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ABSTRACT  
   

            In this thesis two methodologies have been proposed for evaluating the 

fault response of analog/RF circuits. These proposed approaches are used to 

evaluate the response of the faulty circuit in terms of 

specifications/measurements. Faulty response can be used to evaluate important 

test metrics like fail probability, fault coverage and yield coverage of given 

measurements under process variations. Once the models for faulty and fault free 

circuit are generated, one needs to perform Monte Carlo sampling (as opposed to 

Monte Carlo simulations) to compute these statistical parameters with high 

accuracy. The first method is based on adaptively determining the order of the 

model based on the error budget in terms of computing the statistical metrics and 

position of the threshold(s) to decide how precisely necessary models need to be 

extracted. In the second method, using hierarchy in process variations a hybrid of 

heuristics and localized linear models have been proposed. Experiments on LNA 

and Mixer using the adaptive model order selection procedure can reduce the 

number of necessary simulations by 7.54x and 7.03x respectively in the 

computation of fail probability for an error budget of 2%. Experiments on LNA 

using the hybrid approach can reduce the number of necessary simulations by 

21.9x and 17x for four and six output parameters cases for improved accuracy in 

test statistics estimation. 
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Chapter 1 

INTRODUCTION 

 There is a continuous push for reducing the test time/cost and test 

development time of analog circuits. Over the years, a plethora of approaches 

have been proposed in the literature to automatically generate test 

measurements [1-2], to find alternate ways of measuring/guaranteeing the 

specifications [3-4], to reduce the test set [5-7], or to conduct measurements 

on-chip [8-9]. However once one deviates from full specification testing, it is 

essential that the new test technique be evaluated under process variations 

and fault scenarios. 

 With such a diverse variety of test approaches, an efficient and 

accurate way of evaluating the fault response under process variations is 

needed. Existing fault simulation approaches require injecting the faults into 

the circuit specifications and simulating the resulting circuit to evaluate the 

fault response [2, 10-11]. With the continuous nature of circuit parameters 

and presence of process variations, each fault simulation takes on a statistical 

nature and may require statistical analysis. One easy way of conducting this 

statistical analysis is to use Monte-Carlo simulations for each fault, which is 

computationally too expensive. 

A. Problem Statement 

 Ideally each circuit instance can be classified as passing/failing by 

making a decision on the process parameters without the need for circuit 



  2 

simulations. Since, circuit response is a complex non-linear function, making 

such an evaluation not possible. Our goal is to make this decision with the 

least possible computational burden. 

 The goal of the fault simulation is to statistically evaluate the response 

of a list of faults under a set of given test stimuli. These responses are then 

compared with test limits to determine the likelihood of a faulty circuit 

passing/failing. These statistical analysis are used to predict important test 

metrics, such as fault coverage, defect parts per million (DPPM), and yield 

loss. Since there are many faults in the circuit and they have to be evaluated 

for various distinct input conditions, fault simulation is computationally very 

expensive. This computational cost has been a major burden preventing 

analog fault based simulations from becoming an industry practice. This 

work aims at developing computationally efficient as well as accurate 

methods for analog fault simulation. 

B. Prior Work 

 In order to tackle the problem of computational complexity of fault 

simulation, simple circuit approximations, such as linear modeling [10, 12-

13] and worst case approximation [14] have been proposed. In [14], the 

authors present a technique for quickly estimating the worst case tolerance 

band of a given circuit. While this technique provides useful insight during 

the design optimization process, it tends to overestimate the bounds on 

response parameters and provides no information about the nature of the 
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distribution, which is needed to compute the test metrics. In [10], the authors 

make use of a linear modeling approach for the circuit and use analytical 

relations to compute a Gaussian approximation for the response distribution. 

While computationally efficient, this technique may result in larger errors, 

particularly when the circuit behavior is highly non-linear. In [15], the 

authors extend these models to include quadratic modeling, only in the 

diagonal elements. 

 A common thread in prior work is to start from a particular modeling 

perspective (worst case, linear and quadratic) and optimize on computation 

time [14-17]. However, in such approaches, the final accuracy is dictated 

bottom up, with no way of controlling or trading it off with computational 

complexity. One has to take the final goal of the modeling process into 

account when deciding what form of modeling needs to be used. 

Stratigopoulous et. al [31] proposed a method to evaluate the joint 

probability density function (JPDF) of specifications based on the adaptive 

kernel density estimation. Once JPDF of the specifications are evaluated, we 

need to simply do a Monte Carlo sampling from the JPDF. The downside with 

this technique is sampling from a complex JPDF is inefficient especially when 

the number of specifications are large. The final goal of all these techniques 

(including the one in this thesis) is to compute various test metrics such as 

fault coverage, yield coverage and detectability etc [18]. 
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C. Proposed techniques in a nutshell 

 In this thesis, we rely on polynomial modeling of the output response 

of the faulty and the fault free circuits to enable fault simulation. In order to 

judiciously use simulations, we present two methods. The first technique 

basically follows a top-down approach for constructing the model. We start 

from the error budget on the test metric and determine the minimum model 

order that will keep the overall error within this budget. We perform a 

certain number of simulations and check if a linear model would meet the 

accuracy requirement. If not, we consider a second order model and check 

for its suitability. If the second order model does not satisfy the error budget, 

we may need to resort to higher order modeling or Monte Carlo simulations. 

 In order to save on simulation time for second order models, we 

propose a procedure which takes the error budget and the threshold(s) into 

account to approximately estimate the coefficients of the second order model 

with O(n) simulations. This procedure regresses the response of significant 

coefficients, and non significant terms are derived from solving systems of 

linear equations. Solving this equation yields a set of solution vectors. A 

solution set selection methodology is used to choose the non-significant 

terms that would best fit the model. Monte-Carlo sampling and analytical 

computation, as opposed to Monte-Carlo simulations, can be used to 

calculate important test metrics, such as fault coverage and fail probability. 
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 However, even with non-linear models, it is possible that errors in 

computing certain test metrics such as DPPM may not meet the industry 

standard. As an example let us assume that error in computing the 

probability of test escape for a circuit is 1% and the probability of having 

fault in the circuit is 10%. This results in an uncertainty of 1000 in the 

estimated DPPM which is not acceptable. 

