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ABSTRACT

Silicon carbide (SiC), long touted as a material that cdisfahe specific
property requirements for high temperature and high power applisativas studied
quantitatively using various techniques. The electronic bandtsteu of 4H SiC is
examined in the first half of this dissertation. A brief introlon to band structure
calculations, with particular emphasis on the empirical pseuddtarethod, is given
as a foundation for the subsequent work. Next, the crystal pseadtabfor 4H SiC is
derived in detail, and a novel approach using a genetic algog#arch routine is
employed to find the fitting parameters needed to generatieathd structure. Using this
technique, the band structure is fitted to experimentally medsemnergy band gaps
giving an indirect band gap energy of 3.28 eV, and difecM, K and L energy
transitions of 6.30, 4.42, 7.90 and 6.03 eV, respectively. The generatdidiseslso
shown to give effective mass values ofy, = 0.66m,, myx = 0.31m,, my,, =
0.34m,, in close agreement with experimental results.

The second half of this dissertation discusses computationalimdiriding the
electron Hall mobility and Hall scattering factor for 6KCSThis disscussion begins with
an introductory chapter that gives background on how scatterirsyar@elervied and the
specific expressions for important mechanisms. The next chdgensses mobility
calculations for 6H SiC in particular, beginnning with Rode's metlwodolve the
Boltzmann transport equation. Using this method and the transitianafatiee previous
chapter, an acoustic deformation poteniigl value of 5.5 eV, an inter-valley phonon
deformation potentiab; value of 1.2%10" eV/m and inter-valley phonon energy; ¢
of 65 meV that simultaneously fit experimental data on edactall mobility and Hall

scattering factor was found.
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CHAPTER 1. INTRODUCTION
1.1. Introduction

Though a bedrock of the microelectronics industry for decades, bulk silias (&
electronic material is fast approaching many of its inhdneitiations. The more highly
publicized challenge facing Si is the extent to which devices emthterial can be made
smaller [1]. However, just as important is the challerfgdeveloping devices which can
operate under extreme conditions. For devices that are neeflgiction under high
power, high temperature, or high radiation conditions, the famisjliobn carbide (SiC)
materials holds much promise [2-4].

The advantages of SiC over Si in the above mentioned areasbbkawe much
elucidated upon. The higher critical electric field of SiC camgpavith Si gives SiC a
natural advantage in high power applications [3, 4]. Similary’'sSlarge band gap
energy, and consequently its lower intrinsic carrier concemtrahs well as its higher
thermal conductivity, makes it superior to Si as a high teryoeranaterial [2, 3]. On
top of these superior qualities SiC, propitiously, can oxidizefamd a silicon dioxide
(Si0,) insulating layer, allowing processing technology developed fto Be applied to
the development of SiC devices [2].

However, more still must be done in understanding the properties of SiC befamne it
be properly utilized in the electronics industry. Developmenteifices using SiC
requires an understanding of the material’s electronic transport pespeartd that in turn
begins with an understanding of the material’'s electronic bémdtere. With the
electronic properties from the band structure known, various 8epfrenerit important
to transport, such as electron mobility, can be calculated. Dherdhis dissertation
seeks to examine the electronic properties of SiC by firstistyidiypow the band structure
is calculated and the parameters important to transport thabeadeduced from it.
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Subsequently, with the electronic parameters available frombdéimel structure and
knowledge of relevant scattering mechanisms, it will be shown how transpoeripes —
specifically electron mobility in SiC — can be calculated.

1.2. Organization

In order accomplish the above stated goals, this dissertatidpegin with a general
overview of electronic band structures in chapter 2. Thisprilceed by first giving a
brief history of the important developments in solid state pkysver the last century.
Next, the important results of the properties of electrons peréodic potential are
covered. Finally, a general description of the empirical pseuduftenethod (EPM),
with which the band structure of SiC will be calculated in the followingienais given.

In chapter 3, the band structure of SiC will be calculatedi discussed. The topic
will be introduced by first describing the various polytypesS@€ and their crystal
structures. Next, the details of the EPM applied spetiifita 4H-SiC and a fitting
routine based on a genetic algorithm to calculate the banduserustdiscussed. Finally,
the results of the calculation are presented, along with lineardg parameters that can be
extracted from the band structure.

With the band structure examined in the previous two chapterssecond half of
this dissertation will move on to examine how the electron mobility and Hall nyodxlit
be calculated. This will begin in chapter 4, where the gémpenciples of scattering are
introduced. The central result of scattering theory, Fernolgléh Rule, will be derived.
Following this, the expressions that various scattering mechanisms taleginesr.

Chapter 5 will cover the mobility properties of SiC specificalFirst, a survey of
previous experimental and computational work of SiC will be givélext will be a
discussion of how the scattering mechanisms discussed prakimus chapter can be
used to calculate electron mobility and Hall mobility. Thkidallowed by an analysis of

2



the important scattering mechanisms in 6H SiC SiC. Eleotaility and Hall mobility
calculations for 6H-SIC will be presented. Finally, a biiefestigation of how the
decrease of the ionization energy with doping concentratiootsiffee mobility will be
covered.

Chapter 6 will conclude this dissertation and provide a summanhefwork.

Suggestions for improvements and future directions will also be given.



CHAPTER 2. ELECTRONIC BAND STRUCTURE THEORY

2.1. Introduction

At the turn of the last century, Drude proposed his highly essfal theory of
electrical conduction [5]. This model, still in use in the semiuctor industry to this
day, applied the kinetic theory of dilute gases to electrons imetl. Using this
approach, many of the observed phenomena in metals, such as Ohnasd.¢he Hall
effect, could be explained. A further refinement came with rBerfeld’s modification
of Drude’s theory. By using the Fermi-Dirac distribution itcakating thermodynamic
guantities of the electron gas, Sommerfeld resolved manyeofabhomalous thermal
results in Drude’s model. Despite all its successes, rde dlectron gas model still
exhibited many troubling deficiencies. Among the most glaring maatges of the free
electron gas model was its inability to explain the cubic teatpee dependence of the
intermediate-temperature specific heat of metals. Nordcthe free electron model
explain why some electrons conducted, while others remained bound to their ions.

The source of the deficiencies in the models of Drude and Sdeldheriginated
from the assumption that electrons moved free of any potentainaterial. This was a
very crude assumption, and disproven by the 1913 experimental work of W. and L. Bragg
which demonstrated that solids possessed an underlying crystatlirgurs at the
microscopic level [5]. The regular arrangement of atomgestblectrons to a periodic
potential, a situation that leads to the quantization of theggrnevels of the electrons.
Using this new picture of electrons confined by the poteafi#the crystal lattice, many
phenomena unexplainable by the free electron gas model could be resolved.

2.2. Hamiltonian of a Crystalline Solid

In order to solve the problem of electrons confined in the periodic potensaladid,
guantum mechanics must be invoked. The relevant Hamiltonian to leel solthis case
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is given by

HZZ pi _Z PP a0
- 2mg ; 2Mj i,r¢i4ﬂgoxir j,s¢j4ngoxj5
q;Q;
Amegx;j (2.1)

i,j

whereq; andq; are the charge of the of tite andjth electron, respectivelyy; andQ;
are the charge of thgh andsth nucleus, respectively;, is the distance between
electronsx;, is the distance between nuclej; is the distance between ttth electron
andjth nucleusp; is the momentum operator for thé electronP; is the momentum
operator of thgth nucleusg, is the permittivity of free spacey, is the rest mass of an
electron, andV; is the mass of thgh nucleus [6]. In this equation, the first and second
terms represent the kinetic energies of the electronsoasd riespectively, the third term
the potential energy between electrons, the fourth term thet@btenergy between ions,
and the last term the potential energy between electrons and Tdénms many-electron
problem would be impossible to solve directly for any solid of oswpic size, and
therefore many simplifying assumptions must be made.

The first of the approximations to be made is based on the aheerthat electrons
are many orders of magnitude less massive than the ions iil.a Sberefore, electrons
move much faster than ions, vibrating at a frequency on the ofd€" s* compared to
10" s* for ions [6]. Electronic motion therefore responds almost instantssly to ionic
motion, while ions only experience a time-averaged electroniaalte This is known
as the Born-Oppenheimer or adiabatic approximation, and allowdaimdtonian to be

written in three separate terms as

H = Hjop + He; + Hey—jon (2-2)



where H;,, is the Hamiltonian for the ionic motion due to the ionic pag¢rand the
time-averaged electronic potentiak,; is the Hamiltonian for the electrons with the
nuclei frozen in their equilibrium position, a®};_;,, is the Hamiltonian of the change
in electronic energies with changes in the positions of the ions.
The electronic Hamiltonian is the system of interest, and thigas diy
g, =S P G N 49 23

— 2my L ATEGX; L=t ATIEGX;
L L,r+t L]

This portion of the Hamiltonian would still be impractical dolve given that there are
more than 1% electrons/crhin a solid. A further assumption known as the mean-field
approximation is made by assuming every electron is subjegtédetsame average
potential. Separating the electron-electron interaction tetonone that only involves
electrons closely bound to ions and one that only involves bonding ekectite

Hamiltonian becomes

yo- p? qiqr q:Q;
=) 5 +
— 2mg AmegXyr L ATTEX;;
1 i,r#i 1]
2
_ Z bi qLQ] qiqr
= +
— [ 2m, 47T£0xl j 47T£0xir
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_ qi4r
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whereV (r) is the average potential felt by each electron. The reptateofi the exact
electron-ion and bound electron-electron interactiofy @y) is known as the mean-field
approximation. Furthermore, by ignoring the bonding electron-eleictteraction term,

the Hamiltonian reduces to a one-electron problem given by
2

Hlelq)n(r) = <2p_ﬂlo + V(T)) CDn(T) = Enq)n(r) (2-5)

whereH,,; is the one-electron Hamiltonian, apdr) andE,, are the one-electron wave
function and energy of eigenstaterespectively.

2.3. Bloch Functions

The consequence of subjecting an electron to the periodic potehtilaé crystal
lattice was first elucidated by Bloch. Solutions to the oeetsdn Schrodinger equation
in Eq. (2.4) take on a special form, known as Bloch functions.ngJgiese Bloch
functions, any general solution to (2.4) can be formed by takiimearlcombination of
the aforementioned functions.

To arrive at the Bloch function solutions, a translationaratpeTy is first defined

for a Bravais lattice vectd and any functiorf (1) such that

Tpf(r) = f(r +R) (2.6)

Solutions to the operat@}, can be expressed in the form of

() = e™ Ty (r) (2.7)

whereu, (r) are functions with the same periodicity as that of the lattice afypmteger

n then,

ug(r) = u(r+ nR) (2.8)



which are cell periodic functions of the crystal. The resulizafperating orp, () is

Tror(r) = p(r + R) = ™Ry (r) = 4 (r) (2.9)

sincek - R is some multiple of 2 The one-electron Hamiltonidt, ., is also invariant
under translation bykR, and therefore the operatot,, and T, commute. As a
consequence, quantum mechanics dictate that the eigenfunctioffy afe also
eigenfunctions oH,,;. Any solution to the one-electron Schrodinger equation Eq. (2.4)

can therefore be expressed as a linear combination of Bloch functions

®(r) = Z Arpr(r) = z Are™ Ty (r) (2.10)
k k

whereA,, are the expansion coefficients.

