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ABSTRACT 

The emergence of new technologies as well as a fresh look at analyzing 

existing processes have given rise to a new type of response characteristic, known 

as a profile. Profiles are useful when a quality variable is functionally dependent 

on one or more explanatory, or independent, variables. So, instead of observing a 

single measurement on each unit or product a set of values is obtained over a 

range which, when plotted, takes the shape of a curve. Traditional multivariate 

monitoring schemes are inadequate for monitoring profiles due to high 

dimensionality and poor use of the information stored in functional form leading 

to very large variance-covariance matrices. Profile monitoring has become an 

important area of study in statistical process control and is being actively 

addressed by researchers across the globe. This research explores the 

understanding of the area in three parts. 

A comparative analysis is conducted of two linear profile-monitoring 

techniques based on probability of false alarm rate and average run length (ARL) 

under shifts in the model parameters. The two techniques studied are control chart 

based on classical calibration statistic and a control chart based on the parameters 

of a linear model. The research demonstrates that a profile characterized by a 

parametric model is more efficient monitoring scheme than one based on 

monitoring only the individual features of the profile.  

A likelihood ratio based changepoint control chart is proposed for 

detecting a sustained step shift in low order polynomial profiles. The test statistic 
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is plotted on a Shewhart like chart with control limits derived from asymptotic 

distribution theory. The statistic is factored to reflect the variation due to the 

parameters in to aid in interpreting an out of control signal.  

The research also looks at the robust parameter design study of profiles, 

also referred to as signal response systems. Such experiments are often necessary 

for understanding and reducing the common cause variation in systems. A split-

plot approach is proposed to analyze the profiles. It is demonstrated that an 

explicit modeling of variance components using generalized linear mixed models 

approach has more precise point estimates and tighter confidence intervals. 
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1. Introduction 

Every process is affected by random fluctuations. These random 

fluctuations can be due to chance causes or assignable causes. An assignable 

cause is a result of an external change in the process and can be corrected by 

taking appropriate actions. A chance cause is due to the inherent variability in the 

process and it is difficult to eliminate or sometimes control. The primary aim of 

statistical process control is to identify the assignable cause variability in the 

process and to signal to the operating personnel to take appropriate actions. One 

tool that is used as a quick visual detection aid is a control chart. The research in 

the field of statistical process monitoring and control was initiated by the 

emergence of control charts in 1924, when Dr. W. A. Shewhart proposed the 

concept of a visual monitoring scheme with control limits to detect changes in the 

process mean over time, Shewhart (1925, 1931). This formed the basis of the 

Shewhart control chart for monitoring process mean and variance. Since then, 

significant contributions have been made in the field and new charting schemes 

with improved performances have been proposed. 

1.1. Univariate Control Chart 

In process monitoring the type of quality characteristics of interest can be 

broadly grouped into two categories – univariate and multivariate. A typical 

control chart has two basic components, the time evolution of the statistics being 

tracked and the control limit(s), upper or lower or both, signaling process 

behavior beyond the control limits of an expected probability of occurrence less 

than equal to 0.005. If the process is in-control, almost all the values of the 

characteristic fall within the control limits. The most basic univariate control chart 
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is the Shewhart chart. For a univariate characteristic w, if the mean and standard 

deviation of w be µw and σw, the control limits are defined as, see Montgomery 

(2005): 
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where L is the distance of the control limits from the center line. Univariate 

control chart to monitor the process standard deviation can be expressed as: 
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where Cl, Cc, and Cu are appropriate constants for the lower, upper and center 

limits. Other charts commonly used for monitoring a univariate response are the 

cumulative sum (Cusum) where the control chart statistic is the cumulative sum of 

the deviations of the sample average from the in-control process mean,�� �
∑ ���� 	 
����� . Another control chart which weighs the past observations is the 

exponentially weighted moving average (EWMA), �� � ��� � �1 	 ������. Here 

λ is a constant and typically the starting value is set at the process mean, i.e. zo  = 

µo . These charts weigh past observations, unlike the Shewhart chart, and are 

shown to be better in detecting shifts of smaller magnitude. There are additional 

univariate charts designed for special situations and the reader is referred to 

Montgomery (2005) for more details. 
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Process monitoring using control charts is a two stage process - Phase I 

and Phase II, Woodall (2000). The goal in Phase I is to evaluate the statistical 

stability of the process and to estimate the in-control values of the process 

parameters after the out of control points are dealt with. In Phase II, process is 

monitored with the objective to quickly detect out of control shifts in the process 

from the in-control behavior established in the Phase I. Different types of 

statistical methods are appropriate for the two phases with each type requiring 

different measures of statistical performance. In Phase I it is important to assess 

the probability of deciding whether the process is stable or not. It is gauged by the 

probability of obtaining an out of control signal.  

 In Phase II, the emphasis is on detecting process changes as quickly as 

possible. This is usually measured by parameters of the run length distribution. 

The run length is the number of samples taken before a sample falls outside the 

control limits and is distributed according to a geometric distribution with 

parameter p, where p is the probability of the sample statistic falling outside the 

control limits. Hence the average run length (ARL) for the in-control situation for 

the Shewhart control charts can be defined as  

��� �  ��      (1.3) 

For the out of control situation, ARL is the inverse of probability of 

detecting the shift in the first subsequent sample, which is �
����� . ARL is used as a 

metric to evaluate the performance of a control chart simulated under varies types 

of shifts such as sustained shift, step shift or a run-up or run-down.  
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When designing a control chart there are two types of errors one can make 

-  fail to detect an out of control behavior or signal an out of control situation 

when it did not occur, also known as a false alarm. The objective of any control 

chart is to minimize the time to detect an out of control situation while controlling 

for the false alarm rate.  

1.2. Multivariate Control Charts 

When the overall quality of a product or process is characterized by 

several correlated quality characteristics measured at a particular sample point in 

the process, it is more efficient to monitor the joint distribution of the metrics. The 

univariate Shewhart-type, Cusum and EWMA charts have been extended to the 

multivariate case, Hotelling’s T
2
 chart, multivariate EWMA (MEWMA) chart and 

multivariate Cusum (MCUSUM) charts respectively. The Hotelling’s T
2
 statistic 

is based on multivariate normal distribution and the control chart statistic can be 

viewed as the generalized distance between the observed vector from the mean 

vector weighted by the covariance matrix, ��� 	 ��� �!��� 	 ��. Please refer to 

Montgomery (2005) for details on these charts. 

1.3. Profiles 

Consider a case when the quality characteristic of interest is a curve. So 

each sample consists of ordered values of the variable of interest measured over a 

range of another temporal or spatial variable. This is also been referred to as 

functional data [Ramsay and Silverman (1997)], waveform or signature. Profiles 

are different from a multivariate quality characteristic in that the observed 
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responses are ordered and the relationship between the quality variable over the 

range of explanatory variable is of interest.   

Profiles are of interest in various situations from food production, 

manufacturing, testing or calibration, process industries. One of the initial 

applications of profile monitoring was in calibration to ascertain performance of 

the measurement method and to verify that it remained unchanged over time. It 

has also been used to determine optimum calibration frequency and to avoid 

errors due to over-calibration. Rosenblatt and Spiegelman (1981) discuss these 

issues in calibration and suggest the use of control charts to determine the need 

for recalibration. Various control charts have been proposed to monitor 

measurement gauges and calibration curves thus obtained, see Croarkin and 

Varner (1982), Mestek et al. (1994), Stover and Brill (1998), Kang and Albin 

(2000), and Chang and Gan (2007).  

Profiles occur in many other areas, such as performance testing where the 

response is a performance curve over a range of an independent variable such as 

frequency or speed, Bisgaard and Steinberg (1997). Nair et al. (2002) present an 

example from injection molding where the response of interest is the compression 

strength of foam measured over different amounts of compression level. They 

also gave an example of designing a robust alternator, where the aim is to obtain a 

desired current profile over a range of speed. 

Jin and Shi (2001) refer to profiles as waveform signals and cite examples 

of force and torque signals collected from online sensors. Boeing (1998, pp. 89-
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92) proposed a location control chart for the case when numerous measurements 

of the same variable are made on several locations. The control limits are 

constructed based on the responses at that location, ignoring the multivariate 

structure of the data. Sahni et al. (2005) presents an example of a profile response 

from a mayonnaise production process in the food industry. Some of the examples 

of the profiles are shown in (Figures 1 and 2). Further examples of profiles and 

profile monitoring methods are given by Woodall et al. (2004) and Woodall 

(2007) who reviewed papers related to this topic, identified some weaknesses in 

existing methods, and identified research directions.  

Profile monitoring ideas have been extended to detecting clusters of 

disease incidence. Woodall (2006) provide an overview of the approaches used in 

public health surveillance. Zhou and Lawson (2007) demonstrate application of 

the MEWMA to a spatial map of disease incidence. 

There are processes when one observes a series of observations which 

generate curves over time. The key feature that separates profiles is that the 

curves over time or space are obtained sequentially and it has been assumed that 

the two profiles sampled are assumed to be independent. Jiang et al. (2007) 

discuss a case study when they observe a concurrent time series of telephone 

usage for multiple customers. Woodall (2007) argue that such processes with time 

series curves do not fall under the definition of profiles and hence will not be 

discussed further. For more examples of what does not constitute as a profile 

under the definition considered here please refer to Woodall (2007).  



7 

 

1.4. Importance of the work 

In profile monitoring the parameters of the interest are often the 

relationship between the dependent and independent variables and the nature of 

the variance between and with the curves. The multivariate techniques often are 

inadequate for monitoring since the existing methods fail to capture the 

relationship between the response and explanatory variable and autocorrelation 

between the observations. This might lead to scheme with little interpretability of 

the control chart statistic. Further in most of the situations, the sampling points 

per profile are usually more than ten points. This would make multivariate 

scheme cumbersome to design. Hence research is needed to identify schemes that 

would be efficient to monitor the distance or features between the profiles. Till 

date many monitoring schemes have been proposed that smooth the profile using 

a parametric model and then designs a control chart on the parameters of the 

model. The work has been grouped by the nature of the model fit to the profile, 

which could be linear, polynomial, nonlinear or a waveform. 

1.5. Problem Statement and the Scope of the Proposed Research 

The objective of profile monitoring like any other process monitoring 

situation, is to detect the out of control behavior as quickly as possible while 

maintaining the occurrence of false alarms to a minimum. The out of control 

event for a stable process is defined such that a probability of occurrence of less 

than three sigma. Control schemes based on existing multivariate methods fail to 

account for the correlation between the sequentially sampled measurements 
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within a profile. Further the schemes which monitor only local features of the 

profiles have a high probability of missing a shift occurring in another location.  

In the recent past, many monitoring schemes have been proposed and 

some have been compared, but there is need for more research in the area as 

discussed by Woodall, Spitzner, Montgomery, and Gupta (2004). The article is 

the result of the initial work on the topic of profile monitoring and forms the basis 

for the literature review. Since the time the study was conducted, there has been 

quite a lot of interest in the area across the globe. So in the next chapter, there is 

an up to date literature review of the work in the field.   

In chapter 3, a comparative study of two linear profile monitoring 

techniques is presented. The comparison criterion is the average run length 

performance under shifts of different magnitude in the intercept, slope and the 

error variance. The two techniques studied are the Croarkin and Varner (1982) 

control chart (henceforth referred to as the NIST Method) and a modified version 

of the combined control chart of Kim et al. (2003) (henceforth referred to as 

KMW). It is found that the KMW scheme of simultaneous monitoring the 

intercept, slope and error standard deviation either with Shewhart control charts or 

EWMA control charts detects shifts more quickly than the NIST scheme. In 

addition, the KMW methods are found to be much easier to interpret unlike the 

classical estimator based technique, the NIST method in which the estimator is 

plagued with infinite variance and undefined expectation. This work has been 
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published in the International Journal of Production Research, Gupta et al. 

(2005). 

In Chapter 4, results of changepoint method to monitor low order 

polynomial profiles is presented. A likelihood ratio test is used to detect a 

sustained step shift in the process. The test statistic is plotted on a Shewhart like 

chart with control limits derived from asymptotic distribution theory. Further, the 

test statistic is factored to reflect the variation due to the parameters to aid in 

interpreting an out of control signal. This work was presented at the 2006 Joint 

Research Conference, Gupta et al. (2006). 

In Chapter 5 we briefly discuss experimental robust experimental design 

and analysis of profile experiments. Profile generating systems in the robust 

parameter design literature are often referred to as signal-response system. We 

demonstrate that explicit modeling of variance components using a generalized 

linear mixed model leads to more precise point estimates of important model 

coefficients with shorter confidence intervals. This work has been published in the 

Quality and Reliability Engineering International, Gupta et al. (2010). 

Chapter 6 ends with a summary of the major findings from this research 

and some recommendations for future research.  
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2. Profile Monitoring – Literature Review 

Profiles as quality characteristics have existed in various fields since the 

start of the industrial revolution, but tools and methodology to monitor those have 

matured only in the recent few years. This has been brought about by advances in 

sensing technology for capturing and storing multidimensional data and faster 

computing technologies that has enabled complex transformations and 

manipulations of the large datasets quickly and economically.  

Before we review the literature, we discuss various issues that are critical 

for designing a profile monitoring control chart; namely model selection, control 

chart statistic and phase I and phase II applications of control charts.  