 In our second method, we make an effort to reduce this uncertainty to 

allowable proportions by constructing localized linear models. We exploit the 

hierarchical nature of process variations and use Design of Experiments 

(DOE) sampling strategy for high level variations. We then localize small 

random variations around the important samples stemming from high level 

variations. The method follows a two phase procedure where during the first 

phase the circuits are classified into three sections namely certainly passing, 

certainly failing and ambiguous. Initially, we use heuristics based on levels 

for DOE to perform the initial evaluation of the status of the circuit instances. 

In the second phase, we try to reduce the instances in the ambiguous lot by 

constructing linear models around certain input regions. Since we are 

constructing first order models over a localized region in input space, the 

accuracy is guaranteed to be much better, unlike in the previous method 

where we model the response as a function of entire input space. Guard 

bands around specification thresholds are invoked to improve the accuracy 

of the status evaluation procedure. 
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  The major contributions of the first method in this thesis are the top-

down approach based on the accuracy requirement in computing the test 

metrics, adaptive model order selection based on the threshold(s), the error 

budget requirement, and a mathematical procedure for approximating a 

second order model using O(n) simulations. The contributions of the second 

method include a heuristic approach based on Design of Experiments to 

classify the circuits in a coarse manner, construction of first order models 

around localized input regions both eventually lead to better accuracy in test 

metric computation.  

 Figures 1, 2 and 3 illustrate the basic difference between our 

approaches when compared with the traditional Monte-Carlo simulations. 

Figure 1 shows the traditional Monte Carlo approach wherein the circuit 

instances are fed to a simulation engine to obtain the response distribution. 

Figure 2 displays the Monte-Carlo sampling procedure wherein we perform 

few number of Monte-Carlo simulations to model the response. Once we 

derive the model coefficients, we simply do a Monte Carlo sampling (as 

opposed to Monte Carlo simulation) to compute the approximate response 

distribution. Figure 3 illustrates a modified Monte Carlo sampling procedure 

wherein we use DOE and heuristics to do a coarse evaluation of the test 

statistics and fine tune the accuracy based on modeling and Monte Carlo 

sampling.  
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Fig. 1. Traditional Monte Carlo Analysis 

 

Fig. 2. Monte Carlo sampling based approach 

 

Fig. 3. Modified Monte Carlo sampling based approach 

D. Thesis Outline 

 Chapter II discusses the importance of computing test metrics and 

also explains the tradeoff between choosing model order and accuracy. 

Chapter III deals with non-linear coefficient approximation and outlines the 

advantages of using robust regression techniques over the traditional least 

squares method. Chapter IV lists the proposed top down approach for fault 

response evaluation. Then in chapter V, we propose an improved method 

that uses DOE, heuristics and hierarchy in process variations to evaluate the 
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test statistics with better accuracy. Chapter VI proves the effectiveness of our 

proposed approaches with help of test circuits simulated in ADS. Chapter VII 

concludes the thesis with summary and future directions for research.  
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Chapter 2 

COMPUTATION OF TEST METRICS 

We develop our modeling approach with the specific goal of 

computing various test metrics for analog/RF circuits. In general, most test 

metrics such as fault and yield coverage [15], pass/fail probability and 

detectability [19-20] are statistical in nature due to the effect of process 

variations.  

A. Definition of Test Metrics for Analog circuits  

 Digital manufacturing test quality has been assessed by the definition of 

quantitative parameters such as fault coverage and test escape. Unfortunately, the 

direct application of these metrics (defined for digital circuits) to the analog 

domain bears little hope. This is due to the statistical and continuous nature of 

fault and fault responses, as well as the fact that each fault may not be equally 

likely. As a result in analog domain, a statistical framework for fault response 

evaluation is necessary. 

 In the analog domain, faults can be classified as catastrophic faults or 

parametric faults. Catastrophic faults cause a drastic failure at the fault location 

changing the circuit structure. Examples are opens and shorts in interconnects. 

Parametric faults are unexpectedly high deviations in circuit parameters such as 

width of the transistor or threshold voltage. Typically, catastrophic faults cause a 

complete failure in the circuit functionality and are easy to classify without the 

need to resort to statistical simulations. However, parametric faults are much 

harder to classify since in most cases the circuit still functions, but with 
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potentially degraded specifications. Parametric faults may stem from direct 

physical defects, such as an open in a finger of the transistor, or may stem from 

unexpected local or global process variations such as spike in the threshold 

voltage. Existence of a fault, however, does not necessarily mean the circuit will 

fail its specifications.  Similarly, a fault-free circuit does not necessarily satisfy all 

of its specifications due to process variations. The test metrics that we use are 

based on the specifications of the circuit: 

 Yield: It is defined as ratio of number of devices satisfying all the 

specifications(good devices) to the total number of manufactured devices 

𝒀𝒊𝒆𝒍𝒅 =
#𝒅𝒆𝒗𝒊𝒄𝒆𝒔 𝒑𝒂𝒔𝒔𝒊𝒏𝒈 𝒂𝒍𝒍 𝒕𝒉𝒆 𝒔𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏𝒔

#𝒎𝒂𝒏𝒖𝒇𝒂𝒄𝒕𝒖𝒓𝒆𝒅 𝒅𝒆𝒗𝒊𝒄𝒆𝒔
 

                                                           

(1) 

Figure 4 shows the response distribution for a two parameter case. Using 

the position of both the thresholds yield can be computed by integrating 

the suitable area under the curve. 

 

Fig. 4. Yield for a two parameter case 
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 Yield Loss: It is defined as the ratio of the number of good devices failing 

the test to the total number of good devices  

𝒀𝒊𝒆𝒍𝒅 𝑳𝒐𝒔𝒔 =
# 𝒈𝒐𝒐𝒅 𝒅𝒆𝒗𝒊𝒄𝒆𝒔 𝒇𝒂𝒊𝒍𝒊𝒏𝒈 𝒕𝒉𝒆 𝒕𝒆𝒔𝒕

#𝒈𝒐𝒐𝒅 𝒅𝒆𝒗𝒊𝒄𝒆𝒔
 

                                                    

(2) 

Ideally, we would expect yield loss of 0%. Conceptually, yield coverage 

and yield loss depend on the statistical distribution of circuit 

specifications, the errors made in the measurement or estimation of the 

specifications, and the limits on the specification. These concepts are 

illustrated in Figure 5. The red curve is the actual distribution we would 

expect for a response parameter r. Due to accuracy limitations in the 

measuring equipment and inconsistencies in the load board circuitry, we 

obtain a blue distribution. Yield loss is the difference in the area past the 

specification limit. 

