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ABSTRACT  

 Phytoplankton comprise the base of the marine food web, and, along with 

heterotrophic protists, they are key players in the biological pump that transports 

carbon from the surface to the deep ocean. In the world’s subtropical oligotrophic 

gyres, plankton communities exhibit strong seasonality. Winter storms vent deep 

water into the euphotic zone, triggering a surge in primary productivity in the 

form of a spring phytoplankton bloom. 

Although the hydrographic trends of this “boom and bust” cycle have been 

well studied for decades, community composition and its seasonal and annual 

variability remains an integral subject of research. It is hypothesized here that 

proportions of different phytoplankton and protistan taxa vary dramatically 

between seasons and years, and that picoplankton represent an important 

component of this community and contributor to carbon in the surface ocean. 

Monthly samples from the Bermuda Atlantic Time-series Study (BATS) site were 

analyzed by epifluorescence microscopy, which permits classification by 

morphology, size, and trophic type. Epifluorescence counts were supplemented 

with flow cytometric quantification of Synechococcus, Prochlorococcus, and 

autotrophic pico- and nanoeukaryotes. 

Results from this study indicate Synechococcus and Prochlorococcus, 

prymnesiophytes, and hetero- and mixotrophic nano- and dinoflagellates were the 

major players in the BATS region plankton community. Ciliates, cryptophytes, 

diatoms, unidentified phototrophs, and other taxa represented rarer groups. Both 

flow cytometry and epifluorescence microscopy revealed Synechococcus to be 
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most prevalent during the spring bloom. Prymnesiophytes likewise displayed 

distinct seasonality, with the highest concentrations again being noted during the 

bloom. Heterotrophic nano- and dinoflagellates, however, were most common in 

fall and winter. Mixotrophic dinoflagellates, while less abundant than their 

heterotrophic counterparts, displayed similar seasonality. 

A key finding of this study was the interannual variability revealed 

between the two years. While most taxa were more abundant in the first year, 

prymnesiophytes experienced much greater abundance in the second year bloom. 

Analyses of integrated carbon revealed further stark contrasts between the two 

years, both in terms of total carbon and the contributions of different groups. 

Total integrated carbon varied widely in the first study year but displayed less 

fluctuation after June 2009, and values were noticeably reduced in the second 

year.  
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INTRODUCTION 

The deep, clear open ocean appears empty at first glance. These blue 

waters are so oligotrophic, or bereft of nutrients, that oceanographers refer to 

them as “deserts.” With none of the hustle and bustle that characterizes coastal 

kelp forests or coral reefs, it is easy to fall prey to the illusion that these seas are 

practically lifeless. Peer at them through a microscope, however, and a different 

picture emerges. 

 Microorganisms dominate the world’s oligotrophic ocean gyres—those 

vast, slowly swirling bodies of water between continents set in motion by the 

Coriolis effect—although they are significantly less abundant here than in 

productive, eutrophic (nutrient-rich) zones. One such gyre is the North Atlantic 

Subtropical Gyre (NASTG). Also called the Sargasso Sea, the western portion of 

the NASTG is home to the Bermuda Atlantic Time-series Study (BATS). Decades 

of research at the BATS site and nearby Hydrostation “S” have led to a firm 

understanding of the hydrography of this region (e.g. Durand et al. 2001; 

Steinberg et al. 2001; Nelson et al. 2004). Winter storms bring deep, cold, 

nutrient-rich water to the surface. This mixing event triggers a phytoplankton 

bloom in the euphotic zone, the upper region of the ocean where light is sufficient 

to allow photosynthesis. The spring bloom (which actually lasts from late winter 

to early spring) sees a flush of productivity as photosynthetic microbes race to 

take advantage of the sudden supply of nutrients. When these nutrients become 

exhausted, the bloom ends. Warmer summer temperatures then stratify the surface 

waters, and most phytoplankton stay at the base of the euphotic zone, where the 
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disadvantage of low available light is offset by a greater amount of nutrients than 

at the surface. Productivity remains low until the advent of the next spring bloom.  

This basic hydrographic framework can be upset or interrupted. Passing 

mesoscale eddies—swirling masses of seawater on the scale of tens to several 

hundreds of kilometers—and summer storms uplift or depress the thermocline and 

nutricline (the depth at which temperature or nutrient concentration, respectively, 

changes rapidly) (McGillicuddy et al. 2007). Changes in large-scale climatic 

patterns like the North Atlantic Oscillation (NAO) may also introduce variability 

into the system (Cattiaux et al. 2010; Lomas et al. 2010). Nelson and colleagues 

(2004) found significant climate-induced variability, both from NAO and El 

Niño-Southern Oscillation (ENSO) forcing, in a roughly 6x105 km2

The vast size of ocean gyres understandably imposes limits on the study of 

these microscopic organisms. Tracking and analysis of the entire phytoplankton 

community can be accomplished by measuring chlorophyll a (Chl a), either 

directly or by satellite (remote proxy). However, satellites may misinterpret 

concentrations of Chl a by at least a factor of five (Dierssen 2010). Chl a per cell 

can also change with depth: shaded cells growing in dark or crowded 

environments may photoacclimate, or produce more Chl a to compensate for 

limited light (Dubinsky and Stambler 2009). Furthermore, these measurements do 

not take into account phytoplankton community diversity or the contribution of 

small heterotrophic plankton, which lack Chl a.  

 study region 

with the BATS site at the center. Each of these events directly impacts the 

microorganisms that form the base of the marine food web.  
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High-performance liquid chromatography (HPLC) pigment analysis 

partially addresses the issue of diversity but cannot differentiate between species 

or different size cells of the same species or taxa (Liu et al. 2009) and can only be 

applied to photosynthetic organisms. Novel molecular techniques like quantitative 

PCR, denaturing gradient gel electrophoresis (DGGE), and 18S rDNA clone 

libraries have more recently been employed (e.g. Not et al. 2007, 2008; Amacher 

et al. 2009) to gain a more precise taxonomic picture of plankton communities. 

These methods are especially useful for recognizing morphologically indistinct 

picoplankton whose identity eludes the traditional microscopist (Not et al. 2008). 

Flow cytometry (FCM) is another commonly used technique to determine 

abundances and, by proxy, carbon (C) contributions of different phytoplankton 

groups. FCM allows high-throughput sampling but may be prone to subsampling 

error because extremely small sample sizes are processed (Lomas et al. 2009b). 

Also, because FCM relies on cell size and pigmentation for cell identification, it is 

limited in its ability to make fine distinctions between taxa. 

Durand et al. (2001) used FCM to chart seasonal phytoplankton trends at 

BATS. These authors found that the cyanobacteria Prochlorococcus and 

Synechococcus were temporally offset, with the prior at maximum abundance 

during late summer and fall, and the latter peaking during the spring bloom. 

Furthermore, eukaryotic phytoplankton abundance and contribution to C was 

highest during the bloom, though cell size tended to be smallest at that time.  

Recently, Lomas et al. (2009b) combined HPLC pigment analysis with 

FCM and hydrographic analyses to characterize the phytoplankton community in 
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the BATS region with specific regard to species’ responses to late winter (late 

February to early March) storms. The cyanobacteria Prochlorococcus and 

Synechococcus were quantified by FCM, and FCM data on eukaryotic 

phytoplankton was supplemented with HPLC results to quantify the abundance of 

pelagophytes, haptophytes, and diatoms. Only these three taxa were charted 

because other groups lacked signature pigments (that is, multiple groups of 

interest shared a pigment) or were below the level of detection. These authors 

reported that phytoplankton communities, and especially diatoms, respond rapidly 

(on the scale of days) to changing hydrographic conditions like those induced by 

storm events. These results, however, do not clarify the role of heterotrophic 

protists in the community, nor do they specifically address the detailed 

composition of the eukaryotic phytoplankton. 

Epifluorescence microscopy is a useful tool for addressing those concerns. 

Samples can be fixed, frozen, and then observed months or even several years 

after collection. Like traditional microscopy, cells observed and counted under 

epifluorescence can be identified by morphology and can be sorted into size 

classes. Perhaps most importantly, this form of microscopy allows the scientist to 

distinguish between trophic types, a distinction that is often out of reach in 

brightfield microscopy when it comes to classifying the picoplankton component 

of the plankton community (Booth 1987). The plankton community is defined 

here as organisms smaller than 100 µm (and predominantly <20 µm) and includes 

the cyanobacteria (especially Synechococcus and Prochlorococcus), eukaryotic 

phytoplankton, and heterotrophic protists. 
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Caron et al. (1995) took advantage of the taxonomic precision afforded by 

epifluorescence microscopy, in conjunction with hydrographic data on water 

column structure and particulate carbon and nitrogen concentrations, to 

characterize the plankton community (in their study, microbes ≤200 µm) in 

August 1989 and March-April 1990. They quantified heterotrophic bacteria, 

cyanobacteria, photo- and heterotrophic nanoplankton (2-20 µm), and hetero- and 

phototrophic microplankton (5-200 µm), finding that abundance of these 

organisms decreased in the order listed above. In both time periods studied, 

heterotrophic bacteria were present on the order of 105 cells mL-1, cyanobacteria 

on the order of 103 cells mL-1, nanoplankton on the order of 102 cells mL-1, and 

microplankton ranging from <1 to ~25 cells mL-1

Lessard and Murrell (1996) used epifluorescence microscopy to further 

investigate heterotroph dynamics (heterotrophic protists >5 µm, predominantly 

dinoflagellates and ciliates) at the BATS station with samples taken on the same 

cruises as Caron et al. (1995). While filtration of glutaraldehyde-fixed seawater 

samples is acceptable for quantification and identification of dinoflagellates, 

ciliates were less abundant (5-10 times less, in Lessard and Murrell’s study) and 

were often distorted or destroyed by glutaraldehyde and filtration. Therefore, 

these authors also analyzed gravity-settled, Lugol’s iodine-fixed samples on an 

inverted microscope to obtain accurate counts of ciliates. They found that 

heterotrophic flagellates >5 µm were predominantly dinoflagellates (HDF), and a 

vast majority (>92%) of HDF were <20 µm. Furthermore, flagellates <5 µm 

(presumably nanoflagellates, or HNF), were “the single most important group of 

.  
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protist herbivores,” accounting for ~90% of grazing in the months studied (p. 

1061). 

Other types of microscopy also yield information on the plankton 

community. Haidar and Thierstein (2001) employed light microscopy to 

investigate the composition and variability of the coccolithophorid community at 

Hydrostation “S,” near the BATS site. Emiliania huxleyi, the intricate, armor-

plated orb that is the darling of biological oceanographers, is included in this 

group, which is itself part of the diverse phylum Haptophyceae or 

Prymnesiophyceae (Heimdal 1997). Haidar and Thierstein (2001) found that 

coccolithophores exhibited bloom seasonality; that is, concentrations were highest 

from late winter to spring and lowest in summer, a pattern thought to be followed 

by many phytoplankton in the Sargasso Sea.  

