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ABSTRACT

Optimization of surgical operations is a challenging managerial problem

for surgical suite directors. This dissertation presents modeling and solution

techniques for operating room (OR) planning and scheduling problems. First,

several sequencing and patient appointment time setting heuristics are proposed for

scheduling an Outpatient Procedure Center. A discrete event simulation model is

used to evaluate how scheduling heuristics perform with respect to the competing

criteria of expected patient waiting time and expected surgical suite overtime for a

single day compared to current practice. Next, a bi-criteria Genetic Algorithm is

used to determine if better solutions can be obtained for this single day scheduling

problem. The efficacy of the bi-criteria Genetic Algorithm, when surgeries are

allowed to be moved to other days, is investigated. Numerical experiments based

on real data from a large health care provider are presented. The analysis provides

insight into the best scheduling heuristics, and the tradeoff between patient and

health care provider based criteria. Second, a multi-stage stochastic mixed integer

programming formulation for the allocation of surgeries to ORs over a finite

planning horizon is studied. The demand for surgery and surgical duration are

random variables. The objective is to minimize two competing criteria: expected

surgery cancellations and OR overtime. A decomposition method, Progressive

Hedging, is implemented to find near optimal surgery plans. Finally, properties of

the model are discussed and methods are proposed to improve the performance of

the algorithm based on the special structure of the model.
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It is found simple rules can improve schedules used in practice. Se-

quencing surgeries from the longest to shortest mean duration causes high

expected overtime, and should be avoided, while sequencing from the shortest

to longest mean duration performed quite well in our experiments. Expending

greater computational effort with more sophisticated optimization methods does

not lead to substantial improvements. However, controlling daily procedure

mix may achieve substantial improvements in performance. A novel stochastic

programming model for a dynamic surgery planning problem is proposed in the

dissertation. The efficacy of the progressive hedging algorithm is investigated. It is

found there is a significant correlation between the performance of the algorithm

and type and number of scenario bundles in a problem instance. The computational

time spent to solve scenario subproblems is among the most significant factors

that impact the performance of the algorithm. The quality of the solutions can be

improved by detecting and preventing cyclical behaviors.
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CHAPTER 1

INTRODUCTION

1.1. Introduction

Health care expenditures in the United States are currently estimated to be

17% of the Gross Domestic Product (GDP) and expected to grow (Gruber 2010).

The rising costs have caused health care managers to take operational actions to

control and reduce expenditures. A reduction in cost can be achieved, in part,

through increasing the efficiency. However, the other important attributes of pa-

tient care related to the quality should also be taken into account while improving

the efficiency.

Operations Research methods can help improve health care delivery sys-

tems in terms of quality, efficiency, effectiveness, safety and patient access. Such

methods have been applied to improve the health care operations for decades (e.g.

in appointment scheduling, nurse scheduling, medical decision making). As health

care organizations continue to make investments in information technology infras-

tructure, the availability of data is creating the potential for greater applicability of

the operations research methods. Therefore, it is likely that the amount of interdis-

ciplinary work done by the health care and operations research communities will

significantly rise in the future.

1.2. Motivation

Improvement of the surgery delivery systems is particularly important due

to the fact that operating room (OR) revenues constitute as much as 40% of the
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revenues generated by the hospitals, and a large portion of the total hospital costs

(Erdogan and Denton 2010). Furthermore, many patients visit other departments in

the hospital before and after surgery. Thus, patient flow in the OR suite would also

have considerable impact on the flow through other departments. The interested

reader is referred to Cardoen et al. (2010), Gupta (2007), Blake and Carter (1997),

Przasnyski (1986), Magerlein and Martin (1978) for further motivation of the

practical importance and benefits of the optimization of surgery delivery systems.

Efficient planning and scheduling of surgeries is one way of improving the

patient flow through the surgical suite without making a change in the level of

resources available in the suite. However, designing efficient surgical schedules

is a challenging problem due to dependencies between different components in

the system, uncertainty in demand for surgery and duration of surgeries, and the

competing criteria of patients and providers. In this dissertation, new models are

formulated to consider these challenges. The models are used to provide new

insights into ways to improve efficiency of surgery planning and scheduling.

Surgery planning and scheduling decisions and their potential outcomes

can be analyzed at several different levels. At the strategic level, various planning

strategies are used by the health care organizations. The three most common strate-

gies include open scheduling, block scheduling and modified block scheduling.

In the open scheduling strategy, all surgery time blocks are pooled together

and any surgeon can use any one of the available blocks. This strategy provides

a significant level of flexibility from a capacity management perspective; however it
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also requires that surgeons be willing to share OR capacity and be flexible

about the daily surgery schedule.

Under the block scheduling strategy, certain blocks are first assigned to

surgeons/surgical groups in advance. The surgeons/surgical groups utilize these al-

located blocks to schedule their surgeries. It is critical that block allocation be done

efficiently, because allocating more than necessary blocks to a surgeon/surgical

group decreases the overall utilization of the surgical suite resources. One reason

for poor utilization is that blocks that are reserved for a surgeon/surgical group are

typically not transferred to another surgeon or group even if there is insufficient

demand to utilize the block.

The modified block scheduling combines the advantages of open scheduling

and block scheduling. Under this strategy, some portion of the blocks may be left

as non-dedicated and thus be available for any surgical group. Alternatively, all

blocks may be reserved up to a certain point before the surgery day, at which point

any unused blocks are released to other surgeons/surgical groups.

In this dissertation, problems at the operational level of surgery scheduling

are studied. The models, methods and analysis are valid for any of the scheduling

strategies described above. Given that the information about which slots are

available for the assignment of a surgery is known, the techniques and analysis

provide significant insights into the planning and scheduling of surgeries.



4

1.3. Organization and Contributions of the Chapters

In Chapter 2, several methods are used to find optimal sequences and

patient appointment times for outpatient surgeries. The challenges imposed by

the uncertainty in the surgery durations, and dependencies between different

steps in the surgery process are taken into consideration. First, a discrete event

simulation model is used to evaluate how 12 different sequencing and patient

appointment time setting heuristics perform with respect to the competing criteria

of expected patient waiting time and expected surgical suite overtime for a single

day compared to current practice. Second, a bi-criteria genetic algorithm (GA) is

used to determine if better solutions can be obtained for this single day scheduling

problem. Third, the efficacy of the bi-criteria GA when surgeries are allowed to be

moved to other days is investigated. Numerical experiments are presented based

on real data from a large health care provider. The analysis provides insight into

the best scheduling heuristics, and the tradeoff between patient and health care

provider based criteria. Finally, several important managerial insights based on the

findings are summarized.

Several studies from the literature are reviewed. In comparison to these

studies, the unique contributions of Chapter 2 include the following. First, a

hybrid solution technique is proposed by mixing a bi-criteria GA with appointment

time setting heuristics to find the (near) Pareto optimal set of schedules and

reveal the tradeoff between factors affecting both the patient and the provider.

Second, several commonly used scheduling heuristics are tested against the GA
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to estimate the potential benefits of optimization based methods for scheduling

system improvements. Finally, the GA is used to estimate the potential benefits of

optimizing daily procedure mix.

In chapter 3, a multi-stage stochastic mixed integer programming formu-

lation is proposed for the allocation of surgeries to ORs over a finite planning

horizon. The demand for surgery and surgical duration are considered to be

random variables. The objective of the study is to minimize two competing

criteria: expected surgery cancellations and OR overtime. The literature related

to the multi-period OR planning problem is categorized into three levels based on

the complexity of the variants of the problem. The first is deterministic models.

The second is models with stochastic surgery durations; however the demand

for elective surgeries is still deterministic in these models. Due to the latter

assumption, the models have a static nature (i.e. the scheduling decisions are given

at the beginning of the planning period and the decisions can not be revised over

the course of the period). The third category breaks this assumption of certain

demand and formulate dynamic models to study multi-period planning problems.

Chapter 3 also belongs to this category which represents the most realistic case.

The study in Chapter 3 is the among the first that proposes a multi-stage

stochastic programming formulation to solve the dynamic OR planning problem.

The model formulates the following decision process. At each stage (e.g. day),

new surgery requests are scheduled into future. Surgeries that are previously

scheduled to the current day may be canceled to decrease OR overtime at the ex-
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pense of cancellation cost. Canceled surgeries are then rescheduled into fu-

ture days. Note that the OR assignments are also done at the time the scheduling

decisions are given.

Distinct feature of the model in Chapter 3 is that it relaxes assumptions

common in the existing literature, such as a Poisson arrival process for surgery

requests, and independently and identically distributed surgery durations.

The model of Chapter 3 was solved using the progressive hedging algorithm

(PHA), proposed by Rockafellar and Wets (1991). The PHA proceeds by applying

scenario decomposition to the overall problem, iteratively solving the resulting

individual scenario subproblems, and aggregating individual scenario solutions.

The PHA hedges against uncertainties iteratively using its procedures until it

converges to the solution for the overall problem. Although the PHA is guaranteed

to converge asymptotically to a global optimal solution in the convex case, there

is no guarantee for this model, because the problem studied has a non-convex

nature since there are integer variables at all stages of the formulation. Due to the

integer variables in the model, solving even the individual scenario subproblems

can require significant computational time. The efficacy of the PHA and several

related research questions are investigated in Chapter 3.

In Chapter 4, several methods are proposed and evaluated to improve the

convergence speed of the PHA and quality of the PHA solutions. The methods

proposed addresses the following questions: (a) What criteria should be used while

updating the PHA penalty parameters at a particular iteration? (b) What criteria

should be used while updating the Lagrangian multipliers at a particular iteration?
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(c) What other techniques can be utilized to improve the performance of the PHA?

It is found that the efficiency level of the scenario subproblem solution method is

among the most significant factors that impact the performance of the PHA. The

quality of the solutions are negatively affected by the cyclical behaviors and can be

considerably improved by detecting and preventing cycles along the iterations.

In Chapter 5, the most significant conclusions are summarized and

discussed. Chapter 5 concludes with a discussion of future research opportunities.



CHAPTER 2

BI-CRITERIA SCHEDULING OF SURGICAL SERVICES FOR AN

OUTPATIENT PROCEDURE CENTER

2.1. Introduction

Surgical services require the coordination of many activities including pa-

tient intake and preparation, the surgical procedure, and patient recovery. Design-

ing schedules that achieve smooth patient flow is a complicated task due to the

dependencies between these activities. Scheduling is further complicated by con-

siderable uncertainty in the duration of activities. These problems are amplified for

Outpatient Procedure Centers (OPCs) which typically perform a variety of elective

procedures on an outpatient basis. A high volume of surgical procedures combined

with significant uncertainty in the duration of activities and a fixed length of time

that the surgical suite is open (typically 8-10 hours) give rise to difficult stochastic

scheduling problems involving multiple, competing criteria.

The physical resources in a surgical suite include operating rooms (ORs),

intake rooms, and recovery rooms, as well as equipment resources such as diag-

nostic devices and surgical instrument kits. There are also several human resources

including surgeons, nurses and nurse anesthetists.

Surgical services occur in three major steps. The first, intake, starts when

the patient arrives at the surgical suite to initiate his/her check-in process, and ends

when the patient reaches an OR bed. The intra-operative care period starts when

the patient is admitted to the OR area and ends when the patient is taken to a re-

covery bed. The surgical procedure itself is performed during this period. The last
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step, recovery, starts when the patient is admitted to a recovery area and ends when

the patient is discharged. Even for very routine surgeries the duration of each of

these activities exhibits considerable variation (Berg et al. 2010).

In this chapter, expected patient waiting time and expected surgical suite

overtime are the focused performance measures. These are among the most impor-

tant performance measures that a manager (e.g. charge nurse) must consider on a

daily basis. These criteria are in conflict because a schedule with small time inter-

vals between procedures tends to have low surgical suite overtime and high patient

waiting times, and vice versa. A bi-criteria analysis is performed to estimate the

impact of three types of scheduling improvements and answer the following three

questions:

1. What are the potential benefits of using easy-to-implement heuristics for

daily appointment scheduling?

2. What are the potential benefits of optimization methods over commonly

used and easy-to-implement heuristics for daily appointment scheduling?

3. What are the potential benefits of controlling daily procedure mix from

day to day?

An OPC at Mayo Clinic, in Rochester, Minnesota, forms the testbed for this

study. First, a discrete event simulation model (DES) is constructed and used to

evaluate easy-to-implement scheduling heuristics based on expected patient wait-

ing time and expected surgical suite overtime. The DES is a comprehensive model

that includes all three major surgical service steps. Next, the simulation model is

embedded within a hybrid solution method that contains both a bi-criteria Genetic
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Algorithm (GA) and appointment time setting heuristics to construct a (near) Pareto

optimal set of schedules. Furthermore, the GA is used to examine the potential ben-

efits of controlling the daily surgical mix.

The remainder of the chapter is organized as follows. In the next section,

some background on OPCs is provided. In Section 2.3., a brief literature review of

relevant studies is presented. In Section 2.4., the simulation model is described. In

Section 2.5., the methodologies I have applied including the scheduling heuristics

and the GA are discussed. In Section 2.6., the experimental results are presented.

Finally, the most significant managerial insights are summarized in Section 2.7..

2.2. Background on Outpatient Procedure Centers

OPCs are complex systems, often with several surgical groups (e.g. depart-

ments or subgroups within departments) sharing resources on a given day. The

layout of a typical suite is illustrated in Figure 1. The physical space used for pa-

tient care can be broken into three sections. The first is the patient waiting area,

the second is the pre/post room area (used for patient intake and recovery), and the

third is the OR area.

Typically there is some dedication of intake, operating and recovery rooms

to surgical groups. For example, in the OPC I studied, ORs are dedicated as fol-

lows: Pain Medicine has one OR, each of Urology and Ophthalmology has two

ORs, and Oral Maxillofacial (OMS) has three ORs. Thus there are 8 ORs in total

which are shared by the three surgical groups. There are 20 pre/post rooms, four of

which are dedicated to Pain Medicine. Oral Maxillofacial also has four dedicated
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pre/post rooms, but the remaining 12 pre/post rooms can be utilized by any one of

the surgical cases of the other groups.

