next 

section.  

2.6.6.1 Contact discretization and connectivity and mesh-free contact 

The first problem faced in discretized contact problems has to do with 

calculating surface normal vectors as in equation (2.82) (used for gap 

monitoring).  This can be problematic due to the discrete nature of a finite 

element mesh.  If the discretization is not isoparametric with degree higher than 1, 

a unique normal direction does not exist for nodes on curved boundaries. Several 

methods have been proposed to treat this problem. One method averages the 

normal directions obtained from the underlying element parameterizations on 

either side a singularity.  Another method interpolates a smooth parametric curve 

across the contact nodes and calculates a normal direction from this curve rather 

than the underlying mesh.  This solution fails at true singularities, however 

(corners). 
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A second problem involves the connection of dissimilar meshes (a 

problem which seems to have an analogy in some particle-based mesh-free 

approaches).  Most often, a concept of nodal or segment projection is used when 

nodes on one contact surface do not have clear counterparts on the other contact 

surface.  The procedure involves selecting the node on a target contact segment 

with the smallest contacting segment-normal projection as in Figure 2.29.  Such a 

procedure is often referred to as a node-to-surface algorithm.  Gap and reaction 

force calculations are done on this basis.  There may be several nodes nearer one 

segment than any other.  A connectivity matrix is then constructed between the 

node(s) and the segment.  The details of how this is done vary.  Figure 2.30 shows 

a degenerate situation which suffers from both of the problems mentioned above 

(i.e:  a) it is not clear to which segment point P belongs, and b) there is no unique 

normal distance from target segments to point P).   A solution to the second 

problem may involve joining segments together according to some criterion, such 

as the Babuska-Brezzi condition (Babuska 1973).  This solution involves 

generating coupling matrices between an underlying mesh’s nodal degrees of 

freedom and joined surface segments.  There are apparently other issues 

surrounding the node-to-surface implementation.  Some authors have pointed out 

that the resulting nodal contact forces are much higher than they should be, and 

associated surface tractions are not correct (Cescotto and Charilier 1992).  This 

has led to schemes which involve defining contact elements by associating nodes 

on one surface to their nearest point normal to the opposing surface.  As the nodes 

and surface normal segments alternate, there are no uniqe master and slave 
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bodies.  Such schemes are often referred to as surface-surface, or surface-segment 

methods (Wriggers 2002), as shown in Figure 2.31. 

 

 

Figure 2.28. Nodal projection in Node-to-Surface Algorithm 

 

 

Figure 2.29. Two degenerate cases for nodal projection 
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Figure 2.30. Alternating nodal projections used to construct contact segments 

(Surface-to-Surface Algorithm) 

 

If a one-to-one correspondence between contact surface nodes can be 

established, both problems mentioned above are eliminated. If the contact 

problem does not involve large displacements, or contact surface constitutive 

laws, the existence of a matching contact-target mesh results in straightforward 

implementation of equations (2.81) and (2.90).  Because nodal degrees of freedom 

on the contacting body have explicit counterparts on the target body, the matrix 

coupling (for the Penalty Method) between contact and target surface may be 

expressed simply by: 

 

1 1 1,2 1

2 2,1 2 2

p p

p p

        
=              

f k k u

f k k u
 (2.91)

 

 
where the superscripts 1 and 2 refer to master and slave bodies, 

respectively, and each element in the matrix in (2.91) represents a partitioned 

assembly of all the degrees of freedom on the contact surfaces.  Furthermore, this 

partitioning is identical on both bodies.  The tangent stiffness and residual terms 

for all contacting surfaces are obtained from (2.88) and (2.89).  In higher 
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dimensions, this type of solution (one in which there is a direct one-to-one 

correspondence between degrees of freedom on the master and slave surfaces 

expressed in the contact element pairs) is referred to as an Isoparametric Contact 

Discretization (Wriggers 2002), since there is both a one-to-one correspondence 

between master and slave degrees of freedom, as well as an identical 

parameterization of both surfaces.  Elimination of the integral in equation (2.88) 

and (2.89) results in a Node-to-Node, or gap element formulation, as shown in 

Figure 2.32. 

 

 

Figure 2.31. Node-to-Node gap elements 

 

Penalty-based contact solutions have been demonstrated for some particle-

based methods, such as EFG (Guangyao and T. Belytschko 2001; T. Belytschko 

and Fleming 1999).  More complicated matrix coupling have been demonstrated 

for other methods (see (Chen and Wang 2000) , for the case of the RKPM for 



  94 

example).  None of these solutions focus on elastic surface-to-surface contact 

problems, however, and it is expected that results for such applications would 

vary, depending on such factors as whether consistency conditions are met. A 

study of the EFG’s ability to accommodate essential boundary conditions (a 

closely related issue) may be found in (Fernandez-Mendez, S. and Huerta 2004). 

In the case of trimmed B-Spline domains (next chapter) by contrast, consistency 

is guaranteed by the completeness of the B-Spline formulation (proofs of this 

consistency may be found in many sources. One is (Hoellig 2003)) . 

A mesh-free solution based on non-conforming tensor-product grids 

enjoys the advantage that element connectivity is trivial (shown in the next 

chapter).  Partly because of this property, this formulation offers the possibility 

that any surfaces in contact may be treated analogously to the Isoparametric 

Contact Discretization, with the exception that, in general two different finite 

element bases are used (basis stabilization schemes such as weB-Splines, as well 

as the one proposed in the current work are both geometry dependent, and 

therefore a basis whose support intersects one domain should not be expected to 

be compatible with the same basis which overlaps a separate domain, as the two 

will in general have different normalizations).  It should thus be emphasized that 

equations (2.88) and (2.89) have been derived with this proviso in mind.  If the 

two bases have equal normalizations, equations (2.88) and (2.89), the contact 

problem will be truly analogous to the Isoparametric Contact Discretization, as 

described in (Wriggers 2002). 

 



  95 

2.6.6.2 Contact solution algorithm 

As has been mentioned, if the Lagrange formulation is used, solution of 

the contact problem is equivalent to a constraint optimization problem (Bhatti 

2006; Wriggers 2002).  The required solution algorithm could be quite 

complicated, or a specialized constraint function could be employed (Bathe and 

Bouzinov n.d.).  If the Penalty formulation is used, a standard Newton-Raphson-

type algorithm may be used.  The stiffness contribution (   in equation (2.88)) 

of the contact surfaces will depend on the result of a gap calculation (this reflects 

the nonlinear nature of the solution) which must be updated within each Newton-

Raphson iteration.  The Newton-Raphson algorithm proceeds in steps by 

calculating the total system internal reaction force due to the externally applied 

loads, and then using the difference between the external load and internal 

reaction to calculate an incremental displacement (or strain).  This incremental 

displacement is then added to the previously calculated displacement, and then the 

stiffness matrix is updated  to obtain a new reaction force.  This process is 

repeated until the difference between the external and internal forces is less than 

some numerical tolerance. This process is shown in Figure 2.33 for a single 

iteration, i where ra is the external load, ri
nr

 is the calculated reaction force from 

the previous iteration, and Ki is the tangent stiffness matrix at iteration, i.  The 

stiffness matrix gets updated with incremental displacement, ∆u (ui+1-ui), because, 

as the gap closes, more contact elements get “switched on”, due to criterion 

(2.87). 

 

c

pk
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Figure 2.32. A single Newton-Raphson iteration, i 

 



  97 

Chapter 3 

LITERATURE REVIEW 

A background in CAGD, Assembly Design, Structural Analysis, the Finite 

Element Method, Mesh-Free Methods, and Contact Mechanics has been given.  It 

is the ultimate goal of this research to marry all of these disciplines within the 

framework of a comprehensive engineering design system in which each is 

enhanced by the other in a seamless, efficient, and robust manner.  Commercial 

systems are available today which may seem to meet these requirements (e.g. 

UGS NX+Nastran®, SolidWorks+Cosmos®, ProE+Mechanica®), but they all 

suffer from the deficiencies pointed out in the introduction. 

Perhaps one of the biggest current obstacles to meeting the objectives 

stated above lies in the requirement by modern commercial finite element systems 

to generate a high-quality mesh over a B-rep solid model.  As a response to the 

substantial challenges posed by this requirement, there is a tendency for many 

commercial systems to sacrifice element quality (and hence solution quality) for 

automation and ease-of-use.  A successful design/analysis system must not make 

this compromise.  It is for this reason that a suitable mesh-free finite element 

formulation be identified and assessed.    The mesh-free particle methods 

reviewed in the last section, although successful in the analysis of specialized 

problems, still suffer from the problems mentioned in that section, and so are 

removed as candidates for the mesh-free system sought in this investigation.  In 

an automated structural assembly-design environment, the numerical analysis 

system must be stable, consistent, and reliable.  We have found only one mesh-
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free methodology which seems to fulfill these requirements within the context of 

structural assembly design.  It involves finite elements defined over a non-

conforming tensor-product B-Spline grid (in this context, “non-conforming” 

simply means that the basis does not interpolate the geometric domain.  All that is 

required is that the basis support contains the domain).  Such a framework has 

emerged relatively recently by two separate research groups, and will be 

introduced next in the way of a literature review. 

3.1 B-Splines as finite elements 

Interest in B-Spline functions as a finite element basis is probably as old 

as the finite element method itself (the former being older than the latter).  This 

investigation will not recount all the accomplishments, but a good reference is 

(Sabin 1997).  To list three highlights from early work: DeBoor used cubic splines 

to solve certain one-dimensional boundary value problems in his doctoral 

dissertation in 1966 (De Boor, C.E. 1966).  The first application of B-Splines to 

rectangular plate-bending problems was found in (Antes 1974).  A finite element 

application of B-Splines to hyperbolic problems was achieved by Davies in 1978 

(Davies 1978).  After that, various groups applied the method to two dimensional 

rectangular domains.  For these types of problems, matrix condition numbers and 

boundary conditions were not considered problematic (these were not mesh-free 

finite elements, and it was understood that Dirichlet boundary conditions could be 

applied directly to repeated knots).  

More recently, a few researchers (Hughes, Cotrell, and Bazilevs 2005) 

have utilized NURBS basis functions in a meshed finite element formulation 
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(using repeated knots to interpolate geometry).  The method simply involves 

replacing the polynomial interpolants in the trial shape function of equation (3.6) 

with the NURB bases (see equation (2.5)).  The usual finite element discretization 

procedure (equations 3.9 thru 3.11) then proceeds unmodified. 

Some motivations for this formulation seem to be: 

1.) H and p refinement are handled easily within the NURBS bases 

themselves through the mechanism of degree-elevation and 

knot insertion 

2.) The minimal support property of B-Splines guarantees the 

smallest possible algebraic subspace for approximation (the 

minimum number of bases to approximate data within a given 

interval and discretization) 

3.) Solution fields may be reproduced on exact geometrical 

representations. 

Some interesting features of this methodology are that the finite element 

“mesh” is now associated not with nodal degrees-of-freedom, but to the span of 

knot points.  The primary independent field variable (the coefficients of the basis 

functions) is associated with the control points.  Thus when the discrete system 

equations of this formulation are solved, the solution is given in the form of 

control point values. 

The motivations behind this formulation are very close to those of our own 

current effort; however, serious problems remain.  One primary objection is that a 

mesh must still be created (this is not a mesh-free technique, but we include it in 
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this review for completeness and because we may be able to utilize some results 

in our own work).  The use of a NURBS basis reinforces a tantalizing suggestion 

that perhaps the same functions describing the CAD  solid model may somehow 

be re-used for analysis. 

