
Computational Studies of 4H and 6H Silicon Carbide  

by 

Garrick Ng 
 
 
 
 
 

A Dissertation Presented in Partial Fulfillment 
of the Requirements for the Degree  

Doctor of Philosophy 
 
 
 
 
 
 
 
 
 
 

Approved November 2010 by the 
Graduate Supervisory Committee: 

 
Dieter Schroder, Chair 

Dragica Vasileska 
Brian Skromme 

Terry Alford 
Matthew Marinella  

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

ARIZONA STATE UNIVERSITY  

December 2010  



  i 

ABSTRACT  
   

Silicon carbide (SiC), long touted as a material that can satisfy the specific 

property requirements for high temperature and high power applications, was studied 

quantitatively using various techniques. The electronic band structure of 4H SiC is 

examined in the first half of this dissertation. A brief introduction to band structure 

calculations, with particular emphasis on the empirical pseudopotential method, is given 

as a foundation for the subsequent work. Next, the crystal pseudopotential for 4H SiC is 

derived in detail, and a novel approach using a genetic algorithm search routine is 

employed to find the fitting parameters needed to generate the band structure. Using this 

technique, the band structure is fitted to experimentally measured energy band gaps 

giving an indirect band gap energy of 3.28 eV, and direct Γ, M, K and L energy 

transitions of 6.30, 4.42, 7.90 and 6.03 eV, respectively. The generated result is also 

shown to give effective mass values of ���� � 0.66�	, ��
� � 0.31�	, ��
� �
0.34�	, in close agreement with experimental results.  

The second half of this dissertation discusses computational work in finding the 

electron Hall mobility and Hall scattering factor for 6H SiC. This disscussion begins with 

an introductory chapter that gives background on how scattering rates are dervied and the 

specific expressions for important mechanisms. The next chapter discusses mobility 

calculations for 6H SiC in particular, beginnning with Rode's method to solve the 

Boltzmann transport equation. Using this method and the transition rates of the previous 

chapter, an acoustic deformation potential �� value of 5.5 eV, an inter-valley phonon 

deformation potential ��� value of 1.25�1011 eV/m and inter-valley phonon energy ���� 

of 65 meV that simultaneously fit experimental data on electron Hall mobility and Hall 

scattering factor was found. 
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CHAPTER 1. INTRODUCTION 

1.1. Introduction 

Though a bedrock of the microelectronics industry for decades, bulk silicon (Si) as an 

electronic material is fast approaching many of its inherent limitations.  The more highly 

publicized challenge facing Si is the extent to which devices on this material can be made 

smaller [1].  However, just as important is the challenge of developing devices which can 

operate under extreme conditions.  For devices that are needed to function under high 

power, high temperature, or high radiation conditions, the family of silicon carbide (SiC) 

materials holds much promise [2-4]. 

The advantages of SiC over Si in the above mentioned areas have been much 

elucidated upon.  The higher critical electric field of SiC compared with Si gives SiC a 

natural advantage in high power applications [3, 4].  Similarly SiC’s large band gap 

energy, and consequently its lower intrinsic carrier concentration, as well as its higher 

thermal conductivity, makes it superior to Si as a high temperature material [2, 3].  On 

top of these superior qualities SiC, propitiously, can oxidize and form a silicon dioxide 

(SiO2) insulating layer, allowing processing technology developed for Si to be applied to 

the development of SiC devices [2]. 

However, more still must be done in understanding the properties of SiC before it can 

be properly utilized in the electronics industry.  Development of devices using SiC 

requires an understanding of the material’s electronic transport properties, and that in turn 

begins with an understanding of the material’s electronic band structure.  With the 

electronic properties from the band structure known, various figures-of-merit important 

to transport, such as electron mobility, can be calculated.  Therefore, this dissertation 

seeks to examine the electronic properties of SiC by first studying how the band structure 

is calculated and the parameters important to transport that can be deduced from it.  
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Subsequently, with the electronic parameters available from the band structure and 

knowledge of relevant scattering mechanisms, it will be shown how transport properties – 

specifically electron mobility in SiC – can be calculated. 

1.2. Organization 

In order accomplish the above stated goals, this dissertation will begin with a general 

overview of electronic band structures in chapter 2.  This will proceed by first giving a 

brief history of the important developments in solid state physics over the last century.  

Next, the important results of the properties of electrons in a periodic potential are 

covered.  Finally, a general description of the empirical pseudopotential method (EPM), 

with which the band structure of SiC will be calculated in the following chapter, is given. 

In chapter 3, the band structure of SiC will be calculated and discussed.  The topic 

will be introduced by first describing the various polytypes of SiC and their crystal 

structures.  Next, the details of the EPM applied specifically to 4H-SiC and a fitting 

routine based on a genetic algorithm to calculate the band structure is discussed.  Finally, 

the results of the calculation are presented, along with the relevant parameters that can be 

extracted from the band structure. 

With the band structure examined in the previous two chapters, the second half of 

this dissertation will move on to examine how the electron mobility and Hall mobility can 

be calculated.  This will begin in chapter 4, where the general principles of scattering are 

introduced.  The central result of scattering theory, Fermi’s Golden Rule, will be derived.  

Following this, the expressions that various scattering mechanisms take on are given.   

Chapter 5 will cover the mobility properties of SiC specifically.  First, a survey of 

previous experimental and computational work of SiC will be given.  Next will be a 

discussion of how the scattering mechanisms discussed in the previous chapter can be 

used to calculate electron mobility and Hall mobility.  This is followed by an analysis of 
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the important scattering mechanisms in 6H SiC SiC.  Electron mobility and Hall mobility 

calculations for 6H-SiC will be presented.  Finally, a brief investigation of how the 

decrease of the ionization energy with doping concentration affects the mobility will be 

covered. 

Chapter 6 will conclude this dissertation and provide a summary of the work.  

Suggestions for improvements and future directions will also be given. 
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CHAPTER 2. ELECTRONIC BAND STRUCTURE THEORY 

2.1. Introduction 

 At the turn of the last century, Drude proposed his highly successful theory of 

electrical conduction [5].  This model, still in use in the semiconductor industry to this 

day, applied the kinetic theory of dilute gases to electrons in a metal.  Using this 

approach, many of the observed phenomena in metals, such as Ohm’s Law and the Hall 

effect, could be explained.  A further refinement came with Sommerfeld’s modification 

of Drude’s theory.  By using the Fermi-Dirac distribution in calculating thermodynamic 

quantities of the electron gas, Sommerfeld resolved many of the anomalous thermal 

results in Drude’s model.  Despite all its successes, the free electron gas model still 

exhibited many troubling deficiencies.  Among the most glaring inadequacies of the free 

electron gas model was its inability to explain the cubic temperature dependence of the 

intermediate-temperature specific heat of metals.  Nor could the free electron model 

explain why some electrons conducted, while others remained bound to their ions. 

 The source of the deficiencies in the models of Drude and Sommerfeld originated 

from the assumption that electrons moved free of any potential in a material.  This was a 

very crude assumption, and disproven by the 1913 experimental work of W. and L. Bragg 

which demonstrated that solids possessed an underlying crystalline structure at the 

microscopic level [5].  The regular arrangement of atoms subject electrons to a periodic 

potential, a situation that leads to the quantization of the energy levels of the electrons.  

Using this new picture of electrons confined by the potential of the crystal lattice, many 

phenomena unexplainable by the free electron gas model could be resolved.  

2.2. Hamiltonian of a Crystalline Solid 

 In order to solve the problem of electrons confined in the periodic potential of a solid, 

quantum mechanics must be invoked.  The relevant Hamiltonian to be solved in this case 
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is given by  
 - � . /�02�	� 2 . 3402544 2 . 6�67489	:�7�,7<� 2 . =4=>489	:4>4,><4   

 ? . 6�=4489	:�4�,4  (2.1) 

where 6� and 64 are the charge of the of the ith and jth electron, respectively, =4 and => 

are the charge of the jth and sth nucleus, respectively, :�7 is the distance between 

electrons, :4> is the distance between nuclei, :�4 is the distance between the ith electron 

and jth nucleus, @� is the momentum operator for the ith electron, A4 is the momentum 

operator of the jth nucleus, 9	 is the permittivity of free space, �	 is the rest mass of an 

electron, and 54 is the mass of the jth nucleus [6].  In this equation, the first and second 

terms represent the kinetic energies of the electrons and ions, respectively, the third term 

the potential energy between electrons, the fourth term the potential energy between ions, 

and the last term the potential energy between electrons and ions.  This many-electron 

problem would be impossible to solve directly for any solid of macroscopic size, and 

therefore many simplifying assumptions must be made. 

 The first of the approximations to be made is based on the observation that electrons 

are many orders of magnitude less massive than the ions in a solid.  Therefore, electrons 

move much faster than ions, vibrating at a frequency on the order of 1015 s-1 compared to 

1013 s-1 for ions [6].  Electronic motion therefore responds almost instantaneously to ionic 

motion, while ions only experience a time-averaged electronic potential.  This is known 

as the Born-Oppenheimer or adiabatic approximation, and allows the Hamiltonian to be 

written in three separate terms as 

 - � -�BC ? -DE ? -DE��BC (2.2) 
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where -�BC is the Hamiltonian for the ionic motion due to the ionic potential and the 

time-averaged electronic potential,  -DE is the Hamiltonian for the electrons with the 

nuclei frozen in their equilibrium position, and -DE��BC is the Hamiltonian of the change 

in electronic energies with changes in the positions of the ions.   

 The electronic Hamiltonian is the system of interest, and this is given by 

 -DE � . /�02�	� 2 . 6�67489	:�7�,7<� ? . 6�=4489	:�4�,4  (2.3). 

This portion of the Hamiltonian would still be impractical to solve given that there are 

more than 1023 electrons/cm3 in a solid.  A further assumption known as the mean-field 

approximation is made by assuming every electron is subjected to the same average 

potential.  Separating the electron-electron interaction term into one that only involves 

electrons closely bound to ions and one that only involves bonding electrons, the 

Hamiltonian becomes 

 -DE � . /�02�	� 2 . 6�67489	:�7�,7<� ? . 6�=4489	:�4�,4   

 � . F /�02�	 ? . 6�=4489	:�44 G� 2 . 6�67489	:�7�,7<�   

 � . F /�02�	 ? . 6�=4489	:�44 G� 2 . 6�67489	:�7�,7HIBJCK 2 . 6�67489	:�7L�,7L<�   

 � . F /�02�	 ? 6� M. =4489	:�44 2 . 67489	:�77HIBJCK NG�   

 2 . 6�67489	:�7L�,7L<�   

 O . P /�02�	 ? �QRST� 2 . 6�67489	:�7L�,7L<�  (2.4) 
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where �QRS is the average potential felt by each electron.  The replacement of the exact 

electron-ion and bound electron-electron interaction by �QRS is known as the mean-field 

approximation.  Furthermore, by ignoring the bonding electron-electron interaction term, 

the Hamiltonian reduces to a one-electron problem given by 

 -%DEΦVQRS � W /02�	 ? �QRSX ΦCQRS � YCΦCQRS (2.5) 

where -%DE is the one-electron Hamiltonian, and ZQRS and YC are the one-electron wave 

function and energy of eigenstate [, respectively. 

2.3. Bloch Functions 

The consequence of subjecting an electron to the periodic potential of the crystal 

lattice was first elucidated by Bloch.  Solutions to the one-electron Schrödinger equation  

in Eq. (2.4) take on a special form, known as Bloch functions.  Using these Bloch 

functions, any general solution to (2.4) can be formed by taking a linear combination of 

the aforementioned functions. 

To arrive at the Bloch function solutions, a translational operator \] is first defined 

for a Bravais lattice vector ^ and any function _QRS such that 
 \]_QRS � _QR ? ^S (2.6) 

Solutions to the operator \] can be expressed in the form of 

 Z`QRS � ��`·Rb`QRS (2.7) 

where b`QRS are functions with the same periodicity as that of the lattice.  For any integer 

n then,  

 b`QRS � b`QR ? [^S (2.8) 
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which are cell periodic functions of the crystal.  The result of \] operating on Z`QRS is  

 \]Z`QRS � ZQR ? ^S � ��`·^Z`QRS � Z`QRS (2.9) 

since ̀ · ^ is some multiple of 2π.  The one-electron Hamiltonian -%DE is also invariant 

under translation by ̂ , and therefore the operators -%DE and \] commute.  As a 

consequence, quantum mechanics dictate that the eigenfunctions of \] are also 

eigenfunctions of -%DE.  Any solution to the one-electron Schrödinger equation Eq. (2.4) 

can therefore be expressed as a linear combination of Bloch functions  

 ΦQRS � . c`Z`QRS` � . c`��`·Rb`QRS`  (2.10) 

where c` are the expansion coefficients. 