 

Fig. 5. Yield loss due to a particular parameter 
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 Test Escape: It is defined as the number of bad devices passing the test to 

the total number of faulty devices. 

𝑻𝒆𝒔𝒕 𝒆𝒔𝒄𝒂𝒑𝒆 =
# 𝒃𝒂𝒅 𝒅𝒆𝒗𝒊𝒄𝒆𝒔 𝒑𝒂𝒔𝒔𝒊𝒏𝒈 𝒕𝒉𝒆 𝒕𝒆𝒔𝒕

#𝒃𝒂𝒅 𝒅𝒆𝒗𝒊𝒄𝒆𝒔
 

                (3) 

This is an important measure from an economic and customer perspective. 

Ideally we would expect a test escape of 0%. However, due to incomplete 

or indirect testing some level of test escape is inevitable. 

 Fail Probability: It is the ratio of the number of devices failing a 

particular specification to the number of devices in the distribution.  

𝑭𝒂𝒊𝒍 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚 =
# 𝒅𝒆𝒗𝒊𝒄𝒆𝒔 𝒇𝒂𝒊𝒍𝒊𝒏𝒈 𝒂 𝒑𝒂𝒓𝒕𝒊𝒄𝒖𝒍𝒂𝒓 𝒔𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏

#𝒅𝒆𝒗𝒊𝒄𝒆𝒔 𝒊𝒏 𝒕𝒉𝒆 𝒅𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏
 

                  (4) 

It is generally defined for a particular circuit structure; could be faulty or 

fault free. Figure 6 illustrates fail probability computation for a parametric 

fault scenario. 

 

Fig. 6. Fail probability for a particular specification 
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 Defective parts per million (DPPM): It is defined as the average number 

of defects in an average production run scaled by one million. It can be 

calculated using the following formula. 

 

𝑫𝑷𝑷𝑴 =
#𝒅𝒆𝒇𝒆𝒄𝒕𝒊𝒗𝒆 𝒅𝒆𝒗𝒊𝒄𝒆𝒔

#𝒔𝒉𝒊𝒑𝒑𝒆𝒅 𝒅𝒆𝒗𝒊𝒄𝒆𝒔
∗ 𝟏𝟎𝟔

 

                (5) 

This is an extremely important indicator of the quality of the production 

line. Different applications require different DPPM levels based on their 

criticality. For example, applications related to aerospace, automobiles and 

medical require near 0 DPPM levels, while other applications which are 

not very critical such as garage door openers can tolerate higher DPPM 

levels.  

B. Process variations and Test Metrics 

Due to process variations, the evaluation of test statistics may depend 

on how the rest of the parameters will play out as illustrated in Figure 6. It 

shows the gain histogram of an LNA when the fault is injected in the width of 

the input transistor. The fault coverage of this measurement/threshold pair 

for the injected fault is the probability that the response falls to the left of the 

threshold. Thus, the first step in computing this (and many other similar) test 

metrics is to approximate the statistical distribution of the faulty circuit 

response. The next step is to compare it with the pass/fail threshold and find 

the probability of pass or fail. 
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It is clear that in order to compute the test metric accurately, one has 

to estimate the distribution of the faulty response accurately. However, there 

is another factor to take into account. For the example in Figure 7, any error 

in estimating the distribution will reflect into the fault coverage computation. 

Suppose that the threshold line was further away from the faulty circuit 

distribution. Then, the error in estimating the distribution would have a 

smaller impact on the overall accuracy. Thus, the accuracy with which we 

need to approximate the circuit behavior is not a pre-determined fixed value 

and this effect should be taken into account when constructing a model. 

 

Fig. 7. Distribution of faulty LNA 

C. Why Non linear models may be necessary? 

 While the order of the model should be dictated by the desired final 

accuracy, we first would like to show why non-linear models are generally 

needed to achieve reasonable accuracy. Modeling circuit behavior is a 
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challenge due to the non-linear nature of analog circuits and the implicit 

relations that arise from the circuit equations. A common thread in modeling 

is therefore to use a known polynomial approximation for the circuit 

behavior, which is a non-linear function of unknown form. Thanks to the 

results proposed by Taylor, polynomial models are effective to approximate 

any generic function as long as the deviation from the fixed point is not 

excessive. 

 The simplest form of polynomial modeling is to use a linear 

approximation, which is also called as sensitivity analysis. It has been used as 

a first-hand analysis tool for many problems ranging from circuit 

optimization to fault response analysis [10, 21]. Linear models basically 

linearize the function around the point of interest, thus approximating the 

neighborhood by a straight line. As the process variations increase and the 

processing technology are pushed towards its limits, the circuit response 

becomes highly non-linear when deviations in process and layout 

parameters are taken into account.  

 A linear model would work well only if the nominal point of the 

process/layout parameter is on a stable part of the curve that represents the 

overall function. However, this may not be true especially when process and 

layout parameters are taken into consideration. As an example, Figure 8 

shows the response of noise figure versus transistor length for an amplifier. 

It illustrates how a higher order model approximates the response better 
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than a simple linear model around the region spanned by the process 

variations. 

 

Fig. 8. Linear and higher order models under process variations 

 Perhaps a more telling illustration is based on how linear models 

impact the distribution of the faulty circuit response. Figures 8 and 9 

represent the gain distribution under a fault injection scenario for an LNA. 

The distance between the vertical lines represent the shift in the mean. 

