
Building Applied and Back Insulated Photovoltaic Modules: 

Thermal Models  

by 

Jaewon Oh 

 

 

 

 

 

A Thesis Presented in Partial Fulfillment  

of the Requirements for the Degree  

Master of Science in Technology  

 

 

 

 

 

 

 

 

 

 

Approved November 2010 by the 

Graduate Supervisory Committee: 

 

Govindasamy Tamizhmani, Chair 

Bradley R. Rogers 

Narciso F. Macia 

 

 

 

 

 

 

 

 

 

 

 

 

ARIZONA STATE UNIVERSITY  

December 2010



  i 

ABSTRACT  

   

Building applied photovoltaics (BAPV) is a major application sector for 

photovoltaics (PV). Due to the negative temperature coefficient of power output, 

the performance of a PV module decreases as the temperature of the module 

increases. In hot climatic conditions, such as the summer in Arizona, the 

operating temperature of a BAPV module can reach as high as 90°C. Considering 

a typical 0.5%/°C power drop for crystalline silicon (c-Si) modules, a 

performance decrease of approximately 30% would be expected during peak 

summer temperatures due to the difference between rated temperature (25°C) and 

operating temperature (~90°C) of the modules. Also, in a worst-case scenario, 

such as partial shading of the PV cells of air gap-free BAPV modules, some of the 

components could attain temperatures that would be high enough to compromise 

the safety and functionality requirements of the module and its components. 

Based on the temperature and weather data collected over a year in Arizona, a 

mathematical thermal model has been developed and presented in this paper to 

predict module temperature for five different air gaps (0”, 1”, 2”, 3”, and 4”). For 

comparison, modules with a thermally-insulated (R30) back were evaluated to 

determine the worst-case scenario. This thesis also provides key technical details 

related to the specially-built, simulated rooftop structure; the mounting 

configuration of the PV modules on the rooftop structure; the LabVIEW program 

that was developed for data acquisition and the MATLAB program for 

developing the thermal models. In order to address the safety issue, temperature 

test results (obtained in accordance with IEC 61730-2 and UL 1703 safety 
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standards) are presented and analyzed for nine different components of a PV 

module, i.e., the front glass, substrate/backsheet (polymer), PV cell, j-box ambient, 

j-box surface, positive terminal, backsheet inside j-box, field wiring, and diode. 

The temperature test results obtained for about 140 crystalline silicon modules 

from a large number of manufacturers who tested modules between 2006 and 

2009 at ASU/TÜ V-PTL were analyzed and presented in this paper under three 

test conditions, i.e., short-circuit, open-circuit, and short-circuit and shaded. Also, 

the nominal operating cell temperatures (NOCTs) of the BAPV modules and 

insulated-back PV modules are presented in this paper for use by BAPV module 

designers and installers. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

A photovoltaic (PV) module is a device that converts sunlight to 

electricity. It has been anticipated that PV modules will be one of the main 

sources of alternative energy in the future because they generate energy. PV 

modules have been used in many applications, such as calculators, cars, power 

plants, and houses.  

The Building Applied Photovoltaic (BAPV) system, also known as the 

Building Integrated Photovoltaic (BIPV) system or Rooftop Photovoltaic system, 

is a major application of the PV modules. The BAPV system is used mainly for 

residential and commercial application purposes. The BAPV systems have several 

advantages. First, a BAPV system does not requires dedicated land space because 

they are installed on the roof, unlike a commercial PV power plant. Every house 

has a roof, and most of them are available for harvesting sunlight. This means that 

every house has the space required to install BAPV modules. Thus, they can be 

installed for any house. Also, the BAPV module system does not make the 

exterior of the house look bad. Generally, the BAPV modules are installed 

horizontally on the roof such that they are parallel to the surface of the roof, so 

they appear to be just a part of the roof. 

The performance of PV modules depends primarily on temperature and 

solar irradiance, and one of the main factors that dictates the performance of PV 

modules is the operating temperature of the cells. The performance of PV 
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modules decreases as the temperature of the modules increases due to the negative 

temperature coefficient of power output. Generally, the degradation rate of 

performance of the PV modules is 0.5%/°C for crystalline silicon technology and 

0.2%/°C for thin-film technology [1]. The temperature of PV modules is dictated 

by ambient conditions, such as irradiance, ambient temperature, wind speed, wind 

direction, and humidity. Based on field data acquired by Arizona State 

University’s Photovoltaic Reliability Laboratory (ASU-PRL), the effects of wind 

direction and humidity on open, rack-mounted PV modules were found to be 

negligible [6]. 

In hot climatic conditions, such as those in Arizona, the BAPV module 

temperature can reach as high as 95°C during the peak temperatures of summer. 

Considering a general 0.5%/°C power drop for crystalline silicon modules, a 

performance drop of about 30% would be expected during the summer months 

because of the difference between rated temperature (25°C) and operating 

temperature (~90°C). When the BAPV modules are installed on a roof, there is an 

air gap between the modules and the surface of the roof. The temperature of the 

BAPV modules is affected directly by the size of this air gap, which, in turn, 

affects the performance of the BAPV modules. Therefore, it is necessary to 

determine the optimum air-gap size in order to appropriately design a BAPV 

system. In addition, temperature prediction is very important in order to determine 

expected power output from the modules.  

In Arizona, the PV industry has been booming for the last couple of years. 

According to the Arizona Department of Commerce, in 2008, the number of 
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residents who used electricity generated by PV modules in their homes was more 

than 1600. Along with utility companies, state government and federal 

government have provided incentives for homeowners to install PV modules on 

their houses by allowing tax credits for the modules. Therefore, it is expected that 

many manufacturers and installers will enter the BAPV module industry, and the 

performances of the various BAPV modules will be a key factor in choosing a 

specific BAPV module and system for installation.  

 The focus of this study is to determine the optimum size of the air gap 

between the BAPV module and the rooftop that will allow the optimal operational 

temperature while giving appropriate consideration to electricity generation 

capacity and safety issues. Thus, this study provides guidance for BAPV module 

manufacturers and installers in terms of air gap sizes and their relationship to the 

operating temperatures of the modules. 

1.2 Statement of the Problem 

There are several thermal models for open, rack-mounted PV modules, but 

only a few  thermal models, if not only one, is available for BAPV modules [15]. 

This thermal model for BAPV modules was based on the field data from ASU-

PRL, which were acquired only for one month. 

The installed nominal operating cell temperatures (INOCTs) of such 

modules were reported by Sandia National Laboratory in 1987 [9], but current PV 

modules are larger and have greater output power. Therefore, the INOCTs must 

be revalidated using current, commercial PV modules.  
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The main objective of this study is to conduct various temperature 

measurements and tests of BAPV modules at a variety of ambient conditions in 

order to provide guidance about the effects of the operating temperatures on 

electricity generation and safety.  

1.3 Scope of the Work 

The scope of the work included: 

 Collecting and monitoring ambient condition data [11] and collecting and 

monitoring temperature data for BAPV modules with various air gap sizes 

(0, 1, 2, 3, and 4inches) for a one-year period (May 2009 - April 2010).  

 Installing five crystalline silicon 0-inch air gap modules with backsides 

covered with R30 insulation materials. 

 Developing mathematical models for the prediction of the temperatures of 

BAPV modules and back-insulated modules.  

 Measuring and predicting the nominal operating cell temperatures 

(NOCTs) of BAPV modules and back-insulated modules. 

 Analyzing the temperature test data in accordance with safety standards, 

which have been tested by TÜ V Rheinland PTL (formerly ASU-PTL) [10]. 

1.4 Limitations 

The mock roof construction is limited to only one pitch and one type of 

roof tile, which is cement-based concrete. Even though the 0-inch air gap modules 

stick to the surface of the roof, stagnant air still exists below the modules due to 

space between the laminate of the module and the tile. Thus, the modules for 

which the backsides were covered with insulation material were used for 0-inch 
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air gap situations, which could be considered as the worst-case condition.  The 

thermal models developed in this work and the INOCTs are limited to crystalline 

silicon modules with glass superstrates and polymeric substrates. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Energy Model 

 The energy output of common generators is acquired by integrating with 

time; however the power performance of a PV module depends on many factors, 

such as module temperature, irradiance, spectral response of the module, and 

characteristics of the module itself. Generally, the energy is calculated from the 

daily power production by numerical integration according to the equation below 

[3]: 

        

 

   

 

where: 

E: module output energy (Wh); 

  : data sampling interval (hours); 

  : power at the i
th

 sample time (W). 

2.2 Temperature Coefficients 

 The temperature coefficient is used to determine the effect of temperature 

on the output voltage, output current, or output power of a PV module. Due to the 

physical characteristics of silicon, the output power from a crystalline silicon PV 

cell decreases as the temperature of the cell increases, and a typical temperature 

coefficient of output power for a crystalline silicon PV cell is -0.5%/°C [1]. 

