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ABSTRACT  
   

In mixture-process variable experiments, it is common that the number of 

runs is greater than in mixture-only or process-variable experiments. These 

experiments have to estimate the parameters from the mixture components, 

process variables, and interactions of both variables. In some of these experiments 

there are variables that are hard to change or cannot be controlled under normal 

operating conditions. These situations often prohibit a complete randomization for 

the experimental runs due to practical and economical considerations. 

Furthermore, the process variables can be categorized into two types: variables 

that are controllable and directly affect the response, and variables that are 

uncontrollable and primarily affect the variability of the response. These 

uncontrollable variables are called noise factors and assumed controllable in a 

laboratory environment for the purpose of conducting experiments. The model 

containing both noise variables and control factors can be used to determine factor 

settings for the control factor that makes the response “robust” to the variability 

transmitted from the noise factors. These types of experiments can be analyzed in 

a model for the mean response and a model for the slope of the response within a 

split-plot structure. When considering the experimental designs, low prediction 

variances for the mean and slope model are desirable.  

The methods for the mixture-process variable designs with noise variables 

considering a restricted randomization are demonstrated and some mixture-

process variable designs that are robust to the coefficients of interaction with 

noise variables are evaluated using fraction design space plots with the respect to 



  ii 

the prediction variance properties. Finally, the G-optimal design that minimizes 

the maximum prediction variance over the entire design region is created using a 

genetic algorithm.  
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CHAPTER 1 

INTRODUCTION 

Research Idea and Objective 

Mixture experiments are common problems in many fields, such as the 

chemical, food, pharmaceutical, and the process industries. Cornell (2002) defines 

that in mixture experiments, the response is assumed to depend only on the 

relative proportions of the mixture components and not on the amount of the 

mixture. In many industrial processes, however, the response depends not only on 

the proportion of the mixture components, but also on one or more process 

variables which can affect the blending properties of the mixture ingredients. See 

Cornell (2002) for more comprehensive details of mixture-process variable 

experiments. Goldfarb et al. (2003) addressed the mixture-process variable 

experiment with noise variables which are hard to control in practice.  

In the mixture-process variable designs, the number of runs tends to be 

larger as the number of process variables increases. Also, some process variables, 

such as noise variables, can be hard-to-change due to practical and economical 

considerations. These constraints prohibit complete randomization of the 

experimental runs. In the situation where complete randomization is unrealistic, 

all combinations of the easy-to-change factors are run at a fixed level of the hard-

to-change factors. Then a new level of the hard-to-change factors is selected and 

the combinations of other factors are run at that level. This design strategy, first 

developed by R.A Fisher in the early 1920’s, is called a split-plot design. See 

Montgomery (2009) for more details on split-plot designs. 
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When the noise variables are treated as process variables in mixture-

process variable designs, it is common to fix the level of the noise variables which 

are usually hard-to-change in practice and run all combinations of the other 

factors including the mixture components. This approach yields correlated 

observations within the fixed level of the noise variables and thus introduces a 

split-plot structure in the mixture-process variable designs.  Accordingly, the first 

research objective is to extend the typical mixture-process variable designs to 

analyze two sources of errors that result from the SPD structure. Since the 

mixture-process variable designs in the SPD structure have two error types from 

the whole plot and subplot (say σδ 
ଶ  and σεଶ, respectively), restricted maximum 

likelihood (REML) is a popular method for estimating the variance component in 

SPDs. Fraction of design space (FDS) plots displaying mixture-process variable 

designs in a split-plot structure will be used to evaluate the designs. Fraction of 

design space plots for assessing mixture-process variable designs within a split-

plot structure will be developed.  Sliced FDS plots are implemented to evaluate 

the designs according to the specific level of noise variables (whole plot factors).  

The second objective is to evaluate mixture-process variable designs 

within a split-plot structure in order to identify the most competitive designs in 

terms of prediction variance. Fraction of design space (FDS) plots, developed by 

Zahran, Anderson-Cook, and Myers (2003), and variance dispersion graphs 

(VDG), introduced by Giovannitti-Jensen and Myers (1989), are graphical tools to 

assess overall prediction capability of designs. In mixture-process variable 

designs, the conventional FDS and VDG have limitations in providing prediction 
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capability on the desired design spaces since these techniques show the prediction 

variance on the global design region. Goldfarb et al. (2004a) suggest three-

dimensional VDGs which evaluate the prediction variance properties of a design 

through the combined mixture-process space.  

The third objective is to develop and evaluate various designs by 

considering the mean and the variance of the response for mixture-process 

variable designs within a split-plot structure. In mixture-process variable designs, 

when some of process variables are noise variables, a robust design setting is 

needed to achieve robustness to inevitable changes in the noise variables.  Noise 

variables, while uncontrollable under normal operating condition, are usually 

hard-to-control because they are only able to be managed in special experimental 

conditions.  Goldfarb et al. (2003) developed models for robust mixture-process 

formulation problems to optimize the dual responses, mean and variance. In this 

research, the split-plot structure for the process robustness study is considered.  

The last objective is to develop a genetic algorithm considering a split-plot 

structure to produce the optimal design that satisfies the joint optimization of the 

prediction variance of the mean model and slope model. The new generated 

design is compared against with the D-optimal design and I-optimal design using 

graphical tools, FDS plots of prediction variance, total predication variance, and 

prediction variance ratio of the mean model and the slope model.  
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Key Papers 

Cornell (2002) presents comprehensive information about mixture 

experiments including mixture components and process variables. When the 

process variables are noise variables, Goldfarb et al. (2003) examined robust 

mixture-process designs considering the process mean and variance. Our research 

starts from this mixture-process variable design with noise variables and adapts 

the mixture-process variable designs within a split-plot structure. Thus, we place 

this article as our first key paper. Two more articles which are closely related to 

our research objective are selected.  

The first key paper focuses on mixture-process variable designs with noise 

variables. In the paper, the authors developed a model containing mixture 

components, controllable process variables, and uncontrollable variables (noise 

variables). They also consider the models which allow correlations between the 

noise variables. Since the noise variables are uncontrollable in the normal process 

conditions, they use a process robustness study to find the variable levels that are 

robust to changes in the noise variables. In the robust study, they apply the delta 

method to find the mean and variance of response variable. This approach allows 

the experimenters to find the optimal combinations that yield a target value for the 

mean by minimizing the variance of process.  

The second paper by Goldfarb et al. (2004b) presents fraction of design 

space (FDS) plots for mixture-process designs. Prediction variances over the 

design space are introduced by Giovannitti-Jensen and Myers (1989). They 

developed variance dispersion graphs (VDGs) which allow the practitioner to see 
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patterns of prediction variances throughout a design space. Zahran et al. (2003) 

introduced a fraction of design space (FDS) plot which is not a substitute for 

VDGs, but a complementary technique. It provides additional information on the 

distribution of the prediction variance over the design space. Goldfarb et al. 

(2004b) developed the approach to draw FDS plots for mixture designs and 

mixture-process variable designs. They showed that the random sampling method 

and shrunken region method by Piepel and Anderson (1992) yield equivalent 

results for FDS values and plots. For mixture-process variable designs, they 

introduced the global FDS plot and sliced FDS plot over different process space 

shrinkage value.  

The last paper by Liang, Anderson-Cook, and Robinson (2006) discusses 

FDS plots for split-plot designs. When the design is completely randomized, the 

scaled prediction variance (SPV) is dependent upon the experimental design and 

assumed model. In considering the split-plot design, SPV becomes more complex 

because the covariance of the response consists of the whole-plot variance and the 

subplot variance. In the paper, the authors implemented FDS plots using a 

variance component ratio to study the relationship between the whole plot errors 

and subplot errors. They also use sliced FDS plots for various whole plot levels to 

study prediction capability throughout the subplot region in the design space. 

Furthermore, they consider the impact of the variance ratio on design performance.  
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Outline of Research 

In chapter 2, a literature review that discusses mixture experiments, split-

plot designs, graphical tools for design evaluation, and optimality theory is 

presented. First, the general concept of mixture experiments involving process 

variables and noise variables is reviewed. For design efficiency comparison, the 

design optimal criteria are introduced in this chapter. The graphical tools to 

evaluate the design are also studied: variance dispersion graphs (VDG) and 

fraction of design space (FDS) plots.  It will also cover the genetic algorithm to 

construct the optimal designs and the desirability function.  

Chapter 3 introduces mixture-process variable designs within a split-plot 

structure. The split-plot design is developed to solve the restricted randomization 

on the mixture-process variable designs. Fraction of design space (FDS) plots for 

a mixture-process variable design within a split-plot structure are developed and 

demonstrated. FDS plots are used to evaluate various designs according to the 

prediction capability.  

In chapter 4, we consider statistical designs for experiments involving 

mixture variables, and noise variables with a restricted randomization for the 

experimental runs. We consider a split-plot design to solve this randomization 

restriction. We also consider noise factors in the process variables using robust 

parameter design. We construct G-optimal designs using a desirability function 

that simultaneously optimize both the prediction variance for the mean model and 

the slope model when there are process variables and noise variables in a split-

plot structure.   
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Chapter 5 illustrates a specific case study for a diamond grinding wheel.  

In the evaluating of the grinding wheel manufacturing process, the mixture 

components interact with the process variables, resulting in a mixture-process 

variable experiment which requires a large number of runs to estimate the 

parameters. We consider a split-plot structure and robust parameter design for this 

grinding wheel manufacturing example with a tight mixture component design 

space. The effect of mixture component design space is compared using a 

graphical tool.  

Chapter 6 concludes this dissertation, summarizing the main contribution 

and suggesting future research areas.  
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CHAPTER 2 

LITERATURE REVIEW 

Mixture-process variable experiments are commonly encountered in many 

industrial fields. Cornell (2002, Ch7) gives a full explanation of mixture-process 

variable experiment. Goldfarb et al. (2003) addressed the mixture-process 

variable experiment with noise variable which is hard to control in practice, but 

they did not consider randomization issues. In practice, when the process 

variables are added to the mixture experiment, the number of runs is radically 

increased and complete randomization is often impractical. The suggested method 

to deal with the restricted randomization is a split-plot design, according to 

Montgomery (2009).  

In experiments, many designs are available for specific objectives.  For 

example, in the view of cost analysis, the design which has smallest number of 

runs is preferred if it provides the enough information on the coefficients for the 

model. A second characteristic for selection of design is prediction capability. The 

suggested measure of prediction performance is the scaled prediction variance 

(SPV) which considers the total sample size to penalize large designs.  When the 

size is not the major issue for cost, an alternative objective is unscaled prediction 

variance which compares directly the variance without penalizing the sample size. 

The design efficiency is a good choice for comparing and evaluating designs 

when we are interested in the prediction variance at the specific location. The 

design criteria, which focus on the prediction variance, are G-optimality, V-

optimality, and Q-optimality.  
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To evaluate the prediction capability, the overall distribution of SPV 

throughout the design space should be considered instead of judging only a single 

point prediction estimate such as G and Q-efficiency since the prediction 

variances change at different points.  Thus, the preferred design has relatively 

stable SPV over a whole design space. Box and Hunter (1957) suggested the 

concept of rotatability for the experimental design, which requires constant 

prediction variance at any two points that are the same distance from the design 

center. Giovannitti-Jensen and Myers (1989) introduced the variance dispersion 

graph (VDG), a graphical technique that displays the prediction variance 

properties of a design space for spherical design regions. The VDG technique is 

extended to the design with cuboidal regions by Rozum and Myers (1991). The 

VDGs for the mixture designs are discussed by Piepel and Anderson-Cook (1992) 

and Vining, Cornell, and Myers (1993). Goldfarb et al. (2003) introduce the three-

dimensional VDGs for mixture-process experiments.  

Zahran et al. (2003) introduce a supplementary technique to the VDG, 

called fraction of design space (FDS) plots. For the FDS plots, the SPV is 

calculated throughout the design space and then the fraction of the design space 

that is less than or equal to a given SPV value is determined. Goldfarb et al. 

(2004b) suggest the random sampling method for FDS plot for mixture design. 

Liang et al. (2006) adapted the FDS plot for split-plot designs. They used the 

proportional sizes of the sliced FDS curves for different whole plot shrinkage 

levels for a split-plot design over spherical region. 
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In next section, we discuss more specific concepts for our research. This 

review is organized as follow. First, the general concept of mixture experiments 

and mixture-process variables experiments is provided. Second, split-plot designs 

are presented and the expected mean square for a split-plot design is briefly 

mentioned. Lastly, the optimal design criteria are presented including the 

graphical tools to evaluate design.  

 

Mixture-Process Variable Experiments 

 A mixture experiment or product formulation is a special type of 

experiment for chemical, food, pharmaceutical, and other consumer products 

industries. It is different from standard response surface experiments in that the 

factors are the components of mixture or ingredients and the response is a 

function of the proportion of mixture components. Assume that q components or 

ingredients are in the mixture and ith component is represented by xi, where 

0,     1, 2, ,ix i q≥ =       (1) 

and 

1 2
1

1
q

i q
i

x x x x
=

= + + + =∑ .        (2) 

Equation (2) indicates that the sum of all components, which is all positive from 

Equation (1), is unity. Because of the requirement given in (2), the levels of 

components in the mixture experiments are not independent. This restriction 

makes mixture experiments different from usual response surface experiments.  
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 The first-order model, when there are q variables for the usual response 

surface is  

0
1

( )
q

i i
i

E y xβ β
=

= +∑ .       (3) 

In the mixture experiment, however, the parameters, βi (i=0, 1, , q) are not 

unique due to the restriction given in Equation (2). The canonical or Scheffé form 

of this model is found by multiplying the intercept term by the identity, 

1 2 1qx x x+ + + =  and simplifying the model, yielding 

0 1 2
1

1

( ) ( )
q

q i i
i

q

i i
i

E y x x x x

x

β β

β

=

∗

=

= + + + +

=

∑

∑
    (4) 

where, 0i iβ β β∗ = + . This Scheffé form of mixture models can be expressed as a 

linear, quadratic, full cubic, or special cubic model. See Cornell (2002) and Myers 

et al.  (2009) for more details.  

 In practice, the response for a mixture experiment may not only depend on 

the ingredients, but also on experimental conditions called process variables, such 

as temperature, speed, and time. They are not part of the mixture components, but 

can affect the mixture properties at the different variable levels. Piepel and 

Cornell (1985, 1987) address mixture problems where the amount of the mixture 

that is applied to the experimental unit is varied. Cornell (2002) gives a complete 

presentation of mixture-process variables experiments.  
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Split-Plot Designs 

The split-plot design is used in order to solve the randomization problem 

in experiments when there are two different types of factors; hard-to-change 

factors and easy-to-change factors. In the split-plot design analysis, response 

surface methodology (RSM) is applied to find the optimum of these factors within 

the constraints. Recently, split-plot designs within a robust parameter design 

setting have been developed. Also, pure error estimates of the two variance 

components have been developed. 

In designed experiments, randomization is an important requirement 

underlying the use of statistical methods. Properly randomized experiments 

satisfy the statistical requirement that the observations (or errors) are 

independently distributed random variables. When it is difficult or expensive to 

change the levels of some of the factors due to physical restrictions on the process, 

it is impractical to perform the experiments in a completely random order. In such 

cases, restrictions on the randomization of experimental runs are necessary 

resulting in a split-plot design structure, as described by Box and Jones (1992). In 

split-plot designs, the experiments are performed by fixing the levels of the hard-

to-change factors and then running all or some of the combinations of the easy-to-

change factor levels. Then, a new setting in the hard-to-change factors is selected 

and the process is repeated. The hard-to-change factors are called the whole plot 

factors or main treatments, and the easy-to-change factors are called the subplot 

factors or split-plots.  
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Within every split-plot design, there are two randomization requirements. 

The hard-to-change factors are randomly assigned to whole plots based on the 

whole plot design. Within each whole plot, the easy-to-change factors are 

randomly assigned to a subplot independent of each whole plot. With replication, 

this type of randomization leads to two error terms, one for the whole plot 

treatments and another for subplot treatments. Typically, the interaction between 

whole plot treatment and subplot treatment is a subplot effect as well. 

 

TABLE 1. Expected Mean Squares for a Split-Plot Design 

 Model Term Expected Mean Square (EMS) 

Whole plot 

iτ  22
τσσ ab+  

jβ  
1

2
22

−
++ ∑

a
rb

b jβ
σσ τβ  

ij)(τβ  22
τβσσ b+  

Subplot 

kγ  
1

2
22

−
++ ∑

b
ra

a kγ
σσ τγ  

ik)(τγ  22
τγσσ a+  

jk)(βγ  
)1)(1(

)( 2
22

−−
++ ∑∑

ba
r jkβγ

σσ τβγ  

ijk)(τβγ  22
τβγσσ +  

ijkε  2σ (not estimable) 

 

 

Montgomery (2009) presents the linear model for the split-plot design for 

two factors as 
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,...,2,1
,...,2,1
,...,2,1

  )()()()(
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=
=
=

++++++++=
bk
aj
ri

y ijkijkjkikkijjiijk ετβγβγτγγτββτμ  

where ijji )( and , , τββτ make up the whole plot and represent respectively blocks 

(or replicates), main treatment (factor A), and whole plot error (replicates × A). 