Figure 9 compares the gain distribution obtained through Monte Carlo 

Simulations and the distribution obtained through a first order 

approximation. It is clear that when the decision threshold is not far from 

this distribution, we may incur a large error in the computation of the test 

metric. Most of this error stems from the mean, as mean errors shift the 

complete distribution and thus detrimental to achievable accuracy. In Figure 
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9, the mean difference between the two curves is 6%. Comparatively, Figure 

10 shows the distributions obtained by SPICE and through second order 

modeling. While there is still some mismatch in the histogram, the mean 

error is much smaller. The mean error in this case was found to be only 0.6%. 

In comparison, we see that the second order model always performs better 

than its linear counterpart. If this accuracy is not satisfactory we need to 

resort to higher order modeling. 

 

Fig. 9. Error in first order modeling 
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Fig. 10. Error in second order modeling 

D. Choosing the optimal order 

 It is obvious that using higher order polynomials for circuit behavior 

approximation provides added accuracy benefits. Nonetheless, the 

computational cost of higher order polynomials grow exponentially as the 

order grows. Therefore, it is essential that one selects the lowest order of 

polynomial approximation that provides the desired level of accuracy. 

 Choosing an optimal order with the careful consideration of the trade-

off between accuracy and simulation overhead is very important. We will 

address the issue of choosing an optimal order below. Consider the following 

arguments,  
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 A model of order p would be more accurate than a model of order m, 

where m < p 

 Evaluation of a model of order m would require order of O(nm) 

simulations as against O(np) for a model of order p 

 From these arguments it is obvious that it is impossible to have a 

highly accurate model and a reduced simulation overhead simultaneously. To 

evaluate this trade-off, one needs to take into consideration the accuracy 

boost in the response and the number of simulations that would be required 

to construct the model. Figures 11 and 12 highlight the standard deviation of 

the modeling error and the corresponding simulation overhead for 

evaluating the response of an analog/RF circuit. 

 From Figure 11, we observe that the improvement in the accuracy is 

considerable when we move from a linear to a second order model. But 

thereafter, moving to a third order model is a case of diminishing returns, 

since the boost in accuracy is not worth the extra simulation overhead. 

Indeed, it may be computationally more efficient to conduct a full blown 

Monte-Carlo simulation compared to the extraction of a third order model. 

Thus, we restrict ourselves to second order modeling and revert to Monte-

Carlo simulations if the overall accuracy is not adequate. From Figure 11, we 

also observe that the number of simulations to completely evaluate a second 

order model is in the order of O(n2) where n is the number of input 

parameters. We make an effort to evaluate an approximate second order 
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model using reduced number of simulations ie., of O(n) as illustrated in 

Figure 12. In the next section, we describe some important mathematical 

background required for our coefficient estimation algorithm. 

 

Fig. 11. Computational cost and accuracy trends with increase in model order 

 

Fig. 12. Our goal is to compute the second order model with reasonable accuracy 

without boosting the computational cost 
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Chapter 3 

NON-LINEAR COEFFICIENTS APPROXIMATION 

 Reducing the order of a highly non-linear function by fitting higher order 

models (predominantly second order) around a specific region in the input space 

are of interest to the modeling and optimization community [22-23]. 

 The input region around which a model is valid, is often quantified by 

what is called as the trust region radius which is a common nomenclature in 

optimization problems. These problem solving techniques make use of the second 

order multi-variable Taylor series expansion around the point of interest to 

evaluate the model. One of the classical ways of fitting a model is through 

regression. Instead of using the normal least squares regression (LS), we resort to 

robust regression techniques such as the least median of squares (LMS) or the 

Least Trimmed Squares (LTS). LMS and LTS are resistant to the presence of 

outliers as they minimize a different cost function than its LS counterparts. In the 

next few sections, we explain these techniques and justify the need for using them 

as against the traditional Least squares approach. 

A. Concept of Robust regression 

 Robust regression refers to a class of methods proposed for fitting models 

that are resistant to outliers. In a statistical sense, the outlier is an observation that 

lies at an abnormal distance from other values in a random sample from the 

population. Outlier may occur due to noise in the observation or due to highly 

non-linear nature of the model.  
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 In multivariate regression, the input variables are (xi1,...xip) where i runs 

from 1 to n, and n is the number of variables that lie in a space with p dimensions 

(which is sometimes called the factor space). A leverage point is defined as a 

point (xk1,...,xkp, yk) for which (xk1,...,xkp) is outlying with respect to (xi1,...xip) in 

the data set. One cannot detect the outliers by analyzing the residual of the least 

squares this is since the residuals are sensitive to leverage points which will lead 

to misclassification of the good and the bad points [24]. A special class of robust 

modeling technique called the Reweighted least squares (RLS) identifies the 

outliers using the robust regression techniques, and applies LS method on the 

"clean" samples obtained. This kind of modeling technique would be more 

suitable in the analog domain because of the highly non-linear nature of its 

response. Since our understanding of the faulty circuit response under process 

variations for different operating conditions is not very clear, it would be best to 

leave the outlier classification problem to the discretion of the algorithm. 

B. Robust regression estimators 

 Roussew proposed two robust regression estimators namely the Least 

Median of Squares (LMS) and the Least Trimmed Squares (LTS). He modified 

the cost function in the Least squares technique from 


i

ir
2

minarg            (9)                                                                                                                          

to 

)(minarg
2

irmedian                                                        (10) 
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where ri2 are the squared residuals, yielding the Least median of squares 

(LMS) estimator. The estimator is very robust with respect to outliers in y as 

well as in x. Unfortunately, the LMS performs poorly from the point of view of 

asymptotic efficiency. To remedy this problem another estimator called the 

Least trimmed squares (LTS) has been proposed [24].  
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where (r2)1:n ≤ … ≤ (r2)n:n are the ordered squared residuals. 

In order to improve the crude LTS and LMS solutions, he proposed another 

scheme called the Reweighted least squares (RLS) whose estimator is given 

by 
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In case of LMS, 
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In case of LTS, 
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where C1 and C2 are correction factors. The value of 2.5 used in equation 13 

is not rigid [24]; it is just a measure for classifying the outliers. 