Phytoplankton may be best known for their contribution to global primary 

production—they are responsible for around 50% of the world’s primary and 

oxygen production annually—and, along with heterotrophic protists, their 

fundamental role in marine food webs. However, they are equally crucial in the 

microbial loop, which recycles C and nutrients within the upper water column, 

and in the biological C pump, or the system by which C in the surface ocean is 

exported to the deep. There exists a growing realization that picoplankton are 

important players in these processes (Richardson and Jackson 2007; Amacher et 

al. 2009). To better understand which organisms are key players in the microbial 

loop and which are most likely to sink (and thus sequester C that could otherwise 

be respired and released in the form of greenhouse gases), it is first necessary to 
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gain a more complete, seasonally resolved recognition of the organisms that 

comprise the plankton community in the upper water column. 

Knowing the composition of the plankton community is also important for 

microbial ecology, as the scientist must have a strong understanding of 

community makeup before he or she can hypothesize relationships between 

different players. The traditional “bottom-up,” or nutrient-driven, paradigm of 

biological oceanography is insufficient for understanding marine biogeochemical 

cycles or community interactions (Strom 2008). Developing a quantitative picture 

of the plankton community is important not only for gaining knowledge of cell-

cell interactions and trophic cascades, but also for increasing our understanding of 

the biological C pump and predicting how current and future climate changes 

could impact ocean biology. 

Although researchers have investigated particular taxonomic groups at the 

BATS site over extended periods of time or the extended community for short 

periods, such as during the spring bloom, this study took a novel approach in 

characterizing the seasonality of the BATS plankton community throughout the 

upper water column at monthly intervals for two years. By employing both 

epifluorescence and FCM technologies, a greater degree of precision in estimating 

abundances and C and in recognizing taxonomic differences in the plankton 

community was achieved. Understanding the range of seasonal and annual 

variability at the BATS site is vital for extrapolating findings beyond the study 

period and throughout the region. 
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METHODS 

At-sea sampling and processing—Water column samples were collected 

aboard the R/V Atlantic Explorer at the BATS site (31°40’N, 64°10’W), located 

approximately 82 km SE of Bermuda in the northwestern Sargasso Sea (Fig. 1). 

Sampling was conducted monthly from May 2008 to April 2010, with 

supplementary biweekly bloom cruises during the spring bloom of each year. This 

time period has been split into two years: Year 1 (May 2008-April 2009) and Year 

2 (May 2009-April 2010). A Sea-Bird conductivity-temperature-depth (CTD) 

instrument, mounted on a rosette of 24 12 L Niskin bottles and equipped with an 

in vivo fluorescence sensor, was used to create profiles of temperature, salinity, 

and fluorescence, and to collect seawater at specific depths. CTD readings were 

collected on the downcast (that is, as the rosette descended), and samples were 

collected on the upcast (that is, as the rosette ascended). 

     Fig. 1.     Location 

of Bermuda (the white 

island underneath the 

letter “a”) and the 

BATS site (indicated 

by *) in the subtropical 

North Atlantic Ocean.  
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Samples for chlorophyll a (Chl a) and primary production were taken at 1, 

10, 20 m, and every 20 m thereafter to 140 m. Samples for nutrient analysis 

(concentrations of NO3+NO2 (nitrate+nitrite, hereafter nitrate), NO2 (nitrite), PO4 

(phosphate), and Si(OH)4 (silicate) (µmol kg-1

Monthly samples for microscopy were collected in Niskin bottles at four 

depths chosen from the fluorescence profile created as the rosette descended. A 

sample was always collected at 10 m and at the deep chlorophyll maximum 

(DCM). The remaining two samples were collected between 10 m and the DCM 

(or, occasionally, one was collected below the DCM) (see Appendix B). Samples 

for epifluorescence microscopy slides (hereafter referred to as “slides”) were 

drawn, prefiltered through 100 µm nitex mesh, from the corresponding Niskins 

into carboys rinsed three times with seawater. A 15 and 50 mL sample was 

filtered for each depth. Glutaraldehyde (50 and 200 µL, respectively) was added 

to the 15 and 50 mL samples and inverted to mix. Just prior to filtration, 4',6-

diamidino-2-phenylindole (DAPI) (200 µL or 1 mL, respectively) was added to 

)) were taken at the same depths as 

Chl a and primary production in addition to 160 and 200 m. These data are 

grouped here as hydrographic data. Chl a, primary production, and nutrients were 

measured at sea or at the Bermuda Institute of Ocean Sciences (BIOS), as 

appropriate, as in Lomas et al. (2009a). Briefly, Chl a was measured at by Turner 

fluorometer following acetone extraction. Primary production was measured by in 

situ incubation and by liquid scintillation analysis. Nutrients were gravity-filtered 

on ship before being measured on a long-pass capillary spectrometer (at sea) or an 

Alpkem Flow Solution IV system (at the BIOS station).  
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the 15 and 50 mL samples and inverted to mix. Samples were then filtered onto 

0.2 µm black polycarbonate filters placed atop 0.45 µm nitrocellulose filters on 

glass filter bases with a vacuum pump run at the lower setting to avoid cell lysis. 

Filters were mounted in immersion oil on glass slides under glass coverslips and 

stored in the dark at -20°C until they could be shipped to Arizona State University 

(ASU) for counting. 

FCM samples were taken at 1, 10, 20 m, and every 20 m thereafter down 

to 140 m. For processing of these samples, 1.5 mL seawater was added to labeled 

cryovials that had been rinsed with seawater from the corresponding Niskin. 75 

µL paraformaldehyde (PFA) was added to each vial and the tubes were inverted 

to mix. Samples were stored at 4°C for 2 h in the dark before being transferred to 

liquid nitrogen, where they were kept until processing. 

 Flow cytometry sample processing—FCM samples were analyzed at the 

BIOS station as in Lomas and Moran (2010). Briefly, a Becton Dickinson Influx 

cytometer equipped with a 488 nm blue excitation laser and Chl a and 

phycoerythrin bandpass filters was used to quantify Synechococcus, 

Prochlorococcus, and autotrophic picoeukaryotes (~1-3 µm) and nanoeukaryotes 

(>3 µm).  

 Epifluorescence microscope slide counting—Slide-mounted filters were 

analyzed with the 100X objective under oil immersion on a Zeiss Axio Imager.A1 

epifluorescence microscope. Both blue light (Zeiss filter set 09 with 450-490 nm 

excitation) and UV light (Zeiss filter set 34 with 390 nm excitation) were used. 

Organisms were categorized into the taxonomic, morphological, and functional 
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groups listed in Table 1 based on cell morphology, size, pigmentation under blue-

light excitation, and nuclear structure and relative brightness of the DAPI-stained 

nucleus or nuclei under UV-light excitation. To elaborate, prymnesiophytes were 

identified by their wing-like red chloroplasts on either side of a tall, thin, central 

green nucleus; this morphology was clear even for cells in the smallest size class.  

For the heterotrophic flagellates, which appear green under blue light 

(Lessard and Murrell 1996), heterotrophic nanoflagellates (HNF) refers to cells in 

the 1-2 and 2-5 µm size classes, and heterotrophic dinoflagellates (HDF) refers to 

cells in the larger size classes; for these organisms and others grouped into size 

classes, the largest measured dimension determined in which class the cell was 

placed. These size classes were based on the existing literature: Lessard and 

Murrell (1996) showed that HDF in this region were mainly <20 µm, and other 

studies cited by these authors found that most heterotrophic flagellates were 

generally <5 µm. The present study split the 1-5 and 5-20 µm ranges into more 

precise size classes to better define this component of the plankton community. 

Flagellae were not visible on all HNF and HDF cells.  

Mixotrophic dinoflagellates (MDF) were identified based on their green 

body color, red chloroplast(s), and bright dinokaryon. No 1-2 µm MDF were 

counted because such small cells would have been indistinguishable from 1-2 µm 

prymnesiophytes. On rare occasions, an MDF’s red chloroplast, when viewed 

under UV excitation, was revealed to be a recently engulfed phototrophic 

organism. In these cases, the cell was classified as an HDF of the appropriate size 

class (Lessard and Swift 1986). The cyanobacterium Prochlorococcus could not  
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Table 1.     Organisms or taxonomic groups counted in epifluorescence microscopy slide counts. Groups indicated by an 

asterisk (*) were counted in every slide. Other groups were counted if they were presented in a stripe across the filter. Other organisms 

not listed here were assigned names based on their particular morphology, pigmentation, and size. BV: biovolume. DAPI: 4',6-

diamidino-2-phenylindole. UV: ultraviolet light. 

Organism or 
taxonomic group 

Size or size class (µm) Typical shape Applied BV shape Pigmentation under blue 
light 

DAPI stain appearance 
under UV, if noteworthy 

Synechococcus* 1 Circular Sphere Yellow 
 Prymnesiophytes* 1-2, 2-4, 4-6, >6 Circular Sphere Dual red chloroplasts, 

central green nucleus 
 

Heterotrophic Nano- 
and Dinoflagellates* 

1-2, 2-5, 5-10, 10-15, 
15-20, >20 

Circular or prolate Prolate sphere Green Bright dinokaryon 

Mixotrophic 
Dinoflagellates* 

2-5, 5-10, 10-15, 15-20, 
>20 

Prolate Prolate sphere Green with red 
chloroplast(s) 

Bright dinokaryon 

Autotrophic 
Dinoflagellates 

Varied Prolate Prolate sphere Red Bright dinokaryon 

Ciliates Varied Circular or prolate, 
fringed by cilia 

Sphere or prolate sphere Green, occasionally some 
red 

Multiple bright nuclei 

Cryptophytes Generally 2-8 Oval with pointed end Sphere or prolate sphere Orange, green edge  
Diatoms: Centric Varied Circular or rectangular Cylinder Green frustule and 

nucleus, red chloroplasts 
 

Diatoms: Pennate Varied Long and thin with 
tapered ends 

Parallelepiped 
(rectangular box) 

Green frustule and 
nucleus, red chloroplasts 

 

Phototrophs Generally 2-10 Circular or prolate Sphere or prolate sphere Red   
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be quantified from slide counts because the black filter background masks its dark 

red pigmentation under blue light.  

Dominant taxa—those that appeared in relatively high densities (≥30 cells 

in 10 fields) (Neuer and Cowles 1994) in a given sample—were counted in 5 or 

10 fields distributed evenly across the entire filter. Less abundant organisms were 

counted in a stripe extending the diameter of the filter. The 50 mL filter was 

counted in all save three cases where that filter was damaged, missing, or too 

crowded to count accurately (see Appendix B). In two of the three cases, the 15 

mL filter sported very few cells relative to the number of cells seen in adjacent 

depths for that month, and two stripes were counted on the 15 mL filter to 

compensate for this scarcity. Cell counts were converted to cells mL-1

Subsampling error is inherent in the data collected in this study (Venrick 

1978). That is, the data were extrapolated from the counted portion of a 50 mL 

filtered sample collected at one depth at one point in time from a single location 

in the sea. This approach is unavoidably necessary, given the expense of 

conducting marine research cruises, the vast size of the NASTG, and the fact that 

microscopy is a very time-consuming enterprise. Nonetheless, the results 

presented here must be considered in the context of this intrinsic error. 

 by means 

of field-specific conversion factors incorporating the filtration volume, number of 

cells counted, and size of the field counted (the “large square” on the microscope 

ocular, field of view, or stripe). 