2.4. Empirical Pseudopotential Method

While the form of the electronic wave functions are in @ple Bloch functions,
further simplifications are needed to efficiently calcultte electronic band structure.
One of the more commonly used techniques used in practical calculations is knoan as th
empirical pseudopotential method. In this approach, electrons adedliinto two
groups — the core and the valence electrons. The coteoakea@re those that occupy
orbitals of completely filled shells, while the valence elmts are those that occupy
orbitals of partially filled shells. The core electrone aghtly bound to their respective
nuclei and therefore localized around their lattice sites.sd k&ctrons do not contribute
to bonding or conduction, and are not dealt with. Only the valelectrons, which are
weakly bound and nearly free, that are involved in bonding and transport are cahsidere

In order to further ease the solving of the wave equation, teacalklectron wave
functions can be divided into two parts. The parts of the wauat®n away from the
core are smooth, and can be approximated with a reasonable numbanefmalves.
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Those parts close to the core exhibit rapid spatial aiofis, making the wave function
difficult to approximate. However at the same time, thesi m@agxillations in the wave
function serve to screen the strong Coulomb potential of the atites; leaving behind
a much weaker “pseudopotential.” Ultimately, the hope is tiatpseudopotential is
sufficiently small that it justifies treating the elemts as nearly free, and therefore
appropriate to approximate the valence electron wave funatithsa small number of
plane waves.

This replacement of the true potential with the pseudopotédntidde one-electron

Schrédinger equation leads to the pseudo-wave equation

2
p
(2—"10 + VPS(T)> W, = ExWy (211)

where¥,, is the pseudo-wave function to be expanded in a basis of plans.wahe

expansion of¥;, is given by
eik-r

W) == Z Cpe'®T (2.12)
G

where the vectords are the reciprocal lattice vectors, thig's are the expansion
coefficients and is the volume of the unit cell. The reciprocal latticetoe@ is

defined as

G = n1b1 + nzbz + n3b3 (213)

where b; are the reciprocal primitive vectors for the crystal apdare integers. The
inner product of Eqg. (2.11) using the wave function of Eq. (2.12) leadsetsetcular
equation

hZ
det
0

[ﬁ Ik + GIZ - Ek] 66,6’ + VG,G’ == O (214)




whose solutions are the energy eigenvakjes The off-diagonal matrix elements of the

pseudopotentidl; ;- are given by

1 -
Voo =75 f Vs (1)ei(€'=6)T gy (2.15)

which is just the Fourier transform of the pseudopotential, and aovrk as
pseudopotential form factors. However, this expression only accéambne atom per
unit cell. If more than one atom exists within the unit cell,additional term must be
included to account for the different kinds and the different ipositof the other atoms.
The pseudo potential then becomes

Vps(r) = 2 Vo' —6.a SG'—G,aei(G 6

G' -G

(2.16)

whereVgr_¢ , is the pseudopotential form factor for atoms of speziasdSg_¢ , is the
structure factor which accounts for the positions of thosemst The structure factor is
given by

1O e,
e (2.17)
a =
J

whereN,, is the number of atoms of speciesaindr,; is a vector pointing to the location
of thejth a atom.

As stated before, there exist many different methods to detetn@meseudopotential
matrix elements of Eq. (2.15). One approach is to directly edécut using an
approximation for the atomic potenti}s(r). An example of this is the empty-core
potential due to Ashcroft which is a spherically symmetriepial that is zero up to a
critical radius, then a screened Coulomb potential theredfter This is given by the

expression [8]
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d
Vps(r) = Voe /4 —0(r —Ro) (2.18)

4md3
whereV, is the magnitude of the potential,is the screening lengtl®. is the critical

radius, andd(x) is the step function. The Fourier transform found using Eq. (2.15) is

then [8]

4 SIN(R:|G" — G|) + |G" — G|d cos(R|G" — GI)

Vot = Vae~Re/
GG = Yo¢ dlG' — G|[d%]G' — G2 + 1]

(2.19).

As an example, the pseudopotential and its Fourier transformhércase of
aluminum (Al) is shown in Fig. 2.1. In addition, first-principlesymiepotentials can be
constructed for the atom under consideration. This is done by sahen§chrodinger
equation for the radial wave functions of the outermost electrbes, finding the
pseudopotential that gives a pseudo wave function that matchesdbthgortion of the
said radial wave function. Finally, a fully empirical approaebuld be to use the
pseudopotential matrix elements as fitting variables. iEhthe approach taken in this

dissertation, and will be outlined in the next chapter.
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-10+
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Energy (eV)

20+

-25+ -
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Energy (eV)

(b) |G| in units of 2n/a

Fig. 2.1. The Al pseudopotential (a) and its Fourier transform (b),antht.05 x

1078 cm, Uy = 31.3 eV, d = 0.35 X 1078 c¢m, andR, = 0.943 x 108 cm.
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CHAPTER 3. ELECTRONIC BAND STRUCTURE OF 4H SIC
3.1. Introduction

Studies of the band structure of SiC began not long after thelogpenent of a
process to grow single crystals of the material. The first compriekestady of the band
structure of the various polytypes of SiC was done in 1970 byinyergand van
Haeringen [9]. This was done with the EPM technique discduasedhapter, using the
pseudopotentials of silicon (Si) and carbon (C) with the hopes #hatmére transferable
with minor modifications. Because of the lack of computing powénadttime, the full
bands were only calculated for 3C and 2H polytypes of SiC. For thedaHy only the
energies at the high-symmetry points were calculated. e/ calculated energy band
gaps for the 3C and 2H matched well with experiment, the reselts not so successful
for the hexagonal phases with larger basis sets.

As is common when investigating new materials, several otladzulations
approached the problem from a more complete first principlepeetiive. Gavrilenket
al. made calculations for the 4H and 6H polytypes using a selfatensilinear muffin-
tin orbital method with greater success in matching the ergapy in 6H than 4H [10].
A local density approximation (LDA) of the density functional theory (DFT3 a@opted
in a band structure calculation by Persson and Lindefelt tohntat experimental
effective masses in 3C, 2H, 4H and 6H SiC [11]. While successftiie goal of
calculating the effective masses, the resulting energy bapsd ware off from the
experimental values by a great deal. More successful first priacigleulations in terms
of more accurate energy band gaps were performed by Wesetzi@h using a
guasiparticle approach [12] and Baumaedeal. using a DFT approach but with electron

self-interactions taken into account [13].
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While these last twab initio calculations are fairly accurate given the current
knowledge of the energy band gaps and the effective massegréhegmputationally
expensive to implement. In addition, any new experimental data oratitestructure
that do not fit values given by current calculations requirthéurresearch to find the
source of the discrepancies. For this reason, empirical or semi-emajjcabches such
as the EPM or the tight-binding method are preferable when exp#al data are
available. As stated above, the study of Junginger and vambgeenielied on a semi-
empirical approach to the EPM. More recently, Pennington ands@ah also used the
EPM to calculate the band structure of 3C, 4H, and 6H SiC [1#]s Study obtained
better results in terms of fitting the energy band gap andléatron effective masses by
introducing nonlocal screening effects into the pseudopotentials ah&iC. The
approach was also semi-empirical in that it relied on thesteaability of the Si and C
atomic potentials, with modifications to account for the af@etioned screening effects.
Zubkovaet al. also used the semi-empirical EPM, based on the same pseudajstent
used by Jungingeat al., to study the temperature dependence of the band structure [15].
In contrast, the empirical approach to the EPM is to abandon attengittain the form
factors from the atomic potentials and instead treat the Faumédficients as completely
adjustable parameters to match experimental band structure data.

The flexibility offered by the empirical or semi-empaicapproaches is especially
important for 4H SiC since the experimental work on its bandtaneics still sparse. To
date, only a few experimental studies have been performed ttigate the electronic
structure of 4H SiC. The indiredt,to M band gap energy of 4H SiC was first measured
by Choykeet al., for which a value of 3.263 eV was obtained [16]. This isthtImost
widely quoted experimental value for the band gap energy taldlyig12-14]. Optical
measurements by Ahug al. gave the direct gap energies at theM, K and L high

14



symmetry points as 6.2, 4, 7.8 and 6.7 eV, respectively, and a totaleshl@md energy

of 18.2 eV [17]. Electroreflectance measurements by Demal. supported those
values, giving the direct gap energy at theand M points as 6.18 and 4.5 eV,
respectively [18]. Compared with this experimental data, Whad structure of
Penningtonet al. underestimates the dire@t transition by more than 1 eV and
overestimates the direct M transition by about the same amolin¢ calculation by
Zubkova et al. also has many deviations from experiment, with a band gap energy
smaller by about 0.3 eV, a dirdcttransition smaller by 1.6 eV and a direct L transition
smaller by more than 1.5 eV.

In this chapter, an empirical approach is demonstrated to bettes fiirect band gap
energies. The fitting will be done specifically for #d polytype for which there is a
relative abundance of experimental data to fit to. The netibgsewill begin by briefly
giving an overview of the different polytypes of SiC, and thescdbe in detail the
crystal structure of the 4H polytype. The derivation ef fibrm factors for 4H SiC will
then follow, and a description of the fitting routine used will be given. Firthkyresults
of the fitted band structure will be presented.

3.2. Crystal Structures of Silicon Carbide

Silicon carbide is among a special class of materialsettfabit a property known as
polytypism. This means that, while all polytypes of SiC areamutely identical, they
can crystallize into more than one stable crystal structunereTare more than a hundred
known polytypes of SiC broadly categorized as either bei®jC or p-SiC. These
categorizations indicate whether the structure is cubi8iC) or non-cubic (-SiC).
Only the 3C polytype, which crystallizes into a cubic, zinc-blestlecture similar to
gallium arsenide (GaAs), falls into the category BSiC. All other polytypes are
ambiguously labeled asSiC. The crystal structures of SiC can be described iag be
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made up of layers of atoms that are in a close-packed hexagaungtlre [19]. This
structure can be described as a plane of atoms arrangdtbivegcomb lattice, and can
be visualized by packing identical hard spheres as shown in Fig. &afiou¥ crystal
structures can be constructed by stacking these layeegtoois upon one another.
Because of energy considerations, there are no examples ofneneMith a crystal
structure where one close-packed hexagonal layer is stalikettly above another.
Instead, subsequent layers are stacked so that they occupiethices in the preceding
layers. Layers stacked in this way have two distinct plessiets of interstices with

respect to the first layer. These possibilities are showFig. 3.1 with the sets of

/\
Y YV
A A

Y

Fig. 3.1. Close-packed hexagonal layer showing the three unique possible sets of

positions labeled B and C.

lattice sites.

With these three different positions for each layer, anitefinumber of different
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structures can be formed depending on the number of layerseodder in which they
are stacked. For example, a structure can be created by stackingfaterss in a two-
layer repeat, ABAB fashion creating a hexagonal close paftkep) lattice. Stacking
layers in a three-layer repeat, ABCABC fashion creates a faceeotdric (fcc) lattice.
The stacking sequence of the layers therefore defines the ctystalie.