Therefore, the temperature coefficient is used as a parameter, along with the PV 

module’s voltage, current, and power, for determining the performance of the PV 
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module. Generally, the temperature coefficients for insulated-back PV modules 

are lower than those for open-rack PV modules, as shown in Figure 2.1 [2]. This 

is probably because of more uniform distribution of temperature throughout the 

module.  

 

Figure 2.1 Measured temperature coefficients for voltage of a 36-cell c-Si module 

measured outdoors, with and without back-surface thermal insulation [2] 

2.3 Thermal Model 

 The temperature a PV module is related directly to the power output of the 

module due to the intrinsic characteristics of silicon. The temperature of the 

module also depends on various factors, such as ambient conditions (irradiance, 

wind speed, wind direction, relative humidity, and ambient temperature), module 

installation (open-rack or roof-mounted), and the characteristics of the module 

itself.  Several thermal models have been developed in the past.  They were 
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obtained from either field data or a theoretical heat balance approach. In this 

section, several thermal models are reviewed.  

2.3.1 Simple Model 

The simple model was based on the fact that the operating temperature of 

solar cells above ambient is roughly proportional to the irradiance when the 

module is mounted on the open rack and wind speed is low [4]. 

Tcell  = Tambient  + 0.031   Irradiance  

where:  

Tcell: solar cell temperature (°C); 

Tambient: ambient temperature (°C); 

Irradiance: solar irradiance (W/m
2
). 

2.3.2 NOCT Model 

For an open-rack mounted system with low wind speed, the temperature of 

the module temperature can be calculated as a function of irradiance and ambient 

temperature based on the module’s nominal operating cell temperature (NOCT).  

The NOCT model equation is given below [5]. 

                            
          

   
 

where: 

Tmodule: module temperature (°C); 

Tambient: ambient temperature (°C); 

TNOCT: nominal operating cell temperature, NOCT (°C), of the module; 

Irradiance: solar irradiance (W/m
2
). 
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2.3.3 IEC 61853 Model 

The IEC 61853 draft standard has a thermal model based on a consensus 

basis. This fits a specific windspeed range [7]. 

Tmodule   Tambient  =  b   G + a 

where: 

Tmodule: module temperature (°C); 

Tambient: ambient temperature (°C); 

a, b: coefficients for a certain wind speed range; 

G: irradiance (W/m
2
). 

2.3.4 Tang’s Model 

Yingtang Tang’s Master’s thesis, “Outdoor Energy Rating Measurements 

of Photovoltaic Modules,” was followed as a model for predicting the temperature 

of a PV module in an open-rack PV system with respect to ambient conditions. 

This model is used in predicting the temperature of the PV module for large, 

open-rack PV systems. Three thermal models were presented in the research 

performed by Tang [6]. 

Tang’s thermal model is shown in the equation below. Five input 

parameters are used in this model. 

                                           

                                

where: 

Tmodule: module temperature (°C); 

Tamb: ambient temperature (°C); 
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E: irradiance (W/m
2
); 

WindSpd: wind speed (m/s); 

WindDir: wind direction (°); 

Humidity: relative humidity (%); 

w1 - w5: coefficients; 

c: constant.  

 The output results from the equation showed that ambient temperature is a 

major factor that increases the module temperature. Irradiance and wind speed 

also affect the temperature of the module, although not to the same extent as 

ambient temperature. However, the effects of wind direction and relative humidity 

are almost negligible, so there is also a second thermal model in his thesis that 

does not include wind direction and relative humidity.   

 The second thermal model is given in the equation below, and three input 

parameters are used. 

Tmodule = w1   Tamb + w2   E + w3   WindSpd + c 

where: 

Tmodule: module temperature (°C); 

Tamb: ambient temperature (°C); 

E: irradiance (W/m
2
); 

WindSpd: wind speed (m/s); 

w1 - w3: coefficients; 

c: constant.  
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 The overall average of each coefficient from field experimental data is 

shown in the table below. 

Table 2.1 Overall average coefficients for open-rack PV modules 

 w1 w2 w3 c 

Overall 

average 
0.943 0.028 -1.528 4.328 

  

 The third thermal model has the format shown in the equation below, in 

which there are two input parameters, i.e., ambient temperature and irradiance. 

The interval of wind speed is 0.5 m/s. 

Tmodule   Tamb = m   E + b 

where: 

Tmodule: module temperature (°C); 

Tamb: ambient temperature (°C); 

E: global solar irradiance (W/m
2
); 

m and b are coefficients.  

 The coefficients for each module are acquired from the field data. 

Coefficients b and m typically range from 0.5 - 1.5 and 0.0054 - 0.0094 at wind 

speeds of 0.25 - 9.25 m/s, respectively, based on the field data. 

 Several models were presented in this chapter, and the thermal models 

among them are mainly the ones that are useful for this work. The temperature 

prediction equation of this project is also based on field data, and a mathematical 

model similar to Tang’s model was generated for the BAPV system in this project. 
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2.4 Standards Regarding Temperature of PV modules 

 Several temperature measurements of PV modules have been conducted in 

accordance with IEC 61215, IEC 61730-2, and UL 1703 standards that 

complement the Standard Test Condition (STC), which is not representative of the 

real conditions that PV modules experience when they are operating in the field. 

Two such measurements are the nominal operating cell temperature (NOCT), 

described in the IEC 61215 standard, and the Temperature Test found in IEC 

61730-2 and in the UL 1703 safety standard [12, 13, 14]. 

2.4.1 Measurement of NOCT – IEC 61215 

 The output power of the PV module is dependent on the temperature of 

the module due to its intrinsic characteristics. Manufacturers of PV modules use 

performance measurements recorded at STC to rate their modules for market use. 

The STC assumes that the operating temperature of the module is maintained at 

25°C. However, in reality, it is rare that PV modules are operated at STC. Thus, 

NOCT has been added to the standard, and manufacturers should provide both the 

module temperature at STC and NOCT. The IEC 61215 standard provides a 

procedure for the measurement of NOCT [12]. The NOCT is defined as the 

equilibrium average cell temperature with an open-rack mounted module at the 

following Standard Reference Environment (SRE) according to the IEC standard. 

Table 2.2 shows the SRE for NOCT, and the NOCT thermal model equation was 

presented in the previous section. 
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Table 2.2 Standard Reference Environment of NOCT 

Tilt angle 45° from the horizontal 

Irradiance 800 W/m
2
 

Ambient Temperature 20°C 

Wind speed 1 m/s 

Electrical load None (open circuit) 

 

2.4.2 Temperature Test – IEC 61730 and ANSI/UL 1703 

 A typical PV module is made of several components, including glass 

superstrate, polymeric encapsulant, solar cells, polymeric substrate/backsheet, a 

junction box, bypass diodes, and cables/connectors. The operating temperatures of 

these module components are determined primarily by the mounting 

configurations (e.g., open-rack and rooftop), electrical termination conditions (e.g., 

open-circuit, short-circuit, loaded), shading conditions (partial or full shading of 

solar cells), solar cell stringing configurations (number of cells in a string per 

bypass diode), and types of PV cells (low- or high-shunt PV cells). Both 

international (IEC 61730-2) and United States (UL 1703) safety standards require 

that the components in end-product, packaged PV modules be temperature tested 

[13, 14]. These standards provide procedures to determine the maximum 

reference temperatures of the various components of a PV module. 
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Chapter 3 

METHODOLOGY 

3.1 Temperature Prediction of BAPV Modules 

 The prediction of the temperatures of BAPV modules is based on field 

data acquired under natural sunlight with outdoor controlled equipment. The 

temperatures of the modules in the field were monitored for a one-year period, 

and, then, thermal models were developed based on the field data. Details about 

the methodology of monitoring the temperatures of the modules in the field and 

developing mathematical model are presented in this chapter. 

3.1.1 BAPV Module Installation 

 In order to install the BAPV modules, a mock roof was designed and 

constructed at Arizona State University’s Photovoltaic Reliability Laboratory 

(ASU-PRL) in Mesa, Arizona. The specifications of the mock roof are detailed 

below. 

 Roof dimension: 32 x 17.5 ft 

 Roof orientation: South fixed 

 Roof pitch: 23° from horizontal 

 Roofing materials: cement based concrete flat tiles 

 Air gap spacing: 0, 1, 2, 3, and 4 inches 
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Figure 3.1 Mock roof with different air gaps 

 Twenty PV modules from four different manufacturers were selected for 

use in monitoring the temperatures of the BAPV modules. Crystalline silicon 

technology PV modules were chosen for this experiment. Ten BAPV modules 

were from two different manufacturers that used poly crystalline silicon (poly c-Si) 

technology, and the other 10 BAPV modules were from two different 

manufacturers that used mono crystalline silicon (mono c-Si) technology. The 

array configurations are detailed below, in Table 3.1 and Figure 3.1. 