Confidence intervals (CI) (95%) for cell abundance from slide counts were 

calculated based on a Poisson distribution from the equations given in Lund et al. 
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(1958), assuming random distribution of organisms on the filter. In cases where 

the given abundance in a particular sample was a sum of multiple size classes 

(e.g. prymnesiophytes, which were often counted in different fields depending on 

the abundance of each class), the upper and lower 95% confidence limits were 

first calculated for each size class. These values were then summed to determine 

the 95% CI for that group. In the text, 95% CI are presented in parentheses after 

determined cell abundance. 

 Conversion of cell abundance to biovolume—Cell abundances (cells mL-1) 

were converted to biovolume (BV) (µm3 mL-1

The BV of organisms counted in size classes (prymnesiophytes, HNF, 

HDF, and MDF; see Table 1) were calculated from averaged cell sizes. For 

prymnesiophytes, cells were assumed to be 1, 3, 5, and 7 µm in diameter, 

respectively. For HNF, HDF, and MDF, 10 cells of the largest two size classes, 

which are less abundant, and 20 cells of the other size classes were measured on a 

representative slide (Sohrin et al. 2010), and an average length and width for each 

size class was calculated from these measurements. 

) using the geometric equations in 

Hillebrand et al. (1999) (see Table 1). Previous authors (Verity et al. 1992; 

Menden-Deuer and Lessard 2000; Sohrin et al. 2010) found that cells with 

complex morphology, such as thecate dinoflagellates, can be classified as spheres, 

prolate spheres, or other simple shapes with little effect on calculated BV. For 

non-spherical cells, the third or “hidden” dimension, which cannot be measured 

by traditional epifluorescence microscopy, was assumed to be equal to the smaller 

of the two measured dimensions.  
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Conversion of biovolume to carbon—C conversions from the literature are 

shown in Table 2. BV or logBV was applied to calculate C for each organism or 

taxonomic group in each sample. Initially, all conversions were applied to all cell 

count data, but this resulted in an extremely wide range of conversion values, 

stemming from the different publications’ varying methodologies and chosen 

study organisms. This was especially problematic for calculating total C in a 

given sample. Therefore, one set of equations was ultimately chosen for 

calculating C. The three equations given by Menden-Deuer and Lessard (2000)—

one for determining diatom C, one for dinoflagellates, and one for other non-

diatom protists—were selected as conversion factors for this study. This was the 

most recent paper, and it took into account findings and limitations of previous 

authors. These researchers provided a unique equation for calculating 

dinoflagellate C—useful here because dinoflagellates were such an important 

taxon in the present study—as well as equations for diatom and non-diatom 

protists that could be efficiently applied to diverse communities like those 

revealed through epifluorescence microscopy.  

Calculating integrated chlorophyll a and carbon—Total water column Chl 

a or C from 0-150 m, or integrated Chl a or C, respectively, was calculated for 

each month or cruise. Integrated Chl a (mg Chl a m-2) was calculated from 

hydrographic data, and integrated C was calculated from slide count data. To 

compute integrated Chl a, Chl a at a given depth (mg Chl a m-3) was multiplied 

by the depth interval (m) (i.e. the given depth minus the depth above it). These 
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values were then summed to determine a single value for integrated Chl a for that 

month.  

 

Table 2.     Carbon conversion equations compiled from the literature and 

used in this study. BV: biovolume (µm3 mL-1

Source 

).  

Carbon conversion 

equation (pg C µm-3 Specifications ) 

Borsheim and Bratbak 1987 0.22*BV Monas-like, fixed 

(2.5% glutaraldehyde) 

Menden-Deuer and Lessard 2000 0.760*BV Dinoflagellates 0.819 

Menden-Deuer and Lessard 2000 0.288*BV Diatoms 0.811 

Menden-Deuer and Lessard 2000 0.216*BV Non-diatom protists 0.939 

Mullin et al. 1966 10 None (for all plankton) [(0.76*logBV)-0.29] 

Putt and Stoecker 1999 0.19*BV Oligotrichous ciliates, 

fixed (2% Lugol's) 

Strathmann 1967 10 Diatoms [-0.314+(0.712*logBV)] 

Verity et al. 1992 0.36*BV Cell BV 101 µm

Verity et al. 1992 

3 

0.24*BV Cell BV 102 µm

Verity et al. 1992 

3 

0.16*BV Cell BV 103 µm

Verity et al. 1992 

3 

0.47*BV Synechococcus 

 

Integrated C was calculated in a similar fashion: total pg C cm-3 in a given 

sample, computed from the appropriate equations given by Menden-Deuer and 

Lessard (2000) (see Table 2), was multiplied by the depth interval times 1x106 

cm3 m-3 (to convert pg C cm-3 into pg C m-3), and these four values were summed 
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to determine that month’s integrated C. Integrated C was also calculated for each 

major group (see Table 1) to determine relative monthly contributions of each 

group to total integrated C; rarer organisms were grouped into a single category in 

this instance. Values of integrated C were then converted to mg C m-2

 Contour plots—Ocean Data View (ODV) software was used to create 

contour plots of hydrographic data, FCM cell abundance, and slide-derived cell 

abundance, BV, or C throughout the upper water column (0-150 m) over the 

course of the study period. For each, a gridded field (VG gridding) was created 

with depth plotted on the y-axis and time (roughly May 2008-April 2010) plotted 

on the x-axis. The z-axis variable and scale depended on the variable being 

plotted (e.g. temperature or prymnesiophyte abundance). 

. 
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RESULTS 

Hydrographic data—Thermal stratification (summer and fall) and deep 

mixing (winter and spring) are apparent in Fig. 2 in both Year 1 (May 2008-April 

2009) and Year 2 (May 2009-April 2010). Stratification lasted for a longer period 

of time and led to a deeper mixed layer depth (MLD) in Year 2 than Year 1. Foul 

weather prevented cruises in January of both years, so the beginning of deep 

winter mixing has been extrapolated in both cases between December and 

February. 

 

Fig. 2.     Contour plot of temperature (°C) from monthly and, 

during bloom periods, biweekly CTD casts at the BATS site from May 

2008 to April 2009. Black dots indicate sampling points. In the time scale 

(x-axis), 2008.5 indicates the middle of 2008 (30 June 2008), 2009 

indicates 1 January 2009, and so on. 

 

Concentrations of Chl a (Fig. 3) were highest during the Year 2 bloom 

(late winter/early spring 2010) (maximum of 0.84 mg m-3, early April 2010, 60 
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m), followed by the Year 1 bloom (maximum of 0.66 mg m-3, late February 2009, 

120 m). Concentrations were lowest from mid to late 2009. Data are not available 

for October or December 2008, September or October 2009, or January of both 

years, so values have been extrapolated in each case between available months, 

and the beginnings of both the Year 1 and Year 2 blooms have been estimated. 

The DCM generally occurred between 100 and 140 m throughout the study period 

except in the spring bloom of 2010, when it rose to ~60 m (early April 2010). 

Integrated Chl a (Fig. 4) remained relatively steady through Year 1 (mean: 26.55 

mg Chl a m-2), peaking at 39.22 mg Chl a m-2. By contrast, values in Year 2 

dropped sharply in fall 2009 before rising to a sharp peak at 83.87 mg Chl a m-2

 

 in 

early April 2010 near the end of the spring bloom. 

Fig. 3.     Contour plot of Chl a (mg m-3) from monthly and, during 

bloom periods, biweekly sampling at the BATS site from May 2008 to 

April 2010. Black dots indicate sampling points. In the time scale (x-axis), 

2008.5 indicates the middle of 2008 (30 June 2008), 2009 indicates 1 

January 2009, and so on.  
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Fig. 4.     Integrated Chl a (mg Chl a m-2

 

) from 0-150 m. Data are 

from monthly and, during bloom periods, biweekly sampling at the BATS 

site from May 2008 to April 2010.  

Primary production, an indicator of organic matter production by 

phytoplankton, was highest in February 2009 (15.79 mg C m-3 d-1, early February, 

20 m, and 16.40 mg C m-3 d-1, late February, 1 m) (Fig. 5). An isolated peak also 

occurred in July 2009 at 60 m (15.83 mg C m-3 d-1). Primary production was 

minimal below ~100 m throughout the sampling period. Mean primary production 

from 0-140 m was not significantly different (Student’s t-test, p=0.542) between 

the two years (3.21 and 2.97 mg C m-3 d-1 for Year 1 and Year 2, respectively). 

Integrated primary production (0-150 m) ranged from 189.67 to 847.27 mg C m-2 

d-1 (early April 2009 and early February 2009, respectively), with three peaks 

(early February 2009, July 2009, late February 2010) (data not shown) that 

corresponded to the points of high production in Fig. 5. Maximum integrated 
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production was greater in winter 2009 (847.27 mg C m-2 d-1, early February 2009) 

than in winter 2010 (658.98 mg C m-2 d-1

 

, late February 2010).  

Fig. 5.     Contour plot of primary production (mg C m-3 d-1

 

) from 

monthly and, during bloom periods, biweekly sampling at the BATS site 

from May 2008 to April 2010. Black dots indicate sampling points. In the 

time scale (x-axis), 2008.5 indicates the middle of 2008 (30 June 2008), 

2009 indicates 1 January 2009, and so on.  

 Fig. 6 displays nutrient concentrations from 0-200 m at the BATS site. 

Nutrient data are only available through March 2009, and no data are available for 

January 2009. With the exception of an increase in silicate in December 2008, no 

increases in nutrients throughout the water column relative to pre-bloom values 

were seen in winter, although nitrite levels were relatively high in the last 

available month, March 2009. Nitrate was minimal above 100 m for all months, 

and concentrations were highest at depth, with the highest concentrations 

occurring in February and March 2009 at 200 m. Nitrite was very low (<0.05 
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µmol kg-1) throughout except for peak at 80 m in May 2008 and values up to 0.21 

µmol kg-1, increasing with depth, in March 2009. Concentrations of phosphate 

were minimal above 100 m and, like nitrate, increased with depth; however, this 

nutrient peaked in October 2008 at 0.14 µmol kg-1

 

, with slightly lesser peaks in 

July 2008 and March 2009. Silicate concentrations were highest in July 2008 

from ~120-200 m and at 200 m from October 2008 to March 2009. 

Fig. 6.     Contour plot of nutrient concentrations (µmol kg-1

 

) from 

monthly and, during bloom periods, biweekly sampling at the BATS site 

from May 2008 to March 2009. Nitrate, top left; nitrite, bottom left; 

phosphate, top right; and silicate, bottom right. Black dots indicate 

sampling points. In the time scale (x-axis), 2008.4 indicates May 2008, 

2008.6 indicates August 2008, 2008.8 indicates November 2008, etc. 