In the various polytypes of SiC, instead of layers made of single atomshdatiaze
site there is set of two atoms — one Si, one C. These layerstacked in the same
manner as described in the preceding paragraph. The stackinguoddesultant crystal
structure formed in the SiC polytypes is identified usingpacial notation known as
Ramsdell Notation. In this system, each polytype is labeledrayrder indicating the
period of the stacking sequence, and a letter indicating the iBriattice to which the
polytype belongs. For instance, hcp structure ABAB would be denot2H by indicate
the two-layer repeat and hexagonal structure. BF8& structure with stacking sequence
ABCABC would be denoted by 3C to indicate the three-layer repehtubic structure.
For the 4H polytype, which this chapter focuses upon, the staskimgence is a four-
layer repeat given by ABCBABCB. This is shown in Fig. 3.2a,cihilustrates the
sequence of layers with the two atom basis.

3.3. Crystal Pseudopotential for 4H SiC

As discussed in the previous chapter, the off-diagonal elemetie ¢damiltonian

are crystal structure dependent. From Eqg. 2.14, the pseudopotential matrixtelame

4
1 Ll
Voo = 5] Z[Va(r - raj) +V, (r - Tbj)]e‘(G -6)T gy
j=1

4
- %J Z [Va(r)e‘i(G’-G)'raj +V, (r)e-"(G"G)'”’"] el€-6)rqr (3.1)
=1
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where subscript a indicatesSi atom, subscrigh indicates a C atonr,; is the position
of thejth Si atom, and; is the position of thgth C atom. To find the form of this
structure dependent term, the crystal structure of the 4Hd&#iCe is analyzed in Fig.
3.2b where the locations in first quadrant of ¥geplane of the atoms in each layer is

indicated.

(@)

Fig. 3.2. (a) Stacking sequence of the 4H SiC polytype showing the eight atorsgbasis
The black circles represent Si atoms, while the white circlessepr€ atoms. (b)

Locations of the A, B and C layer lattice sites in the first quadrahieosd/-plane.

The underlying Bravais lattice of 4H SiC is hexagonal, witiah be described by
stacking close-packed hexagonal layers directly above one anofftez real space
translation vectors that describe the hexagonal system oalotdieed by taking a lattice
point in the A layer arbitrarily as the origin {f Fig. 3.2b). Since the symmetry of each
layer is close-packed hexagonal, the angig A, A5 is /3 and each nearest neighbor
lattice site is separated by a lattice constantTherefore, lattice sites,fand A are
located atax and(a/2)x + (\/§a/ 2)y, respectively. The layer stacked directly above
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can be described by translating a lattice constamthez direction. This gives the three

translation vectors as

a, =ax (3.2),
a, = (a/2)% + (V3a/2)y (3.3),

and
a; = c2 (3:4).

The reciprocal lattice vectors corresponding to this seealf space translation vectors

are
b ) a, X a; 2m . 2m (3.5)
=2n————=—X——= .5),
1 al‘az Xa3 a a\/§y
b ) as X a; 4T (3.6)
= AT = — . )
2 al‘az Xa3 a\/§y
and
a, X a, 2
by=2n—— 2 =_""3 (3.7).
al‘az Xa3 C

For the specific case of the 4H structure with an ABCB stacking segjubecB and
C lattice sites in thexy-plane are located in the interstices between the A atoms,
equidistant from each. The first B layer is translatedhfthe A layer in the direction
by c¢/4, while the second B layer is translated bi43 Because the B atom is equidistant
from each A atom in they-plane, and since the distance between each A atarthe
anglezA,BA, is 2n/3. The anglexBA;A, and2BA,A; must then ber/6, making
AA,BA, isosceles. Therefore, the B lattice sites are locattéd/2)x + (a/2v3)y in
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the xy-plane. Finally, the C lattice site in the xy-plane is ledain the interstices
between lattice sites;AA,, and a site in the second quadrant which is the reflection of A
across thg-axis. Since the distance betweenahd B is(a/v3), the location of the C
lattice site ifa/V3)y + (c/2)2 relative to the origin.

As stated previously, each lattice point in SiC is compasdead Si and a C atom
separated by a bond lengthlgf(see Fig. 3.2a). In order to make calculations easier, the
origin can be arbitrarily shifted to the midpoint of the tatoms so that,; = —s =

(-L,/2)z andry, = s = (L,/2)Z. Substituting this into Eq. (3.1)
4

Ve = & [ (hIelE=0 4, (i€ -0)ail6 = Y omil6=0)) gy

j=1
1
= ﬁf[Va(r)(COS((G’ —6)-s)+isin((6' - 6)-5s))

4

@) (cos((@ — 6)-5) = i5in((6' = 6)-5) el €O dr x Y @ -0

J=1
4

= [V§ cos((6' = 6) - s) + iV{ sin((6' — 6) - 5)] Z e~ U6 -6); (3.8)

j=1

wherer; is the position of the midpoint of the basis set in each layels andV# are

the symmetric and anti-symmetric components of the pseudopotemtial factors,

respectively, and are given by

v = % f (Vo () + V, (1))el(6'=6) grr (3.9)

and

vé = éf (V) =V, ())&~ ar (3.10).
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From the analysis of Fig. 3.2b, the terms involving the positionfiefatoms can be

expressed using

v=%2 (3.11),
h aA+ ? 5 3.12
=—-X —— . ,
) 2\/§y ( )
and
h; = 3 3.13

wherew is the separation between each layer, Bpdind h. are the location of the B
layer and C layer lattices sites in thyeplane, respectively. Using these definitions, the

crystal pseudopotential can be written as

Voo = |[Vé cos((6' — G) - s) + V¢ sin((6' — G) - 5)]

x [1 + ¢~ i(6'-6)(w+hp) 4 o-i(6'-6)-(2v+he) 4 e—i(G’—G)-(3v+hB)] (3.14)

The calculation of the band structure can proceed, once the psamti@ddorm factors
V¢ andV# are known. The approach taken to finding the pseudopotential fotarsfa
will be to use them as adjustable parameters to fit knownggneand gaps and
effectivemasses. This will be done through the use of a gealgrithm approach,
detailed in the next section.

3.4. Genetic Algorithm Fitting

Genetic algorithms (GA) have been utilized in a varietglis€iplines to optimize
parameters of multi-dimensional functions.  Within the areabahd structure
calculations, GA’s were first demonstrated by Starmistl. as being effective in
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adjusting up to eleven tight-binding parameters to fit the enleagyl gaps of various
zinc-blende semiconductors [20]. Klimeetkal. have also used GA'’s to adjust up to 20
parameters in a second-nearest neighbor tight-binding model affdfittive masses as
well as band gap energies [21]. In addition, genetic algorithves ieen employed in
inverse band structure calculations to find atomic configumatand lattice constants in
order to engineer materials with a given band structure [22@8hetic algorithms have
thus been shown to be effective at providing an automated wagateh for and to
optimize tight-binding calculations with an arbitrary number ofpaaters. Here it will
be shown that this strategy can be equally as effectiveinging band structure
parameters for an EPM calculation.

The strategy of a GA is very similar to evolutionary peses in the real world. The
optimization proceeds by first randomly generating a population afiljessolutions.
The parameters of the problem are identified as the “§ehas make up a solution.
Each of the possible solutions is evaluated according to-defireed weighting scheme.
The most “fit” of the solutions are chosen to survive and kéitin the population,
while the underperforming solutions are discarded. The population is themskpteby
having the fittest solutions “reproduce” — they create new isakutin a process called
“crossover” by randomly taking parameters from two exisfingolutions. In order to
create solutions with parameters having values not previougjing in the original
population, genes may randomly “mutate” to take on new values. ytheis repeated
until the solutions converge or a preset number of iterationsbeare performed. From
the preceding description, it is clear that the GA has &eps: initialization of the
original population, selection of solutions based upon a fithessagial, reproduction
through crossover and mutation to create new solutions, and téamioé the process
after some criterion is met. As is obvious, the algorithmlaigely stochastic.

22



Nevertheless, GA’s have been frequently observesutzessfully produce reasona

solutions. A flowchart of this algorithm isown in Fig. 3.3.

(Generate imitial population

-
e

W

Caleulate energies at high
svimetry points

W

Select best solutions via
fitness function

v

Crogsover and mutation

Converged, or
iterations reached?

Fig. 3.3. Flowchart of the genetic algoritl

The first step of the GA proceeds by initializingetparameters of the origir
population. The style in which the parametersemeoded must first be chosen. Tk
are two options on how this can be done. One rdeihdo convert all the parame
values into binary strings and then merge them adl asingle, long chromosome. T
other approach is ttreat each ¢ the parameters as “genes,” keeping tiheal values
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which are then passed along when creating new solutions. Toemetmeters is then
considered as the chromosome. Each approach has trade-offs eosiered. For
example, encoding parameters into binary strings allows a mstoaight forward
manipulation during the crossover operation, while keeping paranasereal values
allows one to control the range that the parameters can take on to avoid waipbgsits
[19].

In the selection step, each of the possible solutions is egdlti@mbugh an objective

function. The objective function for band structure fitting usuallyddake form of

1/2
d(m) = - ( ! [Z Wy (Epr(m) — En,m)ZD (3.15)

Yin Wn

whered(m) is the fitness of a solution calculated with the set of paeswm, E,, (m)

are the energies calculated with the set of parametef, ., is the targeted goal value

for energyn, andw,, is a weight chosen from an interval [1,100] based on the importance
of that energy [20]. The difference between the calculatedjgiaed the targeted value

is squared to penalize larger deviations from the goal valules.n@gative sign in front

Eq. (3.15) drives the GA to maximizkm); however, the GA can just as well become a
minimization problem by removing the negative sign. Hard mininarmmaximum
values for particularly important energies can also be indligesetting Eq. (3.8) to an
arbitrarily low value if the calculated energy falls out of areptable range [21].

The crossover and mutation step is performed after selaftitne fittest solutions.
How the crossover and mutation steps are implemented idyldrased upon how the
parameters are encoded in the initialization. For binary cqdedmeters different
segments of the binary string chromosomes of the two parentsoareined in the
crossover step, while the mutation operator will with a givebgloility reverse one or
more of the bits in the binary string. For real valued encodiagh gene of the child
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randomly inherited from one of the two parents. The mutation operatarhaitige these

values, subject to a user specified range. Vitally impoftaneither encoding is the

probability of mutation. Generally it has been observed that lowgation rates give

faster convergence, while higher mutation rates take longeorteerge but give better
results. Alternatively, a variable mutation rate can be émphted so that the more
similar two parents are, the higher the mutation rate becomes.

The termination of the GA is largely arbitrary. Sindes@ute convergence will
normally not be achieved, often the termination condition will ber aftgiven number of
iterations. Another criterion that can be used is when thegeralues to be fitted reach
an acceptable accuracy. The GA can then be programmed toaterimnce the energies
are within some tolerance level.

3.5. Results of the Genetic Algorithm Fitting of 4H SiC

Using the crystal pseudopotential expression and genetic algdiiting procedure
of the preceding two sections, the electronic band structure ofi@hv& calculated.
For the material parameters, the lattice constants3.032A and ¢ = 9.928 &, and
bond lengthL, = 1.866 A were used. These parameters were taken from the thabretic
work of Kackellet al. who arrived at them by finding the values that minimized tted to
energy [24]. A total of 575 plane waves for a cutoff energy of 205 eV was usedtggc
lies in a range has been observed to give good convergencs nesiitmond and zinc-
blende materials [25]. For the Fourier coefficients, which @& the adjustable
parameters used in the calculation, 19 distinct symmetricratitrdyanmetric components
were included. The GA sought solutions by varying these forroriaétom a range of -
0.25 Ry to 0.25 Ry, discretized to units of 0.001 Ry.