2.1. Model Selection  

Most of the early work in the area of profile monitoring has focused on 

techniques for parametric single factor fixed effect models, see Woodall et al. 

(2004) and references therein. Staudhammer et al. (2007) discuss the issue of 

autocorrelation within the profile resulting from closely sampled observations and 

propose ARIMA models to represent the profiles. Jensen, Birch and Woodall 

(2007) and Jensen and Birch (2008) propose fitting a mixed effects models to 

account for the randomness component of the parameters and also include the 

autocorrelated variance structure. Gupta et al. (2006), Kazemzadeh et al. (2008) 

study situations where the profile can be modeled using a low order polynomial 

model. Williams, Woodall and Birch (2003) model the dose response profiles 

using a four parametric logistic model. Jensen, Hui, and Ghare (1984), Mahmoud 
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(2007) and Zou, Wang, and Tsung (2007) consider multiple regression models. 

Colosimo, Pacella and Semeraro (2007) have studied geometric profiles and 

modeled them using a spatial autoregressive error model with Fourier-based 

regressors. Quite a few researchers have worked on smoothing the profile using a 

nonparametric model, see Kernel Smooth regression of Winistorfer et al. (1996), 

two dimensional splines of Gardner et al. (2007), spline of Boeing (1998, pp. 140-

144). Additionally, Ding et al. (2006), Colosimo and Pacella (2007) and 

Moguerza et al. (2007) have proposed reducing the dimensionality of the data by 

independent component analysis models, functional principal components 

analysis and support vector machines respectively. Jin and Shi (2001) use 

wavelets to model stamping force profiles. Other work on using wavelets include 

Reis and Saraiva (2006), Zhou Sun and Shi (2006), Jeong Lu and Wang (2006), 

Chicken and Pignatiello (2009).  

Among the parametric models, more work has been published for the linear 

models as compared to the nonlinear models. It can be seen that a wide variety of 

the models have been used to model the profile. We recommend using the 

simplest adequate model. When using more elaborate models, one has to be 

careful about the control chart statistic that would be efficient in detecting and 

diagnosing the out-of-control situation.  

2.2. Control Chart Statistic  

As we discuss in chapter 1, it is very important to define a statistic which 

captures the functional form into values that can be tracked easily. Any profile 
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can be represented by an adequate model, a statistic which is a function of the 

parameters would be sufficient in tracking changes in the model. For parametric 

models, the parameters of the model namely the coefficients and the error 

variance are sufficient statistics to describe the model. In fact, out-of-control 

signal explained in terms of the parameters is quite efficient in diagnosing the 

shift. For the cases where the coefficients of the model can be made independent, 

especially for the linear and the polynomial models, individual control charts can 

be constructed for all the parameters or only for the parameters of interest, Kim 

Mahmoud and Woodall (2003). In case of the linear model, the intercept and the 

slope parameter can be made independent. Various authors have proposed 

monitoring the coefficients individually using a Shewhart or an EWMA chart or 

the vector of coefficients using a T
2
 statistic or a MEWMA chart. The coefficients 

of the polynomial model can be made independent by using orthogonal 

polynomials. This also helps in reducing the multicollinearity issue which might 

lead to an ill-conditioned matrix and hence inaccurate estimates of the parameters. 

Several authors have also proposed metrics based on residuals. For example, 

Croarkin and Varner (1982), Kang and Albin (2000), likelihood statistic by 

Mahmoud et al. (2006). For nonlinear models, the coefficients of the model are 

dependent and cannot be monitored using individual charts, so a multivariate 

statistic like the MEWMA or a T
2
 has to be proposed. There are multiple ways to 

construct the T
2
 statistics, Williams et al. (2007b) study various methods in detail 
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and demonstrate that the T
2
 statistic based on successive difference of the 

parameters is very efficient in detecting shifts. 

For the nonparametric profiles, Gardner et al. (1997) have suggested using 

a distance based metric. But as Ding et al. (2006) point out that one has to be 

cautious in using the simple descriptive statistics as control chart statistics since 

these types of statistics would miss other local feature and would lead to a scheme 

which has high false alarm rate. 

2.3. Phase I and Phase II  

Process monitoring using control charts is a two stage process - Phase I 

and Phase II. The goal in Phase I is to evaluate the statistical stability of the 

process, and after dealing with any assignable causes, to estimate the in-control 

values of the process parameters. In Phase II, one is concerned with monitoring 

the on-line data to quickly detect shifts in the process from the in-control behavior 

established in the Phase I. Different types of statistical methods are appropriate 

for the two phases with each type requiring different measures of statistical 

performance. In Phase I, it is important to assess the probability of deciding 

whether the process is stable or not. It is gauged by the probability of obtaining an 

out of control signal.  

 In Phase II, the emphasis is on detecting process changes as quickly as 

possible. This is usually measured by parameters of the run length distribution. 

The run length is the number of samples taken before a sample falls outside the 

control limits and is distributed according to a geometric distribution with 
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parameter p, where p is the probability of the sample statistic falling outside the 

control limits. Hence the average run length (ARL) for the in-control situation can 

be defined as  

��� �  1"  

For the out of control situation, the ARL is the inverse of probability of 

detecting the shift in the first subsequent sample, which is 
�

����� . ARL is used as a 

metric to evaluate the performance of a control chart simulated under varies types 

of sustained shifts, step shift or a run-up or run-down.  

Another objective of Phase I is to characterize the common cause variation 

among profiles. It is hard to detect changes in profiles when they are plotted on 

top of each other. Jones and Rice (1992) proposed a principal component 

approach to identify the first few modes of variation. In the case of profiles, 

viewing the first few eigenfunctions that indicate modes along which the profiles 

vary a lot, simplifies the visual representation of the profiles and also provides a 

perspective on subspace of the explanatory variable that has the highest 

variability. Colosimo and Pacella (2007) illustrate the PCA approach to study the 

variation among roundness profile. Woodall et al. (2004) illustrate the approach 

on particle density board profiles. Ding et al. (2006) treat PCA as a dimension 

reduction algorithm and highlight that PCA might not be optimal approach in 

clustering the in-control data separate from out-of-control profiles. Instead they 

propose independent component analysis (ICA) and define an interestingness 

metric that is maximized when the data is in-control. Gonzalez and Sanchez 
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(2008) propose monitoring the first few principal components. We caution against 

using such schemes unless it is supplemented by control charts on the rest of the 

principal components. Since any shift in the least significant principal 

components would make the process behave out-of-control but would be missed 

by scheme monitoring only the first few principal components.  

2.4. Linear Profile Monitoring  

Much of the literature in linear profile monitoring deals with Phase II 

application, assuming that the underlying in-control model parameters are known. 

Stover and Brill (1998) used the Hotelling 
2T chart and a univariate chart based 

on the first principal component of the vectors of the estimated regression 

parameters to determine the response stability of a calibration instrument and the 

optimum calibration frequency. Kang and Albin (2000) suggested the use of a 

Hotelling 
2T chart or a combination of an exponentially weighted moving average 

(EWMA) and the R chart based on residuals for monitoring Phase II linear 

profiles. They recommended the use of similar methods for Phase I. Kim et al. 

(2003) proposed transforming the x-values to achieve an average coded value of 

zero and then monitoring the intercept, slope and process standard deviation using 

three separate EWMA charts (called the EWMA3 method). They conducted 

performance studies and showed their method to be superior to the multivariate T
2
 

and EWMA – R charts of Kang and Albin (2000).  

For Phase I analysis Kim et al. (2003) suggested replacing the Phase II 

EWMA charts with Shewhart charts. Mahmoud and Woodall (2004) proposed the 
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use of a global F statistic based on an indicator variable technique to compare k 

regression lines in conjunction with a control chart to monitor the error variance 

term. They compared various Phase I methods with their procedure based on the 

probability of a signal under various shifts in the process parameters, and showed 

that their method often performed better than the use of the  control chart of 

Stover and Brill (1998), the T
2
 control chart of Kang and Albin (2000) and the 

three Shewhart control charts of Kim et al. (2003).  

Croarkin and Varner (1982) have proposed monitoring the deviations of 

the three observations (one at each of the end points of the measurement range 

and one near the centre) from the standard for checking the calibration 

relationship. The quantities plotted on the control chart are obtained by correcting 

the measured or the y-values and then subtracting the standard or the x-values 

from it and it is of the form: 

��� � #$%��&
�' 	 ��  ; ) � 1, 2, . . , -                                (2.1) 

Croarkin and Varner (1982) suggested plotting the deviations over the 

sample number. That means that the three deviations would line up vertically, and 

would be indicated by U, M or L for upper, middle and lower respectively. The 

method is pretty competitive as compared to the method of Kim et al. (2003) but 

performs poorly when there are more sampling points per profile as shown in 

Gupta, Montgomery and Woodall (2006). Further the statistic is also plagued with 

infinite variance, thus reducing the confidence in the method. See Kurtchkoff 

(1967, 1969), Williams (1969) and Berkson (1969). Chang and Gan (2007) 

2T
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illustrate the application of profile monitoring to track the relationship between 

two measurement gauges. This relationship between two measurement gauges is 

also known as measure of linearity and is often expressed by the slope coefficient 

of the linear model obtained from regression one from the other. The model form 

assumed by the authors is .� � / � 0�� � 1, where c ~ N(0, 0234 � 2#4�. The 

authors then derive the distribution of beta which is a measure of linearity. 

Shewhart chart for the measure of linearity is proposed based on asymptotic 

distribution of standardized beta (standardized via dividing by the precision ratio 

2#4/234). The authors propose building q charts for q pairs of measurements, but 

have not elaborated about the correlation between the pairs. 

Kang and Albin (2000) suggested monitoring the residuals using a EWMA 

and R chart. They define the residuals as 0 1ij ij ie y xβ β= − −  and suggest plotting 

the average of the residuals for each profile 
1

1 n

j ij

i

e e
n =

= ∑ , as a chart statistic for 

EWMA and R Chart. Kim et al. (2003) showed that these methods are pretty 

competitive to the individual coefficient monitoring scheme for a simple linear 

profile.  

Approaches based on nonparametric control charting methods have been 

proposed. Wang and Tsung (2005) argue for monitoring q-q plot of the samples 

collected from processes where sampling time is very small, especially when 

sensors are deployed for collecting data. The process or the quality characteristic 

of interest need not be a profile, but transforming the data into quantiles per 
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sampling time, lends this problem into the domain of profile monitoring. The 

authors believe that the shift in the process leads to change in the in-control 

distribution. Due to obvious ordering of the measurements within a q-q profile, 

authors use generalized least squares to estimate the parameters. Authors propose 

monitoring each parameter using an EWMA chart and demonstrate the superiority 

of the proposed method with a performance study. The idea of monitoring q-q 

curves is extension of the method proposed by Grimshaw and Alt (1997) to a 

profile monitoring case. The idea of transforming the univarite data to a q-q plot 

to set up a profile monitoring case is novel. In spite of its attractive features, this 

method is limited by quick detection of the root cause of the out-of-control 

situation.  

Several authors have also suggested representing the profile as a mixed 

effect model, where the variation between the profiles is captured by random 

effects coefficient. Staudhammer et al. (2007) illustrate the application in a wood 

product manufacturing facility. They found that high level of autocorrelation had 

no effect on the efficiency of the control chart. Jensen et al. (2007) also discuss T
2
 

chart to monitor the fixed effects and random effects coefficients. However 

presence of autocorrelation helps more than hurts the profile monitoring case and 

Jensen et al. (2007) demonstrate that for a balanced case, least square approach is 

quite sufficient. However under the following conditions mixed models are better 

suited to characterize the profiles, namely sample size between profiles is 
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different, there is missing data, the autocorrelation within the profile is small or if 

the sampling points per profile are quite small. 

2.5. Change point Analysis  

Mahmoud et al. (2007) have proposed looking at profile monitoring as a 

changepoint detection problem and propose a likelihood ratio statistic (lrt) to 

detect the location and magnitude of the shift in linear profiles. Further the 

authors propose to split the lrt into three variance components, one each for the 

error variance, intercept, and the slope to get an idea about individual 

contributions of the intercept, slope and the error variance. Their split is similar to 

the one by Gulliksen and Wilks (1950). Zhou et at. (2007) look at self starting 

mechanism for change point based control charts for linear profiles. They extend 

the Hawkins et al. (2005) method of monitoring the likelihood ratio of the 

unknown parameters to profiles scenario. The authors propose once the subset of 

the sample has been shown to be in-control, the samples are excluded from the 

likelihood ratio test statistic and suggest using EWMA to offset the potential 

delay caused by small number of samples. The authors demonstrate the average 

run length performance of the proposed chart and do comparative analysis with 

the EWMA3 chart of Kim et al. (2004). 

Zhang, Li and Wang (2009) use an exponential weighting scheme for all 

the parameters that are eventually used for constructing the likelihood statistic. 

The authors compare their proposed ELR (exponentially smoothed likelihood 

ratio) control chart to the KMW chart of Kim et al. (2003) and MEWMA 
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approach of Zou et al. (2007). The simulations conducted shows comparative 

behavior of the all the three charts and the proposed chart performs modestly 

better than the other charts for detecting shifts in error variance. 