The remaining terms ijkjkikk )( and ,)( ,)( , τβγβγτγγ consist of the subplot and 

represent respectively the subplot treatment (factor B), the replicates × B, and AB 

interactions, and the subplot error (replicates × AB). The expected mean square 

for the split-plot design, with replicates or blocks random and main treatments 

and subplot treatments fixed, are shown in Montgomery (2009) and reproduced in 

Table 1. 

Note that the main factor (A) in the whole plot is tested against the whole 

plot error, whereas the subplot treatment (B) is tested against the replicates × 

subplot treatment interaction. The AB interaction is tested against the subplot error. 

There are no tests for the replicate (or block) effect or the replicate × subplot 

treatment interaction. (see Montgomery (2009) for the further explanation). 

Box and Jones (1992) show that a split-plot design is typically more 

efficient than a completely randomized design (CRD) because 222
wholeCRDsub σσσ << , 

where 2
subσ  is the subplot error variance and 2

wholeσ  is the whole plot error variance 

if there are two error terms. Lucas and Ju (1992) investigate the use of split-plot 

designs in industrial experiments where one factor is difficult to change. The 

results of their simulation study confirm that split-plot designs produce increased 

precision on the subplot factors while sacrificing precision on the whole plot 
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factors. Box (1996) states that completely randomized experiments are sometimes 

impractical in industry and split-plot experiments are good alternatives since they 

are very efficient and easy to run. Usually a split-plot design is also more cost 

effective than the CRD. The frequent level changes on hard-to-change factors 

induce higher costs than the changes on easy-to-change factors. In a split-plot 

design, whole plot factors are changed less often than in a CRD, which results in 

lower cost.  

In the mixture-process variable experiments, the number of runs is likely 

to increase dramatically as the number of process variables increase. Furthermore, 

while noise variables are controllable in the laboratory environment, usually these 

variables are difficult to adjust and control. In designing experiments, 

randomization is an important requirement underlying the use of statistical 

methods. However, if it is difficult or expensive to change the levels of some 

factors, it is impractical to perform the experiments in a completely randomized 

order. In this situation, restrictions on the randomization of experimental runs are 

necessary resulting in a split-plot structure, as described by Box and Jones (1992). 

Cho et al. (2009) developed graphical evaluation techniques for the MPD within a 

split-plot structure; however, the authors did not consider robust parameter design 

for noise variables.  

 

Robust Parameter Design 

In the experimental design, the process variables can be categorized into 

two types: variables that are controllable and directly affect the response, and 
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variables that are uncontrollable and primarily affect the variability of the 

response. Myers et al. (2009) call these factors control factors and noise factors 

(or noise variables), respectively. We assumed that noise variables are 

controllable in a special laboratory environment for the purpose of conducting 

experiments. When production is moved from the laboratory to the manufacturing 

environment, noise factors are not necessarily controllable in the normal operation 

of the process. Consequently, it is important to consider noise variables at the 

design stage of the process. The model containing both noise variables and 

control factors can be used to determine factor settings for the control factor that 

makes the response “robust” to the variability transmitted from the noise factors. 

This type of study is called “robust parameter design”. See Borror et al. (2002), 

Myers et al. (2009) and Montgomery (2009) for details and summaries. The 

mixture process variable designs with noise variables were developed by Steiner 

and Hamada (1997), Goldfarb et al. (2003), and Goldfarb et al. (2004c). 

 

General Criteria for Comparing and Evaluating Designs 

 Design evaluation and comparison are often carried out using the design 

optimality, such as D-optimality, G-optimality, V-optimality, and Q-optimality. 

See Myers et al. (2009) for detailed discussion on design optimality. The most 

well known optimality criterion is D-optimality, which is based on the concept 

that the experimental design should be selected to maximize the determinant of 

the moment matrix; that is  
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Max ( )   

pN

ζ
ζ

′
=

M

X X
M  

where p is the number of parameters in the model, X is the design space matrix, 

and Max implies that the maximum is determined over the entire designs ζ . 

Design criteria which focus on the prediction variance include G-optimality, V-

optimality, and Q-optimality.  The scaled prediction variance (SPV) is given by 

[ ] ( ) 1( ) ' ( )
2

ˆ ( )
( )  m mN Var y

v N
σ

−′= =
x

x x X X x
 

where ( )mx  is a function of the location in the design variables at which one 

predicts and also expanded to the form of model being fit. SPV is not a single 

value but rather achieves different values depending on the location x(m). G-

optimality focuses on the design which provides the minimum value from the 

maximum v(x) in the design space, given by 

Min Max ( )
R

v x
ζ ∈

⎡ ⎤
⎣ ⎦x .

 

If the variance is scaled by N, 100% G-efficiency is equal to the number of 

parameters in the model. Another prediction variance-oriented optimality is V-

optimality which considers the average prediction variance over the specific set of 

points of interest in the design space. Another important design optimality 

criterion is Q-optimality or IV (integrated variance) optimality, for which 

prediction variance v(x) is averaged over the design region of interest R, given by 

1Min ( ) Min ( )
R
v d Q

Kζ ζ
ζ=∫ x x  
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where K is the volume of design region R.  

 

Variance Dispersion Graphs (VDGs) 

Design efficiencies are not enough to evaluate the designs when we are 

looking for the designs with stable v(x) over the design space, which involves 

multi-dimensionality. When ݇ = 2, a two-dimensional plot of v(x) can be easily 

constructed using a contour plot. For ݇ > 2, however, the contour plots of v(x) are 

insufficient to express the distribution of prediction variance over  all variables.  

Giovannitti-Jensen and Myers (1989) introduced the variance dispersion 

graph (VDG), a graphical technique that displays the prediction variance 

properties of a design space. The VDG plots three graphical components; these 

are  

1. A plot of average v(x) throughout the design space 

2. A plot of the maximum v(x) throughout the design space 

3. A plot of the minimum v(x) throughout the design space. 

Myers, Vining, Giovannitti-Jensen, & Myers (1992), Vining (1993), Borkowski 

(1995), Trinca and Gilmour (1998), and Borror et al. (2002) use the VDGs to 

compare designs and show that D-optimality criterion can be misguiding if the 

researcher is interested in the prediction variance behavior. The design region is 

expanded from spherical to cuboidal regions by Rozum and Myers (1991), Myers 

et al. (2009), and Borror et al. (2002). Piepel and Anderson (1992) develop and 

demonstrate VDGs for mixture designs using a shrunken region approach. Vining, 
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Cornell, and Myers (1993) also develop VDGs for mixture designs by plotting the 

prediction variances along the Cox directions. 

 

Fraction of Design Space (FDS) Plots 

 Zahran, Anderson-Cook, and Myers (2003) introduced fraction of design 

space (FDS) plots not to substitute, but to supplement the VDG. For the FDS plots, 

the SPV is calculated throughout the design space and then the fraction of the 

design space that is less than or equal to a given SPV value is determined. Let v 

be any given SPV value, k be the number of factors, and Ψ be the total volume of 

the design region. The FDS is defined as: 

1
1 ,kA

FDS dx dx=
Ψ ∫ ∫  

where A = ሼሺݔଵ, ⋯ , :௞ሻݔ ሻݔሺݒ <  ሽ. Goldfarb et al. (2004b) suggest a randomݒ

sampling method for constructing the FDS plots for mixture designs. This method 

selects points completely at random that fit within the constraints of the region. 

Then, the scaled prediction variance (SPV) is calculated for each point. All SPV 

values at each point are sorted and plotted on the FDS plot. The minimum SPV 

value is located on the FDS of 0 and the maximum value is located on the FDS of 

1. The FDS plot contains a single line that represents the pattern of SPV 

distribution throughout the design space, allowing evaluation of several designs 

on a single FDS plot. Liang et al. (2006) adapted the FDS plot for split-plot 

designs. They used the proportional sizes of the sliced FDS curves for different 

whole plot shrinkage level for a split-plot design in a spherical region. Rodriguez 
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et al. (2010) suggested variance ratio FDS (VRFDS) plot to compare several 

designs to a reference design.  

 

Computer Algorithms for Design Creation 

To construct optimal design, it is required to solve a large nonlinear mixed 

integer programming problem. As the feasible design space increases, the MIP 

solution is impossible to find exact optimal design. Approximation algorithms 

using random methods and greedy methods are suggested as an alternative for the 

exact solution. The typical methods using random algorithm is simulated 

annealing. In simulated annealing, an initial candidate set is generated and 

modified in random way. This candidate is accepted with a probability based on 

the special function. Simulated annealing is very successfully used in the area of 

combinatorial optimization such as the traveling salesman problem.   

The point exchange algorism is a typical greedy algorithm for generating 

optimal designs. It used exhaustive search by adding new design points and 

removing existing design points to improve the objective function. Exchange 

algorithms are categorized into Rank-1 and Rank-2 based on how the point is 

changed in the current candidate design set:  

Rank-1: Sequential exchange by adding new point and delete current point  

(Wynn, DETMAX). 

Rank-2: Simultaneous exchange of new point and current point  

(Fedorov, Modified Fedorov, k-exchange, kl-exchange). 
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The coordinate exchange algorithm suggested by Meyer and Nachtsheim 

(1995) is an extension of the point exchange algorithm. They modified the k-

exchange algorithm to make kq coordinate associated with k least critical point in 

the current design. It used the subset of new point to exchange. Firstly, choose k 

least critical points and examine each point for the best coordinate to exchange. 

Finally, make best coordinate exchange.  

Goos and Vanderbroek (2001) suggested the use of optimal designs for the 

split-plot structure. They pointed out the difference between CRD and SPD to 

construct optimal designs. In particular, the covariance matrix V from whole-plot 

and subplot is included to compute the optimal criterion. Therefore, design matrix 

X and covariance matrix V are computed in same time. The other important 

aspect of optimal design for split-plot structure is the unknown variance 

component ratio, d. For the purpose of design construction, a reasonably accurate 

value of d is required.  

The current exchange algorithms are able to be modified to construct the 

mixture-process experiment within split-plot structure. As shown in Goos and 

Vanderbroek (2001), the point-exchange algorithm provides a D-optimal split-

plot design. Since the coordinate exchange algorithm is a modified version of k-

exchange algorithms, coordinate exchange algorithms can be considered to 

generate optimal split-plot designs. However, we need to consider the whole-plot 

and subplot design space. Since the subplot is nested on the whole-plot, some 

restriction of coordinate subset may be required.  
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For other optimality criteria such as G-optimality and Q-optimality, there 

is no existing algorithm for split-plot structure. However, genetic algorithms can 

be considered to generate these optimal designs. Heredia-Langner et al. (2004) 

prove that a genetic algorithm method is efficient in computer generated design, 

especially experiments with mixture component and response surface experiment 

with constrained regions. They also suggest using genetic algorithms when the 

researcher cannot employ any of the traditional approach for design construction. 

Liang, Anderson-Cook, and Robinson (2006) also recommend a genetic algorithm 

for prediction variance based optimal design within split-plot structure. Goldfarb 

et al. (2005) and Chung et al. (2007) create G-optimal designs for mixture-process 

variable design with control and noise variables using a restricted form of a 

genetic algorithm (GA) (no mutation occurred). Rodriguez et al. (2009) generate 

G-optimal designs using a full GA, but no mixture variables are considered in the 

design. 
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CHAPTER 3 

EVALUATION OF MIXTURE-PROCESS VARIABLE DESIGNS WITHIN 

A SPLIT-PLOT STRUCTURE  

In this chapter, the analysis of mixture-process variable experiments 

within a split-plot structure is addressed. For a graphical evaluation, fraction of 

design space (FDS) plots for a mixture-process variable design within a split-plot 

structure are developed and demonstrated. FDS plots are used to evaluate the 

prediction capability of various designs. Sliced FDS plots are presented to show 

the influence of mixture variables and process variables on the prediction variance 

over the design space. 

 

Introduction 

Mixture experiments are used in a system where the response is affected 

by the proportion of ingredients. In mixture experiments, the response is a 

function of the ingredient or component proportion, and because the proportions 

must add to a constant, the variables are not independent. In many industrial 

processes, however, the response depends not only on the proportions of the 

mixture components, but also on other experimental factors which can be 

generally described as process variables. Although the mixture components 

cannot be controlled independently due to the constraints of mixture experiments, 

the process variables can be adjusted independently.  

The practitioner has many design choices depending on the specific 

objectives of the experiments.  For example, from the view of cost, the design 
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which has the smallest number of runs is preferred if it provides enough 

information to estimate the model coefficients. A second characteristic for 

selection of design is prediction capability. A widely-used measure of prediction 

performance is the scaled prediction variance (SPV) which takes into account the 

total sample size to penalize large designs.  When the size of the design is not a 

major issue, an alternative objective is the unscaled prediction variance which 

directly compares the variance without penalizing for the sample size. Design 

efficiencies can also be good measures for comparing and evaluating designs in 

many situations. The design optimality criteria that focus on the prediction 

variance are G-optimality, V-optimality, and I-optimality. To fully evaluate the 

prediction capability, the overall distribution of SPV throughout the design space 

should be examined instead of relying on only a single number criterion, such as 

G and I-efficiency. The preferred design has relatively stable SPV over the entire 

design space.  

 

Notation and Model Development 

Assume that the mixture components are the subplot factors, xi’s, and the 

controllable process variables are also the subplot factors, wp’s. The hard-to-

change process variables are the whole-plot factors, zt’s. Furthermore, we suppose 

that there are q mixture components (xi, i = 1, 2, … , q), c controllable variables 

(wp, p = 1, 2, … , c), and n hard-to-change variables (zt, t = 1, 2, … , n). The 

process variables are assumed to be continuous. Also suppose that there are m 

mixture terms, where m is a function of the number of the mixture components 
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and the degree of the model. A response can be represented as a function of m 

mixture terms in quadratic mixture model form, n continuous hard-to-change 

variables, and c continuous controllable variables. The model within a split-plot 

structure can be modeled as  

( , , )= ( ) ( , )w wp s spy f f fβ δ β ε′ ′= + + +x w z z x,w z ,                       (5) 

where wpβ is a vector of coefficient terms from the whole-plot variables, 

spβ is a vector of coefficient terms from the subplot variables, 2~ (0, )N δδ σ  

comes from the whole-plot (WP) randomization level and represents the random 

error term of the WP factors alone, and 2~ (0, )Nε σ  comes from the subplot (SP) 

randomization level and represents the random error term from the subplot. The 

random components  and δ ε  are assumed to be independent. However, the WP 

terms, ( )w t wpf β′z , can be removed since the hard-to-change variables only affect 

the response through interacting with the mixture components. Then, Equation (5) 

can be written as 

     
( , , ) i i ij i j

i i j

ip i p ijp i j p
i p i j p

it i t ijt i j t
i t i j t

ipt i p t ijpt i j p t
i p t i j p t

y x x x

x w x x w

x z x x z

x w z x x w z

β β

α α

θ θ

λ λ δ ε

<

<

<

<

= +

+ +

+ +

+ + + +

∑ ∑∑

∑∑ ∑∑∑

∑∑ ∑∑∑

∑∑∑ ∑∑∑∑

x w z

                     (6) 

This model is exactly the same as in Goldfarb et al. (2003) except that it 

has two different sources of error, WP and SP errors. Equation (6) can be 

expressed in matrix form as  
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( , , )y δ ε′ ′ ′ ′ + +x w z = x β + x Αw + x Θz + x ΛWz , 

where x is the m × 1 vectors which consist of all mixture model terms including 

higher order terms, w is the  c × 1 vector  of controllable variables, and z is the n 

× 1 vector of hard-to-change variables. β is the m × 1 vectors coefficient matrix 

for mixture model terms, A is the m × c coefficient matrix for the mixture by 

controllable variable interactions and Θ is the m × n coefficient matrix for the 

mixture by hard-to-change variable interactions. Λ is the m × cn coefficient 

matrix for interactions, involving mixture components, controllable variables, and 

hard-to-change variables. Finally, W is a cn × n block-diagonal matrix whose 

columns contain the w elements and blocks of 0s. See Goldfarb et al. (2003) for 

additional discussion of all model terms. 

We assume that δ + ε has mean 0 and variance–covariance matrix V 

which is a function of the WP variance 2
δσ  and the SP variance 2

εσ . The 

covariance matrix of the response is then given by 

2 2 2[ ]dδ ε εσ σ σ= + = +V J I J I  

where 

1 1
2

2 2
2

0 0
0 0

 and 

0 0 a a

d δ

ε

σ
σ

′⎡ ⎤
⎢ ⎥′⎢ ⎥= =
⎢ ⎥
⎢ ⎥′⎣ ⎦

1 1
1 1

J

1 1

 (the variance component ratio). 