In terms of the GA, all the published experimental electrstigcture data were
targeted by the fitting procedure. These experimental datadeicthe indirect” to M
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band gap energy, the direct energy transitions af'thd, K and L points, the energy
difference between the first and second conduction band energiesvaptiiet, and the
total valence band energy. The split-off energy at the top ofdlemce band was also
included, although this cannot be completely and properly accounted itlooutv
including spin-orbit interaction effects. In addition, the diesatrgy gaps at the A and H
points deduced fromab initio calculations by Wenzieat al. and Baumeiekt al. were
included as additional fitting targets. The choice ofghts for each of these criterion
were arrived at by assigning all experimental energy gabsawveight of 100, while the
energy gaps predicted by thb initio calculations were assigned a weight of 70. The
weight for the total valence band energy, however, was givealue of 20 since its
target value is much larger than the other criterion. @ievis from this value would
count disproportionately if it was weighted the same as the ethengies. Also, the
weight for the split-off energy was assigned a weight ofif€esit cannot be completely
accounted for in this approach.

An initial population of 200 solutions was used, with half the populatmaced
after each iteration. For the gene encoding, a real-valued schasesed since large
number of EPM form factors lends itself to this approach. paeludopotential form
factor is therefore treated as a gene, and child solutionstittese randomly from one
of two parent solutions. A variable mutation probability was engalpyarying linearly
from about 6% for two solutions with no complementary form factorsommon to
about 17% for two duplicate solutions. An illustration of the cromsewmnd mutation
operations of the reproduction step is illustrated in Fig. 3.4.

In total, the genetic algorithm was run for 250 iterationoteebeing terminated.
The resultant band structure is plotted along several highmeymy points of the
hexagonal structure in Fig. 3.5, while the form factors avengin Table I. The fit
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arrived at by the genetic algorithm is very satgfsy compared to the experimer
values. The band gap energy arrived at is 3.28wNe the direct’, M, K and L energ
transitions obtained are 6.30, 4.42, 7.90 and @¥3respectiveh The total valenc
band is 19.25 eV wide. Comparatively, the EPM walton by Zubkoveet al. give a
band gap energy smaller by about 0.3 eV, a diretcansition smaller by 1.6 eV anc
direct L transition smaller by more than 1.5 eVheTEPM calcultion by Penningtolet
al. underestimates the direlcttransition by more than 1 eV and overestimatesitrect
M transition by about the same energy. At the sdime, the calculation has be

simplified by requiring 12 less fitting paramet

Parent | Parent 2 Child
VEo201.00= -0.186 V820110~ -0.187 V201,10~ -0.186
Gene trom
\VSO.Z.I 1= -0.137 Vso‘m‘l‘m =-0.140 VSO‘ZJ‘I‘LI =-0.140 P“rent‘l
I:I Gene from
Parent 2
I:I M utation

VA 2111 =-0.196 V321111 =-0.194 VA 21111 =-0.196

V804 =-0.034 V8 0.4 =-0.044 V8,04 =-0.031

Fig. 34. lllustration of the re-valued parameter encoding, and the crossove
mutation operations in the reproduction step. E#dhe parameters is interpreted ¢
“gene,” with each gene of the child either inhetiteom a random parent or being a |
value generated by mutation.
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Using this band structure, the electron effective masses #ienipe MF, M-L and
M-K directions were calculated. As shown in Fig. 3.6, this was done by fittingabga
to the lowest 0.05 eV portion of the conduction band minimum, where#jarity of
electrons reside at room temperature, using a least sqitafidgefvalues of the effective
masses obtained aray,r = 0.66m,, myx = 0.31my, my,;, = 0.34m, which are in
good agreement with the experimentally measured values,gf= 0.58m,, myx =
0.29m,, my,, = 0.33m, [26]. Table Il shows a comparison between the values of the
energy transitions and effective masses obtained from thidy sand previous

experimental measurements.
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Fig. 3.5. Band structure for 4H SiC using 575 plane waves.
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Table 3.1. EPM form factors for 4H SiC in Rydbergs determined by the GApeptou
together by reciprocal lattice vectors with the same magnitude, Whésescaled by

a/2m, k, is scaled byiv/3/2m, andk, is scaled byi/2m, k, is scaled by /2m. Not
included are form factors for which the reciprocal lattice veatause the structure

factor to vanish.

G Ve vA

Eg:i:gg -0.186

E%:B -0.140 -0.196
(0,0,4) 0.103 0.031
ng:g 0.111 10.034
gﬁzgg 0.022 10.007
Eg:i:ig 0.107 10.094
Egﬁg 10.034 10.058
g:g:gg 0.085

Egﬁ:gg 0.041 0.124
Eg:g:gg 0.004

8:‘2‘:3 0.007 0.003

30



Energy (eV)

‘ Energ)‘/ (eV) ‘

‘ Energ)‘/ (eV) ‘

Wawewvector

Wavewvector

Wawevector

Fig. 3.6. Shape of the calculated () lowest conduction band along théVMk and M-

L directions, fitted with a least square parabolic approximation (--).

Table 3.2. Energy transitions of the indirect and the direct band gaghagymmetry

pointsI’, M, K andL, and effective masses of 4H SiC calculated in this work compared to

experimental results. The energy transitions are in eV, while thetigff masses are in

units ofm.

Energy Transitions Effective Masses

Ey r M K L Mvir My My

Expt.| 3.26 |6.186.F7| 4453 | 7.8 6.7 | 058 | 0.29 | 0.33
VT/girsk 3.28 6.30 4.42 7.9 6.03 0.66 0.3 0.3

2 Reference 16.
b Reference 18.
° Reference 17.
dReference 26.
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CHAPTER 4. QUANTUM SCATTERING THEORY
4.1. Introduction

Using the properties from the electronic band structure, furthettiiea such as
transport properties can be calculated. The band structneseéssary because transport
in bulk semiconductors is treated semi-classically. Innessethis means that the
influence of the crystal potential on carriers is treatedugh an effective mass or, if
more accuracy is needed, the full band structure. In every wghpect, carriers are
treated classically as particles that obey Newton’s lawssponse to applied and built in
potentials [27].

In this chapter, the foundations needed to make these transigotatoans will be
presented. First, Fermi's Golden rule will be discussed, ancefitidns of the various
characteristic rates are given. The derivations wilgdbr follow those given by
Lundstrom [27]. These results summarize the effects ofcalitesing mechanisms.
Subsequently, the characteristic rates for specific stagtarechanisms important to SiC
are derived.

4.2. Fermi's Golden Rule

As discussed in the previous chapter, electrons in a solid dhounght of as Bloch
waves that move through the crystal potential. However, inmmatérials, these waves
frequently encounter perturbing potentials — either from impsrior from phonons —
causing them to be scattered and their momentums to be relaxed.quditéy that
describes this scattering is called the scattering Spjg, This is the long-time average
probability that an electron with wave vectiowill, after interacting with a perturbing
potential, emerge with a wave vecidr

To obtain the general expression for the scattering rate, thédbeger equation of

an electron in the presence of a scattering potential musolbeds Assuming the
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problem is one-dimensional for simplicity, the Schrédinger equation is formeof
0¥ (x,t)
ot

(Ho + Us(x, £))®(x,t) = ik (4.2)
where H, is the Hamiltonian for the unperturbed probleiy(x,t) is the scattering
potential, and¥(x, t) is the wave function of the electron. Furthermore, it isirassl

that the solutions to the unperturbed problem is known so that

W2 (x, t) = Py (x)eExt/h (4.2)

wherey,, is an eigenfunction ofl, with corresponding eigenvalug,, and¥y? is the
corresponding time-dependant solution. From basic quantum mecharsds)atin that
the ¥,’'s form a complete orthonormal set. Consequently, any wave funacfidthe

perturbed potential in Eq. (4.1) can be expanded as
W0 = ) GOV = ) qOpe By g
K K
where ¢, (t) is the expansion coefficient for each eigenstate These expansion
coefficients are interpreted in quantum mechanics as beinggdela the long-time

probability that an electron is in a stategiven by the expression

Py = tli_)rglck(t)lz (4.4).

The scattering rate fromto k' is then

|Ck(tt)|2 (45)

Sk kr = lim
’ t—oo

The form of thec,’s can be found by exploiting the orthogonality of Eq. (4.2). The

wave function of Eq. (4.3) is inserted into Eqg. (4.1) resulting in
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Us(x, t)ch(wwk(x)e lEkt/h—th (e P (46)

Multiplying each side byp;e#xt/" and integrating over the normalization length results

in
lh% sz kck(t)el(Ek, E)e/h (4.7)
where
L/2
Hyr o (8) = Y ) Us (x, )y (x)dx (4.8)
-L/2

is called the matrix element of the scattering potential. Twgad any further, an
assumption must be made. The scattering in the problem is takea weak and
infrequent so that the probability of an electron in an arbistatek, is ¢, ~ 1, and all
other probabilities are, =~ 0. This is known as the Born approximation and results in
only one term in Eqg. (4.6) surviving, giving

ih% = Hk(,)koei[Eka_E"O]t/h (4.9).

Integrating Eq. (4.8) results in the expressiorcf(t),

t

Hirio® o lF Bt/

Cor = dt (4.10)

0 lh
which includes a constant equal ¢p (0). However, in accordance with the Born
approximation, the probabilities for all states other thamefore the scattering event is
approximately zero.

To arrive at a final expression fdk ,, the time-dependent matrix elements is

assumed to have a time harmonic form of
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— ygae ,Fiwt
Hk(’),ko(t) - Hk(’),koe

(4.11),

where thez stands for absorption and thestands for emission. Inserting Eg. (4.10) into

Eq. (4.9) and integrating results in
1 e ei(Eka—Eko-T-hw)t/h_l

Ckl :—H ’
"Rty (B — B, Fho)/h

By defining

A= i(Ek(r) —E, ¥ hw)/h

EqQ. (4.11) can be written in a more compact form given by

Chy L Y e"At/ZMt
ko lh kkaO At/z

Using Eq. (4.11) the resulting transition rate is

2
|| Tsincac/2)7
ko tsew  th? At/2

(4.12).

(4.13)

(4.14).

(4.15).

