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ABSTRACT

Modern gas turbines operate at high mainstream gas temperatures and pres-

sures, which requires high durability materials. A method of preventing these hot

gases from leaking into the turbine cavities is essential for improved reliability

and cost reduction. Utilizing bleed-off air from the compressor to cool internal

components has been a common solution, but at the cost of decreasing turbine per-

formance. The present work thoroughly describes the complex flow field between

the mainstream gas and a single rotor-stator disk cavity, and mechanisms of main-

stream gas ingestion. A combined approach of experimental measurement and nu-

merical simulation are performed on the flow in a single-stage model gas turbine.

Mainstream gas ingestion into the cavity is further reduced by utilizing two axi-

ally overlapping seal rings, one on the rotor disk and the other on the stator wall.

Secondary purge air is injected into the rotor-stator cavity pre-swirled through the

stator radially inboard of the two seal rings. Flow field predictions from the simula-

tions are compared against experimental measurements of static pressure, velocity,

and tracer gas concentration acquired in a nearly identical model configuration.

Operational conditions were performed with a main airflow Reynolds number of

7.86e4 and a rotor disk speed of 3000rpm. Additionally the rotational Reynolds

number was 8.74e5 with a purge air nondimensional flow rate cw = 4806. The

simulation models a 1/14 rotationally periodic sector of the turbine rig, consist-

ing of four rotor blades and four stator vanes. Gambit was used to generate the
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three-dimensional unstructured grids ranging from 10 to 20 million cells. Effects

of turbulence were modeled using the single-equation Spalart-Allmaras as well as

the realizable k-epsilon models. Computations were performed using FLUENT for

both a simplified steady-state and subsequent time-dependent formulation. Simu-

lation results show larger scale structures across the entire sector angle inside the

cavity and certain unsteady mainstream ingestion mechanisms are realized from the

tracer gas. Simulated velocity distributions were scrutinized against Particle Image

Velocimetry plots in the rotor-stator cavity and are in reasonable agreement with all

of the measurements.
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NOMENCLATURE

b outer radius of disk cavity [m], Figure 1

C CO2 tracer gas volumetric concentration (mass fraction)

Cvax vane axial chord length [m]

cw,fd nondimensional free disk pumping mass flow rate, = 0.219·Re0.8
ϕ

cw nondimensional mass flow rate of purge air, = ṁpurge/(µb)

cfm cubic feet per minute

D diffusion coefficient [m2s−1], Equation (68)

E total specific energy content in fluid [J/Kg], Equation (75)

Eτ empirical constant for y+, =9.793, Equation (30)

Fk kth harmonic frequency [Hz], Equation (77)

g gravitational acceleration, = 9.81 [m·s−1]

J diffusion flux [kg·m−2s−1], Equation (68)

K turbulent kinetic energy [m2s−2], Equation(35)

k laminar thermal conductivity

kt turbulent thermal conductivity, Equation (75)

ṁ mass flow rate [kg/s]

N number of species in fluid mixture, Equation (70)

n number of blades on rotor disk, Equation (77)

p static pressure [Pa]

Q volumetric Flow Rate [m3·s−1], Eq. 79

r radial coordinate, =
√
y2 + z2 [m]

Reϕ disk rotational Reynolds number, = ρωb2/µ

Revax Main air flow Reynolds number, = ρVaxCvax/µ

rpm revolutions per minute
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Sij mean rate of strain tensor [s−1], Equation (22)

Sct Turbulent Schmidt number, Equation (69)

T temperature [◦C]

t time [s]

U blade hub speed, = ω × b [m·s−1]

V Cell Volume [m3]

V2 actual velocity of main air at vane exit [m·s−1]

Vϕ tangential velocity of air [m·s−1]

Vr radial velocity of air [m·s−1]

Vx axial velocity of air [m·s−1]

Vax = Va2 mixed-mean axial velocity of main air in annulus [m·s−1]

W relative velocity of main air with respect to U [m·s−1]

x axial coordinate, measured upstream from the blade leading edge [m]

Y species concentration (mass fraction), Equation (67)

y∗ dimensionless wall normal distance, Equation (64)

y+ dimensionless wall normal distance, = ynυτ
ν

yn shortest wall distance to cell center [m], Equation (64)

α2 angle to axial direction downstream, of the main air velocity just down-
stream of vane trailing edge [◦]

β2 angle to axial direction downstream, of the main air velocity relative to the
blade velocity just downstream of vane trailing edge [◦]

∆t time step size [s]

δij Kronecker delta

ε turbulent kinetic energy dissipation rate [m2s−3], Equation(35)

η Kolmogorov length scale [m], Equation (8)

µ dynamic viscosity [kg·m−1s−1]

ν kinematic viscosity [m2s−1]
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ν̃ eddy viscosity, Equation (23)

νt turbulent eddy viscosity, Equation (24)

Ω rotor disk rotational velocity [rpm]

ω rotor disk rotational velocity [rad/s]

Ωij rate of rotation tensor [s−1], Equation (27)

ϕ azimuthal coordinate [◦]

ρ density [kg·m−3]

σij stress tensor [Pa], Equation (4)

τw wall shear stress = µ ∂u
∂xn

[kg·m−1s−2], Equation (32)

υ fluid velocity [m·s−1]

υτ friction velocity =
√

τw
ρ

[m·s−1], Equation (32)

ζ sealing effectiveness, Equation (80)
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I. Introduction

Experimentation and simulation have been performed to gain a better under-

standing of the flow characteristics within a single turbine stage and to assess

the accuracy of the simulation predictions - specifically the flow characteristics in

the main-gas path, the rotor-stator cavity, and the interaction of these two regions

through the seal rings. Unsteady interactions between the rotor blades and stator

vanes are a major cause of mainstream gas ingestion into the rotor-stator cavity.

Non-uniform circumferential static pressure distributions in conjunction with the

time-dependent interactions lead to instabilities that cause ingestion. As a con-

sequence, this may cause undesired thermal fatigue, overheating, and thermal ex-

pansion of the turbine materials, thus purge air injection is a commonly employed

solution to overcome ingestion.

In modern gas turbine applications, approximately twenty percent of the incom-

ing compressed air is used for secondary air systems.3 Though cooling and sealing

flows are only a fraction of that total, it is still desirable to reduce the secondary

system usage as much as possible. Turbine rotor-stator cavities are an essential

link between the neighboring rotating and stationary wall sections within any tur-

bine configuration. Preventing hot mainstream gases from entering these cavities is

of great importance from a reliability standpoint. Turbine rotor components experi-

ence more mechanically demanding conditions than the neighboring stator counter-

parts. Temperatures in the main gas path typically operate between 900 - 1300◦C,
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and so the internal components would be very expensive if required to operate at

these same temperatures. Normal practice is to maintain the internal disk and hub

components to less than 500◦C.4

Purge air injected into the cavity serves to cool the rotor disk in addition to

countering main gas ingestion with. These secondary flows are also known as cool-

ing or sealing flows respectively. Protruding seal rings on the cavity walls are a

supplemental method of reducing ingestion and the design of a labyrinth seal may

help reduce the ingestion and secondary flow requirements. Turbine efficiency is

directly improved by minimizing the usage of purge air for two reasons. Firstly,

by allowing more main-stream air for combustion, and secondly, by reducing the

flow blockage created by egressed air flowing into the path of the mainstream gas.

Demand is always being placed on increasing pressures, temperatures, and rotation

speeds to boost the engine thrust-to-weight ratios in aircraft turbines,5 thus making

secondary flow and seal designs very critical aspects of turbine design.

A. Scope

The present contribution aims to examine, experimentally and numerically, the

complex flow field in the rotor-stator cavity along with the mechanisms behind

mainstream ingestion and sealing effectiveness. Comparisons can be made between

the experiments and simulations to determine the accuracy of the computer models.

The present configuration employs the use of two axially overlapping seal rings, of

which, one is attached to the stator wall and the other to the rotor disk, producing
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a small radial gap (2.5 mm) between them. Both seal rings are located radially

inboard of the disk rim and pre-swirled purge air is injected into the cavity radially

inboard of the seal rings, not through the hub as in many previous experiments.2, 6–13

Boundary conditions were configured such that 80% of the incoming purge flow is

forced out through the narrow seal ring gap and into the main gas flow, while the

remaining 20% exits through the outlet at the hub.

A single experimental configuration was analyzed and discussed for which two

different CFD simulation results are presented. FLUENT 6.3 (2008) was used

to simulate a further-simplified model of the experimental setup for comparison.

Simulations performed in the present work aim to keep the resolution refined and

simulate flow structures that are not attainable with the single blade/vane setup.

They also offer supplemental flow field results that are difficult or impossible to

measure experimentally. Certain measurements of static pressure, tracer gas con-

centration, and cavity fluid velocity were obtained in the experimental setup for

comparison and are presented. Simulation results obtained show that larger scale

time-dependent flow structures evolve, but are restricted by the periodic four vane

– four blade domain size.

Two main goals are presented in the current contribution. First, an attempt is

made to determine whether a simulation in FLUENT can closely predict the flow

characteristics measured in an experimental model turbine rig. Secondly, the results

from the experiments and simulations are used to gain a better understanding of

factors leading to ingestion. The present work was also published in an ASME
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paper14 and many of the same plots were used.

B. Background

The predominant cause of ingestion is known to be the three-dimensional un-

steady flow field that exists in the main gas path of turbine stage.2, 6–9 Accordingly,

experiments and computational fluid dynamic (CFD) simulations have been per-

formed to better understand the ongoing physical processes. Some previous CFD

simulations by Roy et al.,2, 10 Zhou et al.6 and Teramachi et al.7 used configurations

containing only a single pitch of the blade and vane. Jakoby et al.11 used sectors

containing two vanes and Okita et al.,15 Zerelli et al.,3 and Gentilhomme et al.16

used a two-blade sector.

All of these previous sector model simulations were unable to resolve the larger

structures that form over a multitude of vanes, but showed ingestion nonetheless.

Unsteady simulations of full 360 degree turbine geometries have also been per-

formed by Cao et al.,8 and Jakoby et al.,11 but at the cost of incorporating additional

simplifications. For example, none had modeled the blades/vanes in the main gas

path, and focused solely on the cavity using lower resolution grids. It was shown

that unsteady effects were still present, independent of blade passing events, and

still caused ingestion. To measure the ingestion, Jakoby et al.used air as both the

main and tracer gas, but made them distinguishable in FLUENT.

Teramachi et al.7 and Hills et al.12 employed a sliding interface method for

solving unsteady models, also replacing the rotor blades with struts to verify that the
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presence of blades did indeed degrade sealing effectiveness. Okita et al.15 placed

emphasis on developing a labyrinth seal configuration to significantly reduce purge

air usage by reducing turbulent mixing within the cavity. It was shown that it is

possible to localize the cooling to the rotor side by reducing the turbulent mixing

within the cavity.

Paniagua et al.17 investigated the effects of the ejected purge flow blocking the

transonic mainstream flow and altering the velocity triangles. As a result, the rotor

relative incidence is altered, affecting the turbine performance; McLean et al.18, 19

also reached this conclusion. They concluded that the cavity flow and ejected purge

flow into the mainstream must be considered during the preliminary design phase to

accurately predict the mainstream gas behavior. This supplements the importance

of decreasing the purge flow rate as much as possible. Furthermore, Denton et al.20

emphasizes the importance of modeling both the main and secondary flow cycles

together with a precise 3D geometry in a CFD simulation to completely capture

the unsteady phenomena. Denton also states that CFD modeling has been the most

critical breakthrough in modern turbo machinery design.

Bricaud et al.21 also performed PIV measurements on a pre-swirled turbine

setup. Findings showed that the pre-swirler can introduce turbulence and losses by

creating high velocity gradients at the shear layers of the jets. Pre-swirlers could

be improved by using more nozzles to reduce the spacing between them or by even

using a set of secondary guide vanes instead of nozzles to inject the pre-swirled

flow.
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II. Experimental Apparatus

Before the simulations were performed, a research team led by Dr. Roy at

ASU carried out a series of experiments and measurements on a model turbine

rig. A corresponding simulation was designed to match the turbine configuration

and compare the results. The radial-axial cross-section schematic of the turbine

configuration shown in Figure 1 was used to design the 3D SolidWorks model.
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Figure 1. Axial-Radial schematic diagram - C: Concentration tap; P: Static
pressure tap; T: Thermocouple

Pre-swirled purge air is injected from the stator side into the rotor-stator cavity. The

purge air is supplied to the cavity through 30 circular holes of 4.76 mm diameter

at a radius of 157.3 mm, each hole being equally spaced circumferentially. The air
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Figure 2. Velocity diagram of main air flow and the vane/blade geometry

is injected at an angle of 10 degrees from the stator surface in the axial-tangential

plane. These purge nozzles are oriented so that the tangential velocity imparted

to the purge air is in the direction of the rotor rotation. A second schematic of the

axial-azimuthal (x-ϕ) plane shows the vane and blade geometries in Figure 2. There

are 59 partial-height, full-length (Cvax = 26 mm) vanes (often also referred to as

Nozzle Guide Vanes, NGV) which turn the incoming main air flow by α2 =60.1

degrees. The aluminum rotor disk is 403.2 mm in diameter and has 52 partial-

height, partial-length blades. Partial heights and partial lengths were used to reduce

the pumping power requirements. The two seal rings provide an axially overlapping

radial clearance seal configuration.