 Test technology: poly c-Si and mono c-Si 

 Module electrical termination: open-circuit 

 Number of test modules: 20 (10 mono c-Si; 10 poly c-Si) 

 Array matrix: 4 columns (5 modules each) x 5 rows (4 modules each) 

o Column 1: poly c-Si BAPV modules [manufacturer 1] 

o Column 2: mono c-Si BAPV modules [manufacturer 2] 

3”Air gap 

 
2”Air gap 

 

1”Air gap 

 
0”Air gap 

4”Air gap 
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o Column 3: poly c-Si BAPV modules [manufacturer 3] 

o Column 4: mono c-Si BAPV modules [manufacturer 4] 

o Row 1: 0” air gap (0 cm air gap) 

o Row 2: 1” air gap (2.54 cm air gap) 

o Row 3: 2” air gap (5.08 cm air gap) 

o Row 4: 3” air gap (7.62 cm air gap) 

o Row 5: 4” air gap (10.16 cm air gap) 

 Distance between modules in each column: 2 – 6 in (5 - 15 cm) 

 Distance between modules in each row: 1 in (2.54 cm) 

 Depth of module frame. ~2 in (5 cm) 

 

Table 3.1 Array of BAPV modules on the mock roof 

 
Roof top 

Column 1 Column 2 Column 3 Column 4 

4” air gap Poly c-Si Mono c-Si Poly c-Si Mono c-Si 

3” air gap Poly c-Si Mono c-Si Poly c-Si Mono c-Si 

2” air gap Poly c-Si Mono c-Si Poly c-Si Mono c-Si 

1” air gap Poly c-Si Mono c-Si Poly c-Si Mono c-Si 

0” air gap Poly c-Si Mono c-Si Poly c-Si Mono c-Si 

 Roof bottom 
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Figure 3.2 Array of BAPV modules on the simulated rooftop structure 

 

 

 

Figure 3.3 Side view of the simulated rooftop structure with installed modules 

 

Manufacturer 2 

Manufacturer 1 
Manufacturer 4 

Manufacturer 3 

1” Air gap spacing 

4” Air gap spacing 

3” Air gap spacing 

2” Air gap spacing 

0” Air gap spacing 
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3.1.2 Preparation of BAPV Modules 

 BAPV modules from different manufacturers were chosen for a one-year 

period of field monitoring. The electrical specifications of these modules are 

given in Table 3.2. 

Table 3.2 Electrical specifications for the BAPV modules from four 

manufacturers 

 Electrical specification 

Manufacturer/Column Isc (A) Voc (V) Imp (A) Vmp (V) Pmax (W) 

# 1 7.89 33.0 7.31 26.0 190.1 

# 2 7.78 31.6 7.23 23.5 169.9 

# 3 5.20 44.3 4.80 35.6 170.9 

# 4 5.90 47.8 5.50 40.0 220.0 

 

 Two cells of each BAPV module were selected for monitoring the module 

temperature. The procedure for selecting the cells and attaching the 

thermocouples was same as NOCT test module preparation. The two cells were 

located in the middle of the BAPV module. The backsheet of the cells were cut in 

order to access the encapsulated cells, and a K-type thermocouple was attached to 

each cell with thermally conductive paste. The cells with the attached 

thermocouples were sealed with thermal tape to avoid exposing the cells to 

moisture.   
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Figure 3.4 K-type thermocouple sealed with thermal tape inside cut cell 

3.1.3 Measurement of Air-Gap Temperature 

 The corresponding air-gap temperatures were measured while the module 

temperatures at the different air gaps (0”, 1”, 2”, 3”, and 4”) were measured. 

Twenty K-type thermocouples were fixed under each BAPV module between the 

tiles.  The location of the air-gap thermocouple is shown in Figure 3.5. 

Figure 3.5 K-type thermocouple to measure air temperature of the corresponding 

air gap between the module and the tile roof 
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 In addition to measuring module temperature with different air gaps and 

air gap temperatures, the tile temperatures were measured at the portions exposed 

to the sun and the portions shaded by the BAPV module. For measuring the 

temperature of the tile, the tile next to the BAPV module was selected, and the 

thermocouple was placed on the tile. The other thermocouple was placed on the 

surface of the tile below the BAPV module. 

3.1.4 Measurement of Ambient Conditions 

 In this project, ambient conditions (irradiance, ambient temperature, wind 

speed, and wind direction) are very important for predicting the temperatures of 

the modules. In order to measure irradiance, an EKO pyranometer was installed 

on the roof with the same pitch as the mock roof. For verifying the accuracy of 

the measured irradiance, the Energy Environmental Technology Service (EETS) 

reference cell also was installed on the roof. Both the pyranometer and the 

reference cell were fixed on the wooden plate that has same tilt angle as the roof. 

 The ambient temperature, wind speed, and wind direction were measured 

from the weather station next to the mock roof. 

3.1.5 Data Acquisition System 

 Obviously, a data acquisition system (DAS) was necessary to collect the 

extensive quantity of temperature data over the one-year period. For the data 

collection, a National Instruments data acquisition system was installed behind 

the mock roof.  The four NI-9211 modules that were connected to the 

thermocouples were hard wired to the high-speed, USB DAS, which was 
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controlled by the LabVIEW signal express program, which is a powerful and 

flexible graphical development environment created by National Instruments, Inc. 

 

Figure 3.6 NI-9172 high speed USB DAS controlled by LabVIEW signal express 

program code 

 The LabVIEW program code for this DAS was created mainly by a former 

student who started this project, and minor changes were made to the code to 

accommodate additional BAPV modules.  The LabVIEW program has a front 

panel that shows the current temperatures of all the components, as well as the 

irradiance measured by the EKO pyranometer and the EETS reference cell.  A 

screenshot of the front panel is shown in Figure 3.7. 
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Figure 3.7 Front panel of LabVIEW, showing real time readings of parameters 

3.2 Temperature Prediction for Back-Insulated BAPV Modules 

 While temperature predictions for BAPV modules were required to 

determine the air gaps that produced the best performance, temperature 

predictions for the back-insulated BAPV modules were used to ensure the safety 

of the BAPV modules. The maximum temperature of the BAPV module in the 

worst-case condition must be known in order to prevent any safety hazard, such as 

fire. 

3.2.1 Preparation and Installation of Back-Insulated BAPV Modules 

 In order to get the maximum temperature of the BAPV modules, the 

backside of the modules must be covered perfectly to minimize the temperature-
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lowering effect of wind. Five poly c-Si modules were selected for this project, and 

their specifications are shown in the Table 3.3.   

Table 3.3 Electrical specifications of BAPV modules from two manufacturers 

 Electrical Specification 

Manufacturer Isc (A) Voc (V) Imp (A) Vmp (V) Pmax (W) 

# 1 (4 modules) 7.89 33.0 7.31 26.0 190.1 

# 2 (1 modules) 7.80 32.6 7.30 25.5 186.2 

 

R-30 insulation material (~23cm-thick fiberglass insulator) was attached 

to the backsides of the modules. One K-type thermocouple for one BAPV module 

was attached with a conductive paste to the middle cell that was cut to allow the 

installation of the thermocouple. The space between the frame and the substrate 

was filled with insulation (shown in Figure 3.8), and, then, all of the substrate was 

covered with the insulation material, as shown in Figure 3.9. 

 

Figure 3.8 Before covering the BAPV reference module with insulation material 
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Figure 3.9 After covering the BAPV reference module with insulation material 

 

 

Figure 3.10 BAPV Modules on the Mock Roof 

 All five back-insulated BAPV modules were installed on the same mock 

roof, and they did not have any air gap between the backside of the module and 

Back Insulated Modules 
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the surface of the roof. Each thermocouple was connected to the DAS behind the 

roof and monitored for maximum temperature.  

3.2.2 Measurement of Ambient Conditions and the DAS 

 The back-insulated BAPV modules were installed on the same mock roof, 

thus the same weather station data were used for this experiment. The weather 

station collected ambient temperature, wind speed, and wind direction.   

 The same DAS was used to collect the temperatures of the back-insulated 

BAPV modules, so that the DAS was able to collect the temperature of every 

module simultaneously. Five channels from the National Instrument module were 

assigned to collect the temperature of the five back-insulated BAPV modules. 

3.3 Model Development 

 The objective of developing a thermal model was to analyze the 

temperature variation and its influence on the performances of the BAPV modules 

with different air gaps of 0”, 1”, 2”, 3”, and 4”, respectively, on the BAPV system 

with respect to ambient temperature and other influencing parameters, such as 

wind speed, wind direction, and solar irradiance. The method of linear regression 

was chosen for this work, and MATLAB was used for this mathematical model 

development. The results of the thermal model are presented in Chapter 4. 