The length of each 1i is ni, the number of subplot runs within the whole-

plot. Usually, the whole plot error variance is larger than the subplot error 

variance as shown by Box and Jones (1992). Vining et al. (2005) studied a split-
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plot experiment and estimated the variances using pure error indicating larger 

whole plot error variance than subplot error variance (d > 1). If d = 0, the 

covariance matrix is 2σ=V I , which is equivalent to the completely randomized 

design. Restricted maximum likelihood (REML) is a recommended estimation 

method for the variance components.  

The model parameters within the split-plot structure, β*, are estimated via 

generalized least squares, given by  

( ) 1* 1 1ˆ −− −′ ′=β X V X X V y
,
 

with covariance matrix given by 

( ) ( )
11 1* 1 2Var( ) dεσ

−− −− ⎡ ⎤′ ′= = +⎣ ⎦β X V X X J I X .
 

 

Example 1: Soap Manufacturing Process 

Goldfarb et al. (2003) studied the amount of soap in pounds per hour that a 

manufacturing process yields. There are three ingredients in the process, soap(x1), 

co-surfactant(x2), and filler(x3). The ingredients have the following constraints; 

1

2

3

1 2 3

0.20 0.80
0.15 0.50
0.05 0.30

1

x
x
x

x x x

≤ ≤
≤ ≤
≤ ≤

+ + =

 

Two process variables are also considered; the plodder temperature (z1) and 

mixing time (w1). The plodder temperature ranges from 15°C to 25°C while 

mixing time (w1) ranges from 0.5 hour to 1 hour. The process variables are coded 

with low level and high level (-1, 1) in this example. The plodder temperature (z1) 
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is treated as a noise variable and also hard-to-change in Goldfarb et al. (2003). In 

this experiment, however, we did not consider robust process design and assume 

that temperature is only hard-to-change. The mixing time (w1) is a controllable 

variable which is easy-to-change. Since the plodder temperature (z1) is the only 

hard-to-change factor, it is assigned to the whole-plot. The mixture variables and 

controllable variable are assigned to the subplot. Response data were simulated 

using the original model, but now including two different sources of errors, whole 

plot error and subplot error. Usually, the whole plot error variance is larger than 

the subplot error variance as shown by Box and Jones (1992). Vining et al. (2005) 

studied a split-plot experiment and estimated the variances using pure error 

indicating larger whole plot error variance than subplot error variance (d > 1). We 

generated data with d = 5.0 to examine the effect of whole plot error variance on 

the result of model fitting. As shown in Table 2, the usual CRD analysis gives 

results similar to Goldfarb et al. (2003) if the design is analyzed with the coded 

variables for the process variables. The final model with the CRD is  

1 2 3

1 1 2 1 3 1

2 1 3 1

2 1 1 3 1 1

ˆ( , , ) 464.37 56.01 613.03
8.86 65.22 50.64
12.35 74.46
4.26 6.15

y x x x
x w x w x w
x z x z

x w z x w z

= − +
+ + −
+ −
− +

x w z

.

 

Note that the R-square and R-square adjusted values are greater than 0.999, 

indicating an adequate model. However, the SPD analysis, shown in Table 3, 

provides a slightly different result, indicating a significant difference between the 

SPD and CRD analysis. As proved by Vining et al. (2005), the coefficient 

estimates of model parameters are equivalent for CRD using OLS estimates and 
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SPD using GLS estimates, because the design is balanced and the subplot designs 

are orthogonal.  

 

TABLE 2. JMP7.0 Fit Model of Soap Manufacturing Example Analyzed  

as a CRD 

 

 

 
Response Y 
Summary of Fit 
  
RSquare 0.999515
RSquare Adj 0.999437
Root Mean Square Error 2.172708
Mean of Response 335.7587
Observations (or Sum Wgts) 80
 
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio 
Model 11 662060.11 60187.3 12749.77 
Error 68 321.00 4.7 Prob > F 
C. Total 79 662381.11 <.0001 
 
Tested against reduced model: Y=mean 
 
Lack Of Fit 
Source DF Sum of Squares Mean Square F Ratio 
Lack Of Fit 4 5.42651 1.35663 0.2751 
Pure Error 64 315.57823 4.93091 Prob > F 
Total Error 68 321.00474 0.8930 
  Max RSq 
  0.9995 
 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t|
X1(Mixture)  464.3694 0.530811 874.83 <.0001
X2(Mixture)  -56.00925 1.137246 -49.25 <.0001
X3(Mixture)  613.03004 1.842157 332.78 <.0001
X1*z1  0.5521082 0.530811 1.04 0.3020
X1*w1  8.8568041 0.530811 16.69 <.0001
X2*z1  12.350042 1.137246 10.86 <.0001
X2*w1  65.215146 1.137246 57.34 <.0001
X3*z1  -74.45903 1.842157 -40.42 <.0001
X3*w1  -50.64127 1.842157 -27.49 <.0001
X1*z1*w1  -0.477407 0.530811 -0.90 0.3716
X2*z1*w1  -4.260443 1.137246 -3.75 0.0004
X3*z1*w1  6.1535929 1.842157 3.34 0.0014
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The analysis with the SPD structure shows that the interaction X1w1z1 is found to 

be statistically significant although it was not significant in the CRD structure. 

This result illustrates the role of whole-plot error and subplot error in SPD 

structure. Two different types of errors are used to calculate the test statistics for 

different factors. For example, the t-ratio for whole-plot factor (z1) is calculated 

using the whole-plot error. Test statistics for other subplot factors and interactions 

with the subplot factors are calculated using the subplot error. 

 

TABLE 3. JMP7.0 Fit Model of Soap Manufacturing Example Analyzed  

as a SPD 

 

 
Response Y 
Summary of Fit 
  
RSquare 0.999924
RSquare Adj 0.999912
Root Mean Square Error 0.898223
Mean of Response 335.7587
Observations (or Sum Wgts) 80
 
Parameter Estimates 
Term   Estimate Std Error DFDen t Ratio Prob>|t| 
X1(Mixture)  464.3694 0.776285 6.833 598.19 <.0001 
X2(Mixture)  -56.00925 0.880627 11.17 -63.60 <.0001 
X3(Mixture)  613.03004 1.065106 22.05 575.56 <.0001 
X1*z1  0.5521082 0.776285 6.833 0.71 0.5005 
X1*w1  8.8568041 0.219443 62 40.36 <.0001 
X2*z1  12.350042 0.880627 11.17 14.02 <.0001 
X2*w1  65.215146 0.470151 62 138.71 <.0001 
X3*z1  -74.45903 1.065106 22.05 -69.91 <.0001 
X3*w1  -50.64127 0.761569 62 -66.50 <.0001 
X1*z1*w1  -0.477407 0.219443 62 -2.18 0.0334 
X2*z1*w1  -4.260443 0.470151 62 -9.06 <.0001 
X3*z1*w1  6.1535929 0.761569 62 8.08 <.0001 
 
 
REML Variance Component Estimates 
Random Effect Var Ratio Var Component Std Error 95% Lower 95% Upper Pct of Total
Whole Plots 5.4978679 4.4357013 2.6075744 -0.675145 9.5465471 84.610
Residual  0.8068039 0.1449063 0.5840007 1.1874342 15.390
Total  5.2425052  100.000
 
  -2 LogLikelihood =  
224.09336357 
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As shown by Lucas and Ju (1992), in this example, the subplot factor (X1w1z1) is 

precisely analyzed and determined to be significant in the model. Therefore, the 

suggested model is  

1 2 3

1 1 2 1 3 1

2 1 3 1

1 1 1 2 1 1 3 1 1

ˆ( , , ) 464.37 56.01 613.03
8.86 65.22 50.64
12.35 74.46
0.48 4.26 6.15

y x x x
x w x w x w
x z x z

x w z x w z x w z

= − +
+ + −
+ −
− − +

x w z

.
 

This example illustrated the problem with analyzing a split-plot design as if it was 

a completely randomized design. The estimates of the coefficients are identical, 

but the significance test can lead to erroneous results.  

 

Prediction Variance for MPV Design within a SPD 

The predicted mean response at any location x0 is given by 

*
0 0

ˆˆ(y ′x ) = x β , 

where x0 is the point of interest in the design space. The prediction variance at x0 

is now given by 

[ ] ( ) 11
0 0 0ˆ( )Var y

−−′ ′=x x X V X x
.
 

The covariance matrix 2σ=V I  can be used when the design is completely 

randomized and the optimal design for prediction variance depends only on the 

design space X. In the split-plot design, due to the different sources of error, the 

covariance matrix becomes more complex than the general form of V. The 

prediction variance of SPD is not only a function of the design space X but is also 

a function of the variance component ratio, d.  
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When considering prediction variance as an objective to evaluate the 

design, the prediction variance is scaled by the variance of observation error to 

make the quantity scale free and by design size to penalize larger designs. Liang 

et al. (2006) suggest determining the scaled prediction variance for split-plot 

design by multiplying the prediction variance by the total number of runs, N, and 

then dividing by the observational error variance ( 2 2
δσ σ+ ). The SPV for SPDs is 

given by 

( )
( ) ( )

11
10 0 1

0 02 2

N
SPV N

δσ σ

−−
−−

′ ′
′ ′= =

+

x X V X x
x X R X x  

where R=diagonal {R1,…, Ra} with Ri denoting the correlation matrix of 

observations within whole plot i. In SPDs, the size of the design is not closely 

related to the cost because the cost for the number of observation in SPDs is not 

the number of set-ups needed to collect the data. Then, we would model the 

variance of the estimated mean response divided by 2 2
δσ σ+ , 

( ) ( ) ( )1 11 2 2 1
0 0 0 0PV δσ σ

− −− −′ ′ ′ ′= + =x X V X x x X R X x , directly. For the SPD case, 

this unscaled variance is a valid alternative to scaled prediction variance.  

 

FDS Plots for MPV Designs within a SPD 

Various methods involving prediction variance have been proposed to 

evaluate the prediction performance of a design. FDS plots were recommended by 

Zahran et al. (2003). To construct FDS plots, the SPV is calculated throughout the 

design space, and the fraction of the design space that is less than or equal to a 
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specific SPV value is determined. Goldfarb et al. (2004b) randomly generated 

design points within the constraints of the design region to construct FDS plots 

for mixture and mixture-process designs. The minimum of SPV is then plotted at 

an FDS of 0 and maximum is plotted at the fraction 1. A desirable design starts 

with small SPV and has a relatively flat slope across the FDS plot.  

 

Sliced FDS Plot within a SPD 

Sliced FDS plots can be developed to analyze the prediction variance 

distribution throughout the subplot space at specific whole-plot shrinkage levels. 

To construct the sliced FDS plot, random points are generated throughout the 

subplot space at each whole-plot shrinkage level from 0 to 1 (in steps of 0.1) 

depending on the variance ratio, d. The sliced FDS plots can also be constructed 

at different subplot shrinkage levels if one is interested in the trends in whole-plot 

space for a given subplot shrinkage level. The sliced FDS plots provide the 

maximum SPV value at a different shrinkage level for the whole-plot or subplot, 

which is used to construct sliced FDS. It is desirable to keep the SPV value small. 

These sliced FDS plots also provide information about the contribution of two 

spaces, whole-plot or subplot, to the change in SPV value. When we use the 

sliced FDS plots with different whole-plot shrinkage levels, and the FDS “slices” 

are far apart, it indicates that whole-plot location has a more significant effect on 

the SPV value than the subplot location. If the “slices” are close together, are 

increasing rapidly, or have similar patterns as the global FDS, then a change in the 

whole-plot location is not enough to significantly affect the SPV value, but the 
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subplot location has an impact on the SPV value. If the sliced FDS plots start 

from similar minimum SPV values, and are uniformly dispersed, then the 

contribution of two spaces is balanced to changes in the SPV values. In other 

words, the distance between FDS plots represents the effect of whole-plot space 

on the SPV values, and the slope of FDS plot explains the subplot space effect on 

the SPV values.  

The other way to analyze the sliced FDS plot is to draw the FDS plot 

using different variance ratios, d, at the specific shrinkage level of desired plot. 

These sliced FDS plots show the trends of SPV by changing the variance 

component ratio at the specific shrinkage of whole-plot or subplot. 

 

Example 2: Kowalski, Cornell, and Vining (KCV) Design for SPD 

Kowalski et al. (2002) proposed a design for mixture-process variable 

experiments within a split-plot structure. They considered both the main-effects 

plus interaction model in the process variables and the second-order model 

containing (n+1)(n+2)/2 terms in the process variables which are crossed with the 

mixture components. They assume that the main effects of process variables are 

crossed only with the linear blending terms, and the combined model is  

1 1 1
( , )

q q qn n

i i ij i j kl k l ik i k
i i j k l i k

f x z x x x z z x zβ β α γ δ ε
= < < = =

= + + + + +∑ ∑∑ ∑∑ ∑∑
.
 

For a second-order model, the pure quadratic terms in the process 

variables are added to the main-effects plus interaction model, and the proposed 

combined second-order model is  
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2

1 1 1 1

( , )
q q qn n n

i i ij i j kl k l kk k ik i k
i i j k l k i k

f x z x x x z z z x zβ β α α γ δ ε
= < < = = =

= + + + + + +∑ ∑∑ ∑∑ ∑ ∑∑ . 

In the model, the process variables are assigned to the whole-plot and the 

mixture components are located in the subplot. Noise variables are not considered 

in the KCV design. For this example, we used the design with q = 3 mixture 

components and n = 2 process variables, which is given in Kowalski et al. (2002). 

Figures 1 and Figure 2 display the proposed design for the combined mixture-

process variable models with the first-order process variables and the second-

order process variables.  

 

FIGURE 1. Proposed Designs for a Split-Plot Structure to Support Fitting the 

Combined First-Order Mixture –Process Variable Model 
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FIGURE 2. Proposed Designs for a Split-Plot Structure to Support Fitting the 

Combined Second-Order Mixture –Process Variable Model 

 

In this example, we set r = 2 and then r = 3 to examine the effect of 

centroid replication and m = 4 to balance the number of runs in each subplot 

design for all cases, the first and second-order model in the process variables. The 

first-order process variable model is used to construct Figures 3, 4, and 5. Figure 

3 shows FDS plots for the design with m = 4 resulting in a balanced design. As r 

increases from 2 to 3, the maximum SPV has increased, indicating the same 

pattern as seen previously for all levels of the variance component ratio, d.  

However, the increase in r does not result in a significant change in the FDS plots. 

Since the proposed design uses m = 4 to balance the number of runs in the 
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centroid portions, the number of centroid data points are already sufficient to 

compensate for the effect of r replications. 

  

The centroid replication, however, is necessary to estimate the whole-plot 

errors. Thus, we suggest a small number of replicates at the centroid to reduce the 

prediction variance.  

 

FIGURE 3. FDS for KCV Design using First-Order Process Variables with 

Centroid Replication, r 
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As seen in Figure 3 (a) and (b), the FDS plot slightly shifts upward, but 

the maximum SPV decreases as the variance component ratio, d, increases. The 

slopes are stable for large portions of fractions of design space, and are radically 

increased in small fractions. These increases are smaller as d increases. The 

whole-plot space does not significantly affect the behavior of SPV values and 

SPV values are highly dependent on the subplot design space. The sliced FDS 

plots are useful to see the specific effect of the whole-plot design space.  

Figure 4 shows the sliced FDS plots at different variance component ratios. 

In each graph, sliced FDS plots with a whole-plot design space shrinkage level 

and a global FDS plot are displayed. As d increases, it is clear that the maximum 

SPVs within each shrinkage level are decreased and the minimum SPVs are 

increased, resulting in flatter slopes. In particular, when the whole-plot design 

points are from the outermost region (shrinkage = 1.0), we can see a significant 

change of maximum SPV, minimum SPV, and slope. Figure 5 confirms this 

analysis.  FDS plots are only slightly affected by the variance component ratio 

while the whole-plot design space is small (or shrinkage level is low). Figures 4 

and 5 show that the FDS plots are stable for high variance component ratio level 

(d > 2.0), while the shrinkage level of the whole-plot spaces are lower than 0.7.  

Now the second-order process variable model is analyzed using the global 

FDS plot and sliced FDS plots. In this example, we can see the SPVs are not 

always increasing as the shrinkage level increases. The second-order terms in the 

process variables produces an SPV with a minimum value at middle of shrinkage 

level.   



  39 

 

FIGURE 4. Sliced FDS for KCV Design using First-Order Process Variables with 

Different Shrinkage Levels 
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FIGURE 4. Sliced FDS for KCV Design using First-Order Process Variables with 

Different Shrinkage Levels (continued) 
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FIGURE 4. Sliced FDS for KCV Design using First-Order Process Variables with 

Different Shrinkage Levels (continued) 

 

 

FIGURE 5. Sliced FDS for KCV Design using First-Order Process Variables with 

Variance Component Ratio, d 
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FIGURE 5. Sliced FDS for KCV Design using First-Order Process Variables with 

Variance Component Ratio, d (continued) 
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FIGURE 5. Sliced FDS for KCV Design using First-Order Process Variables with 

Variance Component Ratio, d (continued) 
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FIGURE 6. FDS for KCV Design using Second-Order Process Variables with 

Centroid Replication, r 

 

The second-order process variable model is used to construct Figures 6, 7, 

and 8. As shown in Figure 6, the minimum SPV decreased slightly while the 

maximum SPV has increased, indicating the same pattern as seen previously for 

all levels of the variance component ratio, d, as r increased from 2 to 3. However, 
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the increase of r did not result in significant changes in the FDS plots. As seen in 

Figure 6 (a) and (b), it is clear that the FDS plot is going to be flat as the variance 

component ratio, d, increases. The minimum SPV increases while the maximum 

SPV decreases as d increases. If the whole-plot error is larger than the subplot 

error (d > 1), then the SPVs tend to be stable over the entire design space, which 

is preferable in most cases. Therefore, the split-plot structure for the mixture-

process variable design problem results in stable prediction variance although it 

provides slightly higher SPVs for smaller fractions of the design space.  