In the limit of t — oo, the sinc function approaches a delta function with a strength of

With this substitution the resulting expression is
2

ae .
¢ . |Hk('),k0 sin(At/2) 2 .2
koko ™ t5e0  th2 At/2
ae ae 2
A 5(AL/2)t = Tim i,
T o h2 T t5e h2
2
27 H;{l(l)’k | S(Ek(’) _Eko — ha))
2T e
+= |Hk6’ko| 6(Ek6 — By, + ha))
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The correspondence between the absorption and the emission matrentd to each
delta function results because in absorption the final statesgyy isEk(f) = Ey, + ho,
while in emission the final state’s energyEI,g(:) = Ex, — hw. This result in scattering
theory is known as Fermi's Golden Rule, and it allows one talegdcthe transition rate
of any scattering process if one knows the corresponding scattering glotenti

Once the transition rate is known, a set of characterigts i@an be derived that
concisely summarize the effects of scattering mechanisrassamiconductor. One of
these is the scattering rate, defined as the rate cascigiter out of an initial wave vector

(or momentum) into any other wave vector (momentum). This is calculated as

1
z= z Spp'[1—fr] = Z Spp’ (4.17)
p'1 p't

where instead of using the wave vector the crystal momeptentik is used instead.
The approximation in Eq. (4.17) can be made for non-degenerate semicosdsicice
in these cases the probability for the final momentum state to be eddspow.

Another important characteristic rate is the momentum retaxaate. This is the
rate at which an electron loses information in the directfats anitial momentum. The
expression relating the transition rate to the momentum redaxasite is found by

weighting the transition rate by the change in direction of the carriers

1 p'
= z Spp' |1 —| = |cosa (4.18)
m e p

wherea is the angle between the initial and final momenta (sge4-1), while the up
arrow in the summation indicates the inclusion of only the fimaimenta with a spin
parallel to the initial momentum. An important result to netéhat when the transition
rate is isotropic, the relaxation rate and momentum rétaxaate are equal for non-
degenerate semiconductors.
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Finally, the last characteristic time of interest he tenergy relaxation time. In
contrast to the momentum relaxation time, this is the ramhigh the magnitude of the
momentum (which is a measure of energy) is randomizeda dimilar manner to the

momentum relaxation rate, this is found by weighting the tiansiate by the change in

1 Epl
= Z Spp' |1 - T (4.19).
m A 14

the energy of the carriers,

The various relaxation times are illustrated in Fig. 4.1b.

e
t=0 t=1
_
—
\
0_/np S
o = e

Fig. 4.1. (&) The momentum, final momentum, and emitted/absorbed phonon vectors with
the various angles defined between them. (b) Illustration of the vahauscteristic

times.

The rest of this remaining chapter will focus in detail @ache of the scattering
mechanisms important in SiC. Emphasis will be placed on deriimgelaxation rate
and the momentum relaxation rate, since it is these geanthat are of interest in

calculating mobility.

37



4 3. Scattering Mechanisms and Momentum Relaxation Rates

Once the scattering potential is known, and using Fermi's Goldéx Bny of the
characteristic rates can be calculated. This sectionde®wva brief overview of the
characteristic rates important to SiC; however, no detailedgatien of them will be
given. The scattering potentials for each mechanism wilsbamnaed to be known, and
mathematical details of the summations (integrals) offohe of Eq. (4.17) and Eq.
(4.18) will be largely omitted. However, mathematically rigorous deadna are covered
thoroughly in the literature [27-29].

The scattering mechanisms under consideration can be classifiethany broad
categories. One division is between impurity scattering duéotosadifferent from the
host atoms of the material and phonon scattering due to laibications. Phonon
scattering can further be subdivided according to whethemnitrispolar (single element
semiconductors) or polar (compound semiconductors) scattering. Eachesd# t
preceding categories can further be subdivided according to whiéhscattering is by
acoustic or optical phonons. Each of these will be covered in the subsequenssecti
4.3.1. lonized Impurity Scattering

Several theories have been developed to describe electrorrisgakty ionized
impurities. One approach, valid for degenerate systemsdexadoped by Mott and is
suitable for impure metallic systems [30]. For semiconductors, onéwisied approach
is the theory developed by Brooks and Herring, which assume®dbimpurities attract
mobile carriers which screen their potential [27-29]. A draklia this approach is that
it predicts an infinite scattering probability for small angle defbastiwhen the screening
is low. This is remedied by an approach developed by Conwell argskgpf, whose
theory assumes no screening but avoids the divergent scatmobgbilities [31].
However, the assumption of unscreened Coulomb scattering foramgédk is known to
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be not very accurate, and therefore this section will focuth@riormulation of Brooks
and Herring.

The perturbing potential in this case is due to donor or amcapims in the host
material that become ionized, and is screened by the freerceoncentration. This

potential has the form of a Yukawa potential,

2
Us(r) = —1g=7/Lp (4.20)

4mrcgeyT
whereks is the dielectric constant of the material and the distance from the impurity.

The quantityL, is known as the Debye length, and is given by

KegokgT
Lp= |5 (4.21)
q°N;

whereky is the Boltzmann constarit,is the temperature ari§ is the number of ionized
impurities in the sample. Using Eqg. (4.20) in Eq. (4.8) with Blochewas the form of

the solutiongp,, and integrating results in

Hyp = o 1 (4.22)
PP Oiseg 2 iz (@) 4 (L e
p~ sin (2)+ Iz

where Q is the normalization volume and is the angle between the incident and
scattered momenta. Inserting Eq. (4.22) into Eqg. (4.16) and multigdyitige number of
impurities in the normalization volumeéy,Q, gives the expression for the ionized

impurity transition rate
_ 2nN;q* S(E' —E)

pp ~ hi§eg Q) [4 (%)2 sin? (%) + (Liz)]2
D

As briefly mentioned earlier, the scattering potential of Ej20) is obtained by

S

(4.23).

assuming ionized impurities are screened by mobile carriereen\d region is absent of
mobile carriers, such as in a depletion region in a deljce; o and the second term in
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the denominator of Eg. (4.23) vanishes. As the angle of deflectionaapeozero, this
would result in a divergent scattering rate. In these ca@ber a lower limit to the
scattering angle must be provided, or another approach such asnhell&Veisskopf
approximation, must be used.

Finally, the momentum relaxation rate is obtained by substitiimng(4.23) into Eq.

(4.18) and integrating over all final states producing
1 N 4 2
= 14 7 In(1+y?) — 4 5
Tmii  16V2m*nKZelE, 1+y

(4.24)

wherey? = 8m*E; L3 /h?.
4.3.2. Neutral Impurity Scattering

Another category of impurity scattering is due to non-ionizedishalionors and
acceptors, and contributes significantly to the total swadterate if the doping
concentration is high and the temperature is low [29]. Bhikmown as neutral impurity
scattering, and was first treated theoretically as sl@etrns colliding with a neutral
hydrogen atom. This approach was first developed by Massey anewitols [32], and
later extended to impurities in semiconductors by Erginsoy [33]he resulting

momentum relaxation rate is constant with respect to energy aneisly
1 80mKsegh° Ny
Tmni  €2m*2

(4.25)

whereN,, is the number of neutral impurities present.

Many other alternative formulations to Erginsoy’s exist. ©uneh approach is that due
to Sclar [34], who treated the scattering by neutral impurdgesiue to a spherically
symmetric square-well potential which can bind an electront.to The resulting

momentum relaxation rate using this approach is
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Lz ) 29

m*3/2 Ek + ET

Tm,ni

* 2
whereE; = 0.75%(i) eV is the binding energy for a second electron on a hydrogen

Ks

atom. It is clear that with Sclar’'s formula larger bimglienergies would result in longer
momentum relaxation times. Thus, deep levels which bind etectio not act as strong
scattering centers.
4.3.3. Scattering and Relaxation Rates for Phonons

In addition to impurities, the other major class of scattering cemtsemiconductors
is due to phonons. The perturbing potential in this case is frorsupesthat changes the
lattice constants. In compound semiconductors, an additional interactiesduisto the
polar nature of the bonds. On this basis, the scattering can be divided inaidgaries:
non-polar and polar. In addition, since the phonon dispersion curves extbit t
branches — acoustic modes that propagate in a manner similar toxsesdand optical
modes interact with light — each scattering mechanism can fuvéheivided into two
more categories. This results in four different scaigermechanisms: acoustic
deformation potential (ADP), optical deformation potential (PDPolar acoustic
deformation potential (also known as piezoelectric, PZ), and polacabggotential
(POP).

The scattering potentials for each of these mechanisms can be writtewriial ges

Us = Kgug (4.27).

In this equationug is of the form of an one dimensional elastic wave witheneector
and is given by

ug (x,t) = Age! (Pt 4 gpeilPx-wt) (4.28)
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where Ag is the magnitude of displacement. The fadfgrdepends on the scattering

mechanism, and its magnitude squared for each of the four diffeechanisms is given

by
|Ks|” = 2D} (EDP) (4.29),
|Ks|” = DZ (ODP) (4.30),
|Kg|” = paws (ﬂ— 1) (POP) (4.31)
P B?Kogn) \Keo Ul
2 qepz\?
|Ks|” = (Kogo) (PZ) (4.32),

whereD, is the acoustic deformation potentiB), is the optical deformation potential,
w, is related to the polar optical phonon enengy, is the high frequency dielectric
constant, anap; is the piezoelectric constant. The deformation potentiadis polar
optical phonon energies are usually determined experimentally, thiilpiezoelectric
constant is related to electromechanical coupling coeffigitiith can be determined by
the elastic constants of the material.

Using Eq. (4.27), a general expression for the scattering ne¢mxent of phonons

can be written as

2 2 2
Hy o™ = 1Ks|"|4g] 6 ping (4.33).

Directly inserting this result into Fermi's Golden Rule ig.H4.16) and assuming

parabolic energy bands gives the general transition rate for phonon sggitedesses,

2m 2 2 , _
Sp'p == |Kg| 14| 8y pingS(E' — E F hevg) (4.34),
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Each of the delta functions expresses a conservation law (mamemd energy,
respectively), and in order to evaluate their product theggneitl need to be expressed
in terms of momentum. This is done by first noting that the Kakeredelta function
indicates that the final, scattered momentum is justinital momentum that has

absorbed or emitted additional momentum due to phonons,

p=pthp (4.35).

Taking the dot product of the final momentum with itself results in

p' -p' =p?+2hppcosh + h2pB? (4.36)

where# is the angle betweem andp (see Fig. 4.1a). With the assumption of parabolic
energy bands and using substituting velocity for momentum in Eq. (4.36) iasults

E' —E+hwﬁ—hvﬁ<+c059 +—'B$Uﬁ) (4.37).

Since Eq. (4.37) includes the constraint of conservation of momeintuire energy

expression, the transition rate can be written with just one delta funstion a
hB _
Spip = hzvﬁ |K5| |Aﬁ| 5 (+ cos 6 +o + _ﬁ> (4.38).
The magnitude squared of the lattice vibration is determinedKkigg into account
guantum mechanical considerations. Phonon scattering events firesalteither

absorbing or emitting quantized lattice vibrations, and this is expresskd form

Al = 0 (N +1¢1) 4.39
Pl " 2pQwp P 727 2 (4.39)
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whereNg is the number of phonons determined by the Bose-Einstein digtripand the
minus (plus) sign is for phonon absorption (emission). Substituting4E3) into Eqg.