Flow cytometry data—Concentrations of Synechococcus from FCM 

measurements ranged from 0 to 4.2x104 cells mL-1 (September 2008, 140 m, and 

May 2008, 40 m, respectively). Prochlorococcus abundances were higher overall,  
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Fig. 7.     Contour plots of Synechococcus (top) and 

Prochlorococcus (bottom) abundance (cells mL-1

 

) from monthly and, 

during bloom periods, biweekly sampling at the BATS site from May 

2008 to April 2010, as determined by FCM. Black dots indicate sampling 

points. In the time scale (x-axis), 2008.5 indicates the middle of 2008 (30 

June 2008), 2009 indicates 1 January 2009, and so on.  

ranging from 450 to 1.4x105 cells mL-1 (early April 2010, 140 m and October 

2008, 60 m, respectively). These data reveal a temporal and spatial offset between 
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these two key cyanobacteria (Fig. 7), as seen in Durand et al. (2001). 

Synechococcus was most prevalent in the spring blooms and decreased in 

abundance from surface to depth, while Prochlorococcus abundance peaked from 

early summer to late fall between 50-100 m. 

 

The abundance of picoeukaryotes (~1-3 µm) determined by FCM (Fig. 8) 

remained low (approximately 100-2000 cells mL-1) relative to cyanobacteria both 

spatially and temporally until the beginning of 2010. There were two isolated 

peaks in concentration of these cells, one occurring in May 2008 at 80 m (9181 

cells mL-1), and the other in July 2009 at 60 m (5376 cells mL-1). Data are not 

available from December 2008 to early February 2009. Mean abundance of 

picoeukaryotes increased slightly from 1109 to 2001 cells mL-1 between 

November 2008 and late February 2009. This difference between late winter and 

bloom concentrations was much more pronounced in Year 2, in which December 

2009 averaged 313 cells mL-1 and early February 2010 had a mean of 3610 cells 

mL-1

Nanoeukaryote (>3 µm) abundance was notably lower than that of 

picoeukaryotes (Fig. 8). These cells tended to be found above 100 m. Abundance 

during Year 2 was lower than in Year 1, and most cells during this time occurred 

above approximately 75 m. Data are unavailable from November 2008 through 

April 2009 for most depths.  

. 
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Fig. 8.     Contour plots of picoeukaryote (top) and nanoeukaryote 

(bottom) abundance (cells mL-1

 

) from monthly and, during bloom periods, 

biweekly sampling at the BATS site from May 2008 to April 2010, as 

determined by FCM. Black dots indicate sampling points. In the time scale 

(x-axis), 2008.5 indicates the middle of 2008 (30 June 2008), 2009 

indicates 1 January 2009, and so on.  

Epifluorescence microscopy counts, biovolume, and carbon—

Synechococcus ranged from 17 to 1.21x105 (CI: 8-36 to 1.09-1.34x105, 
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respectively) cells mL-1, with low concentrations predominantly occurring at 

depth (below 100 m). Abundance (Fig. 9) was greater in the Year 1 bloom 

(approximately January-April 2009) than in that of Year 2. Synechococcus tended 

to be more prevalent (and therefore contributed more to overall BV and C) above 

approximately 80 m. May 2008 showed Synechococcus at concentrations 

approaching bloom concentrations, but this was not seen in May 2009. Slides for 

March 2009 were recounted to check the existence of two isolated peaks at 25 and 

90 m (both ~1.20x105 (CI: 1.08-1.34x105) cells mL-1

 

), but the relative paucity of 

cells at 10 and 60 m was confirmed.  

Fig. 9.     Contour plot of Synechococcus abundance (cells mL-1

 

) 

from monthly and, during bloom periods, biweekly sampling at the BATS 

site from May 2008 to April 2010, as determined by epifluorescence 

microscopy. Black dots indicate sampling points. In the time scale (x-

axis), 2008.5 indicates the middle of 2008 (30 June 2008), 2009 indicates 

1 January 2009, and so on.  
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Applying the Synechococcus-specific C conversion equation from Verity 

et al. (1992) yielded a range of 4.3 to nearly 3x104 pg C mL-1 (November 2009, 

120 m, and March 2009, 25 and 90 m, respectively). C values estimated with the 

Menden-Deuer and Lessard (2000) non-diatom protist equation were somewhat 

lower, ranging from 1.7 to approximately 7000 pg C mL-1

Prymnesiophytes tended to occur between 50 and 100 m during Year 1 

and the first half of Year 2 (Fig. 10). During the spring bloom of Year 2, however, 

abundance was highest above 50 m (2.37x10

.  

4 (CI: 1.86-3.02x104) cells mL-1, late 

March 2010, 40 m), with a smaller peak at 10 m (1.60x104 (CI: 1.31-1.97x104) 

cells mL-1

 

, late February 2010). An isolated peak also occurred in May 2008; 

Fig. 10.     Contour plot of prymnesiophyte abundance (cells mL-1) 

from monthly and, during bloom periods, biweekly sampling at the BATS 

site from May 2008 to April 2010, as determined by epifluorescence 

microscopy. Black dots indicate sampling points. In the time scale (x-

axis), 2008.5 indicates the middle of 2008 (30 June 2008), 2009 indicates 

1 January 2009, and so on.  
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slides from two consecutive days of sampling showed 1.76-1.94x104 (CI: 1.32-

2.34x104)) cells mL-1 at 80 m. Mean cell concentration in Year 1 was lower (2904 

cells mL-1) than Year 2 (4005 cells mL-1). The prymnesiophyte contribution to 

total plankton community C ranged from 14-1988 pg C mL-1 (mean: 1335 pg C 

mL-1

Prymnesiophytes in the smallest size class (1-2 µm) dominated the water 

column in every month of Year 2, accounting for 71-97% of average abundance 

(mean cells mL

).  

-1

HNF and HDF combined abundance (Fig. 12) was greater in Year 1 than 

Year 2. Interestingly, combined HNF and HDF C showed an even stronger 

dichotomy, with total cell biomass decreasing sharply after December 2008; after 

this time, large cells (>15 µm) appeared less frequently (Fig. 13). In both years, 

abundance of these organisms was greatest from mid-summer through the end of 

the calendar year and lowest during the bloom. The highest cell concentration was 

reached in December 2008 (3271 (CI: 2302-4629) cells mL

 of all samples in a given month) (Fig. 11). In Year 1, however, 

1-2 µm cells ranged from 18-91% of all prymnesiophytes, averaging 60% (mean 

percent abundance of this group in Year 2 was 84%). Cells 2-4 µm in size 

comprised the bulk of the rest of prymnesiophyte abundance; larger cells 

accounted for only 0-6% of average abundance.  

-1, 60 m), while 

minimum abundance occurred in late February 2009 (249 (CI: 206-299) cells mL-

1, 60 m). HNF and HDF were relatively evenly distributed throughout the upper 

water column until the beginning of 2009, after which point abundance was 

somewhat higher in the upper 100 m.  
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Fig. 11.     Average prymnesiophyte abundance (cells mL-1

 

) per 

month, May 2008-April 2010. Coloration indicates abundance 

contributions of different size groups, with groups stacked from largest 

(top of bar) to smallest (bottom of bar). Cells larger than 4 µm were rarely 

seen and thus contributed minimally to abundance. Two sets of samples 

for slides were collected in May 2008 (a and b) and February 2009 (a and 

b); two cruises were conducted in other months indicated with a, b, or c.  
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Fig. 12.     Contour plot of HNF and HDF abundance (top) (cells 

mL-1) and C (bottom) (pg C mL-1

 

) from monthly and, during bloom 

periods, biweekly sampling at the BATS site from May 2008 to April 

2010, as determined by epifluorescence microscopy. Carbon calculated 

from BV using the dinoflagellate conversion equation in Menden-Deuer 

and Lessard (2000) (abbreviated MDL00). Black dots indicate sampling 

points. In the time scale (x-axis), 2008.5 indicates the middle of 2008 (30 

June 2008), 2009 indicates 1 January 2009, and so on.  
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Average abundance of different size classes is shown in Fig. 13. HNF 

(cells <5 µm) dominated the community, accounting for 76-97% (mean: 91%) of 

average heterotrophic flagellate abundance (mean cells mL-1 of all samples in a 

given month). The smallest HDF (5-10 µm) contributed 13.1-17.5% of average 

HNF and HDF abundance in fall 2008 (Sept., Nov., and Dec.), but this group 

averaged only 5.25% of total cell concentration for the entire study period. Larger 

HDF were minor contributors to cell abundance, with mean abundance ranging 

from 0.5-1.7%. Average combined HNF and HDF abundance fell in from 1366 

cells mL-1 in Year 1 to 1026 cells mL-1 in Year 2. Mean annual abundance of 

HNF and HDF, taken separately, also declined (from 1209 to 970 cells mL-1 for 

HNF, and from 158 to 56 cells mL-1

MDF were significantly less abundant, and contributed less to C, than 

HNF and HDF throughout the sampling period. Unlike heterotrophic flagellates, 

MDF did not include a 1-2 µm size class, as such organisms would have been 

difficult to distinguish from small prymnesiophytes at such a small scale; the 

values reported here would therefore be underestimates if 1-2 µm mixotrophic 

flagellates were indeed present. In both years, MDF peaked in abundance during 

mid to late summer, but they were more prevalent in Year 1 (maximum of 736 

(CI: 602-895) cells mL

 for HDF). 

-1, August 2008, 85 m) than Year 2 (290 (CI: 243-344) 

cells mL-1

 

, August 2009, 85 m) (Fig. 14). Abundance tended to be highest 

between ~50-100 m, with the exception of May 2008, during which time there 

was a small peak in MDF at 40 m.  
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Fig. 13.     Average HNF (1-5 µm) and HDF abundance (5->20 

µm) (mean cells mL-1

 

 of all samples in a given month) per month, May 

2008-April 2010. Coloration indicates abundance contributions of 

different size groups, with groups stacked from largest (top of bar) to 

smallest (bottom of bar). See Fig. 11 for explanation of dates (years) with 

a, b, or c. 
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Fig. 14.     Contour plot of MDF abundance (cells mL-1

 

) from 

monthly and, during bloom periods, biweekly sampling at the BATS site 

from May 2008 to April 2010, as determined by epifluorescence 

microscopy. Black dots indicate sampling points. In the time scale (x-

axis), 2008.5 indicates the middle of 2008 (30 June 2008), 2009 indicates 

1 January 2009, and so on.  

As was seen in the heterotrophic flagellates, small cells dominated the 

MDF portion of the plankton community (Fig. 15). The 2-5 µm size class 

accounted for 41-87% (mean 67%) of total MDF abundance (summed cells mL-1

 

 

from each sample in a given month), and the average contribution of 5-10 µm 

cells was 25%. The largest cells (>15 µm) were more commonly seen in Year 1 

than Year 2. 
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Fig. 15.     Total MDF abundance (2->20 µm) (mean cells mL-1

 

 of 

all samples in a given month) per month, May 2008-April 2010. 