Table 1 lists the experimental conditions supplied to the model turbine rig. 20

percent of the purge flow air exits through the purge outlet at the rotor hub while

the remaining 80 percent egressed through the seal rings and into the mainstream
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flow. The cavity hub outflow rate was maintained with three dry-vacuum pumps

operating in parallel, each having a maximum flow rate of 12 cfm (0.006 m3/s)

and a maximum vacuum of 25.5” Hg (86.4 kPa). The hub air flow was drawn out

such that the disk cavity pressure was maintained.

A. Static Pressure Measurement

To measure the time-average static (gage) pressure, a differential pressure

transducer-digital manometer-Scanivalve set-up was used. Pressure taps were

placed on the stator wall inside the cavity, between the seal rings, and on the outer

shroud in the main gas path. Figure 1 shows the locations of the six pressure taps

on the stator wall. At the outer shroud radius, r = 218.6 mm (r/b = 1), sixteen taps

were provided circumferentially over one vane pitch. The pressure tap positions on

the outer shroud and stator seal can be found in Ref. 2 and shown in Figure 3. The

uncertainty in these pressure measurements is ± 2 percent based on the instrument

and data acquisition uncertainties.

B. CO2 Measurement

Because of the unsteady ingress phenomenon, a useful measure of ingestion is

to seed indigenous cavity air with a tracer gas. In the present work, carbon dioxide

(CO2) was used. A subsequent measurement of CO2 concentration will determine

the extent of mixing between the mainstream and cavity air. A constant 4 percent

volumetric concentration (mass fraction) of CO2 was injected through the purge

air and was monitored just upstream of its entrance to the disk cavity to ensure
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Table 1. The Experimental and Simulation Boundary Conditions

Main air flow rate (cfm / Revax) 2100/7.86×104

Rotor speed (rpm/Reϕ) 3000/8.74×105

Free disk pumping flow rate (cfm / cw,fd) 77.4/12404
β2[◦] 14.2

Purge air flow rates (cw)
Total supplied 4806
Outflow at cavity hub 961
Egress to main flow 3845

Figure 3. Axial-Azimuthal (x-ϕ) schematic of pressure tap locations

the introduced air-CO2 mixture remained at that constant volumetric concentration.

This particular CO2 volumetric concentration was chosen because it has been used

successfully in many earlier works.2, 6, 13 The radial locations of sampling tubes on

the stator disk are shown in Figure 1, note that they are the same as the six pressure

tap locations. The CO2 concentration was also monitored in the main air to serve

as reference and measured by a NDIR gas analyzer. Measured CO2 volumetric

concentrations have an uncertainty of ± 0.11 percent and the values were time-
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averaged over many rotor revolutions, but are local with respect to the vane position

and radial coordinate.

C. Air velocity vector maps

The final measurements consisted of using a dual Nd:YAG laser (Spectra-

Physics PIV-200) providing short pulses (∼=10 ns width) of 532 nm (green) light

to illuminate seed particles (olive oil droplets, 1-2 µm) in the rotor-stator cavity

flow. The droplets were generated by means of a Laskin nozzle, and the light sheet

optics system produced a light sheet in the radial-azimuthal (r-ϕ) plane of about

351 mm height and 70.7 µm thickness at its waist. Figure 1 shows the axial loca-

tions of the three various laser planes, the light sheet was introduced through the

transparent and optically polished outer shroud. Images were captured by means

of a high-resolution CCD camera (2048 × 2048 pixels) through the transparent

and optically polished stator wall. The light sheet and camera could be accurately

positioned by means of a three-dimensional traverse equipped with a rotary stage.
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III. The Navier-Stokes Equation

A common approach to performing Computational Fluid Dynamics involves

solving the Navier-Stokes equations numerically. The following derivations are

a compilation of information from Refs. 1, 22, 23, and 24. Beginning with the

continuity equation for a general fluid continuum in Einstein notation,

∂ρ

∂t
+

∂

∂xi
(ρυi) = 0 (1)

Here υi corresponds to the Cartesian velocity components in R3 for i = 1, 2, 3

such that the vector υ = [υ1, υ2, υ3]T , and xi corresponds to the Cartesian coordi-

nate directions. For an incompressible fluid, i.e. constant density ρ, Equation (1)

simplifies to

∂υi
∂xi

= ∇ · υ = 0 (2)

which can be physically interpreted as the fluid velocity field having no sources or

sinks, i.e. the divergence of velocity is zero. The differential form of the momentum

equation is written as,

ρ

(
∂υi
∂t

+ υj
∂υi
∂xj

)
=
∂σij
∂xj

+ ρgi (3)

and is derived from the total derivative of velocity and Newton’s second law of

motion. Correspondingly, written as dm(Dυi
Dt

) = Σ(dF ) reveals the origin of the

time dependent and convective acceleration terms on the left-hand side. After di-
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viding through by infinitesimal fluid volume dV , the density ρ = dm
dV

appears and

the equation is balanced by the body forces dF
dV

on the right hand side, such as the

divergence of stresses∇·σij . Gravity body forces gi are neglected from the remain-

der of the present work. Equations (1) and (3) are the continuity and momentum

equations respectively, and are solved together to predict the flow field. The energy

Equation (76) is described later and can be used in conjunction to solve additional

flow state-variables. Here σi is the stress tensor which is a combination of stresses

using the constitutive law for incompressible fluids,

σij = −pδij + τij (4)

where p is the static pressure and δij is the Kronecker delta. Here τij is the deviatoric

part of the stress tensor defined as,

τij = µ

(
∂υi
∂xj

+
∂υj
∂xi

)
(5)

Replacing the decomposed stresses into Equation (3) yields

ρ

(
∂υi
∂t

+ υj
∂υi
∂xj

)
= − ∂p

∂xi
+
∂τij
∂xj

(6)

This is the general Navier-Stokes equation where τij for a Newtonian fluid is the

deviatoric stress portion, and may also be written in any of the following common

12



forms23

∂τij
∂xj

= µ
∂

∂xj

(
∂υi
∂xj

+
∂υj
∂xi

)
= µ

∂2υi
∂xj2

= µ∇2υi (7)

where ∇2υ ≡ ∇ · (∇υ) = ∂2υ
∂x2j

is the Laplace operator. Together the continuity

and momentum equations, (2) and (6) respectively, can be coupled together with

adequate (closed) boundary conditions to solve for the state variables: pressure p

and velocity υi.

Numerical simulation can be carried out using the Navier-Stokes Equation (6)

on finite fluid volumes, but the scale of the discretized mesh must be on the same

order as the smallest flow structures that are to be resolved. This method is known

as Direct Numerical Simulation (DNS) and proves to be very inefficient because

it requires the grid spacing to be on the order of the Kolmogorov length scale,24

defined as

η ≡
(
ν3

ε

)
(8)

The computing requirements to model the required fine grid size will not be prac-

tical in most engineering applications for many more decades. As explained in the

next segment, this issue is overcome by not resolving the fluid to it’s smallest scale

structures, but instead, assumptions are made about the small scale ”‘turbulent”’

motions and additional turbulence models are introduced to close the new govern-

ing equations.
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A. Time Averaging

A useful approach is to employ time averages over short time periods where

higher frequency fluctuations will be segregated from larger flow behavior. One

flow modeling assumption is to treat the velocity vectors as consisting of a mean

(time-average) and fluctuating component. This effectively groups the small scale

fluctuations into a single value (adding an additional state-variable), and does not

require that the fluid mesh be fine enough to resolve those small turbulent scales.

The time averaging method is known as Reynolds Averaging, and performing this

operation on a flow state-variable such as υi is defined as,

ῡi ≡
1

∆t

∫ to+∆t

to

υidt (9)

A time-averaged mean value is represented by an overbar, e.g. ῡi. The period

∆t is chosen appropriately such that small scales (high frequency) fluctuations are

averaged-out, but not too large either, so that the important larger scale unsteady

flow features remain. It follows then that the decomposition of any state variable is

analogous to

υi = ῡi + υ′i (10)

where υ′ is the time-dependent fluctuating value written in Cartesian coordinates

as υ′ = [υ′1, υ
′
2, υ
′
3]T . The decomposition proves useful because of the following

14



properties and identities for any arbitrary time-dependent variables f and g,

f̄ ′ = 0 f ′f ′ 6=0 f ′g′ 6=0 f̄ g′ = 0 f̄ g = f̄ ḡ

f + g = f̄ + ḡ (f̄ + f ′)2 = f̄ 2 + f̄ ′2

(11)

most notably that the average of a fluctuation multiplied by a scalar is zero. How-

ever, note that the average of two fluctuations multiplied together is non-zero. This

non-linear term leads to closure problems and gives rise to turbulence modeling as

described next. Reynolds proposed substituting the decomposed variables into the

Navier-Stokes and continuity equations, leading to the Reynolds-Averaged Navier-

Stokes (RANS) equations. For the continuity equation thus yields,

∂ρ̄

∂t
+

∂

∂xj
(ρ̄ῡj + ρ′υ′j) = 0 (12)

For incompressible flows, the density fluctuations ρ′ are zero because the density is

assumed constant (∂ρ
∂t

= 0 and ρ = ρ̄) so the continuity equation becomes,

∂ῡj
∂xj

= ∇ · ῡ = 0 (13)

Subtracting Equation (2) from Equation (13) yields

∂υ′i
∂xi

= ∇ · υ′ = 0 (14)
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meaning that the velocity’s fluctuating component must also independently satisfy

the continuity equation. Likewise, substituting the decomposed state-variables into

the Navier-Stokes equation gives

∂

∂t

(
ρ̄ῡi + ρ′υ′i

)
+

∂

∂xj

(
ρ̄ῡiῡj + ῡiρ′υ′j

)
= − ∂p̄

∂xi
+

∂

∂xj

(
τ̄ij − ῡjρ′υ′i − ρ̄υ′iυ′j − ρ′υ′iυ′j

) (15)

However, adhering to the incompressible flow assumption allows setting the density

fluctuations ρ′ = 0, and the RANS momentum equation reduces to a much simpler

form,

∂

∂t
(ρῡi) +

∂

∂xj
(ρῡiῡj) = − ∂p̄

∂xi
+

∂

∂xj
(τ̄ij − ρυ′iυ′j) (16)

where τ̄ij becomes,

τ̄ij = µ

(
∂ῡi
∂xj

+
∂ῡj
∂xi

)
(17)

The RANS momentum Equation (16) can be rewritten as

∂ῡi
∂t

+ ῡj
∂ῡi
∂xj

= −1

ρ

∂p

∂xi
+ ν∇2ῡi −

∂υ′iυ
′
j

∂xj
(18)

by dividing through all terms by density ρ, where ν = µ/ρ is the kinematic viscos-

ity.
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B. The Reynold’s Stress

The closure problem arises in the RANS equation (18) because of the non-linear

term υ′iυ
′
j from the convective acceleration, known as the Reynolds stress

Rij = υ′iυ
′
j (19)

Closing the RANS equation requires additional modeling to solve for this Reynold’s

stress Rij . Here the Boussinesq hypothesis is applied to model the Reynolds stress

term from Equation (18). Note that a new proportionality constant νt > 0, the

turbulent eddy viscosity, has been introduced. Models of this type are known as

eddy viscosity models or EVM’s.

− υ′iυ′j = νt

(
∂ῡi
∂xj

+
∂ῡj
∂xi

)
− 2

3

(
K + νt

∂ῡk
∂xk

)
δij (20)

The Boussinesq hypothesis is used for the Spalart-Allmaras (S-A), k-ε, and k-ω

models and offers a relatively low cost computation for the turbulent viscosity νt.

The S-A model uses only one additional equation to model turbulent viscosity trans-

port. In 1887 Boussinesq proposed relating the turbulent stresses to the mean flow

to close the system of equations. Thus, Boussinesq’s proposed method of using an

eddy viscosity to solve for the Reynold’s stress can be simplified from Equation
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(20) for incompressible flow,

−Rij = −υ′iυ′j = 2νtSij −
2

3
Kδij (21)

because the divergence term ∂ῡk
∂xk

= 0 in incompressible flows. This Equation will

be used for the time averaged incompressible governing equations to compute the

Reynold’s stress for all of the turbulence models described in the present work. νt

is the eddy viscosity, Sij is the mean rate of strain tensor, and K is the turbulent

kinetic energy. K is only used in the two-equation models section and will be

defined there, whereas the one-equation models will ignore the K term. The mean

rate of strain tensor is defined as,

Sij =
1

2

(
∂ῡj
∂xi

+
∂ῡi
∂xj

)
(22)

C. Pressure-Velocity Coupling

To reiterate, the continuity and momentum equations are used together to solve

for the state variables: pressure p and velocity υi for each cell in the mesh. The

pressure-based solver was used throughout all simulations in the present work.

Thus, FLUENT offers two methods to calculate the solution in a pressure-based

solver scheme: segregated and coupled. The coupled solver converges more

quickly, but requires 1.5-2 times as much memory as the segregated method be-

cause the pressure correction equation solves the continuity and momentum equa-
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tions in a closely-coupled manner.1 In the present work, only the segregated solvers

SIMPLE and PISO (Pressure-Implicit with Splitting of Operators)1 were used.

First the fluid properties such as density, viscosity, and specific heat are com-

puted by the solver. Then, depending on the method chosen, the momentum equa-

tion and a pressure correction equations are either solved coupled or individually

(sequentially) to solve for velocity and pressure. The PISO method performs ad-

ditional loops internally (skewness-neighbor coupling) that help the calculated val-

ues satisfy the momentum and continuity equations more accurately. Lastly, the

species, temperature, turbulence, and other scalar equations are solved as described

in the next two sections. Figure 4 shows the flow chart diagram for the different

schemes.