2.4. Empirical Pseudopotential Method 

 While the form of the electronic wave functions are in principle Bloch functions, 

further simplifications are needed to efficiently calculate the electronic band structure.  

One of the more commonly used techniques used in practical calculations is known as the 

empirical pseudopotential method.  In this approach, electrons are divided into two 

groups – the core and the valence electrons.  The core electrons are those that occupy 

orbitals of completely filled shells, while the valence electrons are those that occupy 

orbitals of partially filled shells.  The core electrons are tightly bound to their respective 

nuclei and therefore localized around their lattice sites.  These electrons do not contribute 

to bonding or conduction, and are not dealt with.  Only the valence electrons, which are 

weakly bound and nearly free, that are involved in bonding and transport are considered.   

 In order to further ease the solving of the wave equation, the valence electron wave 

functions can be divided into two parts.  The parts of the wave equation away from the 

core are smooth, and can be approximated with a reasonable number of plane waves.  
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Those parts close to the core exhibit rapid spatial oscillations, making the wave function 

difficult to approximate.  However at the same time, these rapid oscillations in the wave 

function serve to screen the strong Coulomb potential of the atomic sites, leaving behind 

a much weaker “pseudopotential.”  Ultimately, the hope is that the pseudopotential is 

sufficiently small that it justifies treating the electrons as nearly free, and therefore 

appropriate to approximate the valence electron wave functions with a small number of 

plane waves.   

This replacement of the true potential with the pseudopotential in the one-electron 

Schrödinger equation leads to the pseudo-wave equation 

 W /02�	 ? �deQRSX Ψ` � Y`Ψ` (2.11) 

where Ψ` is the pseudo-wave function to be expanded in a basis of plane waves.  The 

expansion of Ψ` is given by 

 Ψ`QRS � ��`·R
√Ω . i`��j·R

j  (2.12) 

where the vectors j are the reciprocal lattice vectors, the i`’s are the expansion 

coefficients and Ω is the volume of the unit cell.  The reciprocal lattice vector j is 

defined as 

 j � [%k% ? [0k0 ? [)k) (2.13) 

where k� are the reciprocal primitive vectors for the crystal and [� are integers.  The 

inner product of Eq. (2.11) using the wave function of Eq. (2.12) leads to the secular 

equation 

 ��l mP �02�	 |` ? j|0 2 Y`T oj,jL ? �j,jLm � 0 (2.14) 
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whose solutions are the energy eigenvalues Y`.  The off-diagonal matrix elements of the 

pseudopotential �j,jL are given by 

 �p,pL � 1Ω q �deQRS��rjL�js·R �R (2.15) 

which is just the Fourier transform of the pseudopotential, and are known as 

pseudopotential form factors.  However, this expression only accounts for one atom per 

unit cell.  If more than one atom exists within the unit cell, an additional term must be 

included to account for the different kinds and the different positions of the other atoms.  

The pseudo potential then becomes 

 �deQRS � . �pL�p,tjL�j ujL�j,t��rjL�js·R (2.16) 

where �jL�j,t is the pseudopotential form factor for atoms of species v and ujL�j,t is the 

structure factor which accounts for the positions of those atoms.  The structure factor is 

given by 

 ujL�j,t � 1#t . ���rjL�js·Rwx
4  (2.17) 

where #t is the number of atoms of species v and Rt4 is a vector pointing to the location 

of the jth v atom.  

As stated before, there exist many different methods to determine the pseudopotential 

matrix elements of Eq. (2.15).  One approach is to directly calculate it using an 

approximation for the atomic potential �deQRS.  An example of this is the empty-core 

potential due to Ashcroft which is a spherically symmetric potential that is zero up to a 

critical radius, then a screened Coulomb potential thereafter [7].  This is given by the 

expression [8] 
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 �deQRS � �	��7 K⁄ Ω48�) �z ΘQz 2  !S (2.18) 

where �	 is the magnitude of the potential, � is the screening length,  ! is the critical 

radius, and ΘQ:S is the step function.  The Fourier transform found using Eq. (2.15) is 

then [8] 

 �p,pL � �	��]| K⁄ sinQ !|j� 2 j|S ? |j� 2 j|� cosQ !|j� 2 j|S�|j� 2 j|��0|j� 2 j|0 ? 1�  (2.19). 

As an example, the pseudopotential and its Fourier transform for the case of 

aluminum (Al) is shown in Fig. 2.1.  In addition, first-principles pseudopotentials can be 

constructed for the atom under consideration.  This is done by solving the Schrödinger 

equation for the radial wave functions of the outermost electrons, then finding the 

pseudopotential that gives a pseudo wave function that matches the smooth portion of the 

said radial wave function.  Finally, a fully empirical approach would be to use the 

pseudopotential matrix elements as fitting variables.  This is the approach taken in this 

dissertation, and will be outlined in the next chapter.  
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(a)  

(b)  

Fig. 2.1. The Al pseudopotential (a) and its Fourier transform (b), with � � 4.05 �
10�� ��, �	 � 31.3 ��, � � 0.35 � 10�� ��, and  ! � 0.943 � 10�� ��. 

 

-30

-25

-20

-15

-10

-5

0

5

Rc

E
ne

rg
y 

(e
V

)

Distance r

0 1 2 3 4 5 6 7 8 9 10
-8

-7

-6

-5

-4

-3

-2

-1

0

1

E
ne

rg
y 

(e
V

)

|G| in units of 2π/a



 

  13 

CHAPTER 3. ELECTRONIC BAND STRUCTURE OF 4H SIC 

3.1. Introduction 

 Studies of the band structure of SiC began not long after the development of a 

process to grow single crystals of the material.  The first comprehensive study of the band 

structure of the various polytypes of SiC was done in 1970 by Junginger and van 

Haeringen [9].  This was done with the EPM technique discussed last chapter, using the 

pseudopotentials of silicon (Si) and carbon (C) with the hopes that they were transferable 

with minor modifications.  Because of the lack of computing power at that time, the full 

bands were only calculated for 3C and 2H polytypes of SiC.  For the 4H and 6H, only the 

energies at the high-symmetry points were calculated.  While the calculated energy band 

gaps for the 3C and 2H matched well with experiment, the results were not so successful 

for the hexagonal phases with larger basis sets. 

 As is common when investigating new materials, several other calculations 

approached the problem from a more complete first principles perspective.  Gavrilenko et 

al. made calculations for the 4H and 6H polytypes using a self-consistent linear muffin-

tin orbital method with greater success in matching the energy gaps in 6H than 4H [10].  

A local density approximation (LDA) of the density functional theory (DFT) was adopted 

in a band structure calculation by Persson and Lindefelt to match the experimental 

effective masses in 3C, 2H, 4H and 6H SiC [11].  While successful in the goal of 

calculating the effective masses, the resulting energy band gaps were off from the 

experimental values by a great deal.  More successful first principles calculations in terms 

of more accurate energy band gaps were performed by Wenzien et al. using a 

quasiparticle approach [12] and Baumeier et al. using a DFT approach but with electron 

self-interactions taken into account [13].   
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While these last two ab initio calculations are fairly accurate given the current 

knowledge of the energy band gaps and the effective masses, they are computationally 

expensive to implement.  In addition, any new experimental data on the band structure 

that do not fit values given by current calculations require further research to find the 

source of the discrepancies.  For this reason, empirical or semi-empirical approaches such 

as the EPM or the tight-binding method are preferable when experimental data are 

available.  As stated above, the study of Junginger and van Haeringen relied on a semi-

empirical approach to the EPM.  More recently, Pennington and Goldsman also used the 

EPM to calculate the band structure of 3C, 4H, and 6H SiC [14].  This study obtained 

better results in terms of fitting the energy band gap and the electron effective masses by 

introducing nonlocal screening effects into the pseudopotentials of Si and C.  The 

approach was also semi-empirical in that it relied on the transferability of the Si and C 

atomic potentials, with modifications to account for the aforementioned screening effects.  

Zubkova et al. also used the semi-empirical EPM, based on the same pseudopotentials 

used by Junginger et al., to study the temperature dependence of the band structure [15].  

In contrast, the empirical approach to the EPM is to abandon attempts to obtain the form 

factors from the atomic potentials and instead treat the Fourier coefficients as completely 

adjustable parameters to match experimental band structure data.   

The flexibility offered by the empirical or semi-empirical approaches is especially 

important for 4H SiC since the experimental work on its band structure is still sparse.  To 

date, only a few experimental studies have been performed to investigate the electronic 

structure of 4H SiC.  The indirect, Γ to M band gap energy of 4H SiC was first measured 

by Choyke et al., for which a value of 3.263 eV was obtained [16].  This is still the most 

widely quoted experimental value for the band gap energy to this day [12-14].  Optical 

measurements by Ahuja et al. gave the direct gap energies at the Γ, M, K and L high 
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symmetry points as 6.2, 4, 7.8 and 6.7 eV, respectively, and a total valence band energy 

of 18.2 eV [17].  Electroreflectance measurements by Demir et al. supported those 

values, giving the direct gap energy at the Γ and M points as 6.18 and 4.5 eV, 

respectively [18].  Compared with this experimental data, the band structure of 

Pennington et al. underestimates the direct Γ transition by more than 1 eV and 

overestimates the direct M transition by about the same amount.  The calculation by 

Zubkova et al. also has many deviations from experiment, with a band gap energy 

smaller by about 0.3 eV, a direct Γ transition smaller by 1.6 eV and a direct L transition 

smaller by more than 1.5 eV. 

In this chapter, an empirical approach is demonstrated to better fit the direct band gap 

energies.  The fitting will be done specifically for the 4H polytype for which there is a 

relative abundance of experimental data to fit to.  The next section will begin by briefly 

giving an overview of the different polytypes of SiC, and then describe in detail the 

crystal structure of the 4H polytype.  The derivation of the form factors for 4H SiC will 

then follow, and a description of the fitting routine used will be given.  Finally, the results 

of the fitted band structure will be presented. 

3.2. Crystal Structures of Silicon Carbide 

Silicon carbide is among a special class of materials that exhibit a property known as 

polytypism.  This means that, while all polytypes of SiC are chemically identical, they 

can crystallize into more than one stable crystal structure.  There are more than a hundred 

known polytypes of SiC broadly categorized as either being α-SiC or β-SiC.  These 

categorizations indicate whether the structure is cubic (β-SiC) or non-cubic (α-SiC).  

Only the 3C polytype, which crystallizes into a cubic, zinc-blende structure similar to 

gallium arsenide (GaAs), falls into the category of β-SiC. All other polytypes are 

ambiguously labeled as α-SiC.  The crystal structures of SiC can be described as being 
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made up of layers of atoms that are in a close-packed hexagonal structure [19].  This 

structure can be described as a plane of atoms arranged in a honeycomb lattice, and can 

be visualized by packing identical hard spheres as shown in Fig. 3.1.  Various crystal 

structures can be constructed by stacking these layers of atoms upon one another.  

Because of energy considerations, there are no examples of an element with a crystal 

structure where one close-packed hexagonal layer is stacked directly above another.  

Instead, subsequent layers are stacked so that they occupy the interstices in the preceding 

layers.  Layers stacked in this way have two distinct possible sets of interstices with 

respect to the first layer.  These possibilities are shown in Fig. 3.1 with the sets of 

positions labeled B and C. 

 

 

Fig. 3.1. Close-packed hexagonal layer showing the three unique possible sets of 

lattice sites. 

 

With these three different positions for each layer, an infinite number of different 
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structures can be formed depending on the number of layers and the order in which they 

are stacked.  For example, a structure can be created by stacking layers of atoms in a two-

layer repeat, ABAB fashion creating a hexagonal close packed (hcp) lattice.  Stacking 

layers in a three-layer repeat, ABCABC fashion creates a face centered cubic (fcc) lattice.  

The stacking sequence of the layers therefore defines the crystal structure. 

In the various polytypes of SiC, instead of layers made of single atoms, at each lattice 

site there is set of two atoms – one Si, one C.  These layers are stacked in the same 

manner as described in the preceding paragraph.  The stacking order and resultant crystal 

structure formed in the SiC polytypes is identified using a special notation known as 

Ramsdell Notation.  In this system, each polytype is labeled by a number indicating the 

period of the stacking sequence, and a letter indicating the Bravais lattice to which the 

polytype belongs.  For instance, hcp structure ABAB would be denoted by 2H to indicate 

the two-layer repeat and hexagonal structure.  The β-SiC structure with stacking sequence 

ABCABC would be denoted by 3C to indicate the three-layer repeat and cubic structure.  