3.4 Measurement and Prediction of INOCT for BAPV modules and Back-

Insulated PV modules 

 The measurement of installed NOCT (INOCT) of BAPV modules and 

back-insulated PV modules was based on the method in the IEC 61215 standard. 

The measurement of INOCT followed the standards as closely as possible. There 
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were a few things in the standard that could not be followed due to the limitations 

imposed by the test conditions, which are shown in Table 3.4. One good day, 

which means constant irradiance with low wind speed, was selected for obtaining 

the INOCT. Temperature data were collected from 10:00 A.M. to 3:00 P.M. at 

six-minute intervals. 

Table 3.4 Difference between NOCT and INOCT in this study 

 
Required NOCT standard 

test conditions 

INOCT in this study 

test conditions 

Tilt Angle 45°±5° 23° 

Mount Open-rack 
Different air gap spacing 

or insulated 

Around module 

The modules of same design 

with no space among 

modules 

The modules of same 

design are in the same 

column with different 

space depending on 

column and row.  

Data collection 

interval 
No more than 5 seconds Every 6 minutes 

  

3.5 Temperature Test 

The temperature test results of approximately 140 crystalline silicon 

modules from various module manufacturers tested at TÜ V Rheinland PTL 

(formerly, Arizona State University’s Photovoltaic Testing Laboratory) between 

2006 and 2009 were presented in Chapter 4. In this investigation, only the test 

results of the conventional crystalline silicon modules were presented and 

analyzed, excluding the thin-film modules, double glass modules, and high 

efficiency mono crystalline silicon modules. The temperature tests were done 

under three different electrical termination conditions, i.e., open-circuit, short-

circuit, and short-circuit with half shaded cell (hereafter called the shorted-shaded 
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configuration). The UL 1703 standard requires testing under all three of the 

termination conditions, whereas IEC 61730-2 does not require the shorted-shaded 

termination condition.  

The test modules were prepared by attaching a large number of 

thermocouples to the specific components/locations. Table 3.5 shows the 

thermocouple locations that were used for the temperature tests. 

Table 3.5 Nine thermocouple locations of various components during the 

temperature tests 

Number Test Location 

1 Front glass
a 

2 Substrate
b 

3 Cell
c 

4 J-box ambient 

5 J-box surface 

6 Positive terminal 

7 J-box backsheet 

8 Field wiring 

9-1 Diode 1 

9-2 Diode 2 

9-3 Diode 3 
a
 Above center cell; above exposed portion of half-shaded cell for 

short-circuit & shaded condition 

 
b
 Substrate under half-shaded portion of the cell during short-

circuit & shaded condition 

 
c
 Half-shaded portion of the cell during short-circuit & shaded 

condition. Backsheet was cut and resealed to place the 

thermocouple. 

 

The monitored component temperatures were all normalized to 1000 

W/m
2
 irradiance, 40°C ambient temperature, and an average wind speed of 1 m/s, 

in accordance with the procedures of the safety standards. The normalized 
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temperature (in °C) of each component was calculated using the following 

equation: 

                       
    

               
      (3.1) 

      

where: 

Tnorm: the normalized temperature; 

Tmax: the maximum component temperature during the test; 

Tamb: the ambient temperature during the test. 

The test standards [13, 14] may be referenced for the details of the 

required test set up, outdoor test conditions, and data acquisition system. The 

results are presented and discussed in Chapter 4 with three subsections, i.e., open-

circuit condition; short-circuit condition; and shorted-shaded condition. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Thermal Modeling of BAPV Modules – Effect of Air Gap 

 Two types of mathematical thermal models for temperature prediction 

were developed, and they are presented in this section. One is for the overall 

BAPV array, and the other one is for the individual columns of the BAPV array. 

Both thermal models were developed with three input parameters, i.e., irradiance, 

ambient temperature, and wind speed. 

4.1.1 Thermal Model for the overall BAPV array 

Based on the data acquired in May 2009, a preliminary thermal model was 

developed and reported for crystalline silicon modules [8]. In this work, the data 

acquisition period was extended to one full year and a thermal model was 

developed. The thermal model used in this work is shown in equation (4.1) below. 

                                   (4.1) 

where: 

Tmodule: module temperature (°C);  

E: irradiance (W/m
2
); 

Tamb: ambient temperature (°C); 

WS: wind speed (m/s); 

w1- w3: coefficients; 

c: constant. 

A linear regression fit to the data provides the required coefficients for the 

development of the thermal model, and the MATLAB program was used to 
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extract these coefficients. In order to determine whether the short-term 

coefficients and long-term coefficients are independent of testing period/season, 

the coefficients obtained with one-month data (May 2009; monthly coefficients) 

and one-year data (May 2009 - April 2010; annual coefficients) were compared. 

A comparison of these coefficients is shown in Table 4.1 (wide wind speed range 

of up to 4 m/s) and Table 4.2 (narrow wind speed range of up to 2 m/s). For this 

comparison, only the averages of column 2 and column 3 coefficients were 

considered. These tables clearly indicate a considerable influence of the testing 

period (one month vs. one year) on the extent of these coefficients (or on the 

significance levels). Therefore, it was decided to develop the coefficients for all 

the four seasons (seasonal coefficients) of a year, and they are presented in 

Appendix A. 

 

Table 4.1 Comparison of one-month and one-year thermal model coefficients of 

the entire array for a wide wind speed range (up to 4 m/s) 

 Coefficients based on 1-month data Coefficients based on 1-year data 

Air 

Gap 

Irradiance 

(w1) 

Tamb 

(w2) 

Wind 

Speed 

(w3) 

Const. 
Irradiance 

(w1) 
Tamb(w2) 

Wind 

Speed 

(w3) 

Const. 

0” 0.040 1.27 -1.01 -6.38 0.033 1.08 -2.02 8.06 

1” 0.037 1.21 -0.98 -4.28 0.031 1.10 -1.96 7.00 

2” 0.036 1.10 -1.08 -3.88 0.034 0.87 -2.43 11.20 

3” 0.035 1.03 -1.41 -1.37 0.032 0.85 -3.18 12.84 

4” 0.031 1.09 -1.69 -2.18 0.030 0.84 -3.56 12.86 
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Table 4.2 Comparison of one-month and one-year thermal model coefficients of 

the entire array for narrow wind speed range (up to 2 m/s) 

 Coefficients based on 1-month data Coefficients based on 1-year data 

Air 

Gap 

Irradiance 

(w1) 

Tamb 

(w2) 

Wind 

Speed 

(w3) 

Const. 
 Irradiance 

(w1) 

Tamb 

(w2) 

Wind 

Speed 

(w3) 

Const. 

0” 0.040 1.20 -0.06 -4.97 0.035 1.03 -0.21 5.47 

1” 0.037 1.14 -0.20 -2.93 0.032 1.06 -0.49 4.81 

2” 0.036 1.03 -0.43 -2.22 0.036 0.82 -0.96 9.00 

3” 0.035 0.96 -1.00 0.48 0.035 0.79 -2.13 10.73 

4” 0.031 1.02 -1.19 -0.45 0.033 0.78 -2.94 11.11 

 

4.1.2 Thermal Model for individual columns of the BAPV array 

In a previous study related to this topic [8], it was indicated that the wind 

direction also plays a significant role on the temperatures of the BAPV modules. 

Figure 4.1 shows a real-time screenshot of the front panel of the LabVIEW 

program, and it clearly shows that wind direction has a significant influence on 

the temperatures of the modules, depending on whether they are located at the 

center or edges of the array. Two options were considered to incorporate the 

effect of wind direction on the temperatures of the modules, i.e., (i) develop a 

four-parameter model (irradiance, ambient temperature, wind speed, and wind 

direction) instead of a three-parameter model (irradiance, ambient temperature, 

and wind speed) and (ii) develop a three-parameter model for every column of the 

array rather than for the entire array. For the sake of simplicity, it was decided to 

exercise the second option. Based on the one-year data, the coefficients of the 

three-parameter thermal model for the individual columns were developed, and 

they are presented in Table 4.3. The seasonal and monthly breakdowns of these 

coefficients for the individual columns of the array are provided in Appendix A 
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and B respectively. Due to time constraints, Appendix B includes monthly 

coefficients only for the column 3 modules. An example correlating the predicted 

temperature with the actual temperature for the column 3 - air gap 3 modules for 

the winter of 2009-2010 is presented in Figure 4.2. For the sake of simplicity, the 

linear regression model shown in Equation 4.1 was developed; however, the non-

linear influence of wind speed and thermal radiation on the thermal model will be 

addressed in a future publication.  