(4.38) gives the general transition rate for phonons,

Sy = Cs (Mg +; ;)5(+ cos +E+—g) (4.40)

with Cp being determined by the scattering process,

nm*D3
c ADP 4.41),
B = hpvspﬂ( ) (4.41)
¢, = D5 opp (4.42)
P = pwoppn OO e
¢, = (s (K" 1) POP (4.43)
a hico&of3pQ) \Ko (POP) T
qepz\? m’
c =< ) PZ 4.44).
p Ks€o hZPUs.BZPQ( ) ( )

The general expression for the relaxation rate and the momeelaxation rate for
phonons can be derived using Eq. (4.40). For the relaxation rate, Eq. (4n&®ried
into Eq. (4.17). Since the mapping between the momentum and the phonoveaiave
is unique, as indicated in Eq. (4.35), the summation of Eq. (4.17)eis talerf instead

of p. Transforming the summation into an integral gives the relaxation rate
1 Q (%" 1 5

T

1 hlg _ (L)ﬁ
X J 16(i cos 6 +5+w) d(cos 6) (4.45).

Mathematically, the delta function in this integral isazemless—1 < hﬁ+ £< 1.

Therefore, this puts a restriction on the minimum and maximaioes the phonon wave
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vector may take. In physical terms, this restricts the phonon vemter to the minimum
and maximum values for which both momentum and energy are wedserThe

relaxation time expression can therefore be simplified to

1_20 f”"““‘c (Wp +272) 2 4.46
r_4n2ﬁminﬁf*22ﬁﬁ (4.46).

The momentum relaxation rate is evaluated in a similar mabpeconverting the
summation in Eq. (4.18) into an integral. This is done by convettiimdast quantity in

parenthesis to

! ‘(p+h hpf cosO
(1—p—cosa>= l—p (pz_ A =+ k (4.47).
p p
The momentum relaxation rate can then be written as
L2 an fooc (N +1$1) 2d
T 813 ), ¢ o, FUFT272 prap
1 h ) B cos 6
xf 5(i cos 6 +—B$—ﬁ) (iﬁ—)d(cos 9) (4.48)
1 2p P P

which, using the properties of the delta function, can immediately beifs@ahpb
1 Q (Pmax 1_1\hp3 (hB _wg
(3735 75

p \2p up

ey

)dﬁ (4.49).

4.3.4. Non-Polar Acoustic Deformation Potential Scattering

The scattering of electrons in semiconductors by non-polar acoustie phonons
was first proposed by Bardeen and Shockley [35]. Intra-valmustic phonons
scattering is due to long-wavelength displacements, whicb say they have wave
vectors very close to the origin of the Brillouin zone. Thergy change of carriers

involved in collisions with these phonons is very small, ancetbes the scattering event
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is usually taken to be elastic. In addition, scattering by nom-paieustic modes are
isotropic, so the relaxation rate and momentum relaxation rate are equal.

In order to evaluate the relaxation time for acoustic deféomatotential scattering,
Eq. (4.46) is used in conjunction with Eq. (4.41). For temperatvege a few degree
Kelvin, the number of phonons is large so tNat~ Nz + 1 and the law of equipartition

can be invoked, givingg ~ kgT,/hwg. The resulting relaxation rate is
1-fm%%nf%md=ﬁﬁ%%n
Bmin 47Th2U52‘p

= 2 o — B 4.50).
Tapp ZTlThZUSZ-p (lgmax Bmm) ( )
The maximum and minimum phonon wave vectors can be deduced by usigg amer
momentum conservation laws with the assumption of sphericalbgé energy bands,
with the result beingif,q = 2m™v and hif,,;,, = 0. The relaxation rate using these
limiting phonon wave vectors is

1 1 m'DikgT,

= 9(E) (4.51)
Tapp Tm,ADP hvép
whereg(E) is the three dimensional density of states given by
m*2m*E
g(E) = — (4.52).

Thus, acoustic deformation potential scattering is proportianaghé number of final
states available to carriers.
4.3.5. Piezoelectric Scattering

For crystals lacking inversion symmetry, elastic strdso &auses an electrostatic
perturbation that results in additional scattering. Scagdsy acoustic phonons of this
type is known as piezoelectric scattering, and is importalawatemperatures and for

high purity crystals. The microscopic origins of piezoeleityrievere investigated
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experimentally by Arlt and Quadflieg [36], who identified thezpielectric effect as
arising from ionic polarization, strain-dependent iconicity and elgotdirization.

To obtain the momentum relaxation rate for piezoelectridesoag, Eq. (4.44) is
inserted into Eq. (4.49). Invoking the law of equipartition and ugiegapproximation

wp = vgf for acoustic wave vectors close to the origin results in

L _ (e Kelim (e BB o) o (4.53)
Kseo/) 4mhpuip?lg  \2p v R

Tm,pz

The piezoelectric effect is highly structure dependent, andighisflected through the
directional nature of the elastic constants implicit in theaigl of sound. This can be
averaged out by defining a dimensionless vahjeknown as the electromechanical
coupling coefficient, that groups together the piezoelectric aopshe density, and the
sound velocity. In addition, since the velocity of sound is typiaaitiers of magnitude
smaller than the thermal carrier velocity, the second tarthé integrand of Eq. (4.53)
can be ignored. Carrying out the integration with the maximaoch reinimum wave
vectors for acoustic phonons and multiplying by two to take accounbtbfabsorption

and emission results in a momentum relaxation rate
1 q%kyT, P2

Tmpz 2nmKksegh?/ 2E /m*

(4.54).

4.3.6. Polar Optical Phonon Scattering

Like piezoelectric scattering, polar optical phonon scatteniggs from the long-
range macroscopic electric fields created by the vibrations of iplyasharged atoms in
a unit cell. For compound materials, polar optical phonon scatteritige isominant
scattering mechanism. It is not isotropic and, unlike all ther citettering mechanisms
discussed so far, is inelastic. The energy of optical phonons isacabte tok;T at
room temperature, and this must be taken into account in any quantitatige the
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As will be seen in the next chapter, since polar optical phocattesing is not isotropic
or elastic, what is desired for mobility calculations is ftblaxation rate rather than the
momentum relaxation rate. This is accomplished by using Eq. (#.42). (4.46). The
maximum and minimum phonon wave vectors in this case can be fousekting the
argument of Eg. (4.40) to zero and solving for The quadratic equation resulting from

setting the argument of the delta function to zero is

(2pcosB) _ 2pw,
2 4 =0 4.55
prx h pt hv ( )
where hw, is the energy of the optical branch of the phonon disperslatiore For
long-wavelength (small wave vector) phonons, this value is appately constant. The
maximum wave vector occurs whewsf = —1, while the minimum occurs when

cos @ = 1, resulting in

p hw
Bmax = 7 1+ |1+ EO (4.56)
and
Pl haw, (4.57)
Bmax = n +1+ |1+ E ) )

Using these limits in the integral of Eq. (4.46) gives thapoptical phonon relaxation
time,
K
1 qz(‘)o (i - 1)

TmpoP Amticyeghy 2E /m*

[N 1n<,/E+hw0+\/F \/E+,/E—hwo>] (4.58)
? JE + hwy —VE VE — \JE — hw, '

>+(N0+1)ln<

whereN, is the optical phonon occupation number determined by Bose-Einstein statistic
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1

NO = ehwo/kBT + 1

(4.59).
The first term in brackets in Eq. (4.58) represents absorptian optical phonon, while
the second represents emission of an optical phonon. It is toutkthat the second
term in the brackets only applies when the carrier enargydater than or equal to the
optical phonon energy.
4.3.7. Inter-valley Phonon Scattering

In addition to the phonon scattering processes discussed in the previous daations,
acoustic and optical phonons can scatter carriers from orey \@llthe band structure
into another. The final valley the carriers scatter imay either be energetically
equivalent to the initial valley, or it may be a valleyttlsanot energetically equivalent.
The scattering into energetically equivalent valleys involagge changes in momentum,
and therefore result from short-wavelength phonons with waeorge close to the
Brillouin zone boundary. In this region, acoustic and optical phononsdmergies that
approach similar values. In addition, carriers can scatter final valley that is not
energetically equivalent. This can either take the formscaftering between extrema at
different points in the Brillouin zone, or between extrema atséwme point but at
different energies. In all of these cases, the mechanisppi®ximated to be isotropic
since non-polar inter-valley scattering is a randomizing prodé8sle this does not hold
true for polar processes, piezoelectric and polar optical phonarvailey scattering is
typically unimportant except for very low temperatures.

The relaxation rate for inter-valley phonons can be found in a pherwagical

manner by treating the perturbing potential as

US = Difuﬁ (460)
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whereD; is the deformation potential describing inter-valley scage Thus, the factor

|lf{,;|2 isjustDl-zf. Using this in the relaxation rate integral of Eq. (4.46) gives th#étres
1 1 nDiZ

Tir  Tm,if Pwir

wherer is the number of final valleys available at the extrema urdasideration,
hw;y is the inter-valley phonon energy; is the inter-valley phonon occupation number
determined by Eq. (4.59), adt;; is the difference in energy between the initial and
final valleys. Since only phonons close to the zone boundary, whegedhstic and
optical phonon dispersion curves flatten out and approach the shreeara involved in
inter-valley scatteringhw;; is approximated as a constant value. Again, the first erm i
brackets indicates absorption while the second term indieséssion, with emission
only possible if the carrier energy is greater than the stithe inter-valley phonon
energy and the energy difference between the initial and adkdys. For inter-valley

scattering to energetically equivalent valleys; is zero.
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CHAPTER 5. TRANSPORT IN 6H SIC
5.1. Introduction

During the last few decades, the various polytypes of siliadoide (SiC) have been
intensively studied in the hope that it will become a suitabkemah for high-power and
high-temperature electronic applications. The 4H polytype ofh@&Cgarnered the most
attention because its band gap is the largest of the varmytypes, while the more
developed 6H polytype of SIiC is already an important substratesriaiatfor
optoelectronic applications. However, for any practical re@dizeof electronic devices
on SiC to occur, certain transport properties need to be knownsu@heguantity is the
electron mobility, and to this end experimental studies have besgedcaunt to determine
its value [37-42]. Along with these experimental results lageretical calculations that
attempt to model them and to explain the mechanisms thatiletethe mobility [38-
40,43-46]. The scattering theory discussed in the previous chaptedes a natural
avenue to investigate these mechanisms, since they provideascopic description of
the processes that factor into the determination of the nyoblhdeed, many theoretical
studies have relied on such a treatment to explain theaeciobility for both 4H and
6H SiC [38,39,43-46].

In terms of 6H SiC, while the aforementioned computational studkel adequate
success in explaining the experimental results, all of tbhakeilations have either: (i)
focused on calculating the electron drift mobility, while the expental work has
usually measured the electron Hall mobility, or (ii) been inegatutions based on the
relaxation time approximation. Comparisons between the Hall molahiy drift
mobility have been justified by either assuming a Hall sdagefactor of unity, or
through a calculation of the Hall scattering factor which edfied on the relaxation time
approximation. Experiments have shown that the former assumptiobecaff by as
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much as 19% depending on temperature and doping concentration [47]. Meahiath
scattering factors calculated with the relaxation timpppreximation differ significantly
from experimental data [43].