Since the number of centroid replicates does not significantly affect the 

prediction variance for the example, we examined sliced FDS plots with r = 2. 

The sliced FDS plots are shown in Figure 7 and Figure 8 and categorized by the 

shrinkage level and the variance component ratio, respectively. For the FDS plot 

with different shrinkage levels, it is obvious that the overall SPV values decrease 

as the shrinkage level increases up to 0.7, and then rapidly increases for all 

variance component ratios, d. This is due to the characteristic of a second-order 

model involving process variables. If we investigate the process variables without 

mixture components, SPV has its lowest value at a shrinkage level of 

approximately 0.7, high values in the small design space, and the highest value at 

the 1.0 shrinkage level, which is the outer region of whole-plot. Figure 7 

illustrates that the whole-plot space has more effect on the SPV value as the 

variance component increases. This is evident because the FDS plots are flat and 

far apart from each other as d increases.  
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FIGURE 7. Sliced FDS for KCV Design using Second-Order Process Variables 

with Different Shrinkage Levels 
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FIGURE 7. Sliced FDS for KCV Design using Second-Order Process Variables 

with Different Shrinkage Levels (continued) 
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FIGURE 7. Sliced FDS for KCV Design using Second-Order Process Variables 

with Different Shrinkage Levels (continued) 

 

 

FIGURE 8. Sliced FDS for KCV Design using Second-Order Process Variables 

with Variance Component Ratio, d 
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FIGURE 8. Sliced FDS for KCV Design using Second-Order Process Variables 

with Variance Component Ratio, d (continued) 

  



  50 

 

FIGURE 8. Sliced FDS for KCV Design using Second-Order Process Variables 

with Variance Component Ratio, d (continued) 

 

The subplot space has an effect on the SPV value when there is no whole-

plot error (i.e., d = 0). Therefore, if we did not consider a split-plot structure for 

this example and the whole-plot error exists, the prediction variance is poorly 
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estimated over a large range. Figure 8 displays the clear effect of whole-plot 

shrinkage levels. As seen in the sliced FDS plots, the small shrinkage level 

provides more stable and lower SPV values for all variance component ratios, d. 

The slopes of the FDS plot are going to be steeper as the shrinkage level increases 

yielding increased maximum of SPV value when d is less than 2.0. The FDS plots 

shift down and up as the shrinkage level increases while the slopes remain stable 

when d is greater than 2.0.  

 

Example 3: Design Evaluation using the FDS Plot 

Goos and Donev (2007) suggested tailor-made D-optimal split-plot 

designs for experiments with mixture and process variables. They used the point 

exchange algorithm with a specified set of candidate design points and a 

candidate set free algorithm with JMP 7.0 by SAS Institute Inc. (2007). They 

benchmarked their design with the design for the vinyl-thickness experiment 

proposed by Kowalski et al. (2002) and showed that D-optimal designs are 

superior to the benchmarked design in terms of optimal design criteria, such as D-, 

A-, G-, and V-efficiency. However, these optimality criteria are single number 

values and not entirely sufficient to explain all of the characteristics of prediction 

variance in the design space. In this example, we used FDS plots to evaluate the 

designs in terms of prediction variance over the entire design region. As shown in 

Figure 9, the D-optimal designs have relatively flat slopes in the FDS plot 

indicating a stable variance pattern over almost the entire design space for all 

levels of variance component ratio, d.  
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FIGURE 9. FDS Plots for Design Evaluation for Vinyl-Thickness Experiment 
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FIGURE 9. FDS Plots for Design Evaluation for Vinyl-Thickness Experiment 

(continued) 

 

As shown in Figure 9 (a), however, the KCV design has small prediction 

variance values over 1/3 of the design space when d is small (0.1). However G-

efficiency indicates that the D-optimal design is 153% more efficient than the 

KCV design. This shows that the KCV design has small prediction variance in 

some region of the design space when d is small (0.1). Also, these FDS plots show 

that the KCV design has stable prediction variance over 90% of the design space 

and only 10% of the design space has large prediction variance, which produces 

the poor G-efficiency. If the practitioner is interested in small prediction variance 

with some specified area in design space, then the KCV design is a good 

alternative. Furthermore, the FDS plots provide graphical support for the result of 

G-efficiency. Figure 9 (b) and (c) shows that there is little difference between D-

optimal designs and the KCV design in the FDS plot slope, which is equivalent to 
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the optimality criteria result used in Goos and Donev (2007). Figure 9 illustrates 

that D-optimal designs by Goos and Donev (2007) and JMP have almost identical 

FDS plots for all variance component ratio levels. The D-optimal designs are not 

affected by the increase in d while the FDS plot of the KCV design is notably 

influenced. As d increases, the slope is flattened and the maximum of SPV is 

decreased. We conclude that the D-optimal designs suggested by Goos and Donev 

(2007) and JMP are robust for the extent of correlation within whole-plot from the 

viewpoint of prediction variance.  

 

Conclusion 

In this chapter, we have examined split-plot designs for mixture-process 

variable design problems and demonstrated the different results that can be 

obtained between completely randomized designs and split-plot designs using 

REML to estimate the whole-plot error and subplot error. In the example, we 

showed that the estimates of model parameter are equivalent if the design is 

balanced and the subplot designs are orthogonal. However, the statistics of the 

significant test for the factors are erroneous if restricted randomization problem is 

not considered in the analysis. We also implement the FDS plot to evaluate the 

mixture-process variable design within a split-plot structure. FDS plots provide 

visual information about the range of SPV values throughout the design space. 

We show the influence of the variance component ratio, d, on FDS plots. In the 

split-plot design, the prediction capability depends not only on the design and 

model, but also on the variance of the fitted model. If whole-plot effect on the 
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design is not considered in the analysis, the prediction variance from the fitted 

model cannot be precisely estimated. Sliced FDS plots are very useful to 

understand the distribution of SPV in the whole-plot and subplot spaces. They 

provide information regarding which of the two design space contributes more to 

the SPV values. The contribution on the SPV depends on the coefficient of each 

term in the model and the number of variables from each design space. 
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CHAPTER 4 

MIXTURE-PROCESS VARIABLE EXPERIMENTS INCLUDING 

CONTROL AND NOISE VARIABLES WITHIN A SPLIT-PLOT 

STRUCTURE 

In mixture-process variables experiments, it is common that the 

experimental runs are larger than the mixture-only design or basic experimental 

design to estimate the increased coefficient parameters due to the mixture 

components, process variable, and interaction between mixture and process 

variables, some of which are hard to change or cannot be controlled under normal 

operating condition. These situations often prohibit a complete randomization for 

the experimental runs due to the time or financial reason. These types of 

experiments can be analyzed in a model for the mean response and a model for 

the slope of the response within a split-plot structure. When considering the 

experimental designs, low prediction variances for the mean and slope model are 

desirable. We demonstrate the methods for the mixture-process variable designs 

with noise variables considering a restricted randomization and evaluate some 

mixture-process variable designs that are robust to the coefficients of interaction 

with noise variables using fraction design space plots with the respect to the 

prediction variance properties. Finally, we create the G-optimal design that 

minimizes the maximum prediction variance over the entire design region using a 

genetic algorithm. 
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Introduction 

In mixture-process variable designs (MPDs), the process variables can be 

categorized into two types: variables that are controllable and directly affect the 

response, and variables that are uncontrollable and primarily affect the variability 

of the response. Myers et al. (2009) call these factors control factors and noise 

factors (or noise variables), respectively. We assumed that noise variables are 

controllable in a special laboratory environment for the purpose of conducting 

experiments. When production is moved from the laboratory to the manufacturing 

environment, noise factors are not necessarily controllable in the normal operation 

of the process. Consequently, it is important to consider noise variables at the 

design stage of the process. The model containing both noise variables and 

control factors can be used to determine factor settings for the control factor that 

makes the response “robust” to the variability transmitted from the noise factors. 

This type of study is called “robust parameter design”. See Borror et al. (2002), 

Myers et al. (2009) and Montgomery (2009) for details and summaries. The 

MPDs with noise variables were developed by Steiner and Hamada (1997), 

Goldfarb et al. (2003), and Goldfarb et al. (2004c).  

The number of runs for MPDs is likely to increase dramatically as the 

number of process variables increase. Furthermore, while noise variables are 

controllable in the laboratory environment, usually these variables are difficult to 

adjust and control. In designing experiments, randomization is an important 

requirement underlying the use of statistical methods. However, if it is difficult or 

expensive to change the levels of some factors, it is impractical to perform the 
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experiments in a completely randomized order. In this situation, restrictions on 

the randomization of experimental runs are necessary resulting in a split-plot 

structure, as described by Box and Jones (1992). Cho et al. (2009) developed 

graphical evaluation techniques for the MPD within a split-plot structure; 

however, the authors did not consider robust parameter design for noise variables. 

In this chapter, we considered robust parameter design for MPD with noise 

variables using a split-plot structure for the noise variables, which are assumed to 

be hard-to-change.  

To evaluate the prediction capability of a design for MPD with noise 

variables within the split-plot structure, we considered scaled prediction variance 

(SPV) for the process mean and the variance of the slope of the response surface 

in the direction of each noise variable and used the covariance matrix which is a 

function of the whole-plot (WP) variance and sub-plot (SP) variance with respect 

to the variance component ratio, d. We evaluate the SPV values for the mean and 

slope models using fraction of design space (FDS) plots, introduced by Zahran et 

al. (2003).  

Design generation and comparison are often carried out using the design 

optimality criteria, such as D-optimality, G-optimality, A-optimality, and I-

optimality. See Myers et al. (2009) for detailed discussion on design optimality. 

When prediction variance is of primary interest, optimality criteria such as G-

optimality and I-optimality are considered. Commercial statistical packages such 

as JMP or Design-Expert provide the I-optimality criteria for generating designs. 

There is no commercial software for constructing G-optimal designs. Goldfarb et 
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al. (2005) and Chung et al. (2007) create G-optimal designs for mixture-process 

variable design with control and noise variables using a restricted form of a 

genetic algorithm (GA) (no mutation occurred). Rodriguez et al. (2009) generate 

G-optimal designs using a full GA, but no mixture variables are considered in the 

design.  

We develop the prediction variance models for the MPDs with noise 

variables within a split-plot structure and introduce simplified prediction 

capability to compare designs. We then demonstrate the use of modified FDS 

plots to evaluate various designs with examples. In generating the optimal design, 

we considered G-optimality for mixture-process variable designs with control and 

noise variables within a split-plot structure. We compare the new G-optimal 

design with other computer-generated optimal designs and G-optimal designs 

generated by Goldfarb et al. (2005) in terms of maximum prediction variance. 

Finally, we show a graphical analysis of the different designs using the VRFDS 

plot.  

 

Notation and Model 

Assume that the mixture components xi and the controllable process 

variables wp are the SP factors. The noise variables zt are the WP factors. 

Furthermore, we suppose that there are p mixture components (xi, i = 1, 2, … , q), 

c controllable variables (wj, j = 1, 2, … , c), and q noise variables (zt, t = 1, 2, … , 

n). The process variables are assumed to be continuous. Also suppose that there 

are m mixture terms, where m is a function of the number of the mixture 
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components and the degree of the model. We will focus on the quadratic mixture 

model. A response can be represented as a function of m mixture terms in 

quadratic mixture model form, q continuous noise variables, and c continuous 

controllable variables. The model can be written as  

( , , )= ( ) ( , )w wp s spy f f fβ δ β ε′ ′= + + +x w z z x,w z ,                              (7) 

where wpβ is a vector of coefficients from the WP variables, spβ is a vector of 

coefficients  from the SP variables, 2~ (0, )N δδ σ  comes from the WP 

randomization level and represents the random error term of the WP factors alone, 

and 2~ (0, )Nε σ  comes from the SP randomization level and represents the 

random error term from the SP. The random components δ and ε are assumed to 

be independent. However, the WP terms, ( )w t wpf β′z , can be removed since the 

noise variables only affect the response through interacting with the mixture 

components. Then, Equation (7) can be written as  

     
( , , ) i i ij i j

i i j

ip i p ijp i j p
i p i j p

it i t ijt i j t
i t i j t

ipt i p t ijpt i j p t
i p t i j p t

y x x x

x w x x w

x z x x z

x w z x x w z

β β

α α

θ θ

λ λ δ ε

<

<

<

<

= +

+ +

+ +

+ + + +

∑ ∑∑

∑∑ ∑∑∑

∑∑ ∑∑∑

∑∑∑ ∑∑∑∑

x w z

         .            

(8) 

This model is exactly the same as in Goldfarb et al. (2003) except that it 

has two different sources of error, WP and SP errors and we assume that all noise 

variables are in the WP. Equation (8) can be expressed in matrix form as   
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( , , )Y f δ ε′ ′ ′ ′= + +x w z = x β + xΑw + xΘz + xΛΞz                     (9) 

where  
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Ξ . 

x is the m × 1 vector which consist of all mixture model terms including higher 

order terms, w is the  c × 1 vector  of controllable variables, and z is the n × 1 

vector of noise variables. β is the m × 1 vectors coefficient matrix for mixture 

model terms, A is the m × c coefficient matrix for the mixture by controllable 

variable interactions and Θ is the m × n coefficient matrix for the mixture by 

noise variable interactions. Λ is the m × cn coefficient matrix for interactions 

involving mixture components, controllable variables, and noise variables. Finally, 
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Ξ is a cn × n block-diagonal matrix whose columns contain the w elements and 

blocks of 0s. We assume that δ + ε has mean 0 and variance–covariance matrix V 

which is a function of the WP variance 2
δσ  and the SP variance 2

εσ .The 

covariance matrix of the response is then given by 

2 2 2[ ]dδ ε εσ σ σ= + = +V J I J I ,        (10) 

where 

1 1

2 2

0 0

0 0

0 0
wp wp

n n

n n

n n

′⎡ ⎤
⎢ ⎥′⎢ ⎥= ⎢ ⎥
⎢ ⎥

′⎢ ⎥⎣ ⎦

1 1

1 1
J

1 1

, 
2

2d δ

ε

σ
σ

= (the variance component ratio), 

and ૚௡೔  is the vector of 1s with length ni (i=1, … ,wp), which is the number of SP 

runs within each WP. When the design is balanced (the number of sub-plots in 

each whole-plot is the same), the inverse of the covariance matrix V can be 

written as 

1 2

1
d
dkεσ− − ⎛ ⎞= −⎜ ⎟+⎝ ⎠

V I J  

where k is the number of sub-plots in each whole-plot and JJ=kJ. We can prove 

this result by directly multiplying Equation (10) by this inverse matrix to obtain 

the identity matrix. This inverse matrix form reduces the computing time when 

we generate the optimal design using GA.  

 

Robust Parameter Design for Noise Variables within a Split-Plot Structure 

The expected value and variance of y can be found using the delta method, 

which utilizes a Taylor series expansion of the model around the mean of z. 
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Assume that the noise variables are uncorrelated, the model errors (δ and ε) are 

uncorrelated and independent, and the noise variables and the mixture 

components are uncorrelated with each other. Expanding ( , , )f x w z  using a first-

order Taylor series around z =0 yields 

, 

where R is the remainder term comprised of higher order terms in the Taylor 

series expansion. Considering the model in two sub-models (the WP model and 

SP model), then equation (9) can be categorized into two sub models, 
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and a first-order Taylor series is given by 
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where 
1 2

2 2 2( , , , )
nz z zdiag σ σ σ∑ =z  is an n×n diagonal matrix with the variance of 

the noise variables on the diagonal and 0 elsewhere. Since the noise variables are 

coded by the low and high level at ±σnoise, we can obtain 2
izσ =1. Ez(y) and Varz(y) 

( , , )( , , ) ( ) ff R δ ε∂′= + + + +
∂ z=0

x w zy x w 0 z - 0
z
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are obtained by taking conditional expectation of y(x,w,z) with respect to the 

noise variables z and the random errors, δ and ε.  

( ) (0) ( , ,0)z w sE f f ′ ′= + =y x w x β + xΑw      (11) 

[ ] [ ] 2 2Var ( )z δ εσ σ′′ ′ ′ ′ ′ ′= ∑ + +zy Θ x +ΞΛ x Θ x +ΞΛ x  ,  (12) 

since ( )wf∂ =
∂ z=0

z 0
z

 and ( , , )sf∂ ′ ′ ′=
∂ z=0

x w z Θ x +ΞΛ x
z

.  