For the 4H polytype, which this chapter focuses upon, the stacking sequence is a four-

layer repeat given by ABCBABCB.  This is shown in Fig. 3.2a, which illustrates the 

sequence of layers with the two atom basis. 

3.3. Crystal Pseudopotential for 4H SiC 

As discussed in the previous chapter, the off-diagonal elements of the Hamiltonian 

are crystal structure dependent.  From Eq. 2.14, the pseudopotential matrix elements are 

 ��,�� � 1Ω q .���rR 2 R�4s ? �IrR 2 RI4s���rjL�js·R�
4�% �R  

 � 1Ω q . ���QRS���rjL�js·Rwx ? �IQRS���rjL�js·R�x��
4�% ��rjL�js·R �R (3.1) 
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where subscript a indicates a Si atom, subscript b indicates a C atom, R�4 is the position 

of the jth Si atom, and RI4 is the position of the jth C atom.  To find the form of this  

structure dependent term, the crystal structure of the 4H SiC lattice is analyzed in Fig. 

3.2b where the locations in first quadrant of the xy-plane of the atoms in each layer is 

indicated.   

 

(a)  (b)  

Fig. 3.2. (a) Stacking sequence of the 4H SiC polytype showing the eight atom basis set.  

The black circles represent Si atoms, while the white circles represent C atoms. (b) 

Locations of the A, B and C layer lattice sites in the first quadrant of the xy-plane. 

 

The underlying Bravais lattice of 4H SiC is hexagonal, which can be described by 

stacking close-packed hexagonal layers directly above one another.  The real space 

translation vectors that describe the hexagonal system can be obtained by taking a lattice 

point in the A layer arbitrarily as the origin (A1 in Fig. 3.2b).  Since the symmetry of each 

layer is close-packed hexagonal, the angle �c0c%c) is 8 3⁄  and each nearest neighbor 

lattice site is separated by a lattice constant a.  Therefore, lattice sites A2 and A3 are 

located at ��� and Q� 2⁄ S�� ? r√3� 2⁄ s��, respectively.  The layer stacked directly above 
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can be described by translating a lattice constant c in the z direction.  This gives the three 

translation vectors as 

 �% � ��� (3.2), 

 �0 � Q� 2⁄ S�� ? r√3� 2⁄ s�� (3.3), 

and 

 �) � ��� (3.4). 

The reciprocal lattice vectors corresponding to this set of real space translation vectors 

are 

 k% � 28 �0 � �)�% · �0 � �) � 28� �� 2 28�√3 �� (3.5), 

 k0 � 28 �) � �%�% · �0 � �) � 2 48�√3 �� (3.6), 

and 

 k) � 28 �% � �0�% · �0 � �) � 2 28� �� (3.7). 

For the specific case of the 4H structure with an ABCB stacking sequence, the B  and 

C lattice sites in the xy-plane are located in the interstices between the A atoms, 

equidistant from each.  The first B layer is translated from the A layer in the z direction 

by c/4, while the second B layer is translated by 3c/4.  Because the B atom is equidistant 

from each A atom in the xy-plane, and since the distance between each A atom is a, the 

angle �c%+c0 is 28 3⁄ .  The angles �+c%c0 and �+c0c% must then be 8 6⁄ , making 

∆c%+c0 isosceles.  Therefore, the B lattice sites are located at Q� 2⁄ S�� ? r� 2√3⁄ s�� in 
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the xy-plane.  Finally, the C lattice site in the xy-plane is located in the interstices 

between lattice sites A1, A2, and a site in the second quadrant which is the reflection of A2 

across the y-axis.  Since the distance between A1 and B is r� √3⁄ s, the location of the C 

lattice site is r� √3⁄ s�� ? Q� 2⁄ S�� relative to the origin.  

As stated previously, each lattice point in SiC is composed of a Si and a C atom 

separated by a bond length of Lz (see Fig. 3.2a).  In order to make calculations easier, the 

origin can be arbitrarily shifted to the midpoint of the two atoms so that R�% � 2� �
Q2�� 2⁄ S�� and RI% � � � Q�� 2⁄ S��.  Substituting this into Eq. (3.1) 

�j,jL � 1Ω qr��QRS��rjL�js·� ? �IQRS���rjL�js·�s��rjL�js·R . ���rjL�js·Rx
�

4�% �R 

� 1Ω q���QRSrcosrQj� 2 jS · �s ? � sinrQj� 2 jS · �ss� 
�?�IQRSrcosrQj� 2 jS · �s 2 � sinrQj� 2 jS · �ss���rjL�js·R�R � . ���rjL�js·Rx

�
4�%  

� ��je cosrQj� 2 jS · �s ? ��j� sinrQj� 2 jS · �s� . ���rjL�js·Rx
�

4�%  (3.8) 

where R4 is the position of the midpoint of the basis set in each layer, and �je and �j� are 

the symmetric and anti-symmetric components of the pseudopotential form factors, 

respectively, and are given by 

 �je � 1Ω qr��QRS ? �IQRSs��rjL�js·R �R (3.9) 

and 

 �j� � 1Ω qr��QRS 2 �IQRSs��rjL�js·R �R (3.10). 
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From the analysis of Fig. 3.2b, the terms involving the positions of the atoms can be 

expressed using  

 � � �4 �� (3.11), 

 �� � �2 �� ? �2√3 �� (3.12), 

and 

 �� � �√3 �� (3.13) 

where � is the separation between each layer, and �� and �� are the location of the B 

layer and C layer lattices sites in the xy-plane, respectively.  Using these definitions, the 

crystal pseudopotential can be written as 

 �j,jL � ��je ���rQj� 2 jS · �s ? ��j� ��[rQj� 2 jS · �s�  

 � �1 ? ���rjL�js·Q� �¡S ? ���rjL�js·Q0� �¢S ? ���rjL�js·Q)� �¡S� (3.14) 

The calculation of the band structure can proceed, once the pseudopotential form factors 

�je and �j� are known.  The approach taken to finding the pseudopotential form factors 

will be to use them as adjustable parameters to fit known energy band gaps and 

effectivemasses.  This will be done through the use of a genetic algorithm approach, 

detailed in the next section. 

3.4. Genetic Algorithm Fitting 

 Genetic algorithms (GA) have been utilized in a variety of disciplines to optimize 

parameters of multi-dimensional functions.  Within the area of band structure 

calculations, GA’s were first demonstrated by Starrost et al. as being effective in 



 

  22 

adjusting up to eleven tight-binding parameters to fit the energy band gaps of various 

zinc-blende semiconductors [20].   Klimeck et al. have also used GA’s to adjust up to 20 

parameters in a second-nearest neighbor tight-binding model to fit effective masses as 

well as band gap energies [21].  In addition, genetic algorithms have been employed in 

inverse band structure calculations to find atomic configurations and lattice constants in 

order to engineer materials with a given band structure [22,23].  Genetic algorithms have 

thus been shown to be effective at providing an automated way to search for and to 

optimize tight-binding calculations with an arbitrary number of parameters.  Here it will 

be shown that this strategy can be equally as effective in finding band structure 

parameters for an EPM calculation. 

 The strategy of a GA is very similar to evolutionary processes in the real world.  The 

optimization proceeds by first randomly generating a population of possible solutions.   

The parameters of the problem are identified as the “genes” that make up a solution.  

Each of the possible solutions is evaluated according to a pre-defined weighting scheme.  

The most “fit” of the solutions are chosen to survive and kept within the population, 

while the underperforming solutions are discarded.  The population is then replenished by 

having the fittest solutions “reproduce” – they create new solutions in a process called 

“crossover” by randomly taking parameters from two existing fit solutions.  In order to 

create solutions with parameters having values not previously existing in the original 

population, genes may randomly “mutate” to take on new values.  The cycle is repeated 

until the solutions converge or a preset number of iterations have been performed.  From 

the preceding description, it is clear that the GA has four steps: initialization of the 

original population, selection of solutions based upon a fitness evaluation, reproduction 

through crossover and mutation to create new solutions, and termination of the process 

after some criterion is met.  As is obvious, the algorithm is largely stochastic.  
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Nevertheless, GA’s have been frequently observed to successfully produce reasonable 

solutions.  A flowchart of this algorithm is shown in Fig. 3.3. 

 

Fig. 3.3. Flowchart of the genetic algorithm. 

The first step of the GA proceeds by initializing the parameters of the original 

population.  The style in which the parameters are encoded must first be chosen.  There 

are two options on how this can be done.  One method is to convert all the parameter 

lues into binary strings and then merge them all into a single, long chromosome.  The 

treat each of the parameters as “genes,” keeping their real values 

Nevertheless, GA’s have been frequently observed to successfully produce reasonable 

The first step of the GA proceeds by initializing the parameters of the original 

population.  The style in which the parameters are encoded must first be chosen.  There 

are two options on how this can be done.  One method is to convert all the parameter 

lues into binary strings and then merge them all into a single, long chromosome.  The 

real values 
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which are then passed along when creating new solutions.  The set of parameters is then 

considered as the chromosome.  Each approach has trade-offs to be considered.  For 

example, encoding parameters into binary strings allows a more straight forward 

manipulation during the crossover operation, while keeping parameters as real values 

allows one to control the range that the parameters can take on to avoid unphysical results 

[19]. 

In the selection step, each of the possible solutions is evaluated through an objective 

function.  The objective function for band structure fitting usually takes the form of 

 �Q£S � 2 W 1∑ ¥CC ¦. ¥CLrYCLQ£S 2 YCL,§�7s0
CL ¨X% 0©

 (3.15) 

where �Q£S is the fitness of a solution calculated with the set of parameters £, YCQ£S 

are the energies calculated with the set of parameters £, YC,§�7 is the targeted goal value 

for energy [, and ¥C is a weight chosen from an interval [1,100] based on the importance 

of that energy [20].  The difference between the calculated energy and the targeted value 

is squared to penalize larger deviations from the goal values.  The negative sign in front 

Eq. (3.15) drives the GA to maximize �Q£S; however, the GA can just as well become a 

minimization problem by removing the negative sign.  Hard minimum or maximum 

values for particularly important energies can also be included by setting Eq. (3.8) to an 

arbitrarily low value if the calculated energy falls out of an acceptable range [21]. 

 The crossover and mutation step is performed after selection of the fittest solutions.  

How the crossover and mutation steps are implemented is largely based upon how the 

parameters are encoded in the initialization.  For binary coded parameters different 

segments of the binary string chromosomes of the two parents are combined in the 

crossover step, while the mutation operator will with a given probability reverse one or 

more of the bits in the binary string.  For real valued encoding, each gene of the child 
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randomly inherited from one of the two parents.  The mutation operator will change these 

values, subject to a user specified range.  Vitally important for either encoding is the 

probability of mutation.  Generally it has been observed that lower mutation rates give 

faster convergence, while higher mutation rates take longer to converge but give better 

results.  Alternatively, a variable mutation rate can be implemented so that the more 

similar two parents are, the higher the mutation rate becomes. 

 The termination of the GA is largely arbitrary.  Since absolute convergence will 

normally not be achieved, often the termination condition will be after a given number of 

iterations.  Another criterion that can be used is when the energy values to be fitted reach 

an acceptable accuracy.  The GA can then be programmed to terminate once the energies 

are within some tolerance level. 

3.5. Results of the Genetic Algorithm Fitting of 4H SiC 

Using the crystal pseudopotential expression and genetic algorithm fitting procedure 

of the preceding two sections, the electronic band structure of 4H SiC was calculated.  

