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ABSTRACT  

This study analyzes the thermoelectric phenomena of nanoparticle 

suspensions, which are composed of liquid and solid nanoparticles that 

show a relatively stable Seebeck coefficient as bulk solids near room 

temperature. The approach is to explore the thermoelectric character of the 

nanoparticle suspensions, predict the outcome of the experiment and 

compare the experimental data with anticipated results. In the experiment, 

the nanoparticle suspension is contained in a 15cm*2.5cm*2.5cm glass 

container, the temperature gradient ranges from 20 °C to 60 °C, and room 

temperature fluctuates from 20 °C to 23°C. The measured nanoparticles 

include multiwall carbon nanotubes, aluminum dioxide and bismuth 

telluride. A temperature gradient from 20 °C to 60 °C is imposed along the 

length of the container, and the resulting voltage (if any) is measured. Both 

heating and cooling processes are measured. With three different 

nanoparticle suspensions (carbon nano tubes, Al2O3 nanoparticles and 

Bi2Te3 nanoparticles), the correlation between temperature gradient and 

voltage is correspondingly 8%, 38% and 96%. A comparison of results 

calculated from the bulk Seebeck coefficients with our measured results 

indicate that the Seebeck coefficient measured for each suspension is 

much more than anticipated, which indicates that the thermophoresis effect 

could have enhanced the voltage. Further research with a closed-loop 

system might be able to affirm the results of this study. 
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CHAPTER 1 INTRODUCTION 

The thermoelectric phenomena was discovered nearly two centuries 

ago, first by Thomas Seebeck and Jean Peltier, which is regarded as the 

basis of the modern thermoelectric industry (Tellurex, 2010). This 

phenomenon indicates that a junction made from two different kinds of 

materials, usually conductors, would show a flow of electrical current when 

a temperature gradient is applied to it. On the other hand, Peltier found that 

when electrical current is applied, the two different materials of the junction 

would either absorb or release energy (in the form of heat). Nowadays, we 

are able to explain the effect with energy transfer: the electrons in the 

conductors are the carriers of the energy. As energy flows through the 

materials, the temperature gradient causes a flow of electrons in a certain 

direction (depends on the character of the material), and thus an electrical 

current can be observed. By applying an electrical current through the 

materials, the electrons move in the negative direction of the electric field, 

and as the electrons are the carriers of the energy, the side that the 

electrons move towards is heated, and on the contrary, the other side is 

cooled.  

Although the thermoelectric phenomenon was observed in the early 

19th century, the devices that could make use of this effect were not 

manufactured for many years. It was not until the mid-20th
 century that the 

first practical application for a thermoelectric device was put into use 

(Tellurex, 2010). With the development of modern science and technology, 
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especially in electronics and energy, the world stepped into the 21st century. 

Meanwhile, our daily life largely relies on electronic devices and 

transportation systems, and the main problem of these is that they not only 

require a lot of energy to function, but have to dissipate heat they generate 

into the surroundings. As scientists are working to develop devices to 

conserve energy, thermoelectric devices can be an excellent choice to 

provide cooling for the electronic devices and at the same time make use 

of the energy that is now wasted in the form of heat. With the heat 

dissipated, the thermoelectric modules would be able to generate direct 

current (DC) electricity out of it, and the DC output can be stored and 

redistributed to other electric devices. Thus the efficiency of the whole 

electronic device would be increased and the working environment for the 

device would be cooled down to a more appropriate temperature. 

The most common thermoelectric module is shown as Fig. 1-1. The 

module is composed of three parts; the upper and lower plates are made of 

ceramic while the pellets contain two kinds of bismuth telluride 

semiconductors, N-type (refers to negative) and P-type (refers to positive). 
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Figure 1-2 Working Principle of Thermoelectric Module (Tellurex, 2010) 

 Figure 1-2 shows a typical utilization of a thermoelectric module, which 

is providing cooling to some kind of electronic device (e.g. CPU, GPU). As 

the thermoelectric device does not need any rotating components or space 

for vaporization for a working liquid, it is relatively easy to maintain the 

module and it can be very reliable. As a consequence, thermoelectric 

modules can be used in places that require minimum space and deliver a 

stable cooling effect while in a vibrating or sensitive environment, or in 

other places that are not convenient for a refrigerant-based cooling system 

(e.g. a conventional vapor-compression refrigeration system).  

 Thermoelectric devices can not only be used as a heating/cooling 

device, but can also be utilized in power generation. As shown in Fig.1-3, 

with a heat resource and a heat sink, thermoelectric devices can be used 

to generate direct current and thus power electric equipment. 