 Zou, Tsung and Wang (2007) proposed MEWMA chart for monitoring 

general linear profiles. They define their MEWMA statistic of parameters to 

include the error variance. The MEWMA statistic is defined as 

( ) ;1 1−−+= jjj WZW λλ  where ( ) ( )( )′′ σβ jjj ZZisZ , . ( )












 −
=

σ

ββ
β j
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ˆ

( ) ( )( ){ }pnpnFZ jj −−= −
;ˆ 221 σσφσ  

 Kazemzadeh, Noorossana, and Amiri (2008) extended the Mahmoud et al. 

(2007) approach to polynomial profile and the authors suggested centering the x-

values to reduce the multicollinearity problem. The authors demonstrate the 

superiority of the changepoint approach as compared to the Williams et al. (2007) 

T
2
 statistic and Mahmoud and Woodall (2004) F-approach. We believe the 

multicollinearity among regression variables will result in an ill conditioning of 

the X matrix and will lead to unstable coefficients. In chapter 4 we discuss 

potential solution for avoiding the multicollinearity problem.  

2.6. Non Linear Profile Monitoring  

Non linear profiles occur as commonly as the linear profiles. Walker and 

Wright (2002) use additive models to compare particle density boards. This is a 

non parametric technique. Sahani et al. (2005) monitor the principal components 

of the NIR spectra data obtained from mayonnaise production. Williams et al. 
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(2003, 2007b) suggests using  chart to monitor parameters of the non linear 

function simultaneously. The authors proposed estimating the variance-covariance 

matrix using successive difference vector and demonstrate that the resultant chart 

is effective in detecting step and ramp shifts in the process.  It is well known that 

2T  control chart is good at detecting changes in the process but it is extremely 

cumbersome to pin point the changes in the subset of the parameters as the 

number of parameters increase. 

Ding et al. (2006) study the process with high dimensional dataset and 

propose reducing the dimensions using Independent Component Analysis and a 

Phase I control chart based change point approach. Colosimo and Pacella (2007) 

study circular profiles modeled using Fourier basis functions and develop a test 

statistics based on functional PCA. Moguerza et al. (2007) propose a phase I 

approach based on regression support vector machines to identify the extreme 

observations. Vaghefi et al. (2009) study two different approaches to monitor a 

nonlinear profile. One based on the parameters of the nonlinear regression and the 

other is based on a deviation metric from a standard profile.  

Jin and Shi (2001) model the response of a tonnage stamping process 

using wavelets and monitor wavelet coefficients of the torque signals to detect 

changes in the stamping process. Reis and Saraiva (2006), Zhou, Sun and Shi 

(2006), Jeong, Lu and Wang (2006), and Chicken et al. (2009) also study 

approaches based on wavelets. This is a sophisticated method to monitor the data, 

but I would think that tracing the actual cause of the shift would be difficult. 

2T
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2.7. Multivariate Profile Monitoring  

So far it has been seen that control chart techniques based on monitoring 

the parameters of the regression line the profile takes shape is very efficient for 

the univariate straight profile. Among the first to take this approach for multiple 

regression case were Jensen, Hui and Ghare (1984). They propose control charts 

for monitoring change in form of the model, change in model parameters, a 

control chart for isolating the coefficients that have changed and variance control 

chart based on F distribution.  

Multivariate profiles are common in chemometrics and monitoring 

schemes based on latent variable methods, like partial least squares and principal 

components are used. Krouti and MacGregor (1996) suggest one such approach. 

There is a difference between the profiles studied by Krouti and MacGregor 

(1996) and ours. We study the case when the response is a function, whereas in 

their case the predictor is a function and response is a univariate value or a 

multivariate vector. For example, temperature profile in the boiler and response 

could be the molecular weight of the end product.  Bharati and MacGregor (1998) 

proposed methods for the analysis of image data, where the images can be 

considered to be profiles. Gardner et al. (1997) consider two-dimensional wafer 

surfaces as profiles and proposed distance based metrics to monitor the presence 

of a systematic shift. No performance comparison was conducted. Zhou and 

Lawson (2007)  monitor disease maps over time using spatial model. 

2.8.  Conclusion  
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Since Woodall et al. (2004), there has been considerable interest in profile 

monitoring and it is evident in the growing number of publications in the field. 

Few general themes emerge among the research so far, namely, 1) there is 

consensus among the researchers to reduce the dimensionality of the data, either 

by using a latent variable or reducing the profile to parameters of the smooth 

function, 2) most of the work has focused on shifts in the mean profile, and, 3) 

there has be almost equal emphasis on the Phase I and Phase II applications of 

profile monitoring. There are a few topics that would need more consideration. 

Very little work has been done in this area involving profiles with multiple 

covariates and multivariate profile surfaces. In non linear analysis, it is expected 

that the number of parameters will increase and it becomes essential to have a 

technique that will provide quick way to trace the root cause of the problem. 

There has been considerable work done in using Principal Component Analysis. 

Profile monitoring is a widely applicable and an active area of research.  
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3. Performance evaluation of two methods for online monitoring of linear 

calibration profiles 

3.1.  Introduction 

The focus of this paper is to perform a Phase II comparative study 

between the Croarkin and Varner (1982) control chart (henceforth referred to as 

the NIST Method) and the combined control chart of Kim et al. (2003) 

(henceforth referred to as KMW). We compare the two methods on the basis of 

ARL performance under sustained shifts of different magnitudes in the intercept, 

slope and the error variance.  

3.2.  Description of the Methods 

The in-control model for the i
th

 observation within the j
th

 random sample is 

assumed to be of a simple linear form ,,,2,1,10 nixy ijiij K=++= εββ where 

the ijε ’s are independent, identically distributed (i.i.d.) normal random variables 

with mean zero and known variance
2σ .  The regression coefficients, the intercept 

( 0β ) and the slope ( 1β ), are assumed to be known.  

Croarkin and Varner (1982) suggest using monitoring techniques for 

calibration curves similar to those for individual measurements. The method is 

described in the NIST/SEMATECH e-Handbook of Statistical Methods (see 

references for the website). The control chart statistic is obtained by first 

‘correcting’ the measured values (y-values) and then subtracting the standard x-

value from it. The quantities plotted on the control chart at the time of the j
th

 

sample are 
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The control limits are established as 

Upper Control Limit (3.2a)*

1 ςZsl c=  

Lower Control Limit (3.2b),*

2 ςZsl c−=  
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σ
=  

Here σ  is the assumed known standard deviation and 1β  is the assumed 

known in-control value of the slope. The value *
ςZ  corresponds to the upper ς  

percentage point of the standard normal distribution, where ς  is defined as 
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where n is the number of standards evaluated at each time period and α is 

chosen to provide the desired in-control ARL using the relationship ARL0 = 1/α . 

The control limits in equation 3.2 are constructed using the standard normal value, 

instead of the t distribution value [as proposed by Croarkin and Varner (1982)], as 

the in-control parameter values are assumed to be known. The NIST method 

recommends measuring three standards (one near each end point of the 

measurement range and one near the centre) for checking the calibration 

relationship.  
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Kim et al. (2003) propose fitting a straight line to the calibration data in 

each sample over time and using separate EWMA or Shewhart charts for 

monitoring each of the regression coefficients and the standard deviation. The 

independent variable is subtracted from its mean to obtain a transformed variable. 

This technique makes the estimated least squares regression coefficients 

independent and they can be monitored individually using separate control charts. 

In our study we replace the EWMA charts by X-bar charts to monitor the 

intercept and slope and by an S
2
 chart to monitor the error variance. This 

modification makes the KMW procedure more similar to the NIST procedure.  

The control limits for monitoring the intercept are 

. Z   LCL              

)5.3(     LineCentre
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The control limits for monitoring the slope are 
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where Sxx is defined as ( )∑
=

−
n

i

i xx
1

2
(refer Montgomery et al. (2001 pp. 15 

-17)). Finally, the control limits for monitoring the error variance are 
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where 2

)2(,2 −nαχ and 2

)2(),1( 2 −− nαχ are the upper and lower 2α  percentage 

points of the chi-square distribution with n-2 degrees of freedom associated with 

the residuals (see Montgomery (2004, pp. 212-248)). The value of overallα  is 

calculated using the equation ( )3
11 αα −−=overall  and the in-control ARL is 

computed by taking the reciprocal of overallα  

3.3.  Comparisons 

In our comparisons the underlying in-control linear model assumed for 

both the methods is ijiij xy ε++= 23 , with ijε  i.i.d normal random variables with 

zero mean and unit variance. The x-values for each sample are initially fixed at 2, 

4, 6, and 8 (a four-level case). Different numbers of levels of the x-values are also 

investigated, (3 and 10), and are discussed subsequently. For both the charts the 

same x-values are used for each sample. The transformed model following the 

KMW scheme is ijiij xy ε++= 213  with the x-values of -3, -1, 1 and 3. 

Monte Carlo simulation is used to obtain the ARL performance for both 

the methods. All simulations are conducted by tuning the NIST and the KMW 

charts to achieve an overall in-control ARL of 200. The ARL value is estimated 

by averaging the run lengths obtained by running 10 000 simulated charts. For the 

KMW-Shewhart charts, α  is set at 0.00167 to achieve a combined in-control 
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ARL of the three charts to be approximately 200. The individual in-control ARL 

for each of the Shewhart charts is 598.8. The α -value for the NIST control chart 

is set at 1/200 = 0.005. We consider various shifts in the parameters for the 

comparison study which are listed in (Table 3.1.)  

Table 3.1. Shifts considered for the two methods 

Type of shift Notation Values of the shift 

Shift in Intercept λσββ     to 00 +  For λ  =  0.2, 0.4, 0.6, …, 2.0 

Shift in Slope δσββ     to 11 +  For δ  =  0.025, 0.050, 0.075, …, 

0.25 

Shift in Standard 

Deviation  

γσσ   to  For γ  =  1.2, 1.4, 1.6, …, 3.0 

There are two ways to compute the ARL for the Shewhart chart – 

analytically and using simulation. It is fairly easy to compute ARLs for each of 

the Shewhart charts monitoring the intercept and slope parameters using the 

equations in Montgomery (2004, pp. 233-235). The ARL calculation for the 

control chart for variance and for the situations involving combined charts and 

shifts would be more complicated.  Simulation proves to be a straightforward 

alternative. To maintain uniformity in our comparisons, we use simulation to find 

the ARLs for all the control charts. 

In the first part of the study we compare the performance of the original 

EWMA3 procedure of KMW and the Shewhart chart version of KMW under 

shifts in the intercept and the error variance under the model ijiij xy ε++= 23 . 

There are two ways a shift can occur in the slope, either in the original model (

ijiij xy ε++= 23 ) or in the transformed model ( ijiij xy ε++= 213 ). These shifts 

are depicted in (Figure 3.1.)  
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Figure 3.1. Comparison of the introduction of the shifts for unit shift in slope 

From (Figure 3.1) it is apparent that the change in the shifted model from 

the baseline model is smaller when a unit shift in the slope was introduced in the 

coded model as compared to when the unit shift in slope was introduced in the 

original model. The combined ARL values for the three separate control charts for 

intercept, slope and standard deviation for the EWMA3 and KMW-Shewhart 

methods are shown in (Tables 3.2, 3.3, and 3.4.)  
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Table 3.2. ARL comparison of KMW-Shewhart and KMW-EWMA charts under 

Intercept shifts 

Shift in the intercept 

(Lambda) 

EWMA3 Chart (as 

reported by 

KMW) Shewhart Charts 

0 200 199.9 

0.2 59.1 151.4 

0.4 16.2 77.9 

0.6 7.9 33.8 

0.8 5.1 15.5 

1 3.8 7.7 

1.2 3.1 4.3 

1.4 2.6 2.7 

1.6 2.3 1.9 

1.8 2.1 1.5 

2 1.9 1.2 

 

Table 3.3. ARL comparison of KMW-Shewhart and KMW-EWMA charts under 

Slope shifts 

Shift in 

slope 

(Delta) 

EWMA3 (as 

reported by KMW 

– shift in the 

original model)  

EWMA3 (shift 

in the coded 

model)  

Shewhart 

Charts (shift in 

the original 

model) 

Shewhart 

Charts (shift 

in the coded 

model) 

0 200 198.1 199.9 199.1 

0.025 101.6 172.5 178.3 195.0 

0.05 36.5 119.4 125.0 181.8 

0.075 17 76.7 79.2 166.9 

0.1 10.3 49.1 46.7 142.1 

0.125 7.2 32.4 27.9 120.8 

0.15 5.5 23 17.1 99.2 

0.175 4.5 16.7 10.9 81.2 

0.2 3.8 13.2 7.1 63.8 

0.225 3.3 10.6 5.0 51.0 

0.25 2.9 8.8 3.6 41.0 
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Table 3.4. ARL comparison of KMW-Shewhart and KMW-EWMA charts under 

Standard Deviation shifts 

Shift in standard 

deviation 

(Gamma) 

EWMA3 (as 

reported by KMW ) 
Shewhart Charts 

1 200 199.9 

1.2 33.5 40.1 

1.4 12.7 13.5 

1.6 7.2 6.5 

1.8 5.1 4.0 

2 3.9 2.8 

2.2 3.2 2.2 

2.4 2.8 1.8 

2.6 2.5 1.6 

2.8 2.3 1.5 

3 2.1 1.4 

 

The larger ARL values for the case when the shift in the slope is 

introduced in the transformed model support our observations from (Figure 3.1.)  