 

Figure 4.1 Real-time screenshot of front panel - effect of wind direction on the 

temperatures of the PV modules 

 

 

Wind speed: 1.25 m/s; Wind direction: from west to east (299 degrees)

Wind Direction
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Table 4.3 Thermal model coefficients for the individual columns of the array 

based on one-year data 

 

 

Figure 4.2 Linear correlation between predicted and measured temperatures for 

the winter of 2009-2010 (Column 3 modules; Air gap = 3 inches) 

The combined effect of air gap and column (module location on the roof) 

on individual coefficients is presented in a three-dimensional plot shown in 

Figures 4.3, 4.4, 4.5, and 4.6. From these figures, the following observations can 

be made: 

 Irradiance coefficient: It generally increases as the air gap decreases 

irrespective of the column number. 

Irr (w1) Tamb (w2) WS (w3) Const Irr (w1) Tamb (w2) WS (w3) Const Irr (w1) Tamb (w2) WS (w3) Const Irr (w1) Tamb (w2) WS (w3) Const

4inch 0.029 0.66 -2.99 14.93 0.030 0.64 -3.08 15.35 0.029 1.02 -3.12 9.95 0.027 1.06 -3.07 9.67

3inch 0.032 0.69 -2.85 14.45 0.032 0.67 -2.75 15.66 0.031 1.02 -2.85 9.90 0.030 1.10 -2.89 10.77

2inch 0.033 0.72 -2.53 13.09 0.034 0.70 -2.27 14.02 0.033 1.05 -2.20 8.80 0.032 1.12 -2.34 10.05

1inch 0.033 0.74 -2.31 12.78 0.030 1.09 -1.78 7.00 0.032 1.10 -1.91 7.16 0.032 1.10 -2.02 9.35

0inch 0.034 0.74 -2.02 12.44 0.033 1.08 -1.94 7.92 0.033 1.08 -1.89 8.09 0.033 1.17 -2.16 8.69

Mnf 4/Column 4(Mono)Mnf 1/Column 1(Poly) Mnf 2/Column 2(Mono) Mnf 3/Column 3(Poly)
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 Wind speed coefficient: The wind speed effect generally increases as the 

air gap increases irrespective of the column number. 

 Tamb coefficient: It generally remains the same as the air gap increases but 

it is typically lower for the first two columns compared to the last columns. 

 Constant: It generally remains the same as the air gap increases but it is 

typically higher for the first two columns compared to the last columns. 

 

It seems that there is an inter-adjustment between “Tamb coefficient” and 

the “constant” due to the influence of wind direction. The wind direction 

apparently has opposite effects on the “Tamb coefficient” and the “constant,” 

whereas it has no effect on the “irradiance coefficient” and “wind speed 

coefficient.” In other words, if the wind direction decreases the value of “Tamb 

coefficient,” then it increases the value of “constant” without affecting the other 

two coefficients. A large deviation of the “constant” from zero and a large 

deviation of the “Tamb coefficient” from the typical value of one are good 

indicators of the disproportionate effect of wind direction on the temperatures of 

the modules. This observation appears to suggest that it may be necessary to 

mount the BAPV modules in the middle of the roof so that the issue of 

temperature non-uniformity between the modules can be minimized. Reducing the 

temperature non-uniformity reduces voltage variations between the modules and 

improves the overall performance of the array. 
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Figure 4.3 Effect of air gap and module column on the thermal model irradiance 

coefficients obtained based on one-year BAPV data 

 

Figure 4.4 Effect of air gap and module column on the wind speed coefficients of 

the thermal model based on one-year BAPV data 
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Figure 4.5 Effect of air gap and module column on the ambient temperature 

coefficients of the thermal model based on one-year BAPV data 

 

Figure 4.6 Effect of air gap and module column on the constant of the thermal 

model based on one-year BAPV data 
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4.2 Thermal Modeling of Back-Insulated BAPV Modules 

In order to obtain a thermal model for the worst-case temperature scenario, 

the backsides of five modules (R30-1, R30-2, R30-3, R30-4, and R30-5) were 

insulated using R30 insulation foam, as shown in Figure 3.9. A thermal model 

was developed for these thermally back-insulated modules based on the data 

collected over a six-month period (October 2009 - March 2010).  

The highest module temperature and highest temperature difference (delta 

T = Tmodule-Tambient) observed during this testing period are reported in Table 4.4. 

It is interesting to note that the highest delta T of about 66°C was observed when 

the ambient temperature was 10°C and irradiance was 1057 W/m
2
. When the 

ambient temperature was 42°C and the irradiance was 994 W/m
2
, the maximum 

delta T observed was 42°C. The maximum module temperature observed during 

this testing period was 94°C, when the irradiance was 994 W/m
2
 and ambient 

temperature was 42°C. This indicates that the modules undergo higher level daily 

thermal cycling stress during winter as compare to summer. 

In order to predict the temperature of thermally insulated BAPV modules, 

the three-parameter model was used again. A plot correlating the predicted 

temperature with the actual temperature is shown in Figure 4.7. Table 4.5 shows 

the thermal model coefficients of the insulated modules. By comparing Table 4.3 

(0-in air gap; middle two-column average) with Table 4.5 (all wind speeds) 

coefficients, the following observations can be made: 

 Irradiance coefficient: The back insulation increased the irradiance 

coefficient by 40% from 0.033 to 0.046.  
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 Wind speed coefficient: The back insulation dramatically decreased the 

wind speed coefficient (or increased the WS effect) by 83% from -1.91 to 

-3.52 (due to large delta T). 

 Tamb coefficient: The back insulation decreased the Tamb coefficient by 34% 

from 1.08 to 0.71. 

 Constant: The back insulation increased the constant value by about 141% 

from 8.00 to 19.13. 

 

Table 4.4 Highest delta T and highest module temperature between October 2009 

and March 2010 

 

Table 4.5 Thermal model coefficients for insulated BAPV modules 

 

Tmod at highest Delta T Highest Tmod

R30_1 (°C) 78.4 93.7

R30_2 (°C) 75.7 92.3

R30_3 (°C) 75.2 92.1

R30_4 (°C) 75.1 92.2

R30_5 (°C) 74.8 93.1

Average (°C) 75.8 92.7

Delta T (°C) 65.7 50.8

Irradiance (W/m2) 1056.6 993.5

Tamb (°C) 10.2 41.9

Wind Speed (m/s) 1.5 1.2

Date 02/23/2010 10/17/2009

Time 12:24 12:42

Irr (w1) Tamb (w2) WS (w3) Const

at all WS 0.046 0.71 -3.52 19.13

< 4m/s WS 0.048 0.70 -3.89 19.04

< 2m/s WS 0.050 0.64 -2.04 15.82

Back Insulated Module
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Figure 4.7 Linear correlation between predicted temperature and measured 

temperature for insulated BAPV modules (October 2009 - March 2010) 

 

4.3 Nominal Operating Cell Temperature of BAPV Modules - Effect of Air 

Gap 

 Typically, the measurement of nominal operating cell temperature (NOCT) 

is done by installing the module on the open rack mount. Thus, the NOCT of the 

BAPV module, also known as installed NOCT (INOCT), might be different from 

regular NOCT [9]. The INOCT with effect of air gap is presented in this section. 

 INOCT obtained for each module based on field data and R
2
 values are 

shown in Table 4.6. The overall R
2
 values of column 1 modules are higher than 

the values of other columns due to the increased effect of wind, which makes the 

temperature of the module close to ambient temperature. All the INOCT values 
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shown in Table 4.6 were obtained by using ambient temperature in accordance 

with the standard procedure. However, BAPV module temperatures are also 

affected by air-gap temperature, which led to the effort to obtain INOCT using 

air-gap temperature, as shown in Table 4.7, which shows the results of INOCT 

using air gap temperature, but the R
2
 values were much lower than those found in 

the measurement of INOCT using ambient temperature. Therefore, INOCT values 

using averages of ambient temperature and air-gap temperature were also derived 

in order to get higher R
2
 values, as shown in Table 4.8. Table 4.6 and Table 4.8 

show that the R
2
 values of 3-in and 4-in modules are higher when ambient 

temperature is used for INOCT, and the R
2
 values of 0-in, 1-in, and 2-in modules 

are higher when the average temperature is used. Also, INOCT of the 4-in air-gap 

modules was normally lower than INOCT of the 0-in air-gap modules, as shown 

in Table 4.6. 