 

3.2 The method of Shapiro/Höllig 

Shapiro et al (Shapiro and Tsukanov 1999b), and later Höllig et al (K. 

Hoellig, Reif, U., and Wipper 2001) have demonstrated a mesh-free approach that 

involves B-Splines to interpolate the solution space.  In contrast to the traditional 

finite element mesh which discretizes the physical domain, this approach utilizes 

a function space whose domain overlaps, but does not necessarily conform to a 

particular geometric domain as in Figure 3.1. 

 

 

Figure 3.1. Non-conforming tensor-product B-Spline grid overlapping a 

geometric domain 
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The solution space is composed with weighting functions to address 

boundary conditions.  Although the basic approach seems to be applicable to all 

classes of boundary value problems currently addressed by traditional finite 

element procedures (Hoellig 2003), this dissertation will focus solely on elliptical 

problems with non-homogeneous Dirichlet boundary conditions (more 

specifically, it will focus on the majority of problems encountered in the 

application of elastostatics to engineering structures).  The work by Rvachev,  

Shapiro et al. follows the earlier insight by Kantorovich and Krylov (Kantorovich 

and Krylov 1958) mentioned in section 2.3,  that the solution to differential 

equations with  homogeneous boundary condition 

 | 0u∂Ω =  (3.1) 

can be represented in the form 

 u ω= Φ  (3.2) 

where ω is a known function that takes on zero values on the boundary of the 

domain Ω∂  and is positive in the interior Ω .  Φ is some (unknown) function 

which is piecewise continuous and differentiable (at least up to the order of the 

differential equation) over the domain.  A simple construction of such functions 

ω  involves calculating the distance from a boundary to all points in the interior of 

the domain (such functions are guaranteed to vanish at the boundary). 

A challenge posed by this approach is finding a way to blend such 

distance functions from all boundaries in a smooth manner which preserves the 

distance property. Doing so in a way which preserves the exact original distances 

to each boundary at all points within the domain is impossible, but this 
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requirement turns out to be too strict.  It suffices to produce a smooth blended 

function which preserves distance values close to boundaries.  An additional 

challenged is posed in how to apply non-homogeneous boundary conditions. 

3.2.1 R-Functions and Solution Structures 

The R-Function Method (RFM) of Rvachev (Rvachev 1975) offers a 

relatively simple algorithm for composing a smooth function for the entire 

domain which satisfies the requirements stated above, while approximating 

boundary distances close to a boundary. The method works by applying R-

functions – the continuous analog of Boolean functions- to implicit functions 

representing distances to each boundary segment, i of the form =iω f(x,y,z)≥0 (in 

three dimensions. f(x,y)≥0 suffices for two). Although there are apparently many 

families, or branches, of R-functions, the more common ones explored by 

Rvachev et al are of the form 

 
( )

( )

2 2

1 2 1 2 1 2 1 2

2 2

1 2 1 2 1 2 1 2

1
2

1

1
2

1

α

α

ω ω ω ω ω ω αω ω
α

ω ω ω ω ω ω αω ω
α

∧ ≡ + − + −
+

∨ ≡ + + + −
+

 (3.3) 

where ),( 21 ωωα is an arbitrary function such that 1),(1 21 ≤<− ωωα .  According 

to Rvachev, “…the precise value of α may or may not matter, and often it can be 

set to a constant. For example, setting 1=α  yields the functions min and max 

respectively, but setting 0=α results in much nicer functions that are analytic 

everywhere except 021 == ωω …” (Rvachev 1975) (i.e.: the  boundary).  Figure 

3.2 shows example of the method used to apply a homogeneous Dirichlet 
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boundary condition to a simple domain.  Here a function ω is created via the 

Boolean operation: 

 1 0 2 0 3( ( ))ω ω ω ω= Λ − Λ  (3.4) 

where: 

 

 

Figure 3.2. R-functions over a simple domain 
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 (3.5) 

The Boolean operation is carried out via repeated use of equation (3.4), as it is 

only a binary operation (the result of the first operation is used as an argument to 

the equation, along with a new second argument.  This new result is used again as 
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an argument, and so on…).  Non-homogeneous Dirichlet boundary conditions 

could be represented in the form 

 | 0u φ∂Ω =  (3.6) 

where 0ϕ is a piecewise representation of different values on the boundary.   

Rvachev showed (Rvachev 1975) that a differential equation with such a 

boundary value description has a solution of the form 

 u ω φ= Φ +  (3.7) 

where ϕ represents the extension of 0ϕ inside the domain.  This simple solution 

structure is capable of solving most problems found in elastostatics.  One 

Rvachev’s innovations was in developing an automatic construction of such a 

function ϕ  given its piecewise boundary description 0ϕ : 

 
1 1

1 1

j

j

mm

i j

i j i

mm

j

i j i

µ

µ

φ ω

φ

ω

= = ≠

= = ≠

=
∑ ∏

∑∏
 (3.8) 

The exponents
j

µ control the behavior of the interpolating function at the 

boundary intersections.  When 10 ≤≤
j

µ ,the interpolant is not differentiable at 

the jth intersection.  “Values 1>
j

µ assure that the interpolant is differentiable 

1−
j

µ times at the jth intersection, but it has a flat spot there” (Rvachev 1975). 

The system equations are generated on a non-conforming, structured grid.  

Thus the trial solution (2.11) is independent of the geometric domain.  Shapiro 

uses n x n grids of B-Splines (often bi-cubic) which cover the entire domain.  The 
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equations of such a grid may be obtained by equation (2.16 b).  Using the 

substitution: 

 ( ) ( )p ω= ∇A N  (3.9) 

This results in: 

 ( ) ( )

i i i

T p

i i i

T T T

dT dT bdT fφ ω ωΦ = − ∇ + +∫ ∫ ∫AA A N N  (3.10) 

which can be written in algebraic form: 

 
b fϕ= − + +Kx r r r

 (3.11) 

As can be seen in equation (3.10), generating the matrix terms K, rφ, rb , 

and rf involves differentiation, followed by integration of each term.  It is worth 

pausing a moment here to note that the term rφ is unique to the R-function 

method.  It represents a body load produced by the imposition of the displacement 

field φ, which is required in order to comply with the boundary condition,
 0ϕ . 

The differentiation step involved in this mesh-free technique is more 

challenging than in the case of traditional finite element approaches because the 

weighting function ω depends on the implicit form of the boundary, as well as the 

actual boundary condition (although this is possible with symbolic algebra 

software, the resulting polynomial expression for ω and ϕ could become 

prohibitively large).  The differentiation could be done numerically, but Shapiro 

states that such approaches “…are not sufficiently accurate for most applications 

especially when high order derivatives have to be computed.”  He suggests using 

automatic differentiation (Shapiro and Tsukanov 1999b).  Several open source 

automatic differentiation codes are available (see, for example, FABDAB++ at 
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http://www.fadbad.com/fadbad.html ), and they are also fairly simple to write and 

to implement (an introductory explanation can be found at 

http://en.wikipedia.org/wiki/Automatic_differentiation ).  

The integration step is analogous to traditional finite elements in that the 

solution must be integrated numerically over each B-Spline grid cell.  Once again, 

however, an additional challenge is posed by the fact that the grid does not 

necessarily conform to the geometric domain.  This means that code must be 

written to determine how and where the domain intersects grid cells. If Gaussian 

Quadrature is used for numerical integration, then care must be taken to place 

quadrature points in the correct locations for such cells (Shapiro and Tsukanov 

1999b).  Once differentiation and integration has been performed over the entire 

domain, an algebraic equation like that of equation (3.63) must be solved.  If B-

Splines are used over a uniform grid (possibly sub-divided around small features), 

such systems will be sparse and can be solved with familiar public-domain code 

specially designed for that purpose (UMFPACK and SuperLU, for example). 

Although Shapiro and Rvachev use B-Spline basis functions to solve for 

the unknown field Φ (equation (3.62)), they do not discuss any issues or 

limitations of this choice on the solution.  In particular, they do not address the 

stability or order of convergence with this choice of basis.  They stress that B-

Spline bases are just one valid choice, and their approach could easily 

accommodate others (Shapiro and Tsukanov 1999b),. 

In contrast, Höllig points out that the choice of B-Spline bases for 

arbitrary domains (although otherwise advantageous) is in general potentially 
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unstable (Hoellig 2003).  This is due to the fact that outer splines – those splines 

whose support overlaps the geometric domain in less than one complete grid cell 

– yield poor approximations in those regions and lead to high matrix condition 

numbers (in the resulting algebraic system of equations Ax=b, A has a condition 

number proportional to n
h

− , where n is the order of the differential equation).  

Before revealing Höllig’s solution to this problem, we introduce his notation, as 

well as a more detailed description of the B-Spline basis functions used by both 

Höllig and Rvachev/Shapiro.  Both teams of researchers chose bi-variate (for the 

case of 2D domains – tri-variate for 3D) tensor product B-Splines as their bases.  

3.2.2 B-Spline Conventions and Notations 

It is worth briefly describing some notational conventions used by Shapiro 

and Hoellig et al, because some of the same forms and conventions are used in the 

current investigation. The notational convention chosen by both teams is shown 

below 

 
1

(Rvachev/Shapiro)
n

i i

i

u Cω ω χ
=

= Φ = ∑  (3.12) 

 (Hoellig)h i i

i

u c B=∑  (3.13) 

The subscript, h in (3.13) refers to the dependency of the solution on 

uniform grid width, h.  However, Höllig allows more freedom in the construction 

of such functions (Hoellig 2003) (he constructs surfaces algorithmically without 

resorting to polynomial inequalities).  Note, however in both cases, only one 

index is used as in the univariate case.  With this notational shorthand, the 

coefficients iC and ic  in equations (3.12) and (3.13), respectively represent a 
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coefficient at grid location i.  This follows degree-of-freedom numbering 

conventions in traditional finite element applications, but this notational shorthand 

warrants further explanation.  The spline iχ or 
i

N actually refers to the scaled 

tensor product B-Spline translate (and must therefore be defined on a uniform 

grid.  This is where we break from Höllig’s formulation in that our basis is 

defined over non-uniform non-vectors) whose support begins at the single-index 

grid location i.  Höllig offers a more specific notational short-hand (Hoellig 

2003).  He writes a bi-variate tensor product B-Spline over uniform grid-width h, 

and degree n as 

 1 2

1 2, , 1 , 2( ) ( ) ( )
n nn

k h k h k hN x N x N x=  (3.14) 

where k1 and k2 are the spline indices in each of the variable directions.  x1 and x2 

are the two independent spline variables (which span the support of b), and n1 and 

n2 are the univariate spline degrees. However, to keep things simple Höllig always 

uses the same spline degree in all directions.  Finally, to approximate surfaces 

over x1,x2 with a uniform grid of width h, the spline in (3.14) must be scaled and 

translated.  That is to say, each univariate spline must be scaled and translated 

according to 

 , ( ) ( / )
n n

k hN x N x h kν ν

ν ν ν ν= −  (3.15) 

Thus, tensor-product spline 
n

hkb ,  has positive support on hnkh 2)1,0( ++ and 

vanishes outside this square.  Again, the index k on the left hand side of equation 

(3.15) is a scalar integer-numbering of grid locations (these usually represent the 

lower-left hand side of the support of B-Spline k in a 2D lattice).  Finally, Höllig 
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dispenses with the subscript h, superscript n, and independent variable x in the left 

hand side of equation (3.15) when these are either irrelevant, or clear from the 

context.  Thus, the appearance of equation (3.13).  Although uniform splines, as 

defined in (3.15)  are not used in this investigation, the notational conventions 

will remain largely unchanged.  In particular, we refer to B-Splines according to 

the “lower left” index of their support, which in our case, correspond to a knot 

tensor product (more will be explained in Chapter 4).  With these explanations out 

of the way, we introduce Höllig’s weB-Splines, which effectively solve the 

stability problem. 