The OPC depicted in Figure 1 combines resources by using the same set of

rooms for intake and recovery. This increasingly common layout is motivated by

the desire to balance resources and reduce congestion (since intake areas tend to be

heavily utilized early in the day while recovery areas are empty and vice versa at

the end of the day). Patients first go to the check-in desk, and then to the patient

waiting area, where they wait for an intake room to become available. After the

intake process, they wait for their surgeon and OR to become available. Once the

procedure is complete, they reenter the pre/post room area to recover, and exit the

OPC when their recovery is complete.

Figure 1. Layout and Patient Flow Through an OPC Including the Patient Waiting
Area, Pre/Post rooms, and ORs.
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There is significant uncertainty in the time necessary for completing activi-

ties in the OPC. In Figure 2, empirical estimates of probability density functions are

plotted for intake, surgical procedure, and recovery, for procedures from the same

surgical group. Surgical procedure durations can differ considerably among proce-

dures even within the same surgical group and they tend to have a long tail which

represents unpredictable low probability complications that may occur during the

procedure. Intake and recovery distributions are generally quite similar within a

surgical group. Intake distributions are similar, because patients are going through

similar intake processes. Recovery distributions also do not differ, since procedures

within a surgical group tend to use similar levels of anesthetic.

Figure 2. Probability Density Functions for Intake, Procedure, and Recovery Times
for Two Different Types of Surgical Procedures within a Surgical Group

The particular OPC considered in this study opens at 8am, which is the

scheduled time of the first patient’s arrival. The planned closure time is 5pm. Over-
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time results in additional costs for those staff that stay beyond 5pm. There is also a

loss of goodwill on the part of staff because most staff members prefer not to work

overtime. Furthermore, there is anecdotal evidence that long patient wait times,

which lead to unhappy patients, reduce staff morale and can lead to turnover, par-

ticularly among nurses.

The process flow defined above, and the probability density functions for

intake, surgical procedure, recovery and other activity times are used to construct

the DES model, which I describe in detail in Section 2.4..

2.3. Literature Review

Following is a brief literature review that covers several examples from the

literature that are related to my work. The focus is on studies that either (a) eval-

uate scheduling heuristics for multiple ORs using a DES model or (b) consider

resources in addition to ORs (e.g. recovery area resources) or (c) analyze multi-

criteria problems related to planning and scheduling. For a more extensive review

of the literature on surgery planning and scheduling, the reader is referred to Mager-

lein and Martin (1978), Blake and Carter (1997), Gupta (2007), Gupta and Denton

(2008).

Dexter et al. (1999b) use simulation to test heuristics for allocating block

time to surgeons, and schedule elective cases to maximize OR utilization. They

evaluate four on-line bin packing algorithms to schedule elective cases: next fit,

first fit, best fit, and worst fit. Dexter et al. (1999a) evaluate 10 different algorithms

(online, off-line, and hybrid algorithms) for scheduling add-on cases into the open
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OR time available to evaluate their effectiveness in increasing OR suite utilization.

Testi et al. (2007) use simulation to evaluate different surgery sequences with re-

gard to the longest waiting time of the surgeries in the waiting list, longest process-

ing time, and shortest processing time after building the Master Surgery Schedule

(MSS).

Dexter and Marcon (2006) studied the impact of several different surgery se-

quencing heuristics on workload of a post anesthesia care unit (PACU) including:

random sequence, longest cases first (LCF), shortest cases first (SCF), Johnson’s

rule, and several others. The authors analyzed how sequencing affects OR over-

utilization, PACU completion time, delays in discharging from the OR into PACU,

and the maximum number of patients in the PACU throughout the day. They found

that even though LCF is the most popular rule used in practice, it is one of the worst

rules with regard to the performance measures of the study. Random sequencing

is suggested if it is difficult to implement rules that performed better, due to the

constraints (such as medical and equipment) that are not considered in the study,

because, implementation of random sequencing is trivial and it yields medium level

results.

Berg et al. (2010) use a DES model to analyze an endoscopy suite with

respect to surgeon-to-OR allocation scenarios. Competing performance measures

such as overtime for the endoscopy suite and patient waiting time were analyzed in

the model and a simulated annealing heuristic was used to improve the scheduled

start time of cases with respect to expected overtime and patient waiting time. An

endoscopy suite is a simplification of a general OPC since the case mix is limited
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to only upper and lower endoscopies. The suite considered in Berg et al. (2010)

consists of three independent process areas (i.e. intake, procedure, recovery) and

the authors assume that the capacities of intake and recovery areas are unlimited.

In contrast I assume intake and recovery have fixed capacity and potentially limit

patient flow through the suite. Finally, the authors use only a very simple simulated

annealing approach to design schedules, whereas I provide a detailed comparison

of standard heuristics as well as a more advanced bi-criteria genetic algorithm.

Lehtonen et al. (2007) build a simulation model to analyze the effect of six process

interventions on open-heart surgery with respect to OR productivity and overtime

amount.

Marcon et al. (2003) simulate a surgical suite to estimate the number of

PACU beds required. They also investigated the effect of a decrease in the number

of porters (patient escorts) in the OR on the number of PACU beds needed. Lowery

and Davis (1999) use a simulation tool to study the effect of decreasing the number

of ORs in a hospital. They analyzed the effects of changes in the surgery schedule

and in case times on the number of rooms required. Tyler et al. (2003) simulate

an OR to determine the optimum OR utilization and analyze the important factors

such as average patient waiting time and variability of case durations which impact

OR utilization. Lowery (1992) uses a simulation model to simulate the patient flow

through critical care units to determine the number of beds required.

Multi-criteria studies related to surgery planning and scheduling include the

following. Jebali et al. (2006) developed a two-phase approach to solve the surgery

assignment and sequencing problem formulated as an integer program. In their ap-
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proach, operations are first assigned to ORs with the objective of minimizing hospi-

talization, undertime and overtime costs. Second, optimal sequences are sought for

minimizing the total overtime cost for ORs. Guinet and Chaabane (2003) solved the

weekly patient-to-OR assignment problem using a primal-dual heuristic. Patient

satisfaction and resource efficiency are considered in this study where the objective

includes the minimization of the number of days patients wait in the hospital and

the overtime. Lamiri et al. (2008b) proposed a stochastic programming model for

the assignment of elective surgeries to ORs over a planning horizon. Uncertainty

comes from the demand for emergent cases in this formulation. The study aims to

minimize both OR utilization costs and patient related costs. They solve the prob-

lem using a column generation method.

In the context of ambulatory care services, Cayirli et al. (2006) tested several

sequencing and appointment rules for clinic visits using simulation with regards to

patient waiting time, doctor idle time and overtime. The most significant finding

of this study is that the impact of sequencing on the criteria is more important than

that of the appointment rule. Lovejoy and Li (2002) consider an OR capacity ex-

pansion problem. They focus on the tradeoff between waiting time, procedure start

time reliability, and hospital revenues.

This work differs from the aforementioned papers in the following ways.

First, a hybrid solution technique is proposed by mixing a bi-criteria GA with ap-

pointment time setting heuristics to find the (near) Pareto optimal set of schedules

and reveal the tradeoff between factors affecting both the patient and the provider.

Second, several commonly used scheduling heuristics are tested against the GA to
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estimate the potential benefits of optimization based methods for scheduling sys-

tem improvements. Finally, the GA is used to estimate the potential benefits of

optimizing daily procedure mix.

2.4. Simulation Model

The DES model was developed based on an OPC in Rochester, MN

(Huschka et al. 2007). It is a terminating simulation (Banks et al. 2005), in the sense

that a finite number of procedures are scheduled each day within a pre-determined

time in which the OPC is open each day. Patients arrive into the check-in area

according to a deterministic schedule (constructed using one of the heuristics I dis-

cuss in Section 2.5.). It is assumed arrivals are on-time and all patients show up for

their scheduled procedure (extensions such as tardiness and no-shows are straight-

forward with my model, however, they are uncommon in the OPC studied, and

for simplicity they are not included in the analysis). Subject to pre/post room and

surgeon/OR availability, patients proceed through the OPC with activity start and

completion times based on samples from the continuous probability density func-

tions of Tables 1 and 2.

The number of surgeons per surgical group on a given day is equal to the

number of ORs allocated to the group and surgeons may operate in any OR as-

signed to their group. While these policies are not necessarily in place in all OPCs,

they are reasonably common, and representative of scheduling problems faced in

practice.
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Table 1. Mean, Standard Deviations and Distributions of the Intake, Procedure
and Recovery Times for Various Procedure Groups of the Surgical Groups with the
Number of Patients Data Used to Calculate Them.

Surgical Group Procedure Group Process Mean Standard Deviation Number of Operations Distribution Fit

OMS

1
Intake 42.02 21.92 1472 Weibull

Procedure 33 19.11 1472 Lognormal
Recovery 53.02 33.88 1472 Gamma

2
Intake 0 0 0 -

Procedure 36 33.88 1919 Lognormal
Recovery 0 0 0 -

Pain Medicine

1
Intake 38.4 20.22 58 Erlang

Procedure 19.78 12.12 58 Lognormal
Recovery 21.09 9.74 58 Weibull

2
Intake 38.72 24.37 244 Gamma

Procedure 20.49 10.86 244 Lognormal
Recovery 23.64 16.65 244 Erlang

3
Intake 34.7 21.11 1551 Gamma

Procedure 20.93 15.08 1551 Lognormal
Recovery 19.94 14.17 1551 Erlang

4
Intake 32.79 16.79 24 Triangular

Procedure 40.5 26.12 24 Lognormal
Recovery 52.58 29.93 24 Weibull

5
Intake 36.46 21.47 970 Gamma

Procedure 34.01 17.42 970 Lognormal
Recovery 23.26 15.84 970 Beta

Ophthalmology

1
Intake 65.58 26.32 1696 Gamma

Procedure 41.63 16.43 1696 Lognormal
Recovery 29.84 14.56 1696 Weibull

2
Intake 65.65 28.57 589 Triangular

Procedure 77.66 44.03 589 Lognormal
Recovery 42.75 26.9 589 Erlang

Urology

1
Intake 64.92 27.59 329 Weibull

Procedure 53.3 27.7 329 Lognormal
Recovery 89.33 39.18 329 Gamma

2
Intake 58.14 26.56 640 Gamma

Procedure 31.3 16.37 640 Lognormal
Recovery 94.23 36 640 Erlang

3
Intake 64.15 22.78 153 Beta

Procedure 138.16 56.77 153 Lognormal
Recovery 126.95 49.55 153 Weibull

4
Intake 61.37 25.18 345 Erlang

Procedure 55.78 22.89 345 Lognormal
Recovery 99.91 33.13 345 Beta

5
Intake 58.18 26.68 496 Gamma

Procedure 80.33 43.76 496 Lognormal
Recovery 96.56 44.97 496 Weibull

Data from the year 2006 for 4034 patients at Mayo Clinic (corresponding

to the operations of the first 21 weeks of the year) was used. Probability density

functions were fit for all stages of a patient’s movement through the surgical suite

including intake, surgical procedure, and recovery (see Table 1 for a summary of

data). The procedure times are partitioned into three parts (pre-incision, incision,

and post-incision times) and fit distributions for each independently. This was nec-
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Table 2. Distributions and Their Parameters Set Subjectively by the Experts for the
Transfer Times Between Units as well as the Turnover Times for Different Rooms

Transfer Times
Patient Flow (From - To) Distribution

Check-in desk - Waiting area Triangular (5,6,7)
Waiting area - Pre/post room Triangular (2,3,4)

Pre/post room - OR Constant (2)
OR - Pre/post room Triangular (1,2,2)

Turnover Times
Room Type Distribution

Pain Medicine OR Triangular (2,3,8)
Other ORs Triangular (5,6.5,8)

Pre/post rooms Triangular (5,6.5,8)

essary because these activities require different resources. For instance, the OR is

utilized the entire time, but surgeons do not need to take part in the pre-incision and

post-incision activities.

Distributions were fit separately for each surgical procedure type. The log-

normal distribution is used for procedure times because it yielded a best fit based on

maximum likelihood estimation and because it is commonly used in the literature

(see, for example, Zhou and Dexter (1998)). For intake and recovery it is found Er-

lang, gamma, beta, Weibull, and exponential distributions were the most common

best fit. OR turnover and transfer times were estimated by triangular distributions

based on expert estimates of the minimum, mean, and maximum times (see Table

2).

My validation is based on a comparison of model outputs such as the num-

ber of surgeries completed per day and expected daily overtime estimates with

similar values from the particular outpatient procedure practice at Mayo Clinic in

Rochester, MN (i.e. the baseline schedule). The results based on the model were

also presented to experts at Mayo Clinic familiar with the system including an oper-
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ations research analyst specializing in surgery in the Division of Health Care Policy

and Research, an Administrator for the surgical practice, and the group of nurses

that work within the unit.

2.5. Methodology

The DES model is used to compare easy-to-implement heuristics used in

practice with a GA-based heuristic on the basis of total expected patient waiting

time and expected surgical suite overtime. Overtime is the difference between the

time the last patient completes recovery and 5pm (if it is non-negative). Total pa-

tient waiting time is the sum of the times a patient spends waiting for a pre/post

room to initiate intake and waiting for an OR to begin the surgical procedure. As

an aggregate measure, the average of the expected patient waiting times over all

patients served across all days is calculated.

In Section 2.5.1., several combinations of sequencing and appointment time

heuristics are discussed for selecting the schedule of patient arrivals to the check-in

area of the OPC. In Section 2.5.2., the GA-based approach is discussed.