Update properties: 
density, viscosity, and 

specific heat

Solve Sequentially:
velocity u

i

Solve pressure-
correction (continuity) 

equation

Solve 
simultaneously: 

system of momentum 
and pressure-based 
continuity equaitons

Update mass flux, 
pressure, and velocity

Update mass flux

Solve: energy, species, 
turbulence, and other scalar 

equations

Perform 
additional loops: 
skewness-neighbor 

coupling 
(corrections to u

i
)

PISO?

Segregated? Coupled?

Figure 4. Flow chart of pressure-velocity correction schemes, modified from
Ref. 1
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IV. Modeling Turbulence

Three different classes of eddy viscosity models exist: zero-equation (alge-

braic), one-equation, and two-equation models. The names imply the number of

differential equations required in addition to the fundamental RANS differential

equation. Zero-equation models close the RANS equations using only algebraic

relations, i.e. the nonlinear term such as the Reynolds stress is solved using alge-

braic relationships to the mean flow variables. Some zero-equation models include

Prandtl’s Mixing Length, the Cebeci-Smith, and the Baldwin-Lomax models.25

Common one-equation models include the Baldwin-Barth and Spalart-Allmaras

models.25 Common two-equation models include the k-ε, k-ω, and Menter’s Shear

Stress Transport models.

The Spalart-Allmaras is the simplest model available in FLUENT and an exam-

ple of a one-equation model. The k-ε and k-ω models are also offered in FLUENT.

Many higher order models exist such as the SST and LES, but they are beyond the

scope of this paper. The present work employs the S-A model and the k-ε models

only, and they will be discussed in great detail. All of the models share a com-

mon trait in that they usually include proportionality constants (when relating the

mean flow variables) determined by experimentation, empiricism, and/or dimen-

sional analysis. The information presented here is a culmination of information

from FLUENT,1 Davidson26 and Bernard.22
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A. Spalart-Allmaras Model

The Spalart-Allmaras (S-A) model was used during the present work for MESH

I. The proposed model uses one additional differential equation to solve for the

transport of a modified turbulent eddy viscosity ν̃. This quantity is identical to the

turbulent kinematic viscosity ν except in the near wall regions where FLUENT em-

ploys certain wall functions to modify ν̃. Note that the last term in the Boussinesq

assumption, Equation (20), is ignored when computing the Reynolds stress because

the kinetic energy K is not calculated. The model was developed using empiricism

and dimensional analysis with the working variable ν̃, known as the eddy viscosity.

Its transport equation takes the form,

Dν̃

Dt
= cb1S̃ν̃ − cw1fw

(
ν̃

d

)2

+
1

σν̃

[ ∂

∂xj

{
(ν + ν̃)

∂ν̃

∂xj

}
+ cb2(

∂ν̃

∂xj
)2
]

(23)

where cb1S̃ν̃ is the production term, (1/σν̃)[∇ · ((ν + ν̃)∇ν̃) + cb2(∇ν̃)2] is the

diffusion term, and [cw1fw][ν̃/d]2 is the destruction term of turbulent viscosity. The

turbulent eddy viscosity νt is computed using,

νt = ν̃fv1, fv1 =
χ3

χ3 + c3
v1

, χ =
ν̃

ν
(24)
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where ν is the molecular viscosity and fv1 is a damping function. In the production

term, the modified vorticity, S̃, is written as,

S̃ = S +
ν̃

κ2d2
fv2, fv2 = 1− χ

1 + χfv1

(25)

where S is the revised vorticity magnitude:

S ≡ |Ωij|+ Cprodmin(0, |Sij| − |Ωij|) (26)

and |Ωij| ≡
√

2ΩijΩij is the magnitude of mean rate-of-rotation tensor defined by

Ωij =
1

2

(
∂ῡi
∂xj
− ∂ῡj
∂xi

)
(27)

In the destruction term, the function fw is defined as,

fw = g

[
1 + c6

w3

g6 + c6
w3

]1/6

, g = r + cw2(r6 − r), r =
ν̃

S̃κ2d2
. (28)

The constants appearing in the above equations have the default values in FLUENT

of

cb1 = 0.1355, cb2 = 0.622, σν̃ = 2/3, cv1 = 7.1, κ = 0.4187,

cw1 = cb1/κ
2 + (1 + cb2)/σν̃ , cw2 = 0.3, cw3 = 2, cv1 = 7.1.
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To handle the wall boundaries, the Dirichlet wall boundary condition sets ν̃ = 0,

and when the mesh is fine enough to resolve the laminar sublayer then the following

relation is used to calculate the wall shear stress,

ῡ

υτ
=
υτyn
ν

(29)

otherwise if the mesh is too coarse, then the log law of the wall is employed

ῡ

υτ
=

1

κ
lnEτ

(
yn
υτ
ν

)
(30)

where υ is the velocity parallel to the wall, υτ is the shear velocity, yn is the

normal distance from the wall, κ = .4187 is the von Karman Constant, and

Eτ = 9.793 is the Empirical constant. For convenience, FLUENT defines the

non-dimensionalized parameters,

υ+ =
ῡ

υτ
y+ =

ynυτ
ν

(31)

The friction velocity υτ is defined as,

υτ =

√
τw
ρ

(32)

where τw = µ ∂u
∂xn

is the wall shear stress.
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B. Standard k-epsilon Model

The standard K-ε two-equation model commonly used in modern engineering

applications uses the following two additional differential equations to close the

RANS equation,

∂K

∂t
+ ῡj

∂K

∂xj
= P − ε+ ν∇2K − ∂

∂xi

(
pυ′i
ρ

+ υ′i(υ
′ 2
j /2)

)
(33)

∂ε

∂t
+ ῡj

∂ε

∂xj
= P 1

ε + P 2
ε + P 3

ε + P 4
ε + Πε + Tε +Dε −Υε (34)

where K is the turbulent kinetic energy and ε is the turbulent kinetic energy dis-

sipation rate. The buoyancy and compressibility production terms are ignored and

not shown. K represents the kinetic energy contained in the fluctuating velocity

term, from the decomposition,

1

2
υ2
i = K +K =

1

2
υi

2 +
1

2
υ′ 2i (35)

For simplicity the K is not written as K ′, but it is indeed the energy of the fluc-

tuating velocity component of the decomposition. Note that neither the mass nor

density are factors in this kinetic energy. In Equation (33), P is the turbulent kinetic

energy production rate term defined as

P = Rij
∂υi
∂xj

(36)
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Assuming that the Boussinesq hypothesis proposed in Equation (21) holds, then

Equation (36) becomes

P = νt
∂ῡi
∂xj

(
∂ῡi
∂xj

+
∂ῡj
∂xi

)
(37)

Since the K-ε model uses a separate closed differential (transport) equation for ε,

the only remaining term requiring modeling in the K transport equation is the last

term. It is traditional to assume the term follows a gradient transport law22 such as,

1

ρ
pυ′i + υ′i(υ

′ 2
j /2) = − νt

σK

∂K

∂xi
, (38)

where σK and σε are turbulent Prandtl Numbers. Finally, substituting this closure

model into the K transport Equation (33), it reduces to

∂K

∂t
+ ῡj

∂K

∂xj
= P − ε+

∂

∂xi

[(
ν +

νt
σK

)
∂K

∂xi

]
(39)

The left-hand side represents convection which is balanced by the right-hand side

with production, dissipation, and transport. Lastly, the eddy viscosity is defined

algebraically by choosing appropriate velocity and length scales such that νt = UL.

Since K provides a measure of the turbulence, it has been pursued as measure of

the velocity scale

U ∼
√
K (40)
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Single-equation turbulence models such as S-A, must assume a value for the length

scale L as part of a mixing-length assumption. Thus, single-equation models suffer

because they may only work in certain classes of flows and may require externally

supplied input for the length scale. A length scale is required for the following

dimensional analysis relation to calculate the kinetic energy dissipation rate ε,

ε ∼ K3/2

L
(41)

However, a model that automatically selects the length scale is desirable, and this

is where two-equation models offer a solution. Since the two-equation models use

a separate transport equation to determine ε, Equation (41) can then be rearranged

instead to estimate the length scale,

L ∼ K3/2

ε
(42)

Multiplying Equations (40) and (42) yields Equation (43).

νt = UL = Cµ
K2

ε
(43)

where Cµ = 0.09 is a constant in the standard k-ε model. This gives the two-

equation models more robustness because the length scale is not required to deter-

mine the eddy viscosity. Next, the energy dissipation rate is governed by a differ-

ential equation defined in Equation (34). It is modeled with a combination of terms
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more challenging to model than the K transport equation (39). The ε equation

comes completely from empiricism and uses arbitrary coefficients acquired during

lab experiments, but behaves reasonably well for a wide variety of flows. Some of

the terms are combined

εij = 2ν
∂υi
∂xk

∂υj
∂xk

, εcij = 2ν
∂υk
∂xi

∂υk
∂xj

(44)

P 1
ε = −εcij

∂ῡi
∂xj

(45)

P 2
ε = −εij

∂ῡi
∂xj

(46)

P 3
ε = −2ν υ′k

∂υ′i
∂xj

∂2ῡi
∂xk∂xj

(47)

P 4
ε = −2ν

∂υ′i
∂xk

∂υ′i
∂xj

∂υ′k
∂xj

(48)

Πε = −2ν
∂

∂xi

(
∂p

∂xj

∂υ′i
∂xj

)
(49)

Tε = −ν ∂

∂xk

(
υ′k
∂υ′i
∂xj

∂υ′i
∂xj

)
(50)

Dε = ν∇2ε (51)

Υε = 2ν2

(
∂2υ′i
∂xj∂xk

)
(52)

Except for the last diffusion term Dε, all of these equations contain velocity fluctu-

ations (υ′) and must be modeled. P 3
ε is not modeled explicitly, but is considered to

be contained within one of the other production terms. First, a model for the first
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two production terms is considered and relies on the formal assumption that the

deviatoric parts of εij and εcij are related to the anisotropy of turbulence and results

in

P 1
ε + P 2

ε = Cε1
ε

K
P (53)

The stretching (P 4
ε ) and dissipation (Υε) terms were derived for isotropic and ho-

mogeneous turbulence, but are applied to the general case because there are no

means yet of determining the effects of anisotropy on the correlations.

P 4
ε −Υε = Cε3R

1/2
T

ε2

K
− Cε2

ε2

K
(54)

where RT = K2/νε. Traditionally Cε3 = 0 is assumed, in which case no con-

tribution to the dissipation rate balance occurs from vortex stretching. Lastly, the

transport terms are treated as a gradient law,

Tε + Πε =
∂

∂xi

(
νt
σε

∂ε

∂xi

)
(55)

After substitution of all the models in Equations (53)-(55), Equation (34) trans-

forms into

∂ε

∂t
+ ῡj

∂ε

∂xj
= Cε1

ε

K
P − Cε2

ε2

K
+

∂

∂xi

(
ν +

νt
σε

∂ε

∂xi

)
(56)
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Similar to all the differential equations used in the K-ε model, the left-hand side

represents convection which is balanced by the right-hand side with production,

dissipation, and transport model terms. The default constants for all k-ε models are

[22, p. 316],

C1ε = 1.44, C2ε = 1.92, Cµ = 0.09, σk = 1.0, σε = 1.3,

C. Realizable k-epsilon

The realizable k-ε model was used during the present work for MESH II, and it

differs from the standard and RNG k-ε models in that Cµ is no longer a constant.

FLUENT computes this by

Cµ =
1

A0 + As ∗ KU
∗

ε

(57)

where

U∗ ≡
√
SijSij + Ω̃ijΩ̃ij (58)

and

Ω̃ij = Ωij − 2εijkωk (59)

Ωij = Ωij − εijkωk (60)

Here, εijk is the Levi-Civita symbol and Ωij is the mean rate-of-rotation tensor.

Note that the 2εijkωk term is ignored in the calculation of Ω̃ij because it is an extra
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rotation term that is incompatible for meshes involving rotating reference frames,

as in the present work. The model constants A0 and As are

A0 = 4.04, As =
√

6cosφ

where

φ =
1

3
cos−1(

√
6W ), W =

SijSjkSki

S̃3
, S̃ =

√
Sij

2

and Sij is the mean rate of strain tensor defined in Equation (22).

30



V. Additional Models

In addition to the Navier-Stokes, Reynolds averaging, pressure-velocity cou-

pling, and various turbulence models, FLUENT employs extra models when re-

quired. For example, wall functions are used when the near-wall grid spacing

is poor, or employs energy equations when temperatures or phase must be con-

sidered. The present work both required and employed the standard wall func-

tions, enhanced wall functions, energy equations, and species transport modeling.

Wall functions were described briefly in the Spalart-Allmaras section (see Equation

(30)), but FLUENT uses wall functions whenever the wall adjacent grid size is too

large to resolve the viscous sublayer. If the grid is fine enough, the near-wall ap-

proach can be used, however, this requires more cells and computational resources.