3.2.3 weB-Splines 

For an outer index Jj ∈  (a spline for whom the domain overlaps less 

than one full grid cell) let { } InljI
m

⊂+= ,...,0)( be an m-dimensional array of 

inner indices (splines for whom at least one full grid cell is fully contained within 

the domain) closest to j, assuming that h is small enough so that such an array 

exists.  Moreover, denote by 

 
,

1 0

m n

i j

l

j l
e

i l
ν

ν ν

ν µ ν ν
µ ν

µ

µ= =
+ ≠

− −
=

− −
∏ ∏  (3.16) 

The values of the Lagrange polynomials associated with I(j) and by J(i) the set of 

all j with )( jIi ∈ .  Then, the weB-Splines defined by 

 ,

( )( )
i i i j j

j J ii

w
B b e b

w x ∈

 
= + 

 
∑  (3.17) 

form a stable finite element basis for the domain D.  The word “web” in weB-

Splines is an acronym for “weighted, extended, B-Splines” – so named because 
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the second term in equation (3.17) represents an extension of the familiar 

(weighted) B-Spline basis.  This formulation effectively “glues” outer B-Splines 

to inner B-Splines close to the boundary (the difference in their indices usually 

being no more than 1), thus extending the support of outer splines and ensuring a 

stable basis.  A useful consequence of this is computational efficiency and 

performance.  The effort that goes into calculating the second term is minimal and 

occurs during matrix assembly.  This leaves a system of equations whose degrees 

of freedom span the index set I (inner B-Splines only), instead of I+J. 

3.2.4 Blended Distance Functions 

WeB-Splines are the chief innovation introduced by Höllig et al.  Another 

one is the introduction of “blended distance functions” (Hoellig 2003) to serve as 

weight functions for composite parametric boundaries.  Höllig uses splines to 

construct such functions (when the boundary is given as piecewise parametric 

functions, which is usually the case in Engineering applications) utilizing the 

following definition 

 
' ( ) ( ) ( , ),k k l l

k

N x w x dist x∝ Γ Γ = ∪ Γ∑  (3.18) 

Where the subscript l ranges over each smooth piecewise boundary lΓ  that 

encloses the domain.  Thus Γ is the union of all such smooth components.  The B-

Splines denoted by '

k
N  are all relevant uniform B-Splines of gird width h’.  Here 

),( Γxdist is a function which returns the distance from point x to the boundary Γ  

within a some boundary strip 0>δ .  The boundary strip should be chosen small 

enough so that it remains smooth (usually this means that it should be chosen 
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smaller than the minimal radius of curvature κ/1 .  On the other hand, the strip 

should not be so narrow that the derivatives of the weight function become 

excessively large.  The kw are continuous functions which, for some δ satisfy 

 
,

'
( ) ( , ), supp

k lk d l kw x dist x x Nδ≤∝ ∪ Γ ∈  (3.19) 

where (, distd
lk

= supp ' , )
k l

N Γ .  Here supp '

k
N denotes the support of .  The 

k
w

can be defined separately for each B-Spline support .  The 

apostrophe in all cases indicates that the basis (and associated grid) being used to 

construct the weight functions is not necessarily the same as the one being used to 

approximate the solution space.  In fact, Höllig states “usually h’>>h” (Hoellig 

2003)). 

 

'

kN

' ' [0, 1] 'm

kN kh n h= + +
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Chapter 4 

A NOVEL MESH-FREE FE FRAMEWORK 

The current work investigates the feasibility of implementing an extension 

of the mesh-free methodology introduced by Shapiro and Höllig for the analysis 

of mechanical contact problems.  The primary thesis of this investigation is to 

prove that such a framework results in an analysis system with the following 

properties: 

1. Increased CAD interoperability over traditional mesh-based systems.  

Although this feature of the framework will not be explicitly tested in this 

investigation, it should suffice to demonstrate that the finite element data 

structures closely conform to those of trimmed surfaces found in most 

CAD systems.  All curves and surfaces (boundaries) have an exact 

representation in the system equations and there is no need for a mesh. 

2. The resulting system of equations produces results with accuracy and 

stability comparable to that of mesh-based systems for given grid widths 

and polynomial orders, but utilizing much smaller solution sub-spaces. 

To this end, a suite of code was written in Mathematica®  to interpolate a 

solution field over simple 2-dimensional solid domains in plane stress with the 

aid of a non-conforming tensor B-Spline grid as shown in Figure 3.1.  The 

system is restricted to two spatial dimensions for expediency, but the 

extension to 3 dimensions is straightforward and left for future work. 
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4.1 The B-Spline basis 

Instead of the weB-Splines of Höllig et al, the following basis is 

introduced: 

  (4.1) 

where bi(t,x) is the field of non-rational tensor-product B-Splines of dimension 

two given by: 

  (4.2) 

where 

 , { 1, 1},{ 1, 1}p o i i d j j d∈ + + + + + +   

Here, d is the B-Spline degree and h is a single index that maps to indices of the 

outer product h→{i⊗j} where Ni,p and Mj,o are the unidimensional B-Splines for 

the x and y-directions, given in  equation (2.5) (non-rational and with uniform 

weighting), and s and t are the knot vectors for each spatial direction, respectively.  

The list t corresponds to some contiguous re-ordering of the two-dimensional 

knot space implied by the outer product (i.e., 

{{s0,t0},{s0,t1},{s0,t2},...,{sn,t0},{sn,t1},{sn,t2},…}.   

Although not necessary for the construction of tensor-product B-Spline 

surfaces, this indexing scheme allows for flexibility in controlling various 

properties of the assembled system matrices (such as bandwidth).  Thus, the full 

flexibility and approximation power of the Cox-DeBoor B-Spline formulation is 
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utilized (knot insertion, repetition, non-uniformity, etc…).  Note that the tensor 

indices i and j are replaced with a single index h. This is a quite arbitrary 

numbering scheme, but must span all bases used in a given discretization. 

In this investigation, the span h H⊂ refers to all bases whose support 

intersects the bounding box containing the domain (the minimum and maximum 

X and Y points), as in Figure 4.1a, as opposed to the smaller set H’ which 

represents basis functions whose support only overlap the geometry itself (Figure 

4.1b). In Figures 4.1a and 4.1b, small blue circles are placed at the lower left (the 

‘origin’) of each basis support to more easily identify it (in a bi-quadratic B-

Spline grid).  Figure 4.2 shows a typical basis numbering scheme.  

 

 

Figure 4.1. Bi-quadratic B-Spline gird over a domain showing two cases: (a) 

Basis spans entire domain bounding box, (b) Basis spans only points of domain 

which intersect basis.  A single basis support is highlighted in light green 
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Figure 4.2. Typical bais numbering scheme.  Numbers represent basis indices, h 

 

 Although H>H’, the larger set provides a computational convenience, as 

well as a mirror of the geometric trimmed-curve data structure.  In the 

denominator, ( )
i

N
∞

t represents the ‘Infinity Norm’ (the maximum absolute 

value of the B-Spline over the region in which its support overlaps the domain), 

and wi is the extremum value the weighting function w takes over the same 

region. 

Such a technique was suggested by Reif (Reif 2006), but no demonstration 

of it has been found in the literature.  A general assessment of this technique to 

stabilize the FE basis (i.e.: reduce the range of possible condition number) is 

beyond the scope of this investigation, but the resulting condition number for all 

test cases will be reported.  For a simple example of such a basis normalization in 

one dimension, see Appendix B. 
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4.2 Finite element formulation 

All model problems in this investigation were 2D plane stress problems.  

The governing weak form for a state of plane stress is: 

  (4.3) 

where: 

 ;

xx xx

yy yy

yx yx

ε σ

ε σ

ε σ

   
   

= =   
   
   

ε σ  (4.4) 

are the vectors of planar stress and strain.  The vector d represents a vector field 

of x and y planar displacements.  Finally, the vector rb represents planar body 

forces and rf surface tractions. 

Tensor-product B-Splines, Bi will be used to interpolate a displacement 

field in the plane: 

 

( , )

( , )

i i

m

i i

m

u x y B

v x y B

=

=

∑

∑

u

v
 (4.5) 

where m spans the squared order of the B-Splines (degree + 1)*(degree+1) of B-

Splines.  Thus, the interpolated displacement field, u
h
, can be written: 

 dBu
Th =  (4.6) 

The superscript denotes a uniform grid of cell width h.  The strain field is 

calculated according to: 

T T
T

b f
dV dV dV

Ω Ω Ω

= +∫ ∫ ∫ε σ u r u r
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Substituting (2.18) into (4.5) and (4.6) yields: 

 h =ε Ad  (4.8) 

Also, the isotropic constitutive law for plane stress is: 
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1 0
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0 0
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σ ν ε

 
    
    

=    −    −    
 

 (4.9) 

or: 

 hh
Cεσ =  (4.10) 

Substitution of (4.10), (4.8), and (4.6) back into (4.3) yields: 

 T T T

b f
t dA t dS

Ω Ω Γ

 
= + 

 
∫ ∫ ∫A CA d B r B r  (4.11) 

where t is the planar thickness (taken to be unity).  The first two terms of (4.11) 

are generated on an element basis.  A typical element using bi-quadratic B-Spline 

basis functions is shown in Figure 4.3b.  Figure 4.3a shows the element grid 

corresponding to the basis space depicted in Figure 4.1a.  Elements highlighted in 

blue represent ‘inner’ elements (those whose cells intersect the domain 

completely).  Elements highlighted in yellow represent ‘outer’ element (those 

whose cells intersect the domain only partially).  Clear (or white) elements do not  
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Figure 4.3. (a) Inner (blue), boundary (yellow), and outer (white) elements 

spanning the domain (element support not shown); (b) Element 27 showing basis 

support (green and numbered at lower left) 

 

intersect the boundary at all.  These elements would result in zero entries on the 

diagonal of the assembled stiffness matrix, and so are replaced with average 

stiffness values (or ‘1’ if the matrix diagonal is normalized to 1), and 

corresponding force terms left zero.  Figure 4.3b shows element number 27 

(yellow) with its corresponding B-Spline support (numbered at lower left). 

Note there are nine basis functions for each element in a bi-quadratic B-

Spline grid.  Note also that the basis support extends beyond the element.  This 

illustrates the ‘minimal support’ property enjoyed by B-Splines.  Equation (4.11) 
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may be written in the form of the familiar matrix equation (2.20) and assembled 

in the usual way. 

4.3 Boundary Conditions 

Boundary conditions are all contained within the solution structure (3.7), 

u=ωΘ+ϕ , where ω is a polynomial weighting function corresponding to a 

Boolean combination of one or more implicit surfaces, utilizing the R-function 

technique described in section 3.2.1, and ϕ is either zero, or constructed according 

to (3.8) for non-zero applied displacements.  Only Dirichlet-type boundary 

conditions are considered (see section 3.3), and so the weighting functions are 

quite simple.  An example showing two planar cylinders in contact is shown in 

Figure 4.4.  The green arrows indicate directions of a zero displacement condition 

on the symmetry surfaces. 