2.5.1. Heuristics

To answer question 1 of Section 1, several combinations of patient sequenc-

ing and appointment time heuristics are tested. The cases of each OR and day com-

bination according to four different sequencing rules are tested: increasing mean of
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procedure time (SPT), decreasing mean of procedure time (LPT), increasing vari-

ance of procedure time (VAR), and increasing coefficient of variation of procedure

time (COV).

Given a specified sequence of patients, the first appointment is set to the

beginning of the day, and subsequent appointments are set to the prior appointment

time plus the estimated time for the previous patients’ procedure. The estimate of

the procedure time influences the patient waiting time and overtime. If the estimate

is too large, it may lead to unnecessary overtime; if it is too low it may result in

unnecessary patient waiting time. To explore this trade-off, the time is estimated

using various percentiles of the distribution. Appointment times are determined by

the following recursion:

Ai+1 = Ai + hi, i = 2, ..., n

where A1 = 0 and hi is the percentile of procedure i duration. This is known in the

literature as job hedging (Yellig and Mackulak 1997) and it has been investigated

extensively in the context of OR and single server appointment scheduling (for

example, see Charnetski (1984), Ho and Lau (1992), Weiss (1990)).

2.5.2. A Bi-Criteria Genetic Algorithm

To answer questions 2 and 3 from Section 1 two different models are solved

using a GA. The first (model A), assumes the daily procedure mix each day is

fixed based on a pre-defined schedule. The second (model B) assumes the daily

procedure mix may be modified by rescheduling procedures among days within
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a time window of n days (n = 1 and n > 1 for models A and B, respectively).

The remainder of this section provides a brief summary of my GA (more complete

details are presented in the appendix).

A GA is a local search algorithm based on the biological evolution paradigm

(Holland 1975). An initial population is created and genetic operators are used to

search the neighborhood of the initial population through successive improving

iterations. At each iteration a selection is made based on the survival of the fittest

rule to determine the members of the next generation. This mechanism continues

until a stopping a criterion is met (e.g. after a fixed number of iterations, or if the

solution is not sufficiently improved after a certain number of iterations).

Members of the population are called chromosomes and each chromosome

represents a solution (in my context a solution is a surgery schedule). The

chromosome stores the job hedging level, day, and known attributes of a procedure

i.e. type and the surgeon for each procedure.

The algorithm starts with an initial set of solutions (note that the term

solution and chromosome are used interchangeably) which are generated as

follows. One of the solutions in the initial population is the actual schedule used at

the OPC in the year 2006. The rest of the solutions are created using a combination

of the following techniques: (i) scheduling based on the heuristics described in

Section 2.5.1. and (ii) randomly assigning procedures to time slots available within

the n days of time window at the actual schedule.

At each iteration solutions are evaluated using the DES model and the

expected patient waiting time and expected surgical suite overtime are stored. The
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solutions are ranked based on these two criteria. The approach is based on the

Non-Dominated Sorting Genetic Algorithm II (NSGA II) proposed by Deb et al.

(2000) and is illustrated in Figure 3. The non-dominated solutions, i.e., the (near)

Pareto optimal set, are assigned to the first front. Then, the remaining solutions

are compared and the non-dominated ones are assigned to the second front. Using

this approach the fronts of all the solutions in the population are determined

and solutions are ranked based on their associated front. Solutions on the same

front are further prioritized using a crowding distance operator (described in the

appendix) to diversify the solution set along a given front.

Figure 3. The Assignment of the Solutions to the Fronts in a Bi-Criteria Solution
Space
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To create the next generation, pairs of solutions are selected based on

the ranking and combined via a crossover operator to create new pairs of solutions.

A mutation operator is also applied to create near neighbors of current solutions.

Repeating the same steps a fixed number of times, a new solution set is constructed

at each iteration of the GA. After a defined number of iterations are completed, the

algorithm terminates and the solutions on the (near) Pareto optimal set (first front)

are stored as the output.

The following provides additional information about my bi-criteria Genetic

Algorithm (GA). First, the pseudocode for the GA is provided. Next, the specific

details about various aspects of the GA are presented.

2.5.2.1. Pseudocode

t = generation counter

i = chromosome index

G = number of generations

N = number of chromosomes in a generation

Pt = parent population in generation t

Ot = offspring population in generation t

Ct = pool of chromosomes in generation t

Fi = front value for chromosome i

CDi = crowding distance value of chromosome i
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Step 0. Set generation number t as 0. Form initial population P0

having size N and set it as the current pool of chromosomes (C0).

Step 1. Simulate chromosomes (surgery schedules). Take the two criteria

values (expected patient waiting time and expected surgical suite overtime) as the

returned parameter values. If t = 0, then skip step 2.

Step 2. Combine parent (Pt) and offspring (Ot) population to update the

current pool (Ct).

Step 3. Rank each chromosome i in Ct based on the front they belong to

(Fi) and their crowding distance (CDi).

Step 4. Eliminate the poorest N chromosomes of Ct and hence leave the

best N chromosomes of the current pool.

Step 5. Use binary selection tournament operator to select two candidate

chromosomes from the current pool to generate a chromosome for the next

generation.

Step 6. Apply crossover using the two chromosomes to generate offspring.

If the GA model is A, then there is no need for resetting the day, skip Step 7.

Otherwise, go to Step 7.

Step 7. Set the days of procedures by considering daily capacity thresholds

set for each OR.

Step 8. Set the patient appointment times which are the key attributes of

genes in the chromosomes using the time-setting heuristic type associated with the

chromosome.
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Step 9. Apply mutation by changing the orders of two random proce-

dures selected from the surgery schedules. Increment generation number t and set

the resulting population as Ot (offspring population). If t > 1, Ot−1 becomes Pt.

Otherwise (at the first iteration), P0 is set as Pt.

Step 10. Check if the limit on the number of generations is reached

(stopping criterion). If yes (t ≥ G), terminate. Otherwise (t < G), go to Step 1.

2.5.2.2. GA Operator: Selection

The chromosomes in the pool are sorted to have a lexicographical order of

chromosomes according to the front value (has higher importance) and crowding

distance value (see below). Then the last N chromosomes are eliminated in the

sorted list to leave the N best chromosomes in the pool. The binary selection tour-

nament method (Brindle 1981) is used to select mating chromosomes from the pool.

The binary selection tournament operator works as follows: Two chromosomes are

selected randomly and compared with each other with respect to the front values.

The crowding distance value is used as a tie breaker of the competition. The one

that wins the tournament attends the crossover operation as one of the mating chro-

mosomes. The other mating chromosome is also selected by applying the operator

once again.
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2.5.2.3. GA Operator: Crowding Distance

Chromosomes are ranked based on the front they appear on as well as a

crowding distance operator (Deb et al. 2000). The crowding distance operator

encourages diversity in the solutions with respect to the (near) Pareto optimal set to

avoid generating a large number of solutions with similar expected patient waiting

time and expected surgical suite overtime values.

2.5.2.4. GA Operator: Crossover

After selecting mating chromosomes, uniform crossover (Syswerda 1989)

is applied to generate N offspring for the next generation. Crossover determines

the order of procedures in a schedule as well as the job hedging level that would

be used later in order to set appointment times. The crossover operation is applied

independently for each procedure list of n-days to sequence procedures and then

the resulting independent partial sequences are combined to have a full sequence.

2.5.2.5. GA Operator: Schedule Construction Using Heuristics

For model A, the patient appointment time setting method is applied since

the procedure day is kept fixed there. For model B where the change in a daily

procedure mix is examined, the days of the procedures are set first for each list

independently. Following this, the appointment time of each patient is set for each

OR and day combination.
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2.5.2.6. GA Operator: Procedure Day Setting

For each of n-days, the surgical procedure list is determined in each OR

independently. The procedures are assigned iteratively to daily lists. To control the

number of procedures in a daily list, a daily capacity that the OR can serve each day

is set and therefore a capacity threshold is set to prevent the method from leading to

extreme values of overtime. The average daily workload for a surgical department

during the study period is set as the threshold (see Table 3). These thresholds

serve as an overtime control parameter in the study, i.e. the estimated duration

of the procedures (the sum of the mean durations) is not permitted to exceed this

threshold.

Table 3. Daily Surgical Load Capacity Allocated for an OR for Different Depart-
ments

Surgical Department Capacity (in minutes)
OMS 480

Pain Medicine 420
Ophthalmology 350

Urology 330

2.5.2.7. GA Operator: Mutation

Following the sequencing and appointment time setting methods, a swap

mutation operator is used by changing the orders of two randomly chosen proce-

dures in the surgery schedules. The purpose of applying mutation is to avoid local

minima or help sustain the evolution process by favoring further diversity among

chromosomes.
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2.6. Case Study

Preliminary experiments were performed in which the number of simulation

replications was varied to see how many were needed to obtain a satisfactory trade-

off between computation time and half width of the generated confidence intervals.

Based on these experiments, the results below include 20 simulation replications in

the evaluation of each solution.

2.6.1. Analysis of Simple Heuristics

The combinations of four different sequencing heuristics (LPT, SPT, VAR,

COV) with various hedging levels are analyzed. Expected patient waiting time and

expected surgical suite overtimes are estimated for each sequencing and scheduling

heuristic combination. Figure 4 illustrates the results for 12 heuristics and 50%,

65%, 75% indicate the hedging (percentile) levels. The result for the baseline

schedule as well as the result for a random schedule generated by randomly assign-

ing procedures to the time slots available in the day of procedure are also plotted to

serve as reference points. The 95% confidence intervals were calculated for each

of the criteria of the 12 heuristics, baseline schedule and the random schedule and

it was found they are at approximately 2 % of the mean values.

Figure 4 provides several important insights. First, the baseline schedule is

in the dominated set. Second, expected patient waiting time is very sensitive to the

choice of percentile used for hedging. As the percentile increases the expected pa-

tient waiting time drops while the expected surgical suite overtime increases. Also,
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Figure 4. Expected Values for the Resulting Criteria for all Heuristics, a Random
Schedule and the Baseline Schedule.

the trade-off between improvements in expected patient waiting time and expected

overtime depends on the specific sequencing heuristic used to create an ordered list

of surgeries. Third, among the four sequencing heuristics, SPT performs the best

as it is always on the efficient frontier, while VAR and COV appear in the vicinity

of the frontier. It is intuitive that there is not a considerable difference between

the performance measure values from the SPT and VAR rules due to the fact that

there is a positive correlation between mean and standard deviations of the proce-

dure durations within a surgical group (see Table 1). Because of the correlation, the

two procedure lists sequenced according to increasing mean and increasing vari-

ance are generally similar, and hence would yield indifferent criteria values. The

correlation between these parameters is the reason for considering coefficient of

variation as one of the reference for the sequencing heuristics; however the COV
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heuristic is outperformed by SPT. Finally, the LPT heuristic generally performs

poorly and is dominated by the other heuristics. This result supports the findings

of Dexter and Marcon (2006) who found that LCF (longest cases first), while being

the most popular rule used in practice, is one of the worst rules they considered

with regard to the criteria of their study (see Section 3 Literature Review for more

details). It is found that using LPT for sequencing, and 50th percentile for ap-

pointment time setting heuristic creates a schedule performing even worse than a

random schedule. Intuitively, this seems to stem from the fact that LPT schedules

procedures with higher variability first (due to the correlation between mean and

standard deviations) which negatively affects the schedule later in the day, causing

higher expected patient waiting time and expected surgical suite overtime (for a

similar conclusion for a single OR case, see Denton et al. (2007)).

The most notable finding of this section is the following: Among the se-

quencing heuristics, SPT yields the best schedules; while the best choice for a job

hedging level depends on the heuristic used for sequencing the surgeries.

2.6.2. Optimization Based Improvements to Simple Heuristics

Using the same data, the GA-based approach is tested in two different con-

texts. First, the GA is applied to the daily procedure lists assuming the procedure

day is fixed (model A). Based on preliminary numerical experiments the number

of solutions in a population is chosen as 40, and the number of generations as 50.

The combinations of sequencing (SPT, LPT, VAR, COV) and time setting heuris-

tics (50, 55, 60, 65, 70, 75, 80, 85th percentiles) are used to provide 32 different
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initial solutions. The baseline schedule is also used as one of the initial solutions.

The remaining 7 solutions are generated by randomly assigning the procedures to

the time slots available in the surgery schedule in the same day.

In Figure 5, the GA solutions are compared with the only solutions located

on the efficient frontier of heuristics revealed in Section 2.6.1. (see Figure 4). The

(near) Pareto optimal set of solutions for the combination of the methods includes

some GA solutions and all heuristics that use SPT as the sequencing heuristic. This

indicates that the GA does not help us to improve the efficient solutions found by

simple heuristics when the solution space is constrained by fixing the day of pro-

cedures. Since SPT is easy-to-implement in practice, it is more advantageous for

surgical suite managers compared to the GA that requires computational resources

to yield a solution.

Figure 5 also indicates the distribution of the hedging levels used for the

(near) Pareto optimal set of solutions. There are 23 efficient GA solutions plotted

on Figure 5 and of all, the majority (56%) use the hedging level corresponding to

the 65th percentile, while 21% utilize the 70th, 13% 80th, and 8% 60th percentiles.

Since it is used in the majority of the schedules on the (near) Pareto optimal set,

and also provides a reasonable tradeoff between expected patient waiting time and

expected surgical suite overtime, the 65th percentile of the procedure time distribu-

tions seems to be a proper choice as the amount of time to allocate to procedures.

On the other hand, expected surgical suite overtime values are found to be more

than one hour for the other efficient schedules revealed. This would also direct

managers towards the selection of 65th percentile. Another insight that the graph
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yields is that schedules having the same hedging value generally appear in regions

close to each other in criteria space. This further supports the observation that the

job hedging parameter has a significant effect on both criteria.