DC�Source

Heat�Sink

Electronic�Device

++ --

+-

N-type�pellet P-type�pellet

Ceramic�Substrate Conductor

I

Carrier



 

 

c

f

o

t

b

s

c

a

h

n

r

w

Figure 1-3

Althoug

character o

focused on

of a nanop

thermoelec

benefits ov

solid with 

containers 

achieve ef

heat sourc

not least, 

replace the

when nece

3 Working P

gh a great 

of solid sem

n a fluid tha

particles an

ctrics do, 

ver the solid

regards t

or tubes 

fficient hea

ce/sink, com

for replac

e solid mo

essary.  

Principle of

deal of res

miconducto

at could dis

nd fluid mix

the fluid 

d. First of a

to geomet

that cont

at transfer 

mpared wi

cement the

odules, res

 5 

f Thermoel

search has

ors, to our 

splay therm

xture show

thermoelec

all, the fluid

try; secon

ain the flu

between 

th a solid t

e refill of t

sulting in a

lectric Gen

s been don

knowledge

moelectric 

the same

ctric mate

d itself can 

ndly, with 

uid, it wou

the therm

thermoelec

the fluid m

a shorter t

nerator (Tel

e on the th

e seldom h

properties

characteris

rial may h

be more fl

proper de

uld likely b

oelectric f

ctric eleme

may be ea

time to fix 

 

llurex, 201

hermoelect

has resear

. If the res

stics as so

have certa

exible than

esign of th

be easier 

fluid and th

ent. Last, b

asier than 

 the modu

0) 

ric 

rch 

ult 

olid 

ain 

n a 

he 

to 

he 

but 

to 

ule 



  6 

 This thesis mainly focuses on the characteristics of a nanofluid that is 

composed of nanoparticles exhibiting some Seebeck coefficient and DI 

(de-ionized) water, with some surfactant added to it. The following chapters 

are included in this thesis: Chapter 2 consists of a literature review of 

thermoelectric materials and nanofluid heat transfer properties, including 

the characteristics of the most commonly used semiconductor 

thermoelectric material, bismuth telluride and multiwall carbon nano tubes; 

Chapter 3 covers the introduction of the design, equipment and 

methodology used in the experiment process; Chapter 4 presents the 

research and analysis of the thermoelectric phenomena observed in the 

experiments; Chapter 5 presents the thermophoresis effect exhibited by an 

NaCl solution; Chapter 6 performs the detailed analysis and comparison 

between the experimental data and the theoretical results; and finally, 

possible applications of a thermoelectric nanofluid and conclusions for the 

entire thesis are given in Chapter 7, as well as recommendations for future 

work. 
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CHAPTER 2 LITERATURE REVIEW OF THERMOELECTRIC 
MATERIALS 

A. Thermoelectric properties of bismuth telluride 

Bismuth telluride is one of the most commonly used thermoelectric 

materials at room temperature, with a Seebeck coefficient of -150 μV/°C 

and an electrical resistivity of 4×10-5 Ω m at room temperature. The 

Seebeck coefficient can reach up to -287μV/°C at 54 °C, and also depends 

on the thickness of the bismuth telluride film (Tan, et al., 2005).  

 Several characteristic parameters are required for evaluating a 

thermoelectric material: the Seebeck coefficient, which represents the 

potential of converting thermal energy into electricity; the electrical 

resistivity/conductivity, which represents the ability to conduct electricity, 

and the thermal conductivity, which indicates the ability to conduct heat 

through the material. In order to evaluate the effectiveness of 

thermoelectric materials, the dimensionless thermoelectric figure of merit 

ZT is introduced in the following equations (DiSalvo, 1999): 

2

,
TS

ZT


     [Eq. 2-1] 

Or  
2

,
S

Z



      [Eq. 2-2] 

In which,  

1


      [Eq. 2-3] 
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where T is the temperature (°C), S the Seebeck coefficient (μV/ °C), 

ρ the electrical resistivity (Ω.m), σ the electrical conductivity (S.m-1), and 

λ  the thermal conductivity (W m-1 °C -1). The T in equation (1) is multiplied 

on both sides of the equation in order to convert the Z into a 

nondimensional variable. 

A material with greater ZT would be more suitable to be a 

thermoelectric material. Usually, a material with ZT of 1 could be regarded 

as a good one and the most up-to-date ZT values range from 2.5 to 3 

(Walter, 2007). For a thermoelectric cooler (TEC), a larger ZT would lead 

to a higher COP (Terry Hendricks, 2006). As Eq. 2-1 shows, in order to get 

a relatively large ZT, S needs to be as large as possible while ρ and λ 

should be minimized. 

B. The Seebeck coefficient of bismuth telluride 

The Seebeck coefficient and electric conductivity of bismuth 

telluride (Bi2Te3) thin films is related to both the thickness of the films and 

the temperature (Tan, 2005). Sine here Bi2Te3 is used in the form of 

nanoparticles, potential size effects on their S values are of interest. 