We also considered the case where the shift is introduced in the original line. The 

EWMA charts did well at detecting small sustained shifts in the parameter 

coefficients. The performance of Shewhart charts is found to be very comparable 

to the performance of the EWMA charts for large shifts in the parameters. Both 

the charts have almost the same power of detection for shifts in the error standard 

deviation. These results are expected as it is well known that the EWMA chart is 

superior to a Shewhart chart in detecting small sustained shifts while for larger 

shifts the Shewhart chart is very effective. ARL values for the shift in the slope in 

the transformed model are larger than the ones in the original model. This part of 

the study demonstrates that to capture small sustained shifts EWMA charts are 
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better, whereas if the interest is in capturing spikes (or unsustained big 

disturbances), it is known that the Shewhart chart is the right choice. In situations 

where both kinds of shifts are of interest, Montgomery (2004) and others suggest 

a combined approach. For the second part of the study we choose Shewhart charts 

for KMW method to have a more direct comparison with Shewhart-type chart in 

the NIST method.  

 When we compare the KMW-Shewhart approach and the NIST method, 

we also vary the number of observations on the calibration curve that are being 

used, i.e., n. Three, four, and ten levels are considered. The x-levels used in these 

cases are in (Table 3.5.) 

Table 3.5. x-values considered 

Number 

of levels 

Notation x Levels 

3 3a 2, 5, 8 

3b 1, 5, 10 

4 4a 2, 4, 6, 8 

10 
10 

1, 2, 3, 4, 5, 6, 7, 8, 9, 

10 

 

The ARL values for various sustained shifts in intercept, slope and error 

standard deviation are shown in (Figures 3.2, 3.3, and 3.4) respectively. We 

consider only shifts in the original model. Unless otherwise mentioned for the 

three levels of x, case 3a is to be assumed. The number in the bracket in the 

discussion below refers to the number of x-values considered, so Shewhart (3a) 

refers to the KWM-Shewhart charting scheme for three values of x.  
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Figure 3.2. ARL comparison under Intercept shift from 
λσββ     to 00 +

 

 

Figure 3.3. ARL comparison under slope shift from δσββ     to 11 +  
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Figure 3.4. ARL comparison under Standard Deviation shift from σ  to γσ  

The plots of the ARLs under the intercept shift indicate that the KMW-

Shewhart scheme performs better than the NIST scheme. The NIST scheme for 

monitoring 10 points, NIST (10), is approximately comparable to the KMW-

Shewhart scheme for 3 points, Shewhart (3a), which indicates that we would need 

less time and fewer data points to reach the same conclusions by using the KMW-

Shewhart scheme than we would by using the NIST Method. A similar pattern is 

seen for a shift in the slope. For a shift in the error standard deviation, both 

schemes have similar performance. These figures indicate that the Shewhart (10) 

scheme gives the overall best performance. Furthermore, the out-of-control ARL 

of the KMW-Shewhart scheme decreases much more quickly than the ARL for 

the NIST scheme as the number of the standard values increases.  
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Simultaneous sustained shifts in the intercept and slope are also 

considered. Kim et al. (2003) consider combined shifts in the coded regression 

coefficients for the intercept and the slope. We consider combined shifts in the 

original regression coefficients for the KMW-Shewhart method. The ARL values 

obtained are summarized in Appendix A where the first row in each cell contains 

the combined ARL values for the KMW-Shewhart method, the second row 

contains the combined ARL value for NIST method and the third row shows the 

percentage improvement in detecting sustained shifts by the KMW-Shewhart 

method as compared to the NIST method. The KMW-Shewhart method 

significantly outperforms the NIST method for all combinations of shifts in the 

slope and the intercept.   

We also carried out several other studies to determine if the location of the 

values of the standards would improve the performance of the NIST method (not 

shown here). There is no significant improvement in the performance of the NIST 

method even if we increase the number of standards used.  

3.4.  An Example 

We use the example presented in the NIST/ SEMATECH e-Handbook of 

statistical methods (see references) to illustrate the two methods. The dataset 

consists of line widths of photomasks reference standards on 10 units (40 

measurements) used for monitoring linear calibration profiles of an optical 

imaging system. The line widths are used to estimate the parameters of the linear 
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calibration profile, iij xy 9767.2817.0 +=  with a residual standard deviation of 

0.06826 micrometers. 

A monitoring scheme is established to monitor measurements on three 

units for upper, middle and lower end of the relevant measurement range from the 

estimated Phase I profile. The dataset is provided in (Table 3.7) and plotted in 

(Figure 3.5.) In the plot the in-control line is the established Phase I profile. On 

careful observation of the measurements for the fourth sample, the plotted values 

seem to be slightly offset from the in-control line. We employ both the KMW-

Shewhart scheme and the NIST method to monitor the phase II line width data 

and the control charts are as shown in (Figures 3.6 and 3.7.) 
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Table 3.7. Line -width measurements for the example DAY POSITION X Y 

1 L 0.76 1.12 

1 M 3.29 3.49 

1 U 8.89 9.11 

2 L 0.76 0.99 

2 M 3.29 3.53 

2 U 8.89 8.89 

3 L 0.76 1.05 

3 M 3.29 3.46 

3 U 8.89 9.02 

4 L 0.76 0.76 

4 M 3.29 3.75 

4 U 8.89 9.3 

5 L 0.76 0.96 

5 M 3.29 3.53 

5 U 8.89 9.05 

6 L 0.76 1.03 

6 M 3.29 3.52 

6 U 8.89 9.02 

 

Figure 3.5. Plot of the line-width measurements  
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Figure 3.6. KMW-Shewhart charts for monitoring the parameters of the 

calibration line 
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Figure 3.7. NIST chart for monitoring calibration line 

In the KMW-Shewhart charts (see Figure 3.6), the three horizontal lines 

indicate upper control limit, centre line and lower control limits respectively, 

calculated using equations (3.5), (3.6) and (3.7). The numerical values of the 

upper control limit, centre line, and lower control limit for the intercept, slope and 

error variance charts are (4.62, 4.49, 4.37), (1.01, 0.98, 0.94) and (0.0087, 0.0046, 

0.002), respectively. To achieve the overall in-control ARL of 200, the value of 

α for KMW-Shewhart and NIST was adjusted to be 0.00167 and 0.005 

respectively. The NIST chart is shown in (Figure 3.7.) Note that the 

measurements on the fourth day are out-of-control for both the NIST chart and the 

KMW-Shewhart charts. On the KMW-Shewhart, the error variance values on the 

fifth and sixth day are below the lower control limit with the values 0.0018 and 

0.0000 respectively. Although this sample dataset is small, it is easily seen that 
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the KMW-Shewhart method provides more information and is easier to interpret 

than the NIST control chart. 

3.5.  Conclusions 

Linear profiles occur often in calibration applications. A calibration curve 

is established based on the functional relationship between the measurement 

system values and the accepted values of the standard. Often large amounts of 

time and money are invested in recalibrating the system, even sometimes when 

the recalibration is not required. The aim has always been to optimize the 

calibration frequency and maintain a certain level of accuracy and precision. This 

could be achieved in part by monitoring the calibration curves over time. Among 

the two methods evaluated in this study, the KMW scheme of simultaneous 

monitoring the intercept, slope and error standard deviation either with Shewhart 

control charts or EWMA control charts detects sustained shifts more quickly than 

the NIST scheme. In addition the KMW methods are much easier to interpret. 

The NIST method with an estimated in control calibration line is based on 

the classical method of calibration in which the calibration equation is  

)8.3(
ˆ

ˆ
ˆ

1

0

β

β−
= oy

x  

where 0β̂  and 1β̂  are the estimates of the intercept and slope respectively, 

oy  is the measured variable, and x̂ is the estimated value of the variable of 

interest. The classical estimator is plagued with numerous weaknesses, 

Montgomery et al. (2001 pp. 503-508). Even though the estimator is minimum 
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variance unbiased and the estimator of the slope is assumed to be normally 

distributed and independent of y  and y , its reciprocal has infinite variance and it 

has undefined expectation. This leads to infinite mean square error and hence can 

result in poor performance of the method. Various researchers have discussed 

these points and some have proposed an alternative inverse method for 

calibration. Kurtchkoff (1967, 1969), Williams (1969) and Berkson (1969) have 

discussed in detail the weaknesses in the classical calibration method. 

Considering the strengths of the KMW method compared to the NIST 

scheme, we suggest using the KMW scheme with either Shewhart charts or 

EWMA charts or a combination of both to monitor linear calibration curves. 
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4. The Use of Changepoint Statistics to Monitor Polynomial Profiles 

4.1. Introduction 

Non-linear profiles are as common as linear profiles, but techniques to 

monitor linear profiles have clearly outnumbered those for the non-linear 

situation. Non-linear profiles are common in engineering and sciences (Jin and 

Shi (2001), Walker and Wright (2001)). In the absence of prior mechanistic model 

form, most of the nonlinear profiles can be modeled adequately using a 

polynomial model or using piecewise polynomial models. In this article, we 

restrict our attention to the types of non linear profiles that can be adequately 

modeled using lower order polynomials. Few examples of polynomial profile 

include - acceleration and deceleration profile of an air bag in automotives, 

Marklund and Nilsson (2003). Sahni et al. (2005) discuss a scenario where 

monitoring the viscosity of mayonnaise over time is of interest.  

 In this study we investigate the changepoint approach for Phase I analysis of 

polynomial profiles and conclude the article with our comments on the Phase II 

aspect of profile monitoring using changepoint approach. The changepoint 

approach can be defined succinctly as follows. If y1, y2… yn are independent 

random vectors with probability distribution functions F1, F2… Fn, respectively, 

the change point analysis can be defined as the problem of detecting the point in 

time when change(s) in the distribution of the observations occurred. The 

hypothesis being tested can be written as 
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H0:   F1= F2=…= Fn versus Ha : nmmmm FFFFFF
qq

==≠==≠== ++ KKK 111 11
 ;      

(4.1) 

where m1, m2... mq are the q unknown change point locations. 

4.2. Development of the Changepoint Statistic  

Various studies have been conducted to evaluate the changepoint 

approach, most of them assumed a linear sampling framework of the form (x1, y1), 

(x2, y2)… (xN, yN). In this study we focus on the techniques that have been 

proposed for a profile sample. A profile sample of k profiles is typically of the 

form {(xi1, yi1), i =1, 2,…, n1},{(xi2, yi2), i =1, 2,…, n2},…,{ (xik, yik), i =1, 2, …, 

nk }, where each profile is assumed to have at least two observations [Mahmoud 

et al.(2004)].  

The hypothesis being tested is whether the parameters of the model 

change from one profile to another, assuming the form of the model is the static 

and the parameters do not change within the profile. The changepoint model for a 

profile can be written as  

,)( ijijij xfy ε+=                    

(4.2) 

,,,2,1,,,1,,,1,1 jqq nikjmqjand KKK ===≤<− θθ  

where θ q  is the changepoint between the j profiles with  i samples per profile and 

the εij ~ N(0, σj
2
). 
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If we assume the distribution of the nuisance term to be N(0, σj
2 ), then the 

likelihood ratio statistic (lrt) for a single changepoint or two segments (q = 2) can 

be defined as (see Sullivan and Woodall (1996)):  

2

22

2

11

2

1
ˆlogˆlogˆlog σσσ NNNlrtm −−= ,     for m1 = 1, 2, …, m-1    

 (4.3) 

where 
2σ̂  is the maximum likelihood estimator (MLE) of the error variance of all 

the samples pooled together into a single sample of size N, 2

1σ̂  is the MLE of the 

error variance of all the samples before the changepoint m1 of size N1 (=∑
=

1

1

m

j

jn ) 

and  2

2σ̂  is the MLE of the error variance of all the samples after the changepoint 

m1 of size N2 (= ∑
+=

m

mj

jn
11

). The likelihood ratio statistic in equation (3) can be used 

to detect changes in both the mean and the error variance. Mahmoud et al. (2004) 

split the lrt for a linear profile into three variance components, one each for the 

error variance, intercept, and the slope to get an idea about individual 

contributions of the intercept, slope and the error variance. The splitting of the 

likelihood ratio into variance components is quite useful in diagnosing the cause 

of the shift and also detecting the potential cause of process deviance. It would be 

of interest to make sure that one of the components of variance is not dominating. 

Mahmoud et al. (2004) discuss inferring the status of the process by looking at the 

contribution of the variance components. Though it is a great diagnostic tool, care 

must be taken in not over adjusting the process based on the values. Gulliksen and 
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Wilks (1950) construct three step hierarchical hypothesis to tests the significance 

of the three variance components. We decomposed the likelihood ratio statistic for 

a second degree polynomial. Let’s say that f(xij) in equation (4.1) is represented by   

2

ijjijjj xCxBA ++ , where the X-values are assumed to be fixed for each sample 

and also assumed to be centered on zero. This implies that 0
1

3

1

==∑∑
==

n

i

i

n

i

i xx .   