Borror et al. (2002) focused on the vector of partial derivatives of 

( , , )f x w z  with respect to the noise variables z. It is the slope of the response 

surface in the direction of the noise variables. Consequently, the response 

variance depends critically on the slope of the response model. 

For the mean and variance model, the noise variables are treated as 

random effects for the purpose of deriving the mean and variance expressions. In 

the experimental environment, however, noise variables can be controlled, 

although they are uncontrollable in the normal operating environment. Therefore, 

they are commonly treated as fixed effects in robust parameter design and process 

robustness studies. Numerical optimization methods can be used to minimize the 

response variance while keeping the mean on a desired target. This provides the 

levels for the mixture and process variables that are robust to the noise variables 

in the operational setting.  

 

  



  65 

Example 1: Soap Manufacturing 

Recall the soap manufacturing process experiment from Goldfarb et al. 

(2003). In this example, there are three ingredients in the process, soap(x1), co-

surfactant(x2), and filler(x3). The ingredients have the following constraints; 

1

2

3

1 2 3

0.20 0.80
0.15 0.50
0.05 0.30

1

x
x
x

x x x

≤ ≤
≤ ≤
≤ ≤

+ + = .

 

Two process variables are also considered; the plodder temperature (z1) and 

mixing time (w1). The plodder temperature ranges from 15°C to 25°C while 

mixing time (w1) ranges from 0.5 hour to 1 hour. The process variables are coded 

with low and high levels (-1, 1) in this example. The plodder temperature (z1) is 

treated as a noise variable in Goldfarb et al. (2003). In this experiment, we also 

assume that temperature is hard-to-change. The mixing time (w1) is a controllable 

variable that is easy-to-change. Since the plodder temperature (z1) is the only 

hard-to-change factor, it is assigned to the WP. The mixture variables and the 

controllable variable are assigned to the SP. Response data were simulated using 

the original model, but now including two different sources of errors, whole plot 

error and subplot error. Usually, the whole plot error variance is larger than the 

subplot error variance as shown by Box and Jones (1992). Vining et al.  (2005) 

studied a split-plot experiment and estimated the variances using pure error 

indicating larger whole plot error variance than subplot error variance (d > 1). We 

generated data with d = 5.0 to examine the effect of whole plot error variance on 
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the result of model fitting. The analysis with the split-plot structure shows that the 

suggested model is  

1 2 3 1 1 2 1 3 1

2 1 3 1 1 1 1 2 1 1 3 1 1

ˆ( , , ) 464.37 56.01 613.03 8.86 65.22 50.64
12.35 74.46 0.48 4.26 6.15

y x x x x w x w x w
x z x z x w z x w z x w z

= − + + + −
+ − − − +

x w z
. 

Using Equations (11) and (12), the mean and variance response functions for the 

mixture-process variables with a noise variable (z1) are estimated as 

1 2 3 1 1 2 1 3 1( ) 464.37 56.01 613.03 8.86 65.22 50.64E Y x x x x w x w x w= − + + + −  

and 

1

2 2 2 2
2 3 1 1 2 1 3 1ˆ ˆ ˆVar( ) (12.35 74.46 0.48 4.26 6.15 )zY x x x w x w x w δ εσ σ σ= − − − + + + , 

where 
1

2ˆ zσ =1 since the noise variables are coded by the low and high level at 

±σnoise , and the variance components, 2ˆδσ =4.44 and 2ˆεσ =0.81,  are estimated via 

the REML method. 

In this process robust study, we need to minimize the value for the 

variance while concurrently maximizing the response for the mean. This dual 

optimization problem can be solved using the desirability function approach over 

the ranges of response for mean and variance model within the design.  The 

suggested optimal levels are soap(x1) = 0.8, co-surfactant(x2) = 0.15, and filler(x3) 

= 0.05 with mixing time (w1) = 1 hour. The predicted mean output at this optimal 

level is 407.29 with a standard deviation of 3.26. When analyzed as a completely 

randomized design we find the same optimal setting for the design factors with 

the same predicted mean output and the same standard deviation because 

variances from whole-plot and sub-plot are added to the variance of total random 
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error. Also, we noticed the model coefficients using OLS are same as the values 

using GLS since the design satisfied the conditions for OLS-GLS equivalence 

developed by Vining et al. (2005).   

 

Covariance Matrix of the Coefficients for the Model 

The prediction variance for the mean model is suggested as the design 

evaluation criteria by Borror et al. (2002). This prediction variance includes the 

error in estimating the model parameters and the variability transmitted by the 

noise variables when the new value of y is observed. In the split-plot structure, the 

constant variance assumption is not valid and we consider generalized least 

squares to estimate the model coefficients β*. Then, the covariance matrix of the 

estimated coefficients β*, with the split-plot structure is given by 

( ) ( )( )1 1
* 2 2( )Var ε δσ σ

− −
−′ ′= = +* 1 * * -1 *β X V X X R X , 

where the matrix X* contains all columns representing the proposed model, the 

vector β* contains the parameters in the fitted model, and R is the correlation 

matrix resulting from dividing the covariance matrix V by 2 2
ε δσ σ+ . The 

correlation matrix R can be written using variance component ratio d, as 

[ ] [ ]
( )

[ ]
( )

2 2

2 2 2 1 1
d d d

d d
ε ε

ε δ ε

σ σ
σ σ σ

= = =
+ + +
J + I J + I J + I

R . 

The variance-covariance matrix is important in estimating prediction 

variance for both the mean model and the slope model. Borror et al. (2002) 

defined the matrix C, which is made of several sub-matrices for the variances of 
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each coefficient. Goldfarb et al. (2004c) extended this C matrix to include mixture 

components and process variables.  For the split-plot structure, we modified this 

matrix including the correlation matrix given by 

( )

11
* 1 * * *1

1 1
d

d dk

−−
− ⎡ ⎤⎛ ⎞⎡ ⎤′ ′= = −⎜ ⎟⎢ ⎥⎣ ⎦ + +⎝ ⎠⎣ ⎦

C X R X X I J X
, 

where the structure of C is exactly same as the C matrix defined by Goldfarb et al. 

(2004c) except that C includes the correlation matrix for the model. The order of 

the variables in the sub-matrices of C must be followed carefully. The ordering 

for the process and noise variables is shown in Figure 10.  

 

 

FIGURE 10. The Structure with Sub-Matrix of 
1

* 1 *
−

−⎡ ⎤′=
⎣ ⎦

C X R X  
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Scaled Prediction Variance for the Mean Model 

The prediction variance is an appropriate measure for evaluating a design 

with respect to the prediction capability. This prediction variance contains the 

variance in estimating the model parameters and the variance due to the noise 

variables when new observation, y, is estimated.  The prediction variance of the 

fitted response model is given by 

[ ] ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( )

2 2 11 22

.

2

2 2 11 22

2

ˆVar ( , , )

2

z

z

y ε δε

ε δ

σ σ

σ

σ σ

σ

⎡ ⎤′′+ +⎢ ⎥⎣ ⎦
′′ ′ ′ ′ ′ ′+

⎡ ⎤′′= + +⎢ ⎥⎣ ⎦
′ ′ ′ ′ ′ ′ ′+ + +

z
x w z = x C x xw C xw

Θ x +Ξ Λ x Θ x +Ξ Λ x

x C x xw C xw

xΘΘ x xΛΞΘ x xΛΞΞ Λ x ,     (13)

 

where [ ]1 1 1 1 1mc m c m cx w x w x w x w×
′=xw . Then the prediction 

variance can be written as  

[ ] ( ) ( ) ( )2 2 11 22

.

1 1 1

1 1 1 1

1 1 1 1 1

ˆVar ( , , )

m m n

i j ip jp
i j p

m m c n

i j p ir ipr
i j p r

m m c c n

i j p r ips irs
i j p r s

y

x x

x x w

x x w w

ε δε
σ σ

θ θ

θ λ

λ λ

= = =

= = = =

= = = = =

⎡ ⎤′′+ +⎢ ⎥⎣ ⎦

+

+

+

∑∑∑

∑∑∑∑

∑∑∑∑∑

z
x w z = x C x xw C xw

.   (14)

 

Borror et al. (2002) and Goldfarb et al. (2004c) suggested defining the element of 

the matrix of coefficients as multiples of the process standard deviation. In the 

split-plot design, we define these matrices as multiples of the subplot standard 
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deviation. (i.e., ij ijk εθ σ=  and ijk ijkk ελ σ= ). Equation (14) can be written in the 

form 

[ ] ( ) ( ) ( )2 2 11 22

.

2

1 1 1

2

1 1 1 1

2

1 1 1 1 1

ˆVar ( , , )

m m n

i j ip jp
i j p

m m c n

i j p ir ipr
i j p r

m m c c n

i j p r ips irs
i j p r s

y

x x k k

x x w k k

x x w w k k

ε δε

ε

ε

ε

σ σ

σ

σ

σ

= = =

= = = =

= = = = =

⎡ ⎤′′+ +⎢ ⎥⎣ ⎦

+

+

+

∑∑∑

∑∑∑∑

∑∑∑∑∑

z
x w z = x C x xw C xw

.   (15)

 

If we assume that the noise variables equally influence the response, then 2ij ak k=  

and 2ijk bk k=  as denoted by Goldfarb et al. (2004c). The constant k2a and k2b 

represent the contribution of mixture-noise interactions and the mixture-process-

noise interactions, respectively. The resulting prediction variance equation is 

[ ] ( ) ( ) ( )

( )

2 2 11 22

.

2 2 2
2 2 2 2

ˆVar ( , , )

              2a m m a b m n cn m b m cn cn m

y

nk nk k nk

ε δε

ε

σ σ

σ

⎡ ⎤′′+ +⎢ ⎥⎣ ⎦
′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + +

z
x w z = x C x xw C xw

x 1 1 x x 1 1 Ξ 1 1 x x 1 1 ΞΞ 1 1 x
, (16) 

where 1i (i=m, n, and cn) is the vector of 1s with length i.    

In the design comparison, it is convenient to scale the prediction variance. 

The division by ( )2 2
ε δσ σ+ provides a scale-free measure for design comparison 

and multiplication by N penalizes lager designs. Using the variance component 

ratio 2 2d δ εσ σ= , the scaled prediction variance can be written as  

[ ]
( ) ( ) ( )

( )

11 22.
2 2

2 2
2 2 2 2

ˆVar ( , , )

           2
1 a m m a b m n cn m b m cn cn m

N y
N

Nn k k k k
d

ε

ε δσ σ
⎡ ⎤′′= +⎢ ⎥⎣ ⎦+

′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + +
+

z
x w z

x C x xw C xw

x 1 1 x x 1 1 Ξ 1 1 x x 1 1 ΞΞ 1 1 x

.       (17) 
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The scaled prediction variance is a function of a proposed model, design matrix, 

and the contribution of interactions containing noise variables. Furthermore, the 

prediction variance depends on the variance component ratio, d, in the split-plot 

design structure.  

 

Variance for the Slope 

Borror et al. (2002) note that the vector [ ′ ′ ′Θ x +ΞΛ x ] is a vector of the 

partial derivatives of the response surface with respect to the noise variables and 

represents the slope of the response surface in the direction of the noise variables. 

In a precision of estimation associated with the variance model, the variance of 

slope provides a direct measurement with same unit as the variance for the mean 

model. Murty and Studden (1972), Myers and Lahoda (1975), and Mukurjee and 

Huda (1985) give more detailed results focusing on the importance of the slope of 

response surface. 

A general form for the variance of the slope in direction zi (i = 1, 2, … , n) 

is developed by Goldfarb et al. (2004c). We rewrite the variance models using 

matrix notation. This matrix notation is simple and easy to be used in the 

computer program coding. The matrix form for the variance of the slope in each 

noise variable direction is as follows: 

( ){ }2 2 33 44 34Var (slope) ( ) ( ) 2 ( )
iz i i iε δσ σ ′ ′ ′= + + ⊗ ⊗ + ⊗x C x x w C x w x C x w

,
 

where (i = 1, 2, … , n),  
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33 33
( 1) 1, ( 1) 1 ( 1) 1,

33

33 33
, ( 1) 1 ,

m i m i m i mi

i

mi m i mi mi

C C

C C

− + − + − +

− +

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

C , 

34 34
( 1) 1, ( 1) 1 ( 1) 1,

34

34 34
, ( 1) 1 ,

m i mc i m i mci

i

mi mc i mi mci

C C

C C

− + − + − +

− +

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

C , 

and 

44 44
( 1) 1, ( 1) 1 ( 1) 1,

44

44 44
, ( 1) 1 ,

mc i mc i mc i mci

i

mci mc i mci mci

C C

C C

− + − + − +

− +

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

C . 

As mentioned by Borror et al. (2002), the single subscript on the sub-matrix C is 

the noise variable for which the slope variance is computed. In design comparison 

for split-plot design, it is more convenient to make the quantity scale-free and 

penalize large design by dividing by ( )2 2
ε δσ σ+  and multiplying by N.  Then, the 

scaled variance for the slope is given by 

( ) { }33 44 34
2 2

Var (slope)
( ) ( ) 2 ( )iz

i i i

N
N

ε δσ σ
′ ′ ′= + ⊗ ⊗ + ⊗

+
x C x x w C x w x C x w . 

 

Design Evaluation with Noise Variables Considering the Split-Plot Structure 

As shown in Equations (13) to (17), the prediction variance for the mean 

model can be separated into the variance in estimating the mean model parameters 

and the variance due to the noise variables when the new observation, y, is 

observed.  The variance associated with estimating the model parameters is a 

function of the proposed model and the design. However, the variance arising 

from the noise variables is a function of a proposed model and the coefficients of 

parameters containing noise variables. In other words, the design matrix does not 

affect the variance part from the noise variables. Therefore, the noise variables do 

not affect the design comparison with the mean model. Then, a simplified scaled 
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prediction variance, which only contains the variance in estimating the model 

parameters, is an alternative evaluation criterion for design comparison. The 

simplified prediction variance is given by  

( ) ( )11 22Simplified SPV N ⎡ ⎤′′= + ⊗ ⊗⎢ ⎥⎣ ⎦
x C x x w C x w . 

This simplified SPV is not the same unit of prediction variance for the model only 

including mixture components and controllable process variables, but the value 

including noise variables in the design matrix X. Since it is free from the levels of 

the interaction including noise variables, we can reduce the terms for the 

contribution of mixture-noise interactions and the mixture-process-noise 

interactions, k2a and k2b . However, this simplified scaled prediction variance does 

not reflect the effect from noise variables such as transmitted variance due to the 

noise factors. When we consider variance from noise variables, the variance for 

the slope is a good measure, but it only provides the variability for the noise 

variable. Therefore, for combined comparison considering both the variance in 

estimating the mean model parameters and the variance due to the noise variables, 

we suggest the modified criterion of total prediction variance (TPV) given by 

( ) ( )11 22

33 44 34

1

TPV

( ) ( ) 2 ( )
n

i i i i
i

ρ
=

′′= + ⊗ ⊗

′ ′ ′⎡ ⎤+ + ⊗ ⊗ + ⊗⎣ ⎦∑

x C x x w C x w

x C x x w C x w x C x w
, 

where iρ is 0 if a noise variable is not considered or 1 if a noise variable is 

considered in comparing variance in estimating parameters. Another criterion for 

comparing designs is the ratio of the variance in estimating parameters and 
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variance for slope of noise variables. Let τ equal the variance of the slope divided 

by the variance in estimating parameters. The form of ratio is 

( ) ( )

33 44 34

1

11 22

( ) ( ) 2 ( )
n

i i i i
i

ρ
τ =

′ ′ ′⎡ ⎤+ ⊗ ⊗ + ⊗⎣ ⎦
=

′′ + ⊗ ⊗

∑ x C x x w C x w x C x w

x C x x w C x w
.    (18) 

This ratio indicates the magnitude of the variance from the noise variables relating 

to the variance from the mean model. In robust parameter design, it is usually 

preferred to have small values of this ratio because the goal of robust parameter 

design is to reduce the variation from the noise factors. We can graphically 

evaluate both criteria with the FDS plot.  

 

Example 2: Design Comparison for Soap Manufacturing  

Consider the soap manufacturing used in Example 1. Various designs 

could be used to estimate the model parameters. Goldfarb et al. (2004c) generate 

the three experimental designs shown in Table 4 for design evaluation.  