Equation (43) is modified by supplying an additional wall function fµ so that it

transforms into,

νt = Cµfµ
K2

ε
(61)

This function is supplied to accommodate what is known as “wall blocking effect”

and “viscous damping” that occurs very close to the walls. FLUENT uses a differ-

ent method by employing the log law of the wall,

ῡ∗ =
1

κ
ln(Ey∗) (62)
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Note that this equation is identical to the log law introduced in Equation (30), except

that now the variables for velocity and distance are non-dimensionalized in the

following manner,

ῡ∗ ≡ ῡC
1/4
µ K1/2

τw/ρ
(63)

y∗ ≡ ynC
1/4
µ K1/2

ν
(64)

where the state variables correspond to the shortest distance yn from the wall to the

cell centers. For a range of 30 < y∗ < 300, the logarithmic law for mean velocity is

valid, but to ensure that the piecewise function covers the entire domain, FLUENT

employs it as long as y∗ > 11.225. When y∗ < 11.225 the laminar stress-strain

relationship is employed instead, and states that

ῡ∗ = y∗ (65)

just as in Equation (29). A common alternative measure of non-dimensional length

is y+ = ynυτ
ν

from Equation (31). Note that y∗ and y+ are comparable when the

wall adjacent cell’s centroid is placed within the log layer. It’s not advisable to have

grid spacing such that the y∗ or y+ values fall within the buffer range. Even though

FLUENT supplies a relation for the entire domain, y+ ≈ 30 is most desirable to

ensure accurate predictions.1

If however the grid does happen to fall in the buffer range, as in certain walls of
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the present work, FLUENT offers enhanced wall functions that allow the solution

to be solved for meshes that contain regions of y+ ≈ 1 and regions where the

wall mesh is coarse y+ ≥ 30. The enhanced wall functions employ a two-layer

approach consisting of viscosity-affected and fully-turbulent regions where they

are segregated based on a Reynolds number defined as

Re ≡ ρyn
√
K

µ
(66)

and MESH II employs this enhanced wall function method to overcome the wide

range of y+ values encountered. Further details on the method go beyond the scope

of this work, but cant be found in Ref. 1.

A. Dilute Approximation

FLUENT has the capability to model species transport in fluid chemical mix-

tures, and this method was employed in the current work to model CO2 transport

through air for MESH II. The equations in this section do not use Einstein summa-

tions, but rather are left in vector form (vectors are denoted by underlines). Retain-

ing the equations in vector form allows the i subscript to represent the ith species

in the fluid mixture. The species transport method involves using the local mass

fractions of each species Yi, and predicting the solution with a convection-diffusion

equation for the ith species (note that this is not an Einstein summation),

∂

∂t
(ρYi) +∇ · (ρυYi) = −∇ · J i +Ri + Si (67)
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where Ri is the net rate of production of the ith species by chemical reaction and

Si is the rate of creation from a dispersed phase. Both of those terms are ignored

in the present work. J i is the diffusion flux vector of the ith species and it arises

because of concentration gradients. The dilute approximation is used by default in

FLUENT and for the present work, under which the diffusion flux is defined as

J i = −
(
ρDi,m∇Yi +

µt
Sct
∇Yi

)
(68)

where Di,m is the diffusion coefficient for the ith species and Sct is the turbulent

Schmidt number given by,

Sct =
νt
Dt

= 0.7 (69)

In turbulent flows the laminar diffusion does not play a very large role because the

turbulent mixing plays the dominant role. For N number of species in the fluid,

FLUENT will solve N − 1 equations for the concentrations, then use

YN = 1−
N−1∑
i=1

Yi (70)

to determine the N th species concentration. To reduce numerical error, the last

(N th) species should be chosen as the one with the lowest concentration, i.e. the

listed order of species in FLUENT is important. The present contribution used air

as the first species, and CO2 as the second species because it was never expected to

rise much above 4% mass fraction.
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B. Energy Equations

As a consequence of using species transport, the energy equations must be en-

abled in FLUENT to account for changes in enthalpy which can significantly effect

the solution. Transport of enthalpy due to species diffusion is defined as

∇ ·

[
N∑
i=1

hiJi

]
(71)

In particular, this term should not be neglected when the Lewis number (Le) is far

from unity, where

Lei =
k

ρcpDi,m

(72)

Next, the enthalpy of each cell volume can be computed by summing the contri-

butions from each of the individual species. Thus, it is useful to determine hi, the

enthalpy of the ith species,

hi =

∫ T

Tref

cp,idT (73)

where Tref = 298.15◦K and cp,i is the specific heat capacity of the ith species. For

incompressible flows, the total enthalpy h is then the summation of the enthalpy’s

weighted by the concentration Yi with the addition of energy from the local pressure

p,

h =
N∑
i=1

Yihi +
p

ρ
(74)
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Lastly, the total energy E consists of the enthalpy and the kinetic energy minus the

pressure work, respectively,

E = h+
ῡ2

2
− p

ρ
(75)

Note that the pressure work has been subtracted and therefore is not present in E,

but the pressure work is reintroduced into the convective acceleration term when

modeling the energy transport. When the energy equation is enabled in FLUENT,

it introduces one additional differential equation to be solved for the variable E,

∂

∂t
(ρE) +∇ · (υ(ρE + p)) = ∇ ·

(
keff∇T −

N∑
i=1

hiJ i + (τ eff · υ)

)
(76)

where keff = k + kt, is the effective thermal conductivity and kt is the turbu-

lent thermal conductivity defined based on the turbulent model chosen. In this en-

ergy transport equation, the left-hand side represents the typical convection terms

balanced with the right-hand side representing energy transfer due to conduction,

species diffusion (Equation (71)), and viscous dissipation, respectively. Most often

the pressure work p/ρ and kinetic energy ῡ2/2 terms in Equation (75) are negligible

in incompressible flows. The present work employs the pressure-based solver, and

under these conditions, FLUENT ignores those terms.
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VI. Objectives

The present contribution aims to gain an understanding of the flow field in the

cavity and interactions between the seal ring and mainstream air, namely the oc-

currence of ingestion. A better understanding may help to improve future turbine

seal ring designs that require little or no purge air. As stated before, the purge air

reduces the turbine efficiency by removing compressed inlet air (that could oth-

erwise be used in combustion) to be used instead as coolant flow to the internal

components. Many critical components could otherwise be damaged from inges-

tion of hot mainstream air - namely the rotor disk because it experiences much

higher mechanical stresses during operation. Cost savings and weight reduction in

materials are also a major motivation in cooling methods. The combined approach

of performing experiments and simulations will give some insight on the computer

model’s capabilities of predicting the flow. If the correlations between experiment

and simulation are high enough, one might be able to make some conjectures about

the reasonableness of the obtained solution. Simulations already play a crucial role

in modern turbine design because they offer the ability to observe the flow in ways

that are impossible experimentally.

Experiments yield real data, but the type of data that can be extracted is lim-

ited to forms such as pressure at a single point or velocity in a plane. Simulation

data can be extracted anywhere within the domain, however, due to the quite large

amounts of data, it is still difficult to monitor (let alone compare), for example,
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instantaneous velocity fields. Fourier analysis becomes useful in unsteady simula-

tions with time-periodic behavior, but as with most other variables of interest, the

value must be a single measured quantity such as an average over a volume, sur-

face, curve length, or single point. Comparisons between the simulation results and

the experimental measurements are made whenever possible in the present work,

but additional comparisons are also made between the two simulations.

A. Historical Approaches

Historically, simulations were more restricted in capabilities due to computa-

tional resource limitations. Many of the older more primitive turbine and cavity

simulations used simplifying assumptions such as steady-state, 2D axisymmetric in

polar coordinates,27 absence of blades and/or vanes, or boundary conditions lack-

ing a far field characteristic. The current contribution still contains simplifying

assumptions (namely the circumferential periodicity), but the increased complex-

ity and sophistication of the model grid allows the problem at hand to be more

accurately defined in hopes that the resulting solution will also be more accurate.

The accuracy can be quantified by carrying out an experiment and comparing

the measurements obtained to the simulations. Typical measurements of interest for

fluid flows include using instrumentation such as pressure taps, concentration taps,

thermocouples, and particle image velocimetry (PIV) methods; all of which have

been used during the experiments in the present work and many previous works.
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B. Scope of Investigation

The present contribution attempts two main goals. First, it attempts to deter-

mine whether a simulation in FLUENT can closely predict the flow characteristics

measured in an experimental model turbine rig. Secondly, the results from the ex-

periments and simulations are used to help understand what causes ingestion to

occur. Two different simulations were performed, and though it is interesting to

compare the two simulations (MESH I and II) with one another, that is not the main

purpose of the present work. Each simulation was attempting to reproduce the ex-

perimental results with the highest accuracy possible. Therefore, to isolate exactly

which alterations or upgrades from MESH I to II and how they affect the solution

results, cannot be readily determined.

The geometry and boundary conditions supplied to the simulation are made as

accurately as possible. Uncertainties in the measurements are described in the Ex-

perimental Apparatus section, and the Simulation Methodology section describes

the simplifying assumptions made to accommodate a simplified computer model

of the actual turbine rig. Results obtained for comparison include pressure and

concentration measurements along the stator wall at various radial locations. Addi-

tionally, pressure measurements were acquired at the turbine outer shroud at various

azimuthal locations. Lastly, PIV plots were obtained to measure radial and tangen-

tial velocity components at various axial locations inside the cavity. A subsequent

unsteady simulation was performed using MESH II in an attempt to predict inges-
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tion because, as expected, the steady-state model MESH I did not show ingestion

after converging.
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VII. Simulation Methodology

Experiments were performed on a model turbine rig, with the intent of replicat-

ing the experimental measurements with a computer software model. A computer

model was developed during the present work using SolidWorks and Gambit, then

FLUENT was utilized to process the calculations and perform post-processing anal-

ysis. Two different mesh configurations were employed and two unique solutions

were generated through the methodology process described below. Compressible

effects were neglected for this turbine setup, but it may need to be considered in

Mach Number > 1 flows where shock effects may be significant.16 Presenting the

results from a time-dependent model of an unsteady case is difficult. FLUENT was

used to produce a majority of the visual representations in this paper, but Tecplot

was used to produce time-dependent 3D animations which offered insight on the

physical flow features leading to ingestion.

A. Mesh Generation

First, a three-dimensional geometry was created using SolidWorks given ini-

tial geometry based on blueprint drawings, and then imported to Gambit with the

essential turbine features, i.e. fluid volumes and walls. Gambit was then used to

further define face features such as sliding interfaces, boundary inlets/outlets, and

periodic faces. In addition to the boundary types, the mesh within the fluid vol-

umes was generated next for subsequent simulation in FLUENT. This is the phase

where MESH I and II differ from one another. MESH I was entirely unstructured,
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which allowed for clustering of cells in important regions, but not providing means

to control the quality of the mesh with ease. MESH II employed structured cells in

regions ensuring a higher quality grid in delicate regions as described later in this

section.

Mesh quality is very critical to the solution stability and accuracy. Node point

distribution, smoothness, and skewness1 are all associated with the quality of the

mesh and are described in detail here. Furthermore, the flow field results must gen-

erally be known beforehand to produce a suitable mesh spacing. A common issue is

determining the first cell height, or wall normal distance yn directly adjacent to all

walls because a proper y+ value is required and depends primarily on the fluid prop-

erties and velocity near the wall. More importantly, if the velocities at the walls are

unknown, it is best to maintain a constant mesh spacing along faces where velocity

is expected to remain constant. MESH I provided valuable insight on the solution

for developing the updated MESH II. FLUENT has some post refinement capabil-

ities, but they are limited to refining the existing mesh. For example, FLUENT is

unable to shift nodes on walls, and is also unable to perform smoothing operations

once a hanging-node adaptation has been performed. Furthermore, smoothing and

swapping may only be performed in a serial case, not in a parallel (multi-CPU)

FLUENT case. Smoothing operations are the only method to correct cell skew-

ness because refining will only divide the skewed cell into smaller-volume equally-

skewed cells, i.e. the child cells inherent the parent’s skewness. Lastly, FLUENT

cannot shift nodes on walls or coarsen cells beyond the original mesh; therefore, it
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is preferable to create the most suitable mesh possible from within Gambit. MESH

I lacked quality in some regions and those errors and limitations led to the creation

of MESH II in Gambit as described later.

B. Model Assumptions

Computational load requirements were reduced by employing some simplifi-

cations to the geometry modeled in the simulation. These simplifications were

applied at the very first stage with the 3D SolidWorks model. Therefore, some dif-

ferences exist between the experimental apparatus and the three-dimensional sim-

ulation model. First and foremost, the mesh is only a 1/14th section of the entire

turbine configuration and encompasses four blades and four vanes within its rota-

tionally periodic section. While the experimental apparatus has 59 blades, 52 vanes,

and 30 purge air injection holes, the CFD model has the equivalent of 56 blades, 56

vanes, and 28 purge air injection holes when employing a circumferential period-

icity in the simulation. Secondly, the experimental rig has a front cavity and a rear

cavity, but only the front cavity is studied in the experiments and the rear cavity

is absent from the simulation entirely. Except for these changes, the simulations

attempt to mimic the turbine rig geometry exactly based on the detailed drawings.

Obviously, as a consequence of the periodicity, gravity effects have been ignored.

All of these simplifications were made to reduce the computational domain and

thus the computational load.

Though it is commonly accepted that a Mach number greater than 0.3 may
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Figure 5. Simulation geometry

begin to show compressible effects, and the MESH II model had a Mach number

of about 0.32 at the rotor blade walls, previous simulations have shown general

agreement with experimentally measured ingestion using incompressible models.6

Gentilhomme16 et al.described that the Mach number effects were still weak for

Reynolds numbers an order of magnitude larger (≈ 6 × 106) and a Mach number

(≈ 1). Furthermore, the incompressible model helped reduce the already intensive

computational requirements, further substantiating its use in the present work.