In this chapter a more accurate calculation of the electrah ribbility and Hall
scattering factor for 6H-SiC is presented by calculatiegelectron Hall mobility exactly
using the contraction mapping principle [48}t the same time, the low field electron
drift mobility is solved exactly using Rode’s iterative method [49], andHdescattering
factor is then arrived at by taking the ratio of the twlues multiplied by a mass factor.
Similar calculations have been applied to 4H SiC, giving nameurate computational
results compared to past studies [38]. However, those tecknigue not yet been
applied to 6H SiC until now [50]. In addition, a single set of vafoeshe acoustic
deformation potential, the intervalley deformation potentiad the intervalley phonon
energy, which are adjusted to simultaneously match the expealmidall scattering
factor and Hall mobility data, are given. The calculatedteda Hall mobilities and Hall
scattering factors are compared with the experimental dakamhannet al. [41] and
Rutschet al. [47], respectively. Finally, how the change of ionization energip w
impurity concentration affects the mobility calculation will beefly explored. First,
however, a concise overview of the techniques used to solveditmmBnn transport
equation is given.

5.2. Solving the Boltzmann Transport Equation for Mobility and thd Heattering

Factor

The general approach in statistical mechanics for findiegntodynamic quantities
of interest for an ensemble of particles is to first findghdition function, from which
the distribution function can be deduced [51]. The distribution functieasores the
probability of finding carriers at a given location, possessirgjven momentum, at a
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given time, and from which quantities such as conductivity and mobility camigeuted
[27]. At equilibrium, the distribution function for fermionic palés is just the Fermi-
Dirac function. Interactions with electric and magnetitds as well as scattering events,
cause deviations from the equilibrium distribution function. Denat from the
equilibrium distribution function in response to these stimulilmaleduced through the
use of Louisville’'s theorem or, more commonly in the field of semiluctors, a more
specialized version of Louisville’s theorem known as the Boltzmann equau8].

The Boltzmann equation can be derived by carefully trackingecan-flows and
out-flows in a given volume of six-dimensional phase space, whistaike up of three
dimension in position and three dimensions in momentum. Doing &3 ¢gne time

evolution of the distribution function as

d F 9
a—{:—(u-vrf+q7'ka)+a_]; +s(rkt) (5-1)

coll

whereF is the electric field. The first term in parenthesustioe right hand side of Eq.
(5.1) represents the net in- or out-flow in position and momerspace, respectively.
The second term is known as the collision integral and is the chadigtribution due to
scattering events. This can be due to carriers with a momdtitimascattering to the
wave vectork or carriers in wave vectde out-scattering to a wave vectkf. In either
case, this will depend on the probability that the adbstate is filled and the probability

that the final state is empty, resulting in

d
0_]1: = ;Sk’,kfk’(l —fi) — Z Swa f(L = fir) (5.2).

coll

For non-degenerate semiconductors, the distribution function is rasshtHan unity so

that Eq. (5.2) can be approximated as
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of
at

= 2 Sk rfi — 2 Stk fr (5.3).
coll g T

Finally, the last term on the right hand side of Eq. (5.1) is tée generation
recombination rate in the volume of phase space.

For semiconductors, what is typically of interest is the lmMfmobility. Under these
steady-state, spatially homogeneous conditions with Fermi-Ditatistes, the

Boltzmann equation becomes

qF
— % Vi = f[Skr,k(l ~ fidfir = St fe(L = fre) | Ak’ (5.4)
where the summations of Eq. (5.3) have been converted to istedita¢ second term on
the right hand side of Eq. (5.4), which describes out-scatteringegses, can be
integrated in a straight forward manner. However, the tirsh on the right hand side,
which describes in-scattering processes, depends on the unknowoutigstrifunction
and cannot be so easily computed.

In order to proceed, the distribution function is written as

fr = for + X9k (5.5)

where f, , is the equilibrium distribution functiong, is the perturbed distribution
function, andx is the cosine of the angle between the electric iedohd the wave vector
k. This result can be shown to be true for electrons in sphedcals under low fields.

Inserting Eq. (5.5) into Eq. (5.4) and only keeping terms involvigies

qF of; ’
o 7 AR B

+ [ 301015041~ fo) = Sescfonlk (5.6)
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At this point, it is advantageous to divide the scattering meahanisto those due to

elastic processes and those due to inelastic processes. By doing so, bec(Brids

qF 0f, . . ,
BT [ aulsfie (1 Fowr) — ST Fa )R — geve

+ [ xau ST = for) = S5 foudlak (57)
where S,7¢/ and 5% are the transition rates due to inelastic processes. [@htice
processesy,;, are grouped together and, becaksand k' are equal in this case, are

reduced to
Vg = fS,ilk,(l —cosa)dk’ (5.8),

whereS,f,lk, is the transition rate due to elastic processes. Thistishje definition of the

momentum relaxation rate (see Eg. (4.18)), souhais just the sum of the momentum
relaxation rates of all the relevant out-scattering elastic psese Finally, by rearranging
Eq. (5.7) an iterative form can be found for the unknown distribution function,

gF dfo

Si(9d) + " qr (5.9)
Iki+1 = S
o

wheres,, is the sum of the out-scattering processes and is given by

So = Ve + /g, (5.10).

In the previous two expressions, the inelastic scattering pesdsve been grouped into
two different terms. The first represents the out-seéagenelastic processes and is

given by

Yo = [[S550= Fose) — S Fose i (5.10).
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As previously mentioned, for non-degenerate semiconductors thiewdistn function is

much less than unity, so that Eq. (5.10) can be approximated as

1, = f Syitdk’ (5.12),

which shows that the inelastic out-scattering terms areljagum of the relaxation rates
of the individual processes (see Eg. (4.17)). The other term deSorbegtering due to

inelastic processes, and is given by the integral

Si(gr) = f xgw [Sge (1= for) = Sise forldk’ (5.13).

For each relevant inelastic process, the integral of Eq. (5.18) be solved. The
iterative form of Eq. (5.10) can be shown to be a contraction mappatgleads to
quickly converging solutions.
After solving the perturbed distribution function to arbitraryusacy using Eg. (5.10),
the drift mobility is calculated by

h [k (gr/F)dk

—_ 5.14
b= T 3m ™ [k2fdk (5-14)

wherey is the electron drift mobilitysi is the reduced Planck constant, ant is the
effective mass of the electron. This iterative technigusotve for the mobility in the
presence of a low electric field was first discussed by Rode in 1975 [49].

A similar contraction mapping technigue, also introduced by R4é8le solves the
Boltzmann transport equation in the presence of an arbitrargenadield. In this case,

the distribution function is given by

f =fo+xgk + yhi (5.15)

56



wherehy, is the perturbation distribution function due to the magnetld,fandy is the
direction cosine fronB x F to k. Insertion of Eq. (5.15) into Eq. (5.1) yields a coupled

pair of equations that can be solved iteratively,

S (gki) + %% + BSi (h) (5.16).
Gki+1 = So(1 + B2)
and
s B+ S0 (5.17)
ki+1 = So(1 + B2)

wheref = quB/hkS,, v is the electron group velocity, aidis the magnetic field. In a
similar manner to Eq. (5.14), these two perturbed distributiortibngcyield the electron
Hall mobility uy as
wy = % (5.18).
With the drift mobility and Hall mobility determined, the Hallattering factory is
given by

T =— (5.19)

This solution is a more accurate calculation of the Haltteang factor compared to the

more commonly used expression

(=)

where((r2)) and((t))? are the specially averaged scattering times. The &tf@ession
for the Hall scattering factor is derived from the relao@tiime approximation, which
assumes that scattering times are independent of thébutistin function. More
importantly, the relaxation time approximation is only valid whie scattering
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processes are either elastic or isotropic, which is not tnuéH SiC where polar optical
phonon scattering dominates the low-field mobility (this scatterieghanism is neither
elastic nor isotropic).

5.3. Scattering Mechanisms in 6H SiC

In order to calculaté, andsS; and properly determine the Hall and drift mobilities,
the relevant scattering mechanisms must be taken into acdeam®H SiC in this study,
six scattering mechanisms are considered: (i) acousticndafion potential scattering,
(i) ionized impurity scattering, (iii) neutral impurity dtering, (iv) piezoelectric
scattering, (v) inter-valley phonon deformation potentialteday, and (vi) polar optical
phonon scattering.

The values of the acoustic deformation potential, intdeygbhonon deformation
potential, and inter-valley phonon energy were taken as adjuspaiblemeters to
simultaneously fit the Hall scattering factor and Hall miopilata (as will be discussed
later). An acoustic deformation potentid| value of 5.5 eV, an inter-valley phonon
deformation potentiaD;s value of 1.2%10" eV/m and inter-valley phonon enerty; s
of 65 meV was found to best fit the experimental mobility ddtaaddition, parabolic
conduction bands are assumed, with the values of the effectasesmtor 6H SiC being
myr(mi) = 0.75mgy, myx(m3) = 0.24m,, andmy,; (m3) = 1.83m,, and the density
of states effective mass being = (m}m§m§)1/3 [26]. Material properties of 6H SiC
that were used included a relative dielectric constardaf 9.7, a speed of sound of
13,730 m/$ and mass density of 3211 kg/m [52]. For the mobility with the electric
field perpendicular to the axis of the crystal, the coupling coefficightfor hexagonal

structures is

_ 4(21ef5 + 6ejse, + )  (21e; — 24e33e, + 5ef)

PZ
105k,gqc; 105k€4 ¢

(5.21)
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wheree, = e33 —e3; — 2e;5, andey s, ez, andes; are the piezoelectric constants. The

averaged transverse and longitudinal elastic constants faitevstructurese, andc,

are given by
8cy1 + 4¢3 + 3c33 + 8¢
¢ 11 13 = 33 44 (522)
2 -4 +2 +7
¢ C11 C13 C33 C44 (523)

15

wherecy4, cq13, €33 andcy, are the elastic constants. In this study, the piezoelectric
constants calculated by Mirgorodsky al. are used [53], while the elastic constants
measured by Kamitamt al. are used [54].

For the two components that compose the out-scattering Sgrrall the relevant
transition rates were derived in the previous chapter. Estiecomponenty,;, is the
sum of the momentum relaxation rates of scattering processes (i)-(®. abbg inelastic
componentl1/t;,, is made up of the relaxation rate of polar optical scattejiven by
Eq. (4.58) and inter-valley phonon scattering given by Eq. (4.61). QGotiibehand, for
the in-scattering terns$; the integral of Eq. (5.13) must be evaluated for inelastic
processes. For mechanisms under consideration, this only in¢l)dasd (vi) above.

As it turns out, the integral of Eq. (5.13) for inter-valfghonon scattering vanishes [49].
Therefore, Eqg. (5.13) only needs to be evaluated for polar optical phoaterisg.
Doing so gives [49]

S; ={N,g(Ex — hwy)A~ + (N, + 1) g(E} + haw,)AT} (5.24)

where
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ZS/ZHSOFLE;/Z K

o QPemt? 11
= e )
Ko

2E, — hw, Ep + hwg + /Ey
X 1/2 -1 (5.25)

[Ek(Ek hwo) W/Ek + ha)o W/Ek

and
. q2wom*1/2 ( 1 1 )
25/2n50hE;/2 Ko Ko

2E, +h — hwg + E
< kT 1 7aln 0TV 7k 1) (5.26).