Coloration indicates abundance contributions of different size groups, with 

groups stacked from largest (top of bar) to smallest (bottom of bar); unlike 

HNF, no 1-2 µm MDF were counted because such cells would have been 

indistinguishable from prymnesiophytes. May 2008b, June 2009 and 

August 2009 are sums of MDF at only three depths; the prior was not 

originally separated into size classes (and was later too bleached to 

remedy this error), and the latter two were too bleached to count (see 

Appendix B). See Fig. 11 for explanation of dates (years) with a, b, or c. 
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Diatoms were a minor taxon relative to the abundances of the groups 

described above, with concentrations ranging from 0 to 100 (CI: 57-111) cells 

mL-1

Cryptophytes, although not traditionally considered a group of interest at 

BATS, nonetheless displayed interesting seasonality (Fig. 17). This taxon was 

relatively abundant from late winter through spring of both Years 1 and 2, at 

which times cells were found throughout the upper water column; however, 

cryptophytes were rarely seen in summer or fall. They reached peak abundance 

(143 (CI: 111-183) cells mL

. Pennate diatoms comprised the bulk of overall diatom numbers, although 

centric diatoms experienced a brief peak in late May 2008 (Fig. 16). Diatoms 

tended to be found between 50-100 m. These organisms were relatively rare 

during the Year 1 bloom but occurred in greater densities during the Year 2 

bloom. Diatom size varies immensely, from the petit Minidiscus (3-5 µm) (which, 

though known to be a common organism in the Sargasso Sea (Lomas et al. 

2009b), could not be distinguished in epifluorescence counts in this study) to 

pennate cells 80 µm or more in length. Because a single large cell in any 

particular sample can dramatically skew the data at that point, it is more 

instructive to view diatom trends in abundance rather than in terms of BV or C. 

-1, December 2008, 120 m) earlier in Year 1 than in 

Year 2 (119 (CI: 90-156) cells mL-1, early February 2010, 120 m). Cryptophyte C 

in a given sample ranged from 0-700 pg C mL-1

 

. 
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Fig. 16.     Contour plots of total (top), centric (middle), and 

pennate diatom (bottom) abundance (cells mL-1) from monthly and, during 

bloom periods, biweekly sampling at the BATS site from May 2008 to 

April 2010, as determined by epifluorescence microscopy. Black dots 

indicate sampling points. In the time scale (x-axis), 2008.5 indicates the 

middle of 2008 (30 June 2008), 2009 indicates 1 January 2009, and so on.  
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Fig. 17.     Contour plot of cryptophyte abundance (cells mL-1

 

) 

from monthly and, during bloom periods, biweekly sampling at the BATS 

site from May 2008 to April 2010, as determined by epifluorescence 

microscopy. Black dots indicate sampling points. In the time scale (x-

axis), 2008.5 indicates the middle of 2008 (30 June 2008), 2009 indicates 

1 January 2009, and so on.  

 Fig. 18 depicts integrated C from 0-150 m, calculated from slide data with 

the equations provided in Menden-Deuer and Lessard (2000). Year 1 exhibited 

higher total integrated C than Year 2 in all months except August 2008 and one 

sample set from the early February 2009 cruise. Variability in the contribution of 

HDF explains much of the overall variability seen in Year 1. This group saw a 

decrease in abundance and a sharp decline in C in Year 2 (see Fig. 12), 

accounting for its lessened variability and contribution to total integrated C from 

May 2009 to the end of the study period. 
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Fig. 18.     Integrated C per month (mg C m-2) from 0-150 m, May 

2008-April 2010. Coloration indicates integrated C contributions of 

different taxa, with groups stacked according to trophic type (from 

bottom: autotrophs (Synechococcus, prymnesiophytes, diatoms), 

mixotrophs (MDF), heterotrophs (HDF, HNF), other (ciliates, 

cryptophytes, phototrophs, and other rarer cells). Large cells in the 

“diatoms” and “other” categories (i.e. with BV >1,000 µm3) were removed 

from calculations as outliers. See Fig. 11 for explanation of dates (years) 

with a, b, or c.  
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Fig. 19.     Percent contributions of different groups to integrated C 

per month, May 2008-April 2010. Dark gray shading (top) indicates 

“other,” white shading (middle) indicates autotrophs, black shading 

indicates heterotrophs. See Fig. 18 for explanation of which taxa are 

“other,” autotrophs, or heterotrophs; for this analysis, MDF were classified 

as autotrophs. See Fig. 11 for explanation of dates (years) with a, b, or c. 

 

The fluctuation in the relative contributions of autotrophs and heterotrophs 

to total integrated C (Fig. 19) shows less contrast between Years 1 and 2 than total 

integrated C. Heterotrophs (HNF and HDF; ciliates were included in “other” or, in 

many cases, were excluded from calculations as outliers due to their large size) 

displayed three peaks in which they reached 70% to nearly 80% of total integrated 
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C in fall and early winter of Year 1. While the heterotrophic contribution to C was 

also highest during these seasons of Year 2, these organisms then accounted for 

just approximately 50-60% of the total. By contrast, autotrophs dominated the 

community in terms of integrated C during bloom periods. The phytoplankton 

reached the highest percentage of total integrated C (about 75%) in late February 

2010. 

 Scatter plots of the relationship of integrated Chl a (mg Chl a m-2) to 

integrated autotrophic C are shown in Fig. 20. MDF were excluded from the 

lower plot because these organisms may contain relatively little Chl a relative to 

their cell size, particularly for those in the larger size classes. The correlation 

between these values had an R2

 

 value of 0.10 when MDF were included in 

calculations of total integrated autotrophic C, and 0.17 when MDF were excluded. 

In neither case was there a significant relationship between integrated Chl a and 

integrated autotrophic C (n=19, p=0.189 and p=0.080 with and without MDF, 

respectively). 
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Fig. 20.     Relationship of integrated Chl a (mg Chl a m-2) to 

integrated autotrophic C (mg C m-2) calculated from epifluorescence 

microscopy data of autotrophic organisms, including (top) and excluding 

(bottom) MDF. Data are from May 2008-April 2010. Equations and R2 

values for both plots are shown on the respective graphs. 
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DISCUSSION 

All taxonomic groups surveyed in this research displayed moderate or 

overt temporal and spatial variability. A considerable dichotomy existed between 

the two study years; this was perhaps most apparent in trends in integrated C. 

Most autotrophic groups increased in abundance and contribution to overall C 

during the spring bloom; this is to be expected, as the bloom period provides the 

combination of adequate nutrient concentrations and light phytoplankton need to 

flourish. The heterotrophs studied were, by contrast, least prevalent during these 

bloom periods. Hydrographic variability is a strong indicator of some of the 

underlying causes of this planktonic variability. 

Thermal stratification, or shoaling of the thermocline in summer and fall, 

coincided in both years with low surface Chl a concentrations. An interesting 

feature in the Year 1 thermocline that was mirrored in Chl a concentrations was a 

shoaling of ~50 m above June 2008 conditions from July to late fall. This 

indicates the passage of a cyclonic eddy, which causes doming of the thermocline 

(McGillicuddy et al. 2007). July 2008 saw an increase in all measured nutrients 

except nitrite (which did not increase but shoaled ~20-40 m relative to June 

2008). 

Another climatic event that influenced BATS hydrography occurred near 

the end of the study period. The winter of Year 2 “was characterized by record 

persistence of the negative phase of the… NAO” (Cattiaux et al. 2010, p.1), and 

this negative NAO explains the increased storm activity that led to deeper mixing 

in Year 2 (Fig. 2). Chl a was greater in the Year 2 bloom, and water temperature 
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was colder during this time. Indeed, the 18°C subtropical mode water underlying 

the BATS site, which is only rarely ventilated into the upper 100 m of the water 

column (Cianca et al. 2007), reached or nearly reached the surface (8 m was the 

first recorded depth) in late February 2010. The chlorophyll maximum, which 

previously had rested between ~100-130 m, was found between 1-60 m for much 

of the Year 2 spring bloom, possibly due to the high abundances of 

picoeukaryotes and prymnesiophytes at these depths. A surprising peak in 

integrated Chl a was seen in early April 2010, when values shot up from ~30-40 

mg Chl a mL-1 in March to >80 mg Chl a mL-1, before decreasing to 20 mg Chl a 

mL-1 two weeks later during the late April 2010 cruise. Relatively high Chl a 

values were registered at individual depths from 40-140 m (0.46-0.84 mg Chl a 

m-3

Trends in Chl a were also correlated with primary production. The latter 

was, like Chl a, highest during bloom periods. The abrupt peak in integrated Chl a 

in early April 2010 did not, however, correspond to primary production maxima; 

production was high from 0-40 m (4.9-12.9 mg C m

), indicating that this peak was not the result of a single outlying measurement. 

FCM and primary production data are available for this cruise, but samples for 

epifluorescence slides were not taken. 

-2 d-1) at this time, but 

dropped sharply to 0-0.70 mg C m-2 d-1 below 60 m, where Chl a was highest. 

The upper region of the water column boasts high levels of both nutrients and 

light during these periods, however, so it is not surprising that production was 

highest above 40-50 m. More unexpected was the isolated peak in primary 

productivity seen in mid-2009 at 60 m. Chl a also increased slightly at that time 
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relative to the previous month. It could be that, as this depth was just below the 

heavily thermally stratified upper region, light and nutrients were still adequately 

sufficient to permit a brief flush of productivity. Prochlorococcus may have 

contributed to the peak in primary productivity, as this organism was most 

abundant in the summer and it displayed relatively high abundance from 

approximately 60-100 m in July 2009. Picoeukaryotes, as estimated by FCM, 

experienced a sudden, isolated increase in abundance at this time and depth, but 

this was not reflected in epifluorescence data. Both prymnesiophyte and diatom 

concentrations appeared elevated at ~80 m but not 60 m, the depth of the Chl a 

peak. However, samples for slides that month (July 2009) were collected at 10, 

60, 100, and 120 m, and the abundance increases at ~80 m are extrapolated from 

data from 85 m slides taken in June and August 2009.  

Numerous relationships between Chl a, FCM data for pico- and nano-

eukaryotes, and epifluorescence data, both throughout the upper water column 

and over time, can be illuminated by delving into these data. At the very 

beginning of the study period in May 2008, an unusual peak (unusual because it 

occurred after the spring bloom, at the beginning of thermal stratification) in Chl 

a was observed between approximately 75-100 m. This coincided with a marked 

abundance of picoeukaryotes (and, to a lesser extent, nanoeukaryotes) in the FCM 

data. Prymnesiophytes, as observed by microscopy, also exhibited high 

concentrations at this depth in May. Thus, these are most likely the organisms 

seen in the FCM data. This provides a noteworthy example of how microscopy 

data can be supported by evidence from high-throughput techniques like FCM, 
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and FCM can benefit from the more precise degree of identification afforded by 

microscopy. Unlike this peak in prymnesiophytes, the abundance of diatoms 

between 0-50 m noted in slide counts in May 2008 was not reflected in Chl a 

data, although FCM nanoeukaryote results show a high concentration of cells in 

the upper 10-20 m.  