For the material parameters, the lattice constants � � 3.032 ª and � � 9.928 ª, and 

bond length �� � 1.866 ª were used.  These parameters were taken from the theoretical 

work of Kackell et al. who arrived at them by finding the values that minimized the total 

energy [24].  A total of 575 plane waves for a cutoff energy of 205 eV was used since this 

lies in a range has been observed to give good convergence results in diamond and zinc-

blende materials [25].  For the Fourier coefficients, which act as the adjustable 

parameters used in the calculation, 19 distinct symmetric and anti-symmetric components 

were included. The GA sought solutions by varying these form factors from a range of -

0.25 Ry to 0.25 Ry, discretized to units of 0.001 Ry.  

 In terms of the GA, all the published experimental electronic structure data were 

targeted by the fitting procedure.  These experimental data include: the indirect Γ to M 
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band gap energy, the direct energy transitions at the Γ, M, K and L points, the energy 

difference between the first and second conduction band energies at the M point, and the 

total valence band energy.  The split-off energy at the top of the valence band was also 

included, although this cannot be completely and properly accounted for without 

including spin-orbit interaction effects.  In addition, the direct energy gaps at the A and H 

points deduced from ab initio calculations by Wenzien et al. and Baumeier et al. were 

included as additional fitting targets.  The choice of weights for each of these criterion 

were arrived at by assigning all experimental energy gaps with a weight of 100, while the 

energy gaps predicted by the ab initio calculations were assigned a weight of 70.  The 

weight for the total valence band energy, however, was given a value of 20 since its 

target value is much larger than the other criterion.  Deviations from this value would 

count disproportionately if it was weighted the same as the other energies.  Also, the 

weight for the split-off energy was assigned a weight of 70 since it cannot be completely 

accounted for in this approach.  

An initial population of 200 solutions was used, with half the population replaced 

after each iteration.  For the gene encoding, a real-valued scheme was used since large 

number of EPM form factors lends itself to this approach.  Each pseudopotential form 

factor is therefore treated as a gene, and child solutions inherit these randomly from one 

of two parent solutions.  A variable mutation probability was employed, varying linearly 

from about 6% for two solutions with no complementary form factors in common to 

about 17% for two duplicate solutions.  An illustration of the crossover and mutation 

operations of the reproduction step is illustrated in Fig. 3.4.   

In total, the genetic algorithm was run for 250 iterations before being terminated.  

The resultant band structure is plotted along several high symmetry points of the 

hexagonal structure in Fig. 3.5, while the form factors are given in Table I.  The fit 
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arrived at by the genetic algorithm is very satisfactory compared to the experimental 

values.  The band gap energy arrived at is 3.28 eV, while the direct Γ, M, K and L energy 

transitions obtained are 6.30, 4.42, 7.90 and 6.03 eV, respectively.  The total valence 

band is 19.25 eV wide.  Comparatively, the EPM calculation by Zubkova et al.

band gap energy smaller by about 0.3 eV, a direct Γ transition smaller by 1.6 eV and a 

direct L transition smaller by more than 1.5 eV.  The EPM calculation by Pennington 

underestimates the direct Γ transition by more than 1 eV and overestimates the direct 

M transition by about the same energy.  At the same time, the calculation has been 

simplified by requiring 12 less fitting parameters. 

.4. Illustration of the real-valued parameter encoding, and the crossover and 

mutation operations in the reproduction step.  Each of the parameters is interpreted as a 

“gene,” with each gene of the child either inherited from a random parent or being a new

value generated by mutation. 
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Using this band structure, the electron effective masses along the the M-Γ, M-L and 

M-K directions were calculated.  As shown in Fig. 3.6, this was done by fitting a parabola 

to the lowest 0.05 eV portion of the conduction band minimum, where the majority of 

electrons reside at room temperature, using a least squares fit. The values of the effective 

masses obtained are ���� � 0.66�	, ��
� � 0.31�	, ��
� � 0.34�	 which are in 

good agreement with the experimentally measured values of ���� � 0.58�	, ��
� �
0.29�	, ��
� � 0.33�	 [26].  Table II shows a comparison between the values of the 

energy transitions and effective masses obtained from this study and previous 

experimental measurements. 
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Fig. 3.5. Band structure for 4H SiC using 575 plane waves. 
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Table 3.1. EPM form factors for 4H SiC in Rydbergs determined by the GA, grouped 

together by reciprocal lattice vectors with the same magnitude, where ¬­ is scaled by 

� 28⁄ , ¬® is scaled by �√3 28⁄ , and ¬­ is scaled by � 28⁄ , ¬� is scaled by � 28⁄ .  Not 

included are form factors for which the reciprocal lattice vectors cause the structure 

factor to vanish. 

G VS VA 

(0,2,0) 
(1,1,0) 

-0.186  

(0,2,1) 
(1,1,1) 

-0.140 -0.196 

(0,0,4) 0.103 -0.031 

(0,2,2) 
(1,1,2) 

-0.111 -0.034 

(0,2,3) 
(1,1,3) 

-0.022 -0.007 

(0,2,4) 
(1,1,4) 

-0.107 -0.094 

(0,2,5) 
(1,1,5) 

-0.034 -0.058 

(2,0,0) 
(1,3,0) 

0.085  

(0,2,6) 
(1,1,6) 

0.041 -0.124 

(0,4,0) 
(2,2,0) 

0.004  

(0,4,1) 
(2,2,1) 

0.007 0.003 
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Fig. 3.6. Shape of the calculated (−) lowest conduction band along the M-Γ, M-K and M-

L directions, fitted with a least square parabolic approximation (--). 

 

Table 3.2. Energy transitions of the indirect and the direct band gap at high symmetry 

points Γ, M, K and L, and effective masses of 4H SiC calculated in this work compared to 

experimental results.  The energy transitions are in eV, while the effective masses are in 

units of �	. 

 

 
Energy Transitions Effective Masses 

Eg Γ M K L mMΓ
 mMK mML 

Expt. 3.26a 6.18b,6.2c 4c,4.5b 7.8c 6.7c 0.58d 0.29d 0.33d 

This 
Work 

3.28 6.30 4.42 7.9 6.03 0.66 0.31 0.34 
a Reference 16. 
b Reference 18. 
c Reference 17. 
d Reference 26. 
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CHAPTER 4. QUANTUM SCATTERING THEORY 

4.1. Introduction 

 Using the properties from the electronic band structure, further quantities such as 

transport properties can be calculated.  The band structure is necessary because transport 

in bulk semiconductors is treated semi-classically.  In essence, this means that the 

influence of the crystal potential on carriers is treated through an effective mass or, if 

more accuracy is needed, the full band structure.  In every other respect, carriers are 

treated classically as particles that obey Newton’s laws in response to applied and built in 

potentials [27]. 

 In this chapter, the foundations needed to make these transport calculations will be 

presented.  First, Fermi’s Golden rule will be discussed, and the definitions of the various 

characteristic rates are given.  The derivations will largely follow those given by 

Lundstrom [27].  These results summarize the effects of all scattering mechanisms.  

Subsequently, the characteristic rates for specific scattering mechanisms important to SiC 

are derived.   

4.2. Fermi’s Golden Rule 

 As discussed in the previous chapter, electrons in a solid can be thought of as Bloch 

waves that move through the crystal potential.  However, in real materials, these waves 

frequently encounter perturbing potentials – either from impurities or from phonons – 

causing them to be scattered and their momentums to be relaxed.   The quantity that 

describes this scattering is called the scattering rate, u`,`�.  This is the long-time average 

probability that an electron with wave vector ` will, after interacting with a perturbing 

potential, emerge with a wave vector `¯. 
To obtain the general expression for the scattering rate, the Schrödinger equation of 

an electron in the presence of a scattering potential must be solved.  Assuming the 
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problem is one-dimensional for simplicity, the Schrödinger equation is in the form of  
 r-	 ? �eQ:, lSsΨQ:, lS � �� °ΨQ:, lS°l  (4.1) 

where -	 is the Hamiltonian for the unperturbed problem, �eQ:, lS is the scattering 

potential, and ΨQ:, lS is the wave function of the electron.  Furthermore, it is assumed 

that the solutions to the unperturbed problem is known so that 

 Ψ±	Q:, lS � ²±Q:S���³´§ �⁄  (4.2) 

where ²± is an eigenfunction of -	 with corresponding eigenvalue Y±, and Ψ±	 is the 

corresponding time-dependant solution.  From basic quantum mechanics, it is known that 

the ²±’s form a complete orthonormal set.  Consequently, any wave function of the 

perturbed potential in Eq. (4.1) can be expanded as 

 ΨQ:, lS � . �±QlSΨ±	Q:, lS± � . �±QlS²±Q:S���³´§ �⁄
±  (4.3) 

where �±QlS is the expansion coefficient for each eigenstate ²±.  These expansion 

coefficients are interpreted in quantum mechanics as being related to the long-time 

probability that an electron is in a state ¬, given by the expression 

 3± � lim§¶·|�±QlS|0 (4.4). 

The scattering rate from ¬ to ¬� is then 

 u±,±� � lim§¶·
|�±QlS|0l  (4.5) 

 The form of the �±’s can be found by exploiting the orthogonality of Eq. (4.2).  The 

wave function of Eq. (4.3) is inserted into Eq. (4.1) resulting in 
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 �eQ:, lS . �±QlS²±Q:S���³´§ �⁄
± � �� . °�±°l ²±Q:S���³´§ �⁄

±  (4.6). 

Multiplying each side by ²±� ��³´§ �⁄  and integrating over the normalization length results 

in 

 �� °�±°l � . -±L,±�±QlS��r³´L�³´s§ �⁄
±  (4.7) 

where  

 -±L,±QlS � q ²±LQ:S�eQ:, lS²±Q:S�:¸ 0⁄
�¸ 0⁄  (4.8) 

is called the matrix element of the scattering potential.  To proceed any further, an 

assumption must be made.  The scattering in the problem is taken to be weak and 

infrequent so that the probability of an electron in an arbitrary state ¬	 is �±¹ O 1, and all 

other probabilities are �± O 0.  This is known as the Born approximation and results in 

only one term in Eq. (4.6) surviving, giving 

 �� °�±¹L°l � -±¹L ±¹��º³´¹L �³´¹»§ �©
 (4.9). 

Integrating Eq. (4.8) results in the expression for �±¹L QlS, 

 �±¹L � 1�� q -±¹L ±¹��º³´¹L �³´¹»§ �© �l§
	  (4.10) 

which includes a constant equal to �±¹L Q0S.  However, in accordance with the Born 

approximation, the probabilities for all states other than ¬	 before the scattering event is 

approximately zero. 

 To arrive at a final expression for u`,`�, the time-dependent matrix elements is 

assumed to have a time harmonic form of 
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 -±¹L ,±¹QlS � -±¹L ,±¹�,D �¼�½§ (4.11), 

where the � stands for absorption and the � stands for emission.  Inserting Eq. (4.10) into 

Eq. (4.9) and integrating results in 

 �±¹L � 1�� -±¹L ,±¹�,D ��¾³´¹L �³´¹¼�½¿§ �© 2 1� ÀY±¹L 2 Y±¹ ¼ ��Á �⁄  (4.12). 

By defining  

 Λ � �ÀY±¹L 2 Y±¹ ¼ ��Á �⁄  (4.13) 

Eq. (4.11) can be written in a more compact form given by 

 �±¹L � 1�� -±¹L ,±¹�,D ��Ã§ 0⁄ sinQΛl 2⁄ SΛl 2⁄ l (4.14). 

Using Eq. (4.11) the resulting transition rate is  

 u±¹,±¹L � lim§¶·
Ä-±¹L ,±¹�,D Ä0

l�0 PsinQΛl 2⁄ SΛl 2⁄ T0 l0 (4.15). 

In the limit of l ¶ ∞, the sinc function approaches a delta function with a strength of π.  

With this substitution the resulting expression is  

 u±¹,±¹L � lim§¶·
Ä-±¹L ,±¹�,D Ä0

l�0 PsinQΛl 2⁄ SΛl 2⁄ T0 l0  

 � lim§¶·
8 Ä-±¹L ,±¹�,D Ä0

�0 oQΛl 2⁄ Sl � lim§¶·
8 Ä-±¹L ,±¹�,D Ä0

�0 oQΛS ¾2l¿ l 
 

 � 28� Ä-±¹L ,±¹� Ä0 oÀY±¹L 2 Y±¹ 2 ��Á  

 ? 28� Ä-±¹L ,±¹D Ä0 oÀY±¹L 2 Y±¹ ? ��Á (4.16). 
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The correspondence between the absorption and the emission matrix elements to each 

delta function results because in absorption the final state’s energy is Y±¹L � Y±¹ ? ��, 

while in emission the final state’s energy is Y±¹L � Y±¹ 2 ��.  This result in scattering 

theory is known as Fermi’s Golden Rule, and it allows one to calculate the transition rate 

of any scattering process if one knows the corresponding scattering potential. 

 Once the transition rate is known, a set of characteristic rates can be derived that 

concisely summarize the effects of scattering mechanisms in a semiconductor.  One of 

these is the scattering rate, defined as the rate carriers scatter out of an initial wave vector 

(or momentum) into any other wave vector (momentum).  This is calculated as 

 
1Æ � . u@,@L�1 2 _@L�@L,Ç O . u@,@L@L,Ç  (4.17) 

where instead of using the wave vector the crystal momentum @ � �` is used instead.  