[Ex (E + ha,)] — hwo — /Eg

To see the relative importance of each of the scatterinfpanesms inn-type 6H-
SiC, the scattering rates for doping concentrationsNgf= 101¢cm=3 and N, =
10%cm™3 are shown in Fig. 5.1 and Fig. 5.2, respectively as a functiemeaigy and
temperature. Previous studies have indicated that tleafaitnpurities at cubic sites to
impurities at hexagonal sites is about 2:1 [41,42,47]. Therefore, for biftbse plots, it
is assumed that there are twice as many impurities at citeis than there are at
hexagonal sites, and that there is no compensation. The free elsmticantration is

found by solving the charge neutrality equation
NDH
1+ guexpl(Er — E¢ + Epy)/ (kgT)]

n+NA=

+ Npk
1+ grexpl(Er — E¢c + Epk)/(kgT)]

(5.27)

wheren is the electron concentratiad, the acceptor compensation level; is the
conduction band minimunty is the energy of the Fermi levéN,, and Npi are the
concentrations of impurities at hexagonal and cubic sites, respectiyednd g, are the
donor degeneracy levels of the hexagonal and cubic levels, iigspecind E,, and
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Epx are the ionization energies of the impurities at hexagondl aibic sites,
respectively. Both the donor degeneracy levels are assunted2. For this example,

the donor ionization energies were set at 94 meV and 118 meV ftiedagonal and

cubic sites, respectively.
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The lattice scattering in these plots includes acoustic rdetioon potential,
intervalley phonon, and polar optical phonon scattering. At lowepéeatures for both

doping concentrations, neutral impurity scattering is signifit@mibwer energy carriers,
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necessitating its inclusion as a scattering mechanisraddition, at lower temperatures,
piezoelectric scattering is the strongest scattering hamésm at lower doping

concentrations while still being significant at higher dopimgnoentrations for low

energy carriers. All previous mobility and Hall scatterfagtor calculations have left
this mechanism out, even while making calculations at lowepédeatures [43-46]. At

higher temperatures, ionized impurity scattering generally daesinaFor lower doping

concentrations, lattice scattering makes a significant icotion, while at higher doping

concentrations, neutral impurity scattering is again important.

5.4. Electron Hall Mobility and Scattering Factor

Using Eg. (5.19) and the techniques discussed in section 5.2, and incloding t
scattering mechanisms previously mentioned, the Hall mobility la@dHall scattering
factor were calculated and were fit to the experimenta degtasured by Karmarahal.
[41] and Rutsclet al. [47] These were calculated assuming a measurement configurati
of [B 1l ¢,j L c] and with magnetic fields & =04 T T andB = 0.741T T, as in the
experiments. Because of the measurement configuration, dantssis included in the
Hall scattering factor [43].

As previously mentioned, the values of the acoustic deformation potentialaltegr
deformation potential, and intervalley phonon energy were adjusted ta aliast fit for
the Hall mobility and Hall scattering factor data simultarsiya In a manner similar to
previous studies [43,55], the parameters were first adjustid tdall mobility data, and
then subsequently used in the calculation of the Hall scattiitgr data. For the most
part, adjustment of the acoustic deformation potential hadffbéet ef shifting the Hall
mobility curve as higher or lower. Meanwhile, adjustment ofitkervalley deformation

potential and the intervalley phonon energy primarily affected the sldpe dfta at
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temperatures above 100 K. Fig. 5.3 shows the comparison of the waicatad the
experimental Hall mobility for three different samples, whi&. 5.4 shows the
comparison of the calculated and the experimental Hallestagtfactor. The calculated
results fit the experimental data very well. This is paldity true for the calculated Hall
scattering factor, which matches experimental data more socdlaulations with a
relaxation time approximation by Iwaghal. [43] The deviation of the calculated Hall
scattering factor in this study from experimental data never exce®¥s 8

However, the aforementioned fitting results in value®pt 5.5 eV, D;r = 1.25 X
10! eV/m, andhw;; = 65 meV, which diverge drastically from previously reported
values of D, = 17.5eV, D;s = 0.6 x 10'! eV/m, andhw;r = 85.4 meV [44,46]. This
warrants some discussion. The first study to attempt to extedieformation potentials
and intervalley phonon energy (from which the latter set cdirpaters originated) by
Mickevicius et al. [44] used a Monte Carlo method to calculate the electroi dri
mobility. This calculated mobility was then fit to experiménttall data without
accounting for the Hall scattering factor. A subsequent stud@hbyet al. [46] used the
same set of parameters in a calculation of the drift mohiliyng Rode’s iterative
method. The Hall scattering factor in this case wasutatied using Eq. (5.20), which is
an inexact solution, and without using a mass factor to accoutii@nisotropy of the
Hall measurement configuration. It is no surprise that thee s@hof parameters yields
similar results for both the Monte Carlo and Rode’s iteeatimethod, as both are
recognized as exact methods of obtaining the electron drift tyobiNeither method,
however, solves for the Hall mobility. It can therefore gued that the more accurate
parameters are the ones obtained in this study.

Because of the large deviations of the Hall scatterimgofafrom unity and its
importance, it is clear that in order to deduce the electraft wohobility from
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experimental Hall mobility data the Hall scattering factor must beratdy known. Fig.

5.5 shows predicted values of the Hall scattering factor agténgperature at four
different doping concentrations f@& = 0.5 T. These calculated values assume a 2:1
ratio of impurities at cubic sites to impurities at hexagonal,sates$ a compensation ratio
of Ny/Np = 0.01. These curves show that the doping concentration and the teumnperat
both greatly impact the Hall scattering factor for fiBell c,j L c¢] Hall measurement

configuration, so that extreme care must be taken when tryingrexethe electron drift

mobility from Hall measurements in 6H-SiC.

10°

Mobility u_(cm?V?s™)

10°
Temperature (K)

10"

Fig. 5.3. Electron Hall mobility versus temperatur@at 0.4 T for (a)Npy = 3.5 X
1015 em™3, Npg = 7 x 10> ecm™3, Ny = 1 x 10 cm™3, Epy; = 94 meV, andEp, =
118 meV, (b)Npy = 2 X 107 cm™3, Npgx = 4 x 105 cm™3, N, = 1.7 x 10*> cm ™3,

Epy = 90 meV, andEp, = 120 meV, (C)Npy = 4.4 X 1016 cm™3, Npyx = 3.4 X
1018 cm™3, N, = 5.5 x 10> cm™3, Epy; = 63 meV, andEp, = 120 meV n-type 6H-

SiC. Solid lines are calculated, while the symbols are experindattataken from

Karmannet al.
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Fig. 5.5 Predicted values of the Hall scattering factor plottechstg@mperature with

doping concentration as a parametemitype 6H-SiC.

66



5.5. Investigation of lonization Energy Variation

Apparent from Fig. 5.3 is that the calculation does not give gooeemgnt for
higher doping concentrations at lower temperatures. ThisdwWmuindicative that one of
the scattering mechanisms considered is stronger at high dogregntration and low
temperatures, or that an entirely different mechanism is vedolunder these
circumstances. One possible explanation for this deviatiomesldwering of the
ionization energy due to a higher density of impurities. Such ariogswould result in
an increase in ionized impurities, and consequently an increathe inorresponding
scattering rate. Thus, at lower temperatures and higher dopitggrtration where
neutral impurity scattering traditionally dominates, there wdé a relative increase in
the stronger ionized impurity scattering.

The phenomenon of decreasing ionization energy with increasing ignpurit
concentrations has been observed since the earliest studieshethavior of impurities
in semiconductors. Pearson and Bardeen noted it in their stuthpofiiies in Si [56],
while Brooks further elucidated upon this effect in discussmgurities in Si and
germanium (Ge) [57]. The effect has also been observed irs (&8) and aluminum
(Al) acceptors in 6H SiC [59]. The decrease in the impurity iominanergy arises from
a reduction in the average potential energy of carriers.thdsmpurity concentration
increases, the excited states of the impurities overlap arld gieepotential of the ions.

Mathematically, the decrease in the ionization energy can be descrile®] by [

E = Ej,—aN'/3 (5.28)

whereE; is the impurity concentration dependent ionization endrgyis the ionization
energy for low dopingg is the factor by which the ionization energy reduced. Typically,
a is experimentally determined. However, a rough order-of-magnéstitdate has been
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given by Pearson and Bardeen [56]. Accounting for energy ottatimebetween the ion
and mobile carriers, and the self-energy and correlation eagthé reduction factor is

given by
_ 1.646q°

= 5.29).
4regeg ( )

The adjustment to the ionization energies given in Eq. (5.28) a2@) (bere applied
to the calculation of mobility of electrons in 6H SiC in thegading section. Fig. 5.6
shows the changes to the scattering rates for high doping caimentand low
temperatures as well as the changes to the Hall mobiityes when the approximate
decrease in ionization energy is accounted for. As expectednabaity curves for
lower doping concentrations are not visibly affected. For tgbihidoped curve, the
mobility is most noticeably affected at temperatures aladroeit 40 K. This is the result
of the significant increase of ionized impurity scattering. lo®e40 K, the mobility
begins to rise again. At this temperature range, impurgm@sin largely unionized since
the thermal energy is so low. Thus, ionized impurity scageis less of a factor as
shown by the scattering rates in Fig. 5.6.

The poor fit of the calculated mobility curve with doping-dependentzation
energies at low temperatures for high doping concentrations tedfct this is not the
explanation for the decrease in the experimental Hall mobiltty atdower temperatures.
In addition, the discrepancy between the calculated and experinitaitahobility for
the more highly doped curve in comparison to the more lightly dopad<durther
indicate this. However, it should also be noted that Eq. (5.29) used in this tiatcisla
very rough, order of magnitude estimate. In addition, the previousiyioned study of
Al impurities in 6H-SIC indicated that in that case was compensation as well as doping
dependant. Since is usually experimentally measured, it may still be theecahat the
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decrease in ionization energy is the reason for the decreasallimobility at low

temperatures and high doping concentrations.
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CHAPTER 6. CONCLUSION
6.1 Conclusion

In this dissertation, the properties of different polytypes @f ®ere studied using
computational methods. A novel approach utilizing the EPM wittergetic search
algorithm to fit the band structure of 4H-SiC was presentedmdéye information on the
electronic structure of 4H SiC becomes available, thisbeaa useful method of finding
new fitting parameters. This is even more important for teetrenic structure of 6H
SiC for which almost no experimental data exists.

Next, a more accurate way to obtain the deformation poteatidlgnergies to fit the
Hall mobility of 6H SiC was delineated, and the Hall scattgfactor was calculated. A
similar approach was used before for 4H SiC, but had not st éeplied to 6H SiC.
However, further work can be done in trying to obtain a bettef tihe band structure of
4H SiC using the above mentioned method.

With the work presented here, a foundation has been laid for furfiltere
computational work. For example, the genetic search algorithm aosfdthe band
structure of 4H SiC can be applied to 6H SiC when more expetaindata becomes
available. Indeed, it can be applied to any material to quiakly effectively find
satisfactory EPM parameters. In addition, the band structure hendalues of the
deformation potentials could be used to construct a full band Moarie simulation of
SiC devices. In typical Monte Carlo device simulations, alpaic band approximation
is used so that there is no need for the full band structure. Hoviewvéne high power
applications for which SiC is foreseen to be used in, the Idegtrie fields in these
devices result in highly energetic carriers that occupy higheargy states in the
conduction band. Simulations under these conditions require a full lpgondaah,
requiring the electronic band structure as an input.
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