FCM data somewhat explain the peak in integrated Chl a that occurred in 

early April 2010. Prochlorococcus most likely had a minimal impact on Chl a at 

that time, given that this organism was at its lowest concentrations in the Year 2 

spring bloom. Instead, Synechococcus may have contributed, although Chl a is 

not this cyanobacterium’s primary light-harvesting pigment. Synechococcus 

concentrations were high (2.29-3.34x104 cells mL-1) from 0-40 m, but they 

dropped at 60 m to 8.22 cells mL-1 and continued to decline deeper in the water 

column, where Chl a concentrations were highest. Photosynthetic nanoeukaryotes 

were high relative to typical abundances in the upper 40 m (129-225 cells mL-1) 

but as low as 15 cells mL-1 below that; however, these organisms contain more 

Chl a than the smaller picoeukaryotes by virtue of their size, so this may partially 

explain the Chl a peak. It seems most likely that picoeukaryotes were responsible 

for that peak, given their dense concentrations (up to 6640 cells mL-1

Prymnesiophyte abundance, as estimated by microscopy, correlated 

strongly with Chl a data throughout the study. Prymnesiophytes were the most 

) in early 

April in the upper 80-100 m—although abundances were actually greater in late 

March—and it is equally likely that small prymnesiophytes comprised the bulk of 

this picoeukaryotic population. 
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prevalent chlorophyll-containing taxon seen in slide counts; Synechococcus 

contains a different main accessory pigment, and the chlorophyll-containing MDF 

and diatoms were much less abundant. Liu et al. (2009) recently published a 

major finding, resulting from HPLC studies of the haptophyte pigment 19’-

hexanoyloxyfucoxanthin (19-Hex), that prymnesiophytes (the Haptophyta) are a 

dominant eukaryotic phytoplankton throughout the world’s open oceans. These 

authors also used molecular techniques to reveal that prymnesiophyte populations 

are characterized by an extremely high degree of diversity. Given these 

organisms’ morphological similarity, however, such diversity cannot be 

uncovered in microscopy analyses.  

It is worth noting that the size classes used in this study to categorize 

prymnesiophytes (and HNF, HDF, and MDF) do not necessarily correspond to 

different species. The incredible dominance of 1-2 µm prymnesiophytes during 

bloom periods could indicate an abundance of a small haptophyte species; 

alternatively, these cells could be recently divided progeny that have not yet 

reached their full size. Also worthy of note is the consideration that the centric 

diatom Minidiscus, known to be abundant in many plankton communities but 

difficult to identify by light microscopy (Hasle and Syvertsen 1997), could 

hypothetically have been included in the 2-4 µm prymnesiophyte size class. 

However, a whitish or green silica frustule (shell) would likely have been visible 

around the cells, as clearly observed in the other centric diatoms observed by 

epifluorescence in this study, and this was not seen in any slide counts. 

Coccolithophores are known to occur in the BATS region, but they only comprise 
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a portion of the prymnesiophyte (haptophyte) community. Haidar and Thierstein 

(1995) reported cell abundances of coccolithophorid species as high as 106x103 

cells L-1 (106 cells mL-1), with mean density around 20x103 cells L-1

Unlike prymnesiophytes, Synechococcus is not a major contributor to Chl 

a, as these cells instead contain phycobiliproteins like phycocyanin and 

phycoerythrin (though Chl a is still present, predominantly in the cells’ reaction 

centers) (Collier and Grossman 1992). Instead, it must be charted by other 

techniques, such as molecular methods or the techniques employed in this study. 

Spatial and temporal trends in abundance of Synechococcus were mirrored in 

FCM and slide results. Both showed peaks in concentrations of the 

cyanobacterium in May 2008 in the upper 75 m, in the spring bloom of Year 1 

throughout the upper 150 m, and in the bloom of Year 2 in the upper 50-75 m of 

the water column.  

. In contrast, 

epifluorescence microscopy revealed mean prymnesiophyte concentrations an 

order of magnitude higher; the mean coccolithophore concentration found in 

Haidar and Thierstein’s study would comprise less than 1% of all 

prymnesiophytes at or near the BATS station. 

Estimations of Synechococcus abundance were, however, greater by 

approximately a factor of two in epifluorescence data than in FCM data; this was 

also true for slide count prymnesiophyte estimates when compared to 

picoplankton abundances from FCM. There are several possible explanations for 

this discrepancy. First, slide samples and FCM samples may not have been 

collected at the same time or on the same day of each cruise; this would account 



48 

for some differences in determined abundance if cell concentrations varied 

somewhat from day to day, but it would not explain the consistent difference in 

overall concentration. It is also possible that variations existed in the precise 

diameter of the glass columns used for at-sea filtration of microscopy samples. 

Even a difference of <1 mm in column diameter would impact the filter area, 

correspondingly skewing the field-specific conversion factors used to translate 

microscopy counts into cell abundances. If FCM estimates were indeed closer to 

actual cell concentrations, and if the filtration columns used on the ship were 

slightly smaller than those used to calculate the aforementioned conversion 

factors, then that could partially account for the possible systematic error noted 

above. Furthermore, both techniques are also prone to subsampling error, though 

FCM may be more at risk for this due to the small amount of sample (generally 

~0.2-0.3 mL) used in processing (Lomas et al. 2009b). Error in estimating cell 

abundance can be quite large when only a few cells of a certain organism or taxon 

are counted by microscopy (e.g. approximately ±100% if 4 cells are counted, 

±50% if 16 cells are counted, assuming 95% confidence limits (Lund et al. 

1958)). However, Synechococcus and picoeukaryotes (predominantly 

prymnesiophytes) were common enough to count 30-100 cells or more in almost 

all samples (with the exception of several slides, especially some below ~120 m) 

to achieve a reasonable margin of error (approximately ±30% error for 30 cells, 

±20% for 100 cells). 

Prochlorococcus dynamics cannot be compared between the two 

techniques because this organism is difficult or impossible to see with 
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epifluorescence microscopy. Based on FCM data, Prochlorococcus was seen in 

the greatest numbers during summer and fall, a finding in line with that of 

DuRand and colleagues (2001). These researchers also noted that Synechococcus 

is most prevalent during the spring bloom, a result echoed here. The present 

study, however, goes further in illustrating the dynamics of these cyanobacteria at 

the BATS site by elucidating their spatial structure in the upper water column. It 

is shown here that Synechococcus is most abundant in the upper 100 m of the 

surface ocean, while Prochlorococcus is generally found between 50-100 m. 

Other phytoplankton—MDF, diatoms, cryptophytes, and rarer organisms 

like ciliates and unclassified phototrophs—likewise exhibited distinct seasonality. 

MDF reached peak abundances during bloom periods, primarily between 50-100 

m. Interannual variability was also clear in this group, with abundances, 

especially of cells in the larger size classes, decreasing in Year 2. Cryptophytes, 

though low in abundance overall (less than approximately 150 cells mL-1), also 

followed a bloom pattern of seasonality, with concentrations peaking in late 

winter and during the early period of the spring bloom. These cells were almost or 

completely absent throughout the water column at other times of both Years 1 and 

2. Diatom abundance, however, did not strictly coincide with the spring bloom. 

Concentrations of these organisms, both pennate and centric, were highest in May 

2008 and in summer to fall of 2008 and 2009, largely between 50-100 m. Diatoms 

were seen in both spring blooms, with greater spatial distribution (~10-80 m) but 

lower concentrations than in other seasons. Abundance slightly increased in the 

Year 2 bloom relative to that of Year 1, but since these organisms were relatively 
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rare, they bring with them the baggage of a noteworthy degree of counting error. 

The abrupt diatom abundance peak in October 2008 did not correlate with any 

recorded injection of silicate into the upper water column; an earlier eddy had led 

to increased levels of this compound from ~100-200 m, but that event occurred in 

July 2008. 

Heterotrophic flagellate seasonal dynamics were opposite those of most 

phytoplankton. Populations of these microbes were largest in late summer to early 

winter, and they shrank as the spring bloom began. A recent article published by 

Behrenfeld (2010) proposed a “Dilution-Recoupling Hypothesis” to replace the 

“Critical Depth Hypothesis” proposed by Sverdrup in 1953, and this new 

hypothesis may shed some light on the importance of HNF and HDF dynamics 

seen here. Sverdrup’s paradigm holds that the spring bloom is set in motion when, 

after deep mixing in winter, the nutrient-replete MLD shoals above the critical 

depth horizon, which is the depth at which phytoplankton growth is less than 

biomass loss through respiration, sinking, or grazing; thus, the bloom occurs due 

to hydrographic conditions that allow increased cell growth. However, Behrenfeld 

presented a multi-year data set from the North Atlantic showing that, among other 

things, phytoplankton C actually begins to increase in mid-winter rather than in 

spring. He concluded that increased cell division cannot account for the timing 

and dynamics of the bloom. Rather, decreased predation occurs in mid-winter due 

to dilution as the MLD deepens. Grazing is “recoupled” to phytoplankton growth 

when the MLD shoals, but the hydrographic conditions listed above allow 

autotrophic growth rates to remain high t despite increases in predation.  
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Although increased light conditions in spring play a minor role in bloom 

control in the subtropics compared to polar regions, it is still possible that 

Behrenfeld’s hypothesis could hold true at BATS and similar areas. The decrease 

in concentrations of grazers (HNF and HDF in this study, though possibly not that 

of ciliates (see below)) noted in late winter and early spring of both Years 1 and 2 

lends credence to the idea that low predation could indeed spark the spring bloom, 

since the heterotrophic flagellates are primary grazers of the BATS phytoplankton 

community. Preliminary data from A. Freibott, a colleague investigating ciliate 

taxonomy and dynamics from BATS samples taken concurrently with those of the 

present study, suggests that ciliate concentrations increased throughout the water 

column during the bloom of Year 1, although these heterotrophs also exhibited 

relatively high abundance below 100 m from May 2008 through summer and fall 

2008. Like HNF and HDF, ciliate abundance fell in Year 2, and an increase in 

prevalence of these organisms was not seen in the second spring bloom. Lessard 

and Murrell (1996) reported ciliate concentrations markedly lower than those of 

HDF, a finding also seen here: high ciliate concentrations from A. Freibott’s study 

ranged from ~500-800 cells L-1, or <1 cell mL-1, drastically lower than even the 

lowest concentration of HNF and HDF (249 cells mL-1

HNF and HDF also displayed interannual variation. This was most 

pronounced in the difference in HNF/HDF C between Year 1 and Year 2, with C 

plunging in early 2009 before falling still lower by May 2009 (the beginning of 

Year 2). The drop in prevalence of large cells (particularly those >15 µm) at the 

) calculated from slide 

counts. 
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beginning of Year 2 accounts for much of this difference in C, but lessened 

overall abundance in that year also contributed.  

An astonishing range of C conversion factors for phytoplankton and 

heterotrophic protists is available in the literature. For this study, one set of 

equations—those provided by Menden-Deuer and Lessard (2000)—was chosen 

for its relevance to this work (chiefly, the provision of a separate dinoflagellate 

equation, the recognition of diatoms as containing less C than most protists due to 

their large vacuole, and the simplicity afforded by applying a single equation to 

other protists). Furthermore, that study is well regarded in the fields of phycology 

and oceanography, based on the number of citations it has garnered in the past 

decade. Estimating plankton C is, however, a notoriously error-prone business, 

not least because preserved or “fixed” cells may not precisely reflect the size or 

shape of live organisms. 