C. Boundary Conditions

FLUENT was used to calculate the solution once the mesh was finalized. The

procedure involved setting up the boundary conditions at all boundary surfaces and
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defining wall movement. Both MESH I and II used the same boundary conditions

- the rotor wall rotates at 3000rpm about the negative x-axis. Table 2 shows the

boundary conditions supplied to the simulations from the matching experimental

measurements. Note that the initial pressures supplied are not fixed in FLUENT

as they can vary for the type of boundary employed. Thus, the absolute pressure

at any point is not important, only the pressure gradients are important. However,

FLUENT has the ability to set the (x,y,z) coordinates of a cell that should be used

as a reference (zero) pressure to keep the solution values form floating.1 By default

in FLUENT this location is at the origin (0,0,0).

Table 2. Simulation Boundary Conditions for Air

Boundary Mass Inflow Initial Gauge Hydraulic Outflow Rate
(kg/s) Pressure (Pa) Diameter (m) Weighting

Main Inlet 0.080 -1615.5 0.034
Purge Inlet 0.001113 -3768.2 0.01016
Main Outlet -4758.1 0.9973
Purge Outlet -6309.6 0.0027

1. Mass Flow Rates

The mass-flow rate boundary types were chosen over the pressure boundary

types even though both data were available from the experiment. Note that velocity

boundaries would behave identically for this incompressible simulation, but would

require converting the mass flow rates from the experiments into velocities. Mass

flow boundaries offered an easier defining method by requiring only the inlet rates

and a mass outflow rate weightings; furthermore, it also ensured that the mass flows

would be correct instead of relying on the solver to compute the mass flow given
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only the pressure boundaries. However, in hindsight, it would have been simpler to

employ pressure boundary conditions instead. Firstly, it would have ensured that

the absolute pressure values throughout the entire domain were directly comparable

with the experiment, and secondly, it would have been useful at the purge outlet

where there were two boundary faces, one rotating and one stationary. The mass

flow rates had to be estimated for both these purge exit faces individually based on

the ratios of their areas.

2. Wall Movement

Depending on the type of simulation (steady or unsteady), the wall movement

can behave two slightly different ways. In the present work, the x-axis is defined as

the axis of rotation and a rotational velocity is imposed on the rotor wall. Thus all

faces adjacent to the moving walls are given a corresponding linear velocity (ω×r)

and no-slip conditions are present at all the walls. In a steady-state case, as was

performed for MESH I, the walls still have a non-zero wall boundary velocity, but

the walls do not actually move because no time-advancement iterations occur. This

solver method is commonly referred to as a “frozen-rotor” simulation when dealing

with turbines, and can be useful for determining aspects of the flow features, but

cannot predict unsteady effects that are very critical for ingestion to occur. Most

precisely, the steady-state model employs the restriction that ∂υ
∂t

= 0, where υ may

be a quantity other than velocity such as turbulent eddy viscosity (ν̃), kinetic energy

(K), kinetic energy dissipation rate (ε), etc. in the acceleration term of all governing
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equations.

MESH I was incapable of performing an unsteady case properly due to the grid

setup, i.e. lack of ability to incorporate a sliding interface. MESH II was created

with sliding interface capabilities and an unsteady case was performed. Unlike

the steady-state case, during the unsteady simulation the rotor wall does displace

at each time-advancement iteration - known as a “transient-rotor” simulation. To

allow for a more accurate solution however, it is often necessary to perform ad-

ditional iterations within each time-advancement so that the solution may reach

convergence before proceeding to the next time step. Note that the ∂υ
∂t

= 0 is no

longer imposed, but is actually calculated based on the current and previous time

step (first order method) as well as being used through integration to advance the

state-variables through time. In the present work, 35 frozen-rotor iterations were

performed between each transient-rotor time-advancement iteration; more details

are given in the time step study section.

Additionally, FLUENT gives warnings when a moving and non-moving wall

lie adjacent to one another, however, the simulation worked without any problems

in both meshes with that type of configuration. Instead of modeling the rear cavity,

the interface gap shown in Figure 6 (colored green), acted in place of the rear cavity

inlet.

The greatest challenge in modeling moving walls is dealing with the mesh setup.

Unlike a simulation that uses a Lagrangian coordinate system to track particle posi-

tions that behave as fluids (such as smoothed particle hydrodynamics), the positions
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Figure 6. MESH I - Adjacent moving and non-moving walls where rear cavity
inlet gap would normally appear

of the fluid properties are fixed to the grid cell locations. Therefore, a moving wall

will require the adjacent mesh to move as well. Furthermore, parts of the geometry

must remain fixed, such as the main annulus and stator walls. FLUENT offers slid-

ing interfaces as a solution to handle moving walls in transient cases. These inter-

face surfaces act as a communication link between moving and stationary adjacent

meshes. This works by having two geometrically identical faces superimposed on

one another, one associated with the moving mesh and the other associated with

the non-moving mesh. As the two volumes slide past one another, their interface

surfaces remain superimposed. Figure 7 shows an example of a 2D sliding interface
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(a line). The interface works in conjunction with periodic surfaces for a periodic

section by creating new periodic zones where the sliding interfaces are no longer

superimposed after rotational translation. Note that this requires the periodic sec-

tions in MESH II be of the same periodic angle. The same method is applied in 3D

Figure 7. Method used to interpolate sliding interface nodes

for a sliding interface surface. In MESH II, the sliding interfaces in the r-ϕ plane

are flat, but where they lie in the axial-radial plane, they are curved, like a cylindri-

cal surface, making angular rotation possible. Figure 8 shows the sliding interface

planes which segregate the moving and non-moving fluid volumes. Sliding inter-

faces need not have the same face grids because FLUENT creates a new interior

zone using nodes from the intersection of both overlapped sliding interfaces (an

interior zone, or face, has fluid on both sides). Next, FLUENT can compute fluxes

across the two interface surfaces using this interior face, allowing the two fluid
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zones to communicate with one another.

After each time-advancement and rotor displacement, the interior zone must be

recreated based on the new node positions of both interfaces. FLUENT also offers

the ability to deform meshes with a dynamic mesh, but for MESH II, no mesh

deformation is necessary. Rotational mesh motion about the x-axis is sufficient

when employing cylindrically shaped volume interfaces. FLUENT also requires

Figure 8. Location of the interface - segregating the moving and non-moving
fluid mesh volumes

that there be “a few” fluid cells between periodic walls so that the sliding interface

can properly form an interior face. During tests on MESH II, it was determined that

three cells circumferentially across sufficed for FLUENT to run properly, otherwise

it would crash the software. More detail is described in the MESH II section.

D. Initial Investigation with MESH I

MESH I consisted entirely of tetrahedral cells in an unstructured grid and was

designed to run a steady-state solution only. Once it was determined that the MESH
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I grid quality was not performing exceptionally well for the simulation, the primary

purpose became to produce a general solution that could be used for designing an

updated MESH II. A detailed explanation of the shortcomings will follow in this

section.

MESH I calculations began at single precision, first order accuracy with the

intent of increasing the accuracy once the solution converged, i.e. periodicity was

noticeable between each blade pitch. However, the initial solution required many

more iterations than the steady-state MESH II did for convergance, but eventually

the accuracy was increased to double-precision and second order accuracy, and the

solution produced some useful results.

Initially, MESH I consisted of only two million cells and a coarse grid in most

regions. The methodology being to use FLUENT for “solution-adaptive” refine-

ments, by refining regions of high velocity gradient as the solution converged. This

was helpful in refining important regions near the blades and vanes. However, it

was later determined that the y+ values at the cavity walls were within the buffer

range 4 < y+ < 30 and that the those walls would need to be refined. This was first

noticeable in the velocity plots that would be used for PIV comparison. The vector

field near the stator wall was very erratic and noisy in appearance and a y+ ≈ 20

was observed on the stator wall. Upon viewing the cell distribution on the wall

as shown in Figure 9, one could see why the y+ values fluctuated so greatly. The

mesh quality needed improvement, especially because the wall contained succes-

sive ratios in directions where the cells should have remained a constant size. For
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example, at a fixed radius in the cavity, it is most desirable to have the same gen-

eral cell size along the entire circumference. Suppose a cell of volume V can be

used to describe the general size of a cell, and can loosely define the mesh’s local

properties. With that definition, it is desirable to ensure that ∂V
∂ϕ

= 0 for a peri-

odic section model, which was clearly not the case in the cavity of MESH I. This

hindered the performance of MESH I and led to many successive wall refinements.

Furthermore, remnants of the velocity gradients adaptations can be seen near the

seal rings in Figure 9 where more turbulent interactions from the pre-swirler are

occurring.

Figure 9. Cavity wall showing large variation in cell volumes before any y+

refinement adaptations

Figure 6 also shows an improper use of successive ratio along the interface gap

where the cells become much coarser toward the center (bisection) angle of the

periodic section. As a consequence, the solution showed periodic behavior because

the cell sizes are inconsistent across the periodic angle. This also made refining the

52



wall difficult because cell volumes can vary significantly (by factors of 8) between

neighboring cells that have different refinement levels. Note that y+ values are

directly influenced by the cell size (and thus yn) and this caused erratic results on

the stator cavity wall as depicted in Figure 10. Each line on the graph represents a

specific azimuthal angle over the entire 25.7 degree span, and these results indicate

a large variation in velocities near the stator wall (x=14.5 mm).

Figure 10. Noisy results near stator wall due to improper y+ and cell size
variations

FLUENT will not coarsen a mesh beyond its original grid, and so increasing

y+ > 30 was not an option. The only remaining option was to decrease y+ < 3,

which can only be done by refining the cells along the wall. While attempting to
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do so on the stator cavity wall, the number of cells was increased drastically, by

about an additional ten million. This is because the tetrahedral cells adjacent to the

wall were being divided into smaller cells. A single cell becomes eight cells during

each refinement, while each new cell has about half the width of the original. This

is accomplished by trimming each corner of the tetrahedral cell, and introducing

the shortest diagonal to the remaining inner octahedral that forms 4 new tetrahedral

cells.

Figure 11. Refining a tetrahedral cell1

As a consequence, the cell count at the wall increases by a factor of eight, but

the y+ is only reduced by about a factor of two. As such, after each refinement,

only the wall adjacent cells are further refined, and this produces a logarithmic

“successive ratio” perpendicular to the wall. The new cell length at the wall is on

the order of 1
2n

times smaller than the original cell length, where n is the number

(or “level”) of refinements performed on the original cell. Figure 12 shows one of

the four adaptations performed to refine the stator cavity wall such that y+ < 3

was achieved. In this single refinement operation alone (v47 to v48), the cell count
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increased from 7 to 8.6 million cells.

(a) Before refinement (v47)

(b) After refinement (v48)

Figure 12. MESH I - Single y+ > 3 refinement effect

Refinements were repeated numerous times until y+ < 3 was achieved at the

stator wall, and the logarithmic successive ratio produced perpendicularly to the
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Figure 13. MESH I - Cell volume [m3] after performing refinement (v48)

wall can be seen in Figure 14. Unfortunately, the computing resources were limited

and during the same procedure for the rotor cavity wall, a total of 25 million cells

was reached before the y+ < 3 could be achieved. With 25 million cells, the RAM

usage became very large, and insufficient CPU resources were available to reach

convergence in a timely manner. Table 3 lists some significant refinements that

were made to the mesh and the resulting number of cells at each level.

Table 3. MESH I Adaptation History

Adaptation # Type Cells
0 2045030
1 Vel. Gradient 3710223
2 Vel. Gradient 4562396
6 Vel. Gradient 6241191
11 Vel. Gradient 6246170
15 Vel. Gradient 6267597
21 y+ < 3 Stator Wall 21240116
25 y+ < 4 Rotor Wall 25585436
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Figure 14. MESH I - Unstructured grid in cavity displaying logarithmic
behavior at r=110 mm near wall a) Before and b) After multiple refinements

In conclusion, MESH I successfully tested the limits of the computing power

available at the time so that MESH II could be designed with a proper cell count,

not to exceed approximately 21 million, where 9 million would be ideal and agile.

FLUENT’s memory requirements for modeling the finalized steady case of MESH

I were over 36GB of RAM and exceeded the computer capabilities. As a conse-

quence, running 1 Intel Xeon CPU required 2 minutes per iteration, and 6 hours

were required for all residuals to converge around 1e-5. The residuals would not

decrease any lower than this most likely due to the presence of highly skewed cells

in MESH I. Lastly, the use of enhanced wall functions may have proven useful and
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were employed in MESH II as a result.

1. Skewed Cells

Another attempt to improve the solution accuracy was made by trying higher

order solver models. This is where MESH I began to encounter issues that could

not be overcome within FLUENT. Equiangle skew is the measure of a cells skew-

ness where the ideal value of 0 corresponds to an isometric triangle or rectangular

face of a tetrahedral or hexahedral volume respectively. Conversely, a value of 1

corresponds to a completely degenerate cell consisting of coplanar nodes. Skew-

ness is very undesired because gradient evaluations become distorted and often lead

to solution divergence. MESH I contained cells of very high skewness (greater than

0.97) at the trailing edge of the rotor blades, and this indeed caused the solution to

diverge. As mentioned before, refining the skewed cells does not resolve the issue

because the newly created cells inherit the same skewness. This is noticeable in

Figure 15 where the skewed cells near the blade trailing edge have been refined.

It is also shown in Figure 16 where a few cells with very high velocities (larger

than anywhere else in the domain by nearly an order of magnitude) are refined and

inherent the same high velocities and skewness.

Inevitably the velocity values in these cells jumped very high when employ-

ing higher order spatial accuracy, pressure-velocity coupling models, or under-

relaxation factors. Without decreasing the under-relaxation factors from their de-

fault values, the MESH I solution would diverge very quickly. Instabilities in the
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Figure 15. MESH I - Skewed cells at blade trailing edge

solution can be damped out by decreasing under-relaxation factors, but then the

solution would take longer to converge.