 

TABLE 4. Three Experimental Designs for the Soap Manufacturing Experiment 

Design Code Description 

A 
A 20 run design using 5 run D-optimal design for mixture components 
generated by Design-Expert 6.0 at each design point of a 22 factorial 
design for the process and noise variables 

B 
A 20 run D-optimal design with 8 lack-of-fit points generated by 
Design-Expert 6.0  

C 
A 20 run D-optimal design with 4 lack-of-fit points and 4 replicates 
generated by Design-Expert 6.0  
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These were intended as completely randomized designs. We will evaluate them as 

if they were conducted as split-plots. The FDS plots over varying levels of the 

variance component ratio d for the total prediction variance and prediction 

variance ratio with these three designs are shown in Figure 11. The FDS plots for 

the total prediction variance show that when there is no WP error (variance 

component ratio d =0), design A has relatively superior prediction properties for 

the total prediction variance, as shown by the consistently lower and flatter slope 

when compared to other designs. As d increases, however, design B and C are 

preferred because they have lower total prediction variance for the entire design 

region. In the analysis of the total prediction variance, the FDS plots for design B 

and C do not show any distinguishable difference while they are noticeably 

different in the prediction variance ratio properties. Therefore we recommend 

using both graphs to compare design. For example, if the experimenters are 

interested in minimizing total variability for prediction in estimating parameters 

and transmitted from noise variables, total prediction variance properties should 

be considered for comparing designs. The FDS plots for prediction variance ratio 

are good alternatives when experimenters are interested in reducing variation 

transmitted from the noise variables over the variance in estimating parameters. 

For the prediction variance ratio, design A has the value unity for the entire 

design space for all levels of variance component ratio. The value of unity for this 

ratio means that the variance in estimating parameters and the variance 

transmitted from the noise variables are exactly the same, and not influenced by 

the levels of d. It is a very special condition that the ratio equals one.  
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FIGURE 11. FDS Plot of Total Prediction Variance and Ratio for Example 2  
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FIGURE 11. FDS Plot of Total Prediction Variance and Ratio for Example 2 

(continued) 
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FIGURE 11. FDS Plot of Total Prediction Variance and Ratio for Example 2 

(continued) 
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FIGURE 11. FDS Plot of Total Prediction Variance and Ratio for Example 2 

(continued) 
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From Equation (18), we notice that if the covariance matrices for mixture terms 

and mixture-noise variable interaction terms at each noise variable direction are 

the same, the covariance matrices for mixture-process interaction terms and 

mixture-process-noise variable interaction terms at each noise variables direction 

are the same, and the covariance between mixture-process variables and mixture- 

variation transmitted from each noise variable are the same. In other words, if the 

proposed model for the mean model is the same as the slope of the response 

surface in the direction of the noise variables and the controllable variables are 

orthogonal in each SP, then the prediction variance ratio equals the number of 

noise variables in the proposed model.  

 

G-Optimal Design using Genetic Algorithms 

 The most well known optimality criterion is D-optimality, which is based 

on the concept that the experimental design should be selected to maximize the 

determinant of the moment matrix. Design criteria which focus on the prediction 

variance include G-optimality, V-optimality, I-optimality. G-optimality focuses on 

the design which provides the minimum value from the maximum prediction 

variance v(x) in the design space, given by 

Min Max ( )
R

v x
ζ ∈

⎡ ⎤
⎣ ⎦x .

 

If the variance is scaled by N, 100% G-efficiency is equal to the number of 

parameters in the model. Another prediction variance-oriented optimality is V-

optimality which considers the average prediction variance over the specific set of 
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points of interest in the design space. Another important design optimality 

criterion is I-optimality, for which prediction variance v(x) is averaged over the 

design region of interest R, given by 

1Min ( )
R
v d

Kζ ∫ x x  

where K is the volume of design region R.  

To generate the optimal design, we use a genetic algorithm (GA) 

combined with a desirability function, as suggest by Heredia-Langner et al. 

(2004). It considers the G-optimality criteria to minimize the maximum SPV as an 

individual desirability function given by 

1,

,

0,

i
t

i
i i

i

SPV L

U SPVd L SPV U
U L

SPV U

<⎧
⎪

−⎪⎛ ⎞= < <⎨⎜ ⎟−⎝ ⎠⎪
⎪ >⎩ ,

 

where iSPV  is the maximum SPV for the mean model and slope model, L and U 

are the minimum and maximum value for iSPV  obtained from D and I-optimal 

designs generated by JMP 7.0, t is a weight that controls the shape of the 

desirability function. Using this individual desirability functions, an overall 

desirability function was suggested, given by 

( )
1/

1/
1 2

1

mm
m

i m
i

D d d d d
=

⎛ ⎞= = ⋅⎜ ⎟
⎝ ⎠
∏ , 

where id  is the individual desirability function. If we consider SPV for the mean 

and slope with two noise variables, then m=3.  We use a GA written in JMP 7.0 
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script for this desirability function to produce a new design for the robust design 

problem considering the split-plot structure.  

 

Example 3: G-optimal design for Soap Manufacturing  

Recalling the soap manufacturing from example 1, Goldfarb et al. (2005) 

considered a model with quadratic mixture terms, a quadratic mixing time effect, 

and a linear effect of plodder temperature, shown by 

     

2 2

2 2

( , , ) i i ij i j
i i j

ip i p ijp i j p
i p i j p

it i t ijt i j t
i t i j t

ipt i p t ijpt i j p t
i p t i j p t

y x x x

x w x x w

x z x x z

x w z x x w z

β β

α α

θ θ

λ λ δ ε

<

<

<

<

= +

+ +

+ +

+ + + +

∑ ∑∑

∑∑ ∑∑∑

∑∑ ∑∑∑

∑∑∑ ∑∑∑∑

x w z

, 

where q=3, c=1, and n=1, using the same notation previously introduced for 

mixture variables, process variables and noise variables, respectively. This is 

slightly different from the original soap manufacturing example in that this model 

uses quadratic mixture terms and a quadratic process variable effect. Goldfarb et 

al. (2005) shows that the G-optimal design with N=30 has the largest 

improvement compared to the D-optimal design constructed from Design-Expert. 

We used the optimal design provided by Design -Expert, and the I-optimal design 

and the D-optimal design from JMP 7.0 as baseline designs to compare to the new 

G-optimal design. These designs are shown in Table 5 to 9. Since Goldfarb et al. 

(2005) did not consider the split-plot structure, these designs are only compared 

when the variance component ratio d=0.   
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 TABLE 5. GA Mean Model Optimized 30-Run Design by Goldfarb et al. (2005) 

X1 X2 X3 W1 Z1 
0.2 0.5 0.3 -1 -1 
0.2 0.5 0.3 -1 1 
0.2 0.5 0.3 0 -1 
0.2 0.5 0.3 0 1 

0.33 0.5 0.18 -1 -1 
0.38 0.33 0.3 -1 1 
0.38 0.33 0.3 0 1 
0.45 0.5 0.05 -1 -1 
0.45 0.5 0.05 -1 1 
0.45 0.5 0.05 0 -1 
0.45 0.5 0.05 0 1 
0.5 0.33 0.18 -1 -1 
0.5 0.33 0.18 -1 1 
0.5 0.33 0.18 0 -1 
0.5 0.33 0.18 0 1 

0.55 0.15 0.3 -1 -1 
0.55 0.15 0.3 -1 1 
0.55 0.15 0.3 0 -1 
0.55 0.15 0.3 0 1 
0.63 0.33 0.05 -1 -1 
0.68 0.15 0.18 -1 1 
0.68 0.15 0.18 0 -1 
0.68 0.15 0.18 0 1 
0.8 0.15 0.05 -1 -1 
0.8 0.15 0.05 -1 1 
0.8 0.15 0.05 0 -1 
0.8 0.15 0.05 0 1 

0.63 0.33 0.05 0 1 
0.68 0.15 0.18 0 -1 
0.68 0.15 0.18 0 1 
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TABLE 6. GA Slope Model Optimized 30-Run Design by Goldfarb et al. (2005) 

X1 X2 X3 W1 Z1 
0.2 0.5 0.3 -1 -1 
0.2 0.5 0.3 -1 1 
0.2 0.5 0.3 0 -1 
0.2 0.5 0.3 0 1 

0.33 0.5 0.18 -1 -1 
0.38 0.33 0.3 -1 1 
0.38 0.33 0.3 0 1 
0.45 0.5 0.05 -1 -1 
0.45 0.5 0.05 -1 1 
0.45 0.5 0.05 0 -1 
0.45 0.5 0.05 0 1 
0.5 0.33 0.18 -1 -1 
0.5 0.33 0.18 -1 1 
0.5 0.33 0.18 0 -1 
0.5 0.33 0.18 0 1 

0.55 0.15 0.3 -1 -1 
0.55 0.15 0.3 -1 1 
0.55 0.15 0.3 0 -1 
0.55 0.15 0.3 0 1 
0.63 0.33 0.05 -1 -1 
0.68 0.15 0.18 -1 1 
0.68 0.15 0.18 0 -1 
0.68 0.15 0.18 0 1 
0.8 0.15 0.05 -1 -1 
0.8 0.15 0.05 -1 1 
0.8 0.15 0.05 0 -1 
0.8 0.15 0.05 0 1 

0.63 0.33 0.05 0 1 
0.68 0.15 0.18 0 -1 
0.68 0.15 0.18 0 1 
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TABLE 7. D-optimal Split-Plot Design generated by JMP 7.0  

WP X1 X2 X3 W1 Z1 
1 0.45 0.5 0.05 -1 -1 
1 0.325 0.5 0.175 -1 -1 
1 0.8 0.15 0.05 -1 -1 
1 0.62181 0.32819 0.05 0 -1 
1 0.2 0.5 0.3 0 -1 
1 0.55 0.15 0.3 0 -1 
1 0.8 0.15 0.05 0 -1 
1 0.2 0.5 0.3 -1 -1 
1 0.625 0.325 0.05 -1 -1 
1 0.55 0.15 0.3 -1 -1 
1 0.535 0.29 0.175 -1 -1 
1 0.45 0.5 0.05 0 -1 
1 0.525 0.3 0.175 0 -1 
1 0.375 0.325 0.3 -1 -1 
1 0.325 0.5 0.175 0 -1 
2 0.45 0.5 0.05 -1 1 
2 0.625 0.325 0.05 -1 1 
2 0.525 0.3 0.175 -1 1 
2 0.55 0.15 0.3 0 1 
2 0.2 0.5 0.3 0 1 
2 0.325 0.5 0.175 -1 1 
2 0.68231 0.15 0.16769 0 1 
2 0.325 0.5 0.175 0 1 
2 0.2 0.5 0.3 -1 1 
2 0.55 0.15 0.3 -1 1 
2 0.8 0.15 0.05 0 1 
2 0.625 0.325 0.05 0 1 
2 0.8 0.15 0.05 -1 1 
2 0.45 0.5 0.05 0 1 
2 0.475 0.325 0.2 0 1 
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TABLE 8. I-optimal Split-Plot Design generated by JMP 7.0 

WP X1 X2 X3 W1 Z1 
1 0.325 0.5 0.175 -1 1 
1 0.675 0.15 0.175 -1 1 
1 0.525 0.3 0.175 0 1 
1 0.525 0.325 0.15 -1 1 
1 0.45 0.5 0.05 0 1 
1 0.8 0.15 0.05 -1 1 
1 0.55 0.15 0.3 -1 1 
1 0.2 0.5 0.3 -1 1 
1 0.325 0.5 0.175 0 1 
1 0.2 0.5 0.3 0 1 
1 0.8 0.15 0.05 0 1 
1 0.607717 0.342283 0.05 0 1 
1 0.55 0.15 0.3 0 1 
1 0.375 0.325 0.3 -1 1 
1 0.45 0.5 0.05 -1 1 
2 0.675 0.15 0.175 0 -1 
2 0.55 0.15 0.3 -1 -1 
2 0.8 0.15 0.05 -1 -1 
2 0.382644 0.317356 0.3 -1 -1 
2 0.675 0.15 0.175 -1 -1 
2 0.461296 0.363704 0.175 -1 -1 
2 0.2 0.5 0.3 -1 -1 
2 0.55 0.15 0.3 0 -1 
2 0.2 0.5 0.3 0 -1 
2 0.45 0.5 0.05 -1 -1 
2 0.625 0.325 0.05 -1 -1 
2 0.633452 0.316548 0.05 0 -1 
2 0.45 0.5 0.05 0 -1 
2 0.8 0.15 0.05 0 -1 
2 0.475 0.35 0.175 0 -1 
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TABLE 9. G-optimal Split-Plot Design using GA (New Generated, d=0.0) 

WP X1 X2 X3 W1 Z1 
1 0.4481 0.4994 0.0525 -0.9997 -1 
1 0.3471 0.4763 0.1766 -1 -1 
1 0.7797 0.1547 0.0656 -1 -1 
1 0.6281 0.3219 0.05 0.0003 -1 
1 0.2113 0.4887 0.3 0 -1 
1 0.55 0.15 0.3 0 -1 
1 0.7844 0.15 0.0656 0.0001 -1 
1 0.2178 0.4991 0.2831 -1 -1 
1 0.6282 0.3195 0.0523 -1 -1 
1 0.5428 0.1596 0.2976 -1 -1 
1 0.6001 0.2229 0.177 -1 -1 
1 0.4504 0.4995 0.0501 0.0003 -1 
1 0.5042 0.2792 0.2166 -0.0002 -1 
1 0.3857 0.3263 0.288 -1 -1 
1 0.3119 0.4988 0.1893 0 -1 
2 0.4556 0.4943 0.0501 -1 1 
2 0.6394 0.3059 0.0547 -1 1 
2 0.5223 0.2446 0.2331 -1 1 
2 0.55 0.15 0.3 0.0001 1 
2 0.2111 0.4889 0.3 0 1 
2 0.3141 0.499 0.1869 -1 1 
2 0.6772 0.1504 0.1724 0 1 
2 0.3075 0.5 0.1925 -0.0002 1 
2 0.2268 0.4732 0.3 -0.9556 1 
2 0.5591 0.15 0.2909 -0.999 1 
2 0.7925 0.1512 0.0563 0.06 1 
2 0.6236 0.3091 0.0673 0 1 
2 0.7776 0.1517 0.0707 -1 1 
2 0.4499 0.5 0.0501 0 1 
2 0.4287 0.3073 0.264 0 1 

 

 

To compare designs with restricted randomization constraints, we used different 

variance component ratios and compare our new design with the designs 

generated from JMP 7.0.  In Table 10, we observe that the new G-optimal designs 



  88 

significantly reduced the SPV values for the mean and slope model. In the dual 

optimization method for generating the optimal design we used the same weights 

on the mean and slope model. We can use different weights on the mean or slope 

model. 

 
TABLE 10. Max. SPV for Mean and Slope Model in Example 3 (d=0) 

Design Criteria 
Max. SPV for 

Mean 

Max. SPV for 

Slope 

Design-Expert D-optimal 55.1831 20.6639 

JMP 7.0 
D-optimal 53.7757 18.2939 

I-optimal 52.2129 20.4888 

Goldfarb et al. 

(2005) 

G-optimal for 

Mean 
55.2586 20.5250 

G-optimal for 

Slope 
60.7178 21.7188 

New 

G-optimal (d=0.0) 42.9288 14.9036 

G-optimal (d=0.5) 42.6265 14.9725 

G-optimal (d=1.0) 42.8931 14.6936 

 

 

To compare our new design with completely randomized designs by 

Goldfarb et al. (2005), we consider the variance component ration d=0 for other 

designs within a split-plot structure. For different component ratios, our new G-

optimal design also reduced the SPV values. Table 11 and Table 12 show the 

maximum SPV for the mean and the slope model with d=0.5 and 1, respectively. 

We noticed that the maximum SPV values for the mean model decreases as d 
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increases. As the variance component ratio d increases, the whole-plot error due 

to the noise variables is increased and sub-plot error is decreased. We can get 

more precise parameter estimation with this decreased sub-plot error when the 

experiments are analyzed with the split-plot structure. As a result of precise 

parameter estimation, the prediction variance of the model decreases as d 

increases.  

 

TABLE 11. Max. SPV for Mean and Slope Model for the Split-Plot (d=0.5) 

Design Criteria 
Max. SPV for 

Mean 

Max. SPV for 

Slope 

JMP 7.0 
D-optimal 40.8505 17.8816 

I-optimal 39.8086 19.0689 

New 

G-optimal (d=0.0) 33.7969 15.3380 

G-optimal (d=0.5) 33.3464 15.5785 

G-optimal (d=1.0) 32.5043 14.9047 

  

 

TABLE 12. Max. SPV for Mean and Slope Model for the Split-Plot (d=1.0) 

Design Criteria 
Max. SPV for 

Mean 

Max. SPV for 

Slope 

JMP 7.0 
D-optimal 34.3879 16.6456 

I-optimal 33.6064 17.5928 

New 

G-optimal (d=0.0) 28.3876 15.0041 

G-optimal (d=0.5) 29.3889 15.3117 

G-optimal (d=1.0) 27.9869 14.8471 
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Table 10, 11, and 12 only show the values of the maximum SPV. This may not be 

enough information about the prediction capability of the designs. Rodriguez et al. 

(2010) suggested the variance ratio FDS (VRFDS) plot to compare all design of 

interest with respect to a reference design. This variance ratio FDS is 

Ref

( )
( )

i
i

SPVVR
SPV

= x
x

, 

where ( )iSPV x is the scaled prediction variance for design i at a specific design 

point x and Ref ( )SPV x  is the SPV for the reference design at the design point x in 

the design region. After the variance ratio from random sample points over the 

design region are calculated, the values iVR  are sorted in ascending order. If iVR  is 

less than 1, it indicates that the reference design has bigger prediction variance 

than design i, so it has poorer prediction performance. If iVR  is greater than 1, it 

means that design i has poorer prediction performance than the reference design. 