 

Table 4.6 NOCT of BAPV modules using ambient temperature 

 Column 1 (Poly) Column 2 (Mono) Column 3 (Poly) Column 4 (Mono) 

Air 

gap 

(inch) 

INOCT 

(°C) 
R

2
 

INOCT 

(°C) 
R

2
 

INOCT 

(°C) 
R

2
 

INOCT 

(°C) 
R

2
 

4” 49.0 0.83 49.7 0.89 49.5 0.90 48.9 0.86 

3”  51.4 0.89 52.3 0.92 52.0 0.92 53.0 0.80 

2”  52.4 0.92 53.8 0.92 53.2 0.85 54.7 0.82 

1”  52.6 0.92 49.8 0.80 51.5 0.80 53.6 0.78 

0”  53.3 0.91 53.4 0.82 53.8 0.76 55.1 0.80 
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Table 4.7 NOCT of BAPV modules using air-gap temperature 

  Column 1 (Poly) Column 2 (Mono) Column 3 (Poly) Column 4 (Mono) 

Air gap 

(inch) 

INOCT 

(°C) 
R

2
 

INOCT 

(°C) 
R

2
 

INOCT 

(°C) 
R

2
 

INOCT 

(°C) 
R

2
 

4” 43.4 0.1851 41.1 0.4211 42.8 0.3886 41.5 0.4284 

3”  42.1 0.0025 42.3 0.3535 42.1 0.5070 43.4 0.4592 

2”  40.8 0.0409 40.6 0.0883 41.3 0.1704 41.2 0.4387 

1”  41.0 0.0352 37.7 0.5702 41.6 0.5308 42.6 0.4552 

0”  41.9 0.0164 39.0 0.1422 40.7 0.0601 40.7 0.1026 

 

Table 4.8 NOCT of BAPV modules using the average of ambient and air-gap 

temperatures. 

  Column 1 (Poly) Column 2 (Mono) Column 3 (Poly) Column 4 (Mono) 

Air gap 

(inch) 

INOCT 

(°C) 
R

2
 

INOCT 

(°C) 
R

2
 

INOCT 

(°C) 
R

2
 

INOCT 

(°C) 
R

2
 

4” 45.7 0.70 44.9 0.76 45.6 0.78 44.7 0.77 

3”  46.7 0.59 47.3 0.82 47.5 0.88 48.7 0.76 

2”  46.6 0.66 47.2 0.70 47.3 0.95 48.0 0.92 

1”  46.8 0.60 43.8 0.91 46.6 0.88 48.1 0.96 

0”  47.6 0.49 45.7 0.88 46.7 0.92 47.4 0.91 

 

 Evaluation of INOCT results is shown in Figure 4.8. A column 3 module 

with a 3-in air gap was selected as a sample for this evaluation. A total of five 

actual module temperatures that have very close to NOCT condition, such as an 

irradiance of 800 W/m
2
, an ambient temperature of 20°C , a wind speed of 1 m/s, 

were obtained from one-year actual data. As shown in Table 4.9, INOCT based on 

Tamb is closer to the actual temperature that has the NOCT condition than the 

INOCT based on Taverage. This is true despite a lower R
2
 value for INOCT based 

on Taverage. 
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The predicted module temperature that has the NOCT condition using the 

annual coefficient-based thermal model that is presented in section 4.3 and 

Appendix A are shown in Figure 4.8. The predicted temperature using the one-

year-based thermal model shows a more accurate temperature than using the 

seasonal-based thermal model, as shown in Table 4.9, and they are all within 2°C 

of the actual temperature, as shown in Figure 4.8.  

As shown in Figure 4.8, it was observed that INOCT that included the 

actual measured temperature was about 2°C higher than NOCT (49.7°C) that was 

measured by ASU-PTL in 2007. This is the exactly the same result as predicted 

by the Sandia National Laboratory. According to Sandia’s report, INOCT of a 

roof-mounted PV module with 3-in air-gap spacing is about 2°C higher than 

NOCT [9]. 

Evaluation of INOCT using various methods is shown in Figure 4.9. The 

first bar is the average of the actual module temperature having around NOCT 

ambient conditions, and the second bar reflects INOCT from the thermal model 

that was developed in this study. The last bar is the INOCT using the IEC method. 

As shown in Figure 4.9, all three temperatures from different methods show 

similar temperature with less than 1°C difference. 
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Figure 4.8 NOCT from various methods 

 

 

 

Figure 4.9 INOCT from various methods 
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Table 4.9 Actual module temperature that has NOCT ambient condition (3-in air-

gap module at Column 3)   

 

 

 

 

 

 

 

 

 

Day 1 Day 2 Day 3 Day 4 Day 5

Date 01/08/2010 01/13/2010 01/05/2010 11/18/2009 11/25/2009

Time 3:00 PM 2:18 PM 2:12 PM 11:36 AM 10:24 AM

Irradiance 803.8 790.5 808.7 800.7 796.4 800.0

Tamb 19.1 21.1 21.1 20.4 19.5 20.3

Wind Speed 1.11 1.18 1.20 0.85 1.15 1.10

Actual 

temperature (°C)
50.4 52.9 54.8 55.1 48.8 52.4

Thermal model 

(based on annual 

coefficients) (°C)

51.2 52.6 53.1 53.1 51.2 52.2

Thermal model 

(based on 

seasonal 

coefficients) (°C)

53.0 54.8 55.4 52.6 50.7 53.3

INOCT based on 

Tamb (°C)
- - 52.0 - - -

INOCT based on 

Tairgap(°C) 
- - 42.1 - - -

INOCT based on 

Taverage (°C)
- - 47.5 - - -

INOCT-Thermal 

Model (°C)

Openrack-NOCT 

based on IEC 

method (°C)

Average

52.3

49.7



  45 

4.4 Nominal Operating Cell Temperature of Back-Insulated BAPV Modules 

 Three days were chosen for use in determining the NOCT of back-

insulated BAPV modules. These modules do not have air-gap spacing, so only the 

ambient temperature was used for data processing of NOCT. The results are 

shown in Table 4.10. The average three-day temperature was 67.9°C, which is 

about 18°C higher than open-rack NOCT, as shown in Figure 4.9. This 

temperature is 2 - 3°C lower than the results that Sandia National Laboratory 

reported, which was a difference of 20°C. The actual temperature of the back-

insulated BAPV module at around NOCT ambient condition is shown in Figure 

4.10 and Table 4.11. An average of the actual temperatures for all five days was 

66.5°C, which is about 1 - 2°C different from the three-day average of insulated 

INOCT. Also, the predicted temperature that was obtained by the R30 thermal 

model presented in section 4.2 is shown in Table 4.11. It is observed that the five-

day temperature average of the actual module was 66.5°C, the average of the 

insulated INOCT was 67.9°C, and the INOCT based on the R30 thermal model 

was 66.6°C, which are all close to each other.   

Table 4.10 Back-insulated INOCT 

Day Insulated INOCT (°C) 

Day 1 67.6 

Day 2 67.8 

Day 3 68.3 

3-day average 67.9 
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Figure 4.10 Actual temperature of all five back insulated BAPV module at NOCT 

ambient condition 
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Table 4.11 Actual temperature of the insulated BAPV modules that has NOCT 

ambient condition  

 

 

 

 

 

 

 

 

Day 1 Day 2 Day 3 Day 4 Day 5

Date 01/08/2010 01/13/2010 01/05/2010 11/18/2009 11/25/2009

Time 3:00 PM 2:18 PM 2:12 PM 11:36 AM 10:24 AM

Irradiance (W/m2) 803.8 790.5 808.7 800.7 796.4 800.0

Tamb (°C) 19.1 21.1 21.1 20.4 19.5 20.3

Wind Speed (m/s) 1.11 1.18 1.20 0.85 1.15 1.10

Actual temperature 

of R30_5 (°C)
58.1 69.2 69.4 72.7 65.3 66.9

Actual temperature 

of R30_4 (°C)
59.3 68.3 68.5 71.6 63.9 66.3

Actual temperature 

of R30_3 (°C)
60.0 67.8 68.5 70.9 64.5 66.3

Actual temperature 

of R30_2 (°C)
60.5 67.3 68.1 70.5 64.1 66.1

Actual temperature 

of R30_1 (°C)
61.2 68.2 68.7 70.9 64.2 66.6

Daily average of 5 

modules (°C)
59.8 68.2 68.6 71.3 64.4 66.5

Thermal model 

based on R30 

coefficients (all WS) 

(°C)

65.8 66.3 67.1 67.5 65.6 66.5

Thermal model 

based on R30 

coefficients (<2m/s) 

(°C)

66.0 66.4 67.3 67.2 65.8 66.6

Insulated INOCT-IEC 

Method (°C)
- - 67.6 - - -

Insulated INOCT-

Thermal Model (°C)
-

5 day Average

66.6
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4.5 Temperature Testing per IEC 61730 and UL 1703 Method 

4.5.1 Open Circuit Condition 

The temperatures obtained for each of the components under open-circuit 

conditions are presented in Figure 4.11. Three types of component temperatures 

are reported in this figure, i.e., average normalized temperature, maximum 

normalized temperature, and maximum raw temperature. The average normalized 

temperature refers to the average of normalized temperatures of 140 modules as 

per Equation 3.1. The maximum normalized temperature refers to the highest 

normalized temperature observed out of 140 modules. The maximum raw 

temperature refers to the highest measured (without normalization) temperature 

out of 140 modules at the desert climatic site of Mesa/Tempe, Arizona.  