By sputtering Bi2Te3 onto a 7.5cm by 2.5 cm glass slide, the thin 

films were deposited, with the thickness of the films being proportional to 

the sputtering time (Tan, 2005).  
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CHAPTER 3 EXPERIMENTAL DESIGN AND SETUP 

A. Materials used for the experiment 

In order to test the thermoelectric character of nanoparticles, the 

experiment used three different kinds of nanoparticles: multiwall carbon 

nanotubes (CNT), aluminum oxide (Al2O3) nanoparticles and bismuth (III) 

telluride (Bi2Te3) nano powder. Of which, the CNT is a material with high 

electric conductivity and thermal conductivity, and at the same time, CNT 

does exhibit a Seebeck coefficient.  

a. Multi-walled carbon nano tubes 

The theoretical structure and transmission electron microscopy 

(TEM) of multi-walled carbon nano tubes (MWCNT) are shown in Fig. 3-1 

(Reilly, 2007). The multi-walled carbon nano tube samples used in this 

experiment were synthesized by the MER Corporation, the product was 

produced without catalysts and there are 8-30 layers, with 6-20 nm in 

diameter (the whole layer) and 1-5 μm in length (the whole layer), and the 

density is 0.7g/ml. Due to the character of carbon nano tubes, it is essential 

to add some surfactant into the solution and ultrasonicate before the 

experiment. 
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With a stable current, a smooth curve during the heating process is 

achievable. 

3. Heater 

Since only heat is provided to the container, there are two kinds of 

heaters that can be used for this experiment. One is an electric film 

heater; the other is a P/N thermoelectric heater/cooler.  

4. DAQ 

DAQ refer to ‘Data Acquisition’ system. The DAQ can be any kind of 

system that can transfer electric signals to the I/O signal and 

communicate with computer. The DAQ used in this experiment included 

an NI (National Instrument) module and Campbell Scientific modules. 

5. Laptop Computer 

The computer used is a Dell INSPIRON 6400 laptop. A USB to VGA 

cable connects the laptop to the Campbell Scientific data logger which 

is finally used for the data acquisition. 

 

a. Container for the nanofluid 

1. Container used for the first round of experiments 

The container for the nanofluid is hand made from microscope glass 

slides. The dimensions of the container are 150mm×25mm×25mm and 

at the end of the container, two glass slides are used as handles. Figure 

3-6 presents a brief look of the container and the insulation attached. 
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manufactured by National Instrument, along with the desk top with a built-in 

DAQ port. Two different kinds of DAQ modules were used in data 

collection: SCXI-1100 and SCXI-1102 modules. SCXI-1100 module was 

used for the temperature signals, and the SCXI-1102 module was used for 

voltage signal collection. 

According to the reply from NI engineer, the NI SCXI-1100 module has 

a phenomenon which is named as ‘ghost effect’. This effect indicates that if 

the module is measuring two different signals (like voltage and temperature) 

at the same time, one signal would very likely be identical to the other one, 

which is not the real signal. Due to this effect, the first set of data was 

largely affected by the ghost effect and the experimental equipment 

needed to be rebuilt with another kind of DAQ. 

The Campbell Scientific CR23X was used as the DAQ for the 

redesigned system and there was no ‘ghost effect’ for this module, which 

indicated that the data collected would be reliable. As CR23X is not 

compatible with LabView, it was required that a specific control and 

monitoring software (PC200W, product of Campbell Scientific) be used to 

control the module and collect the data. The Campbell Scientific module 

records the data to the memory of itself and exchanges with the computer 

through a cable every time the user clicks the collect data bottom, which 

means it is not required to have a computer to control the data collection. 

The probes for temperature measurement are T-type 

thermocouples, attached to the inner side of each end in the container with 
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thermal epoxy, which would not only enable a good heat transfer from the 

fluid to the thermocouple but also isolate the thermocouple from the 

surrounding that may affect its accuracy. Both probes for measuring the 

voltage are made of negative material of the thermocouple 

(copper-nickel/constantan), and are shielded with metal foil to eliminate the 

possible surrounding noise. A water bath tub is used to calibrate both 

thermocouples before they are attached to the container. Calibration is 

made in the range of 20℃ to 70℃, which is also the temperature gradient 

range of the experiment. 