Fixation of filtered plankton with glutaraldehyde is indisputably 

necessary, as on-ship facilities for examining live samples are not available. 

However, glutaraldehyde and other fixatives are known to induce shrinkage of 

microscopic organisms. Choi and Stoecker (1989) found that 2% glutaraldehyde 

resulted in approximately 42-45% shrinkage over live volume of microflagellates, 

approximately 54-64% shrinkage of naked ciliates, and approximately 76% 

shrinkage of a loricated ciliate. These percentages indicate the size of the fixed 

cells relative to their original live volume. Autotrophic flagellates generally shrink 

less than heterotrophic ones, possibly because phagotrophs may release ingested 

particles upon contact with a fixative (Choi and Stoecker 1989). Booth (1987) and 
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Verity et al. (1992) found average volume reductions of 28% and 29% with 2.5% 

and 0.5% glutaraldehyde, respectively.  

Menden-Deuer and Lessard (2000) noted that the effects of fixation vary 

widely between species and can, in some cases, also cause swelling of cells. 

These authors concluded that C to volume conversion equations are nevertheless 

applicable to both live and dead cells. The extensive variability of fixative-

induced shrinkage makes it difficult, if not impossible, to accurately correct the 

dimensions and BV of fixed cells. It must therefore be assumed that the BV and C 

conversion data presented here are underestimations of live-cell BV and C, 

perhaps of at least 30%.  

This study reveals that plankton communities in the NASTG are subject to 

a great degree of spatial and temporal variability in terms of taxonomic 

composition, size makeup of the community, the ratio of autotroph to heterotroph 

biomass, and total integrated C. Moreover, hydrography and climate forcing—

whether relatively brief mesoscale events (such as storms or passing eddies), 

recurring seasonal and regional events (as in the case of the spring bloom), or 

long-term hemispheric or global events (like fluctuations in the NAO or global 

climate patterns)—have mild to acute effects on the microbial community.  

Despite this hydrographic variability, the consistently oligotrophic nature 

of the BATS site becomes abundantly clear upon perusal of the trends in nutrient 

availability. Concentrations of nitrite tended to be lowest throughout the water 

column, and PO4 and nitrate were minimal above 100 m, making it seem possible 

that these nutrients play interchanging roles as limiting nutrients. Although no 
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nutrient data are available past March 2009, it is probable that the injection of 

nutrients into the upper water column was more intense preceding the Year 2 

bloom than that of Year 1, given the greater Chl a values and phytoplankton 

abundances seen in 2010. 

The most curious paradox exposed in this research regarding interannual 

variability was the way in which Chl a values increased in the second year, 

especially during the bloom season, but integrated C plummeted. Logically, Chl a 

should have decreased in conjunction with C, because one would assume that less 

C, or less cell biomass, would correspond to fewer phototrophic cells. But 

prymnesiophytes—the largest phototrophic taxon followed in the present study—

actually increased in Year 2. How, then, can this mysterious contradiction be 

explained? In fact, there are multiple factors that contributed to the decrease in C 

but concurrent increase in Chl a. Fewer heterotrophs (HNF and HDF), especially 

large heterotrophs that contribute disproportionately to total planktonic biomass 

relative to their abundance (Lessard and Murrell 1996), were found in Year 2. 

This had a striking influence on integrated C. MDF also decreased after Year 1, 

with a corresponding impact on total C (though to a lesser degree than HDF, as 

MDF were much less abundant to begin with). Because chloroplasts take up 

relatively little of the MDF cell body, a lower concentration of these organisms 

probably had a smaller impact on Chl a than it had on integrated C. The decrease 

in Synechococcus noted in Year 2 also had a larger impact on decreasing total C 

than it had on Chl a concentrations, as these cyanobacteria mainly contain other 

photosynthetic pigments. As noted above, prymnesiophytes (and FCM-derived 



55 

picoplankton estimates) increased in the second study year, but these tiny 

organisms make only a small contribution to total C. It is also possible that Chl a 

content per cell was higher in 1-2 µm prymnesiophytes than in larger cells. 

Finally, and regrettably, slides were not available for the highest peak in Chl a 

seen in early April of 2010, so it is impossible to know exactly which organisms 

in the phytoplankton community were responsible for the high chlorophyll 

observed during this time. 

Chl a is often used as a proxy for phytoplankton abundance (Dierssen 

2010) and is “considered a reliable indicator of both phytoplankton abundance 

and biomass” (Boyce et al. 2010, p. 591). The present study, however, found a 

weak correlation (R2=0.0991 or 0.1694 if MDF are included or excluded, 

respectively, from integrated autotrophic C) between integrated Chl a and 

integrated autotrophic C from 0-150 m. Although there are inherent assumptions 

built into the calculation of integrated C from just four sampled depths, the low R2

Heterotrophic bacteria were not included in epifluorescence microscopy 

counts in the present study; nevertheless, previous research has revealed 

concentrations on the order of 10

 

values and the monthly variability of the integrated autotrophic C :Chl a ratio (not 

shown) presented here suggest that Chl a may not be as strong an indicator as 

believed, at least for the BATS site. 

5 cells mL-1 (Caron et al. 1995; Carlson et al. 

2009). The SAR11 clade of the α-proteobacteria dominates the bacterioplankton, 

though other clades like OCS116 are also abundant. Both groups, along with other 

less prevalent organisms, show annual variability correlated with the region’s 
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hydrographic seasonality (Carlson et al. 2009; Treusch et al. 2009). The omission 

of heterotrophic bacteria from this study means calculations of integrated C and 

the relative contributions of heterotrophs and autotrophs to integrated C are 

necessarily underestimations of actual values. 

This research and other plankton community work currently being 

conducted as part of BATS has implications for increasing the scientific 

community’s understanding of biogeochemical cycles in the Sargasso Sea. C flux, 

or export of C to the deep ocean, is an ongoing topic of research in this region. 

Variations in the euphotic zone’s plankton community indisputably impact the 

type and amount of organic material sinking to depth, an issue that has 

implications for climate research. 

The apparent sensitivity to climate discussed above is worrisome in light 

of anticipated increasing ocean acidification (Orr et al. 2005; Doney et al. 2009) 

and climate change (Falkowski et al. 2000; Boyce et al. 2010). Phytoplankton 

abundance has declined globally since the Industrial Revolution, with increasing 

sea surface temperature related to increasing atmospheric concentrations of CO2 

and other greenhouse gases and changes in the NAO and ENSO cited as two 

possible causes (Boyce et al. 2010). Because the ocean also functions as a 

tremendously significant sink for CO2, declines in autotrophic biomass could 

portend a lessened capability for marine systems to take in this greenhouse gas, 

leading to further increased temperatures and disrupted climate patterns in a self-

perpetuating cycle (Sabine et al. 2004). Developing an understanding of the 

composition, seasonality, and variability of the plankton community at BATS and 
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time-series stations around the globe is critical if researchers hope to accurately 

model and predict the responses of these communities to a changing ocean. 



58 

REFERENCES 

 
Amacher, J., S. Neuer, I. Anderson and R. Massana. 2009. Molecular approach to 
determine contributions of the protist community to particle flux. Deep-Sea Res. 
Pt. I. 56: 2206-2215, doi:10.1016/j.dsr.2009.08.007 
 
Booth, B. B. C. 1987. The use of autofluorescence for analyzing oceanic 
phytoplankton communities. Bot. Mar. 30: 101-108.  
 
Borsheim, K. Y. and G. Bratbak. 1987. Cell-volume to cell carbon conversion 
factors for a bacterivorous Monas sp. enriched from seawater. Mar. Ecol. Prog. 
Ser. 36: 171-175.  
 
Boyce, D. G., M. R. Lewis and B. Worm. 2010. Global phytoplankton decline 
over the past century. Nature. 466: 591-596, doi:10.1038/nature09268 
 
Cattiaux, J. J. 2010. Winter 2010 in Europe: A cold extreme in a warming 
climate. Geophys. Res. Lett. 37: L20704.  
 
Choi, J. W. and D. K. Stoecker. 1989. Effects of fixation on cell-volume of 
marine planktonic protozoa. Appl. Environ. Microbiol. 55: 1761-1765.  
 
Cianca, A., P. Helmke, B. Mourino, M. J. Rueda, O. Llinas and S. Neuer. 2007. 
Decadal analysis of hydrography and in situ nutrient budgets in the western and 
eastern North Atlantic subtropical gyre. J. Geophys. Res. 112: C07025, 
doi:10.1029/2006JC003788 
 
Collier, J. L. and A. R. Grossman. 1992. Chlorosis induced by nutrient 
deprivation in Synechococcus sp. strain PCC 7942: Not all bleaching is the same. 
J. Bacteriol. 174: 4718-4726.  
 
Dierssen, H. M. 2010. Perspectives on empirical approaches for ocean color 
remote sensing of chlorophyll in a changing climate. Proc. Natl. Acad. Sci. U. S. 
A. 107: 17073-17078, doi:10.1073/pnas.0913800107 
 
Doney, S. C., V. J. Fabry, R. A. Feely and J. A. Kleypas. 2009. Ocean 
acidification: The other CO2

 

 problem. Annu. Rev. Mar. Sci. 1: 169-192, 
doi:10.1146/annurev.marine.010908.163834 

Dubinsky, Z. and N. Stambler. 2009. Photoacclimation processes in 
phytoplankton: Mechanisms, consequences, and applications. Aquat. Microb. 
Ecol. 56: 163-176, doi:10.3354/ame01345 
 



59 

DuRand, M. D., R. J. Olson and S. W. Chisholm. 2001. Phytoplankton population 
dynamics at the Bermuda Atlantic Time-series Station in the Sargasso Sea. Deep-
Sea Res. Pt. II. 48: 1983-2003.  
 
Falkowski, P., R. J. Scholes, E. Boyle, J. Canadell, D. Canfield, J. Elser, N. 
Gruber, K. Hibbard, P. Hogberg, S. Linder, F. T. Mackenzie, B. Moore, T. 
Pedersen, Y. Rosenthal, S. Seitzinger, V. Smetacek and W. Steffen. 2000. The 
global carbon cycle: A test of our knowledge of earth as a system. Science. 290: 
291-296.  
 
Haidar, A. T. and H. R. Thierstein. 2001. Coccolithophore dynamics off Bermuda 
(N. Atlantic). Deep-Sea Res. Pt. II. 48: 1925-1956. 
 
Hasle, G. R. and E. E. Syvertsen. 1997. Marine Diatoms, p. 5-385. In C. R. 
Tomas [ed.], Identifying Marine Phytoplankton. Academic Press. 
 
Heimdal, B. R. 1997. Modern Coccolithophorids, p. 731-833. In C. R. Tomas 
[ed.], Identifying Marine Phytoplankton. Academic Press. 
 