The cell, substrate, and front glass experience higher maximum 

normalized temperatures (92 - 98°C) as compared to all other components (86 - 

89°C). The polymeric components (substrate, J-box surface, J-box backsheet, and 

cables/field wiring) experience the maximum normalized temperatures in the 

range of 86 - 97°C. Similarly, the diodes experience the maximum normalized 

temperatures in the range of 88 - 89°C. The normalized maximum cell 

temperatures of all the 140 modules under open-circuit conditions are presented in 

the scatter plot of Figure 4.12. The normalized maximum cell temperatures fall 

between 77 and 98°C, with an average temperature of 87°C. 
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Figure 4.11 Temperature comparisons (open circuit) 

 

 

Figure 4.12 Normalized maximum cell temperature (open circuit) 
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4.5.2 Short-Circuit Condition 

As shown in Figure 4.13, the diodes, J-box backsheet and the cell 

experience higher maximum normalized temperatures (110 - 118°C) as compared 

to the other components (84 - 107°C) under short-circuit conditions. The 

polymeric components (substrate, J-box surface, J-box backsheet, and cables/field 

wiring) experience the maximum normalized temperatures in the range of 85 - 

110°C. Similarly, the diodes experience the maximum normalized temperatures in 

the range of 95 - 118°C. 

The normalized maximum cell temperatures of all the 140 modules under 

short-circuit conditions are presented in the scatter plot of Figure 4.14. The 

normalized maximum cell temperatures under short-circuit conditions are more 

scattered as compared to the open-circuit conditions, and they fall mostly between 

76 and 109°C. The normalized average cell temperature of 89°C under short-

circuit conditions is about 2°C higher than at open-circuit conditions. This slightly 

higher temperature of 2°C is attributed to I
2
R heating of solar cells under short-

circuit conditions. 
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Figure 4.13 Temperature comparisons (short circuit) 

 

 

Figure 4.14 Normalized maximum cell temperature (short circuit) 

 

0.0

20.0

40.0

60.0

80.0

100.0

120.0

0 20 40 60 80 100 120 140

Te
m

p
e

ra
tu

re
 (

°C
)

Module number

Cell Tmax-Nomalized (short circuit)

Average = 89oC



  52 

4.5.3 Short and Shaded Condition 

The testing under shorted-shaded conditions is required only for the 

ANSI/UL 1703 procedure, and the results obtained at these conditions are 

provided in Figures 4.15 and 4.16. As shown in Figure 4.15, the cell, front glass, 

and substrate experience higher maximum normalized temperatures (158 - 176°C) 

as compared to the other components (88 - 140°C) under shorted-shaded 

conditions. 

The polymeric components (substrate, J-box surface, J-box backsheet, and 

cables/field wiring) experience the maximum normalized temperatures in the 

range of 89 - 158°C. As expected, the diodes experience higher temperatures 

under shorted-shaded conditions as compared to the other two conditions. The 

maximum normalized temperatures of the diodes fall in the range of 118 - 140°C. 

The normalized maximum cell temperatures of all 140 modules under 

shorted-shaded conditions are presented in the scatter plot of Figure 4.16. The 

normalized maximum cell temperatures under shorted-shaded conditions are 

much more scattered as compared to the open-circuit and short-circuit conditions, 

and they fall between 80 and 180°C. The normalized average cell temperature of 

111°C under shorted-shaded conditions is about 22°C higher than that of short-

circuit conditions. This huge difference of 22°C is attributed to the shading effect 

of solar cells under short-circuit conditions. 
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Figure 4.15 Temperature comparisons (shorted-shaded) 

 

Figure 4.16 Normalized maximum cell temperature (shorted-shaded) 

Figure 4.17 presents the average normalized temperatures of all the 

components under all the bias/electrical termination conditions. These 

temperatures were found to be lower than 90°C for all the components under 
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open-circuit and short-circuit conditions. These temperatures could reach as high 

as 110°C (excluding the front glass) under shorted-shaded conditions. 

 

Figure 4.17 Average temperature at each bias condition 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

5.1.1 Thermal Modeling of BAPV modules – Effect of Air Gap 

Thermal models were developed that can be used to predict the 

temperatures of BAPV modules under various installation conditions (air gaps 

and columns of modules) and monthly, seasonal, and annual climatic conditions 

of Arizona. The effect of wind direction on the module temperature is addressed. 

Since the coefficients of the parameters were determined to be sensitive to 

seasonal (or even monthly) weather conditions, the coefficients reported in this 

work may not be applicable to other sites that may not experience weather 

conditions similar to the current test location (Mesa, Arizona - a hot, dry desert 

climatic location). 

5.1.2 INOCT of BAPV modules – Effect of Air Gap 

 The INOCT based on ambient temperature is closer to the actual measured 

module temperature than INOCT based on air-gap temperature or the average of 

the ambient and air-gap temperatures, irrespective of the R
2
 value. The INOCT at 

3-in air gap is about 2°C higher than open-racked NOCT, and insulated INOCT is 

about 20°C higher than open-racked NOCT, which means the air-gap effect 

obviously exists. Therefore, it is suggested that INOCT be used instead of NOCT 

when the PV module is installed on a roof surface. 
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5.1.3 Temperature Testing 

Based on the temperature test results on 140 glass/polymer modules at the 

normalized reporting conditions of 40°C ambient temperature and 1000 W/m
2
 

irradiance, it is concluded that the: 

 Average (Tavg) cell temperatures under open, short and short-shaded bias 

conditions are about 87°C, 89°C and 111°C, respectively. 

 Average (Tavg) backsheet temperatures under the Voc and Isc bias 

conditions are about 2°C lower than the average cell temperatures (about 

6°C lower for Isc-shaded condition). 

 Average (Tavg) J-box surface and field wiring temperatures are about 72°C 

and 67°C, respectively, irrespective of bias conditions. 

 Highest maximum (highest Tmax) cell, backsheet, J-box surface, and field 

wiring temperatures were 176°C, 155°C, 97°C and 90°C, respectively. 

Based on these results, it may be prudent to suggest that the PV module 

polymeric materials may be subjected to: 

 long-term thermal stress tests at the “Tavg” reference temperature of about 

85°C (backsheet), 72°C (J-box surface) and 67°C (field wiring) for 

durability and reliability issues. 

 short-term thermal stress tests at the “highest Tmax” reference temperature 

of about 155°C (backsheet), 97°C (J-box surface) and 90°C (field wiring) 

for fire safety issues. 
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5.2 Recommendations 

 The following recommendations are made for future investigation of 

BAPV thermal modeling, NOCT measurement, and temperature testing: 

 The BAPV array in this work consisted of four different module types 

from four different manufacturers depending on column. It is suggested 

that one type of module from the same manufacturer be used in order to 

get more accurate results of air-gap and wind effects; 

 In this study, a yearly-, seasonal-, and monthly-based BAPV thermal 

model was developed for predicting BAPV module temperatures. It is 

suggested that a daily-based or even a six-minute-based thermal model be 

developed to get more accurate predictions of the temperatures of the 

modules; 

 The weather data used in BAPV thermal modeling was obtained from the 

weather station nearby the mock roof. It is recommended that the weather 

station be installed directly on the mock roof installation; 

  The data points obtained for measurement of INOCT were collected 

every six minutes due to the weather station pre-setup. It is suggested that 

the data be collected with an interval of less than five seconds, as is 

required by the IEC standards; 

 For temperature testing in this study, only flat-plate crystalline-silicon PV 

modules were considered for the analysis. It may be necessary to extend 

the scope to include testing for thin-film PV modules. 
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APPENDIX A  

SEASONAL AND ANNUAL THERMAL MODEL COEFFICIENTS  

(DATA COLLECTED MAY 2009 – APRIL 2010) 
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Spring: Mar 21 – Jun 20 

Summer: Jun 21 – Sep 20 

Fall: Sep 21 – Dec 20 

Winter: Dec 21 – Mar 20 

Average: Average of all seasons’ coefficients 

1 year: Coefficients from the entire year data processing 

 

Irr (w1) Tamb (w2) WS (w3) Const Irr (w1) Tamb (w2) WS (w3) Const Irr (w1) Tamb (w2) WS (w3) Const Irr (w1) Tamb (w2) WS (w3) Const

Spring 0.023 0.81 -2.01 11.16 0.023 0.97 -2.27 5.67 0.025 1.15 -2.60 6.75 0.023 1.27 -2.85 4.24

Summer 0.032 0.53 -2.45 17.57 0.031 0.76 -3.03 10.46 0.030 1.03 -3.18 9.47 0.027 1.18 -3.21 4.95

Fall 0.028 0.74 -2.98 14.27 0.029 0.73 -3.11 14.55 0.028 1.05 -3.20 10.12 0.026 1.06 -3.12 10.30