From the VRFDS plot we can see the fraction of design space where the reference 

design predicts better or worse than design i. Figure 12 shows that the prediction 

capability of the reference design (new G-optimal design with d=0.0) is worse 

than D-optimal design and G-optimal design for the mean model over most of the 

design region, although the maximum prediction variance of the reference design 

was significantly reduced. The reference design is superior to the I-optimal design 

over at least 80% of the design region. Although the reference design has poor 

prediction variance over most of the design region compared to the D-optimal 

design and the G-optimal design for the mean model, the difference is less than  
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10% for the D-optimal design and 15% for the G-optimal design for the mean 

model. The new G-optimal design can be a good choice if the experimenter 

prefers the design which minimized the maximum prediction variance with stable 

prediction capability over the entire design region. The same graphical VRFDS 

plot can be used to compare the design for the predication variance for the slope 

model.  

 

 

FIGURE 12. VRFDS Plot for the Mean Model in Example 3 

 

As shown in Figure 13, the new design has poor prediction capability compared to 

all other designs over most of the design region, but it has dramatically superior 

prediction power to other designs over 5% of the design region, which will be the 

extreme boundary of the design region.  
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FIGURE 13. VRFDS Plot for the Slope Model in Example 3 

 

Conclusion 

In this chapter, we have discussed the appropriate analysis of mixture-

process designs involving control and noise variables when complete 

randomization is not possible. In addition, the level of control by noise 

interactions can be ignored in the design comparison using the simplified SPV 

since the mean model is not directly affected by these interactions. The different 

levels of control by noise interactions do increase or decrease the amount of SPV, 

but we have shown that these interactions do not directly affect the resulting 

design matrix. Using TPV and the PV Ratio, FDS plots are constructed over 

various variance component ratio values for the split-plot structure. We have also 

generated G-optimal designs for the mixture-process problem considering 

restricted randomization with a split-plot structure. To create the optimal design, a 

genetic algorithm is used with a combined desirability function as the objective 
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function. This provides an optimal design with smaller maximum SPV values for 

both the mean and slope models when compared to other designs created with 

standard software.  



  94 

CHAPTER 5 

GRINDING WHEEL MANUFACTURING USING MIXTURE-

PROCESS VARIABLE EXPERIMENTS WITHIN A SPLIT-PLOT 

STRUCTURE 

A grinding wheel is a tool to grind, hone, and polish hard nonferrous 

materials such as ceramics, alumina, carbides, and glass. It is generally made from 

a mixture of coarse particles pressed and bonded to shape a solid circular disc. 

Various forms are available depending on the proposed usage for the wheel. 

There are many types of grinding wheels categorized by their main materials and 

the type of bond material. Diamond grinding wheel a logical choice to grind the 

hard objects because it is the hardest material known (around 8000 Knoop). In 

making the diamond grinding wheel, there are 4 mixture components and their 

following restrictions on these variables as shown in Table 13.  

The process variables that influence on the grinding wheel are shown in 

Table 14. Among the process variables, the vibration is only controllable for 

purpose of an experiment. It is difficult to keep the same level of vibration on the 

wheel in the routine manufacturing process. Therefore, vibration is a noise 

variable.  

In diamond grinding wheel manufacturing, the components of the wheel 

with the process variables are studied to improve the grinding wheel wear and life 

cycle. The wheel wear and life cycle can be improved by a reduction of the 

grinding force on the wheel by increasing the speed of the grinding wheel. We are 
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interested in studying the grinding force or grinding power to improve the wheel 

wear. The grinding wheel setup is shown in Figure 14. 

 

TABLE 13. Mixture Components for Grinding Wheel Manufacturing 

 
Wheel Composition                                  

(4 components volume sum to 100%) 

 

Copper     
Conductor   
(volume %) 

Resin         
Bond         

(volume %) 

Diamond    
Concentration

(volume %) 

Beads       
Porosity    

(volume %) 

Max 34 35 31 12 

Min 22 15 19 0 

 

 

TABLE 14. Process Variables and Noise Variable (vibration) for Grinding Wheel 

Manufacturing. 

 

Wheel Process Parameters 

Peripheral wheel 
speed           

 Vs (m/s) 
Vibration  
Cycle (Hz)     

Depth of cut     
ap (µm) 

Workpiece velocity
Vw (m/min) 

Max 80 3 100 30 

Min 30 1 10 10 

 

 
The horizontal and vertical grinding forces, Fh and Fv, were measured 

using a force dynamometer.  Aluminum oxide (Al2O3) with dimension of 23.6mm 

× 23.6mm × 10.00mm was used as the workpiece. 
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level of the hard-to-change factors is selected and the combinations of other 

factors are run at that level.  

 

Notation and Model 

Assume that the mixture components xi and the controllable process 

variables wp are the SP factors. The noise variables zt are the WP factors. 

Furthermore, we suppose that there are p mixture components (xi, i = 1, 2, … , q), 

c controllable variables (wj, j = 1, 2, … , c), and q noise variables (zt, t = 1, 2, … , 

n). Also suppose that there are m mixture terms, where m is a function of the 

number of the mixture components and the degree of the model. A response can 

be represented as a function of m mixture terms, q continuous noise variables, and 

c continuous controllable variables. The model can be written as  

( , , )= ( ) ( , )w wp s spy f f fβ δ β ε′ ′= + + +x w z z x,w z ,                              (19) 

where wpβ is a vector of coefficients from the WP variables, spβ is a vector of 

coefficients  from the SP variables. 2~ (0, )N δδ σ  comes from the WP 

randomization level and represents the random error term of the WP factors alone, 

and 2~ (0, )Nε σ  comes from the SP randomization level and represents the 

random error term from the SP. The random components δ and ε are assumed to 

be independent. However, the WP terms ( )w t wpf β′z , can be removed since the 

noise variables only affect the response through interacting with the mixture 

components. Then, this model has two different sources of error, WP and SP 
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errors and we assume that all noise variables are in the WP. Equation (19) without  

( )w t wpf β′z  can be expressed in matrix form as   

( , , )y f δ ε′ ′ ′ ′= + +x w z = x β + xΑw + xΘz + xΛΞz     (20) 

where  

1

1m

m

x

x
×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

x , 
1

1c

c

w

w
×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

w , 
1

1q

n

z

z
×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

z , ,
1

1m

m

β

β
×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

β ,
11 1

1

c

m c

m mc

α α

α α
×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Α , 

11 1

1

q

m n

m mq

θ θ

θ θ
×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Θ , 
111 1 1 11 1

11 1 1

c n cn

m cn

m mc m n mcn

λ λ λ λ

λ λ λ λ
×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Λ , and 

1

1

0 0

0 0
0 0

0 0
0 0

0 0

c

cn n

c

w

w

w

w

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Ξ . 

x is the m × 1 vector, w is the  c × 1 vector  of controllable variables, and z is the 

n × 1 vector of noise variables. β is the m × 1 vectors coefficient matrix for 

mixture model terms, A is the m × c coefficient matrix for the mixture by 

controllable variable interactions and Θ is the m × n coefficient matrix for the 

mixture by noise variable interactions. Λ is the m × cn coefficient matrix for 

interactions involving mixture components, controllable variables, and noise 
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variables. Finally, Ξ is a cn × n block-diagonal matrix whose columns contain the 

w elements and blocks of 0s. The covariance matrix of the response is given by 

2 2 2[ ]dδ ε εσ σ σ= + = +V J I J I ,       (21) 

where 

1 1

2 2

0 0

0 0

0 0
wp wp

n n

n n

n n

′⎡ ⎤
⎢ ⎥′⎢ ⎥= ⎢ ⎥
⎢ ⎥

′⎢ ⎥⎣ ⎦

1 1

1 1
J

1 1

, 
2

2d δ

ε

σ
σ

= (the variance component ratio), 

and ૚௡೔  is the vector of 1s with length ni (i=1, … ,wp), which is the number of SP 

runs within each WP. Cho et al. (2010b) shows the inverse matrix form of 

covariance matrix with a balanced split-plot design shown as  

1 2

1
d
dkεσ− − ⎛ ⎞= −⎜ ⎟+⎝ ⎠

V I J
 

where k is the number of sub-plots in each whole-plot and JJ=kJ. They prove this 

result by directly multiplying Equation (21) by this inverse matrix to obtain the 

identity matrix. Letsinger et al. (1996) shows the method for the analysis of split-

plot design; ordinary least squares (OLS), restricted maximum likelihood (REML), 

and iteratively reweighted least squares (IRLS). Goos et al. (2007) shows that the 

REML approach is preferred in general cases. We used the REML method to 

estimate the variance components, δ and ε. In general, the response model in the 

general linear model form is  

* * *y = X β + ε , 
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where the matrix X* contains all columns representing the proposed model and 

the vector β* contains the parameters. The model parameters β* are estimated via 

generalized least squares as 

yVXXVXβ 1**1* −
−

− ′
⎟
⎠
⎞

⎜
⎝
⎛ ′=

1
*ˆ . 

 

Robust Parameter Design 

The expected value and variance of y can be found using the delta method, 

which utilize a Taylor series expansion of the model around the mean of z. 

Assume that the noise variables are uncorrelated, the model errors (δ and ε) are 

uncorrelated and independent, and the noise variables and the mixture 

components are uncorrelated with each other. Ez(y) and Varz(y) are obtained by 

taking conditional expectation of y(x,w,z) with respect to the noise variables z and 

the random errors, δ and ε.  

( ) (0) ( , ,0)z w sE f f ′ ′= + =y x w x β + xΑw       (22) 

[ ] [ ] 2 2Var ( )z δ εσ σ′′ ′ ′ ′ ′ ′= ∑ + +zy Θ x +Ξ Λ x Θ x +Ξ Λ x ,   (23) 

where 
1 2

2 2 2( , , , )
nz z zdiag σ σ σ∑ =z  is an n×n diagonal matrix with the variance of 

the noise variables on the diagonal and 0 elsewhere and 

( , , )sf∂ ′ ′ ′=
∂ z=0

x w z Θ x +ΞΛ x
z

. Since the noise variables are coded by the low and 

high level at ±σnoise, we can obtain 2
izσ =1. Borror et al. (2002) and Meyer et al. 

(2009) showed this process model and variance model in detail. Goldfarb et al. 
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(2003) developed this robust parameter design for the MPD. See Cho et al. (2011) 

more about the MPD considering a SPD.   

Numerical optimization methods can be used to minimize the response 

variance while keeping the mean on a desired target as follows: 

Minimize Var ( )z y  

Subject to ( )zE m=y , 

where the choice of m can be -∞ or +∞ to minimize or maximize the mean, 

respectively. This provides the levels for the mixture and process variables that 

are robust to the noise variables in the operational setting.  

 

Design Evaluation 

In design evaluation, it is common to select the appropriate design 

depending on the practical situation. Two main categories for design selection are 

the measure-theoretic approach and variance oriented criteria. The D-optimality 

from standard alphabetic optimal criteria is well known and most often used to 

minimize the confidence region of the coefficients for the model parameters. 

However, in the response surface experiment, the response prediction is more 

interest and the optimality criteria associated with prediction variance are 

suggested.  Therefore, the optimal design associated with variance oriented 

criteria is a rational selection for MPD experiments because the MPD is a special 

type of response surface experiments. The popular optimal design to minimize the 

prediction variance is V or I optimal design which minimizes the average 

prediction variance over the design space and it is available on many commercial 
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statistics package. G-optimal design has a goal of minimizing the maximum 

prediction variance over the entire design region and it is not yet adopted into the 

commercial software due to the computing difficulty and time expense. Goldfarb 

et al. (2005), Chung et al. (2007), and Rodriquez et al. (2009) use a genetic 

algorithm to generate G-optimal designs. We use the genetic algorithm to 

generate G-optimal design and compare this design with D-optimal and I-optimal 

design produced by JMP 7.0.  

The prediction variance is an appropriate measure for evaluating a design 

with respect to the prediction capability. This prediction variance contains the 

variance in estimating the model parameters and the variance due to the noise 

variables when new observation, y, is estimated.  Borror et al. (2002) and 

Goldfarb et al. (2004c) present the prediction variance for the mean and slope 

model for the design with noise variables. Cho et al. (2011) suggest total 

prediction variance (TPV) for combined comparison considering both the 

variance for the mean model and the variance for slope model given by 

( ) ( )11 22

33 44 34

1

TPV

( ) ( ) 2 ( )
n

i i i i
i

ρ
=

′′= + ⊗ ⊗

′ ′ ′⎡ ⎤+ + ⊗ ⊗ + ⊗⎣ ⎦∑

x C x x w C x w

x C x x w C x w x C x w ,
 

where iρ is 0 if a noise variable is not considered or 1 if a noise variable is 

considered in comparing variance in estimating parameters. Using the TPV, we 

can draw the FDS plots to compare designs.  

In the following section, we first present a grinding wheel manufacturing 

example in which the standard analysis makes a poor estimation for the model 
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and prediction. Next, we will demonstrate the proper method to estimate the 

model parameters with the graphical evaluation for the design comparison when 

the noise variables are combined into the model with a restricted randomization.  

 

Example 1: Grinding Wheel Experiment and Model Fitting 

Using the notation described in Equations (19) and (20), the grinding 

wheel example is developed. In making grind wheel, there are four mixture 

components in the process, copper(x1), resin(x2), diamond(x3), and beads(x4). The 

ingredients have the following constraints; 

1

2

3

4

1 2 3 4

0.22 0.34
0.15 0.35
0.19 0.31
0.00 0.12

1

x
x
x
x

x x x x

≤ ≤
≤ ≤
≤ ≤
≤ ≤

+ + + = .

 

Three process variables and one noise variable are also considered; 

peripheral speed (w1), depth of cut (w2), workpiece velocity (w3), and vibration 

(z1), respectively. The peripheral speed (w1) ranges from 30 (m/s) to 80 (m/s) and 

depth of cut (w2) rages from 10 (µm) to 100 (µm) while workpiece velocity (w3) 

ranges from 10 (m/min) to 30 (m/min). The vibration (z1) treated as a noise 

variable and also hard-to-change rages from 1 (Hz) to 3 (Hz). The process 

variables and noise variable are coded with low level and high level (-1, 1) in this 

example. Since the vibration (z1) is the only hard-to-change factor, it is assigned 

to the whole-plot. The mixture variables and controllable variables are assigned to 

the subplot. In this example, we use two methods to analyze this experiment, 
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CRD and SPD, and compare these two results. From the previous notation, we 

have q=4, c=3 and n=1. We considered the model with only linear mixture 

components crossed with interactions for linear process variables and noise 

variable and it led to the mixture terms, m=4. This linear assumption reduces the 

number of parameters to be estimated. JMP was used to generate a 64 run D-

optimal design with 4 whole plots for the linear mixture model and the design and 

response data are shown in Table 15. 

As shown in Table 15, this D-optimal design is not balanced. In other 

words, it has a different set of experimental setting in each whole plot. It violates 

the condition that guarantee the equivalence of the OLS and GLS coefficient 

developed by Vining et al. (2005) and we can expect the coefficients from CRD 

and SPD will be different. First, we use the CRD approach to analyze the data and 

find the significant effects at the 0.05 level and the R2 and adjusted R2 values are 

greater than 0.99 while the lack-of-fit p-value is 0.4, indicating an adequate model. 