A multimeter is used to check the electric resistance of the fluid. The 

electric resistance of the mixtures of DI water and nanoparticles after 

ultrasonication is relatively high (over 106 Ω).  

d. Other equipment used 

In order to make certain mixture solutions of nanofluid, an electronic 

scale is used to measure the weight of the nanoparticles. The introduction 

of the electronic scale (shown in Figure 3-10) is to make sure that the 

volume fraction of the nanofluid is sufficiently accurate. 
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CHAPTER 4 EXPERIMENTAL TRIAL AND RESULTS 

a. Performance Test for the Equipment 

To make sure that the experimental equipment are functional and 

reliable, several trials should be performed before the actual nanofluid 

tests. Among which, sealing of the container, thermocouple calibration, 

contact of the thermocouple and test for copper wire and DI water (distilled 

water) are important ones. 

1. Test for Sealing 

Sealing of the container is of great importance in this experiment, 

since it is crucial to control the volume fraction. That means that there 

should not be any leaking in the container and a glass cover is included so 

as to eliminate the evaporation of the fluid. 

Test for sealing is relatively easy compared to other tests. The 

container is first filled with DI water and placed on a paper towel, and then 

after waiting for half an hour see if there is any visible water mark on the 

paper towel. To be more specific, the container can be placed upon CuSO4 

powder, if the powder does not turn blue, that indicates that the container is 

properly sealed. 

2. Thermocouple Calibration 

The thermocouples used are T type thermocouples, which are 

designed to measure the temperature between -250°C to 350°C, with a 

sensitivity of 43μV/°C (Omega, 2010). The experiment is designed to 

perform in the range of room temperature (about 22°C) to 70°C and the 
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digital water bath can be used to calibrate the thermocouples. The 

temperature range of the water bath is from 0°C (with ice water mixture) to 

100°C (with boiling water).  

 To calibrate the thermocouple, the water bath tub should be set to 

different temperatures, from 20°C to 70°C, with an interval of 5°C. The 

temperature of the water tub should be regarded as the reference 

temperature and the two thermocouple temperatures should be recorded 

and calibrated according to the different temperature interval. 

 

3. Contact of Thermocouples 

In order to make sure that the thermocouples are able to measure 

the temperature while electrically insulated from the fluid, thermal epoxy is 

introduced to maintain proper thermal conductivity and act as electric 

insulator; another crucial function of the epoxy is to properly attach the 

thermocouples at the bottom of the container. 

To test the contact of thermocouples, a computer with certain 

software and a hand-held infrared temperature thermometer are needed. 

First run the software and monitor the temperature data acquired from the 

two thermocouples attached to the bottom and compare with the 

temperature readings of the inferred thermometer. Minor differences 

indicate that the thermocouples are in a good contact with the container.  
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b. Verification Test for Copper Wire  

In order to verify that the wires used to measure the voltage across 

nanofluid are functional, several trial tests were performed.  

The wire for measuring the voltage across the fluid is from the 

negative material (copper-nickel) of the T type thermocouple, and the 

copper wire used for testing is from the positive material of the T Type 

thermocouple. In this way, a differential thermocouple is created; this 

differential thermocouple can be regarded as a T type thermocouple. We 

are able to compare the measured voltage with the data from the 

manufacturer’s data base that indicates different voltage difference in 

response to various temperature differences. 

Experimental Plan: 

1. Use connected copper wire and simulated voltage curve and show 

the difference. 

2. Wire marked by “+” is adhered to the hot end of the container and 

connect to the positive junction of the DAQ board; the other wire 

sticks to the cold end and is connected to the negative junction. 

3. Attach a thermocouple on each end of the container. 

4. Run the test for copper with and without temperature measurement 

to make sure the signals are not affecting each other. 
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about 200 seconds and the container was naturally cooled after that. As 

Fig. 4-3 shows, the handbook data and the experimental data are close to 

each other, and so the experimental data can be regarded as accurate. 

There is another way to determine the Seebeck coefficient of the 

thermocouple composed by probes measuring the voltage and the copper: 

find a best linear fit in Fig. 4-4, and the slope (-0.0425 μV/℃) of the line is 

the S of this ‘differential T-type ‘thermocouple’. In this case, it is confirmed 

that the measurements for the temperature and voltage are accurate. The 

dV vs. dT curve also shows a good pattern that the Seebeck coefficient 

does not change much during the heating and cooling process and is a 

closed loop. 

The next step is to test the fluid with electrolyte in it, thus increasing 

the electric conductivity of the fluid, and the observed phenomena will be 

discussed in Chapter 5. 
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CHAPTER 5 THEORETICAL BACKGROUND OF THERMOPHORESIS 

One of the main differences between experiments of solids and 

fluids is the liquidity of fluids, which enables both conductive and 

convective heat, mass, and charge transfer. Although it is expected that 

some thermoelectric effects would be shown in the nanofluid, because of 

the Seebeck coefficient of the nanoparticles, the thermophoresis effect 

should also be taken into consideration.  