The approximation in Eq. (4.17) can be made for non-degenerate semiconductors, since 

in these cases the probability for the final momentum state to be occupied is low.   

Another important characteristic rate is the momentum relaxation rate.  This is the 

rate at which an electron loses information in the direction of its initial momentum.  The 

expression relating the transition rate to the momentum relaxation rate is found by 

weighting the transition rate by the change in direction of the carriers, 

 
1ÆÈ � . u@,@L P1 2 É/�/ Ê cos vT@L,Ç  (4.18) 

where v is the angle between the initial and final momenta (see Fig. 4.1), while the up 

arrow in the summation indicates the inclusion of only the final momenta with a spin 

parallel to the initial momentum.  An important result to note is that when the transition 

rate is isotropic, the relaxation rate and momentum relaxation rate are equal for non-

degenerate semiconductors. 
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 Finally, the last characteristic time of interest is the energy relaxation time.  In 

contrast to the momentum relaxation time, this is the rate at which the magnitude of the 

momentum (which is a measure of energy) is randomized.  In a similar manner to the 

momentum relaxation rate, this is found by weighting the transition rate by the change in 

the energy of the carriers, 

 
1ÆÈ � . u@,@L P1 2 YËLYË T@L,Ç  (4.19). 

The various relaxation times are illustrated in Fig. 4.1b. 

 

(a) (b)  

Fig. 4.1. (a) The momentum, final momentum, and emitted/absorbed phonon vectors with 

the various angles defined between them.  (b) Illustration of the various characteristic 

times. 

 

The rest of this remaining chapter will focus in detail on each of the scattering 

mechanisms important in SiC.  Emphasis will be placed on deriving the relaxation rate 

and the momentum relaxation rate, since it is these quantities that are of interest in 

calculating mobility. 
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4.3. Scattering Mechanisms and Momentum Relaxation Rates 

 Once the scattering potential is known, and using Fermi’s Golden Rule, any of the 

characteristic rates can be calculated.  This section provides a brief overview of the 

characteristic rates important to SiC; however, no detailed derivation of them will be 

given.  The scattering potentials for each mechanism will be assumed to be known, and 

mathematical details of the summations (integrals) of the form of Eq. (4.17) and Eq. 

(4.18) will be largely omitted.  However, mathematically rigorous derivations are covered 

thoroughly in the literature [27-29].   

The scattering mechanisms under consideration can be classified into many broad 

categories.  One division is between impurity scattering due to atoms different from the 

host atoms of the material and phonon scattering due to lattice vibrations.  Phonon 

scattering can further be subdivided according to whether it is non-polar (single element 

semiconductors) or polar (compound semiconductors) scattering.  Each of these 

preceding categories can further be subdivided according to whether the scattering is by 

acoustic or optical phonons.  Each of these will be covered in the subsequent sections. 

4.3.1. Ionized Impurity Scattering 

 Several theories have been developed to describe electron scattering by ionized 

impurities.  One approach, valid for degenerate systems, was developed by Mott and is 

suitable for impure metallic systems [30].  For semiconductors, one widely used approach 

is the theory developed by Brooks and Herring, which assumes ionized impurities attract 

mobile carriers which screen their potential [27-29].  A drawback to this approach is that 

it predicts an infinite scattering probability for small angle deflections when the screening 

is low.  This is remedied by an approach developed by Conwell and Weisskopf, whose 

theory assumes no screening but avoids the divergent scattering probabilities [31].  

However, the assumption of unscreened Coulomb scattering for small angles is known to 
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be not very accurate, and therefore this section will focus on the formulation of Brooks 

and Herring. 

 The perturbing potential in this case is due to donor or acceptor atoms in the host 

material that become ionized, and is screened by the free carrier concentration.   This 

potential has the form of a Yukawa potential, 

 �eQzS � 6048Ìe9	z ��7 ¸Í⁄  (4.20) 

where Ìe is the dielectric constant of the material and z is the distance from the impurity.  

The quantity �$ is known as the Debye length, and is given by 

 �$ � ÎÌe9	¬�\60#Ï  (4.21) 

where ¬� is the Boltzmann constant, \ is the temperature and #Ï is the number of ionized 

impurities in the sample.  Using Eq. (4.20) in Eq. (4.8) with Bloch waves as the form of 

the solutions ²± and integrating results in 

 -@L,@ � 60ΩÌe9	
1

/0 sin0 Àv2Á ? ¾ 1�$0 ¿ (4.22). 

where Ω is the normalization volume and v is the angle between the incident and 

scattered momenta.  Inserting Eq. (4.22) into Eq. (4.16) and multiplying by the number of 

impurities in the normalization volume, #ÏΩ, gives the expression for the ionized 

impurity transition rate 

 u@,@L � 28#Ï6��Ìe09	0Ω oQY� 2 YS
º4 À/�Á0 sin0 Àv2Á ? ¾ 1�$0 ¿»0 (4.23). 

As briefly mentioned earlier, the scattering potential of Eq. (4.20) is obtained by 

assuming ionized impurities are screened by mobile carriers.  When a region is absent of 

mobile carriers, such as in a depletion region in a device, �$ ¶ ∞ and the second term in 
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the denominator of Eq. (4.23) vanishes.  As the angle of deflection approaches zero, this 

would result in a divergent scattering rate.  In these cases, either a lower limit to the 

scattering angle must be provided, or another approach such as the Conwell-Weisskopf 

approximation, must be used.  

Finally, the momentum relaxation rate is obtained by substituting Eq. (4.23) into Eq. 

(4.18) and integrating over all final states producing 

 
1ÆÈ,�� � #Ï6�

16√2��8Ì>09	0Y±) 0⁄ PÐ[Q1 ? Ñ0S 2 Ñ01 ? Ñ0T (4.24) 

where Ñ0 � 8��Y±�$0 �0⁄ . 

4.3.2. Neutral Impurity Scattering 

 Another category of impurity scattering is due to non-ionized shallow donors and 

acceptors, and contributes significantly to the total scattering rate if the doping 

concentration is high and the temperature is low [29].  This is known as neutral impurity 

scattering, and was first treated theoretically as slow electrons colliding with a neutral 

hydrogen atom.  This approach was first developed by Massey and Moisewitch [32], and 

later extended to impurities in semiconductors by Erginsoy [33].  The resulting 

momentum relaxation rate is constant with respect to energy and is given by 

 
1ÆÈ,C� � 808Ì>9	�)#C�0��0  (4.25) 

where #C is the number of neutral impurities present.   

Many other alternative formulations to Erginsoy’s exist.  One such approach is that due 

to Sclar [34], who treated the scattering by neutral impurities as due to a spherically 

symmetric square-well potential which can bind an electron to it.  The resulting 

momentum relaxation rate using this approach is 
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1ÆÈ,C� � 2) 0⁄ 8�0#C��) 0⁄ W Y±% 0⁄

Y± ? YÒX (4.26) 

where YÒ � 0.75 È�
È À %ÓÔÁ0

 eV is the binding energy for a second electron on a hydrogen 

atom.  It is clear that with Sclar’s formula larger binding energies would result in longer 

momentum relaxation times.  Thus, deep levels which bind electrons do not act as strong 

scattering centers. 

4.3.3. Scattering and Relaxation Rates for Phonons 

 In addition to impurities, the other major class of scattering centers in semiconductors 

is due to phonons.  The perturbing potential in this case is from pressure that changes the 

lattice constants.  In compound semiconductors, an additional interaction arises due to the 

polar nature of the bonds.  On this basis, the scattering can be divided into two categories: 

non-polar and polar.  In addition, since the phonon dispersion curves exhibit two 

branches – acoustic modes that propagate in a manner similar to sound waves and optical 

modes interact with light – each scattering mechanism can further be divided into two 

more categories.  This results in four different scattering mechanisms: acoustic 

deformation potential (ADP), optical deformation potential (ODP), polar acoustic 

deformation potential (also known as piezoelectric, PZ), and polar optical potential 

(POP).   

The scattering potentials for each of these mechanisms can be written in general as 

 �e � ÕÖbÖ (4.27). 

In this equation bÖ is of the form of an one dimensional elastic wave with wave vector × 

and is given by 

 bÖQ:, lS � cÖ��QÖ­�½§S ? cÖ� ���QÖ­�½§S (4.28) 
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where cÖ is the magnitude of displacement.  The factor ÕÖ depends on the scattering 

mechanism, and its magnitude squared for each of the four different mechanisms is given 

by 

 ØÕÖØ0 � ×0��0 QADPS (4.29), 

 ØÕÖØ0 � �B0 QODPS (4.30), 

 ØÕÖØ0 � ÉÝ60�B0×0Ì	9	Ê ¾ Ì	Ì· 2 1¿ QPOPS (4.31), 

 ØÕÖØ0 � ¾6�dÞÌ	9	¿0  QPZS (4.32), 

where �� is the acoustic deformation potential, �B is the optical deformation potential, 

�B is related to the polar optical phonon energy, Ì· is the high frequency dielectric 

constant, and �dÞ is the piezoelectric constant.  The deformation potentials and polar 

optical phonon energies are usually determined experimentally, while the piezoelectric 

constant is related to electromechanical coupling coefficient which can be determined by 

the elastic constants of the material. 

Using Eq. (4.27), a general expression for the scattering matrix element of phonons 

can be written as 

 Ø-@L,@Ø0 � ØÕÖØ0ØcÖØ0o@L,@à�á (4.33). 

Directly inserting this result into Fermi’s Golden Rule in Eq. (4.16) and assuming 

parabolic energy bands gives the general transition rate for phonon scattering processes, 

 u@L,@ � 28� ØÕÖØ0ØcÖØ0o@L,@à�áorY� 2 Y ¼ ��Ös (4.34). 
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Each of the delta functions expresses a conservation law (momentum and energy, 

respectively), and in order to evaluate their product the energy will need to be expressed 

in terms of momentum.  This is done by first noting that the Kronecker delta function 

indicates that the final, scattered momentum is just the initial momentum that has 

absorbed or emitted additional momentum due to phonons, 

 @� � @ à �á (4.35). 

Taking the dot product of the final momentum with itself results in 

 @� · @� � /0 à 2�/× cos â ? �0×0 (4.36) 

where â is the angle between @ and á (see Fig. 4.1a).  With the assumption of parabolic 

energy bands and using substituting velocity for momentum in Eq. (4.36) results in 

 Y� 2 Y ¼ ��Ö � �ã× ¾à cos â ? �×2/ ¼ �Öã×¿ (4.37). 

Since Eq. (4.37) includes the constraint of conservation of momentum in the energy 

expression, the transition rate can be written with just one delta function as 

 u@L,@ � 28�0ã× ØÕÖØ0ØcÖØ0o ¾à cos â ? �×2/ ¼ �Öã×¿ (4.38). 

The magnitude squared of the lattice vibration is determined by taking into account 

quantum mechanical considerations.  Phonon scattering events result from either 

absorbing or emitting quantized lattice vibrations, and this is expressed in  the form 

 ØcÖØ0 � �2ÝΩ�Ö ¾#Ö ? 12 ¼ 12¿ (4.39) 
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where #Ö is the number of phonons determined by the Bose-Einstein distribution, and the 

minus (plus) sign is for phonon absorption (emission).  Substituting Eq. (4.39) into Eq. 

(4.38) gives the general transition rate for phonons, 

 u@L,@ � iÖ ¾#Ö ? 12 ¼ 12¿ o ¾à cos â ? �×2/ ¼ �Öã×¿ (4.40) 

with iÖ being determined by the scattering process, 

 iÖ � 8����0�Ýãe/Ω QADPS (4.41), 

 iÖ � 8���B0�Ý�	×/Ω QODPS (4.42), 

 iÖ � É 8��60�B0�Ì	9	×)/ΩÊ ¾ Ì	Ì· 2 1¿ QPOPS (4.43), 

 iÖ � ¾6�dÞÌe9	 ¿0 8���0Ýãe×0/Ω QPZS (4.44). 

 The general expression for the relaxation rate and the momentum relaxation rate for 

phonons can be derived using Eq. (4.40).  For the relaxation rate, Eq. (4.40) is inserted 

into Eq. (4.17).  Since the mapping between the momentum and the phonon wave vector 

is unique, as indicated in Eq. (4.35), the summation of Eq. (4.17) is taken over × instead 

of /.  Transforming the summation into an integral gives the relaxation rate 

 
1Æ � Ω88) q �ä0å

	 q iÖ ¾#Ö ? 12 ¼ 12¿ ×0�×·
	   

 � q o ¾à ��� â ? �×2/ ¼ �Öã×¿ �Q��� âS%
�%  (4.45). 