Figure 5. Comparison of the GA Solutions with the SPT Solutions

The most significant finding in this section is: The performance of SPT

based heuristics is similar to performance of the GA when the day of the procedure

is fixed. Because it is much easier to implement in practice, SPT based heuristics

are recommended over the GA.

2.6.3. Optimization of Daily Procedure Mix

To answer the third research question defined in Section 1, the requirement

that daily mix be fixed is relaxed (model B). This model provides more flexibility

since the procedures are allowed to be assigned to any day within an n-day time
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window. The time windows are defined as mutually exclusive windows (i.e. the

days from 1 to n belong to one window, while the days from (n+1) to (2n) belong

to a different window), so the days of surgeries are shifted back and forth while

fixing the time window they belong to. In the experiments, n = 3 and n = 5

are tested. In the case of n = 3, for example, if the original day of the procedure

was Wednesday of the first week, then it can be reassigned to Monday, Tuesday or

Wednesday of the first week. On the other hand, if the procedure day was origi-

nally set as Friday of the first week, then it can be moved to Thursday or Friday

of the first week, or Monday of the second week. The solution space for n = 5

corresponds to allowing procedures to be moved within a given week (this is rea-

sonable because procedures scheduled in the OPC are elective). Furthermore, it is

consistent with some surgery scheduling practices where scheduling is executed in

two steps; first by setting the week of surgery, and afterwards setting the specific

times (Gupta 2007).

Figure 6 compares the (near) Pareto optimal sets of GA solutions for n = 1,

3, 5. Figure 6 illustrates that reorganizing procedures among days (e.g. n = 3 or

n = 5) considerably improves the two criteria. The main reason for the realiza-

tion of such an improvement is that the variation of the surgical load among days

is better balanced in schedules obtained this way. Besides, the shares of proce-

dure groups using an OR in a given day are now better set due to the flexibility of

modifying procedure days. When the procedure mixes among days can be varied,

some surgeries that would otherwise have induced overtime can then be assigned

to another day where the OR utilization is lower. In Figure 6, similarity is observed
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between the (near) Pareto optimal sets for n = 3 and n = 5, i.e. two sets are very

close to each other. This indicates the three-day time window is sufficient to bal-

ance the surgical load among days.

Figure 6. Comparison of Solution Values for Different (Near) Pareto Optimal Set
of Solutions of GA for Different Configurations

The most essential finding to be reemphasized is that controlling surgical

mixes among days may help achieve significant improvements in expected patient

waiting time and expected surgical suite overtime; a time window of 3 days appears

to be sufficient to achieve the benefits.

2.7. Conclusions

OPCs require the coordination of many activities, including patient check-

in, intake, surgical procedure, and recovery. In this chapter, easy-to-implement
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heuristics are developed for scheduling of an OPC at a large medical center, first.

Then, the performance of these heuristics are compared to a GA-based approach.

The impact of varying the surgical mix among days is illustrated using the GA.

Following are the most significant general insights of this study:

1. Simple heuristics can improve actual schedules used in practice for an

OPC. Job hedging may be used to decrease patient waiting times at the expense of

increasing surgical suite overtime. Furthermore, the level of trade-off between the

patient waiting time and surgical suite overtime due to the increase in job hedging

level varies as the heuristic used for sequencing the surgeries changes. Among the

sequencing heuristics, LPT (Longest Processing Time First) causes high expected

overtime, and should be avoided, while SPT (Shortest Processing Time First) per-

forms quite well.

2. Expending greater computational effort with a more sophisticated GA

based method under a restricted environment (no control over daily procedure

mix) does not achieve substantial additional improvements. Due to its easy-to-

implement nature SPT should be favored over the GA.

3. Controlling daily procedure mix may achieve substantial improvements

in performance, though there are diminishing returns as the time window for mov-

ing surgeries is increased.

In this study, the schedules are evaluated using a comprehensive model of

an OPC and analyze the patient flow through the units (i.e. intake rooms, ORs,

recovery rooms). However, since ORs are the major bottlenecks in my model, only

the durations of the surgical procedures are considered and the other resources (e.g.
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mobile and specialized equipment, materials, nurses, nurse anesthetists, and other

human resources) are not considered while designing the surgery schedules. As a

future research direction, the plan is to examine the potential benefits of more com-

plicated scheduling techniques considering the impact of other resource types into

the schedule efficiency.



CHAPTER 3

A MULTI-STAGE STOCHASTIC PROGRAMMING MODEL FOR SURGERY

PLANNING

3.1. Introduction

The rising cost of health care delivery has put pressure on health care man-

agers to reduce expenditures. Since OR costs form a large portion of the total hos-

pital costs (Gul et al. 2010), substantial cost reductions might be achieved through

more efficient management of ORs. Typically, a two-phase process is followed to

plan for a day of surgery. In the first phase, surgeries are assigned to days and

ORs. This is usually done a few weeks prior to the day of surgery. In the second

phase, the surgeries are sequenced and patient appointment times are set, generally

one day prior to the day of surgery. Some examples of the studies that investigate

sequencing surgeries and setting appointment times are Gul et al. (2010), Cardoen

et al. (2010), Denton et al. (2007), Denton and Gupta (2003).

Roland et al. (2010) analyzed both phases under a single model. Their model

allocates surgeries to days and ORs over a planning horizon, and then assigns surg-

eries to particular time intervals while considering the staff and medical equipment

availability to minimize fixed OR opening costs and overtime costs.

In this chapter, the first phase of the surgery planning and scheduling pro-

cess is studied. The remainder of this chapter is organized as follows. In the next

section, a brief literature review of surgery planning studies is presented. In Sec-

tion 3.3., the decision making process is described and the multi-stage stochastic

mixed integer programming model is formulated. In Section 3.4., progressive hedg-
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ing algorithm is discussed. In Section 3.5., the experimental results are presented.

Finally, the concluding remarks are given in Section 3.6..

3.2. Literature Review

Following is a literature review on surgery planning studies. The literature

review is divided into three categories of research. The articles in the first category

discuss deterministic models for OR planning. The second category includes

papers which consider uncertainties related to the procedure durations, but neglect

the demand uncertainty. Since the demand over the planning period is assumed

to be known in these studies, the designed models are of a static nature, i.e., all

decisions are given at the beginning of the planning period in the model. Papers in

the third category relax the assumption of deterministic surgery demands, and thus

study the dynamic planning problem, where scheduling decisions are taken, and

also revised at each stage of the planning period.

Many of the earliest articles focused on deterministic models. Guinet and

Chaabane (2003) used a two-phase approach based on weekly OR planning. Their

model assigns surgeries to ORs and particular time blocks of each day over a finite

planning horizon. The objective is to minimize the patient’s indirect waiting time,

i.e., the time between the procedure and hospitalization date, and OR overtime.

Their model also considers equipment constraints and availability of surgeons.

Other deterministic models are analyzed and solved in some recent articles.

For example, Fei et al. (2008, 2009, 2010) modeled the problem of the optimal

assignment of surgeries to ORs and days to minimize OR overtime and maximize
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OR utilization using an integer program. They formulated the problem as a set

partitioning problem model and applied a column generation based heuristic to

solve the model.

Many recent articles have used stochastic optimization models and method-

ologies for surgery planning. First, the articles on static stochastic models are

summarized. Note that the deterministic demand for elective surgeries implies a

static nature to these models. Consequently, the models do not include decisions

given through different stages to revise the plan for elective surgeries. In other

words, surgery cancellations or reassignments are not considered, because the

demands for elective surgeries are assumed to be deterministic.

Min and Yih (2010) modeled the problem of allocating surgeries to the

blocks reserved for different surgery specialties. They formulated the problem

as a two-stage stochastic mixed integer program and used a sample average

approximation method to solve the problem. Their model also considers the

availability of the Intensive Care Unit (ICU) beds during the block assignment

phase. The length of stay in the ICU bed and surgery durations are the stochastic

parameters in their model. The objective function minimizes patient priority based

waiting costs and OR overtime costs. Lamiri et al. (2008a) solved the problem of

assigning elective surgeries to periods over a planning horizon while considering

the impact of uncertainty related to emergency case arrivals. They first modeled the

problem as a stochastic combinatorial optimization problem and then provided a

reformulation in the form of a sample average approximation problem. The authors
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considered expected overtime costs and patient related costs as the perfor-

mance measures. The surgery durations are assumed to be deterministic in the

study.

Lamiri et al. (2008b) extended the model in Lamiri et al. (2008a) by

considering the allocation of surgeries to ORs. Lamiri et al. (2009) proposed

several heuristics to solve the same problem in Lamiri et al. (2008a) and compared

the heuristics’ performance with the performance of a Monte Carlo optimization

method. Hans et al. (2008) also solved a stochastic OR-to-day allocation problem,

where the stochasticity exists due to the uncertainty of the surgery durations. Their

objective is to minimize the planned slack time reserved in the ORs each day which

can be used by surgeries running longer than expected. The authors consider the

trade-off between the OR utilization and OR overtime. The authors found that

the surgeries having similar duration variability should be clustered together and

assigned to the same OR-day.

There are only a few papers in the literature that consider revisions to daily

surgery lists due to uncertainty in surgery durations. Gerchak et al. (1996) modeled

a planning problem as a stochastic dynamic program. The decision process in their

study was defined as follows: Each day, new requests for elective and emergency

surgeries arise. Surgeries are scheduled to the current or future days and previously

scheduled surgeries may be canceled. The objectives include maximizing the

expected profit gained by scheduling elective cases, and minimizing the expected

overtime and surgery cancellation costs.
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Zonderland et al. (2010) also considered a dynamic decision process

where the days are assigned to blocks of surgeries at the beginning of every week

for a variety of urgency levels. The different urgency levels include elective

surgeries as well as the semi-urgent surgeries that must be scheduled within

one or two weeks. Based on a Markov decision model, the authors provided a

planning guideline by taking the costs related to the OR idle time, OR overtime,

and cancellation of elective surgeries into consideration.

The work presented in this chapter differs from the studies in the first and

second category due to the stochastic dynamic setting for scheduling the surgeries.

Furthermore, this study has contributions different from Gerchak et al. (1996) and

Zonderland et al. (2010), which also investigate a similar decision-making process,

in the following senses. Gerchak et al. (1996) allows same-day scheduling after a

request arises for a surgery, however this is not a very realistic representation of

most surgical practices. The surgery durations generated in their model are inde-

pendent from each other and identically distributed. The authors also acknowledge

that the restrictions on the use of probability distributions for this purpose would

have a major impact if OR allocations are also considered in the model. However,

they did not consider the OR allocations and scheduling complexities related to

this issue. On the other hand, this study takes OR allocations into account and

do not put limitations on the type of probability distributions. Zonderland et al.

(2010) study a higher level planning perspective, because they do not consider

the assignment of individual surgeries to days, but rather reserve time slots for

elective or semi-urgent surgeries each day. Thus, for example, they do not make
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distinction between different types of elective surgeries. Furthermore, they assume

the surgery requests arise according to a Poisson process, however this is not a

justified assumption. Thus, they make strict assumptions on the surgery duration

and demand values, while the model in this study does not require such important

limitations.

3.3. Problem Description

The model formulated and discussed in the remainder of this chapter

considers the decisions for the dynamic allocation of surgeries to operating rooms

(ORs) over a finite planning horizon (see Figure 7). The problem is formulated

as a multi-stage stochastic mixed integer program. At each stage (day), newly

requested surgeries are scheduled to future days; furthermore, some previously

scheduled surgeries may be canceled and subsequently rescheduled to a future

stage. In addition to assigning each surgery a day, an available OR is also assigned.

At the beginning of each day, it is assumed that random durations for

surgeries are observed at the start of the day. Thus, after the final schedule is

determined for each day, the cumulative duration of the surgeries assigned to the

ORs, total amount of OR overtime, and cancellations are determined.

Total expected OR overtime and postponement costs are the two perfor-

mance measures considered. To reduce overtime, surgeries might be canceled

and rescheduled into future. However, the number of cancellations must be

limited, because it results in surgery cancellation and postponement costs. The

model includes a per day cancellation and postponement cost associated with the

surgeries. Furthermore, there exists a time window within which each surgery
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Figure 7. The Pattern Followed While Taking Surgery Scheduling Decisions Dur-
ing a 3-Day Length of Planning Period

must be completed. In other words, there exists a deadline for a surgery and the

surgery can not be rescheduled to a day beyond the deadline. The decisions are

taken at each stage during the planning horizon. Surgeries may also be scheduled

to an additional dummy period at the end of the planning horizon.

An important focus of this study is the cancellation of surgeries, because it

is an important decision that significantly influences patient welfare. For example,

one study found that the percentage of the canceled surgeries range between 5 % -

20 % across institutions in the US (Argo et al. 2009).

Cancellations result in prolonged hospital stays, delayed perioperative

treatments, and repeated preoperative tests and treatments. Cancellations have
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been found to incur a cost of $ 1700 - $ 2000 per case (Argo et al. 2009). A

recent study indicates that as much as 50 % of cancellations can be prevented

(Gillen et al. 2009). To achieve this, it is necessary to design surgery schedules that

carefully consider the uncertainty related to the future. The objective of my model

is to minimize the daily cost of overtime and cancellations at a given stage, and the

expected daily costs of overtime and cancellations over the following stages in the

planning horizon. The following are the indices used in the multi-stage stochastic

mixed integer programming model (MSSMIPM):

Indices:

i: surgery index

l,t,u: stage index

j: OR index

ωt: scenario index for stage t

Deterministic Parameters:

λij =



1 if there is no equipment constraint restricting the assignment

of surgery i to OR j;

0 otherwise.

gi = lead time (number of days between the earliest day the surgery can be

assigned to and the day the request arises) for scheduling surgery i.

hi = length of time window (number of days between the earliest day and the

latest day that the surgery can be assigned to) for scheduling surgery i.
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aijt =



1 if surgery i was already assigned to day t and OR j before the decision

process starts;

0 otherwise.