  Some studies showed that particles in a fluid can move due to a 

temperature gradient, which is normally regarded as thermophoresis, 

would be related to the thermoelectric effect in the fluid (Würger, 2009). For 

an external electric field of (Würger, 2009): 

E δα  [Eq. 5-1] 

where E  is the external electric field, δα  the reduced Seebeck 

coefficient, T the temperature gradient and e the elementary charge. 

The external electric field generated by the temperature gradient is 

expressed in Eq. 5-1. 

As the thermophoresis of the carriers in the solution would take 

place in a temperature gradient, a thermoelectric voltage would be formed 

accordingly (Sheng Zhang, 2004): 

∆ ln	  [Eq. 5-2] 
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where ∆T δ ∙ grad T ≪  and V 0  and ∆  is the 

thermoelectric voltage,  the activation energy and  the charge of the 

ions. 

For NaCl solutions at a temperature 25~75°C, the activation energy during 

dissolution is -43.54 kJ/mol (Sheng Zhang, 2004), and q=1. During the 

experiments reported in this thesis, the mean temperature was 45°C. Thus, 

the Seebeck coefficient of the NaCl solution is (Sheng Zhang, 2004):  

S
2

483.8 /  

In this case, the maximum voltage due to thermophoresis of the only the 

NaCl solution would be: 

V ∙ ∆T 483.8 / ∙ 30 14.51mV 
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CHAPTER 6 NANOFLUID EXPERIMENTS 

Before nanofluid experiments, a trial with no nanoparticles in the 

fluid was performed to verify that the voltage difference is due to the 

nanoparticles. 

Since the suspension is designed to be heated on one end and 

naturally cooled on the other end, a thermal gradient is formed within the 

container. As NaCl was added to the suspension to reduce the noise, and 

nanoparticles were added to the DI water, it is highly possible that the 

thermal gradient would lead to some thermophoresis effect on the ions in 

the NaCl solution. Furthermore, as the particles would usually gain positive 

or negative charge, the thermophoresis effect would lead to an electric 

gradient and thus affect the voltage difference that is anticipated. 

a. Experiment on solutions without nanoparticles 

1. Components: 1%NaCl+1%Surfactant+DI Water (Positive) 

2. Suspension characteristics: 

G=32.9μs pH=6.82 

3. Conditioning: 

Process the solution in ultrasonicator for 15 to 30 minutes. 

4. Procedure: 

4.1 Transport the solution from container used for ultrasonic 

conditioning to the glass channel used for experiment. 

4.2 Turn the power for DAQ and power supply on. 
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4.3 Open PC200W software on laptop, connect the USB to VGA 

cable, click on ‘connect’ bottom and wait for the software 

returning ‘connected’ instruction. 

4.4 Turn on the power supply to heat the hot end of container until 

the temperature difference between the hot and cold end 

reaches 30°C. Turn off the power supply and wait for the fluid to 

naturally cool down to ambient temperature (the cold side does 

not have forced cooling but natural cooling). 

4.5 When the temperature difference between the hot end and cold 

end dropped to 3°C, stop the DAQ and upload the data to 

computer. 

4.6 Switch the probe for voltage measurement and perform the 

previous procedures again, and upload the data to the computer. 

4.7 After the experiment, pour the nanoparticle suspension into a 

container and transport to labeled waste container, clean the 

container with 70% alcohol and pour the cleaning fluid into the 

waste container. Write the name of the components in the fluid 

on the tag of waste container (ex. ‘Carbon Nano Tubes’, 

‘Alcohol’, etc.). 

4.8 Make sure that all experiment equipment are in place, clean up 

the experimental station and shut down all equipment. 

The nanoparticles used in the experiment include aluminum oxide 

(Al2O3), carbon nano tubes (CNT) and bismuth telluride (Bi2Te3).   
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Table 6-5 Least Square Method Parameters 

No. ∆T (oC) ∆V (V) x x y y    

i xi yi xi* yi* x*y* x*x* y*y* 

1        

x
∑

 [EQ 6-1] 

y
∑

 [EQ 6-2] 

b
∑

∑
 [EQ 6-3] 

a y bx [EQ 6-3] 

Table 6-5 and EQs 6-1 to 6-4 present the procedure for calculation 

of best linear fit and correlation between dT and dV.   
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Least Square Method Result for NaCl Solution 

Table 6-6 Least Square Calculation for the NaCl Solution 

No. ∆T (oC) ∆V (V) x x y y    

i xı yı xi* yi* x*y* x*x* y*y* 

Σ 
12.0408 -8.066 -30.9424E-11 -5.65276E-10 20929.02 158883.2 4395.631

Table 6-2 shows the calculation parameters for the least square 

results of CNT. 