Hence the maximum likelihood estimate, MLE of the total error variance 

can be written as   

NcxbxaY ii

N

i

i /)(ˆ 22

1

22 −−−== ∑
=

σσ      

(4.4) 

where N is the total number of samples (m*n). For the samples before the split 

point m1 with a sample size of N1 and after the split point m1, (sample size of N2 = 

N - N1) the MLE of the error variance is defined as  

1
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(4.5) 

Hence the likelihood ratio statistic can be written as: 

  ])ˆ()ˆ(ˆlog[ 21

1

2

2

2

1

2 NNNN

m Nlrt
−−= σσσ        

(4.6) 
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Further equation (4.4) can be expanded as the sum of the error variances defined 

in equation (5.5) and expressed as a function of the sum of squares  
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where the sum of squares are defined as  
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Factoring and substituting the above expressions for the various terms in the 

equation (4.7), it can be written as 
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Further  
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Simplifying the VarA term further, let  
2
ii xz =   and recall that the 

coefficient of the quadratic term can be expressed as 
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and the intercept can be expressed as  
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Now let  
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Hence the equation (4.11) can be written as  
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So variance of the intercept can be written as 
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 But we know that ∑ = 0it  hence equation can be simplified to 
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Unlike the breakdown for the linear model, the components for the quadratic 

model are difficult to segregate and showed dependency. Hence it is difficult to 

clearly attribute an out-of-control shift to any one of the coefficients of the model.  

To construct a control chart using the changepoint statistic, we simulated the 

value of the threshold for the lrt statistic using simulation for a given type I error. 

It is well known that the expected value of lrtm1 is proportional to the value of m1, 

implying that the E(lrtm1) gets large if the change point is located close to either 

end of the profile sample. Hence it is necessary to standardize the lrt values. 

Similar to the method prescribed in Mahmoud et al. (2004) we simulate the 

normalization factor which makes the expected value same for all values of the 

location of the changepoint.  

4.3. Methodology  

For this study the model of interest is a second order polynomial in one 

variable, x, defined as: 

2)( iiij CxBxAxf ++=     (4.15) 

where A, B and C are the known parameters, there are i = 1, …,n levels of 

x and j = 1, …,k profiles. We use orthogonal polynomials as the columns of the X 

matrix and compute the likelihood ratio statistic as defined by equation (4.3), for 

each segment. The first three orthogonal polynomials for equally spaced x levels 

for this study were computed using the following expressions (Montgomery, Peck 

and Vining (2007))  

5����� � 1  
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7 8  
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(4.16) 

where d = xi+1 – xi  and λι are constants. For the case where the x levels 

are not equally spaced, designs mentioned in Seber (1977) can be used to 

construct the orthogonal polynomials. The lrt values are then compared with the 

simulated threshold values to determine presence of a shift. This approach could 

be generalized to a polynomial model of any order. 

For the performance comparison simulations we used 8, 4 and -5 

respectively for the intercept, linear and quadratic coefficients. We also assumed 

10 levels for each of the 20 profiles. The x values are assumed to be equally 

spaced and are generated using orthogonal polynomials. If m1 is the change point 

then the likelihood ratio statistic for the proposed model is defined in equation 

(4.3).   

 

 

 

 

 

 

    Table 4.1. Out of control shifts for simulation 
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The threshold values are simulated at different confidence levels such as 

90%, 95% and 99%. The out of control situations were simulated by considering 

the following cases: individual shifts in the intercept, the coefficients of the linear 

and quadratic terms and the error variance. The various magnitudes of the shifts 

considered in the study are tabulated in (Table 4.1.) For each shift, the change 

points are simulated at 10, 15 and 19 which correspond to the middle, three-

fourths and the end of the sample respectively. It is assumed that the shift in the 

order of the polynomial model would be reflected in the model residuals or the 

error variance. 

4.4. Performance Comparison 

The proposed change point control chart is compared with the individual 

control chart approach of Kim et al. (2003). For the predefined shifts in the 

parameters and the model error variance, it was observed that the change point 

technique was very quick in detecting changes in the error variance but relatively 

poor in detecting shifts in the intercept, linear and quadratic coefficients. The 

performance graphs for shifts in error variance and linear coefficients are shown 

in (Figures 4.1 and 4.2.) The graphs for shifts in the intercept and the quadratic 

terms look similar to the one for the linear term and not shown here. 
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To overcome the loss in efficiency in monitoring the coefficients we 

propose using a joint MEWMA chart along with changepoint likelihood ratio 

based chart. The MEWMA chart was designed using the tables presented in 

Prabhu and Runger (1997). The combined chart has a much better power of 

detecting the out of control shift for all the coefficients. The results are shown in 

(Figures 4.3-4.6.) 
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 Figure 4.2. Probability of detecting shifts in the linear coefficients 

 

Figure 4.3 Probability of detecting shift in the intercept 
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Figure 4.4. Probability of detecting a shift in the linear term 

 

 

Figure 4.5. Probability of detecting a shift in the quadratic term 
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Figure 4.6 Probability of detecting a shift in the error variance 

4.5. Conclusion 

This study extended the linear change point approach of Mahmoud et al. 

(2006) to a polynomial profile. Unlike the linear case, the polynomial case had 

dependencies among the parameters and it was difficult to segregate the 

contribution of the various parameters of the model as clear from the derived 

values in equation (4.9). The phase I performance of the changepoint approach 

was superior in detecting changes in the error variance but relatively poor for the 

intercept, linear and quadratic term. It is still a very useful technique since large 

fluctuations in the error variance can indicate process instability and it is 

imperative to control that to ensure that the other parameters are estimated 

accurately. Once the error variance is found to be stable, we propose the 

simultaneous use of the MEWMA chart for monitoring the coefficients of the 

model and the change point chart for monitoring the error variance.  
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We found the use of orthogonal polynomials to remove the ill 

conditioning of the hat matrix very useful and made the parameters of the models 

independent and easier to monitor. One could have possibly used the individual 

control charts but as the order of the polynomial model would increase, it would 

become cumbersome to track multiple control charts. An MEWMA approach in 

that situation would be much more efficient. 

In the time since this study was conducted, Kazemzadeh, Noorossana, 

Amiri (2008) also extended the Mahmoud et al. (2006) approach to monitoring 

polynomial profile. The main differences between the proposed approach and the 

approach suggested by Kazemzadeh et al. (2008) are:  

1. the authors conduct a performance comparison of the changepoint 

approach to the T
2 

control chart of Williams et al. (2007) and F-statistic 

control chart of Mahmoud and Woodall (2004).  We compare the changepoint 

approach to the KMW method.  

2. the authors suggested centering the x-values to reduce the multicollinearity 

problem and we propose using orthogonal polynomials. We believe the 

multicollinearity in polynomial regression is an important and a non trivial 

problem that results in the ill conditioning of the X matrix leading to unstable 

coefficients. Seber and Lee (2007) propose to tackle the problem by either 

normalizing the x-values or by using orthogonal polynomials. Bradley and 

Srivastava (1979) illustrate that centering the X matrix does not completely 

alleviate the problem of ill conditioning. The ill conditioning in the hat matrix 
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would lead to unstable and probably inaccurate parameter estimates. This 

would result in inaccurate or underestimated error coefficient and eventually 

lead to a poor estimation of likelihood ratio statistic. We suggest using 

orthogonal polynomials since there is one to one correspondence between the 

original variable and the orthogonal variable; it does not alter the directional 

interpretation of the out of control signal. Further, the use of orthogonal 

polynomials leads to nice properties of the model coefficients as well as it 

reduces the computation of the inverse of the hat matrix whenever the order of 

the polynomial model is increased.   
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5. Analysis of Signal-Response Systems Using Generalized Linear Mixed 

Models 

5.1. Introduction  

In signal-response systems, the quality characteristic or response of 

interest, y, is not a single characteristic, but a function over a range of output 

values. That is, the response takes on different values as a result of differences in 

some signal factor.  We can  model the response as 

y = g(M) + ε 

where g is the relationship between the signal, M, and the response, y.  In 

addition, g can depend upon both controllable and uncontrollable (noise) factors.  

Generally, the signal-response systems are classified into three types based on the 

function of the system being studied6: 1) multiple target systems; 2) measurement 

systems; and 3) control systems.  We study the multiple target system where 

different levels of response are obtained by consciously adjusting the signal 

factor.  We begin by describing a well-known signal-response example that will 

be fully analyzed in later sections. 

5.2. Injection Molding Example 

DeMates(1990) describes a factorial experiment conducted in an injection 

molding plant. It is a robust design study conducted to identify the control factors 

that increase the variability in the weight of the mold at two different compound 

noise levels. The response of interest is the weight of the mold measured over 

eight levels of the factor, high injection pressure.  The performance characteristic 
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is a profile obtained by modeling the response over a range of the signal factor 

[Taguchi (1986)], see (Figure 5.1.) The hierarchical nature of the experiment adds 

to the complexity of the analysis in addition to the correlation between the part 

weights at different levels of pressure. The individual values of weight are 

correlated within a control and noise factor setting and can be assumed 

independent between different experimental runs.  

 

Figure 5.1. Plot of Injection Molding Responses 

There are seven continuous control factors, each at two levels and four 

noise factors, also at two levels each.  However, the four noise factors are 

combined to form one compound noise factor, at two levels.  The continuous 

control factors and resulting compound noise factor and their ranges are displayed 

in (Table 5.1) and (Table 5.2), respectively. 
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Table 5.1.  Control Factors for the Injection Molding Experiment 

Factor Low Level (-1) High Level (+1) 

A: Injection Speed 0.0 2.0 

B: Clamp Time 49 s 44 s 

C: High Injection Time 6.8 s 6.3 s 

D: Low Injection Time 20 s 17 s 

E: Clamp Pressure 1700 psi 1900 psi 

F:  Water Cooling 80° F 70° F 

G:  Low Injection Pressure 550 psi 650 psi 

 

Table 5.2. Compound Noise Factor for the Injection Molding Experiment 

Factor XN = -1 (Low Level) XN = +1 (High Level) 

Melt Index 18 22 

Percent Regrind 5% 0% 

Operator New Experienced 

Resin Moisture High Low 

 

The signal factor in this application is high injection pressure since it is 

known that the amount of material injected could be affected by this factor. High 

injection pressure is varied over the range of 650 psi to 1000 psi.  The 

experiments were conducted over two days, where the compound noise factor 

(XN) was set at its low level on the first day and high level on the second day. The 

control factors were varied according to a 2
7-4

 fractional factorial design for each 

level of the compound noise factor (Table 5.2.) Four measurements were recorded 

for each run in the 2
7-4

 design.  To illustrate the type of measurements obtained, 

the resulting data for the first run on Day 1 are given in (Table B.2.)   

Since the experiment was conducted so that for each level of the noise 

factor, a  2
7-4

 with resolution III experiment was performed,  the set up of the 

experiment is very similar to a split-plot experiment.  In fact, the experiment can 
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be viewed as a split-split plot with the signals or curves within each experimental 

unit representing a sub-sub plot.  

Analysis methods for signal-response systems have been addressed in the 

literature. Taguchi(1886, 1887) provided early examples of these systems, and 

new and better methods have been subsequently developed by Nair(1992), Miller 

and Wu(1996), Bisgaard and Steinberg(1997), and Nair et al.(2002), among 

others. The most commonly used method can be summarized in two steps, 1) 

estimation of the functional relationship between the response and the signal 

factor and 2) estimation of the relationship between the parameters of the 

functional models and the design parameters. Various researchers have also 

studied the robustness of the process with respect to predefined levels of noise 

variables. Since the studies involve systematically varying the noise factor in 

addition to the control factors, it results in large designs. Due to increase in 

execution costs compromises are often made on the randomization of the 

experimental runs. The relationship of the response with the control and noise 

factor is often modeled by methods based on ordinary least squares, which fails to 

accommodate for the various sources of variation introduced in restriction to 

randomization and also the departure of the response from the normal distribution. 

These two issues can be resolved by using the GLMM.  

We propose and illustrate the use of generalized linear mixed models for 

analyzing an RPD for a signal response system and demonstrate the comparison 

with the ordinary least squares approach. The remainder of the paper is laid out as 
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follows. The next section is a brief survey of the current methods in the literature 

for analyzing a signal response system. We examine the experiment as if it were 

run as a split-plot design and present our arguments to support the claim in section 

5.3. In section 5.4 we propose and explain the GLMM for analyzing the split plot 

structure of an RPD for a signal response system. Section 5.4 presents the 

illustration of the proposed method and results of the comparison of the proposed 

method to the traditional method based on ordinary least squares using the 

Injection Molding example presented previously. We then conclude the paper 

with discussion and future directions. 

5.3. Analysis of Signal-Response Systems  

Miller and Wu (1996) propose two methodologies to analyze the results 

from the signal-response experiment described in DeMates (1990). The methods 

were performance measure modeling (PMM) and response function modeling 

(RFM).  The PMM method involves reducing the functional response to a 

performance measure and analyzing the resulting measure as the response. Box 

(1988) demonstrates the weakness of this type of analysis by providing examples 

of different systems with different behavior that give rise to the same performance 

measure. RFM on the other hand involves modeling the relationship between the 

signal and response using the parameters of the model. This method makes 

intuitive sense to determine how the settings of the control and noise factors affect 

the parameters of the model. However, this approach must be used with caution 

when correlation between the parameters is present.   
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Other analysis techniques can be generalized as a two step procedure: 1) 

estimation of the functional relationship between the response and the signal 

factor followed by 2) modeling of the parameters or some function of the model 

parameters as a function of control and noise factors. Taguchi (1986, 1987) 

proposed analyzing a dynamic signal to noise ratio which has subsequently been 

criticized as being inefficient as it confounds the mean and the variance [Myers, 

Montgomery and Anderson-Cook(2009) , Miller and Wu(1996)].  