Mathematically, the delta function in this integral is zero unless 21 æ  �Ö0Ë ¼ ½çèÖ æ 1.  

Therefore, this puts a restriction on the minimum and maximum values the phonon wave 
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vector may take.  In physical terms, this restricts the phonon wave vector to the minimum 

and maximum values for which both momentum and energy are conserved.  The 

relaxation time expression can therefore be simplified to 

 
1Æ � Ω480 q iÖ ¾#Ö ? 12 ¼ 12¿ ×0�×Öéwê

Öéëì
 (4.46). 

The momentum relaxation rate is evaluated in a similar manner by converting the 

summation in Eq. (4.18) into an integral.  This is done by converting the last quantity in 

parenthesis to 

 É1 2 /�/ cos vÊ � 1 2 @ · Q@ à �áS/0 � ¼ �× cos â/  (4.47). 

The momentum relaxation rate can then be written as 

 
1ÆÈ � Ω88) q �ä0å

	 q iÖ ¾#Ö ? 12 ¼ 12¿ ×0�×·
	   

 � q o ¾à ��� â ? �×2/ ¼ �Öã×¿ ¾¼ �× cos â/ ¿ �Q��� âS%
�%  (4.48) 

which, using the properties of the delta function, can immediately be simplified to 

 
1ÆÈ � Ω480 q iÖ ¾#Ö ? 12 ¼ 12¿ �×)/ ¾�×2/ ¼ �Öã×¿ �×Öéwê

Öéëì
 (4.49). 

4.3.4. Non-Polar Acoustic Deformation Potential Scattering 

The scattering of electrons in semiconductors by non-polar acoustic mode phonons 

was first proposed by Bardeen and Shockley [35].  Intra-valley acoustic phonons 

scattering is due to long-wavelength displacements, which is to say they have wave 

vectors very close to the origin of the Brillouin zone.  The energy change of carriers 

involved in collisions with these phonons is very small, and therefore the scattering event 
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is usually taken to be elastic.  In addition, scattering by non-polar acoustic modes are 

isotropic, so the relaxation rate and momentum relaxation rate are equal. 

In order to evaluate the relaxation time for acoustic deformation potential scattering, 

Eq. (4.46) is used in conjunction with Eq. (4.41).  For temperatures above a few degree 

Kelvin, the number of phonons is large so that #Ö O #Ö ? 1 and the law of equipartition 

can be invoked, giving #Ö O ¬�\̧ ��Ö⁄ .  The resulting relaxation rate is 

 
1Æ�$d � ����0¬�\̧28�0ãe0Ý q ×�×Öéwê

Öéëì
� ����0¬�\̧48�0ãe0Ý r×È�­0 2 ×È�C0 s (4.50). 

The maximum and minimum phonon wave vectors can be deduced by using energy and 

momentum conservation laws with the assumption of spherical, parabolic energy bands, 

with the result being �×È�­ � 2��ã and �×È�C � 0.  The relaxation rate using these 

limiting phonon wave vectors is 

 
1Æ�$d � 1ÆÈ,�$d � ����0¬�\̧�ãe0Ý íQYS (4.51) 

where íQYS is the three dimensional density of states given by 

 íQYS � ��√2��Y80�)  (4.52). 

Thus, acoustic deformation potential scattering is proportional to the number of final 

states available to carriers.   

4.3.5. Piezoelectric Scattering 

 For crystals lacking inversion symmetry, elastic strain also causes an electrostatic 

perturbation that results in additional scattering.  Scattering by acoustic phonons of this 

type is known as piezoelectric scattering, and is important at low temperatures and for 

high purity crystals.  The microscopic origins of piezoelectricity were investigated 
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experimentally by Arlt and Quadflieg [36], who identified the piezoelectric effect as 

arising from ionic polarization, strain-dependent iconicity and electric polarization. 

 To obtain the momentum relaxation rate for piezoelectric scattering, Eq. (4.44) is 

inserted into Eq. (4.49).  Invoking the law of equipartition and using the approximation 

�Ö O ãe× for acoustic wave vectors close to the origin results in 

 
1ÆÈ,dÞ � ¾6�dÞÌe9	 ¿0 ¬�\̧ ��48�Ýãe0/0 q ¾�×2/ ¼ ãeã ¿ �×Öéwê

Öéëì
 (4.53). 

The piezoelectric effect is highly structure dependent, and this is reflected through the 

directional nature of the elastic constants implicit in the velocity of sound.  This can be 

averaged out by defining a dimensionless value 3, known as the electromechanical 

coupling coefficient, that groups together the piezoelectric constant, the density, and the 

sound velocity.  In addition, since the velocity of sound is typically orders of magnitude 

smaller than the thermal carrier velocity, the second term in the integrand of Eq. (4.53) 

can be ignored.  Carrying out the integration with the maximum and minimum wave 

vectors for acoustic phonons and multiplying by two to take account of both absorption 

and emission results in a momentum relaxation rate 

 
1ÆÈ,dÞ � 60¬�\̧ 30

28Ìe9	�0î2Y ��⁄  (4.54). 

4.3.6. Polar Optical Phonon Scattering 

 Like piezoelectric scattering, polar optical phonon scattering arises from the long-

range macroscopic electric fields created by the vibrations of oppositely charged atoms in 

a unit cell.  For compound materials, polar optical phonon scattering is the dominant 

scattering mechanism. It is not isotropic and, unlike all the other scattering mechanisms 

discussed so far, is inelastic.  The energy of optical phonons is comparable to ¬�\ at 

room temperature, and this must be taken into account in any quantitative theory.   
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As will be seen in the next chapter, since polar optical phonon scattering is not isotropic 

or elastic, what is desired for mobility calculations is the relaxation rate rather than the 

momentum relaxation rate.  This is accomplished by using Eq. (4.43) in Eq. (4.46).  The 

maximum and minimum phonon wave vectors in this case can be found by setting the 

argument of Eq. (4.40) to zero and solving for ×.  The quadratic equation resulting from 

setting the argument of the delta function to zero is 

 ×0 à Q2pcos âS� × ¼ 2/�B�ã � 0 (4.55) 

where ��B is the energy of the optical branch of the phonon dispersion relation.  For 

long-wavelength (small wave vector) phonons, this value is approximately constant.  The 

maximum wave vector occurs when cos â � 21, while the minimum occurs when 

cos â � 1, resulting in 

 ×È�­ � /� ð1 à Î1 à ��BY ñ (4.56) 

and 

 ×È�­ � /� ð¼1 à Î1 à ��BY ñ (4.57). 

Using these limits in the integral of Eq. (4.46) gives the polar optical phonon relaxation 

time,  

 1ÆÈ,dòd � 60�B À Ì	Ì· 2 1Á
48Ì	9	�î2Y ��⁄   

 P#B ln ÉîY ? ��	 ? √YîY ? ��	 2 √YÊ ? Q#B ? 1S ln É√Y ? îY 2 ��	√Y 2 îY 2 ��	ÊT (4.58) 

where #B is the optical phonon occupation number determined by Bose-Einstein statistics 
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 #B � 1��½ó ±¡Ò⁄ ? 1 (4.59). 

The first term in brackets in Eq. (4.58) represents absorption of an optical phonon, while 

the second represents emission of an optical phonon.  It is understood that the second 

term in the brackets only applies when the carrier energy is greater than or equal to the 

optical phonon energy.   

4.3.7. Inter-valley Phonon Scattering 

In addition to the phonon scattering processes discussed in the previous sections, both 

acoustic and optical phonons can scatter carriers from one valley of the band structure 

into another.  The final valley the carriers scatter into may either be energetically 

equivalent to the initial valley, or it may be a valley that is not energetically equivalent.  

The scattering into energetically equivalent valleys involves large changes in momentum, 

and therefore result from short-wavelength phonons with wave vectors close to the 

Brillouin zone boundary.  In this region, acoustic and optical phonons have energies that 

approach similar values.  In addition, carriers can scatter to a final valley that is not 

energetically equivalent.  This can either take the form of scattering between extrema at 

different points in the Brillouin zone, or between extrema at the same point but at 

different energies.  In all of these cases, the mechanism is approximated to be isotropic 

since non-polar inter-valley scattering is a randomizing process.  While this does not hold 

true for polar processes, piezoelectric and polar optical phonon inter-valley scattering is 

typically unimportant except for very low temperatures. 

The relaxation rate for inter-valley phonons can be found in a phenomenological 

manner by treating the perturbing potential as 

 �e � ���bÖ (4.60) 
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where ��� is the deformation potential describing inter-valley scattering.  Thus, the factor 

ØÕÖØ0
 is just ���0 .  Using this in the relaxation rate integral of Eq. (4.46) gives the result 

 
1Æ�� � 1ÆÈ,�� � 8���0 ô�Ý���   

 � �#�  írY ? ���� 2 ΔY��s ? Q#� ? 1S írY 2 ���� 2 ΔY��s� (4.61) 

where ô� is the number of final valleys available at the extrema under consideration, 

���� is the inter-valley phonon energy, #� is the inter-valley phonon occupation number 

determined by Eq. (4.59), and ΔY�� is the difference in energy between the initial and 

final valleys.  Since only phonons close to the zone boundary, where the acoustic and 

optical phonon dispersion curves flatten out and approach the same value, are involved in 

inter-valley scattering, ���� is approximated as a constant value.  Again, the first term in 

brackets indicates absorption while the second term indicates emission, with emission 

only possible if the carrier energy is greater than the sum of the inter-valley phonon 

energy and the energy difference between the initial and final valleys.  For inter-valley 

scattering to energetically equivalent valleys, ΔY�� is zero. 
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CHAPTER 5. TRANSPORT IN 6H SIC 

5.1. Introduction 

 During the last few decades, the various polytypes of silicon carbide (SiC) have been 

intensively studied in the hope that it will become a suitable material for high-power and 

high-temperature electronic applications.  The 4H polytype of SiC has garnered the most 

attention because its band gap is the largest of the various polytypes, while the more 

developed 6H polytype of SiC is already an important substrate material for 

optoelectronic applications. However, for any practical realization of electronic devices 

on SiC to occur, certain transport properties need to be known.  One such quantity is the 

electron mobility, and to this end experimental studies have been carried out to determine 

its value [37-42].  Along with these experimental results are theoretical calculations that 

attempt to model them and to explain the mechanisms that determine the mobility [38-

40,43-46].  The scattering theory discussed in the previous chapter provides a natural 

avenue to investigate these mechanisms, since they provide a microscopic description of 

the processes that factor into the determination of the mobility.  Indeed, many theoretical 

studies have relied on such a treatment to explain the electron mobility for both 4H and 

6H SiC [38,39,43-46]. 

In terms of 6H SiC, while the aforementioned computational studies had adequate 

success in explaining the experimental results, all of these calculations have either: (i) 

focused on calculating the electron drift mobility, while the experimental work has 

usually measured the electron Hall mobility, or (ii) been inexact solutions based on the 

relaxation time approximation.  Comparisons between the Hall mobility and drift 

mobility have been justified by either assuming a Hall scattering factor of unity, or 

through a calculation of the Hall scattering factor which also relied on the relaxation time 

approximation.  Experiments have shown that the former assumption can be off by as 
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much as 19% depending on temperature and doping concentration [47]. Meanwhile, Hall 

scattering factors calculated with the relaxation time approximation differ significantly 

from experimental data [43]. 

In this chapter a more accurate calculation of the electron Hall mobility and Hall 

scattering factor for 6H-SiC is presented by calculating the electron Hall mobility exactly 

using the contraction mapping principle [48].  At the same time, the low field electron 

drift mobility is solved exactly using Rode’s iterative method [49], and the Hall scattering 

factor is then arrived at by taking the ratio of the two values multiplied by a mass factor.  

Similar calculations have been applied to 4H SiC, giving more accurate computational 

results compared to past studies [38].  However, those techniques have not yet been 

applied to 6H SiC until now [50].  In addition, a single set of values for the acoustic 

deformation potential, the intervalley deformation potential and the intervalley phonon 

energy, which are adjusted to simultaneously match the experimental Hall scattering 

factor and Hall mobility data, are given.  The calculated electron Hall mobilities and Hall 

scattering factors are compared with the experimental data of Karmann et al. [41] and 

Rutsch et al. [47], respectively.  Finally, how the change of ionization energy with 

impurity concentration affects the mobility calculation will be briefly explored.  First, 

however, a concise overview of the techniques used to solve the Boltzmann transport 

equation is given. 