 

 

Figure 4.4. Two cylinders in contact and constrained by symmetry 
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The symmetry boundary conditions shown in Figure 4.4 can be easily represented 

with weighting functions: 

 
( , )

( , )

x

y

w x y x

w x y y

=

=
 (4.12) 

with wx representing a weighting for the x-displacement vector, and wy 

representing a weighting function for the y-displacement vector. All but one of 

the validation problems in this investigation made use of a symmetry plane as in 

Figure 4.4, and so made use of simple R-function expressions of the form (4.12). 

R-functions for other boundaries were of the form: 

 ( , ) ( , )w x y x yσ=  (4.13) 

where ( , )x yσ is an implicit function describing the boundary curve on which the 

boundary condition is applied.  The fourth validation problem, however, is not 

symmetric.  That problem involved fixing the displacement of four circular 

domains (see Figure 4.21) in their interior. Since no boundary curve can be 

utilized to generate an expression like (4.13), two points are arbitrarily selected 

within the interiors of each circular domain to receive zero displacements. Thus 

the two singular ‘boundaries’, σ (in the sense of a boundary value differential 

equation) in each circular domain, i are defined as: 

 

1 1 2 1 2

2 2 2 2 2

( ) ( )

( ) ( )

i xi yi

i xi yi

x P y P

x P y P

σ

σ

= − + −

= − + −
 (4.14) 

These are then composed according to: 

 1 2

0i i i
ω σ σ= ∧  (4.15) 
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and the final function is obtain by composing ω for all domains: 

 4 0 3 0 1 0 2
( ( ( )))

x y
w w w ω ω ω ω= = = ∧ ∧ ∧

 (4.16) 

A contour plot of this function is shown in Figure 4.5. 

 

 

Figure 4.5. R-function contours for indeterminate beam problem 

 

Evaluation of the system equations (4.10) involves a differentiation and an 

integration for every grid cell.  As the model problems addressed in this 

investigation are relatively small (always less than ∼2000 degrees of freedom), the 

differentiation steps are handled by Mathematica’s robust symbolic engine (later 

studies may utilize these algorithms within a compiled program language like 
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C++, in which case the techniques of Automatic Differentiation described in 

section 3.2.1 would be utilized). 

4.4 Grid cell classification and Gauss point manipulation 

An algorithm was written to determine the intersections between the non-

conforming grid and the domain.  This is done in order to identify elements whose 

integration points will need to be moved (transformed), but also to identify bases 

which will require normalization.  Figure 4.3a shows how a tensor-product B-

Spline grid is partitioned into inner and outer cells.  The cells highlighted in 

yellow represent outer cells.  The blue cells are inner cells.  Integration is carried 

out with standard quadrature rules (see  (Bhatti 2006) or (Hoellig 2003) for 

further explanations).  For instance, in two dimensions, an integral over an inner 

cell may be calculated as: 

 2

,

( , )
Q

f h f t tν µ ν µ
ν µ

γ γ≈ ∑∫  (4.17) 

where f depends on the basis functions, coefficients, and other parameters.  Q 

represents the domain of a single grid cell. νγ and µγ  are quadrature weights in 

each spatial dimension of the cell. httlht ),(
'

µν== , and h is the grid cell size.  

However, the outer cells intersect only a portion of the domain.  So the quadrature 

points must be adjusted in some way to reflect this. 

Höllig (Hoellig 2003) recommends a subdivision strategy, using 

information about the critical points of the intersection between the domain and 

outer grid cells ( DQ ∩' ).  As an example, if three-point quadrature is used (as 

would be the case if 2
rd

-degree basis functions are used), point spacing is 
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prescribed as ht )1510/12/1( ±=ν .  Thus the points shown in the lower right in 

Figure 4.6 are moved (transformed) to lie entirely within the domain, D in such a 

way that the spacing ratio remains constant while conforming to the domain.  The 

transformed integral from a square grid as shown in the lower right of Figure 4.6 

(inset) to its final configuration may be represented as: 

 ' ' ' '

,'

( ) ( ( ) ( ) ( , )
v

Q

g t f t t tν µ ν ν µ
ν µ

ϕ β α γ γ ϕ≈ − −∑∫  (4.18) 

 

 

Figure 4.6. Quadrature spacing modified for bi-quadratic boundary element 

 

4.5 Contact algorithm 

The basic unilateral contact problem for two bodies, Ω
1
 and Ω

2
 as shown 

in Figure 4.7, may be described in the simplest terms as one in which the usual 

constitutive relations of elasticity theory are augmented by the constraint: 

 
2 1 1( ) 0− ⋅ ≥x x n  (4.19) 
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where 

   

represent the current positions (original position plus displacement) on bodies 1 

and 2, respectively that lie within adjacent boundary segments 
1 2,Γ Γ . 

The determination of these segments (surface segments that are potentially 

in contact) is the first non-trivial task in determining how the two bodies interact. 

The positions 
2

x represent locations “closest to” corresponding positions 
1

x .  

Thus, identifying locations of potential contact usually involves first identifying 

boundary segments
1 2,Γ Γ  that lie within some hypothetical volume of influence 

whose size is some fraction of volumes Ω
1
 and Ω

2 
 and includes body bodies.  

Then locations 
1

x are chosen according to the numerical discretization of Ω
1
 and 

Ω
2
 (typically, integration points or nodes).  Finally, points 

2
x  are calculated 

according to 

  (4.20) 

Following Wriggers (Wriggers 2002), an algorithm for performing general 

unilateral contact problems can be split into the following phases: 

• Contact Search 

• Contact Detection 

• Application of Constraint (4.19) 

In small strain problems, the first two tasks may be performed once, 

followed by an iterative solution (Newton-Raphson for example) in which 

1 2 1 2, ,⊂ Γ Γx x

2 2

2 1 2 1
min

⊆Γ
− = −

x
x x x x
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elements involved in contact (the elements detected in the second phase) are 

monitored to determine whether condition (4.19) is satisfied.  If (4.19) is not 

satisfied, Penalty coefficients  are added to the tangent stiffness matrix, another 

iteration is performed, and the condition is checked again.  In large strain 

problems, at least the last two phases (and possibly all three) must be repeated 

after the displaced configuration has been determined for each load increment.  

The condition (4.19) has units of displacement and represents the relative normal 

displacement between  Ω
1
, and Ω

2
.  In fact, the “gap” between the two bodies is 

defined as 

 
2 1 1

0
( )g g= − ⋅ +x x n  (4.21) 

where 0g is the initial gap between the two bodies expressed by 

 
2 1 1

0 0 0 0
( )g = − ⋅x x n

  

Where the 0 subscript denotes the undeformed configuration. Thus the second and 

third phase of the algorithm is often referred to as “gap monitoring”. 

4.5.1 Mesh-free contact search and detection 

Some of the tasks outlined above in constructing a unilateral contact 

solution are simplified within the mesh-free finite element framework 

investigated by Shapiro/Hoellig (Hoellig 2003; Shapiro and Tsukanov 1999).  

This is mainly due to the fixed solution grid, which almost immediately suggests 

an efficient means of identifying potential contact regions 
1
Γ and 

2
Γ .  In fact, one 

common means of determining the contact regions in traditional meshed 

approaches involves bucket sorting – or grid hashing, in which a uniform (or 
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Octree) grid is constructed, and points within Ω
1
 and Ω

2
 are hashed to determine 

whether they lie within the same cell.  The entire collection of such points make 

up regions 
1
Γ and 

2
Γ .   

The tensor-product grid structure (the knot-span) of the B-Spline basis 

support provides a logical and convenient grid over which to perform such an 

operation.  The hashing procedure works by evaluating a function, H(x,y) which 

maps domain coordinates (pairs of real numbers) to an integer representing those 

coordinates’ position within some single continuous enumeration of the grid cells. 

For the case of the mesh-free method of Shapiro/Hoellig, such a hashing 

procedure is already performed to identify grid cells which overlap the boundary 

in non-contact situations (the B-Spline grid points that overlap the domain are 

classified into “inner”, “outer”, and “boundary” cells)!  Thus, with this existing 

architecture, a simple four-step procedure for identifying cells (elements) which 

are potentially in contact presents itself: 

• Overlay a single B-Spline support grid over n domains.  Use 

min/max bounding box over both domains to determine grid 

corners 

• Determine inner, outer, boundary cells as usual 

• Identify boundary cells nl C∈ common to all domains (or which 

share an edge) 

• Split the grid along bounding boxes defined by the boundary cells 

of each domain 
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Performing this procedure results in n grids which provide the support for 

n matrices (where n is the number of bodies in the analysis), which in turn 

populate the diagonal of the full assembled system of equations.  They are 

connected only through penalty terms associated with the boundary cells 

identified in the third step above. 

This algorithm is fast and efficient.  Figure 4.7 below depicts results for 

the first three tasks above in a particular example, in which a single grid overlays 

two bodies potentially in contact.  Boundary cells are highlighted in yellow while 

inner cells are colored blue (outer cells remain uncolored).  Highlighted in green 

are three boundary cells common to both bodies Ω
1
 and Ω

2
.  Figure 4.8 shows the 

fourth step in contact detection – the grid is split along the bounding boxes 

defined by the boundary cells of each domain.  A noteworthy aspect is that 

potential contact surface determination (
αΓ ) is tied to grid size.  If a uniform grid 

size of characteristic length, h is used, all potential contact surface pairs will be 

separated by an approximate distance ≤ h.  This algorithm returns both the 

element numbers to be checked for contact, as well as the curves contained (by 

definition, all boundary elements contain boundary curves). 

 In all cases, there are only five possibilities for grid cells of different 

bodies to be considered for interaction: a) boundary cells overlap,  b) boundary 

cells of different bodies come in adjacent pairs (sharing an edge), c) boundary 

cells on one body are adjacent to inner cells on another, d) inner cells on one body 

are adjacent to inner cells on another, and e) no potential contacting cells have 

been found.    The first case is shown in Figure 4.7 and Figure 4.8, while an 



  128 

example of the third case is shown in Figure 4.9.  Thus, the third step in contact 

detection actually involves two steps: First determine if any two bodies share 

boundary cells.  Then determine if any boundary or inner cells of one body are 

adjacent to either boundary or inner cells of another body. 

 

 

Figure 4.7. Results for the first three steps in contact detection with contact 

elements highlihgted 

 

 

Figure 4.8. Fourth step in contact detection 
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Figure 4.9. An example of steps 3 and 4 showing contact condition C 

 

4.5.2 Application of constraints (gap monitoring and solution) 

The familiar weak form of the governing equations of elasticity must be 

augmented by  

 ( ) 0ng dδ
Γ

Γ =∫ F  (4.22) 

where g is defined by the left-hand side of the gap inequality given previously.  