Welch et al. (1990) suggest modeling the response using a combined array 

design and approximating the parameter estimates to form the intercept, slope, 

and error variance functions. These functions are then used as responses to 

optimize the process. This approach is referred to as the “response-model 

approach”. The loss model approach presented by McCaskey and Tsui (1997), 

and Tsui (1999) differs from the response-model approach since the intercept, 

slope and error variance for different levels of the control factors are estimated 

first and then these parameters are modeled as separate responses. The settings of 

the control factors that optimize the dynamic system are then identified.  

Bisgaard and Steinberg (1997) describe a two-step procedure that involves 

fitting a polynomial to the signal response and treating the coefficients as multiple 

responses to study the effects of the experimental factors. Nair et al. (2002) 

suggest fitting a location-dispersion model to the response evaluated at each level 

of the signal factor. The location µ and the log of the dispersion, σ2
 are 

represented as a function of design (xi) and signal factors (sk):  
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( ) ( )kiki sxsx βµ ′=;
    and    

( ) ( )kiki sxsx φσ ′=;log 2

                

(5.2) 

where φ and β are the effect coefficients of design factors for mean and the 

variance as a function of the signal factor. Significant effects are then identified 

using a normal probability plot or as a function of the signal factor. Nair et al. 

(1986) further discuss the situation where the noise factor (zj) is explicitly 

controlled and varied, and can be incorporated in the model as  

( ) ( ); ;
ijk i j k k ijk

Y s sµ σ ε= +x z     (5.3) 

where the location model can be represented as  

( ) ( ) ( ) ( ); ;
i j k i k j k i k j

z s s s sµ ′ ′ ′= + +x x β z γ x Λ z    (5.4) 

where γγγγ and ΛΛΛΛ are the effects of the noise factor and the control by noise 

interactions, respectively, as a function of the signal factor. The dispersion effects 

can be estimated by the interaction between the control and noise factors. Nair et 

al. (2002) demonstrate their approach using three different functional response 

systems. There are a few studies conducted on using optimization techniques to 

identify the optimal settings for dynamic systems, including Chen (2003), Chang 

et al. (2007) and Tong et al. (2008). Chen (2003) structured the problem as a 

mathematical programming problem and proposed a sequential quadratic 

programming (SQP) approach to solve the nonlinear stochastic optimization 

problem. Chang et al. (2007) propose simulated annealing to find the optimal 

setting of a dynamic system, on the performance measures developed using a 
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back-propagation neural network. Tong et al. (2003) study the dynamic system 

with multiple quality characteristics and use the data envelopment analysis 

approach to develop relative efficiency measures of the location and dispersion 

effects and model the overall quality performance (OQP) as a function of design 

factors to assess the optimal factor level combination. Lesperance and Park 

(2003) use a joint generalized linear modeling approach to model the mean and 

the variance function, assuming the observations are independent within a 

response function. They also provide a comparison of the graphical approaches to 

their joint generalized linear modeling approach. Lunani et al. (1997) extend the 

Taguchi (1991a, 1991b) performance measure for dispersion and propose two 

graphical methods. They define dispersion in the response as a function of 

sensitivity measure βi and a multiplicative error term φ such as 

22 φβσ γ=      (5.5) 

The two proposed plots are the gamma-plot (γ-plot) and the sensitivity standard 

deviation plot (SS-plot).  

Since the data is collected sequentially by adjusting the signal factor, it is 

important first to evaluate and then adjust for the correlation between the 

response levels. In the two-step approaches discussed so far, this correlation has 

been ignored which could lead to underestimation of the error variance.  

Furthermore, these robust designs are usually carried out as split-plot systems 

similar to that described in the example presented earlier. In this article, we 

propose a general linear mixed model approach to analyze the response profiles 
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that will accommodate both the correlation structures and the split plot nature of 

the problem. We describe our approach using the injection molding example 

described in the previous section. 

5.4. Split-Plot Designs and Generalized Linear Mixed Models 

5.4.1. Split-Plot Designs and Mixed Models  

An RPD with a signal-response system can be viewed as a split-split plot 

design. The compound noise factor is treated as a whole plot factor. The control 

factor treatments common to a particular level of the whole plot share the same 

whole plot error. The signal factor can be treated as a sub-sub plot factor which 

now shares the whole plot and sub-plot errors in addition to the random error 

associated with each of the levels. These errors are variance components and are 

explicitly represented by a mixed model.   

Robinson et al. (2004) demonstrate that the analysis of results from a 

split-plot experiment can be carried out using generalized linear mixed models. 

They show that the general form of a model for a split-plot design can be written 

as a mixed model and given as 

= + +y Xβ Zγ ε       (5.6) 

where X is a matrix of fixed effects and Z is a matrix of zeroes and ones. In a 

split-plot setting, X represents the control factors and the signal factor while Z 

would be used to model the various whole-plot levels. The vectors γγγγ and ε consist 

of random effects where γγγγ ~ N(0, 
2

γσ )  and εεεε ~ N(0, 2

εσ ). In addition, γγγγ and ε are 

assumed to be independent. The error terms, 
2

γσ  and 2

εσ , are variance 
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components and represent the whole-plot error variance and sub-plot error 

variance, respectively.  These components can be estimated using maximum 

likelihood. Modeling the response using Equation 5.5 naturally supports the 

assumption common to most split-plot experiments; that is, the responses within 

a whole plot (here represented by Z) are correlated.  The analysis method used 

must take into account this correlation structure among the responses within a 

whole-plot level. We will discuss two approaches to incorporating this 

correlation structure for the injection-molding example presented earlier.  

5.4.2.  Generalized Linear Mixed Models   

One of the important assumptions underlying mixed models is that of 

normality of the random effects and the errors. There are situations where this 

assumption may be violated and the error may assume some distributional form 

other than normal. For an example, see the braking torque experiment discussed 

in Lesperance and Park (2003). In that example, the authors show that a gamma 

distribution, with a log link for the response, provides a better fit as compared to 

the case with the normality assumption.  

For linear models, Nelder and Wedderburn (1972) propose generalized 

linear models (GLMs) that provide flexibility to model errors from any 

distribution in the exponential family,
 
see McCullagh and Nelder (1989). Breslow 

and Clayton (1993) and later Wolfinger and O’Connell
 
(1993) combine the 

principles of generalized linear models with the mixed model approach and 

proposed generalized linear mixed models (GLMM). In this approach, the 



68 

 

function of the response is regressed on fixed and random factors such as those 

given in Equation 5.5.  The GLMM can be expressed as  

[ ] ( )1
|E Y g

−= +γ Xβ Zγ      (5.7) 

where ( )1
g

−
is the inverse of a differentiable monotonic link function, g. 

GLMMs provide flexibility in modeling the covariance or correlation structure 

between responses. Littell et al.
 
(1996) provide details on implementing mixed 

models using SAS.  Recall for split-plot experiments, responses are correlated 

within a whole-plot level and this correlation should be taken into account when 

conducting an analysis.   

 Two common models used to incorporate the covariance or correlation 

structure among responses in a GLMM are the batch-specific model (also 

referred to as the random-effects GLM) and the population-averaged model (also 

referred to as the covariance-pattern GLM). In the batch-specific approach, the 

whole-plots (which are treated as random effects) are modeled along with the 

regression coefficients for the control and signal factor simultaneously.  By 

including the whole-plot effects in the model with the control and signal factors, 

we can adequately represent the correlation that exists among responses within a 

“batch” (i.e., whole plot). For the second approach, instead of treating the whole-

plot as a random effect and modeling it simultaneously with the control and 

signal factors, a specific correlation structure among the responses within a 

whole-plot is assumed. That is, the user must define a specific correlation matrix 

prior to running the analysis. This is often referred to as the population-averaged 
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model or covariance-pattern GLM.  Assuming a specific correlation structure 

instead of modeling the whole-plots themselves, is similar to averaging over all 

“batches” (i.e., whole-plots). For complete details on GLMMs and their 

applications to split-plot designs see Robinson et al. (2004). In the next section, 

we compare the population average model and the batch-specific model with the 

two-step modeling approach of Miller and Wu (1996).  

5.5.  Methodology  

The proposed methodology for analyzing a robust design of a signal 

response system can be summarized as follows: 

1. Identify the whole-plot, sub-plot factors. Typically we have observed 

Taguchi experiments the compound noise factor is the whole-plot 

treatment, control factors are the sub-plot treatments and the signal factor 

is the sub-subplot treatment. 

2. Identify the distribution of the mean response and the variance of the 

response to select the appropriate generalized linear mixed model  

3. Use restricted maximum likelihood method to fit a GLMM. This can be 

achieved by using SAS Proc GLIMMIX. The same procedure can also be 

used to model the batch-specific model GLMM and population-average 

model GLMM by treating the whole-plot treatment as a random effect for 

the former modeling approach.  

4. Asses the model fit using residual plots and goodness of fit statistic 
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The next section we illustrate the method by analyzing the Injection 

Molding experiment presented previously.  

5.6.  Analysis of the Injection Molding Example  

Miller and Wu (1996) analyze the experiment in DeMates (1990) by 

fitting a quadratic model involving the signal factor (high-injection pressure) for 

the mold weight for each combination of control and compound noise factors. 

The coefficients of these models are treated as random responses and modeled as 

a function of the control and compound noise factor levels. As mentioned 

previously, four observations are recorded for each level of the compound noise 

by control by signal factor. Since the exact details of the execution of the 

experiment are unclear, we assume the four observations are repeat observations 

and treat their mean and variance as responses. We fit generalized linear mixed 

models for the mean and the variance separately, treating the compound noise 

factor as the whole-plot treatment, the control factors as a sub-plot effect and the 

high injection pressure level as the sub-subplot effect.  

5.6.1.  Analysis of the Mean Weight  

We used the SAS procedure GLIMMIX to build a GLMM for the mean 

weight. For the mean weight, we initially assume the normal distribution as the 

marginal distribution and restricted maximum likelihood (REML) method was 

used to estimate the parameters. (Figure 5.1) displays the mean weight as a 

function of the signal factor, high-injection pressure. It can be observed from 

(Figure 5.1), that a quadratic model in high-injection pressure would best 
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approximate the relationship between the mean weight and high-injection 

pressure. However, a polynomial model such as a quadratic model by nature 

induces linear dependency (collinearity) among the columns involving the signal 

factor, leading to unstable and hence unreliable model parameter estimates. To 

alleviate this problem, we use orthogonal polynomials to remove the collinearity. 

Orthogonal polynomials as the name indicates are polynomials generated such 

that the columns are linearly independent, see Montgomery et al. (2006). The 

values of the orthogonal polynomials used in this application are summarized in 

(Table 5.5.) 

Next, we assume a gamma distribution for the responses. Though the 

parameter estimates were not much different from the results of Miller and Wu 

(1996), the diagnostic statistics indicated that underdispersion was present. As a 

result, we decided to work with a regression model. The model obtained for the 

mean weight is  

NXPCPP

GFECAy

177.2168.033.1783.4

778.1998.0397.1771.1134.154.667ˆ

121 −×+++

+−+−−=
   (5.7) 

The residual graphs were satisfactory with the exception of a single 

outlier, which was not surprising as the plot of the responses displayed outlying 

curves (Figure 5.1). Since the resolution of the design for the control factors is 

III, the control factor interactions were confounded with main effects and it 

became difficult to ascertain which effects were significant. It is evident from the 

model that the compound noise factor (XN) can be manipulated to adjust the mean 

of the response, but the contribution of individual noise factors is not obvious. To 
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obtain larger values of the mean weight of the injection molds, factors A 

(injection speed), C (high injection time) and F (water cooling temperature) 

should be set at their low levels, and factors E (clamp pressure) and G (low 

injection pressure) at their high levels. The interaction of factor C (high injection 

time) with the linear signal-factor (P1) effect indicates that the level of the factors 

affect the shape of the response curve over the range of the high-injection 

pressure.  

For the batch-specific model for the mean response, the noise factor was 

treated as a random effect.  Point estimates, 95% confidence intervals, and the 

confidence interval length for all three methods are given in (Table 5.6.)  The 

parameter estimates and the respective standard errors for the batch-specific 

model were similar to those found using the population average model. The 

difference between the two methods was in the confidence interval for the mean 

response (Table 5.6). The batch-specific model has shorter confidence intervals 

as compared to the population average.  However, the precision of the confidence 

interval (measured by CI length) for either GLMM approach is significantly 

better than the OLS approach used by Miller and Wu (1996).   

As noted in Robinson et al. (2004), for a split-plot design with signal 

response measurements, the random-effects or the batch specific model provides 

more precise estimates as compared to the population average model. This could 

be due to explicit modeling of the whole plot variance in the batch specific 

model. In the current example, the magnitude of the whole plot variance is not 
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large, hence the model estimates and their standard errors are similar for both 

cases.  

5.6.2.  Analysis of the Variance of the Mean Weight 

Since the marginal distribution of the mean response was found to be 

normal, the variance is assumed to follow a chi-square distribution.  A gamma 

distribution was employed for the variances while three different links were 

investigated.  The three links were the identity, log and inverse. Since only the 

log link gave non-negative lower confidence intervals on the predicted variance, 

it was chosen as an appropriate link in the GLMM.   