Winter 0.031 0.89 -3.16 10.98 0.032 0.90 -2.92 10.40 0.031 1.23 -2.92 5.93 0.028 1.24 -2.93 6.38

Average 0.028 0.74 -2.65 13.49 0.029 0.84 -2.83 10.27 0.028 1.12 -2.97 8.07 0.026 1.19 -3.03 6.47

1 year 0.029 0.66 -2.99 14.93 0.030 0.64 -3.08 15.35 0.029 1.02 -3.12 9.95 0.027 1.06 -3.07 9.67

Spring 0.026 1.00 -2.08 5.49 0.025 1.04 -2.32 4.98 0.027 1.16 -2.57 7.56 0.025 1.33 -2.75 5.19

Summer 0.034 0.68 -2.64 13.56 0.032 0.81 -2.68 10.05 0.032 1.07 -2.83 7.92 0.030 1.26 -3.14 5.42

Fall 0.031 0.78 -2.86 13.75 0.031 0.76 -2.85 14.65 0.029 1.04 -2.87 10.62 0.029 1.11 -2.84 11.06

Winter 0.034 0.92 -2.83 10.05 0.033 0.98 -2.42 9.78 0.034 1.23 -2.62 5.08 0.031 1.36 -2.61 5.84

Average 0.031 0.85 -2.60 10.71 0.030 0.90 -2.57 9.87 0.030 1.13 -2.72 7.79 0.029 1.27 -2.84 6.87

1 year 0.032 0.69 -2.85 14.45 0.032 0.67 -2.75 15.66 0.031 1.02 -2.85 9.90 0.030 1.10 -2.89 10.77

Spring 0.027 1.14 -1.60 -0.28 0.027 1.02 -1.66 4.53 0.028 1.21 -2.04 6.11 0.028 1.27 -2.25 6.73

Summer 0.035 0.76 -2.33 9.64 0.034 0.85 -1.97 7.77 0.035 1.08 -2.09 6.16 0.033 1.25 -2.35 4.77

Fall 0.031 0.80 -2.47 13.05 0.032 0.79 -2.17 13.53 0.030 1.09 -2.02 9.37 0.031 1.15 -2.33 9.94

Winter 0.035 0.99 -2.41 8.03 0.036 1.00 -2.22 8.56 0.035 1.33 -2.13 3.56 0.034 1.36 -2.17 5.56

Average 0.032 0.92 -2.20 7.61 0.032 0.91 -2.00 8.60 0.032 1.18 -2.07 6.30 0.031 1.26 -2.28 6.75

1 year 0.033 0.72 -2.53 13.09 0.034 0.70 -2.27 14.02 0.033 1.05 -2.20 8.80 0.032 1.12 -2.34 10.05

Spring 0.028 1.01 -1.32 4.81 0.027 1.18 -1.43 5.77 0.029 1.18 -1.63 6.39 0.029 1.34 -1.86 3.43

Summer 0.033 0.88 -2.20 7.11 0.030 1.25 -2.16 0.59 0.031 1.21 -2.03 3.74 0.033 1.09 -1.82 7.46

Fall 0.031 0.81 -2.35 12.73 0.028 1.09 -1.91 8.04 0.030 1.11 -1.88 7.72 0.028 1.15 -1.90 10.47

Winter 0.034 1.00 -2.44 8.74 0.031 1.34 -1.64 2.90 0.033 1.29 -1.93 3.99 0.033 1.37 -2.04 4.96

Average 0.032 0.92 -2.08 8.35 0.029 1.21 -1.78 4.32 0.031 1.19 -1.87 5.46 0.031 1.24 -1.91 6.58

1 year 0.033 0.74 -2.31 12.78 0.030 1.09 -1.78 7.00 0.032 1.10 -1.91 7.16 0.032 1.10 -2.02 9.35

Spring 0.030 0.93 -1.32 7.09 0.031 1.24 -1.42 4.09 0.031 1.24 -1.54 5.08 0.031 1.48 -2.36 0.54

Summer 0.032 0.92 -1.73 6.21 0.032 1.22 -2.27 3.68 0.032 1.27 -2.22 2.17 0.032 1.43 -2.55 -0.15

Fall 0.032 0.79 -2.08 12.44 0.031 1.06 -1.94 9.15 0.031 1.06 -1.92 9.30 0.031 1.13 -2.10 10.31

Winter 0.035 0.96 -2.16 8.73 0.035 1.34 -1.91 3.19 0.035 1.34 -1.83 3.65 0.034 1.43 -2.00 4.32

Average 0.032 0.90 -1.82 8.62 0.032 1.21 -1.89 5.03 0.032 1.23 -1.88 5.05 0.032 1.37 -2.25 3.76

1 year 0.034 0.74 -2.02 12.44 0.033 1.08 -1.94 7.92 0.033 1.08 -1.89 8.09 0.033 1.17 -2.16 8.69

Mnf 1/Column 1(Poly) Mnf 2/Column 2(Mono) Mnf 3/Column 3(Poly) Mnf 4/Column 4(Mono)

4inch air-gap

3inch air-gap

2inch air-gap

1inch air-gap

0inch air-gap
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APPENDIX B  

MONTHLY THERMAL MODEL COEFFICIENTS OF COLUMN 3 

MODULES (DATA COLLECTED MAY 2009 – APRIL 2010) 
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Month
Air Gap 

(inch)
Irr (w1) Tamb (w2) WS (w3) Constant

4 0.033 1.11 -3.12 6.28

3 0.035 1.13 -2.68 5.87

2 0.036 1.26 -1.69 3.30

1 0.033 1.23 -1.53 3.91

0 0.035 1.28 -1.60 3.65

4 0.032 1.25 -3.43 5.73

3 0.034 1.29 -3.19 5.38

2 0.035 1.36 -2.49 3.48

1 0.034 1.31 -2.29 3.81

0 0.035 1.37 -2.27 3.59

4 0.023 1.69 -2.47 5.56

3 0.026 1.64 -2.49 6.42

2 0.029 1.63 -2.22 6.55

1 0.028 1.59 -2.09 6.59

0 0.030 1.58 -1.94 6.44

4 0.033 0.67 -1.82 11.44

3 0.034 0.68 -1.66 12.90

2 0.032 0.87 -1.18 13.54

1 0.031 0.86 -1.19 13.40

0 0.032 0.83 -0.89 14.90

4 0.031 0.97 -1.73 6.15

3 0.033 0.99 -1.58 6.02

2 0.034 1.05 -1.17 3.99

1 0.034 1.06 -0.91 3.97

0 0.036 1.13 -0.85 1.88

4 0.021 1.12 -2.99 12.17

3 0.023 1.11 -2.94 13.25

2 0.025 1.16 -2.47 11.87

1 0.026 1.14 -2.10 12.01

0 0.027 1.18 -2.07 11.97

Jun

Jan

Feb

Mar

Apr*

May
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* The wind speed data of April 2010 was not available due to unexpected 

technical difficulties at ASU-PRL, Mesa. Therefore, the wind speed data of 

April 2010 obtained from APS Solar Test and Research (STAR) center, Tempe 

(22 miles west of ASU-PRL) and from SRP, Pinal county (13 miles east of 

ASU-PRL) was adjusted for the ASU-PRL site. Since the wind speed has only 

second order effect, it is deteremined that this adjustment would have little or 

no influence on the predicted temperature even though the wind speed 

coefficient may not be perfectly accurate. 

Month
Air Gap 

(inch)
Irr (w1) Tamb (w2) WS (w3) Constant

4 0.032 0.64 -2.18 22.28

3 0.034 0.75 -2.08 17.57

2 0.040 0.64 -1.63 19.75

1 0.033 0.99 -1.59 10.26

0 0.034 1.15 -1.97 5.40

4 0.028 1.13 -3.03 6.11

3 0.030 1.16 -2.61 4.37

2 0.031 1.23 -1.65 1.64

1 0.030 1.32 -1.71 -1.28

0 0.031 1.39 -1.78 -3.41

4 0.034 1.09 -3.70 4.94

3 0.035 1.13 -3.38 3.70

2 0.035 1.26 -2.67 0.54

1 0.033 1.27 -2.68 1.02

0 0.033 1.35 -2.76 -0.92

4 0.020 1.19 -4.14 14.14

3 0.022 1.21 -3.81 14.11

2 0.023 1.26 -2.81 12.79

1 0.022 1.21 -2.74 13.57

0 0.022 1.16 -2.93 16.24

4 0.030 1.01 -2.22 7.01

3 0.033 1.00 -1.87 7.09

2 0.034 1.09 -1.25 4.65

1 0.033 1.12 -1.08 3.54

0 0.035 1.09 -1.11 4.85

4 0.031 1.22 -3.07 5.76

3 0.033 1.19 -2.88 6.33

2 0.036 1.24 -2.20 4.03

1 0.033 1.22 -1.96 4.23

0 0.036 1.29 -1.75 3.53
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