Following equations 2.87 and 2.88, this results in the following discretized 

residual and tangent stiffness terms for the Penalty Method: 

 
1 1

1 1

1 1 1 2

1 2 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

l l

l l

T T T T

l l l l l l l l

c

l
T T T T

l l l l l l l l

dA dA

dA dA
β

Γ Γ

Γ Γ

 −
 
 =
 −
 
 

∫ ∫

∫ ∫

B n n B B n n B

k
B n n B B n n B

 

(4.23) 

 
1

1

1

0

2

0

l l l

c

l

l l l

g dA

g dA
β Γ

Γ

 
 

=  
−  
 

∫

∫

B n

F
B n

 (4.24) 
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For expediency, some liberties are taken with notation – namely the mixing of 

vector and indicial notation.  For example, the term 0lg denotes the scalar ‘initial 

gap’ function, g0 defined in (4.24) for element l .  In the program, it is stored as a 

list of functions.  Here n

l
B  is the vector-valued basis for contact element l  (as 

defined in equation (4.1)).  Its transpose is given by: 

 1 2 3

1 2

( , ), 0 , ( , ), 0 , ( , ),...
( )

0 , ( , ), 0 , ( , ), 0 ,...

n n n

n T

l n n

l

B x y B x y B x y

B x y B x y

 
=  
 

B   

For two bodies in contact, ln  is a vector of vector-valued functions containing the 

outward normals on 
1Γ  (the master surface) for contact element l  (see equation 

(4.28). 

The quantities 
c

l
F  and 

c

l
k must be calculated for all 

1

n
l C∈ (here, 

1

n
C is the 

subset of indices of contact elements nC associated with body 1 – arbitrarily 

chosen as the ‘master’ set).  They are assembled into the global system the usual 

way, provided that the gap condition (4.19) is satisfied. Thus, within each solution 

iteration, the gap for each element l  is calculated and checked to see if the 

inequality holds.  If not, 
c

l
F and 

c

l
k are introduced into the system equations. 

To explain in more detail how equations (4.23) and (4.24) are calculated in 

the mesh-free context (in particular, how g0 and n are evaluated in the integral), it 

is helpful to use an example.  Consider the two-body problem depicted previously 

in Figure 4.7 and Figure 4.8.  Body 1 is chosen arbitrarily as the ‘master’, so that 

elements {1, 2,3} {{1, 2,3},{81,82,83}}l ∈ ⊂  are chosen for calculation of the 

penalty terms (see Figure 4.10).  The term 0( )Min g denotes the minimum value  
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Figure 4.10. Two-body problem showing contact elements and surfaces 

 

taken on by the geometric scalar gap function g0 over all 1 2,Γ Γ .  Bodies 1 and 2 

are described by Boolean combinations of implicit functions: 

 
1 1 1 1

1 2 3
: 0 0 0σ σ σ<= ∩ ≥ ∩ ≤Ω  (4.25) 

where 

 

( )
2

2 1 2 2 1

0

1

2

1 1 2

3 0

1

1 ( ( ( )))

( ( ))

x y R R Min g R

x

y R R Min g

σ

σ

σ

+ − + + −

=

= − + +

=

  

and 

 
2 2

2 3

2 2

1
: 0 0 0σσ σ≤ ∩ ≥ ∩ ≥Ω  (4.26) 

where 
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2 2 2 2

2

2

2

3

1

2

( )x y R

x

y

σ

σ

σ

= + −

=

=   

Here, R
1
 and R

2
 give the radii of the upper and lower cylinder represented by Ω

1
 

and Ω
2
, respectively.  The master and slave boundary curves are those that pass 

through the elements l  (highlighted in green in Figure 4.7and Figure 4.8): 

 

1 1

1

2 2

1

0

0

σ

σ

Γ = =

Γ = =
 (4.27) 

The normal direction for each element, 
1

l
n is calculated according to: 

 
( )
( )

1

1

1

( , )
( , )

( , )

l

l

l

x y
x y

x y

∇ Γ
=

∇ Γ
n  (4.28) 

An element may contain more than one boundary curve, and so in general 
1

l
Γ

represents a piecewise continuous implicit function passing through element l  

(with a minimum of 0C continuity).  An additional step is used to determine the 

sign of 
1

l
n : 

 
1 1 1

1

1 1 1

,

,

β

β

− + ⊂
= 

+ ⊄

n p n Ω
n

n p n Ω
  

where p is any point on 
1Γ .  β is a very small positive number ( 0 1β< << ).  

In order to use the implicit boundary inequalities, j

ασ effectively in 

calculations (for example, in the calculation of contact stiffness, pressure, gap and 

normals), it is helpful to decompose them into implicit functions of a single 

variable only to yield piecewise boundary segments.  This is done by choosing an 
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independent variable a priori (and quite arbitrarily, except for such segments that 

have only one variable).  Boundary functions are then redefined as implicit 

functions of this independent variable over an explicit interval.  Thus, for Ω
1
, the 

entire boundary 1Γ may be given as: 

  (4.29) 

And for Ω
2
: 

 

( ) 2
2

2 2

2 2

2

,0

,0

,0

x R

x y R

y x

y

R

R x−


≤ ≤


Γ =

−

≤ ≤
 ≤ ≤



 (4.30) 

With this piecewise functional definition of boundary segments, the 

independent variable is the one over which the interval is prescribed, and the 

dependent one is easily extracted by setting the implicit function equal to zero.  

To see how this facilitates computations, consider how equation (4.27) is replaced 

with the much more specific: 

 
( )

( )

1 1

1

2

2
1 2 1 2 1

0

2
2 22

1

2

( ( )) 0

0,

, 0

0

y R x R R Min g x R

y R x x R

Γ = ∂Ω =

Γ = ∂

+ − − + + = ≤ ≤

− = ≤Ω − ≤=

 (4.31) 

To be used in calculations, the pair {x,f(x)} or {f(y),y} must be calculated 

(the form being determined by which variable is the independent one).  In the 

form given by equation (4.27), there is some ambiguity when doing this for 

implicit functions containing quadratic and higher terms, but no ambiguity exists 

( )2
1 2 1

1 2

0

1 2 1 2

0 0

1 2 1

0

,0

( ( ))

, ( ) ( )

( ( )) ,0

y R x x R

R R Min g

x R Min g y R R Min g

y R R Min g x R


+ − ≤ ≤

− + +

Γ = + ≤ ≤ + +


− + + ≤ ≤
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in the form given by (4.31). This functional decomposition is therefore carried out 

at an early phase of model construction and all subsequent calculations utilize the 

decomposed piecewise boundary definitions to eliminate such ambiguity.  In this 

example, the independent variable for 
1Γ and 

2Γ is x, so for 
1Γ : 

 ( )1

2
1 2 1 2

0( ({ , ( )} }, )){ R x R R Mi gx f x x n
Γ

= − − + +  (4.32) 

And for 
2Γ : 

 ( )1

2
1 2{ )} , }, ( {x f x x R x

Γ
= −  (4.33) 

Now expressions like those given in (4.23) and (4.24) can readily be 

evaluated.  Consider, for example, the initial gap, g0 and the normal n
1
. For 

convenience, an approximation is used to calculate g and g0.  Instead of 

calculating points 
1

x nearest their corresponding points 
2

x , the approximation: 

 

2 2 1 1 1

0

2 1 1

0

{[( ( ) ( )] [ ( ) ( )]} ( )

[ ( ) ( )] ( )

g g

g

= + − + ⋅ +

= − ⋅

x p u p x p u p n p

x p x p n p
 (4.34) 

is used, where p(x,y) is the piecewise continuous set of points on the boundary 

given by expressions (4.32), and (4.33).  In this investigation, these points are 

selected from the underlying element Gauss points.  When these expressions are 

substituted for p in (4.34), the initial normal gap may be calculated anywhere 

along the interval 10 x R≤ ≤ , and this gap may be easily (and quite accurately) 

monitored as the solution progresses.  Continuing with the example,  

 
( )

( )

2
1 2 1 2

01

2
1 2 1 2

0

( )
( , )

( ( ))

( ( )))(

y R x R R Min g

y R

x

x R Min g

y

R

+ − − + +

+ +

∇

− +

=

−∇

n

 

(4.35) 
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by substituting (4.31) into (4.27).  Or 

 
( )

( )

2 2

2

2

1

2

(1. ) 1 / 1

(
1

1 / 1

, )

x

x x x

x

x x

y

 
− + − 

 
 
 
 

=  
 
 
 


 

+


−

−

n

  

and 

 

( )

( )

21 2

2
1 2 1 2

0

1

0

{ ,
( , )

{ ,

}

( ( ))}

T

R x

R x R R Minx g

x
g x y

 
 

= ⋅ 
 


−

+


− − − +

n

  

Similarly, the term involving the element basis ( , )n

l
x yB in (4.23) is easily 

evaluated for any and all points along 
1Γ or 

2Γ by substituting the arguments (x,y) 

by {xi, Γ (xi)} (equations (4.32) and (4.33)).  Once 
c

l
F  and 

c

l
k  (equations (4.24) 

and (4.23)) are calculated for all l , they are added to the system equations to 

solve the penalty problem: 

 ( )c c+ = +K k d F F  (4.36) 

For the two-body problem used in this example,  

 
1

2

0

0

 
=  
 

K
K

K
 (4.37) 

where K1 and K2 are the stiffness matrices associated with Ω
1
 and Ω

2
, 

respectively after the grid splitting operation described previously.  They are 

assembled in the usual way. 
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4.6 Validation studies 

The mesh-free system under investigation was assessed both for accuracy 

and efficiency of known contact solutions, as well as robustness of the contact 

algorithm employed.  The validation studies may therefore be categorized as those 

assessing solution, and those assessing the contact algorithm. General 

convergence studies were not performed, as Hoellig et al (Hoellig 2003)  have 

already demonstrated B-Spline finite elements to possess the familiar (h
2
) rate of 

convergence for displacements. 

4.6.1 Accuracy comparisons 

The accuracy of the mesh-free system in structural contact calculations 

was assessed at a prescribed level of refinement within the predicted Hertzian 

contact zone.  This corresponded to the number of elements across the contact 

zone (calculated a priori) to achieve a contact pressure (maximum absolute value) 

within 5 percent of the Hertz solution in a traditionally meshed finite element 

model. Calculated contact pressure values were compared for all three results 

(traditional mesh-based solution, mesh-free solution, and analytical solution) for 

an identical level of refinement for the same problem.  In both mesh-based as well 

as mesh-free solutions, a bi-quadratic basis was used.  The commercial software 

ANSYS v12.1 was used to generate all mesh-based models and their results. 

Three simple 2D geometric configurations were selected as model 

problems.   These represent iconic Hertz-type problems in elasticity for which 

analytical solutions are known.  The three configurations selected consist of: 1) 
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Contact between a rectangular punch and semi-infinite die , 2) Convex contact 

between cylinders of arbitrary radii,  and 3) Convex-Concave contact between a 

cylinder and a cylindrical groove.  These three cases are illustrated in Figure 4.11. 