The diagnostic checks indicated a good fit to the data. Even though some 

of the factors were marginally significant at 10% significance, we decided to 

keep them as deleting them worsened the fit. The fitted model for the variance is 

( )

)7.007.003.005.0

03.004.023.002.0

08.019.016.011.017.136.0exp(ˆ

222

2211

1

NXPGPFPE

PCPBPGPB

PGCBAyVar

−×+×−×+

×+×+×+×+

+−−++=

 (5.8) 

The residuals plots are again satisfactory.  To minimize the variance, 

factor A (injection speed), should be set at its low level. Furthermore, we would 

set factor G (low injection pressure) at its high level keeping the remaining 

factors at levels determined when modeling the mean weight. The noise factor is 

significant and it is recommended that the compound noise factor be set so that 

melt index is at 22, 0% regrind, with an experienced operator and low resin 
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moisture. These results correspond to the ones obtained from the RFM analysis 

of Miller and W (1996).  

5.7.  Discussion 

The conclusions from the joint GLMM approach correspond to the results 

recommended in Wu and Hamada (2000) in terms of what factor settings should 

be chosen for a robust design. In fact, the model for the intercept obtained by 

Miller and Wu (1996) approach given as 

   NXGFECA 1.18.10.14.18.12.14.6660 ++−+−−=β  

  (5.9) 

is very similar to the mean GLMM (equation 5.7) with the inclusion of some 

additional terms. It is our recommendation that the GLMM approach should be 

preferred over an ordinary least squares approach implemented by Miller and Wu 

(1996). There are several reasons for this recommendation. First, a single 

equation is obtained for the mean response as opposed to an equation for each 

parameter of the model. For profiles with complicated shapes, the interpretation 

from a joint GLMM model is straightforward despite the increase in the number 

of parameters. More importantly, the GLMM approach results in more precise 

estimates.  For example, consider the confidence intervals for the mean response 

displayed in (Figure 5.2.) 
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Figure 5.2. Confidence Interval Length with GLMM and OLS models 

The confidence intervals for the mean response clearly show that the 

GLMM approach results in shorter confidence intervals which in turn indicate 

more precise estimation of the response. Point estimates, 95% confidence 

intervals, and the confidence interval length for all three methods are given in 

(Table 5.3.)   
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Table 5.3. Comparison of Population Average and Batch Specific Models 

 GLMM Batch Specific GLMM Population Average 

Y ŷ  95% Confidence Interval CI Length ŷ  95% Confidence Interval CI Length 

636.88 637.989 636.106 639.873 3.77 637.12 635.14 639.09 3.95 

642.10 639.906 638.266 641.546 3.28 639.03 637.29 640.78 3.49 

643.50 644.485 642.911 646.059 3.15 643.61 641.93 645.29 3.36 

654.33 651.725 650.151 653.299 3.15 650.85 649.17 652.53 3.36 

663.38 661.627 660.053 663.201 3.15 660.75 659.07 662.44 3.36 

671.40 674.19 672.615 675.764 3.15 673.32 671.63 675.00 3.36 

690.15 689.414 687.774 691.054 3.28 688.54 686.80 690.29 3.49 

712.20 707.3 705.416 709.183 3.77 706.43 704.45 708.40 3.95 

         

642.80 644.995 643.112 646.879 3.77 644.57 642.59 646.54 3.95 

647.13 646.24 644.6 647.88 3.28 645.81 644.07 647.56 3.49 

649.65 650.146 648.572 651.721 3.15 649.72 648.04 651.40 3.36 

658.83 656.714 655.14 658.288 3.15 656.29 654.60 657.97 3.36 

668.75 665.943 664.369 667.517 3.15 665.52 663.83 667.20 3.36 

675.75 677.834 676.26 679.408 3.15 677.41 675.72 679.09 3.36 

692.15 692.386 690.746 694.026 3.28 691.96 690.21 693.70 3.49 

712.38 709.599 707.716 711.483 3.77 709.17 707.20 711.15 3.95 

         

650.78 650.297 648.414 652.181 3.77 649.45 647.47 651.43 3.95 

654.98 651.542 649.902 653.182 3.28 650.69 648.95 652.44 3.49 

659.88 655.448 653.874 657.023 3.15 654.60 652.92 656.28 3.36 

666.00 662.016 660.442 663.59 3.15 661.17 659.49 662.85 3.36 

670.88 671.245 669.671 672.819 3.15 670.40 668.72 672.08 3.36 

677.80 683.136 681.561 684.71 3.15 682.29 680.61 683.97 3.36 

695.70 697.688 696.048 699.328 3.28 696.84 695.09 698.58 3.49 

717.35 714.901 713.018 716.784 3.77 714.05 712.08 716.03 3.95 
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Table 5.4. Comparison of the CI for the two models 

  GLMM (Population Average)  OLS 

y  ŷ  
95% Confidence 

Interval 

CI 

Length  ŷ  
95% Confidence 

Interval 

CI 

Length 

636.88  637.12 635.14 639.09 3.95  638.44 631.09 645.79 14.71 

642.10  639.03 637.29 640.78 3.49  640.04 635.42 644.66 9.24 

643.50  643.61 641.93 645.29 3.36  644.52 640.31 648.73 8.42 

654.33  650.85 649.17 652.53 3.36  651.88 647.26 656.50 9.24 

663.38  660.75 659.07 662.44 3.36  662.12 657.50 666.74 9.24 

671.40  673.32 671.63 675.00 3.36  675.24 671.03 679.45 8.42 

690.15  688.54 686.80 690.29 3.49  691.24 686.62 695.86 9.24 

712.20  706.43 704.45 708.40 3.95  710.12 702.77 717.47 14.71 

           

642.80  644.57 642.59 646.54 3.95  643.83 637.58 650.08 12.50 

647.13  645.81 644.07 647.56 3.49  645.85 641.92 649.78 7.85 

649.65  649.72 648.04 651.40 3.36  650.37 646.79 653.95 7.15 

658.83  656.29 654.60 657.97 3.36  657.39 653.46 661.32 7.85 

668.75  665.52 663.83 667.20 3.36  666.91 662.98 670.84 7.85 

675.75  677.41 675.72 679.09 3.36  678.93 675.35 682.51 7.15 

692.15  691.96 690.21 693.70 3.49  693.45 689.52 697.38 7.85 

712.38  709.17 707.20 711.15 3.95  710.47 704.22 716.72 12.50 

           

650.78  649.45 647.47 651.43 3.95  653.31 645.34 661.28 15.94 

654.98  650.69 648.95 652.44 3.49  653.81 648.80 658.82 10.02 

659.88  654.60 652.92 656.28 3.36  657.03 652.47 661.59 9.13 

666.00  661.17 659.49 662.85 3.36  662.97 657.96 667.98 10.02 

670.88  670.40 668.72 672.08 3.36  671.63 666.62 676.64 10.02 

677.80  682.29 680.61 683.97 3.36  683.01 678.45 687.57 9.13 

695.70  696.84 695.09 698.58 3.49  697.11 692.10 702.12 10.02 

717.35  714.05 712.08 716.03 3.95  713.93 705.96 721.90 15.94 

 

Again, the batch-specific and population-average models have similar 

results.  However, the precision of the confidence interval (measured by CI 

length) for either GLMM approach is significantly better than the OLS approach 

used by Miller and Wu (1996).  
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Figure 5.3. Confidence Interval from the OLS Model 

 

Figure 5.4. Confidence Interval from the GLMM 

This is further demonstrated in (Figures 5.3 and 5.4) where the mean 

response, predicted response and the confidence intervals are displayed for OLS 
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and GLMM models. As a final note, the erratic nature of the interval length of 

OLS model indicates a presence of variation not accounted for by the model.  

5.8.  Conclusions  

The aim of this work was to illustrate the application of generalized linear 

mixed models for the analysis of robust parameter designs involving signal-

response systems for use in the design stage of a product or process. The signal-

response example considered clearly demonstrates that the ordinary least squares 

approach of the two-step modeling procedure does not correctly account for the 

error structure introduced by the split-split plot nature of these designs. The 

generalized linear mixed model provides explicit modeling of the covariance 

structure either as a population average model or as a batch-specific model and 

results in more precise estimates of the parameters. The choice between the 

population average and batch specific model is dependent upon the objective of 

the modeling being done. As noted in Robinson et al.
 
(2004) the population 

average model is more applicable for situations where the batches are assumed to 

be similar in nature and the aim is to predict the response across batches. On the 

other hand, when there are differences between the batches and the interest is to 

either quantify the difference or account for the difference in the analysis, the 

batch-specific model is preferred. The latter approach provides more precise 

estimates as it avoids the loss of information due to the averaging of the effects. 

The result will be a product or process designed to be robust to uncontrollable 

factors and stresses.   
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6. Summary and Conclusions 

The area of profile monitoring is relatively recent and an active area of 

research. There are a lot of questions that still need to be researched before a 

consensus is reached on the control charting schemes appropriate for most of the 

profile monitoring situations. This research has focused on answering three 

specific questions. In this chapter we summarize the findings from this piece of 

research and conclude with a discussion on some of the open problems for future 

research. 

6.1. Contributions 

In the study on Phase I analysis of linear profiles, we closely examined the 

specific application of profile monitoring in linear calibration situations and 

compared the efficiency of the method proposed by Croarkin and Varner (1982), 

referred here as NIST method, for monitoring profiles as compared to the KMW 

method proposed by Kim et al. (2003). The NIST control chart statistic is 

obtained from the deviation of the corrected measured value (by the parameters of 

the linear profile) from the standard value and has been shown to have very poor 

statistical properties. The control chart statistics for the KMW method, on the 

other hand, are the parameters of the linear model fit to the calibration profile and 

are minimum variance unbiased estimators. The average run length performance 

comparison demonstrated that the KMW method was more efficient in detecting 

shift in the individual parameters as well as the combined shifts in the intercept 

and slope. Further by monitoring the parameters of the model, it was visually 
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intuitive in diagnosing the state of the process as compared to monitoring 

individual points along the calibration line. This was an important result as the 

NIST method is incorporated in an ISO 5725-6 (1994) standard and is freely 

available in the NIST/SEMATECH e-Handbook of Statistical Methods. We also 

demonstrated that with as small as ten sampling points per profile, the 

performance of the NIST method, of monitoring the end and middle points, 

deteriorates. The results can be extended to a more general case implying that a 

method based on representing a linear profile by a parametric model and 

subsequently designing a control chart based on the parameters of the model is an 

efficient approach as compared to a chart based on deviation statistics. Another 

significant result illustrated by the study was the reduction in the effect of the 

magnitude of the shift in the slope when the model is transformed by centering the 

x-values. Based on our observation we recommended using KMW with EWMA 

charts instead of the Shewhart charts for monitoring the individual coefficients. 

The results from the study can be applied to optimize the calibration frequency 

without losing the accuracy and precision of the instrument. The methods 

proposed to study and develop would be widely applicable to calibration data, 

both in understanding the measurement process behavior and in preventing 

unnecessary calibrations.  Frequent recalibration can be expensive and increase 

the variation of the measurement process. 

The applicability of changepoint approach for monitoring polynomial 

profiles was studied. Profiles with nonlinear behavior over one independent 
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variable can be approximated with polynomial models over certain regions. The 

development of the changepoint statistic for a polynomial case was illustrated and 

a derivation of the breakdown of the variance components of the likelihood ratio 

statistic was presented. The derivation showed that the components of the 

variance breakdown were not as clearly distinguishable as in the linear case. As is 

the case with the polynomial profiles or with nonlinear profiles, the parameters of 

the profile are dependent. The run length performance comparison was conducted 

with the KMW control chart which has not been compared previously in the 

literature. The probability of detecting signal comparison of the changepoint 

approach with the KMW method indicated a superior performance for detecting 

shifts in error variance. Since stability of error variance is of primary importance 

before shifts in the other parameters can be ascertained. It clearly indicated that 

the changepoint was a more efficient approach in situations that coefficients of the 

model are not independent. The retarding of the approach in detecting shifts in the 

intercept and slope can be compensated by using the changepoint approach in 

conjunction with an MEWMA approach.  Further with polynomial profiles, 

multicollinearity is a nontrivial issue. Centering of the independent variables 

[Kazemzadeh et al. (2008)] reduces the effect but a more robust method is needed 

if the technique has to extend to higher order polynomials, one such method is the 

orthogonal polynomials.  

In chapter 5, the problem analyzing an experiment on the system that 

generates a profile, also known as signal-response system was presented. This 
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problem goes hand-in-hand with the monitoring problem and falls in the general 

space of problems aimed at understanding and reducing variability in the system 

to improve process performance. The signal-response system has been studied 

extensively using the Taguchi experimental design and conducted in a manner 

similar to a split plot experiment. Here the control factors were adjusted for a 

fixed level of the noise factors, and the response value is observed by sequentially 

changing the signal factor. Traditionally such systems have been analyzed using a 

two step OLS approach, where in the first step a parametric model is fit and in the 

second step the parameters of the model are treated as the responses. Very often, 

an OLS approach is used to fit the model in the first step, and multiple responses 

are optimized the control and noise factor settings. A generalized linear mixed 

model approach (GLMM) was proposed. This method has the flexibility to 

represent the error structure of a restricted randomization of the split plot 

experiment and also has the ability to model non-normal responses. A mean-

variance modeling approach of an RPD was followed. Subsequently the GLMM 

approach was compared with the Miller and Wu approach (1996) and was 

demonstrated to provide a much better fit to the data as compared to the two step 

approach of Miller and Wu (1996). This was illustrated by the tighter confidence 

interval of the predicted response. Further the OLS approach of Miller and Wu 

(1996) does a poor job of explaining the variability in the model as demonstrated 

by the erratic pattern in the confidence intervals.  
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Finally in chapter 2, an updated literature review was provided since the 

comprehensive reviews of Woodall et al. (2004) and Woodall (2007).  