Thus,	

a=-9.65183 

b=-0.131726 

For the correlation (Correlation, 2010): 

cosθ
∗ ∗

‖ ‖‖ ‖
20929.02

√158883.2√4395.631
0.791953 

This shows that the correlation/dependence between ∆T and ∆V for 

NaCl is 79.2%. As mentioned in Chapter 5, the voltage difference of NaCl 

solution is mainly due to the effect of thermophoresis, which also presents 

the thermoelectric property in the form of Seebeck coefficient. 
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Least Squares Method Results for CNT 

Table 6-7 Least Square Calculation for CNT 

No. ∆T (oC) ∆V (V) x x y y    

i xı yı xi* yi* x*y* x*x* y*y* 

Σ 
7.441 -38.492 -5.7678E-11 -4.4711E-10 -292280 690023.5 855472.6

Table 6-2 shows the calculation parameters for the least squares 

results of CNT.  

Thus, 	

a=-35.3407 

b=-0.4235 

For the correlation (Correlation, 2010): 

cosθ
∗ ∗

‖ ‖‖ ‖
292280

√690023.5√855472.6
0.38042 

This shows that the correlation/dependence between ∆T and ∆V for 

the CNT suspension is -0.38042. According to the character of carbon 

nano tubes (CNT), which has strong electric conductivity and thermal 

conductivity, the correlation between temperature and voltage gradient is 

not anticipated to be very strong (38%). 
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Least Squares Method Results for Al2O3 

Table 6-8 Least Square Calculation for Al2O3 

No. ∆T (oC) ∆V (V) x x y y    

i xı yı xi* yi* x*y* x*x* y*y* 

Σ 
13.24814 -126.886 -6.92E-11 -2.13E-10 -11439.4 212314.8 85164.85

Table 6-3 shows the calculation parameters for the least squares 

results of Al2O3.  

Thus, 	

a=-131.384 

b=0.3396 

For the correlation: 

cosθ
∗ ∗

‖ ‖‖ ‖
11439.4

√212314.8√85164.85
0.08507 

This shows that the correlation/dependence between ∆T and ∆V for 

Al2O3 suspension is -0.08507, which indicates that the correlation of 

temperature and voltage gradient is 8.5%. For bulk Al2O3 is not a typical 

thermoelectric material, it is not surprised that the correlation between ∆T 

and ∆V for Al2O3 suspension is low. 
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Least Squares Method Results for Bi2Te3 

Table 6-9 Least Square Calculation for Bi2Te3 

No. 
∆T 

(oC) 
∆V (V) x x y y    

i xı yı xi* yi* x*y* x*x* y*y* 

Σ 
9.494 -144.982 -1.676E-11 -3.8E-10 -91489.9 82767.9 108205.7

Table 6-3 shows the calculation parameters for the least squares 

results for Al2O3. 

Thus,	

a=-134.487 

b=-1.10538 

For the correlation: 

cosθ
∗ ∗

‖ ‖‖ ‖
91489.9

√82767.9√108205.7
0.96676 

This shows that the correlation/dependence between ∆T and ∆V is 

0.96676. As a suspension of a typical thermoelectric material, the strong 

correlation between ∆T and ∆V for bismuth telluride powder is very 

reasonable. 
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Table 6-10 Least Square Results for All Materials Tested 

Material Correlation Thermoelectric Explanation 

NaCl Solution 79.2% No Thermophoresis 

CNT Suspension 38.0% Some Conductor 

Al2O3 Suspension 8.5% No Insulator 

Bi2Te3 Suspension 96.7% Yes 
Thermoelectric 

Material 

As a conclusion, Table 6-10 shows the least square results for all 

materials tested in these experiments. The thermophoresis effect presents 

the NaCl solution with a 79.2% correlation; 38.0% correlation for dT and dV 

was shown for the CNT suspension, while the bulk CNT is commonly 

regarded as conductor; for the Al2O3 suspension, only 8.5% correlation 

was shown, which is due to the characteristic of the bulk Al2O3, which is 

usually regarded as an insulator; as a bulk material with strong 

thermoelectric characteristic, Bi2Te3 suspension shows a very strong 

correlation (96.7%) for dT and dV. 
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measure the voltage difference. The probe material is from the negative 

side of a T-type thermocouple, a copper-nickel alloy named constantan, 

with a Seebeck coefficient of -35μV/K (eFunda: Theory of Thermocouples, 

2010).  

S  

Then the experimental Seebeck coefficient for the Bi2Te3 

suspension would be: 

, 1.1404mV/K 

According to Chapter 1, the Seebeck coefficient of bulk Bi2Te3 is 

-287μV/K. Assuming that the Seebeck coefficient of the suspension is 

proportional to the volume fraction of nanoparticles, the anticipated 

Seebeck coefficient of the Bi2Te3 suspension would be: 

, ∗ Vol% 287μV/K ∗ 1% 2.87μV/K 

It is obvious that the theoretical Seebeck coefficient is much smaller 

than the experimental value (only 0.24% of the experimental Seebeck 

coefficient), which indicates that the assumption for nanoparticle Seebeck 

coefficient does not apply. 