 

 

Figure 4.11. Simple validation cases for accuracy 

 

For each test configuration, an ANSYS model was created and the mesh 

refined until the 5% convergence criterion was met.  For all cases, this turned out 

to be ∼five element divisions within the contact zone, a (h=a/5). In each case, the 

relative error norm η=( ( ) /
h

u u u− ) for each solution was reported for the set of 

points corresponding to the nodes in the traditional mesh-based model.  The 

quantity chosen for comparison is contact pressure, p, on the contact surface 

which is evaluated from both numerical approaches according to: 

 p = ⋅ ⋅n σ n  (4.38) 

In the mesh-based solution, this pressure represents a “node-averaged” 

value, where stress values at integration points are extrapolated to nodes and then 
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averaged.  A similar approach is used for the mesh-free solution.  Since there are 

no “nodes” per se, stress values are obtained by “fitting” (In the least squares 

sense) a surface of degree d-1 (where d is the degree of the original B-Spline 

displacement solution) through stress values at integration points of order p-1 

(where p=d+1), as well as cell corners.  The stress values at such points (called 

“superconvergent” points in the literature – See (Cook, Malkus, and Plesha 1989)) 

are calculated according to (4.9) before being fit.  Formally, the process of 

determining the least-squares stress may be stated as: The determination of a B-

Spline surface of degree d-1, such that: 

 '

s
Β =C σ  (4.39) 

where 
s
σ are stresses at superconvergent points and B’ is the first derivative of the 

B-Spline basis used to solve the problem.  The coefficients C are calculated so as 

to solve the system: 

 ' '( ) ( ')T T

s
=B B C B σ  (4.40) 

Therefore, the stress values used in the calculation (4.38) for the surface stresses 

are in fact values on the fitted B-Spline surface (4.39).  As a final step, the 

numerical contact pressure values are compared against the predicted analytical 

solution. Case B and C have simple closed form solutions characterized by 

equations (2.61b) and (2.62b).  Case A, however, does not have a closed form 

solution for the case of two elastic blocks.  The solution to this problem is 

discussed in the next sub-section. 

4.6.1.1 Rectangular punch problem (Case A) 



  139 

The first model problem used for accuracy comparison was that of a two-

dimensional flat punch in contact with another flat surface as in Figure 4.12.  A 

uniform pressure is applied to the top of the punch.  The problem is modeled as 

symmetric about the y-axis.  As mentioned previously, this problem does not have 

a closed-form solution for the case of two elastic bodies.  However, if one 

considers the ratio of moduli, k= E1/E2 (see Figure 4.12), closed form solutions do 

in fact exist for the two extreme case k=0 and k=∞.  For arbitrary k (k=1 was used 

in this study), a power series approximation was discovered by Okubo (Okubo 

1951).  His solutions for the two limit cases, as well as for k=1, are summarized 

below. 

• for  the case k = 0, contact pressure = -p 

• for the case k = 1, contact pressure = p(-1/2+σy) where 

8
2

0

n
n

y n

n

b xσ
=

=

≈∑ and 

{ }0.417, 0.152,0.634, 2.006,0.817,2.062, 0.798, 0.916, 0.482b = − − − − − −  

• for the case k = ∞, contact pressure =
2 2

p

a xπ

−

−
 

All three of these solutions are compared to the finite element solutions in the 

next chapter. 

The basic problem description is given in Figure 4.12.  The mesh-free 

model is shown in Figure 4.13, while the corresponding ANSYS model is shown 

in Figure 4.14. Grid properties for both models are compared in Table 4.1 
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Table 4.1. Model properties comparison Case A 

ANSYS Body 1 Body 2 Total 

Number of Elements 25 110 135 

Degrees of Freedom 192 746 938 

Mesh-Free       

Number of Elements 30 110 140 

Degrees of Freedom 112 312 424 

 

 

Figure 4.12. Case A problem description 
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Figure 4.13 Mesh-free model for Case A showing both elements and support grid 

(inner elements highlighted in blue, outer elements highlighted in yellow) 

 

 

Figure 4.14. ANSYS model for Case A 

 



  142 

4.6.1.2 Convex cylinder contact (Case B) 

The second model used to test accuracy involved two convex cylinders 

coming into contact along their mutual axis (Figure 4.15).  In both ANSYS and 

mesh-free models, non-uniform element spacing is used to achieve approximately 

five elements across the expected contact zone (a∼0.1).  Symmetry about the y-

axis is used to model both cylinders.  Body 2 (the slave) is additionally symmetric 

about the x-axis.  The overall algebraic system is dramatically smaller in the 

mesh-free model, as can be seen in Table 4.2.  Note, this is both because there are 

fewer elements (due to the fact that the grid refinement does not have to conform 

to the geometry), and because of the minimal support property of B-Spline basis 

functions in the mesh-free case.  Again, bi-quadratic basis functions are used in 

both methods.  Figure 4.15 gives a description of this problem.  The mesh-free 

and ANSYS models, respectively, are shown in Figure 4.16 and Figure 4.17. 

 

Table 4.2. Model properties comparison Case B 

ANSYS Body 1 Body 2 Total 

Number of Elements 215 468 683 

Degrees of Freedom 1408 3002 4410 

Mesh-Free       

Number of Elements 144 228 372 

Degrees of Freedom 396 588 984 
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Figure 4.15. Case B problem description 

 

 

Figure 4.16. Mesh-free model for Case B showing both elements and support grid 
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Figure 4.17. ANSYS model for Case B 

 

4.6.1.3 Convex-concave cylindrical contact (Case C) 

The third model used to assess accuracy in modeling contact involved a 

convex cylindrical surface coming into contact with a concave groove with 

coincident axes (Figure 4.18).  This time, the total element count in both cases is 

similar (with only four fewer elements used in the mesh-free case than in the 

mesh model.  See Table 4.3).  The problem description is given in Figure 4.18.  

The mesh-free and ANSYS models, respectively, are shown in Figure 4.19 and 

Figure 4.20. 
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Table 4.3. Model properties comparison Case C 

ANSYS Body 1 Body 2 Total 

Number of Elements 139 293 432 

Degrees of Freedom 920 1892 2812 

Mesh-Free       

Number of Elements 96 289 385 

Degrees of Freedom 280 722 1002 

 

4.6.2 Algorithm validation 

Two test problems were selected to represent slightly more complicated 

assemblies in order to validate the contact algorithm.  Since no closed-form 

solution to these problems exists, the solution will be compared only to a similar 

ANSYS model.  No a priori predictions or assumptions are made concerning the 

contact zone in each case.  Instead, a typical “coarse” mesh is constructed, and 

regions of potential contact are automatically calculated in the mesh-free case 

according to the methods outlined in section 4.5.1.  In the ANSYS comparison,  

 

 

Figure 4.18. Case C problem description 
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Figure 4.19. Mesh-free model for Case C showing both elements and support grid 

 

 

Figure 4.20. ANSYS model for Case C 
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contact elements are manually created on the same corresponding contact surfaces 

for comparison. 

The point of these validation experiments was not to compare numerical 

quantities as was done in the previous studies (as stress results in a typical coarse 

grid solution cannot be expected to have converged), but as a qualitative 

assessment to demonstrate that the correct surfaces are automatically found for 

contact, and that for a similar grid size, the mesh-free solution gives a comparable 

solution.  The first problem was used to assess hole deformation and stress 

patterns in a statically indeterminate pinned beam arrangement (see Figure 4.21).  

The second problem was inspired by a NAFEMS benchmark, specifically 

designed to test for proper convergence in a contact problem involving two 

materials with significantly different moduli.  Specifically, the converged solution 

should not exhibit significant penetration when a penalty method is employed (as 

is done in the current investigation). 

4.6.2.1 Statically indeterminate beam 

The model problem for a 4-pinned beam is described in Figure 4.21.  A 

grid width of 6 elements across the pin diameters was chosen simply to provide a 

reasonably continuous hole deformation pattern.  The R-function composition 

(equation (4.16)) described in section 4.3 was used to fix the pins.  The mesh-free 

grid is depicted in Figure 4.22.  The ANSYS mesh is depicted in Figure 4.23.  A 

comparison model properties is given in Table 4.4.  
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Table 4.4. Model properties comparison for beam problem 

ANSYS Body 1 Body 2 Total 

Number of Elements 112 517 629 

Degrees of Freedom 744 3356 4100 

Mesh-Free       

Number of Elements 225 551 776 

Degrees of Freedom 578 1302 1880 

 

4.6.2.2 Vise mechanism 

The model problem for the vise mechanism is described in Figure 4.24.  

Once again, no a priori predictions were made about the contact zone. However, 

the clamped material (body 1) was given 6 elements across its width (the  

 

 

Figure 4.21. Statically indeterminate beam problem description 
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Figure 4.22. Statically indeterminate mesh-free beam model showing both 

elements and support grid 

 

 

Figure 4.23. ANSYS Model for statically indeterminate beam 
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compression direction) in order to ensure sufficient resolution in the direction of 

compression.  The mesh-free grid is depicted in Figure 4.25.  The ANSYS mesh 

is depicted in Figure 4.26.  A comparison of grid properties is given in Table 4.5.  

The displacement is applied via the solution structure (3.7), where the 

displacement function, ϕ was constructed according to (3.8). This resulted in: ϕ = 

-15/2(d0/2 x). 

 

Table 4.5. Model properties comparison for vise problem 

ANSYS Body 1 Body 2 Total 

Number of Elements 66 149 215 

Degrees of Freedom 466 1028 1494 

Mesh-Free       

Number of Elements 66 320 386 

Degrees of Freedom 208 792 1000 

 

 

 

Figure 4.24. Vise problem description 
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Figure 4.25. Vise mesh-free model showing both elements and support grid 

 

 

Figure 4.26. ANSYS model for vise problem 
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Chapter 5 

VALIDATION RESULTS 

The first part of this section is dedicated to comparing results for the three 

Hertz-type problems (case A, B, and C).  In addition to a graphical comparison of 

global averaged stress contours, the averaged contact pressures are compared at 

meshed nodal locations within the contact zone (of which there are approximately 

five in all cases). The second part is devoted to assessing the validity of the 

general algorithm used in this mesh-free finite element framework on some more 

representative simple assemblies according to criteria outlined in Chapter 4. 

5.1 Accuracy Validation 

Stress results are first assessed graphically by comparing contour plots 

generated in ANSYS and the new mesh-free method (using tools available in 

Mathematica).  In both plots, 10 contours are generated for each of stress 

component.  Contact pressures are then calculated according to (4.38) on the 

master (body 1) surface and graphed.  Relative error norms for the ANSYS and 

mesh-free contact surfaces are also reported. 

5.1.1 Case A Results 

Case A stress contours are compared in Figure 5.1.  The contact pressures 

are shown in Figure 5.2.  Both results show a relatively high error (0.152 for 

ANSYS, and 0.159 for the mesh-free method) due to the presence of a singularity 

at x=0.5. This is the only case for which the ANSYS error norm is lower than that 

of the mesh-free case.  However, the mesh-free solution shows a greater 

sensitivity to the singularity.  In Figure 5.2, only the first five points were used for 
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error estimation, while values at x=0.5 (the sixth point) are shown only to give a 

sense of how the two solutions reflect the presence of the singularity. The error 

norms for Case A are closer than in all other cases, possibly due to the lack of 

surface curvature and similarity of the two grids. 

 

 

Figure 5.1. Stress contours Case A: ANSYS  (top) vs. mesh-free for  

(a) 
y

σ , (b) 
x

σ , (c) 
xy

σ
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Figure 5.2. Contact pressure comparison Case A (ANSYS vs. mesh-free) 

 

5.1.2 Case B Results 

Case B stress contours are compared in Figure 5.3.  The contact pressures 

are shown in Figure 5.4.  The error norm for the mesh-free contact pressure is 

roughly ½ that of the ANSYS solution. The mesh-free solution is visibly closer to 

the Hertz solution than is the ANSYS solution. 
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Figure 5.3. Stress contours Case B:ANSYS  (top) vs. mesh-free for  

(a) 
y

σ , (b) 
x

σ , (c) 
xy

σ
 

 

 

Figure 5.4. Contact pressure comparison Case B (ANSYS vs. mesh-free) 
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5.1.3 Case C Results 

The Case C results were very similar to the case B results, both in terms of 

error norms and contours, with the mesh-free solution again trending closer to the 

Hertz solution.  This time, both error norms were lower (possibly due to the fact 

that the contact surface curvatures are of opposite sign).  The contours are shown 

in Figure 5.5.  The contact surface pressure comparison is shown in Figure 5.6. 