The only way to correct skewness from within FLUENT was with a smoothing

and swapping procedure, and it was less effective near walls because wall nodes

cannot be moved. Furthermore, once the hanging-node adaptation method had been

performed on a mesh, the smoothing procedure could no longer be employed, thus

a new and improved MESH II was needed. Nonetheless, much useful insight came

from the MESH I simulation.
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(a) Before

(b) After single refinement

Figure 16. Exploded velocities from skewed cells at blade trailing edge

E. Simulation of MESH II

MESH II had major grid quality improvements, but most notable was the incor-

poration of a sliding interface to accommodate an unsteady time-dependent simula-
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tion. As described previously, utilizing a sliding interface method allows the mesh

configuration to displace as the turbine rotates, but requires careful segregation of

moving and non-moving mesh portions.

1. MESH II Quality

The intent of redesigning a new mesh was partially to produce a grid containing

a reduced number of cells, no more than nine million, and without the need for

refinements in FLUENT. This was accomplished by introducing more cells in focus

regions such as the seal gap, cavity, and blade/vane interaction region. The cavity

was given cells of constant size throughout with an unstructured grid to correct the

improper successive ratios by enforcing that ∂V
∂ϕ

= 0 whenever possible in the entire

mesh. Figure 17 shows the MESH II cavity walls, with a ∂V
∂r
≤ 0 to account for

higher tangential velocities at larger radii.

Figure 17. MESH II - Smaller variation in cell volumes along cavity walls

The seal gap was given a much higher cell count and employed a structured

grid of hexagonal cells in a cylindrical coordinate system. Taking advantage of
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the fact that a structured mesh gives more control over the grid quality, the seal

radial clearance was designed with 40 cells radially across, and 400 cells along

the circumference. These were chosen based on the results of Roy et al.13 where

the radial clearance had 20 cells across and 110 cells circumferentially for a 1/25

turbine section. In comparison, MESH II is twice as refined circumferentially while

also covering more than twice the circumferential angle. Nearly one million cells

alone (out of the total 10 million) were used to mesh the seal gap as shown in

Figure 18(a). The results of this very fine mesh region are described later.

(a) MESH II - Very fine structured seal gap mesh (b) MESH II - Structured cells
along axis near hub purge flow exit

Figure 18. Mesh II structure

Secondly, the clearance gap between the rotor blades and outer shroud was

converted into a structured grid. Again, the structured grid was employed because

it allowed for more precise control over the cell spacings across the entire outer
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shroud area. It is essential that there be at least a few cells radially across the gap

because the sliding interface passes between this narrow radial gap. A structured

grid ensured there be more than three cells radially between the moving and non-

moving walls. Figure 19 shows the location of this narrow radial gap.

Figure 19. MESH II - Structured grid used in radial gap between outer
shroud and blade tops

Furthermore, the same method was employed along the central rotation axis

between the purge outlet and rotor hub. In fact, FLUENT would crash when the

simulation was attempted and after weeks of extensive searching, it was finally dis-

covered that a lack of cells circumferentially between the periodic faces was causing

the sliding interface method to fail. The region initially used an unstructured grid in

this narrow region, so upgrading to a hexagonal structured method guaranteed that

there would be enough cells circumferentially across the periodic section to create
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a proper interior face as shown in Figure 18(b).

Lastly, the main annulus was also given a cylindrical coordinate structure, but

the cavity, pre-swirler, and regions surrounding the blades/vanes continue to use

unstructured meshes because of their complex geometries. In general, structured

grids should be used whenever possible to reduce calculation round-off errors.1

2. Skewed Cells

Next, skewed cells were addressed and corrected. It was realized that since

the gap immediately downstream of the rotor trailing edge was being modeled as a

wall, the flush edge leading into the cavity was not even necessary, and so the two

adjacent faces were merged into one as shown in Figure 20.

Figure 20. MESH II - Flush edge at rotor blade trailing edge removed by
merging faces

This completely solved the skewed cell problem at the blade trailing edge, how-
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ever, the blade leading edge and vane trailing edge still suffered from the same flush

edge problem. The geometry of the turbine dictates that the airfoils be flush with

the end-wall edges, but it may be very useful in future projects to leave a small gap

for easier meshing. The eventual solution to this dilemma was to keep the mesh

coarser, and align the nodes appropriately as to minimize the skewness of any cells

as shown in Figure 21.

Figure 21. MESH II - Flush edge at vane trailing edge. Skewness minimized
with offset node alignment

Even after using Gambit to reduce cell skewness, some cells were still above

0.9 skewness so FLUENT’s smoothing/swapping capabilities were employed be-

fore running the simulation. The method known as Laplacian smoothing, reposi-

tions nodes based on average positions of the surrounding nodes, and can repair

severely skewed cells, but simultaneously relaxes the clustering of nodes and may
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increase the average cell skewness. It should be noted that the operation could only

be performed about four times before negative cell volumes appeared. This implies

that certain fluid nodes were moving past wall boundaries when smoothed. Fig-

ure 22 shows an example of how a negative volume can appear during a smoothing

operation. After this procedure the highest equiangle skew did not exceed 0.8 and

(a) Before smoothing (b) After smoothing

Figure 22. Example of negative volumes being created1

no convergence issues ever reoccurred after this point.

(a) Laplace smoothing example. Dot-
ted line indicated node position before
smoothing1

(b) Face Swapping example1

Figure 23. Smoothing and swapping methods

In addition to smoothing, face swapping was also performed. Face swapping
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only applies to tetrahedral cells (in 3D), but the algorithm attempts to find at least

three cells sharing a single edge that can be replaced by two cells sharing a face.

This method simultaneously reduces the cell count while improving the skewness.1

The overall smooth/swap procedure consists of performing the smooth operation

four times, then swapping until no more faces can be swapped, then repeating that

process until all skewness decreases below 0.8, but without creating negative cell

volumes.1 To summarize, Figure 24 and Table 4 depict the cell clustering and

distribution throughout the mesh.

Figure 24. Cell clustering and distribution throughout the mesh

Table 4. Cell Clustering By Axial Domain

Region A B C D E
Axial Min. [m] -0.15 -.03 0 .0165 0.05
Axial Max. [m] -0.03 0 .0165 0.05 0.15
Contains Annulus Exit Blades Cavity Vanes/Nozzles Inlets
Cell Count 155k 451k 7899k 604k 378k
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F. FLUENT Simulation

Because the modeling process is ongoing (solution-adaptive), this section de-

scribes some preliminary results that were obtained, and used to guide the adap-

tation in hopes of improving the results further. After having decreased the cell

count and skewness as compared to MESH I, higher order models were employed

with MESH II. This included the additional use of energy equations which are re-

quired for the CO2 tracer gas transport modeling. MESH I did not use the energy

equations and did not model any tracer gas, but for MESH II, the constant dilute

approximation was used for mass diffusivity and the mixing law for specific heat.

Utilizing the CO2 transport modeling as a measure of mixing between indigenous

cavity air and mainstream air in the simulation presents a directly comparable result

to the experiment. Table 5 shows the major differences between the solver settings

of MESH I and II.

Table 5. Simulation Characteristics

Mesh I II
Incompressible Solver Steady Unsteady
Turbulence Model Spalart-Allmaras Realizable k-ε
Spatial Accuracy 2nd order 2nd order
Final Cell Count 21 million 10 million
Species Transport None Air-CO2 Mixture
Energy Equation No Yes
Pressure-Velocity Coupling SIMPLE PISO
Gradient Spatial Discretization Green-Gauss node based

Instead of the S-A model, the realizable k-ε model was employed in MESH

II. Also, the pressure-velocity coupling was changed to PISO algorithm because it
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was highly recommended for transient flows, specifically with large time steps. It

increases the time per iteration, but it can drastically reduce the number of iterations

required to converge.1 Figure 25 shows that the solution fluctuates less with the

PISO model employed, where the pressure is integrated over the 2D inlet surface to

present the mean force acting on the inlet surface.

Figure 25. Pressure at main inlet fluctuates less with PISO model

Before starting the simulation of the unsteady flow with MESH II, the steady-

state formulation was performed first, and once it converged, that solution became

the initial conditions for the unsteady procedure that followed. Furthermore, the

simulation began with second order spatial accuracy and double precision, and con-

verged fairly quickly. FLUENT has the option to perform iterations between time

steps to improve convergence for unsteady cases. At the beginning of each new time

step the rotor-wall rotation and position are updated, and then the solution is iter-

ated within a single time step. Figure 26 shows the residuals during this unsteady
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case and how the residuals are allowed to re-converge after each time-advancement.

Figure 26. MESH II - Unsteady residuals converging

The calculated instantaneous solutions are accumulated in a growing average,

and this statistical mean data is used for comparison with the experimental mea-

surements.

1. Time Step Study

The time step size of ∆t =1.75e-6[s] was initially used in the unsteady simu-

lation which allowed 204 time steps between each blade/vane passing at 3000rpm.

This was chosen based on a previous unsteady experiment that used 160 time steps

per blade passing13 and had successfully shown that ingestion occurred. Initially

during the present simulation, 20 iterations per time-step were used and the resid-

uals decreased to 1e-6, but upon receiving peer reviewer feedback, the iterations
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per time step were increased to 35 to allow most scaled residuals to decrease suf-

ficiently well below 1e-7 as suggested by the peer reviewer. This also allowed the

residuals to level off and stop decreasing before advancing to the next time step,

i.e. convergence was reached. The energy residuals were always much lower than

any of the others while the continuity residuals were always the highest. Figure 26

shows typical values for the unsteady MESH II case.

Using a small enough time step allows higher frequency disturbances to be re-

solved, but is not necessarily required to model the major unsteady flow features as

was done in a simulation by Montomoli et al.28 Montomoli mentioned that at the

current stage of computing power, resolving the Von Karman vortex street in an un-

steady case for a complex 3D turbine model is “prohibitive”. Only by reducing the

temporal accuracy to filter out the higher frequency responses will the simulation

run in a timely manner.

With a ∆t =1.75e-6[s] in the present work, the calculation rate of the sim-

ulation was 570KHz. This calculation rate was also the “sampling rate” of the

produced data. Therefore, in an attempt to deduce if the high rate was necessary,

a comparison with experimental FFT data was undertaken. Roy et al.2 performed

experiments at two different rpm values for a nearly identical turbine configuration

measuring static pressure at the outer shroud. Thereupon, it was determined that

the fundamental static pressure frequency is given by the blade passing frequency,

and the higher harmonics decline in magnitude as shown in Figure 27 a and b. This

suggests that the time step size chosen is more than adequate for producing the most
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(a) 2000rpm ≈ 1733Hz blade passing

(b) 2290rpm ≈ 2000Hz blade passing

Figure 27. FFT of static pressure 1mm upstream of blade leading edge for
nearly identical turbine geometry2

significant unsteady disturbances. For the present work, a rotor speed of 3000rpm
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and 52 blades yields a fundamental frequency of

F0 =
Ω

60
n =

3000

60
52 = 2.60[KHz] (77)

where n is the number of blades on the disk. So for example, by reducing the

calculation rate by a factor of five (decreasing the temporal resolution to 41 time

steps per blade passing) yields a sampling rate of 114KHz, capable of resolving

frequencies up to Fmax = 28.6KHz when generously accounting for aliasing, such

that Fmax = 1
4∆t

. Thus, harmonics up to Fmax/F0 = 11 are capable of being

resolved, i.e. the 11th harmonic F11 should be realizable and more than sufficient.

Whether or not pressure variations of these frequencies will be produced based on

this time step size, however, is not guaranteed. In fact, FLUENT did not converge

using this larger time step size. The simulation could not remain converged with

∆t as large as 5.25e-6[s], or 63 time steps per blade passing (42 iterations per

time step). Therefore, efforts to speed up the calculation process by increasing ∆t

showed that the 200 time steps per blade passing was adequate. Note that modifying

∆t won’t have a directly proportional effect on the calculation speed because as a

consequence, the number of iterations per time step required for convergence will

also vary. In summation, the limiting factor on the maximum time step size is

actually the solver’s ability to converge.

First-order accuracy was employed for the temporal discretization in MESH II.

Memory requirements increased significantly when using second order time dis-
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cretization because FLUENT must store the previous two iterations of data instead

of just one when computing time derivatives. FLUENT’s memory requirements

for modeling the unsteady case of MESH II were up to 23GB of RAM. Running 8

Intel Xeon CPU’s in parallel required 50 seconds per iteration, for a total of 29 min-

utes per time step, and 97 hours to compute one blade pitch passing angle. Using

a similar grid size with a LES turbulence model is not yet practical for engineer-

ing purposes. The computing resources required would be quite large, justifying

the choice of the S-A and k-e models. Table 6 shows the comparison between the

number of CPU’s utilized vs. memory requirements and calculation speed.

Table 6. MESH II Resource Requirements

Number of CPU’s 4 5 8
Memory Usage Range [GB] 16-21 17-23 20-24
Time per iteration [s] 70 64 40

2. Under-Relaxation Factors

Under-relaxation factors offer a method of dampening unstable solutions so that

they may converge, but at the cost of requiring more iterations. The factors are

given values between zero and unity, which act as coefficients that determine how

much effect the new solution will have on changing the previous iteration’s solution.

During the simulation, the under-relaxation factors are recommended to start below

the default values, then be increased slowly once determined that the solution is

stable enough to converge.