Hillebrand, H., C. D. Durselen, D. Kirschtel, U. Pollingher and T. Zohary. 1999. 
Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35: 403-
424.  
 
Lessard, E. J. and M. C. Murrell. 1996. Distribution, abundance and size 
composition of heterotrophic dinoflagellates and ciliates in the Sargasso Sea near 
Bermuda. Deep-Sea Res. Pt. I. 43: 1045-1065.  
  
Lessard, E. J. and E. Swift. 1986. Dinoflagellates from the North Atlantic 
classified as phototrophic or heterotrophic by epifluorescence microscopy. J. 
Plankton Res. 8: 1209-1215.  
 
Liu, H., I. Probert, J. Uitz, H. Claustre, S. Aris-Brosou, M. Frada, F. Not and C. 
de Vargas. 2009. Extreme diversity in noncalcifying haptophytes explains a major 
pigment paradox in open oceans. Proc. Natl. Acad. Sci. U. S. A. 106: 12803-
12808, doi:10.1073/pnas.0905841106 
 
Lomas, M. W., F. Lipschultz, D. M. Nelson, J. W. Krause and N. R. Bates. 2009a. 
Biogeochemical responses to late-winter storms in the Sargasso Sea, I—Pulses of 
primary and new production. Deep-Sea Res. Pt. I. 56: 843-860, 
doi:10.1016/j.dsr.2008.09.002 
 
Lomas, M. W., N. Roberts, F. Lipschultz, J. W. Krause, D. M. Nelson and N. R. 
Bates. 2009b. Biogeochemical responses to late-winter storms in the Sargasso 
Sea, IV—Rapid succession of major phytoplankton groups. Deep-Sea Res. Pt. I. 
56: 892-908, doi:10.1016/j.dsr.2009.03.004 



60 

Lomas, M. W., D. K. Steinberg, T. Dickey, C. A. Carlson, N. B. Nelson, R. H. 
Condon and N. R. Bates. 2010. Increased ocean carbon export in the Sargasso Sea 
linked to climate variability is countered by its enhanced mesopelagic attenuation. 
Biogeosciences. 7: 57-70.  
 
Lomas, M. W. and S. B. Moran. 2010. Evidence for aggregation and export of 
cyanobacteria and nano-eukaryotes from the Sargasso Sea euphotic zone. 
Biogeosciences Discuss. 7: 7173-7206.  
 
Lund, J. W. G., C. Kipling, and E. D. Le Cren. 1958. The inverted microscope 
method of estimating algal numbers and the statistical basis of estimations by 
counting. Hydrobiologia. 11: 143-170.  
 
McGillicuddy, D. J., Jr., L. A. Anderson, N. R. Bates, T. Bibby, K. O. Buesseler, 
C. A. Carlson, C. S. Davis, C. Ewart, P. G. Falkowski, S. A. Goldthwait, D. A. 
Hansell, W. J. Jenkins, R. Johnson, V. K. Kosnyrev, J. R. Ledwell, Q. P. Li, D. A. 
Siegel and D. K. Steinberg. 2007. Eddy/wind interactions stimulate extraordinary 
mid-ocean plankton blooms. Science. 316: 1021-1026, 
doi:10.1126/science.1136256 
 
Menden-Deuer, S. and E. J. Lessard. 2000. Carbon to volume relationships for 
dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45: 569-
579.  
 
Mullin, M. M., P. R. Sloan and R. W. Eppley. 1966. Relationship between carbon 
content cell volume and area in phytoplankton. Limnol. Oceanogr. 11: 307-311.  
 
Nelson, N. B., D. A. Siegel and J. A. Yoder. 2004. The spring bloom in the 
northwestern Sargasso Sea: Spatial extent and relationship with winter mixing. 
Deep-Sea Res. Pt. II. 51: 987-1000, doi:10.1016/j.dsr2.2004.02.001 
 
Neuer, S. and T. J. Cowles. 1994. Protist herbivory in the Oregon upwelling 
system. Mar. Ecol. Prog. Ser. 113: 147-162.  
 
Not, F., R. Gausling, F. Azam, J. F. Heidelberg and A. Z. Worden. 2007. Vertical 
distribution of picoeukaryotic diversity in the Sargasso Sea. Environ. Microbiol. 
9: 1233-1252, doi:10.1111/j.1462-2920.2007.01247.x 
 
Not, F., M. Latasa, R. Scharek, M. Viprey, P. Karleskind, V. Balague, I. Ontoria-
Oviedo, A. Cumino, E. Goetze, D. Vaulot and R. Massana. 2008. Protistan 
assemblages across the Indian Ocean, with a specific emphasis on the 
picoeukaryotes. Deep-Sea Res. Pt. I. 55: 1456-1473, 
doi:10.1016/j.dsr.2008.06.007 
 



61 

Orr, J. C., V. J. Fabry, O. Aumont, L. Bopp, S. C. Doney, R. A. Feely, A. 
Gnanadesikan, N. Gruber, A. Ishida, F. Joos, R. M. Key, K. Lindsay, E. Maier-
Reimer, R. Matear, P. Monfray, A. Mouchet, R. G. Najjar, G. K. Plattner, K. B. 
Rodgers, C. L. Sabine, J. L. Sarmiento, R. Schlitzer, R. D. Slater, I. J. Totterdell, 
M. F. Weirig, Y. Yamanaka and A. Yool. 2005. Anthropogenic ocean 
acidification over the twenty-first century and its impact on calcifying organisms. 
Nature. 437: 681-686, doi:10.1038/nature04095 
 
Putt, M. and D. K. Stoecker. 1989. An experimentally determined carbon : 
volume ratio for marine oligotrichous ciliates from estuarine and coastal waters. 
Limnol. Oceanogr. 34: 1097-1103.  
 
Richardson, T. L. and G. A. Jackson. 2007. Small phytoplankton and carbon 
export from the surface ocean. Science. 315: 838-840, 
doi:10.1126/science.1133471 
 
Sabine, C. L., R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. 
Wanninkhof, C. S. Wong, D. W. R. Wallace, B. Tilbrook, F. J. Millero, T. H. 
Peng, A. Kozyr, T. Ono and A. F. Rios. 2004. The oceanic sink for anthropogenic 
CO2
 

. Science. 305: 367-371. 

Sohrin, R., M. Imazawa, H. Fukuda and Y. Suzuki. 2010. Full-depth profiles of 
prokaryotes, heterotrophic nanoflagellates, and ciliates along a transect from the 
equatorial to the subarctic central Pacific Ocean. Deep-Sea Res. Pt. II. 57: 1537-
1550, doi:10.1016/j.dsr2.2010.02.020 
 
Steinberg, D. K., C. A. Carlson, N. R. Bates, R. J. Johnson, A. F. Michaels and A. 
H. Knap. 2001. Overview of the US JGOFS Bermuda Atlantic Time-series Study 
(BATS): A decade-scale look at ocean biology and biogeochemistry. Deep-Sea 
Res. Pt. II. 48: 1405-1447.  
 
Strathmann, R. R. 1967. Estimating organic carbon content of phytoplankton from 
cell volume or plasma volume. Limnol. Oceanogr. 12: 411-418.  
 
Strom, S. L. 2008. Microbial ecology of ocean biogeochemistry: A community 
perspective. Science. 320: 1043-1045, doi:10.1126/science.1153527 
 
Venrick, E. L. 1978. The implications of subsampling, p. 75-87. In A. Sournia 
[ed.], Phytoplankton Manual. Unesco. 
 
Verity, P. G., C. Y. Robertson, C. R. Tronzo, M. G. Andrews, J. R. Nelson and M. 
E. Sieracki. 1992. Relationships between cell volume and the carbon and nitrogen 
content of marine photosynthetic nanoplankton. Limnol. Oceanogr. 37: 1434-
1446.  
 



62 

APPENDIX A  

ABBREVIATIONS AND ACRONYMS USED 



63 

ASU: Arizona State University 

BATS: Bermuda Atlantic Time-series Study 

BIOS: Bermuda Institute of Ocean Sciences 

BV: Biovolume 

C: Carbon 

Chl a: Chlorophyll a 

CI: Confidence interval 

CTD: Conductivity-temperature-depth 

DAPI: 4',6-diamidino-2-phenylindole 

DCM: Deep chlorophyll maximum 

ENSO: El Niño-Southern Oscillation 

FCM: Flow cytometry 

HDF: Heterotrophic dinoflagellates 

HNF: Heterotrophic nanoflagellates 

HPLC: High-performance liquid chromatography 

MDF: Mixotrophic dinoflagellates 

MLD: Mixed layer depth 

NAO: North Atlantic Oscillation 

NASTG: North Atlantic Subtropical Gyre 

ODV: Ocean Data View 

PFA: Paraformaldehyde 

R/V: Research Vessel 

UV: Ultraviolet light 
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CRUISE DATES AND DEPTHS 
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Cruise ID 
Approximate 

sampling date 
Depth (m) and notes 

B235 CTD2 5/29/2008 10, 40, 80, 100 

B235 CTD11 5/30/2008 10, 40, 80, 100 (for 10 m, rudimentary size classes; slide too bleached to 

recount) 

B236 6/23/2008 60, 90, 110, 120 (no 10 m slides collected for June, July, or August 2008 due 

to a miscommunication) 

B237 7/19/2008 40, 60, 75, 100 

B238 8/15/2008 60, 70, 85, 100 (15 mL filter was counted for 85 m slide) 

B239 9/13/2008 10, 20, 60, 110 

B240 10/8/2008 10, 20, 60, 90 

B241 11/11/2008 10, 40, 80, 100 

B242 12/16/2008 10, 20, 60, 120 

B243 CTD2 2/8/2009 10, 40, 100, 130 

B243 CTD8 2/11/2009 10, 40, 100, 130 

B243a 2/23/2009 10, 60, 100, 130 

B244 3/18/2009 10, 25, 60, 90 

B245 4/16/2009 10, 60, 100, 110 (10 m somewhat bleached; Synechococcus and 1-2 µm 

prymnesiophytes may be underestimates) 

B246 5/17/2009 10, 20, 30, 138 (10, 20, and 30 m slides somewhat bleached) 

B247 6/12/2009 10, 40, 85, 100 (10 m slide uncountable due to bleaching; 40 m slide 

somewhat bleached) 

B248 7/16/2009 10, 60, 100, 120 

B249 8/16/2009 10, 25, 60, 85 (10 m slide uncountable due to bleaching) 

B250 9/13/2009 10, 40, 90, 140 

B251 10/10/2009 10, 60, 110, 140 

B252 11/9/2009 10, 40, 90, 120 

B253 12/10/2009 10, 40, 80, 120 

B254 2/6/2010 10, 20, 120, 180 

B255 2/25/2010 10, 40, 80, 120 (50 mL filter missing on 40 and 120 m slides; two stripes 

counted on 15 mL filter) 

B255a 3/10/2010 10, 60, 100, 150 

B256 3/26/2010 10, 40, 80, 120 

B257 04/23/2010 10, 40, 80, 120 

 