5.2. Solving the Boltzmann Transport Equation for Mobility and the Hall Scattering 

Factor 

The general approach in statistical mechanics for finding thermodynamic quantities 

of interest for an ensemble of particles is to first find the partition function, from which 

the distribution function can be deduced [51].  The distribution function measures the 

probability of finding carriers at a given location, possessing a given momentum, at a 
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given time, and from which quantities such as conductivity and mobility can be computed 

[27].  At equilibrium, the distribution function for fermionic particles is just the Fermi-

Dirac function.  Interactions with electric and magnetic fields as well as scattering events, 

cause deviations from the equilibrium distribution function.  Deviations from the 

equilibrium distribution function in response to these stimuli can be deduced through the 

use of Louisville’s theorem or, more commonly in the field of semiconductors, a more 

specialized version of Louisville’s theorem known as the Boltzmann equation [27,28]. 

The Boltzmann equation can be derived by carefully tracking carrier in-flows and 

out-flows in a given volume of six-dimensional phase space, which is made up of three 

dimension in position and three dimensions in momentum.  Doing so gives the time 

evolution of the distribution function as 

 
°_°l � 2 ¾ö · ÷R_ ? 6ø� · ÷`_¿ ? �°_°l ù!BEE ? �QR, `, lS (5.1) 

where ú is the electric field.  The first term in parenthesis on the right hand side of Eq. 

(5.1) represents the net in- or out-flow in position and momentum space, respectively.  

The second term is known as the collision integral and is the change in distribution due to 

scattering events.  This can be due to carriers with a momentum `� in-scattering to the 

wave vector ̀  or carriers in wave vector ` out-scattering to a wave vector `�.  In either 

case, this will depend on the probability that the original state is filled and the probability 

that the final state is empty, resulting in 

 �°_°l ù!BEE � . u`L,`_`LQ1 2 _̀ S`L
2 . u`,`L_̀ Q1 2 _`LS`L

 (5.2). 

For non-degenerate semiconductors, the distribution function is much less than unity so 

that Eq. (5.2) can be approximated as 
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 �°_°l ù!BEE � . u`L,`_`L`L
2 . u`,`L_̀`L

 (5.3). 

Finally, the last term on the right hand side of Eq. (5.1) is the net generation 

recombination rate in the volume of phase space. 

For semiconductors, what is typically of interest is the low field mobility.  Under these 

steady-state, spatially homogeneous conditions with Fermi-Dirac statistics, the 

Boltzmann equation becomes 

 2 6ø� · û`_̀ � q�u`�,`Q1 2 _̀ S_̀ � 2 u`,`�_̀ Q1 2 _̀ �S��`¯ (5.4) 

where the summations of Eq. (5.3) have been converted to integrals.  The second term on 

the right hand side of Eq. (5.4), which describes out-scattering processes, can be 

integrated in a straight forward manner.  However, the first term on the right hand side, 

which describes in-scattering processes, depends on the unknown distribution function 

and cannot be so easily computed. 

 In order to proceed, the distribution function is written as 

 _̀ � _	,` ? :í` (5.5) 

where _	,` is the equilibrium distribution function, í` is the perturbed distribution 

function, and : is the cosine of the angle between the electric field ø and the wave vector 

`.  This result can be shown to be true for electrons in spherical bands under low fields.  

Inserting Eq. (5.5) into Eq. (5.4) and only keeping terms involving : gives 

 2 6ü� °_	°¬ � 2 q í`�u`,`Lr1 2 _	,`Ls 2 u`L,`_	,`L��`�  

 ? q :í`L�u`L,`r1 2 _	,`s 2 u`,`�_	,`��`¯ (5.6) 
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At this point, it is advantageous to divide the scattering mechanisms into those due to 

elastic processes and those due to inelastic processes.  By doing so, Eq. (5.6) becomes 

 2 6ü� °_	°¬ � 2 q í`�u`,`L�CDEr1 2 _	,`Ls 2 u`L,`�CDE_	,`L��`� 2 í`ãDE  

 ? q :í`L�u`L,`�CDEr1 2 _	,`s 2 u`,`L�CDE_	,`��`¯ (5.7) 

where u`L,`�CDE and u`,`L�CDE are the transition rates due to inelastic processes.  The elastic 

processes, ãDE, are grouped together and, because ` and ̀ � are equal in this case, are 

reduced to 
 ãDE � q u`,`LDE Q1 2 cos vS�`� (5.8), 

where u`,`LDE  is the transition rate due to elastic processes.  This is just the definition of the 

momentum relaxation rate (see Eq. (4.18)), so that ãDE is just the sum of the momentum 

relaxation rates of all the relevant out-scattering elastic processes.  Finally, by rearranging 

Eq. (5.7) an iterative form can be found for the unknown distribution function, 

 í`,� % � u�rí`,�s ? 6ü� �_	�¬uB  (5.9) 

where uB is the sum of the out-scattering processes and is given by 

 uB � ãDE ? 1 Æ�C©  (5.10). 

In the previous two expressions, the inelastic scattering processes have been grouped into 

two different terms.  The first represents the out-scattering inelastic processes and is 

given by 

 1 Æ�C© � q�u`,`L�CDEr1 2 _	,`Ls 2 u`L,`�CDE_	,`L��`� (5.11). 
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As previously mentioned, for non-degenerate semiconductors the distribution function is 

much less than unity, so that Eq. (5.10) can be approximated as  

 1 Æ�C© � q u`,`L�CDE�`� (5.12), 

which shows that the inelastic out-scattering terms are just the sum of the relaxation rates 

of the individual processes (see Eq. (4.17)).  The other term describes in-scattering due to 

inelastic processes, and is given by the integral  

 u�Qí`S � q :í`L�u`L,`�CDEr1 2 _	,`s 2 u`,`L�CDE_	,`��`¯ (5.13). 

For each relevant inelastic process, the integral of Eq. (5.13) must be solved.  The 

iterative form of Eq. (5.10) can be shown to be a contraction mapping that leads to 

quickly converging solutions. 

After solving the perturbed distribution function to arbitrary accuracy using Eq. (5.10), 

the drift mobility is calculated by 

 ý � 2 �3�� þ `)Qí` ü⁄ S�`þ `0_	�`  (5.14) 

where µ is the electron drift mobility, � is the reduced Planck constant, and �� is the 

effective mass of the electron.  This iterative technique to solve for the mobility in the 

presence of a low electric field was first discussed by Rode in 1975 [49]. 

 A similar contraction mapping technique, also introduced by Rode [48], solves the 

Boltzmann transport equation in the presence of an arbitrary magnetic field.  In this case, 

the distribution function is given by 

 _̀ � _	 ? :í` ? ��` (5.15) 



 

  57 

where �� is the perturbation distribution function due to the magnetic field, and � is the 

direction cosine from � � ú to �.  Insertion of Eq. (5.15) into Eq. (5.1) yields a coupled 

pair of equations that can be solved iteratively,  

 í`,� % � u�rí`,�s ? 6ü� �_	�¬ ? ×u�Q�`Su	Q1 ? ×0S  (5.16). 

and  

 �`,� % � u�r�`,�s 2 × 6ü� �_	�¬ ? ×u�Qí`Su	Q1 ? ×0S  (5.17) 

where × � 6�+ �¬uB⁄ , � is the electron group velocity, and + is the magnetic field.  In a 

similar manner to Eq. (5.14), these two perturbed distribution functions yield the electron 

Hall mobility ý� as 

 ý� � þ `)Q�` +⁄ S�`þ `0í`�`  (5.18). 

 With the drift mobility and Hall mobility determined, the Hall scattering factor z� is 

given by 

 z� � ý�ý  (5.19) 

This solution is a more accurate calculation of the Hall scattering factor compared to the 

more commonly used expression 

 z� � ��Æ0		��Æ		0 (5.20) 

where ��Æ0		 and ��Æ		0 are the specially averaged scattering times.  The latter expression 

for the Hall scattering factor is derived from the relaxation time approximation, which 

assumes that scattering times are independent of the distribution function.  More 

importantly, the relaxation time approximation is only valid when the scattering 
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processes are either elastic or isotropic, which is not true for 6H SiC where polar optical 

phonon scattering dominates the low-field mobility (this scattering mechanism is neither 

elastic nor isotropic). 

5.3. Scattering Mechanisms in 6H SiC 

 In order to calculate uB and u� and properly determine the Hall and drift mobilities, 

the relevant scattering mechanisms must be taken into account.  For 6H SiC in this study, 

six scattering mechanisms are considered: (i) acoustic deformation potential scattering, 

(ii) ionized impurity scattering, (iii) neutral impurity scattering, (iv) piezoelectric 

scattering, (v) inter-valley phonon deformation potential scattering, and (vi) polar optical 

phonon scattering.   

The values of the acoustic deformation potential, inter-valley phonon deformation 

potential, and inter-valley phonon energy were taken as adjustable parameters to 

simultaneously fit the Hall scattering factor and Hall mobility data (as will be discussed 

later).  An acoustic deformation potential ��  value of 5.5 eV, an inter-valley phonon 

deformation potential ��� value of 1.25�1011 eV/m and inter-valley phonon energy ���� 

of 65 meV was found to best fit the experimental mobility data.  In addition, parabolic 

conduction bands are assumed, with the values of the effective masses for 6H SiC being 

�
�� Q�%�S � 0.75�	, ���� Q�0�S � 0.24�	, and ��¸� Q�)�S � 1.83�	, and the density 

of states effective mass being �� � Q�%��0��)�S% )©  [26].  Material properties of 6H SiC 

that were used included a relative dielectric constant Ìe of 9.7, a speed of sound ãe of 

13,730 m/s2 and mass density Ý of 3211 kg/m3 [52].  For the mobility with the electric 

field perpendicular to the c axis of the crystal, the coupling coefficient 3 for hexagonal 

structures is 

 30 � 4r21�%&0 ? 6�%&�­ ? �­0s105Ì>9	�§ ? Q21�))0 2 24�))�­ ? 5�­0S105Ì>9	�E  (5.21) 
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where �­ � �)) 2 �)% 2 2�%&, and �%&, �)%, and �)) are the piezoelectric constants. The 

averaged transverse and longitudinal elastic constants for wurzite structures, �§ and �E, 
are given by 

 �E � 8�%% ? 4�%) ? 3�)) ? 8���15  (5.22) 

 �§ � 2�%% 2 4�%) ? 2�)) ? 7���15  (5.23) 

where �%%, �%), �)) and ��� are the elastic constants.  In this study, the piezoelectric 

constants calculated by Mirgorodsky et al. are used [53], while the elastic constants 

measured by Kamitani et al. are used [54]. 

For the two components that compose the out-scattering term uB, all the relevant 

transition rates were derived in the previous chapter.  The elastic component, ãDE, is the 

sum of the momentum relaxation rates of scattering processes (i)-(v) above.  The inelastic 

component, 1 Æ�C⁄ , is made up of the relaxation rate of polar optical scattering given by 

Eq. (4.58) and inter-valley phonon scattering given by Eq. (4.61).  On the other hand, for 

the in-scattering term u� the integral of Eq. (5.13) must be evaluated for inelastic 

processes.  For mechanisms under consideration, this only includes (v) and (vi) above.  

As it turns out, the integral of Eq. (5.13) for inter-valley phonon scattering vanishes [49].  

Therefore, Eq. (5.13) only needs to be evaluated for polar optical phonon scattering.  

Doing so gives [49] 

 u� � �#BíQY± 2 ��BS
� ? Q#B ? 1SíQY± ? ��BS
 � (5.24) 

where  

 



 

  60 

 
� � 60�B��% 0⁄
2& 0⁄ 89	�Y±% 0⁄ ¾ 1Ì· 2 1Ì	¿  

 � É 2Y± 2 ��B�Y±QY± 2 ��BS�% 0⁄ Ð[ �îY± ? ��	 ? îY±îY± ? ��	 2 îY±�2 1Ê (5.25) 

and 

 
  � 60�B��% 0⁄
2& 0⁄ 89	�Y±% 0⁄ ¾ 1Ì· 2 1Ì	¿  

 � É 2Y± ? ��B�Y±QY± ? ��BS�% 0⁄ Ð[ �îY± 2 ��	 ? îY±îY± 2 ��	 2 îY±�2 1Ê (5.26). 