With MESH II, the pressure and momentum under-relaxation factors could be
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Table 7. Under-Relaxation Factors

Type Default MESH I MESH II
Pressure 0.3 0.3 0.5
Density 1 1 1
Body Forces 1 1 1
Momentum 0.7 0.5 0.7
Turbulent Kinetic Energy 0.8 - 0.8
Turbulent Dissipation Rate 0.8 - 0.8
Turbulent Viscosity 1 1 1
Modified Turbulent Viscosity 0.8 0.8 -
CO2 1 - 1
Energy 1 - 1

maintained higher than in MESH I and still achieved convergence. The skewed

cells in MESH I were likely the main cause of the convergence instabilities that

didn’t allow the solution to converge less than 1e-5. Increasing these factors any

larger than the values shown in Table 7 caused the MESH I solution to “explode”.
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VIII. Results

Direct comparisons have been made between results of the experiment and the

two simulations. All of the instantaneous data in the unsteady MESH II are ob-

tained at exactly the same alignment of blades and vanes as depicted in Figure 8.

The mean data for MESH II is ensemble averaged over the entire time domain. Ex-

perimentally obtained velocity plots, pressures, and CO2 concentrations are com-

pared against the equivalent plots extracted from the CFD data. Results here offer

valuable insight as to how well the simulation performed.

A. Velocity Maps

PIV images were captured inside the cavity, which spans axially from x=0.0

mm (rotor disk wall) to x=16.5 mm (stator wall). Note that the simulation plots in

the r-ϕ plane are periodically repeated; the 25.71 degree periodicity is noticeable

in these plots and no larger flow structures are realizable. Figure 29 displays the

edges of the mesh’s 25.71 degree periodic boundaries as red lines. Three axial lo-

cations within the cavity (x=14.5, 10.2, and 7.1 mm) were measured during the ex-

periment and comparisons are made against simulated velocity magnitude contour

maps. The experimental results in Figure 28(a-c) are the baseline for comparison

against the two simulations and show the experimental results that were obtained

by an arithmetic ensemble-average of ten instantaneous velocity maps. These plots

can be compared directly to the MESH I steady simulation in Figure 29(a-c), and

the mean and instantaneous results of MESH II in Figures 30(a-c) and 31(a-c).
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(b) x = 10.2 mm
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(c) x = 7.1 mm

Figure 28. Experimental PIV
measurements - ensemble average of
10 instantaneous fluid velocity maps

(a) x = 14.5 mm

(b) x = 10.2 mm

(c) x = 7.1 mm

Figure 29. Steady simulation (MESH
I) fluid velocity magnitude.
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(a) x = 14.5 mm

(b) x = 10.2 mm

(c) x = 7.1 mm

Figure 30. Unsteady simulation
(MESH II) mean fluid velocity

magnitude.

(a) x = 14.5 mm

(b) x = 10.2 mm

(c) x = 7.1 mm

Figure 31. Unsteady simulation
(MESH II) instantaneous fluid

velocity magnitude.
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Optical visibility is restricted to the radius range between 40 ≥ r ≥ 150 mm

because of the inner rotor hub and and the radially outboard pre-swirler. Closest

to the stator surface is the x = 14.5 mm plane shown in Figure 28(a), but all three

planes exhibit a very similar trend. Figures 29-31 in the x = 14.5 mm plane show

the pre-swirled purge air flow-structures at r ∼= 160 mm. Notably, the imparted

tangential velocity of the purge flow is larger than the the surrounding indigenous

cavity air near the stator. The PIV maps can only resolve the tangential and radial

velocity components because the camera viewing direction is orthogonal to the r-ϕ

plane. The tangential velocity component is dominant in this swirling flow - the

axial component is at most approximately 1/10th as large as the tangential; hence,

these velocity maps depict a fairly accurate total vector magnitude.

υt � υr ≥ υx (78)

The simulation results display all cells within the contour velocity range (15-45

m/s) in Figures 29-31 and are expressed relative to a non-moving frame, i.e. the

stator walls. The cavity has one giant vortex swirling clockwise about the x-axis

in the r-ϕ plane. Because of the no-slip conditions at the walls, a high velocity

(vϕ = rω) is seen surrounding the rotor seal ring wall and a zero velocity at the

stator seal ring. This creates a very large velocity gradient dυϕ
dr

between the seals.

The results of MESH I (Figure 29) appear to under-predict the experimental

velocities, but are qualitatively similar. Conversely, the MESH II results (Figures 30
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and 31) over-predict the experimental velocities farther from the cavity wall, while

lower-than-experimental velocities exist near the wall. In Figures 31(a-c), unsteady

effects of the vane/blade interaction are more noticeable radially outboard of the

seals where the instantaneous velocities are larger than the averages in all three

planes. Additionally, flow structures with a length scale of four vane pitches are

captured within the periodic section, confirming that the approach of including extra

vane pitches is a worthwhile undertaking. Further research is warranted in modeling

a sector of even greater angle, as these larger flow structures may also be significant

factors of ingestion.

1. Circumferential Averages

Another comparison can be made by plotting the circumferential arithmetic-

average
(

1
25.7◦

∫ 25.7◦

0◦
υdϕ

)
of the velocity data along the radial coordinate. This

reduces the dimension by one, and all three r-ϕ planes fit on one graph. Radial and

tangential velocities are computed from the PIV images and compared against the

simulations in Figures 32 and 33.

From Figure 32, it becomes apparent that the steady-state simulations predict

radial velocities tangibly different from the experiment. In fact, the steady-state

solutions predict small negative radial velocities at each of the three axial locations

while the experiments show small positive radial velocities. MESH II also initially

behaved similarly to MESH I, but once the solution transitioned into an unsteady-

state, the radial velocities became more positive and more closely matched the ex-
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Figure 32. Comparison of circumferential-averaged radial velocity Vr at
various axial locations x: Experimental (Ensemble average), MESH I, and

MESH II (Instantaneous)

perimental measurements. The physical explanation is that the center of the vortex

in the r-x plane moved closer to the stator cavity wall.

Radial velocities from the PIV results don’t offer compelling evidence to their

accuracy,. Radial velocities should be positive at the rotor wall because of the

disk pumping effect (centrifugal accelerations) and the overall volumetric flow rate

must be “negative” because the net flow moves radially inward toward the purge

flow exit. Bricaud et al.21 confirms this “pumping effect” with PIV measurements

in a pre-swirled purge air cavity flow. The flow rate through any surface of fixed
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Figure 33. Comparison of circumferential-averaged tangential velocity Vϕ at
various axial locations x: Experimental (Ensemble average), MESH I, and

MESH II (Instantaneous)

radius can be described by Equation (79).

Q =

∫ 16.5

0mm

∫ 25.7◦

0◦
υr dϕdx < 0 (79)

Therefore the simulation results showing negative radial velocities near the sta-

tor wall agrees with the physical interpretation where the cavity consists of one

vortex rotating clockwise in the r-x plane. In retrospect, the time interval between

the laser pulse pair employed in the PIV experiments (15-20 µs) may not have been

optimal for resolving the small radial velocities. Future experiments should use a

lower pulse time. The variation between the results from MESH I and MESH II
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can be attributed to r-x plane vortices with different centers axially.

Nearly identical negative radial velocities were predicted in MESH I and II

nearest the stator wall at x = 14.5 mm (Figure 32) during the steady-state stage.

MESH I had been refined such that y+ < 4 was imposed on the cavity walls,

whereas MESH II had y+ < 15. Nonetheless, velocity profiles near the stator wall

appeared nearly identical for the two varying turbulence models, wall functions, and

meshes. The two simulation results differed farther from the wall at x = 10.2 mm

and x = 7.1 mm. Where MESH I predicts lower radial velocities (−1 < Vr < 0)

and MESH II predicts larger magnitudes (−4 < Vr < −2 m/s). No ingestion

occurred in MESH I and velocity vectors were always oriented radially outward

through the seal.

Conversely, tangential velocity components match the experimental data very

closely for MESH I, as shown in Figure 33. Note that any velocities above the “rotor

disk wall” speed velocity indicate “over-swirl” and velocities below exhibit “under-

swirl.” MESH II yields similar profiles, but the velocities over-predict the exper-

imental data, especially at larger radial positions near the pre-swirler. This could

possibly be caused by the different turbulence model (k-ε) employed in MESH

II. The pre-swirled jets entering the cavity are generating turbulence, affecting the

calculated velocities differently than the S-A model would. Notably, all axial lo-

cations accurately match the estimated tangential velocity at the pre-swirler exit

(r = 160 mm). This estimation plotted in Figure 33 was calculated by dividing the

volumetric purge flow rate by the area of the pre-swirl nozzles and accounting for
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the incident angle of 10 degrees. Considering that the boundary conditions for the

purge inlet were set upstream of the pre-swirler nozzle and the flow was accurately

predicted at the nozzle exit after having flowed through the complex pre-swirler ge-

ometry is substantial. However, it should be noted that the experimentally measured

velocities are the furthest from matching the nozzle exit velocity.

B. Pressure Taps

Pressure taps were placed on non-moving walls to measure the air pressure

inside the turbine rig experimental setup. Figure 1 shows all of the locations marked

with the letter P. The ones located on the stator wall were all at the same azimuthal

angle and varied only in radial position. Conversely, the pressure taps on the outer

shroud were all at the same radial distance, but were equally spaced over a 12

degree azimuthal range as shown in Figure 3. Comparisons are made between the

experiment and simulations in this section.

1. Stator Wall

One pressure tap is located just radially outboard of the seals (r = 187 mm), one

between the seals (r = 177), and four more locations within the cavity (r < 171

mm). Figure 34 shows the experimental measurements from these pressure taps.

Mean pressure (p) results are shown for MESH II. The simulation data has been

biased by a constant pressure value to more clearly demonstrate static pressures

relative to the experiment in the figure. Both the steady and unsteady meshes predict

the pressure results accurately across the entire disk radial distance. Overall, the
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pressure differential across the entire cavity in the radial direction is slightly less

than the measured value for both meshes.

Figure 34. Comparison of static pressure radial distribution at the stator
surface

2. Outer Shroud

Static pressure measurements at the outer shroud of the turbine stage 1 mm

downstream of the vane trailing edge over a 12 degree azimuthal angle are com-

pared to the simulation results in Figure 35. The number of vanes in the experi-

mental (59) setup and the simulation (56) are similar enough that a comparison can

be made using the same angular coordinates in Figure 35. The MESH II instanta-

neous pressure has been biased by a constant value to simplify comparisons with
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the experimental pressures. In accordance with the PIV experimental procedure,

the instantaneous results from MESH II are taken at the instant the vane and blade

were aligned similar to Figure 8. The circumferential pressure distribution shows

some symmetry across each pitch of the vanes, but slight asymmetries suggest that

a larger flow structure exists within the domain, though they may also be caused

by slight difference in the mesh between vane pitches. A single vane pitch sector

simulation would not be capable of capturing this flow feature.
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Figure 35. Circumferential distribution of static pressure at the outer shroud
1 mm downstream of the vane trailing edge

The pressure profiles found here match similarly to those simulations performed

by Green et al.29
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C. Concentration

Finally, results available from the CO2 tracer gas concentration measurements

along the stator surface are addressed. The concentration tap locations are shown

in Figure 1. The sealing effectiveness defined in Equation 80 is plotted for the

experimental data in Figure 36.

ζ(r) =
C(r)− Cmain
Cpurge − Cmain

(80)

The sealing effectiveness of 0.23 at r/b = 0.928 (i.e., r = 187 mm) indicates that

some of the outgoing purge air egressed to that region of the stator surface. Like-

wise, the sealing effectiveness of 0.84 at r/b = 0.878 (r = 177 mm) suggests

mixing locally between the outgoing purge air and the incoming main air (inges-

tion). At the time of this writing, the simulated CO2 concentration in MESH II

has not propagated through the fluid sufficiently to accurately calculate the sealing

effectiveness.

D. Simulation Predictions

The simulation offers supplemental data that was not measured or was impos-

sible to measure in the experiments. Many velocity vector and pressure plots were

acquired throughout the simulation process. Flow fields through the seal rings and

cavity vortices in the r-x plane are observable from the simulation data and provide

some useful insight on the mixing between the purge, cavity, and mainstream air.

For comparison with previous works such as,2, 13 Figures 37 and 39 display velocity
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Figure 36. Experimental sealing effectiveness

magnitude vectors projected onto the r-x plane near the seal region for both meshes.

In Figure 37 the plane is located at the bisection azimuthally (ϕ = 12.9◦) of the sec-

tor, and the drawn vector density is reduced to facilitate flow visualization. MESH

I uses an unstructured grid everywhere, but when compared to MESH II, exhibits

very similar flow recirculation within the seals. In hindsight, 40 cells radially across

the seal ring gap in MESH II may be more than necessary because the y+ < 1 was

satisfied on the seal ring walls and 400 circumferentially across is also sufficient.

Early in the simulation just shortly after a steady-state solution had been reached,

the seal gap showed a fully developed flow depicted in Figure 38. As expected, no

ingestion had occurred, and will not occur for the selected purge rate in a steady-

state case. Numerous previous studies have arrived at the same conclusion about

steady-state models.

Both meshes predicted positive radial velocities along the rotor wall inside the
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Figure 37. Vectors of velocity magnitude (m/s) projected onto the r-x plane at
ϕ = 12.9◦ near the seal region of MESH I

cavity. MESH II (Figure 39) uses a structured grid in the narrowest region near the

protruding seals. Furthermore, the boundary between the moving and non-moving

fluid volumes is shown in Figure 39 (dashed line) i.e., the dashed line is the sliding

interface. MESH I did not model an unsteady case and hence does not include a

sliding interface.