Figure 13 shows the linear fit obtained through LS and the LTS 

techniques for a certain set of observations. We see that the LS fit is more 

biased towards certain points (leverage points) in an attempt to minimize 

the squared sum of the residuals, eventually leading to a poor fit. On the 

other hand the LTS technique fits a linear model completely ignoring the 

outliers.  It has been proven that the breakdown point of robust estimators to 

be 50% [25]. Breakdown point is defined as the maximum allowable 

contamination in the sample set. Theoretical maximum of breakdown point 

cannot be more than 50% since beyond that there won't be a distinction 

between good and bad points. 

 

Fig. 13. Least median of squares Vs Least squares 
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Chapter 4 

ADPATIVE MODEL ORDER SELECTION 

 The goal of our approach is to be able to approximate statistical test 

metrics such as detectability, fault coverage, fail probability.  

A. Top down approach for Error Budget estimation 

 An interesting question in the modeling process is what 

approximation accuracy is indeed acceptable. Unfortunately, there is no 

generic answer to this question. The required approximation accuracy 

depends on three factors: 

 The desired accuracy of computing the test metrics, such as the fault 

coverage, yield loss, DPPM etc. 

 The distance between the threshold line and the mean of the 

statistical distribution 

 The standard deviation of the statistical distribution 

 Clearly, once one specifies the accuracy for each test metric, it 

translates as different accuracy requirements for each fault and each 

response parameter that we are trying to model. Figures 14 and 15 illustrate 

the reason for this variation. In Figure 14, the response of the faulty circuit is 

close to the pass/fail threshold. A small error in the model may result in a 

large error in the computation of the fail probability metric (see Chapter2 

section A for definitions). Comparatively in figure 15 (catastrophic case), the 
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response of the faulty circuit is far away from the threshold, and one can 

make larger errors in modeling without affecting the accuracy of the fail 

probability computation. 

 While this example is convincing that one needs to customize the 

error bounds for each case, it also raises a circularity problem. In order to 

translate the error budget given for the computation of the test metric to the 

error budget in the modeling process, we seem to need to know the actual 

distributions of the faulty circuits. Nonetheless, if we know the distribution, 

we would have done all the work already, and there would be no reason to 

continue with the modeling. 

 

Fig. 14. Distribution of the faulty circuit close to the decision threshold 

 In order to break this circularity, we perform minimum number of 

simulations on the faulty circuit and try to predict beforehand what model 

order to choose. Using the error budget requirement and the threshold(s), 
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we evaluate the suitability of the modeled distribution. In other words, we 

determine if the model order that has been used for approximating the faulty 

distribution is good enough to meet the error budget requirement. The key 

issue here is that we let the final goal dictate the modeling process, rather 

than letting the modeling process dictate the final accuracy that we can 

obtain.  

 

Fig. 15. Distribution of faulty circuit far from the decision threshold 

B. Flow of the Non-Linear Modeling technique 

 Figure 16 represents the different steps involved in our adaptive 

model order selection procedure. 
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Fig. 16. Flow of the proposed modeling procedure 

 The inputs to the algorithm are the test metric accuracy (error 

budget) einit, thresholds and the fault simulation data. First, we check if linear 

model meets the accuracy requirement. We perform 4n fault simulations, n 

being the number of input parameters to compute the first four moments 

namely mean, standard deviation, skewness and kurtosis ie., µSP, σSP, γ1SP and 

γ2SP of the response. Using the fault simulation data, we robustly regress the 

response in first order as a function of the input circuit parameters described 

before (see Chapter3, section B). Using the modeled responses, we calculate 
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 the first four moments namely µlin, σlin, γ1lin and γ2lin. Approximate 

distributions are generated for SPICE and the linear model using Pearson 

system of statistical distributions. The Pearson system generates random 

data whose distribution follows the first four user defined moments [26]. The 

test statistics computed from these distributions are compared to determine 

the suitability of the model. If the linear model is deemed unfit, we repeat the 

same procedure for a second order model. 

C. Pearson system of distributions 

 Once the first four moments of the circuit response are obtained, the 

proper member of the Pearson system can be identified and the probability 

of failure fP  is calculated as follows 
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where )(xf X
 is the joint PDF of the vector of random variables X and 

))(()( xgf Xg is the PDF of )(Xg  identified by the Pearson system. 

 The Pearson system is an empirical system of distribution in which 

the PDF of a random variable is the solution of a differential equation, 
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here the coefficients 210 ,,, ccca  are determined by the first four statistical 

moments of the random variable X and )(xf is the PDF of X to be found by 
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solving the equation. The shape of )(xf changes considerably with 

coefficients, and Pearson has classified the different shapes into seven groups 

according to the form of the solution of 

02

210  xcxcc
                                                                (18) 

More detailed explanations about the Pearson system can be found in [26]. 

D. Model coefficients determination 

 Instead of performing O (n2) simulations for second order, we present 

a technique to obtain an approximation just by performing O (n) simulations. 

However, we need to perform another 4n fault simulations (n being the 

number of inputs) to estimate the second order coefficients. Once the model 

is evaluated, we obtain Pearson distributions model and simulations to 

evaluate the accuracy that we can reach in calculating the test metrics. We 

resort to higher order modeling or Monte Carlo simulations (whichever is 

computationally feasible) if the accuracy does not meet the user defined 

requirement. The above procedure is repeated to model all the different 

responses of the circuit as a function of the circuit parameters.  

Our coefficient determination model is mainly based on the observation 

that since the layout level parameters are uncorrelated, the contribution of the first 

order derivatives and the main body diagonal elements in the hessian is vital than 

the cross terms [16]. Any response can be approximated using the second order 

Taylor series around the nominal point as follows  
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where xk is the input point of interest, )( kxf is the gradient of the response 

function at xk and )(2

kxf  is the Hessian of the response at xk. 

Since the first order and the second order derivatives are the major 

contributors, we fit a second order model using a combination of reweighted least 

squares (RLS) and a proposed approach. As a rule of thumb, to select coefficients 

easily the, RLS technique needs 4p observations, p being the number of 

regression terms [24-25]. For a second order model p=2n, where n is the number 

of input parameters. Thus, we need 8n simulations to completely evaluate all the 

coefficients of the model. We incorporate a simulation reuse approach to compute 

the cross terms so that we won't need extra simulations.  