A summary of the results of the accuracy study is given in Table 5.1.  It 

can be seen that, except for case A, all results showed smaller relative error in 

contact surface pressure and for a significantly smaller system of equations.  It is 

believed that case A breaks this trend only because the flat contact surfaces offer 

no advantage to the mesh-free approach. 

 

 

Figure 5.5. Stress contours Case C:ANSYS  (top) vs. mesh-free for 

 (a) 
y

σ , (b) 
x

σ , (c) 
xy

σ
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Figure 5.6. Contact pressure comparison Case C (ANSYS vs. mesh-free) 

 

Table 5.1. Summary of accuracy study results 

Problem ANSYS 

Max. |p| 

Mesh-Free 

Max.  |P| 

ANSYS Relative 

Error η 

Mesh-Free 

Relative Error η 

ANSYS 

No. DOF 

Mesh-Free 

No. DOF 

Case A 611 453 0.152 0.159 938 424 

Case B 3513 3511 0.257 0.123 4410 768 

Case C 2048 2060 0.186 0.055 2812 1002 

 

5.2 Algorithm Validation 

For the statically indeterminate beam model and the vise model, 

deformation contour plots and stress components were compared on a qualitative 

basis.  In addition, deformed shape contours were compared to confirm common 

trends.  Once again for all contour plots, 10 contours were generated for each of 

stress component and each deformation.  The statically indeterminate beam was 

assessed first, followed by the vise. 
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5.2.1 Statically indeterminate beam 

The overall transverse (in the direction of the applied load) deflection of 

the ANSYS and mesh-free models is shown in Figure 5.7.  The X and Y 

component deflections around the pin locations are shown in Figure 5.8.  A 

comparison of the hole distortion patterns is depicted in Figure 5.9.  Finally, each 

stress component is compared around the pin locations in Figure 5.10. 

The overall trends in the mesh-free case were similar to those calculated 

by ANSYS.  However, the maximum beam deflection was calculated to be -0.080 

by the ANSYS model, whereas the Mesh-Free solution showed a deflection of -

0.075 (a difference of ∼6%.).  It should be emphasized that these benchmarks  

 

 

 

Figure 5.7. Y-component deflection contours ANSYS (top) vs. mesh-free 
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Figure 5.8. (a) X-component deflection contours around holes for ANSYS (top) 

vs. mesh-free, and (b) Y-component-deflection 

 

 

Figure 5.9. (a) ANSYS hole deflection magnified 50 x, (b) mesh-free hole 

deflection magnified 50 x 
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Figure 5.10. Stress contours comparing ANSYS results (top) vs. mesh-free for 

 (a)
y

σ , (b)
x

σ , (c) 
xy

σ  

utilize coarse meshes and so do not anticipate a converged solution.  Nevertheless, 

closer agreement in deflection was expected.  Since deflection in the Y-direction 

at the holes gets magnified at the beam tip (through its action as a moment arm), 

the increased tip deflection in the ANSYS model may simply be due to coarse 

mesh differences around the holes. All peak stress values around holes in the 

Mesh-Free case were higher than those seen in the ANSYS model (in some cases, 

by roughly a factor of 2, but these are all associated with the fixed point-

displacement singularities inside the pins). 
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5.2.2 Vise mechanism 

The X and Y-component deflections calculated in the ANSYS and Mesh-

Free models is shown in Figure 5.11.  The distorted domain shapes are shown in 

Figure 5.12, and the stress component comparisons are depicted in Figure 5.13.  

The main goal of the vise mechanism study was to verify that a) no 

excessive penetration occurred due to the material modulus mismatch between the 

two contacting bodies, and b) that the upper region of contact separates as 

necessary by the physics of the problem.  An inspection of the Figure 5.11 reveals 

that the latter does indeed happen in both models (with maximum separation 

approximately 0.002 in the X-direction). 

The concern over penetration is motivated by the differing elastic moduli 

of the two bodies.  The master (body 1) had a modulus of 1.0x10
5
, while body 2 

had a modulus of 1.0x10
6
.  The penalty parameter was chosen to be 5.0x10

7
, or 50 

times the modulus of the stiffer body.  This parameter value was used in both the  

 

 

Figure 5.11. (a) X-component deflection contours for ANSYS (top) vs. mesh-free, 

and (b) Y-component deflections 
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5.12. (a) ANSYS deflection mangified 50 x, and (b) mesh-free deflection 

magnified 50 x 

 

 

Figure 5.13. Stress controus for ANSYS (top) vs. mesh-free contours for  

 (a) 
y

σ , (b)
x

σ , (c) 
xy

σ
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ANSYS and Mesh-Free models. This resulted in maximum contact penetration 

values of 2.12x10
-5

 for the ANSYS model, and 3.0x10
-5

 in the Mesh-Free models 

(this penetration can be seen in Figure 5-12).  Although the Mesh-Free solution 

does exhibit more penetration, both values are typical for a penalty formulation 

and considered acceptable. 

The deflection and stress contours matched well, as expected, as there was 

only one geometric singularity associated with the angled concave corner in 

addition to the singularities at the ends of the contact zone. In fact, this was the 

only location where stress values differed substantially.  For all stress 

components, the Mesh-Free solution showed a roughly 2x (magnitude) increase in 

value over that seen in the ANSYS solution in this one region. 

Table 5.2 compares the matrix condition numbers of the ANSYS models 

to their mesh-free counterparts.  Even though the mesh-free condition numbers 

are generally higher, they appear to be stable.  It should be noted that these are un-

normalized condition numbers.  In general, these numbers can be further reduced 

by normalizing the diagonal to 1 (a diagonal pre-conditioner). 

 

Table 5.2. Summary of stiffness matrix condition numbers 

  ANSYS mesh-free 

Case A 7.086E+05 8.992E+05 

Case B 3.480E+05 3.163E+06 

Case C 2.783E+05 4.416E+06 

Vise problem 2.705E+05 2.815E+06 

Beam problem 2.356E+06 4.862E+06 
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Chapter 6 

CONCLUSIONS 

This research is motivated by the desire to reduce the gulf between CAD and 

CAE. Assembly design is the very crux of engineering design, yet CAD and 

simulation tools (CAE) are not particularly compatible with assembly level 

thinking. In FEA, difficulties in modeling contact interfaces accurately forces 

users to perform simulation mostly at the part level. That requires the analyst to 

estimate load magnitudes and distributions at mating regions, which in most 

cases, is difficult to do accurately. Additionally, loads might be statically 

indeterminate. Regardless of part or assembly level design, conventional FEA 

requires meshing. The quality of the mesh is critical for good results. Even 

experienced analysts spend considerable effort in obtaining ‘good’ meshes. 

Particularly in contact and large deformation problems, maintaining high mesh 

quality is difficult and a significantly finer mesh is needed in contact regions. 

Expertise needed in element selection, meshing and simulation of boundary 

conditions makes designers dependent on specialists for use of CAE tools. 

This research has successfully demonstrated that it is possible to perform 

FEA on mechanical assemblies without meshing. This is achieved by overlaying a 

uniform grid on the bounding boxes of all parts in an assembly, including contact 

regions. The grid is independent of the boundary shape of parts, i.e. is non-

conforming.  Further development of this method is expected to lead to integrated 

CAD-CAE systems envisioned in Chapter 1.  
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The FE formulation developed in this work uses B-Spline basis functions. 

The domain to be analyzed is integrated with the use of transformed Gauss points 

within the domain, and boundary conditions are applied via distance functions (R-

functions).  However, the basis is stabilized through a novel selective 

normalization procedure.  In addition, a novel contact algorithm is developed in 

which the B-Spline support grid is re-used for contact detection. Finally, a 

modified Penalty Method is demonstrated for connecting elements with 

incompatible bases. 

The unilateral structural contact algorithm has been designed specifically 

to exploit the properties of this formulation.  Criteria for this selection were: 1) 

Optimal algebraic system size for given mesh size h, and basis degree d, and  2) 

Accuracy and robustness in solving general multiple-part, unilateral frictionless 

contact problems.  In the last chapter, the last goal was demonstrated, while 

evidence was given for the first.  The smaller algebraic system sizes seen in the 

current mesh-free framework are directly related to the minimal support property 

of B-Splines.  This property can be found in (Farin 2002), from which the 

following quote comes: “...if a piecewise polynomial with the same smoothness 

properties over the same knot vector has less support than n

i
N , it must be the zero 

function.”  This property of B-Splines has long served as the central motivation 

for using them as finite element bases, but until recently, the implementation of 

B-Splines in a finite element framework has been dogged by insufficient 

computing power and the inability to apply the tensor-product basis to problems 

with non-rectangular domains.   
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This approach is superior to mesh-free particle-based methods in that the 

FE formulation developed here and its implementation have been validated both 

by comparison to  the idealized contact (Hertzian) equations found in the Theory 

of Elasticity and to the results from a leading commercial FEA package for 

classical contact (planar-planar, convex-convex, convex-concave) cases. It has 

also been demonstrated that not only does this method yield accurate contact 

pressures and deformation plots, it also results in a smaller set of system 

equations. 

Current limitations of the solution offered in this dissertation are that it is 

only implemented in two dimensions and only incorporates boundary 

nonlinearities. Material and geometric (large displacement) effects are not 

considered. Despite these limitations it should be applicable to a large number of 

common mechanical assemblies, such as those in automotive power trains, static 

structures with fasteners, and many others. 
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Chapter 7 

ORIGINAL CONTRIBUTIONS 

Shapiro et al demonstrated the feasibility of using weighted B-Spline basis 

functions defined over a non-conforming structured grid within a finite element 

framework (Shapiro and Tsukanov 1999b).  Höllig et al. then extended this work 

by discovering a stabilized basis to address the inherent instability of the B-Spline 

basis in two or more dimensions, as well as introducing new weighting schemes 

to satisfy boundary conditions (K. Hoellig, Reif, U., and Wipper 2001).  Through 

these efforts, this approach is now on a firm mathematical footing. However, to 

our knowledge, no researchers have demonstrated the applicability or usefulness 

of this method within a general engineering framework. 

Most research today in mesh-free finite element technology focuses on 

particle-based methods, which have at best specialized applications (T. 

Belytschko et al. 1996).  In assessing the feasibility of this technique in solving 

unilateral contact problems, this investigation marks the first effort in exploring 

the feasibility of the B-Spline approach within a general structural engineering 

framework (specifically oriented toward assembly design).  In doing so, a Penalty 

formulation for connecting incompatible bases was developed which we have not 

seen in the literature (however, it should be pointed out that this formulation 

seems to be identical to the stabilization term found in the Nitsche Method 

(Wriggers 2002).) 

Because the analysis of large-scale assemblies is becoming increasingly 

commonplace, and because a large portion of such analyses involve unilateral 
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contact, it is felt that any numerical approach that can solve such problems 

accurately, efficiently, and with minimal user intervention (compared with the 

current state of the art) represents a great leap forward toward the future of 

engineering design.  