P t
j = capacity (in terms of minutes) of OR j at stage t

ci = cancellation cost per day for surgery i

co = OR overtime cost per minute

N = a large number which is higher than the number of surgeries to be requested

over a planning horizon

O = number of ORs

H = length of planning horizon for scheduling surgeries

Random Parameters

di(ω
t) = random duration of surgery i under scenario ωt

sti(ω
t) =


1 if a request for surgery i arises at stage t under scenario ωt;

0 otherwise.

piu(ω
t) =


1 if surgery i can be assigned to day u at stage t under scenario ωt ;

0 otherwise.

tth Stage Decision Variables

xtiju(ω
t) =


1 if surgery i is assigned to OR j and day u at stage t under scenario ωt;

0 otherwise,
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σtij(ω
t) =


1 if surgery i from OR j is canceled at stage t under scenario ωt;

0 otherwise,

kti(ω
t) = number of days surgery i is postponed when surgery i is canceled

at stage t under scenario ωt

otj(ω
t) = overtime for OR j observed at stage t

It is assumed in the first stage that the values for di, s1i , piu are known in

advance, therefore only one scenario (i.e. ω1 = 1) is assumed to be observed in

stage 1. Next, the formulation of the problem is presented.

min
N∑
i=1

cik1i (ω
1) +

O∑
j=1

coo1j (ω
1) + Eξ2 [min

N∑
i=1

cik2i (ω
2) +

O∑
j=1

coo2j (ω
2) + ...

+ Eξt [min
N∑
i=1

cikti(ω
t) +

O∑
j=1

cootj(ω
t) + ... (3.3.1)

+ EξH [min
N∑
i=1

cikHi (ωH) +
O∑
j=1

cooHj (ω
H)]...]]

s.t.

H+1∑
u=2

O∑
j=1

x1iju(ω
1) = s1i (ω

1) +
O∑
j=1

σ1ij(ω
1) ∀ i (3.3.2)

x1iju(ω
1) ≤ λijpiu(ω1) ∀ i, j, u > 1 (3.3.3)

σ1ij(ω
1)− aij1 ≤ 0 ∀ i, j (3.3.4)

O∑
j=1

σ1ij(ω
1)− pi2(ω1) ≤ 0 ∀ i (3.3.5)

k1i (ω
1) =

H+1∑
u=2

u(
O∑
j=1

x1iju(ω
1)− s1i (ω1))−

O∑
j=1

σ1ij(ω
1) ∀ i (3.3.6)

N∑
i=1

di(ω
1)(aij1 − σ1ij(ω1))− o1j (ω1) ≤ P 1

j ∀ j (3.3.7)
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H+1∑
u=3

O∑
j=1

x2iju(ω
2) = s2i (ω

2) +
O∑
j=1

σ2ij(ω
2) ∀ i, ω2 (3.3.8)

x2iju(ω
2) ≤ λijpiu(ω2) ∀ i, j, u > 2, ω2 (3.3.9)

σ2ij(ω
2)− aij2 − x1ij2(ω2) ≤ 0 ∀ i, j, ω2 (3.3.10)

O∑
j=1

σ2ij(ω
2)− pi3(ω2) ≤ 0 ∀ i, ω2 (3.3.11)

k2i (ω
2) =

H+1∑
u=3

u(
O∑
j=1

x2iju(ω
2)− s2i (ω2))− 2

O∑
j=1

σ2ij(ω
2) ∀ i, ω2

(3.3.12)

N∑
i=1

di(ω
2)(aij1 + x1ij2(ω

2)− σ2ij(ω2))− o2j (ω2) ≤ P 2
j ∀ j, ω2 (3.3.13)

. . .

H+1∑
u=t+1

O∑
j=1

xtiju(ω
t) = sti(ω

t) +
O∑
j=1

σtij(ω
t) ∀ i, ωt (3.3.14)

xtiju(ω
t) ≤ λijpiu(ωt) ∀ i, j, u = t+ 1, ..,H, ωt (3.3.15)

σtij(ω
t)− aijt −

t−1∑
l=1

xlijt(ω
t) ≤ 0 ∀ i, j, ωt (3.3.16)

O∑
j=1

σtij(ω
t)− pit+1(ω

t) ≤ 0 ∀ i, ωt (3.3.17)

kti(ω
t) =

H+1∑
u=t+1

u(

O∑
j=1

xtiju(ω
t)− sti(ωt))− t

O∑
j=1

σtij(ω
t) ∀ i, ωt

(3.3.18)

N∑
i=1

di(ω
t)(aijt +

t−1∑
l=1

xlijt(ω
t)− σtij(ωt))− otj(ωt) ≤ P tj ∀ j, ωt

(3.3.19)

. . .

σHij (ω
H)− aijH −

H−1∑
l=1

xlijH(ω
H) ≤ 0 ∀ i, j, ωH (3.3.20)
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O∑
j=1

σHij (ω
H)− piH+1(ω

H) ≤ 0 ∀ i, ωH (3.3.21)

kHi (ωH) =
O∑
j=1

σHij (ω
H) ∀ i, ωH (3.3.22)

N∑
i=1

di(ω
H)(a0ijH +

H−1∑
l=1

xlijH(ω
H)− σHij (ωH))

− oHj (ωH) ≤ PHj ∀ j, ωH (3.3.23)

xtiju(ω
t), σtij(ω

t) ∈ 0, 1 ∀i; j;ωt; t = 2, ...,H;u = 3, ...,H + 1 (3.3.24)

kti(ω
t), otj(ω

t) ≥ 0 ∀i; j;ωt; t = 2, ...,H;u = 3, ...,H + 1 (3.3.25)

The objective function includes the costs for the first stage and the expected

future costs to go for the remaining H-1 stages. Given the scheduling and cancel-

lation decisions taken in the first stage, the expected costs for the rest of the stages

are calculated using the nested expected value to go.

The constraint set has a block diagonal structure. There are H blocks of

constraints as well as the nonnegativity and binary restrictions on the decision vari-

ables. Each of the first H-1 blocks contain six types of constraints, while the last

block has only four types. The constraint blocks for stages 1,2,..., H-1 impose the

same types of restrictions into the solution space. The block for stage t that is de-

fined by ((3.3.14)-(3.3.19)) can be regarded as a generic block representing each

of these blocks. Constraint (3.3.14) ensures that a surgery must be assigned to an

OR in one of the subsequent days after day t if a request arises for this surgery on

day t or if the surgery was already assigned to an OR on day t but now appears
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cancelled. Constraint (3.3.15) ensures that the surgery can be assigned to an OR

and some day that follows day t provided that there is no restriction for these as-

signments. When a request arises for a surgery, it must be scheduled within the

allowable time window (hi) for performing the surgery and at least gi stages into

the future. A restriction on the assignment of a surgery to an OR might also exist,

defined by constraint (3.3.15), if the OR does not have all equipment necessary for

the surgery. Constraints (3.3.16) and (3.3.17) provide that a surgery in an OR can

be cancelled on day t if it was previously assigned to this OR and day; and if it is

possible to assign the surgery, at least, to the following day. Note that the cancella-

tion decision for a surgery can be given more than once over the planning period.

Constraint (3.3.18) measures the number of days that a surgery is postponed if a

cancellation decision is taken for this surgery on day t. Note that a surgery can be

canceled more than once over the planning period. Constraint (3.3.19) calculates

the overtime for an OR by considering the surgeries scheduled to day t but not can-

celled.

The constraint block for stage H differs from the ones discussed above. At

this stage, there does not exist any surgery request since this is the last day of the

planning horizon and same-day scheduling decisions are not allowed in the model.

Therefore, the model may only give a cancellation decision on this day. Due to this

fact, the constraint set is more compact than the ones of the previous stages. Con-

straints ((3.3.20)-(3.3.21)) define the limits on the decision variables related to the

cancellation decisions given on day H. Constraints (3.3.22) and (3.3.23) are placed

to calculate the number of cancellations and the amount of OR overtime on day
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H, respectively. Constraints (3.3.24) and (3.3.25) define binary and nonnegativity

restrictions on the decision variables.

The structure of the formulated problem reveals that the problem is NP-hard.

An instance of this problem, where the model has only one scenario corresponds to

the well known bin packing problem. Since the bin packing problem is NP-hard,

the dynamic multi-period OR planning problem is also NP-hard.

3.4. Solution Methodology

The problem is solved using the progressive hedging algorithm (PHA) pro-

posed by Rockafellar and Wets (1991). The PHA proceeds by applying scenario

decomposition to the overall problem iteratively, solving the resulting individual

scenario subproblems, and finally aggregating individual scenario solutions. Al-

though the PHA is guaranteed to converge to a global optimal solution asymptot-

ically in the convex case (Rockafellar and Wets 1991), it may converge to only a

local optimal solution in this case, because the problem has a non-convex nature

due to the integer variables at all stages.

The PHA has been applied in several application areas since the time it

was proposed by Rockafellar and Wets (1991) (for example, see Mulvey and

Vladimirou (1992) for a financial planning application; Helgason and Wallace

(1991) for fisheries management application; Santos et al. (2009) for hydrother-

mal systems operation planning application). The reader is referred to Wallace and

Helgason (1991), Watson et al. (2010) for suggestions about the algorithm imple-

mentation techniques.
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Many authors of PHA based studies analyzed the structural properties of the

algorithm, discussed and proposed internal tactics of improving the overall perfor-

mance of the PHA based on the special structure of the problem of interest (Mulvey

and Vladimirou 1991b,a, Wallace and Helgason 1991, Hvattum and Lokketangen

2009, Watson et al. 2010, Crainic et al. 2010). Background information on the PHA

is given next by illustrating the main steps of the algorithm.

3.4.1. Problem Reformulation

The problem is reformulated to provide an appropriate program for scenario

decomposition. The scenario decomposition can be achieved when a constraint

block becomes associated with an individual scenario. In MSSMIPM, however,

the constraint blocks exist for each stage of the planning period in the problem.

Furthermore, the probability of observing a particular scenario realization at a

particular stage, ωt, is conditioned on the scenario realized in the previous stage,

ωt−1. Therefore, the current definition of scenario does not allow us to generate

a scenario separable model. In the next formulation, also called a deterministic

equivalent model (DEM), a new parameter, η, that represents a sequence of

consecutive scenarios aggregated over stages (i.e. ω1, ω2, ..., ωH) is defined and

introduced. This revised formulation helps break the dependencies that prevent

having independent constraint blocks.

Figure 8 illustrates how the reorganization of the model definition impacts

the scenario tree. Figure 8-(a) and Figure 8-(b), specifically, show how the

uncertainty is modeled in the MSSMIPM and DEM, respectively. Each oval node
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Figure 8. (a) A Scenario Tree Example Illustrating the Surgeries That Might Be
Requested at Each Stage over a Four-Day Planning Period (b) The Example in (a)
is Shown in Terms of Individual Scenario Sequences

in the scenario tree represents a particular scenario realization, ωt, at a particular

stage t. The circle nodes within the oval nodes indicate the surgeries requested

at a particular stage under the scenario that the oval node represents. Note that,

for simplification purposes, the example in Figure 8 assumes that the uncertainty

is based on just the surgery requests (i.e. the surgery durations are deterministic).

Figure 8-(a) illustrates that ω4 varies based on the scenario represented by ω3. The

same relation exists also for ω1, ω2 and ω2, ω3. On the other hand, Figure 8-(b)

illustrates an alternative representation of the scenario tree given in Figure 8-(a)

where the individual scenarios observed in the particular stages are aggregated

over stages to form three scenario sequences, η = 1, 2, 3. However, the above
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redefinition of the scenario tree is not permissible since the solutions found might

not be feasible for the overall problem, because they imply decisions that anticipate

future uncertain events. The following simple example demonstrates this. Suppose

that the solution found for the subproblem for η = 2 assigns surgery 3 to stage 3

when the request for this surgery arises at stage 2. However, if the subproblem

solution for η = 3 assigns surgery 3 to stage 4 when it is requested at stage 2,

then this leads to an infeasible solution for the overall problem. The solutions

found for η = 2 and η = 3 at stage 2, actually, must be the same, because η = 2

and η = 3 share the same history at this stage as can also be seen in Figure 8-(a).

Therefore, some constraints should exist in the DEM that would prevent having

such infeasible solutions for the overall problem. These constraints in the DEM

are called nonanticipativity constraints. The nonanticipativity constraints force

solutions to satisfy the nonanticipativity property. This property is defined as

follows: If two scenario sequences, (i.e. η = a, b), share the same history up to

day t, the surgery plans created progressively over the planning period should

always have the same content until day t under the two scenario sequences. In

other words, if a scheduling decision is given for a surgery at some stage l, where l

≤ t under scenario sequence a, the same scheduling decision should be given for

the same surgery at the same stage under scenario sequence b. A DEM solution

satisfying the nonanticipativity constraint is also called an implementable solution

(Rockafellar and Wets 1991).
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Next, the additional notation used to formulate the DEM is given:

Additional Indices:

Z: number of scenario sequences

η: scenario sequence index

B(η,t): scenario bundle index of the surgeries considered for scheduling at stage t

under scenario sequence η

Additional Parameters:

stiη =


1 if surgery i is requested at stage t under scenario sequence η;

0 otherwise.

piηu =


1 if surgery i can be assigned to day u under scenario sequence η;

0 otherwise.

diη = duration of surgery i under scenario sequence η

Prη = probability of the occurrence of scenario sequence η

Revised Decision Variables:

xtiηju =



1 if surgery i is assigned to OR j and day u at stage t under

scenario sequence η;

0 otherwise,

σtiηj =


1 if surgery i from OR j is canceled at stage t under scenario sequence η;

0 otherwise,
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ktiη = number of days surgery i is postponed when surgery i is canceled at

stage t under scenario sequence η

otηj = resulting overtime amount for OR j on day t under scenario sequence η

Additional Decision Variables:

x
B(η,t)
iju =



1 if surgery i is assigned to day u and OR j at all stage-scenario sequence

combinations in the bundle, B(η,t), that stage t-scenario η belongs to;

0 otherwise,

The nonanticipativity constraints are also referred to as bundle con-

straints in the context of this study. If the scenario sequences a and b share the

same history up to day t, then this indicates they also share the same scenario

bundle on day t: B(a, t) = B(b, t). Thus, the scheduling decisions given on this

day are the same among all scenario sequences placed in the same scenario bundle.