Although it is pointed out that the thermophoresis effect in the fluid 

would affect the thermoelectric effect that’s shown (Chapter 5), but the 

influence is not as big as it is shown in the experiment. Further research is 

needed for the explanation of this phenomenon and might be an effect that 

is worth exploring. 
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For the Bi2Te3 suspension without NaCl, the best linear fit is: 

dV 0.29038 ∗ dT 3.1358 

Compare this equation to the standard thermoelectric equation: 

dV S ∗ dT 

Therefore, the Seebeck coefficient for this linear fit is -290.38μV/K. 

As shown in the previous section, the Seebeck coefficient of Bi2Te3 

suspension with NaCl is -1.1404mV/K and the Seebeck coefficient of 

Bi2Te3 suspension without NaCl is -290.38μV/K, which is very close to the 

bulk material’s Seebeck coefficient -287μV/K (Tan, et al., 2005). 

It is clear that the NaCl in the suspension somehow magnified the 

Seebeck coefficient to -1.1404mV/k, with the rest of the parameters 

controlled to be the same. In the next chapter, a possible explanation for 

this phenomenon is discussed. 
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CHAPTER 7 Discussion of Seebeck Coefficient for Bi2Te3 Suspension 

As shown in the previous chapter, the Bi2Te3 suspension with NaCl 

presents a very high Seebeck coefficient of -1.1404mV/K, while the 

Seebeck coefficient of the Bi2Te3 suspension without NaCl is -290.38μV/K. 

In this case, the NaCl solution not only eliminated the noise in the 

experiment, but also magnified the Seebeck coefficient of the suspension 

as well. In this chapter, the possibility of a magnified Seebeck coefficient is 

discussed in two parts: NaCl’s thermophoresis effect and the 

thermoelectric characteristics of Bi2Te3 composites. 

a. NaCl’s thermophoresis effect 

According to the analysis and discussion in Chapter 5, the 

maximum voltage difference due to the NaCl solution can be as large as 

-14.51mV. Assuming that part of the voltage difference is due to the 

thermophoresis effect of the NaCl solution in the Bi2Te3 suspension, the 

Seebeck coefficient shown by Bi2Te3 can be calculated. 

The maximum voltage difference shown in the Bi2Te3 suspension 

with NaCl is -30mV. If the thermophoresis effect of NaCl solution is 

eliminated, the Seebeck coefficient of the Bi2Te3 suspension would be: 

,
,

dT
 

													
30mV 14.51mV

32K
 

													 484μV/K 
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According to the result, the estimated Seebeck coefficient for the 

Bi2Te3 suspension is -484μV/K, while the experimental result of the 

Seebeck coefficient for the Bi2Te3 suspension without NaCl is -290.38μV/K, 

which is 60% of the estimated Seebeck coefficient. The result of this 

assumption would not be sufficient to explain the high Seebeck coefficient 

observed in the experiment. 

b. Thermoelectric characteristics of Bi2Te3 composites 

It is shown in some research that Bi2Te3 composites show different 

thermoelectric characteristics compared to bulk Bi2Te3.  

According to research on the thermoelectric properties of bismuth 

telluride-based alloys, the Seebeck coefficient of the (Bi, Sb) 2 (Te, Se) 3 

system varies with the percentage of C60 nanocomposites (N. Gothard G. 

W., 2009). It is also mentioned in the research that the C60 nanocomposites 

were added to decrease ZT, and the decrease of ZT in the experiment is 

that electrical conductivity decreases preferentially over lattice thermal 

conductivity (N. Gothard G. W., 2009). As indicated in previous research, 

the decrease of mobility leads to the decrease in electrical conductivity (N. 

Gothard J. S., 2010) 

.A resent research shows that a peak ZT of 1.4 can be achieved in a 

p-type nanocrystalline BixSb2–xTe3 bulk alloy at 100°C, while more 

significantly, this alloy maintains a ZT of 1.2 at room temperature and 0.8 at 

250°C, which make it useful for both cooling and power generation (Bed 
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Poudel, 2008). The research also indicates that the p-type bismuth alloy 

reaches a peak of about 230μV/K at 100°C (Bed Poudel, 2008).  