Unsteady effects are very noticeable by observing the velocity field in the seal

region. The steady-state solutions also predicted flow separation at the seal ring’s

abrupt edges. As the unsteady simulation progressed further, these small flow sepa-

rations often transformed into larger recirculation patterns as shown in Figure 39(a)

within the stator seal ring’s axial clearance. Occurrences of these patterns var-
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Figure 38. MESH II - Fully developed flow between seals during initial
steady-state simulation

ied circumferentially for any single time instant as observed when comparing Fig-

ures 39(a) and (b), which show velocity fields for a single time instant at two dif-

ferent circumferential angles. These recirculation patterns act as a mechanism in

which mainstream air can be ingested. The vortex radially inboard of the stator seal

against the stator wall was always present; MESH I included.

Within the cavity, the main vortex rotates about the x-axis, but a secondary vor-

tex exists in the x-r plane due to the “pumping effect” of the turbine disk, and many

smaller vortices are apparent within the seal gap from flow separation. The rotor

disk acts as a centrifugal pump, forcing fluid along the disk wall radially outward

and creates the secondary vortex inside the cavity. This pumping mechanism mixes

the cooling flow, and has been observed by Zerelli et al.3 to be much more dominant
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(a) ϕ = 12.9◦

(b) ϕ = 22.9◦

Figure 39. Instantaneous vectors of velocity magnitude (m/s) projected onto
the r-x plane near the seal region (MESH II). Dashed line indicates the sliding

interface boundary
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than natural convection effects.

Figure 39(a) shows high negative radial velocities near the rotor wall radially

outboard of the seal rings. These velocities are due to the high pressure at the

leading edges of the rotor blades, forcing the mainstream air radially inward toward

the seal rings. It is expected that these large negative radial velocities may grow

and cause the air to become entrained with the smaller vortex between the stator

seal ring’s axial clearance. Eventually the mainstream air will move into the radial

clearance, moving horizontally along the underside of the stator seal ring wall.

Once traversing horizontally across the entire axial overlap, the air should reach

the vortex located within the rotor seal ring’s axial clearance (x ∼= 16 mm) and be

directed radially inward along the stator wall and into the cavity. However, more

iterations are needed to reach a conclusive answer of whether ingestion occurs in

this unsteady sector model. Zhou et al.6 required at least 120 blade pitch passing

cycles to achieve a temporally periodic solution of sealing effectiveness, and the

present work only achieved around 20. It was seen that the CO2 slowly progressed

through the unsteady vortices that formed, and this explains why so many blade

pitch passings are required.

Lastly, but most importantly, time-animations of the unsteady flow in the region

between the blades and vanes revealed a very significant ingestion mechanism. Be-

cause this region was expected to be critical in the unsteady case, MESH II was

made fine enough such that 3.5 million cells existed in that region alone, plus an-

other one million between the seal rings. Refining this region proved worthwhile
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for resolving vortices that appear to be the main cause of ingestion. As many pre-

vious works have claimed, the predominant cause of ingestion is known to be the

three-dimensional unsteady flow field that exists in the main gas path of the turbine

stage.2, 6–9 Not only does the present work confirm this, it also offers further expla-

nation. Because the egressed gas from the seal rings is moving slower tangentially

(υt), a high velocity gradient ∂υt
∂r

exist between the blades and seal rings.

Observing the modeled CO2 concentration provides an excellent method of trac-

ing the general particle paths through these unsteady structures, especially when

viewed in a r-ϕ plane. Shearing and momentum transfer occur between the egressed

and mainstream gases, and the blades/vanes presence places non-uniform circum-

ferential pressure perturbations upon this mixing layer. These spatial oscillations

of the mixing layer can be seen initially in CO2 concentration plots in the form of

a sine wave pattern, even in the steady-state model. But, no further mixing occurs

until the unsteady time-dependent model is solved and the unstable perturbations

in the layer cause the waves to collapse after a certain time. Thus, the high speed

mainstream gas becomes entrained and pushed radially inward toward the seal gap.

Indigenous cavity gas is conversely pulled radially outward from that same vortex

mixing. Figure 40 shows the time evolution of the CO2 concentration and theses

mixing vortices that help enable ingestion. The final time of t = .010532[s] occurs

at more than half of a disk rotation (30 blade passings). It should also be mentioned

that these “waves” at the mixing layer, travel about half as fast as the rotor disk wall

speed, and that the wavelength of the waves is not necessarily one blade pitch, as
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(a) t = .005824 s (b) t = .007224 s

(c) t = .008589 s (d) t = .010532 s

Figure 40. MESH II - time-evolution of air mass fraction through unsteady
vortices in r-ϕ plane at x = 2 mm

some of the waves can merge together and produce constructive interference to fur-

ther promote ingestion by creating larger vortices. Modeling a larger sector angle

would be highly beneficial for future work.

Once the mixed mainstream air has protruded radially inward and reached the

rotor seal ring, it must next traverse through the radial seal gap. Figure 41 demon-

strates the onset of this migration by showing large positive axial velocities along

the rotor seal ring wall that guide the mainstream air through the radial gap. In fact,

the vortices of the velocity field in Figure 41(a) show a path for the mainstream air

to reach the cavity. This was the furthest time step reached by the simulation at the

time of this writing. Ingestion will only occur under the precise circumstances in
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(a) Velocity magnitude (m/s) vectors (b) Air mass fraction contours

Figure 41. MESH II - Onset of ingestion axially through the seal rings at
ϕ = 12.9◦ and t = .010532 s

which all of the various unsteady vortices throughout the different seal ring regions,

described previously, allow for a complete particle path through the seal rings and

into the cavity. And though it has not yet occurred in the present simulation, con-

vicing evidence from Figure 41 and Murphy’s Law would dictate that given more

computational time, the proper circumstances may become present.
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IX. Summary

Using experiments and simulations to help understand the flow field in a turbine

rotor-stator cavity and the ingestion of mainstream gas into the cavity has proven to

be insightful. Much knowledge has been gathered in terms of properly setting up

the procedures for modeling and data acquisition as well as the data itself.

Some major obstacles were overcome during the computational model design

phase. It was learned that the modeled geometry should be designed to avoid lo-

cations that generate highly skewed cells, such as the blades and vanes being flush

with the end wall edges. Changes can be made to the grid without greatly modify-

ing the geometry and can simplify the meshing procedure. For periodic sections, it

is critical to keep the mesh similar in the circumferential direction, i.e. cell volumes

should adhere to the general rule ∂V
∂ϕ

= 0. Employing pressure boundary conditions

instead of mass flow rates is also desirable for inlet/outlet boundaries.

Experimental measurements were used as a baseline to assess how well the CFD

model could predict the flow fields. Fluid velocity, static pressure, and tracer gas

concentration measurements offered some insight to the actual flow field, and the

equivalent data was extracted from the simulations for comparison. These compar-

isons of results have been reported for two meshes with an identical turbine stage

geometry against actual experimental measurements with a similar turbine stage

geometry. Three-dimensional, second-order spatial accuracy was used on the rota-

tionally periodic 25.71 degree sector (1/14th of the annulus) containing four vanes
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and four blades. Varying factors in the mesh and CFD solver parameters have

resulted in two unique but similar solutions. Both simulations show general agree-

ment with the experimental measurements of radial velocity, tangential velocity,

and static pressure distributions.

MESH I used a steady-state solver and a simpler turbulence model, but it nev-

ertheless predicted pressure distributions and tangential velocities within the cavity

quite accurately. MESH I did not show any ingestion, but this was expected as seen

in many previous works. Instead, MESH I results were exploited to design a sub-

sequent improved MESH II for an unsteady simulation. Solutions obtained from

MESH II exhibited unsteady effects, especially within the seal gap and regions in-

fluenced by blade/vane interactions. Mainstream air penetrated significantly farther

into the seal rings than with the steady-state case, but still did not fully ingress into

the cavity. It is highly likely that this would eventually occur given more time for

the exact circumstances to occur so that mainstream air may be carried through the

seal rings. Small unsteady perturbations can produce large instabilities and flow

structures that may lead to ingestion. The longer the simulation runs, the higher

the possibility that a suitable unsteady perturbation would occur. A time-dependent

simulation is crucial in accurately predicting ingestion. Non-uniform circumferen-

tial pressure perturbations from the blades and vanes caused the mixing layer to

become unstable. Vortices formed as a result of the mixing layer collapsing during

the transition from a steady-state to a time-periodic solution, and this is believed to

be the major cause of ingestion based on the present findings.
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Larger flow structures spanning across the entire sector were also realized. Fur-

ther research is warranted in expanding the sector angle to include even more vane

pitches. A simulation of the complete 360 degree model using mesh resolution

comparable to that applied here should provide additional insight to the unsteady

flow field, especially regarding the large scale structures that are likely significant

contributors to ingestion. A rotational periodicity simplifying assumption restricts

the size of the largest realizable flow structures.

Future work may also benefit from measuring temperatures of heated inlet air

and also modeling temperature distributions through the fluids and solid walls.3

Cooling and heat transfer at the turbine wall could be monitored and the effects of

turbulent mixing inside the cavity could be explored for various purge flow inlet

geometries15 as well as provide another means of measuring sealing effectiveness.

Many previous papers, especially steady cases, focused solely on the spatial grid

resolution, and refining it. However, it is necessary to realize that with an unsteady

case, using a proper temporal resolution is just as important. Unsteady cases, as

the one performed in the current work, are very computationally demanding and

may prove to be even more insightful as computational power becomes faster and

cheaper.

98



References
1Fluent Inc. 12.4.3, FLUENT 6.3 Users Guide., 2006.

2Roy, R. P., Xu, G., Feng, J., and Kang, S., “Pressure Field and Main-Stream
Gas Ingestion in a Rotor-Stator Disk Cavity,” ASME paper 2001-GT-564, 2001.

3Zerelli, N., “Analysis of a Turbine Rim Seal Cavity Via 3D-CFD Using Con-
jugated Heat Transfer Approach,” AIAA paper 092407, 2008.

4Khilnani, V. I., Tsai, L. C., Bhavnani, S. H., Khodadadi, J. M., Goodling, J. S.,
and Waggott, J., “Mainstream Ingress Suppression in Gas Turbine Disk Cavities,”
ASME J. Turbomachinery, Vol. 116, 1994, pp. 339 – 346.

5Daniels, W. A., Johnson, B. V., Graber, D. J., and Martin, R. J., “Rim Seal
Experiments and Analysis for Turbine Applications,” ASME J. Turbomachinery,
Vol. 114, 1992, pp. 426 – 432.

6Zhou, D.-W., Roy, R. P., Wang, C., and Glahn, J., “Main Gas Ingestion in a
Turbine Stage for Three Rim Cavity Configurations,” ASME paper GT2009-59851
(to appear in ASME J. Turbomachinery, 2010)., 2009.

7Teramachi, K., Hamabe, M., Manabe, T., and Yanagidani, N., “Experimen-
tal and Numerical Investigation of Sealing Performance of Turbine Rim Seals,”
IGTC2003tokyo TS-025, 2003.

8Cao, C., Chew, J., Millington, P., and Hogg, S., “Interaction of Rim Seal and
Annulus Flows in an Axial Flow Turbine,” ASME paper GT-2003-38368, 2003.

9Roy, R. P., Feng, J., Narzary, D., and Paolillo, R., “Experiments on Gas In-
gestion Through Axial-Flow Turbine Rim Seals,” ASME J. Engineering for Gas
Turbines and Power, Vol. 127, 2005, pp. 573 – 582.

10Wang, C.-Z., Johnson, B. V., Cloud, D. F., Paolillo, R. E., Vashist, T. K.,
and Roy, R. P., “Rim Seal Ingestion Characteristics for Axial Gap Rim Seals
in a Closely-Spaced Turbine Stage From a Numerical Simulation.” ASME paper
GT2006-90965, 2006.

11Jakoby, R., Zierer, T., Lindbald, K., Larsson, J., deVito, L., Bohn, D., Funcke,
J., and A.Decker, “Numerical Simulation of the Unsteady Flow Field in an Axial
Gas Turbine Rim Seal Configuration,” ASME paper GT2004-53829, 2004.

12Hills, N. J., Chew, J. W., and Turner, A. B., “Computational and Mathematical
Modeling of Turbine Rim Seal Ingestion,” ASME J. Turbomachinery, Vol. 124,
2002, pp. 306 – 315.

99



13Roy, R. P., Zhou, D.-W., Ganesan, S., Wang, C.-Z., Paolillo, R., and Johnson,
B., “The Flow Field and Main Gas Ingestion in a Rotor-Stator Cavity.” ASME paper
GT2007-27671, 2007.

14Dunn, D. M., Zhou, D.-W., Saha, K., Squires, K. D., Roy, R. P., Kim, Y. W.,
and Moon, H. K., “Flow Field in a Single-Stage Model Air Turbine Rotor-Stator
Cavity with Pre-Swirled Purge Air Flow.” ASME paper GT2010-22869, 2010.

15Okita, Y., Nishiura, M., Yamawaki, S., and Hironaka, Y., “A Novel Cooling
Method for Turbine Rotor-Stator Rim Cavities Affected by Mainstream Ingress,”
ASME J. Engineering for Gas Turbines and Power, Vol. 127, 2005, pp. 798 – 806.

16Gentilhomme, O., Hills, N. J., Turner, A. B., and Chew, J. W., “Measurement
and Analysis of Ingestion Through a Turbine Rim Seal,” ASME J. Turbomachinery,
Vol. 125, 2003, pp. 505 – 512.
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Figure 42. Power plant gas turbine using axially overlapping seal ring
configuration
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