Figure 9 illustrates the scenario bundle concept using the example given in

Figure 8. The rectangles covering the oval nodes represent the particular scenario

bundles that exist in the example. Since all three scenario sequences have the same

realization (e.g. ω1 = 1) at stage 1, η = 1, 2, 3 share the same bundle at this stage,

thus this yields the following equation: B(1, 1) = B(2, 1) = B(3, 1) = 1. The

second stage also contains one scenario bundle, because η = 2 and η = 3 share the

same history by stage 2.

Next, it is shown how the scheduling decisions would be synchronized

using the bundle constraints. First, recall that the model would give a scheduling
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Figure 9. Representation of Scenario Bundles by Rectangles Covering the Scenario
Realizations at a Particular Stage.

decision based on two different reasons: (i) request arises for a new surgery; (ii)

one of the surgeries scheduled to this stage gets canceled. In stage 1, under all η’s,

surgeries 1 and 2 should be scheduled into the future due to the reason (i). One

can enforce the decision synchronizations using the following chain of equations.

The decision variables synchronized among each other are said to form a decision

bundle.

x1i1ju = x1i2ju = x1i3ju ∀j, u = 2, 3, 4, 5 and i = 1, 2

Similarly, the equation below can provide synchronization among η = 2, 3

for scheduling surgery 3 in the second stage:

x232ju = x233ju ∀j, u = 3, 4, 5

Besides, the model might give a scheduling decision for surgeries 1 and 2

due to the reason (ii) in case they were already scheduled to the second stage and
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gets canceled in this stage. Therefore, these rescheduling decisions for sce-

nario sequences η = 2, 3 should be bundled using the following equation:

x2i2ju = x2i3ju ∀j, u = 3, 4, 5 and i = 1, 2

To facilitate the generation of a separable program, a new decision variable

(i.e. the consensus variable: xB(r,t)
iju ) is defined. Thus, all decision variables in a

decision bundle are enforced to be equal to the consensus variable associated with

the decision bundle. The deterministic equivalent model (DEM) is formulated next:

min
Z∑
η=1

Prη(
H∑
t=1

(
O∑
j=1

cootηj +
N∑
i=1

ciktiη)) (3.4.1)

s.t.

xtiηju = x
B(η,t)
iju ∀i, η, j, t, u > t (3.4.2)

H+1∑
u=t+1

O∑
j=1

xtiηju = stiη +
O∑
j=1

σtiηj ∀i, η, t (3.4.3)

xtiηju ≤ λijpiηu ∀ i, η, j, t, u > t (3.4.4)

σtiηj − aijt −
t−1∑
l=1

xliηjt ≤ 0 ∀ i, r, j, t (3.4.5)

O∑
j=1

σtirj − pirt+1 ≤ 0 ∀ i, r, t (3.4.6)

ktiη =
H+1∑
u=t+1

u(
O∑
j=1

xtiηju − stiη)− t
O∑
j=1

σtiηj ∀ i, t, η (3.4.7)

N∑
i=1

diη(a
0
ijt +

t−1∑
l=1

xliηjt − σtiηj)− otηj ≤ P t
j ∀ j, η (3.4.8)

xtiηju, x
B(η,t)
iηju , σtiηj ∈ 0, 1 otηj, k

t
iη ≥ 0 ∀i, η, j, t, u > t (3.4.9)

The objective function (3.4.1) is the weighted sum of the total scenario

costs over all scenarios. The total scenario cost is weigted by the probability
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associated with the scenario, Prη. The total cost for a scenario includes the total

OR overtime cost and surgery cancellation and postponement cost over all days.

Constraint (3.4.2) is the bundle constraint. Constraints ((3.4.3)-(3.4.9)) have

the same structure and meaning as the set ((3.3.14)-(3.3.19)) in MSSMIPM has.

Constraint (3.4.3) sets the conditions to be satisfied to give a scheduling decision

at a particular stage. Constraint (3.4.4) defines the allowable days and ORs for the

assignment of a particular surgery. Constraints (3.4.5) and (3.4.6) together ensure

that the cancellation decision for a surgery from an OR can be taken on a day only

if the surgery was already assigned to the OR and decision day; and if the surgery

is allowed to be postponed, respectively. Constraint (3.4.7) calculates the number

of days the surgery is delayed for when a surgery cancellation decision is given on

a particular day. Constraint (3.4.8) measures overtime values for each OR, each

day. Constraints (3.4.9) define the nonnegativity and binary restrictions on the

decision variables.

As previously mentioned, the overall DEM is not a scenario separable

formulation due to the bundle constraint. Therefore, an augmented Lagrangian

relaxation technique is applied by dualizing the bundle constraint. The relaxed

formulation still includes the constraints ((3.4.3)- (3.4.9)) in the constraint set.

However, the objective function (3.4.1) is now revised as:



60

min
Z∑
η=1

Prη(
H∑
t=1

(
O∑
j=1

cootηj +
N∑
i=1

ciktiη) +
N∑
i=1

H∑
t=1

O∑
j=1

H+1∑
u=t+1

µtiηju(x
t
iηju − x

B(η,t)
iju )

+
ρ

2

N∑
i=1

H∑
t=1

O∑
j=1

H+1∑
u=t+1

‖xtiηju − x
B(η,t)
iju ‖2) (3.4.10)

where µtiηju,∀i, η, t, j, u denote the Lagrangian multipliers; ρ is the penalty pa-

rameter; and ‖.‖ is the ordinary Euclidean norm. The additional components

in the function (3.4.10) penalizes the violation of the bundle constraint. Since

xtiηju, x
B(η,t)
iju ∈ 0, 1, the penalty component in (3.4.10) is rewritten as follows:

‖xtiηju − x
B(η,t)
iju ‖2 = xtiηju − 2xtiηjux

B(η,t)
iju + xtiηju (3.4.11)

The next step to make the deterministic equivalent formulation scenario

separable requires fixing the consensus variable, xB(η,t)
iju , using the proximal point

method (Rockafellar 1976). This value can be estimated using the weighted sum

calculation:

x̂
B(η,t)
iju =

Z∑
η∈B(η,t)

Prη∑
η∈B(η,t) Prη

xtiηju ∀i, η, t, j, u (3.4.12)

As can be noted, (3.4.11) does not contain a quadratic term anymore after

replacing xB(η,t)
iju with its estimation, x̂B(η,t)

iju , which facilitates the solution of the

subproblems following the scenario decomposition.

Equation (3.4.12) calculates the weighted sum of the individual scheduling

decision variables within a decision bundle. The weights are set by normalizing
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the probability of the scenario associated with a decision variable. Next, the

formulation of the separable deterministic equivalent model (SDEM) is given:

min
Z∑
η=1

Prη(
H∑
t=1

(
O∑
j=1

cootηj +
N∑
i=1

ciktiη) +
N∑
i=1

H∑
t=1

O∑
j=1

H+1∑
u=t+1

µtiηju(x
t
iηju − x̂

B(η,t)
iju )

+
ρ

2

N∑
i=1

H∑
t=1

O∑
j=1

H+1∑
u=t+1

(xtiηju − 2xtiηjux̂
B(η,t)
iju )) (3.4.13)

s.t.

H+1∑
u=t+1

O∑
j=1

xtiηju = stiη +
O∑
j=1

σtiηj ∀i, η, t (3.4.14)

xtiηju ≤ λijpiηu ∀ i, η, j, t, u > t (3.4.15)

σtiηj − aijt −
t−1∑
l=1

xliηjt ≤ 0 ∀ i, r, j, t (3.4.16)

O∑
j=1

σtirj − pirt+1 ≤ 0 ∀ i, r, t (3.4.17)

ktiη =
H+1∑
u=t+1

u(
O∑
j=1

xtiηju − stiη)− t
O∑
j=1

σtiηj ∀ i, t, η (3.4.18)

N∑
i=1

diη(a
0
ijt +

t−1∑
l=1

xliηjt − σtiηj)− otηj ≤ P t
j ∀ j, η (3.4.19)

xtiηju, σ
t
iηj ∈ 0, 1 otηj, k

t
iη ≥ 0 ∀i, η, j, t, u > t (3.4.20)

Some of the constant terms in the objective function defined by ((3.4.10)-

(3.4.11)) are ignored, because they do not have any impact on the decision vari-

ables. This revision yields the objective function (3.4.13) of the SDEM model.

Constraints ((3.4.14)-(3.4.19)) define exactly the same feasible space as the con-

straints ((3.4.3)-(3.4.8)) do. Constraint (3.4.20) defines the integrality and nonneg-

ativity restrictions on the surgery scheduling decision variables.
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Note that the consensus variable in DEM is represented by its estimation in

SDEM, x̂B(η,t)
iju which is called as concensus parameter. The consensus parameter

is also an estimation of the implementable solution. However, there is no guarantee

that the estimated implementable solution would be a feasible solution for DEM.

If this solution is also feasible in SDEM, then it is also labeled as an admissible

solution. The target of the PHA is not to find any arbitrary solution that is both ad-

missible and implementable. On the contrary, the algorithm seeks a good solution,

preferably the best one, among all admissible and implementable solutions.

The scenario subproblems derived after decomposing SDEM into scenarios

are presented next. The mixed integer programming formulation for a particular

scenario subproblem model (SSM) is given as:

min
H∑
t=1

(
O∑
j=1

cootηj +
N∑
i=1

ciktiη) +
N∑
i=1

H∑
t=1

O∑
j=1

H+1∑
u=t+1

µtiηju(x
t
iηju − x̂

B(η,t)
iju )

+
ρ

2

N∑
i=1

H∑
t=1

O∑
j=1

H+1∑
u=t+1

(xtiηju − 2xtiηjux̂
B(η,t)
iju ) (3.4.21)

s.t.

H+1∑
u=t+1

O∑
j=1

xtiηju = stiη +
O∑
j=1

σtiηj ∀i, t (3.4.22)

xtiηju ≤ λijpiηu ∀ i, j, t, u > t (3.4.23)

σtiηj − aijt −
t−1∑
l=1

xliηjt ≤ 0 ∀ i, r, j, t (3.4.24)

O∑
j=1

σtiηj − piηt+1 ≤ 0 ∀ i, r, t (3.4.25)

ktiη =
H+1∑
u=t+1

u(
O∑
j=1

xtiηju − stiη)− t
O∑
j=1

σtiηj ∀ i, t (3.4.26)
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N∑
i=1

diη(aijt +
t−1∑
l=1

xliηjt − σtiηj)− otηj ≤ P t
j ∀ j (3.4.27)

xtiηju, σ
t
iηj ∈ 0, 1 otηj, k

t
iη ≥ 0 ∀i, j, t, u > t (3.4.28)

The objective function (3.4.21) corresponds to one of the scenario costs

which are aggregated in the objective function (3.4.13) of the SDEM. Constraint

set ((3.4.22)-(3.4.28)) is also a subset of the constraint set ((3.4.14)-(3.4.20)) which

should be satisfied for all scenarios rather than only for one scenario.

3.4.2. Progressive Hedging Algorithm

The SSM is utilized as the progressive hedging algorithm (PHA) is applied

to solve the SDEM. Let k denote the index for the iteration number of the PHA,

then the general steps of the PHA are stated as follows:

1. Initialize the algorithm. Set k = 0, ρ = 0, µ
t(k)
iηju = 0 ∀i, η, t, j, u.

2. Solve the SSM for each scenario η to obtain x
t(k)
iηju ∀i, η, t, j, u. Next,

calculate the consensus parameter x̂B(η,t)
iju ∀i, B(η, t), j, u.

3. Adjust the common penalty parameter and the Lagrangian multipliers

associated with each bundle constraint of the SDEM.

3.a. ρ(k+1) =


ρ0 if k=0;

αρ(k) otherwise,

where ρ0 is some initial value and α is some constant value.

3.b. µ
t(k+1)
iηju = µ

t(k)
iηju + ρ(k)(x

t(k)
iηju − x̂

B(η,t)
iju )
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4. Check the stopping criterion. If all bundle constraints (3.4.2) are satisfied,

then the algorithm terminates. Otherwise, let k = k + 1 and go to 2.

The ideal condition for the termination of the PHA is when all the bundle

constraints are satisfied. However, in practice this may not be achieved in a

reasonable amount of time. Instead, a tolerance level, ε, is set and the algorithm is

terminated when the dual convergence is approximately satisfied.

Z∑
η=1

Prη

N∑
i=1

H∑
t=1

O∑
j=1

H+1∑
u=t+1

|xt(k)iηju − x̂
B(η,t)(k)
iju | ≤ ε

The same termination criterion is also used by Takriti and Birge (2000). It

can be interpreted as the PHA terminating when the level of the bundle constraint

violation is sufficiently low.

3.5. Case Study

This section introduces a particular model instance used to test the PHA.

The example illustrates what conditions motivate the cancellation of a surgery. Ta-

ble 4 presents the values set for the important input types characterizing the test

instance. The length of the surgery planning period is selected as four days. Also,

it is assumed there is only one OR open over the course of the planning horizon.

The OR overtime cost per minute, co, is the same for all ORs. The daily capacity of

the OR allows only one surgery to contribute to the OR overtime on average each

day.

Table 5 shows the cost of cancelling the surgeries, ci. The selected cancella-

tion costs sometimes favor the cancellation of surgeries when a trade-off between
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scheduling and cancellation decisions is considered. The purpose of designing such

an environment is to observe conflicting scheduling decisions for a surgery among

different scenario sequences. The probabilities associated with scenario sequences

are listed in Table 6.