From the research mentioned in the previous paragraph, a high 

thermoelectric performance is shown in nanocrystalline BixSb2–xTe3 bulk 

alloy. In this case, it is likely that a high thermoelectric performance can 

also be observed in nanoparticles or even in some nanoparticle 

suspensions (nanofluid), not only due to the thermophoresis effect of NaCl 

added to the suspension, but also due to the characteristic of the 

suspension itself. One of the reasons why the experimental Seebeck 

coefficient of the Bi2Te3 suspension without NaCl is similar to that of the 

bulk material is that the Bi2Te3 nanoparticles within the suspension were 

relatively stable; the nanoparticles were in good contact with each other, 

and the fluid increase the conductance between the particles; thus the 

Seebeck coefficient of Bi2Te3 suspension is close to the bulk material. On 

the other hand, the addition of NaCl solution might have changed the 

property of the nanoparticle suspension (in both thermoelectric 

characteristics and electric conductivity), and thus can lead to a 

suspension with even better thermoelectric performance. 
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CHAPTER 8 CONCLUSION 

The introduction of this thesis presents a brief review of the history 

of thermoelectrics and the working principle of thermoelectric devices. 

Based on the thermoelectric effect shown in solid materials, an assumption 

is made that ‘nanoparticle liquid suspensions’ will share this characteristic 

as well. 

One of the objectives of this thesis work is to develop an 

experimental procedure and setup proper experimental equipment to verify 

the assumption. In the experiment, three parameters are measured 

through the data logger: time, temperature and voltage. A verification test 

on the data logger is performed and double checked with the theoretical 

result of the copper wire, which would verify the performance of the data 

logger, excluding the possibility of a ‘ghost effect’ shown by the NI data 

acquisition block. Three different liquid suspensions (carbon nano tubes, 

aluminum dioxide nano powder and bismuth telluride nano powder) are 

tested in the experiment, and all are based on a 1% volume fraction NaCl 

solution. 

The other objective of this thesis is to analyze the results of the 

experiment by comparing three different suspensions’ Seebeck coefficient 

and correlation between dT and dV. Due to the unique characteristics of 

three different nano particles (insulator, conductor and semiconductor), the 

correlation varies from 8% for Al2O3 to 38% for CNT and 96% for Bi2Te3. 

With discussion of the thermophoresis effect that existed in the NaCl 
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solution, a possible impact on voltage change across the temperature 

gradient is given in chapter 6. 

The experimental Seebeck coefficient of the suspension for Bi2Te3 

is -1.140mV/K, which is much more than expected. It would be of some 

interest if further research is focused on this phenomenon and might be 

able to develop a nanoparticle suspension with high thermoelectric 

performance. 

There are a few works worth exploring in the future study of this 

thermoelectric effect in nanoparticle suspensions: a 2D/3D voltage 

gradient analysis in a 2D/3D temperature gradient; design an experiment 

with a closed loop to test the output power of the suspension in certain 

temperature gradient; further analysis on the relationship between 

thermophoresis and thermoelectric effect in the nanoparticle suspension; 

thermoelectric and heat transfer characteristics for nanoparticle 

suspension. With further research on the thermoelectric effect in 

nanoparticle suspensions, a flexible sensor using liquid or better 

thermoelectric fluid that dissipates the heat generated in electronic devices 

might be possible outcomes. 
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APPENDIX A 

MATLAB CODE FOR DATA DEMONSTRATION 
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(1) 

clear all; 

close all; 

data=load('10_15_Bi2Te3_1%_NaCl_1%_Sur1%_run3(flipped).txt'); 

time=data(:,1); 

time1=time(1:285); 

time2=time(286:end); 

dv=data(:,8); 

dv1=dv(1:285); 

dv2=dv(286:end); 

dt=data(:,9); 

dt1=dt(1:285); 

dt2=dt(286:end);  

s=data(:,10); 

figure(1);plot(time1,dt1,'r');hold on;plot(time2,dt2,'b'); 

figure(2);plot(time1,dv1,'r');hold on;plot(time2,dv2,'b'); 

figure(3);plot(dt1,dv1,'r');hold on;plot(dt2,dv2,'b') 

figure(4);plot(time,s); 

  



  68 

(2)  

clear all; 

close all; 

Bi=load('Bi_Seebeck.txt'); 

Al=load('Al_Seebeck.txt'); 

CNT=load('CNT_Seebeck.txt'); 

dT_Bi=Bi(:,1); 

dT_Al=Al(:,1); 

dT_CNT=CNT(:,1); 

S_Bi=Bi(:,2); 

S_Al=Al(:,2); 

S_CNT=CNT(:,2); 

plot(dT_Bi,S_Bi,'r');  

hold on; 

plot(dT_Al,S_Al,'b'); 

plot(dT_CNT,S_CNT,'g'); 

 

 



 

APPENDIX B 

OTHER EXPERIMENT RESULT FIGURES 
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