For the case of Full Blown Simulation analysis (to obtain a complete 

second order model), the number of simulations required would be  
2

)3(4 2 nn 
. 

Thus, the number of simulation savings from our methodology to the Full Blown 

Simulation analysis is
4

)3( n
. RLS generally associates a weight of 0 for the 

outliers and 1 for the non outliers. RLS can be done using LMS or the LTS 

estimator for outlier classification. In this work, we use the LTS estimator because 

it can achieve better asymptotic efficiency. Since LTS consumes a lot of time, we 

use a fast LTS proposed by Rousseuw et. al based on approximation algorithms 

[28]. After the process of RLS, our model would contain approximations of 2n 
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derivatives (first and second order coefficients) and 
2

)1( nn
unknowns (cross 

terms) since the total number of coefficients are
2

)3( nn
. The regression model 

for the response can be represented as follows,  
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where d is the nominal circuit response, ai's are the first order derivatives, bi's are 

the second order derivatives and cij's are the cross terms. After the RLS process, 

ai's and bi's would be known while the cij's would be unknowns. 

The cross terms can be computed by minimizing the following equation.  
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Here t is a variable that runs through the fault simulation space that we had 

generated earlier for modeling purposes. As described previously, RLS identifies 

the outliers and applies the Least squares model on the clean sample. We make 

use of the extra cross terms to make our model more generic to account for the 

cross correlations between process parameters. In an attempt to achieve it, we 

minimize the above estimator D over the entire sample space, thus allowing t to 

run from 1 to 8n. The values of the cross terms can be computed by equating the 

partial derivatives of the estimator D with respect to cijs shown in equation 22 to 

0. This would yield a linear system of 
2

)1( nn
 equations as shown below  
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Solving for the above partial derivatives and after rearranging them, we get the 

following set of equations. 
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cij's are the cross derivatives to solve, yl represents the l
th

 observation, ml 

represents the estimated value of yl from the RLS regression model and xli 

represents the l
th

 observation of the i
th

 input parameter.  

 A solution set contains the 2n first and second order derivatives (obtained 

from RLS) and the cross terms (from the proposed approach). In each of the 

solution set, the first and second derivatives are the same, while the cross terms 

are different depending upon the index t that we have used in the summation in 

equation 21. As t varies from 1 to 8n, we would have 8n sets of distinct model 

coefficients. We need to pick the "best coefficients set" that would come close to 

the SPICE results when it comes to computing different test metrics. In order to 



  34 

compute the "best coefficients set", we calculate the error in test metric for each 

solution set. If there are multiple solution sets with the same least error in test 

metric computation, we choose the one with minimum sums of squares of 

residuals. Algorithm for best solution set selection is shown below 

 Compute the error in test metric calculation for  each solution set 

 In case of multiple sets with the same least error, choose the coefficients 

with the least Sums of squares of errors (SSE) 

 Solution set with minimum SSE contains the coefficients for the model 
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Chapter 5 

HIERARCHICAL DOE BASED TEST STATISTICS EVALUATION 

The method proposed in the previous chapter does not consider hierarchy 

in process variations. The results (see Chapter6) for the proposed adaptive method 

suggest good improvement in computational accuracy when compared to prior 

methods, such as worst case min-max analysis etc. However in some cases, the 

accuracy may not be adequate. In order to achieve even better accuracy for test 

metrics estimation, we propose a technique that exploits the hierarchical nature of 

process variations and uses DOE samples to localize the circuit instances in the 

process skew space. 

A. Process variations model 

 In this section, we present our model for process variations. We consider 

two basic types of process variations in our analysis; inter die variations and intra-

die variations. Intra die variations can be further divided into random variations 

and spatially correlated variations. Random variations have no dependence on the 

location of the devices, while intra die variations that are spatially correlated 

produce an increased likelihood of similar gate length for device that are closely 

spaced versus those that are placed further apart. In our model, we restrict 

ourselves to random intra die variations. 

 We use the following model [34], where the device length ktotalL , is the 

algebraic sum of nominal gate length, the inter die device length variation erLint  

and intra die device length variation kraL ,int . 
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kraernomktotal LLLL ,intint, 
                                          

(26) 

where erLint and kraL ,int are random variables. nomL  represents the mean of the 

gate length across all possible dies. All devices on a die share one variable erLint

for the inter die component of their total device length variation, which represents 

a variation of the mean of the gate length of a particular die. kraL ,int represents 

the variations of individual gate from the mean gate length. In our procedure, each 

device is represented with a separate random variable kraL ,int , where all random 

variables kraL ,int  have identical probability distributions. For the purpose of our 

discussion we assume that both random variables erLint
 

and kraL ,int have a 

truncated Gaussian distribution. This reflects the fact that the gate length in an 

operational chip cannot be less than a finite minimum value and at the same time 

cannot be greater than a finite maximum value.  

For our analysis, we use this process model for lengths and widths of all 

the transistors. Similar to the previous notation, the components of the device are

nomW , erWint and kraW ,int where nomW is the nominal value of width and erWint

and kraW ,int are random variables. Typically, these components are defined for 

unit elements such as a finger of the transistor. Statistical model for a multi-finger 

transistor is product of variations in single finger and number of fingers. In other 

words, for a ‘m’ finger transistor, the process model for width would be 

))(( ,intint kraernom WmeanWWmW 
                                           

(27) 
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We follow a similar procedure for modeling the length of the transistor.  

B. Statistical tolerancing using Design of Experiments 

 In any Engineering design containing uncertainties, one of the key 

components of system evaluation is to analyze the uncertainties in performance to 

uncertainty in design. A wide variety of techniques in various Engineering fields 

have been proposed such as in structural reliability [35-37], stochastic mechanics 

[38-39] and quality engineering [40-42]. These include Taylor series based 

methods, Monte Carlo simulation (MC), numerical integration or design of 

experiments (DOE) based method. Often these analyses are carried out to 

compute the statistical moments of performance function, failure probability or 

other similar metrics. 