Table 4. The Main Characteristics of the Problem Instance
type # of surgeries # of ORs # of stages # of scenarios

values 16 1 4 10

Table 5. The Surgery Cancellation Costs

c0 c1 c2 c3 c4 c5 c6 c7

312 594 712 447 1205 712 1418 447

c8 c9 c10 c11 c12 c13 c14 c15

1020 1000 779 775 314 357 1020 712

Table 6. Probability of Scenario Realizations

index 0 1 2 3 4 5 6 7 8 9
probability 0.05 0.08 0.05 0.15 0.1 0.02 0.2 0.15 0.06 0.14

For simplicity, surgery durations are kept constant over the scenario se-

quences to decrease the size of the problem instance. The durations of the surgeries

are given in Table 7. Table 8 lists the surgeries requested at each stage of each

scenario sequence. Finally, Table 9 and Table 10 show the lead time and length of

the time window necessary for scheduling the surgeries, respectively.
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Table 7. Surgery Durations

index 0 1 2 3 4 5 6 7
duration 41 54 39 58 77 59 74 28

index 8 9 10 11 12 13 14 15
duration 83 60 55 28 61 48 53 29

Table 8. Indices of the Surgeries Requested at Each Stage of Each Scenario

Scenario Stage
index 1 2 3 4

0 0,6,7,8 1,3,5,9 2,4,10,11 12,13,14,15
1 0,6,7,8 1,3,5,9 12,13,14,15 2,4,10,11
2 0,6,7,8 1,3,5,9 11,13,14,15 2,4,10,12
3 0,6,7,8 1,3,4,10 2,5,9,11 12,13,14,15
4 0,6,7,8 1,3,4,10 12,13,14,15 2,5,9,11
5 1,3,4,6 0,7,8,10 12,13,14,15 2,5,9,11
6 2,5,9,11 1,3,4,10 0,6,7,12 8,13,14,15
7 2,4,10,11 0,6,7,8 1,3,5,9 12,13,14,15
8 12,13,14,15 1,3,5,9 2,4,6,8 0,7,10,11
9 1,3,5,9 0,6,7,8 2,4,10,11 12,13,14,15

Table 9. Lead Times for Scheduling Surgeries

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
lead time 1 1 2 1 1 2 1 1 1 1 2 1 1 1 1 1

The DEM for this particular instance was also coded and solved to optimal-

ity to compare with the PHA solutions. This comparison was particularly useful

for the verification of the PHA. Both the PHA and the DEM model are coded in
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Table 10. Width of Time Windows for Scheduling Surgeries

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
width 2 1 1 1 2 1 1 2 1 2 1 1 1 1 1 1

Microsoft Visual C++ 2005 using CPLEX 11 concert technology. The experiments

are conducted on Intel Core i5 PC with processors running at 2.27 GHz and 4 GB

memory under Windows XP.

3.5.1. Performance of the PHA

First, the convergence characteristics of the PHA are analyzed. In this par-

ticular instance, the PHA is capable of finding the optimal solution. The number

of iterations or the computational time it takes to converge to the optimal solution

varies based on the values set for the penalty parameter, ρ. Table 11 shows how the

convergence rate can be substantially increased by increasing the ρ value.

Although the optimal solution is found for each ρ value tested, this approach

is likely to lead to a lower solution quality while solving the large size problem in-

stances. The reason is that the approach enforces the fast convergence of the dual

solutions without considering the convergence behavior of the primal variables.

Hence, the algorithm finds a solution quickly, but there is no guarantee that this

solution is the optimal solution.

The trade-off between the solution quality and convergence rate can be con-

trolled through the use of penalty parameter. Based on the computational time and

ρ values shown in Table 11, Figure 10 illustrates that the convergence rate decreases

asymptotically as the value of ρ increases.



68

Table 11. Variation in the PHA Performance Based on the Changes in the Penalty
Parameter

ρ computational time (seconds) number of iterations
25 83 50
50 20 25

100 7 12
150 4 9
500 2 3

1000 1 2

3.5.2. Analysis of the PHA Solutions

There are three scenario bundles in this instance. The scenario sequences

-0,1,2,3,4- at stage one are in the first bundle. The scenario sequences -0,1,2-

at stage two are in the second bundle. Finally, the scenario sequences -3,4- at

stage two are in the third bundle. Note that one can observe the cancellation

decisions only under the scenario sequences that belong to a scenario bundle,

because the subproblem solutions for the rest of the scenarios are not required

to be synchronized with any other scenario solutions. Thus, the scheduling and

cancellation decisions taken under scenario sequences -0,1,2,3,4- at stages 1 and 2

are particularly analyzed.

The PHA solutions are examined at each iteration after setting ρ = 100

and running the code. The results indicate that the scheduling decisions for

surgeries -4,7,9- are the ones for which the consensus could not be achieved until

the last iteration. The analysis revealed that the values taken by the majority of

the variables within a decision bundle at the first iteration were also the ones on
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Figure 10. Computational Time as a Function of the Penalty Parameter

which the consensus was achieved in the end. Though there is no guarantee that

this can be a valid statement for all instances, the statement is likely to be made if

the number of bundles in a problem instance is relatively low, which provides less

complicated interactions between the subproblems.

Furthermore, this observation can be utilized to build a heuristic to solve

the dynamic multi-period OR planning problem. The solutions found under the

majority of the scenario sequences at the first PHA iteration could be the initial

solutions for the heuristic to be developed. Next, a better solution can be sought by

using a local improvement heuristic to find a good solution for the overall problem.

To my knowledge, there is no study in the literature that discusses the

impact of the number of bundles or the structure of bundles on PHA performance.

Thus, the following questions deserve investigation:
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1. What function can determine the relationship between the number

of bundles and PHA performance?

2. What is the largest number of bundles that can be allowed to exist in a

scenario set for PHA to yield a good solution in a reasonable amount of time?

3. Can the information about the number of bundles that cover a particular

scenario sequence be useful to estimate the performance of the PHA?

4. What bundle structures inherent to the problem instance can reveal that

solving the DEM is more favorable than using the PHA in terms of the trade-off

between the performance and quality?

3.6. Conclusions

This chapter presented a dynamic multi-period OR planning problem where

the dynamic nature exists due to the stochastic demand for surgeries. The study

is different from many other multi-period OR planning problems (see Literature

Review for details), because of the stochastic demand for surgeries. It also has

different contributions from the contributions of the studies that built stochastic

dynamic models for the problem, because the model constructed does not require

strict assumptions related to surgery durations and demands.

A Progressive Hedging Algorithm (PHA) was implemented to solve the

problem. The algorithm finds the optimal solutions for the small-size instances.

In Chapter 4, the algorithm is tested on larger instances. The PHA solutions will be



71

compared with the optimal solutions found after solving the deterministic equiva-

lent model (DEM). The comparison will also shed light to decide on which direc-

tion the improvements should be conducted to enhance the PHA convergence speed

and solution quality. There are a number of options for further improvements: (1)

Valid inequalities can be derived to facilitate the solution of the subproblems to

improve the computational speed. (2) The calibration of the PHA setting (e.g.

parameters and checking conditions) can be thoroughly analyzed by utilizing the

special structure of the model. (3) A heuristic can be constructed to solve the dy-

namic multi-period OR planning problem based on the insights gained by the PHA

solutions. In addition, the questions posed in the previous section that are related to

the impact of the bundles into the PHA performance and solutions deserve major

investigation.



CHAPTER 4

A PROGRESSIVE HEDGING ALGORITHM TO SOLVE A DYNAMIC

MULTI-PERIOD OPERATING ROOM PLANNING PROBLEM

4.1. Introduction

In this chapter, the progressive hedging algorithm (PHA) proposed in

Chapter 3 is extended to take advantage of the special structures of the model

formulation and algorithm. The new algorithm proposed in this chapter is referred

to as enhanced progressive hedging algorithm (EPHA). The difference between

EPHA and PHA is that the EPHA uses novel methods to accelerate the compu-

tational performance of the PHA and improve the quality of the PHA solutions.

The convergence pattern of the primal and dual variables provides the basis for

the proposed penalty parameter update method. The degree of violation of the

bundle constraints and decisions taken by the majority of the variables in the

decision bundles motivate the Lagrangian multiplier update method. Several other

algorithm improvement ideas (subproblem heuristics, warm start, variable locking

etc.) are also discussed in this chapter.

The EPHA is developed to solve the surgery planning problem formulated

in Chapter 3, i.e. (3.3.1) - (3.3.25). The EPHA also requires the reformulation

of the model. Thus, the deterministic equivalent model (DEM), defined by the

equations (3.4.1) - (3.4.9), is used to create the separable deterministic equivalent

model, i.e. (3.4.13) - (3.4.20). The SDEM is decomposed to generate scenario

subproblems, the equations (3.4.21) - (3.4.28). The EPHA follows a sequence of
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steps structured similarly as the one of the PHA. However, different opera-

tors are introduced and used to implement the main steps of the EPHA.

The remainder of this chapter is organized as follows. In the next section,

a brief literature review on the progressive hedging algorithm is presented. The

review covers studies which discuss and propose penalty update and Lagrangian

multiplier methods, subproblem solution methods and several other aspects

affecting the PHA performance. In Section 4.3., the EPHA is discussed. In Section

4.4., the experimental results are presented. Finally, the concluding remarks are

given in Section 4.5..

4.2. Literature Review

First, the works from the literature related to algorithm design for setting and

updating the penalty parameters are discussed. Mulvey and Vladimirou (1991b,a)

discussed the trade-off between the selection of high and low values for the penalty

parameters and the impact of the problem structure into this selection. They also

discussed the benefits of the dynamic penalty adjustment methods. Helgason and

Wallace (1991), Listes and Dekker (2005) discussed the sensitivity of the con-

vergence of the PHA to the choice of penalty parameter. Recently, Hvattum and

Lokketangen (2009) proposed a method to set the direction while updating the

penalty parameters at an iteration of the PHA. They tested the case where there

exists parameters for individual nonanticipativity constraints in the model. Watson

et al. (2010) also proposed methods to set the penalty parameters for individual

nonanticipativity constraints based on a class of resource allocation problems.



74

Due to the typically large number of subproblems to be solved following

the scenario decomposition at each PHA iteration, computational efficiency in sub-

problems is important. What is more, it is reported in the literature that the PHA

is a reasonable heuristic to use if there exists an efficient algorithm to solve the

subproblems of a very large scale stochastic mixed integer problem (Watson et al.

2010). Therefore, Takriti et al. (1996) needed to improve existing methods to

solve the subproblems of their multi-stage stochastic production planning prob-

lem. Furthermore, the heuristics solutions for the subproblems would be sufficient

for the convergence of the PHA (Hvattum and Lokketangen 2009, Haugen et al.

2001, Lokketangen and Woodruff 1996, Helgason and Wallace 1991, Barro and

Canestrelli 2005, Kall and Wallace 1994). Helgason and Wallace (1991) solved

subproblems approximately using a Lagrangian approach and illustrated the con-

vergence of the PHA. Similarly, Takriti and Birge (2000) used a Lagrangian ap-

proach to solve the subproblems of a multi-stage loosely coupled mixed integer

stochastic programming formulation of a production planning problem. Lokketan-

gen and Woodruff (1996) used a tabu search algorithm to solve the subproblems

of a multi-stage stochastic mixed integer problem. Barro and Canestrelli (2005)

further decomposed the subproblems of a dynamic portfolio management problem

into stages to solve those efficiently.

Another important reason which necessitates the implementation of an effi-

cient solution method on the subproblems is that each subproblem has a quadratic

objective function due to the inherent penalty component. Haugen et al. (2001)

relaxed the quadratic term in the subproblem objective function and applied a dy-



75

namic programming approach to find an optimal solution for the relaxed subprob-

lems. Listes and Dekker (2005) solved the linear relaxation of the subproblems of

a robust airline fleet composition problem, which contained integer variables, and

used simple rounding procedure to find a feasible solution for the overall problem.

Warm start for the PHA is an important issue related to the role of the

Lagrangian multipliers in the overall performance of the algorithm. Mulvey and

Vladimirou (1991a), Santos et al. (2009) discussed the importance of the initial

estimates for the Lagrangian multipliers and tested simple heuristics to find reason-

able initial values.

Alternative termination criteria are proposed in the PHA literature. Watson

et al. (2010) used two different criteria for the termination of the PHA according to

the class of resource allocation problem they studied. Lokketangen and Woodruff

(1996) forces only the integer variables to converge exactly to the consensus pa-

rameters. They then set the values of the real variables by solving the deterministic

equivalent form of the model having the values of the converged integer variables

fixed. However, they acknowledge that terminating the algorithm based on only the

integer convergence does not have a teoretical support that indicates this approach

is better than the regular methods enforcing the convergence of all variables.

There exists other methods proposed in the literature to provide further

improvements on the PHA performance. For example, Mulvey and Vladimirou

(1991b) proposed an aggregation scheme for the individual subproblem solutions

different from the weighted sum approach. However, their method is designed ac-

cording to a special case of the stochastic network problems. Based on a similar
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idea, Hvattum and Lokketangen (2009) picked one of the subproblem solutions

rather than taking weighted average of the solutions while updating the Lagrangian

multipliers. The same authors also proposed a heuristic that is applied after the

termination of the PHA to convert the inadmissible solutions into admissible ones.

Crainic et al. (2010) focused on the inadmissable solutions found at some inter-

mediate iteration of the PHA and proposed a simple method to convert them into

admissible solutions. They then used those converted values as the upper bounds

of the decision variables.