To see the relative importance of each of the scattering mechanisms in n-type 6H-

SiC, the scattering rates for doping concentrations of #$ � 10%����) and #$ �
10%*���) are shown in Fig. 5.1 and Fig. 5.2, respectively as a function of energy and 

temperature.  Previous studies have indicated that the ratio of impurities at cubic sites to 

impurities at hexagonal sites is about 2:1 [41,42,47].  Therefore, for both of these plots, it 

is assumed that there are twice as many impurities at cubic sites than there are at 

hexagonal sites, and that there is no compensation.  The free electron concentration is 

found by solving the charge neutrality equation 

 [ ? #� � #$�1 ? í��:/�QY� 2 Y� ? Y$�S Q¬�\S⁄ �  

 ? #$�1 ? í��:/�QY� 2 Y� ? Y$�S Q¬�\S⁄ � (5.27) 

where [ is the electron concentration, #� the acceptor compensation level, Y� is the 

conduction band minimum, Y� is the energy of the Fermi level, #$� and  #$� are the 

concentrations of impurities at hexagonal and cubic sites, respectively, í� and  í� are the 

donor degeneracy levels of the hexagonal and cubic levels, respectively, and Y$� and 
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 Y$� are the ionization energies of the impurities at hexagonal and cubic sites, 

respectively.  Both the donor degeneracy levels are assumed to be 2.  For this example, 

the donor ionization energies were set at 94 meV and 118 meV for the hexagonal and 

cubic sites, respectively.   

(a)  

(b)  

Fig. 5.1. Scattering rates versus energy for #$ � 1 � 10%&cm�) at (a) 30 K and (b) 

300 K. 
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(a)  

(b)  

Fig. 5.2. Scattering rates versus energy for #$ � 1 � 10%*cm�) at (a) 30 K and (b) 

300 K. 

 

The lattice scattering in these plots includes acoustic deformation potential, 
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necessitating its inclusion as a scattering mechanism.  In addition, at lower temperatures, 

piezoelectric scattering is the strongest scattering mechanism at lower doping 

concentrations while still being significant at higher doping concentrations for low 

energy carriers.  All previous mobility and Hall scattering factor calculations have left 

this mechanism out, even while making calculations at lower temperatures [43-46].  At 

higher temperatures, ionized impurity scattering generally dominates.  For lower doping 

concentrations, lattice scattering makes a significant contribution, while at higher doping 

concentrations, neutral impurity scattering is again important.  

5.4. Electron Hall Mobility and Scattering Factor 

Using Eq. (5.19) and the techniques discussed in section 5.2, and including the 

scattering mechanisms previously mentioned, the Hall mobility and the Hall scattering 

factor were calculated and were fit to the experimental data measured by Karmann et al. 

[41] and Rutsch et al. [47]  These were calculated assuming a measurement configuration 

of �� � �, � � �� and with magnetic fields of + � 0.4 T T and + � 0.741 T  T, as in the 

experiments.  Because of the measurement configuration, a mass factor is included in the 

Hall scattering factor [43]. 

As previously mentioned, the values of the acoustic deformation potential, intervalley 

deformation potential, and intervalley phonon energy were adjusted to obtain a best fit for 

the Hall mobility and Hall scattering factor data simultaneously.  In a manner similar to 

previous studies [43,55], the parameters were first adjusted to the Hall mobility data, and 

then subsequently used in the calculation of the Hall scattering factor data.  For the most 

part, adjustment of the acoustic deformation potential had the effect of shifting the Hall 

mobility curve as higher or lower.  Meanwhile, adjustment of the intervalley deformation 

potential and the intervalley phonon energy primarily affected the slope of the data at 
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temperatures above 100 K.  Fig. 5.3 shows the comparison of the calculated and the 

experimental Hall mobility for three different samples, while Fig. 5.4 shows the 

comparison of the calculated and the experimental Hall scattering factor.  The calculated 

results fit the experimental data very well.  This is particularly true for the calculated Hall 

scattering factor, which matches experimental data more so than calculations with a 

relaxation time approximation by Iwata et al. [43]  The deviation of the calculated Hall 

scattering factor in this study from experimental data never exceeds 8.8%. 

However, the aforementioned fitting results in values of �� � 5.5 eV, ��� � 1.25 �
10%% eV/m, and ���� � 65 meV, which diverge drastically from previously reported 

values of  �� � 17.5 eV, ��� � 0.6 � 10%% eV/m, and ���� � 85.4  meV [44,46]. This 

warrants some discussion.  The first study to attempt to extract the deformation potentials 

and intervalley phonon energy (from which the latter set of parameters originated) by 

Mickevicius et al. [44] used a Monte Carlo method to calculate the electron drift 

mobility. This calculated mobility was then fit to experimental Hall data without 

accounting for the Hall scattering factor.  A subsequent study by Dhar et al. [46] used the 

same set of parameters in a calculation of the drift mobility using Rode’s iterative 

method. The Hall scattering factor in this case was calculated using Eq. (5.20), which is 

an inexact solution, and without using a mass factor to account for the anisotropy of the 

Hall measurement configuration.  It is no surprise that the same set of parameters yields 

similar results for both the Monte Carlo and Rode’s iterative method, as both are 

recognized as exact methods of obtaining the electron drift mobility.  Neither method, 

however, solves for the Hall mobility.  It can therefore be argued that the more accurate 

parameters are the ones obtained in this study. 

Because of the large deviations of the Hall scattering factor from unity and its 

importance, it is clear that in order to deduce the electron drift mobility from 
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experimental Hall mobility data the Hall scattering factor must be accurately known.  Fig. 

5.5 shows predicted values of the Hall scattering factor against temperature at four 

different doping concentrations for + � 0.5 T.  These calculated values assume a 2:1 

ratio of impurities at cubic sites to impurities at hexagonal sites, and a compensation ratio 

of #� #$⁄ � 0.01.  These curves show that the doping concentration and the temperature 

both greatly impact the Hall scattering factor for the �� � �, � � �� Hall measurement 

configuration, so that extreme care must be taken when trying to extract the electron drift 

mobility from Hall measurements in 6H-SiC.  

 

Fig. 5.3. Electron Hall mobility versus temperature at + � 0.4 T for (a) #$� � 3.5 �
10%& ���), #$� � 7 � 10%& ���), #� � 1 � 10%� ���), Y$� � 94 ���, and Y$� �
118 ���, (b) #$� � 2 � 10%� ���), #$� � 4 � 10%& ���), #� � 1.7 � 10%& ���), 

Y$� � 90 ���, and Y$� � 120 ���, (c) #$� � 4.4 � 10%� ���), #$� � 3.4 �
10%� ���), #� � 5.5 � 10%& ���), Y$� � 63 ���, and Y$� � 120 ��� n-type 6H-

SiC.  Solid lines are calculated, while the symbols are experimental data taken from 

Karmann et al. 
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Fig. 5.4 Hall scattering factor versus temperature at + � 0.741  T for #$� � 3.3 �
10%& ���), #$� � 5.7 � 10%& ���), Y$� � 112 ���, and Y$� � 157 ��� for n-type 

6H-SiC.  Solid lines are calculated, while the symbols are experimental data taken from 

Rutsch et al. 

 

Fig. 5.5 Predicted values of the Hall scattering factor plotted against temperature with 

doping concentration as a parameter for n-type 6H-SiC. 
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5.5. Investigation of Ionization Energy Variation 

Apparent from Fig. 5.3 is that the calculation does not give good agreement for 

higher doping concentrations at lower temperatures.  This would be indicative that one of 

the scattering mechanisms considered is stronger at high doping concentration and low 

temperatures, or that an entirely different mechanism is involved under these 

circumstances.  One possible explanation for this deviation is the lowering of the 

ionization energy due to a higher density of impurities.  Such a lowering would result in 

an increase in ionized impurities, and consequently an increase in the corresponding 

scattering rate.  Thus, at lower temperatures and higher doping concentration where 

neutral impurity scattering traditionally dominates, there would be a relative increase in 

the stronger ionized impurity scattering. 

The phenomenon of decreasing ionization energy with increasing impurity 

concentrations has been observed since the earliest studies of the behavior of impurities 

in semiconductors.  Pearson and Bardeen noted it in their study of impurities in Si [56], 

while Brooks further elucidated upon this effect in discussing impurities in Si and 

germanium (Ge) [57].  The effect has also been observed in GaAs [58] and aluminum 

(Al) acceptors in 6H SiC [59].  The decrease in the impurity ionization energy arises from 

a reduction in the average potential energy of carriers.  As the impurity concentration 

increases, the excited states of the impurities overlap and shield the potential of the ions.  

Mathematically, the decrease in the ionization energy can be described by [56] 

 YÏ � YÏ	 2 v#% )©  (5.28) 

where YÏ is the impurity concentration dependent ionization energy, YÏ	 is the ionization 

energy for low doping, v is the factor by which the ionization energy reduced.  Typically, 

v is experimentally determined.  However, a rough order-of-magnitude estimate has been 
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given by Pearson and Bardeen [56].  Accounting for energy of attraction between the ion 

and mobile carriers, and the self-energy and correlation energies, the reduction factor is 

given by 

 v � 1.64660489e9	  (5.29). 

The adjustment to the ionization energies given in Eq. (5.28) and (5.29) were applied 

to the calculation of mobility of electrons in 6H SiC in the preceding section.  Fig. 5.6 

shows the changes to the scattering rates for high doping concentration and low 

temperatures as well as the changes to the Hall mobility curves when the approximate 

decrease in ionization energy is accounted for.  As expected, the mobility curves for 

lower doping concentrations are not visibly affected.  For the highly doped curve, the 

mobility is most noticeably affected at temperatures above about 40 K.  This is the result 

of the significant increase of ionized impurity scattering.  Below 40 K, the mobility 

begins to rise again.  At this temperature range, impurities remain largely unionized since 

the thermal energy is so low.  Thus, ionized impurity scattering is less of a factor as 

shown by the scattering rates in Fig. 5.6. 

The poor fit of the calculated mobility curve with doping-dependent ionization 

energies at low temperatures for high doping concentrations  indicate that this is not the 

explanation for the decrease in the experimental Hall mobility data at lower temperatures.  

In addition, the discrepancy between the calculated and experimental Hall mobility for 

the more highly doped curve in comparison to the more lightly doped curves further 

indicate this.  However, it should also be noted that Eq. (5.29) used in this calculation is a  

very rough, order of magnitude estimate.  In addition, the previously mentioned study of 

Al impurities in 6H-SiC indicated that v in that case was compensation as well as doping 

dependant.  Since v is usually experimentally measured, it may still be the case that the 
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decrease in ionization energy is the reason for the decrease in Hall mobility at low 

temperatures and high doping concentrations. 

(a)  

(b)  

Fig. 5.6. Effects of ionization energy lowering. (a) Scattering rates versus energy for 

#$ � 1 � 10%*cm�) at 30 K.  (b) Calculated Hall mobility curves. Parameters the same 

as those in Fig. 5.3. 
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CHAPTER 6. CONCLUSION 

6.1 Conclusion 

In this dissertation, the properties of different polytypes of SiC were studied using 

computational methods.  A novel approach utilizing the EPM with a genetic search 

algorithm to fit the band structure of 4H-SiC was presented.  As more information on the 

electronic structure of 4H SiC becomes available, this can be a useful method of finding 

new fitting parameters.  This is even more important for the electronic structure of 6H 

SiC for which almost no experimental data exists.   

Next, a more accurate way to obtain the deformation potentials and energies to fit the 

Hall mobility of 6H SiC was delineated, and the Hall scattering factor was calculated.  A 

similar approach was used before for 4H SiC, but had not yet been applied to 6H SiC.  

However, further work can be done in trying to obtain a better fit of the band structure of 

4H SiC using the above mentioned method.   

With the work presented here, a foundation has been laid for further, future 

computational work.  For example, the genetic search algorithm used to fit the band 

structure of 4H SiC can be applied to 6H SiC when more experimental data becomes 

available.  Indeed, it can be applied to any material to quickly and effectively find 

satisfactory EPM parameters.  In addition, the band structure and the values of the 

deformation potentials could be used to construct a full band Monte Carlo simulation of 

SiC devices.  In typical Monte Carlo device simulations, a parabolic band approximation 

is used so that there is no need for the full band structure.  However, for the high power 

applications for which SiC is foreseen to be used in, the large electric fields in these 

devices result in highly energetic carriers that occupy higher energy states in the 

conduction band.  Simulations under these conditions require a full band approach, 

requiring the electronic band structure as an input. 
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