The final model with the CRD is  

1 2 3 4

1 1 2 1 3 1 4 1

ˆ( , , ) 297.32 408.76 200.76 424.53
96.35 496.68 299.96 69.31

y x x x x
x z x z x z x z

= + + +
− + − +

x w z
,  

where the mean square error, 2σ̂ , for the fitted model is 9.29.  However, the SPD 

analysis provides a different result, indicating different significant effects from 

the CRD analysis. The SPD analysis shows that the interactions crossed with 

mixture and process variables are statistically significant although they are not 

significant in the CRD analysis.   
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TABLE 15. Grinding Wheel Design and Data 

(Note: The variables have been coded) 

Whole plots Copper 
(%) 

Resin 
(%) 

Diamond 
(%) 

Beads 
(%) 

Vs 
(m/s)

ap 
(µm)

Vw 
(m/min)

Vibration 
(Hz) 

Grinding 
force (N)

1 0.34 0.35 0.19 0.12 1 1 -1 -1 242.4218 

1 0.22 0.35 0.31 0.12 -1 -1 1 -1 249.3193 
1 0.34 0.35 0.19 0.12 1 -1 -1 -1 235.3835 
1 0.22 0.35 0.31 0.12 1 -1 -1 -1 250.2714 
1 0.34 0.35 0.31 0.00 -1 -1 1 -1 254.2503 
1 0.34 0.35 0.19 0.12 -1 1 1 -1 244.0228 
1 0.34 0.35 0.31 0.00 -1 -1 -1 -1 258.4568 
1 0.34 0.35 0.31 0.00 1 1 1 -1 258.0021 
1 0.34 0.23 0.31 0.12 -1 -1 -1 -1 311.7484 
1 0.34 0.35 0.19 0.12 -1 -1 1 -1 237.6280 
1 0.34 0.35 0.31 0.00 -1 1 1 -1 261.8456 
1 0.22 0.35 0.31 0.12 -1 1 -1 -1 261.6021 
1 0.34 0.23 0.31 0.12 -1 -1 -1 -1 314.8734 
1 0.34 0.23 0.31 0.12 1 1 -1 -1 315.1220 
1 0.34 0.35 0.31 0.00 1 -1 -1 -1 252.3785 
1 0.34 0.23 0.31 0.12 1 -1 1 -1 297.6680 
2 0.34 0.23 0.31 0.12 -1 -1 -1 1 302.9204 
2 0.34 0.35 0.19 0.12 1 -1 1 1 421.9154 
2 0.34 0.35 0.19 0.12 1 -1 -1 1 419.9290 
2 0.22 0.35 0.31 0.12 -1 1 -1 1 399.4768 
2 0.34 0.23 0.31 0.12 -1 1 -1 1 317.7841 
2 0.34 0.23 0.31 0.12 1 1 1 1 311.5370 
2 0.34 0.35 0.31 0.00 1 -1 -1 1 350.1878 
2 0.22 0.35 0.31 0.12 1 -1 -1 1 385.0826 
2 0.34 0.35 0.31 0.00 1 1 1 1 363.3043 
2 0.34 0.23 0.31 0.12 -1 -1 1 1 302.9622 
2 0.34 0.35 0.19 0.12 1 1 -1 1 432.6711 
2 0.22 0.35 0.31 0.12 1 1 1 1 397.9650 
2 0.34 0.35 0.19 0.12 -1 1 1 1 435.6764 
2 0.34 0.35 0.31 0.00 -1 1 -1 1 367.3495 
2 0.22 0.35 0.31 0.12 -1 -1 1 1 388.1549 
2 0.34 0.35 0.19 0.12 -1 -1 1 1 422.9209 
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TABLE 15. Grinding Wheel Design and Data (Continued) 
 

3 0.34 0.23 0.31 0.12 1 -1 1 -1 301.9962 
3 0.34 0.35 0.31 0.00 1 -1 1 -1 249.7570 
3 0.34 0.35 0.31 0.00 -1 1 -1 -1 269.8396 
3 0.34 0.35 0.19 0.12 -1 -1 -1 -1 241.9454 
3 0.34 0.23 0.31 0.12 -1 1 1 -1 316.2553 
3 0.22 0.35 0.31 0.12 1 1 1 -1 253.1573 
3 0.34 0.35 0.19 0.12 1 -1 1 -1 233.5462 
3 0.22 0.35 0.31 0.12 1 1 1 -1 253.6144 
3 0.22 0.35 0.31 0.12 -1 -1 1 -1 252.0492 
3 0.34 0.35 0.31 0.00 1 1 -1 -1 261.8674 
3 0.34 0.23 0.31 0.12 1 1 -1 -1 316.8510 
3 0.34 0.35 0.19 0.12 -1 1 -1 -1 251.1588 
3 0.34 0.23 0.31 0.12 -1 1 1 -1 317.2910 
3 0.22 0.35 0.31 0.12 1 -1 -1 -1 249.0715 
3 0.22 0.35 0.31 0.12 -1 1 -1 -1 260.3908 
3 0.34 0.35 0.19 0.12 1 1 1 -1 240.6059 
4 0.34 0.35 0.19 0.12 -1 -1 -1 1 417.3643 
4 0.22 0.35 0.31 0.12 1 1 1 1 391.5886 
4 0.34 0.23 0.31 0.12 1 -1 -1 1 295.6606 
4 0.34 0.23 0.31 0.12 -1 1 1 1 307.4096 
4 0.34 0.35 0.31 0.00 -1 -1 1 1 346.0890 
4 0.34 0.35 0.31 0.00 1 -1 -1 1 346.3908 
4 0.34 0.23 0.31 0.12 1 1 -1 1 307.6689 
4 0.34 0.35 0.19 0.12 -1 1 -1 1 427.3109 
4 0.34 0.35 0.31 0.00 1 1 1 1 357.1469 
4 0.34 0.35 0.31 0.00 -1 1 -1 1 359.1781 
4 0.34 0.23 0.31 0.12 1 -1 1 1 294.7852 
4 0.22 0.35 0.31 0.12 -1 -1 1 1 380.7835 
4 0.34 0.35 0.19 0.12 1 1 1 1 427.3924 
4 0.22 0.35 0.31 0.12 1 -1 -1 1 381.0493 
4 0.22 0.35 0.31 0.12 -1 1 -1 1 392.9133 

4 0.34 0.35 0.31 0.00 -1 -1 1 1 346.2198 

 

This result illustrates the role of whole-plot error and subplot error in SPD. Two 

different types of errors are used to calculate the test statistics for different factors. 



  107 

For example, the t-ratio for whole-plot factor (z1) is calculated using the whole-

plot error. Test statistics for other subplot factors and interactions with the subplot 

factors are calculated using the subplot error. As shown by Lucas and Ju (1992), 

the subplot factors are precisely analyzed and determined to be significant using 

SPD in the model. Therefore, the suggested model is  

1 2 3 4

1 1 1 2 3 2 1 3 2 3 3 3

1 1 2 1 3 1 4 1

ˆ( , , ) 297.37 407.98 203.12 419.80
5.36 7.95 6.24 4.49 6.49 6.73
97.58 496.26 297.24 66.58

y x x x x
x w x w x w x w x w x w
x z x z x z x z

= + + +
− + + − + −
− + − +

x w z

, 

where the mean square error for WP, 2ˆδσ , is 9.78 and the SP error, 2ˆεσ  is 1.38, 

resulting the variance component ratio d = 7.08. Usually, the WP error variance is 

larger than the SP error variance as shown by Box and Jones (1992). Vining et al. 

(2005) studied a split-plot experiment and estimated the variances using pure 

error indicating larger whole plot error variance than subplot error variance (d > 

1). The coefficient estimates of model parameters are not equivalent for CRD 

using OLS estimates and SPD using GLS estimates, because the D-optimal design 

in this example is not balanced. This example illustrated the problem with 

analyzing a SPD as if it was a CRD. The estimates of the coefficients are similar, 

but the significance test can lead to erroneous results.  

 

Example 2: Robust Parameter Design and Simulation Study 

Recall example 1. The mean and variance response functions for the 

mixture-process variables with a noise variable (z1) are estimated using Equations 

(22) and (23), given by 
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1 2 3 4

1 1 1 2 3 2 1 3 2 3 3 3

( ) 297.37 407.98 203.12 419.80
5.36 7.95 6.24 4.49 6.49 6.73

E Y x x x x
x w x w x w x w x w x w

= + + +
− + + − + −

 

and 

1

2 2 2 2
1 2 3 4ˆ ˆ ˆVar( ) ( 97.58 496.26 297.24 66.58 )zY x x x x δ εσ σ σ= − + − + + + , 

where 
1

2ˆ zσ =1 since the noise variables are coded by the low and high level at 

±σnoise , and the variance components, 2ˆδσ =9.78 and 2ˆεσ =1.38,  are estimated via 

the REML method. In this robust parameter study, we need to minimize the value 

for the variance while concurrently minimizing the response for the mean. This 

dual optimization problem can be solved using the desirability function approach 

over the ranges of response for mean and variance model within the design.  The 

suggested optimal levels are copper(x1)=0.34, resin(x2)=0.28, diamond(x3)=0.31, 

and beads(x4)=0.07 with the process variables, peripheral speed (w1)=+1, depth of 

cut (w2)=−1, and workpiece velocity (w3)=+1 yielding 299.95(N) grinding force. 

If we don’t consider the robust parameter design and mainly expect to minimize 

the response, then the suggested optimal levels are copper(x1)=0.34, 

resin(x2)=0.35, diamond(x3)=0.19, and beads(x4)=0.12 with the process variables, 

peripheral speed (w1)=+1, depth of cut (w2)=−1, and workpiece velocity (w3)=+1 

at vibration (z1)=−1 yielding 232.41(N) grinding force. The response with RPD is 

greater than the response without considering RPD because the predicted response 

without RPD is estimated at vibration (z1)=−1 and the response with RPD is at 

vibration (z1)=0. Considering a new optimal lever at vibration (z1)=−1, we can 

estimate the predicted response with RPD as 276.94(N) using E(z1) )=−1 for 
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Equation (22). It still has a large value for the response. However, it is optimized 

to have a less variation value when we treat the noise variable as a random effect. 

To show the effect of a noise variable, we simulate the model by treating the noise 

variable as a fixed effect (Normal) and a random effect (RPD).  For the simulation 

study, we used the model resulted from Example 1 to generate the data which 

contain whole-plot error and subplot error with noise variables. The result in 

Table 16 (b) shows that the model considering noise variables is valid with the 

result from Example 2. The simulation study provides the importance of robust 

parameter design when the noise variables are considered in the model. Table 16 

(a) shows the normal predicted response has the mean of 231.40(N) with Standard 

deviation 93.14 when we set the levels as suggested without RPD. It ranges from -

161.2 to 566.6, indicting a large variability when the noise variables are not 

controlled in the process. Compared to the normal simulation result, Table 16 (b) 

provides an enhanced result with minimized variation ranging from 199.46 to 

359.46 although it has 276.50(N) as the mean with standard deviation 21.50. With 

the levels suggested from RPD, we can estimate the predicted mean responses 

which are robust to the noise variables while it satisfies the targeted response 

values.  
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Table 16. Predicted Response Simulation with a Noise Variable Effect 

 
Normal simulation 

 
 
 

Quantiles 
   

100.0% maximum 566.6 
99.5%  469.6 
97.5%  411.9 
90.0%  352.0 
75.0% quartile 294.4 
50.0% median 231.5 
25.0% quartile 169.4 
10.0%  112.0 
2.5%  45.0 
0.5%  -5.3 
0.0% minimum -161.2 

 
Moments 

  
Mean 231.40496 

Std Dev 93.140348 
Std Err Mean 1.3172034 

upper 95% Mean 233.98725 
lower 95% Mean 228.82266 

N 5000 
 

 
RPD simulation 

 
 
 

Quantiles 
   

100.0% maximum 359.46 
99.5%  333.00 
97.5%  318.93 
90.0%  302.79 
75.0% quartile 290.70 
50.0% median 276.71 
25.0% quartile 262.29 
10.0%  248.90 
2.5%  232.76 
0.5%  221.64 
0.0% minimum 199.46 

 
Moments 

  
Mean 276.50401 

Std Dev 21.501201 
Std Err Mean 0.3040729 

upper 95% Mean 277.10012 
lower 95% Mean 275.90789 

N 5000 

(a) Normal with Noise as Fixed 
Effect (b) RPD with Noise as Random Effect 
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Example 3: Design Comparison 

Considering the grinding wheel experiments in Example 1, we now 

construct a G-optimal design using a genetic algorithm with a desirability 

function to select the dual optimal criteria for the mean and slope model. Using 

JMP7.0 script, we generate the G-optimal design for this grinding wheel 

experiment with the component variance ratio, d=7.0 as shown in Example 1 and 

notice that D-optimal design is also G-optimal with the 99.4% G-efficiency. In 

this grinding wheel experiment, the mixture region has very tight constraints on 

the mixture components using simple first-order linear model. This tight region of 

mixture components makes the prediction variances stable for the entire design 

space as shown in Figure 15.  

 

 

(a) FDS Plot of TPV for D-Optimal Design 

FIGURE 15. FDS Plots of TPV in Example 3 
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FDS plot of TPV for D-optimal design 
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(b) FDS Plot of TPV for I-Optimal Design 

FIGURE 15. FDS Plots of TPV in Example 3 (Continued) 

 

The total prediction variances are between 28 and 29 over up to 90% 

design space for both the D- and I-optimal designs. The maximum total prediction 

variance is 32.2 and 33 for D- and I-optimal design, respectively. D-optimal 

design shows a slightly better performance in G-efficiency but the difference is 

not significant. Also no further improvement was achieved using GA algorithm 

for the G-optimal design. 

 
Conclusion 

In this chapter, we have showed the appropriate analysis of the grinding 

wheel manufacturing experiments when complete randomization is not possible. 

In addition, the robust parameter design analysis was demonstrated while the 

noise variables are considered in the experimental study.  We have also generated 

G-optimal designs using a genetic algorithm for the grinding wheel experiments 
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FDS plot of TPV for I-optimal design 
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considering restricted randomization with a split-plot structure and found the D-

optimal design is also G-optimal when the mixture components are tightly 

constrained. These tight constraints produce the stable FDS plots when the 

mixture effects are mainly significant.  
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CHAPTER 6 

CONCLUSION AND FUTURE RESEARCH 

Conclusions 

Chapter 3 considered the mixture-process variable design within a split-

plot structure when the number of runs is dramatically increased when the mixture 

and process variables have a quadratic model with the interaction between 

mixture and process variables. We developed a graphical approach to evaluate 

designs using a variance component ratio when the complete randomization is 

restricted. It compares designs according to the prediction capability depending 

on the view of interest; minimizes the maximum of the prediction variance (G-

optimality) or minimizes the average of the prediction variance (I-optimality).  

In Chapter 4, new models were developed for experiments involving 

control and noise variables which are hard-to-change. This difficulty of level 

change for noise factor prohibits the complete randomization which is a basic 

assumption for the statistical analysis. We developed the simplified prediction 

variance model to compare and construct designs that are robust to the 

assumptions about the magnitude of interaction between control and noise 

variables and constructed designs that simultaneously optimize both the 

prediction variance for the mean model and the slope model. The traditional 

approach to evaluating or constructing optimal design for experiments with noise 

variables requires making assumptions about the magnitude of the contribution of 

the interactions involving noise variables.  Furthermore, we obtained the designs 
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that are optimal for both the mean and slope model using desirability function 

with a genetic algorithm.  

Chapter 5 used the model from Chapter 4 for a specific case study, the 

grinding wheel manufacturing experiment. This grinding wheel experiment has a 

tight mixture components region and extremely large parameters (4 mixture 

components, 3 process variables, 1 noise variable, and interactions between 

mixture, process, and noise variables). We demonstrated the robust parameter 

design analysis within split-plot structure and evaluated designs in prediction 

capability. Also, we showed that the tight mixture component constraints provide 

the stable FDS plots when the mixture effects are mainly significant.  

 

Original Contributions 

This research has developed new models to analyze the mixture-process 

experiments with control and noise variable within a split-plot structure by 

extending models developed by Goldfarb (2004c) that assume complete 

randomization. The new model considers a restricted randomization for the 

mixture-process variable experiments. Also, we develop a graphical tool using 

different variance component ratio for comparing various designs within a split-

plot structure.  

The second contribution is applying a simplified prediction variance to 

compare and construct designs for mixture-process variables design including 

control and noise variables under a split-plot scheme. This approach allows the 

robust comparisons not depending on the magnitude of interactions between 
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control and noise variables while the standard methods require the assumption 

about the magnitude of the contribution of the interactions involving noise 

variables.  

The third original contribution is to apply a split-plot design with genetic 

algorithm to construct G-optimal mixture-process variable designs including noise 

variables when a complete randomization assumption is violated. It also provides 

a multiple optimization approach of desirability function for the mean and slope 

model. This approach to customize the objective function allows deciding the 

priority of design for the mean model and the slope model.  

The statistical analysis is based on the randomization assumption. 

However, in practice, a complete randomization is not always guaranteed and the 

analysis based on a wrong assumption yields biased result. When a complete 

randomization assumption is inadequate, a split-plot structure can separate two 

types of error sources, whole-plot errors and subplot errors. It allows a precise 

estimation for the coefficients of the model parameters and provides an accurate 

prediction for the new observation, which is a main goal of response surface 

methodology. We provide an efficient and effective design generation strategy 

considering prediction properties within a split-plot structure.  

 

Future Research 

In this research, it was assumed that the noise variables were whole-plot 

factors (hard-to-change variables).  The split-plot design could be extended for the 

situation where the mixture components are considered as hard-to-change factors. 
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Another extension would utilize the fractional factorial designs for the process 

variables. The model considered in this research were of full factorial forms for 

both mixture and process variables. It requires a large number of experimental 

runs as the number of variables increases. A fractional factorial approach can be 

studied with the alias patterns for the mixture-process variable designs.  

For design generation, a genetic algorithm with a desirability function for 

G-optimality was used to select the dual optimal setting for the mean and slope 

model in this research. The desirability function can be extended to find the robust 

optimal design setting for the variance component ratio.  

The current genetic algorithm requires a lot of computing time and it 

increases exponentially as more variables are added to the model. It would be 

valuable to develop an exchange algorithm to the update current design without 

evaluating all the points to minimize the maximum prediction variance. This type 

of algorithm could be much more computationally efficient. 
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