Another common approach used as an algorithm acceleration scheme is

variable locking or variable fixing. Watson et al. (2010) selected some variables

within the model and fixed their values at a certain iteration of the PHA in an at-

tempt to reduce the total amount of variables in the overall model. Particularly, they

fixed the variables whose value do not change for a certain number of consecutive

iterations. Once the variable is fixed, its value stays constant until the termination

of the algorithm. Hvattum and Lokketangen (2009) tested both a partial (some

variables are fixed at an iteration) and complete (all variables are fixed) variable

locking mechanisms for the same purpose.

Finally, it is well known that in the non-convex case, the PHA is not guar-

anteed to converge (Takriti and Birge 2000), so Watson et al. (2010) defined some

techniques to detect the non-convergence cases.
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4.3. Enhanced Progressive Hedging Algorithm

In the following subsections, penalty update and Lagrangian multiplier up-

date methods are proposed, and the EPHA termination criterion is presented. In

Section 4.4., experimental results are presented to compare the proposed methods.

4.3.0.1. Penalty parameter setting and update

In this study, a constant value for the penalty parameter is first set after

conducting some experimental analysis, because finding a good value for the

parameter depends on the problem structure and program scaling (Mulvey and

Vladimirou 1991b). The experimental analysis is based on the observation of the

trade-off between fast convergence to a suboptimal solution (i.e. ρ is too large)

and slow convergence to a near optimal solution in the primal feasible space (i.e.

ρ is too low). A well designed approach to utilize this trade-off tends to set a low

value for the penalty parameter at the initial steps of the PHA and then increases

this amount gradually, depending on the convergence rates in the primal and dual

spaces.

Next, a method was tested based on the method proposed in Hvattum and

Lokketangen (2009). The method compares the convergence rate at iteration k

with the one in the immediately preceding iteration, k − 1, and then increases ρ

if it appears that the convergence rate in the dual space is decreasing. This leads

to a faster convergence to a PHA solution. However, if the convergence rate in

the primal space decreases, then this reflects in a decrease in ρ. Let ∆
(k)
D and
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∆
(k)
P are indicators of the convergence rates in the dual space and in the primal

space, respectively. Let b index a unique bundle among the ones represented by

all B(η, t)’s, and B represent the total number of unique bundles. Then, equations

((4.3.1)− (4.3.2)) define the penalty update method as follows:

∆
(k)
P =

N∑
i=1

B∑
b=1

O∑
j=1

H+1∑
u=t+1

(x̂
b(k)
iju − x̂

b(k−1)
iju )2 (4.3.1)

∆
(k)
D =

N∑
i=1

Z∑
η=1

H∑
t=1

O∑
j=1

H+1∑
u=t+1

(x
t(k)
iηju − x̂

B(η,t)(k)
iju )2 (4.3.2)

ρ(k+1) =


δρ(k) if∆(k)

D −∆
(k−1)
D > 0

1
δ
ρ(k) if∆(k)

P −∆
(k−1)
P > 0

(4.3.3)

where δ > 1 in (4.3.3) is a fixed multiplier.

4.3.0.2. Lagrangian multiplier update

A variant of the method that the basic PHA uses to update the Lagrangian

multipliers is used (see Crainic et al. (2010) for a similar approach). Crainic

et al. (2010) propose an update method for the coefficients of the variables in

the nonanticipativity constraints. They do not consider the penalty component in

their overall algorithm, so the algorithm is actually not a PHA, but a Lagrangian

heuristic. The EPHA considers their coefficient update method as the Lagrangian

multiplier update technique. The purpose of the Lagrangian multiplier update

method is to use the knowledge provided by the difference between consensus

parameter and the individual scheduling decision variables within the decision
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bundles. This knowledge might help shorten the computational time it takes for the

scheduling decision variable values to converge to the consensus parameter values.

In particular, a steepest ascent method is applied to update the Lagrangian

multipliers and the approach is based on the following observation. If x̂B(η,t)(k)
iju

is greater than a constant value that is large enough, then this indicates that the

majority of the scenario subproblem solutions within the associated decision

bundle dictate the assignment of surgery i to day u and OR j on day t. Suppose that

such an assignment is actually done under one of the scenario sequences. Then,

the method would keep the Lagrangian multiplier associated with the decision

variable that represents this assignment constant. The aim here is to preserve

the consensus among the decision variables within the decision bundle. On the

other hand, if this assignment is not done under another scenario sequence, then

the associated Lagrangian multiplier is decreased, so that the decision variables

can have a better chance of reaching consensus. The Lagrangian multipliers are

updated based on the same idea when x̂B(η,t)(k)
iju is less than a constant value. If

x
t(k)
iηju is zero, the associated Lagrangian multiplier is kept constant, otherwise it

is increased to approach the consensus condition. Updates are computed as follows:

µ
t(k+1)
iηju =



µ
t(k)
iηju + ρ(k)|(xt(k)iηju − x̂

B(η,t)(k)
iju )| if |(xt(k)iηju − x̂

B(η,t)(k)
iju )| ≥ θ;x

t(k)
iηju = 1

µ
t(k)
iηju − ρ(k)|(x

t(k)
iηju − x̂

B(η,t)(k)
iju )| if |(xt(k)iηju − x̂

B(η,t)(k)
iju )| ≥ θ;x

t(k)
iηju = 0

µ
t(k)
iηju otherwise,

(4.3.4)
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4.3.0.3. Termination criteria

The algorithm is terminated when the dual convergence is approximately

satisfied. The EPHA terminates, particularly, when the condition (4.3.5) (Takriti

and Birge 2000) is satisfied (i.e. the level of the bundle constraint violation is

sufficiently low).

Z∑
η=1

Prη

N∑
i=1

H∑
t=1

O∑
j=1

H+1∑
u=t+1

|xt(k)iηju − x̂
B(η,t)(k)
iju | ≤ ε (4.3.5)

4.4. Experimental Study

The experimental study was conducted in two parts. First, each of the

parameter values were varied to find a good setting for the algorithm in terms of

the solution quality and computational performance. Second, the EPHA solutions

were compared with the optimal solution.

For the case study, the data is generated for a moderate-size problem

instance where 45 surgeries are requested over 20-day planning period for a single

OR according to 9 different scenario sequences of a scenario set. The surgery

durations are generated according to a probability distribution given in Chapter 2,

Table 1. The density function for the procedure durations of the urology surgeries

is used in particular. The cancellation cost per day is uniformly distributed

between $1700 and $2000, which are the estimated lower and upper bounds of

the cancellation costs in the US hospitals (Argo et al. 2009). The overtime cost

per minute and mean number of surgery requests per day are set to avoid having

extreme cases in the solution space (i.e. zero cancellation, zero total overtime).
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The values of the initial penalty parameter, ρ(0), and update multiplier, δ,

are varied to analyze the changes in the EPHA performance. δ = 2 is found as a

reasonable multiplier. The current value does not allow radical changes from one

iteration to the other as it leads to a reasonable level of variation. Having δ fixed,

the best ρ(0) is sought for. For each ρ(0), the PHA was run to find a solution for a

number of instances. The difference between instances results from the variation in

the number of bundled decision variables. The instances having a higher number

of bundled decision variables represent relatively more complex instances. The

objective function value and number of iterations used to reach a solution for each

run for three different instances are compared in Table 12. ρ(0) = 1000 is likely to

be a better selection than the others, because it always finds the minimum objective

value that the PHA can find. Furthermore, among the solutions that yield the best

value, the ones found when ρ(0) is set to 1000 are reached in the lowest number of

iterations. Also in some cases, even if ρ(0) is set to a different value, it converges

to 1000 before finding the solution.

Note that when ρ < 250, cycling is observed. This prevents the EPHA

from finding a solution. To cope with this situation, the penalty update method

would need to be modified. The modification, which we leave for future research,

considers cyclic behavior and likely to result in improved solutions.

Table 13 compares the optimal and EPHA solutions for the three instances

discussed above. The level of gaps between the optimal and PHA solutions are not

at negligible levels. The gaps are to be partially eliminated by preventing the cyclic
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behavior that occurs when the initial penalty parameter value is low, because

lower values forces the PHA to converge to a good solution.

Table 12. The Trade-off between the EPHA Performance and Solution Quality is
Illustrated for Different Type of Instances by Varying the Initial Penalty Parameter

# of bundled elements ρ(0) objective value # of iterations
1032 500 11393.2 6
1032 800 11393.2 5
1032 1000 11393.2 3
1032 2000 11393.2 3
1032 5000 11393.2 3
1032 20000 11656.7 3
1032 50000 11656.7 2
1032 75000 11656.7 2
3675 500 9308 5
3675 800 9308 4
3675 1000 9308 3
3675 2000 9428 3
3675 5000 9661.2 3
3675 20000 9661.2 3
3675 50000 9661.2 3
3675 75000 9661.2 3
5050 500 10961.5 5
5050 800 10961.5 4
5050 1000 10961.5 3
5050 2000 11081.8 3
5050 5000 11314 3
5050 20000 11314 3
5050 50000 11314 3
5050 75000 11314 3

4.5. Conclusions

This chapter proposed a number of techniques to improve the Progressive

Hedging Algorithm (PHA) solution quality and the convergence characteristics.
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Table 13. The Performance of the EPHA with Respect to the Optimal Solution of
the DEM is Shown

# of bundled elements best PHA solution objective value optimality gap
1032 11105.1 11393.2 2.5%
3675 9024.5 9308 3%
5050 10741.9 10961.5 2%

Future research will evaluate the impact of the proposed techniques will be tested

on real data which will be gathered from different type of major medical centers

(e.g. government type institutions, not-for-profit private academic institutions).

The optimal solutions under different scenario sets will be analyzed to reveal the

insights related to the optimal scheduling, cancellation and rescheduling policies.

For moderate size instances, the current form of the PHA can not outper-

form the typical solvers. The most important reason is the requirement of solving

many subproblems, all of which are mixed integer programming models. As pre-

viously indicated, it is not necessary to solve the subproblems to optimality. Thus,

a fast running heuristic for the subproblems is likely to improve the computational

speed, significantly. A logical method would solve the subproblems with a lower

accuracy level at the beginning iterations as suggested by Kall and Wallace (1994).

Then, computational effort can be increased to better approximate the optimal

solutions of the subproblems as the iteration number increases. Hvattum and

Lokketangen (2009) used this approach and proposed a method to give decisions

on how to vary the amount of computational effort spent to solve the subproblems

based on the convergence pattern of the primal and dual variables. Furthermore,

since only the parameters of some surgery scheduling decision variables vary from
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one iteration to the next, the subproblem solutions of the prior iteration have the

potential to perform well in latter iterations. Thus, this special structure of the

PHA algorithm will benefit from an efficient heuristic to solve the subproblems of

the dynamic multi-period operating room planning problem.



CHAPTER 5

CONCLUSIONS AND BROADER IMPACTS

5.1. Conclusions

Optimization of surgery delivery systems is a challenging managerial prob-

lem. In this dissertation, a number of operations research models and solution

techniques are proposed to solve operating room (OR) planning and scheduling

problems. The analysis of the models and solutions provides significant insights

into the planning and scheduling of surgeries. Algorithms (i.e. a bi-criteria Genetic

Algorithm and Progressive Hedging algorithm) are developed with the aim of find-

ing good solutions for practical surgery planning and scheduling problem instances

in a reasonable amount of time.

In chapter 2, several scheduling methods were utilized to find near optimal

sequences and patient appointment times for outpatient surgical procedures were

proposed and discussed. First, a discrete-event simulation model was constructed

to test a number of sequencing and patient appointment time setting heuristics with

respect to the expected patient waiting time and expected surgical suite overtime

for a single-day scheduling problem. The analysis of the solutions yields the fol-

lowing results. Simple heuristics can enhance actual schedules used in an Outpa-

tient Procedure Center. Job hedging is useful to decrease patient waiting times at

the expense of increasing surgical suite overtime. The trade-off between the pa-

tient waiting time and surgical suite overtime which is affected by the job hedging

level depends on the sequencing heuristic used priorly. Among the sequencing

heuristics, LPT (Longest Processing Time First) causes high expected overtime,
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and should be avoided, while SPT (Shortest Processing Time First) performs quite

well. Second, a bi-criteria Genetic Algorithm was used to determine whether bet-

ter solutions can be obtained for the single day scheduling problem. The analysis

indicates that expending greater computational effort with a GA approach does not

achieve substantial additional improvements when there is no control over daily

procedure mix. Since it is easy to implement in practice, SPT should be favored

over the GA. Third, the bi-criteria Genetic Algorithm was tested under the setting

that the surgeries are allowed to be moved to other days. The results indicate that

controlling daily procedure mix may achieve substantial improvements in perfor-

mance, though the returns diminish as the time window for moving surgeries is

extended.

In Chapter 3 and Chapter 4, a multi-period operating room planning problem

was studied. Surgery scheduling, cancellation, and rescheduling decisions made

each day over a finite planning horizon were investigated. The resulting model

was formulated as a multi-stage stochastic mixed integer program. A Progressive

Hedging Algorithm (PHA) was proposed to solve the problem in Chapter 3, and

the structural properties of the model and algorithm were leveraged to enhance the

algorithm performance in Chapter 4. Future research study directions were also

proposed and discussed.

5.2. Broader Impacts

The models and solution methods that are proposed aim to simultaneously

improve the patient-centered characteristics of the surgery delivery systems while
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keeping hospital costs at a reasonable level. The objectives of the models are ori-

ented towards maintaining a balance between patient satisfaction and safety, and

OR costs. For example, if patient waiting time is decreased using the model in

Chapter 2, patients will be happier. This could also lead to an increased motivation

for the surgical staff. Thus, the quality of the care could be positively affected. The

mathematical model in Chapters 3 and 4 includes the objective of decreasing the

number of surgery cancellations. The cancellation of a surgery can increase risk of

adverse events for patients. Lowering the number of cancellations could also lead

to decreases in the amount of time that the staff waits idle. Consequently, the use of

the models and the solution techniques in this dissertation would provide a positive

long-term benefit for many stakeholders of the health care delivery systems.
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