 Each of the above mentioned techniques have their own advantages and 

disadvantages in terms of computation accuracy, evaluation effort and 

applicability. It is generally accepted that computationally intensive brute force 

Monte Carlo simulations are correct indicators of system performance. Hence, 

they are used as a base for evaluating the accuracy of other proposed methods. In 

order to put things in a circuit’s perspective, uncertainty in inputs is process 

variations in the length and width, modeled using the process model. 

Performances of the system are the output response of the circuit such as Gain, 

Noise Figure, IIP3, S-parameters and system evaluation is analogous to 

computing test statistics such as yield coverage, fail probability and test escape. 

 DOE can be used when the number of input parameters is low such that an 

exhaustive evaluation of the sampling points is possible. When one considers 
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overall variation parameters in the circuit, this is certainly not the case. Here, we 

make use of the hierarchical nature of process variations. If we focus only on the 

high-level variations (inter-die variations), the number of variation parameters is 

small (only four in our analysis) and does not increase with circuit complexity. To 

account for the inter-die variations therefore, we can make use of the DOE 

approach. 

 However, one cannot ignore the impact of inter-die variations in fault 

analysis. This would require a separate statistical analysis for each of the DOE 

samples, thus defeating the purpose of reducing the overhead. Here, we make use 

of two observations to make the computational complexity tractable. First, since 

intra-die variations are much smaller compared to the inter-die variations, it is 

possible to approximate the behavior of the circuit around each DOE sample with 

a linear function without much loss in accuracy. Second, since DOE output 

samples for a faulty circuit may fall far from the decision thresholds, we would 

have some knowledge about the nature of the circuit instances when seen relative 

to the DOE space. In such cases, even after the juxtaposition of the within die 

variations, no circuit instance around these DOE samples will cross the decision 

boundaries. If we can determine such cases, then we can determine the outcome 

of their simulation without conducting the simulation. Hence, our hierarchical 

analysis consists of three steps: 

1. Evaluate the response of the DOE samples 

2. Determine the DOE samples that fall far from the decision boundaries 

(these will be referred to as Group-I DOE samples) 
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3. Use Monte-Carlo sampling for within die variations and classify Monte-

Carlo instances that fall around the group-I DOE samples wither pass or 

fail depending on the DOE outcome without conducting the circuit 

simulations. 

The outcome of MC instances that cannot be classified in this manner will be 

determined either through simulations or through linear modeling. 

 The proposed method is developed based on experimental design 

technique for statistical moment analysis initially proposed by Taguchi [41]. He 

proposed a three-level factorial design with levels 

 2/3,,2/3
ixixixxix i    where ix and ix are the mean and 

standard deviation of the i
th

 input random variable in the system and equal 

weights 
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. D’Errico and Zaino [43] modified the Taguchi method in order 

to improve the accuracy of moments calculation. They proposed levels 
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. It has been 

shown that the modified weights proposed are equivalent to nodes and weights of 

Gauss-Hermite quadrature method. These weights and levels are derived based on 

the assumption that the inputs are normally distributed. 

C. Statistical analysis using DOE 

In this section we briefly explain the theory behind statistical analyses 

using DOE. 

 



  40 

C.1. Overall procedure for uncertainty analysis using DOE 

 For a random variable X, k
th

 order moment of the system response 

function g(X) is given by quadrature formula with m nodes.  
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where )(xf X
is the probability density function of X,  and  are the mean and 

standard deviation of X respectively. To estimate accurately up to 4
th

 moment, 

which is often required by empirical statistics calculator such as Pearson’s, we 

need at least a three node quadrature rule, and parameters i and iw can be 

obtained by solving moment matching equations, 
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where k is the k
th

 moment of the random variable X and 2m-1 is polynomial 

order of the quadrature rule. By making a substitution  iil  , the above 

equation can be rewritten in terms of  il  and iw . There would be 2m variables 

hence 2m equations to solve for. Given 2m different values of k , the 

corresponding levels il  and weights iw can be calculated. Using the weights and 

levels, we compute the first k moments of the system response distribution g(X). 

It has also been proved that unique value of moments does not necessarily yield 

unique distribution. In simpler words, there can be many distributions with equal 

first k moments. Due to this limitation, we just use the levels obtained from 
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Gauss-Hermite quadrature formula for computation of input vectors to carry out 

DOE analysis. This would become clear in the subsequent sections. 

C.2. Determination of levels for DOEn7  

 We resort to a DOEn7 and use the levels obtained in the process to 

compute the input vectors for our method. Based on equation y, the equations for 

n7 DOE are formulated as follows. 
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In order to solve the above system of equations, the first thirteen statistical 

moments of a normally distributed random variable X should be provided. 

Solving the above system of equations yield levels as displayed in the table 

below. 

TABLE I 

n7  DOE levels for normally distributed inputs 

Levels 

  65196135.2  

  67355162.1  

  81628788.0  

  

 81628788.0  

  67355162.1  

  65196135.2  
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D. Proposed Method 

 Figure 17 illustrates the flow of our proposed test statistics estimation 

engine. 

Given the thresholds and MC input samples, the proposed 

methodology evaluates the status of each of the Monte Carlo (MC) circuit 

instance (pass/fail) with good amount of accuracy and an acceptable 

simulation overhead. Using the MC input samples and algorithm shown in 

Figure 17 we obtain density function (JPDF) of output parameters. This JPDF 

along with the position of the specification thresholds is used to calculate the 

test statistics. 

 



  43 

 

Fig. 17. Flow of our proposed hybrid procedure 

In short, the methodology predicts the status of the MC circuit 

instances (pass/fail) with the help of heuristics and linear models, at the cost 

of reasonable simulation overhead. There are two phases in this procedure, 

Phase I invokes heuristics, on input vectors generated using levels obtained 

from solving 7n DOE equations, to classify the status of the circuit instance as 

certainly passing/certainly failing/ambiguous. Phase II resolves the status of 

the circuits that are ambiguous using localized linear models, whose 

demarcation boundaries are set by the DOE levels.  Based on the relative 
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position(s) of the specification threshold(s) and JPDF of circuit parameters, 

the need for a modeling phase may or may not arise. For example, if the JPDF 

is far away from the positions of the specification thresholds, the heuristic 

evaluates the status of most of the circuit instances, leaving very few of them 

in the ambiguous bin which can be simulated later. This would save 

considerable amount of simulation effort needed to construct models. On the 

other hand, if the JPDF of circuit parameters and the specification thresholds 

are nearby, which is quite often the case, use of the modeling phase becomes 

inevitable. 