6.2. Future Research Ideas 

In the past, the cost of sampling effort has driven the selection of optimal 

sample sizes and sampling frequency such that the within-sample variation is 

minimized so that the between-sample variation can be maximized to detect 

changes in the process. Increasing use of automatic sensing and measurement 

technologies has reduced the cost of sampling. For phase II approaches, it has 

become pretty standard to establish real time monitoring systems. One question 

that has not been addressed with enough stress is the question of appropriate 

phase I sample size to determine the parameters of the model. Jensen et al. 

(2006) investigate the effect of parameter estimation on control charts in general 

and argue that for phase II charts based on estimated quantities to behave as 

expected a larger sample size has to be used for phase I estimation. The authors 

suggest more research in this area and for profile monitoring in specific. 

Any statistical monitoring scheme is depended on a successful distinction 

between the common-cause variation between and within profiles from the 

special cause variation between profiles. There have been steps made in the 

direction to incorporate a more flexible variance-covariance structure by using 

mixed models; see Jensen and Birch (2009) and Jensen et al. (2007). There has 

been no deliberate work done so far to show how robust the profile monitoring 

schemes are to the model assumption. Residuals charts or variance charts could 
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be used for tracking changes in lack of fit of the fitted models over time. 

Residuals charts such as Kang and Albin (2000) average the residuals and much 

of the lack of fit information is smoothed out. Bulk of the research in profile 

monitoring has been focused on monitoring the mean profile. More work is 

needed in understanding the variance profile and using robust design studies can 

help in characterizing the function.  

The literature indicates the ubiquitous presence of nonlinear profiles in 

varied industries. Profiles ranging from dose response curves which can be 

represented by well understood empirical nonlinear models to more complicated 

profiles quantified by a large class of functions. Some of the examples of such 

profiles include - stamping tonnage signals [Jin and Shi (1999)], force profile of 

rams inserting valve seats in automotive engine cylinder head [Mesesova et al. 

(2006)] and cross-sectional roundness profiles [Colosimo and Pacella (2007)] 

among others. Many authors resort to using nonparametric approaches to 

represent the profiles. Using smoothing techniques such as smoothing spline 

[Gardner et al. (1997)], much of the information is dependent on the choice of 

the smoothing parameter which has to be optimized so that it does not smooth 

out the local features that might distinguish the out-of-control profiles. 

Parametric or semi-parametric approaches like the spatial autoregressive model 

proposed by Colosimo et al. (2008) and wavelets of Jin and Shi (2001), Jeong et 

al. (2006), Chicken, Pignatiello and Simpson (2009), Chiang and Yadama 

(2010). Also, Jin and Shi (2001) and Jeong et al. (2006) proposed methods to 
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select subset of the wavelet coefficients to monitor. As cautioned by Woodall et 

al. (2004), in addition to the control chart based on the most significant wavelet 

coefficients, there should be an additional control chart established to monitor 

the remaining coefficients to reduce the risk of not detecting any shifts. Chicken, 

Pignatiello and Simpson (2009) discuss these issues in detail and highlight 

additional issues and proposed a changepoint based chart to monitoring the 

wavelet coefficients deviations from the established in-control profile. They run 

simulations for various types of shifts and demonstrate that likelihood statistic 

performs much better than the rest of the wavelet based methods.  Their method 

is based on Phase II approach. Zarandi and Alaeddini (2010) show comparison 

between model free approaches versus model based approach, in particular they 

focus on comparing methods based on Fuzzy Inference Systems. More work 

needs to do be done in comparing the efficiency gained in using wavelets based 

approach especially for phase I as compared to the parametric or semiparametric 

model based approaches.  

6.3. Conclusion 

          The results of this work for linear and polynomial profile 

monitoring will serve as an input to the research on developing an optimal 

monitoring scheme, which will have a significant impact on the use of process 

monitoring and control charting methods by quality engineers. The approach to 

analyze profile experiments will help in understanding the behavior of common 

cause variation due to nuisance factors. The profile monitoring is the one of the 
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most active area of research in statistical process control and its scope is not 

restricted to engineering applications but has been extended to health care and 

public health surveillance of disease clusters, Woodall (2006).  
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Table A.1. KMW Shewhart Scheme – ARLs for combined shifts in Intercept and 

Slope 

 

KMW-

Shewhart 

NIST 
 

%Improvement 

over NIST 

Method 
 

 

Delta (Shift in slope) 

 
0 
 

 
0.025 

 

 
0.05 

 

 
0.075 

 

 
0.1 

 

 
0.125 

 

 
0.15 

 

 
0.175 

 

 
0.2 

 

 
0.225 

 

 
0.25 

 

L
am

b
d

a 
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if

t 
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h
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rc

ep
t)

 

0 

 
198.7*

 

199.5† 
 

0.4‡ 

175.4 
181.3 

 
3.3 

125.0 
138.7 

 
9.9 

79.2 
95.6 

 
17.2 

47.4 
61.9 

 
23.4 

27.7 
40.4 

 
31.4 

17.2 
26.7 

 
35.6 

10.7 
17.8 

 
39.9 

7.2 
12.2 

 
41.0 

5.0 
8.4 

 
40.5 

3.6 
6.2 

 
41.9 

0.05 

 
195.8 
200.1 

 
2.1 

161.8 
167.6 

 
3.5 

105.8 
121.8 

 
13.1 

64.8 
83.1 

 
22.0 

38.9 
55.3 

 
29.7 

23.7 
36.2 

 
34.5 

14.5 
23.8 

 
39.1 

9.1 
16.1 

 
43.5 

6.2 
11.1 

 
44.1 

4.4 
7.8 

 
43.6 

3.2 
5.7 

 
43.9 

0.1 

 
186.4 
188.3 

 
1.0 

139.5 
151.6 

 
8.0 

90.1 
106.5 

 
15.4 

55.2 
71.9 

 
23.2 

32.3 
47.5 

 
32 

19.5 
30.9 

 
36.9 

12.2 
20.8 

 
41.3 

7.9 
14.3 

 
44.8 

5.4 
9.9 

 
45.5 

3.9 
7.1 

 
45.1 

2.9 
5.2 

 
44.2 

0.15 

 
170.3 
177.7 

 
4.2 

119.4 
135.2 

 
11.7 

75.3 
96.3 

 
21.8 

45.4 
63.1 

 
28.1 

26.5 
42.4 

 
37.5 

15.9 
27.5 

 
42.2 

10.3 
18.6 

 
44.6 

6.8 
12.7 

 
46.5 

4.7 
9.0 

 
47.8 

3.5 
6.5 

 
46.2 

2.6 
4.7 

 
44.7 

0.2 

 
153.1 
164.2 

 
6.8 

101.3 
120.7 

 
16.1 

61.7 
85.2 

 
27.6 

36.9 
55.6 

 
33.6 

22.1 
36.1 

 
38.8 

13.4 
24.4 

 
45.1 

8.6 
16.5 

 
47.9 

5.8 
11.7 

 
50.4 

4.2 
8.0 

 
47.5 

3.1 
5.8 

 
46.6 

2.4 
4.4 

 
45.5 

0.25 

 
131.3 
149.3 

 
12.1 

84.2 
106.3 

 
20.8 

50.6 
72.0 

 
29.7 

30.4 
48.1 

 
36.8 

18.1 
31.9 

 
43.3 

11.5 
21.6 

 
46.8 

7.4 
14.6 

 
49.3 

5.1 
10.3 

 
50.5 

3.7 
7.4 

 
50.0 

2.8 
5.4 

 
48.1 

2.2 
4.1 

 
46.3 

0.3 

 
112.1 
132.5 

 
15.4 

69.4 
92.5 

 
25.0 

40.6 
63.6 

 
36.2 

24.3 
42.3 

 
42.6 

14.9 
28.2 

 
47.2 

9.5 
18.9 

 
49.7 

6.4 
13.0 

 
50.8 

4.5 
9.4 

 
52.1 

3.3 
6.6 

 
50.0 

2.5 
4.8 

 
47.9 

2.0 
3.8 

 
47.4 

0.35 

 
93.7 

115.5 
 

18.9 

57.4 
79.3 

 
27.6 

33.7 
55.3 

 
39.1 

20.3 
37.3 

 
45.6 

12.6 
25.1 

 
49.8 

8.2 
16.7 

 
50.9 

5.5 
11.7 

 
53.0 

4.0 
8.4 

 
52.4 

2.9 
6.0 

 
51.7 

2.3 
4.5 

 
48.9 

1.9 
3.5 

 
45.7 

0.4 

 
78.3 

100.6 
 

22.2 

47.2 
71.0 

 
33.5 

27.6 
47.7 

 
42.1 

16.8 
32.2 

 
47.8 

10.6 
22.3 

 
52.5 

6.9 
14.9 

 
53.7 

4.8 
10.5 

 
54.3 

3.5 
7.6 

 
53.9 

2.7 
5.5 

 
50.9 

2.1 
4.2 

 
50.0 

1.7 
3.3 

 
48.5 

0.45 

 
63 

87.7 
 

  28.2 

37.8 
60.1 

 
37.1 

22.5 
41.7 

 
46.0 

14 
28.1 

 
50.2 

8.9 
19.2 

 
53.6 

6.0 
13.3 

 
54.9 

4.3 
9.4 

 
54.3 

3.2 
6.9 

 
53.6 

2.4 
5.0 

 
52.0 

1.9 
3.8 

 
50.0 

1.6 
3.0 

 
46.7 
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0.5 

 
52.6 
76.9 

 
31.6 

30.9 
52.7 

 
41.4 

18.7 
36.2 

 
48.3 

11.6 
24.8 

 
53.2 

7.6 
17.2 

 
55.8 

5.2 
11.9 

 
56.3 

3.7 
8.5 

 
56.5 

2.8 
6.3 

 
55.6 

2.2 
4.6 

 
52.2 

1.8 
3.6 

 
50.0 

1.5 
2.8 

 
46.4 

* ARL KMW-Shewhart method 

† ARL NIST method 

‡ Percentage improvement over     

NIST method 
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APPENDIX B  

ADDITIONAL TABLES FOR THE SIGNAL RESPONSE SYSTEM STUDY  
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Table B.1.  Design Matrix for the Control Factors 
 

 Control Factors 

Row A B C D E F G 

1 1 1 1 1 1 1 1 

2 1 1 1 -1 -1 -1 -1 

3 1 -1 -1 1 1 -1 -1 

4 1 -1 -1 -1 -1 1 1 

5 -1 1 -1 1 -1 1 -1 

6 -1 1 -1 -1 1 -1 1 

7 -1 -1 1 1 -1 -1 1 

8 -1 -1 1 -1 1 1 -1 

 

Table B.2.  First Run for Day 1 of the Experiment 

 

 Signal Factor Level  

Row 650 700 750 800 850 900 950 1000 XN 

 639.7 642.3 645.5 653.9 666.6 672.1 692.2 711.6  

1 640.5 641.7 644.8 655.1 665.8 670.8 690.6 710.8 -1 

 636.2 643.6 646.1 654.7 667.1 673.3 689.7 711.1  

 637.2 644.0 644.3 654.2 665.4 671.1 689.8 710.5  

 

Table B.3.  Design Matrix for the Control Factors 

 Orthogonal Polynomial 

Signal Factor P1 P2 

650 -7 7 

700 -5 1 

750 -3 -3 

800 -1 -5 

850 1 -5 

900 3 -3 

950 5 1 

1000 7 7 

 

Table B.4. Model Specification  

 Dimensions 

G-side Cov. Parameters        1 

R-side Cov. Parameters         2 

Columns in X                    11 

Columns in Z per 

Subject     

16 

Subjects (Blocks in V)          16 

Max Obs per Subject    8 
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APPENDIX C  

SAS CODE FOR FITTING GLMM MODEL 
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% GLMM for Mean 
%LET DDF = BETWITHIN; 
proc glimmix data = mean_orth; 

class id xn run tclss; 
model mean_wt = a c e f g p1 p2 c*p1 xn/ dist =normal 
solution 
ddfm = &DDF; 
random _residual_ /subject = id type = cs; 
output out = glmout pred = yhat resid = residual UCL = 
upperCI 
LCL= LowerCI; 
run; 

data glmout1;set glmout; 

gCIlengthid = upperCI - lowerCI; 
run; 

 
% GLMM for Variance 
proc glimmix data = mean_orth ; 

class id xn run tclss ; 
model var_wt = a b c g p1 b*p1 g*p1 b*p2 c*p2 e*p2 f*p2 
g*p2 

xn / dist = gamma link = log ddfm = satterth solution; 
random _residual_/subject = id type = simple; 
output out = glmout pred = yhat resid = residual UCL = 
upperCI 
LCL= LowerCI; 
run; 

data glmout;set glmout; 

gCIlengthid = upperCI - lowerCI; 

run ; 

 