Beyond this, it should be noted that this investigation marks the first 

demonstration of selective B-Spline normalization (as opposed to the weB-Spline 

method of Höllig et al) as a means to achieve reasonable matrix condition 

numbers.  This possibility was mentioned by Reif (Reif 2006), but no 

demonstration of it has been found in the literature.  In addition, the contact 

algorithm design for this purpose is novel.  It is hoped that the implementation of 

this algorithm has demonstrated that the unilateral contact problem actually 

becomes somewhat simpler in this mesh-free setting, as opposed to the use of 

surface-to-surface contact segments in the traditional approach. 
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Chapter 8 

FUTURE WORK 

Toward the goal of applying the mesh-free B-Spline method of 

Shapiro/Höllig to a generalized FEA/Design application, several questions 

remain.  For example, can the non-conforming tensor-product approach (trimmed 

solution spaces) be used in conjunction with reduced-order (non-manifold) 

elements such as beams and shells formulated in the same way?  Can such a 

methodology be applied to material and geometrically nonlinear problems in a 

robust and efficient manner? 

In Appendix A, it is shown how the technique can be applied to small 

deflection beam theory, but a typical finite element model may have solids, 

beams, and shells – all with arbitrary spatial orientations.  This is one reason why 

mesh-based finite elements use an element coordinate system (often iso-

parametric).  An obvious solution suggests itself:  Extend the current 

methodology to parametric B-Spline spaces.  Several researchers (Hughes, 

Cotrell, and Bazilevs 2005) have discovered NURBS, or Bezier finite elements, 

but all these interpolate element boundaries, and are therefore not mesh-free.  It 

would be advantageous to assess the feasibility of extending the current 

methodology to parametric weighted B-Spline spaces in which boundaries are 

described just as they are in B-rep CAD models, with the solution space 

superimposed directly on B-Spline control points.  If this is feasible, we believe it 
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would offer an excellent framework for geometrically nonlinear problems, as well 

as reduced-order element types. 

Beyond extending the mesh-free formulation introduced in this study, 

future work should seek to investigate the design/analysis interoperability 

opportunities offered by this framework.  For example, the Generic Functional 

Interfaces introduced in Chapter 1 could interact directly with a mesh-free contact 

data-structure.  In fact, it is conceivable that a mesh-free contact algorithm might 

even be capable of constructing such interfaces. 
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APPENDIX A  

A MESH-FREE B-SPLINE BEAM ELEMENT  
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One of the biggest differences between the mesh-free finite element 

formulation of Shapiro/Höllig and the traditional mesh-based formulation is the 

support of the basis functions.  Traditional finite element bases are defined strictly 

within an element domain.  In the mesh-free method, by contrast, the basis 

functions are defined over a global support grid which need not conform to the 

domain geometry.  Shapiro referred to this as the “Solution Space”, as opposed to 

the “Domain Space” (Shapiro and Tsukanov 1999a).  In this sense, the structured 

grid over which the B-Splines are defined is analogous to an Eulerian grid.  In 

terms of the differential equation, the boundary conditions and solution are 

referred to this space.  The approach is easily demonstrated with a 1-dimensional 

beam solution. 

The differential equation for the Euler-Bernoulli beam is: 
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Where v is the transverse deflection, E is Young’s Modulus, I is the cross-

sectional moment of inertia, and p is the load per unit length of the beam.  The 

weak form of this equation is: 
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Where f is the trial or shape function.  We will use Cardinal B-Splines as trial 

functions (following Höllig).     This beam will be interpolated over a 1-

dimensional grid with cell dimension h.  Next, we define scaled, translated 

Cardinal B-Splines over this grid: 
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n n

k hN x N x h k= −  (A.3) 

The support of a any particular B-Spline , n

k
N is: 

 [ , 1]n

k
Support N k k n h= + +  (A.4) 

By way of example, suppose we have a beam of length L.  We select the simplest 

problem from small deflection beam theory , as shown in Figure A-1. 

 

Figure A.1. Cantilever Beam Problem 

If we want the beam to span 1 element, we set h=L.  Let us also arbitrarily 

decide that the beam extends from L to 2L in the grid system.  The point to be 

made here is that a fixed B-Spline grid will be used to interpolate the beam, but 

the beam may be located anywhere within this grid.  By equation (A.4), if one 

chooses B-Splines of degree 3, the support of one basis function 3

k
N will span 

[k,k+4]L (we choose a 3
rd

 degree B-Spline because we know in advance that the 

solution is of degree 3.  Note also that the index k refers to the “left end”, or 

beginning, of the support).  Thus, there will be exactly n+1=4 basis functions 

whose support overlaps the beam domain.  In other words, there will be 4 basis 
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functions which are capable of interpolating this domain, and the combined 

support of all 4 basis functions spans the grid points [k-n,k+1+n]L.  For this beam 

example, therefore, the support is [-2,5]L.  Now, the bases are calculated 

according to the recurrence relation for B-Splines (Hoellig 2003): 

 1 11
( ) ( ) ( 1)n n nx n x

N x N x N x
n n
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combined with the grid transformation (A.3).  The four cubic B-Splines that 

overlap the beam’s domain are shown graphically in Figure A-2. 

 

Figure A.2.  Mesh-Free Beam Showing Basis Support 

It is important to note that the beam’s basis support extends beyond the 

physical domain of the beam [L,2L].   It should also be mentioned that, unlike the 

case of mesh-based bases, the basis coefficients do not correspond to any 

particular fixed location.  These facts are reflected in the violation of the 

Kronecker delta property of bases discussed in section 2.4.  One direct 

consequence of this is that one cannot immediately satisfy the requirement of 

finite element bases that f=ϕ (the prescribed boundary condition) on the boundary.  

A simple solution to this dilemma for homogeneous equations is to modify the 
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bases by multiplying them with a smooth function that goes to zero on the 

boundary.  The modified trial functions must be of the form (will now remove the 

superscript denoting degree of the trial functions, as well as the subscript, h 

denoting grid cell size): 

 '

i i
f wN φ= +  (A.6) 

where the bi are the unweighted basis functions (in our case, cardinal B-Splines), 

and ϕ is a function which takes on the value ϕ0 at the boundary (this allows us to 

handle non-homogeneous problems).  The function w must go to zero on the 

boundary.  For the problem stated in Figure A-1, the two essential boundary 

conditions require that f’=0  at x=L and df’/dx=0 at x=L (in global grid 

coordinates).  A simple weighting function, w that satisfies this requirement is: 
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with ϕ=0 (this problems happens to be homogeneous).  The new weighting 

functions, f’ are shown in over the domain [L,2L] in Figure A-3. 

 

Figure A.3.  Weighted Basis Functions over Beam Length 
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We now discretize equation (A.2) by replacing the trial functions with the 

weighted basis as in section 2.4.1: 
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Which produced the familiar algebraic system: 
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And, for the problem outlined in Figure A-1, the distributed load p(x) is replaced 

by a point load F, resulting in the load vector: 
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Where δ is the Dirac Delta function. 

Performing the derivatives and integrals indicated in (A.10) and (A.11) in 

Mathematica®, gives the following 4 x 4 system: 
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1/ 420 1/ 840 1/105 1/168 0

1/ 840 68 / 315 257 / 2520 25 /126 1/12

1/105 257 / 2520 713 /1260 107 / 504 1/ 3

1/168 25 /126 107 / 504 25 / 63 1/12
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 (A.12) 

Solving this system yields: 



  188 

 
























−

−

−

−

=

























Φ

Φ

Φ

Φ

3/1

3/2

1

3/4

4

3

2

1

 (A.13) 

The normalized solution ( )T xN Φ  is plotted in Figure A-4 

 

Figure A.4.  Beam Solution – Normalized Deflection vs. Length 

This is identical to the exact analytical solution: 
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APPENDIX B  

MATRIX STABILIZATION BY BASIS NORMALIZATION  
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One problem with using the weighted B-Spline space '

i i
f wN φ= +  is that 

B-Spline values go to zero at the extremes of their supports.  Therefore, if a 

domain just barely overlaps a B-Spline’s support, the B-Spline contribution to the 

solution may be very small within the overlap region, leading to ill-conditioned 

systems.  Simply ignoring such contributions could lead to poor accuracy (this is 

especially important in the case of the current research effort because contact 

surfaces will by definition be influenced by outer splines).  Höllig et al (Hoellig 

2003) has apparently devised a robust solution to this dilemma with the invention 

of WeB-Splines (see section 3.2.3). We will not use this method, however.  

Instead, we propose using a process of selective basis normalization.  The process 

will work as follows: 

1. Identify inner and outer grid cells 

2.  Identify B-Splines whose support overlaps  an outer cell at just 

one corner 

3. Normalize B-Splines identified in 2. 

And the normalization itself is performed according to: 
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Where 
, 'i Q D

N
∞ ∩

 is the infinity norm (or simply the maximum absolute value) of 

i
N  over the region of intersection between the outer grid cell (Q’) and the domain 

(D).  

As an illustration, we return  to the mesh-free beam of Appendix A, and 

shift the domain by a small amount (x-0.1)h.  The length L is the same, and we 
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keep the same grid width h=L.  The beam’s domain now spans the interval 

[.9,1.9]L.  Shifting the domain in this way has picked up a new overlapping basis 

function (this is now effectively a two-beam solution) as shown in Figure B-1.  

The support now spans [-3,5]L.  The new basis basis function (N-3), however, 

only covers the domain over the interval [.9,1]L.  The B-Spline value at 0.9L is 

very small (approximately 1/1000 the maximum value).  When we follow the 

solution procedure described in Appendix A, the new matrix, K is: 

 

2.381 10 7.619 9 1.595 8 8.095 9 0

7.619 9 0.0046 0.002 0.015 0.007

1.595 8 0.002 0.273 0.156 0.191

8.095 9 0.015 0.156 0.669 0.252

0 0.007 0.191 0.252 0.256

e e e e

e

e

e

− − − − − 
 − − 
 = − − − −
 

− − − 
 − 

K
 (B.2) 

 

Figure B.1.  Shifted Beam showing Basis Functions 

which results in a condition number of  
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 c=4.586e9 

Such a large condition number suggests an ill-conditioned matrix.  To fix the 

problem, we apply procedure 1 through 3 from above: 

1. Identify inner and outer grid cells.  According to our strict definition, we 

have two outer grid cells and no inner cells.  They are on the intervals 

[0,1]L, and [1,2]L.   

2. Identify B-Splines whose support overlaps  an outer cell at just one corner.  

The B-Spline which overlaps the cell [0,1]L at only one “corner”  is b-3.   

The B-Spline which overlaps the cell [1,2]L at only one corner is b1.   

3. Normalize B-Splines identified in 2. 

The maximum value of b-3 over the interval [0.9,1]L is 0.00067.  We thus 

normalize b-3 according to: 

 
' 3
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The maximum value of b1 over the interval [1.9,2]L is 0.1215.   Correspondingly: 
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Once equation (B.3) and (B.4) are applied, we calculate K again: 

 






















−

−−−

−−−−

−−

−−−−

=

256.0252.0191.0007.00

252.0669.0156.0015.05847.4

191.0156.0273.0002.05552.9

007.0015.0002.00046.05563.4

05847.45552.95562.4009.0

e

e

e

eee
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The condition number of this matrix is: 

 c=511.35 
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which is generally acceptable for single precision arithmetic (it results in 

minimum of 6-digit accuracy).  Solving this system results in a deflection plot 

over the interval [0.9,1.9]L which is indistinguishable from that in Appendix A. 
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