It should also be noted that unlike extracting a single linear model for 

the entire input space, which have often been found to be inadequate, we 

construct linear models in Phase II over localized input regions (the 

demarcations are dictated by the process model presented in section E of this 

Chapter). This gives us the advantage of increased accuracy in modeling the 

circuit output parameters. Even though the accuracy of localized linear 

models is good, they can never match SPICE simulations, we account for this 

limitation by applying guard bands around each specification threshold. 

These guard bands for a particular input space are developed based on the 

RMS error in modeling the output parameters for that input space. Once we 

apply models along with guard bands for the MC circuit instances, most of 

the circuits are resolved except for the circuit instances where at least one of 

the modeled specification falls in the guarded region. This reduced number of 
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circuits can be readily simulated. The next few sections explain the heuristics 

and modeling procedure in detail. 

E. Phase I: Heuristic 

 As shown in Figure 17, the inputs to our heuristic are the DOE levels and 

the specification thresholds. To make things clear, let us explain our heuristic with 

a cascode LNA as example. Simple cascode architecture contains two transistors, 

3 inductors and a load capacitor. The inputs to our algorithm are process variables 

namely, width, length, inductance and capacitance ie., four in this case. We 

construct 7
4
 DOE input process vectors, whose positions are determined by the 

DOE levels in Table I and simulate them. From the simulation results and the 

position of specification thresholds, we pick out the combination of input vectors 

that pass, and the remaining ones fail. Using this knowledge, and the position of 

the MC circuit instance with respect to the DOE vectors, we propose a heuristic to 

evaluate the status of the circuit as certainly passing/certainly failing or 

ambiguous. 

 Certainly passing/failing: A MC circuit instance whose status has 

been evaluated by the heuristic with complete certainty. Modeling is 

not applicable for this case. 

 Ambiguous: A MC circuit instance whose status cannot be 

determined by the heuristic. Modeling/simulations are used to 

resolve the status of the circuit instances in this category. 

 Figure 18 highlights one possible scenario for an MC circuit instance. 

It shows the position of each of the input process parameters (W, L, ind, cap) 
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for a particular MC instance relative to the position of the DOE levels. In this 

Figure, we note that all the process parameters (both the widths and lengths, 

three inductors and a load capacitor) are bound between the same 

boundaries even in the presence of intra die variations. Based on our 

observations from pseudo randomly generated MC circuit instances, there is 

only 50% statistical chance for this to occur. The remaining 50% of the 

circuit instances fall directly into the ambiguous bin since the heuristic 

cannot handle it.  

 It takes quite a considerable simulation effort to construct models to 

resolve the status of the circuits in the ambiguity bin, which is worthwhile for 

a fault free circuit. But in the case of faulty circuit, such an elaborate analysis 

would generate unacceptable computational burden especially if the JPDF 

and specification thresholds are far. To account for this situation in the faulty 

circuits, we average out all the input parameters and present one width, one 

inductance, one length and one capacitance to our heuristic. 
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Fig. 18. Position of the process parameters with respect to the DOE levels at 

the beginning of Phase I 

 In the example figure, widths are bounded between (W1-W2), lengths 

between (Len1-Len2), inductances between (L1-L2) and capacitance 

between (C1-C2). Using these boundaries 24 different combinations are 

possible as shown below 
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(31) 

Using the pass/fail information from simulation of DOE vectors, the following 

rules apply in determining the status of the circuit. 

 Circuit certainly passes if all the 16 combinations shown above pass 

 Circuit certainly fails if all the above combinations fail 
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 Ambiguous otherwise 

F. Phase II: Localized linear models 

 Status of the MC circuit instances in the ambiguous bin is resolved with 

the help of linear models around local input space. Figure 18 shows input space 

demarcation for the purpose of reducing the input span of the models. From the 

Figure, there are 8 different input regions across four distinct process parameters, 

resulting in 8
4
 model possibilities. As a worst case scenario, we might even need 

8
4
 different models to resolve the status of the circuits in the ambiguous bin. 

However, based on our observations it does not happen, thanks to our heuristics 

for avoiding this mathematical possibility. As discussed previously, since 50% of 

the circuits does not fall within the bin boundaries (due to intra die component in 

process variation model), mean of all the process parameters are used to identify 

the appropriate model.  

 Let us assume that once we average out all the intra die process variations, 

the position of the process parameters relative to the DOE levels are shown in 

Figure 19. We sample from these bounded regions to compute models for 

circuit’s output parameters. Using these models and the MC circuit instances, we 

compute the JPDF of all the circuit parameters which is used to evaluate the test 

statistics. As a rule of thumb in modeling, we use 4k simulations to construct 

linear models, ‘k’ being the number of input parameters ie.,8 in the case of an 

LNA. Even though, we are modeling a small portion of the input region, the 

accuracy of the models is limited and these would affect the results of the circuit 

instances whose responses fall near the specification thresholds.  
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In order not to compromise on the accuracy we use guard bands (regions 

of uncertainty around the specification thresholds) to simulate the few instances 

which cannot be evaluated after modeling. The positions of the guard band are 

computed for each output parameter based on the RMS error in modeling that 

particular parameter. Since the RMS error in modeling output parameters for a 

localized input space is small, the proportion of the circuits falling in guarded 

region is also small. These tiny circuit samples can be readily simulated to obtain 

their true status. 

 

Fig. 19. Position of process parameters with respect to the DOE levels after 

averaging them out at the beginning of phase II 
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Chapter 6 

SIMULATION RESULTS 

 This chapter contains simulation results for both the proposed 

methods ie., adaptive model order selection method and the DOE based 

hierarchical test statistics evaluation method. 

A. Adaptive model order selection method 

 We have applied our non-linear coefficients approximation algorithm 

to two experimental circuits, namely a cascode Low Noise Amplifier (LNA) 

and double balanced Gilbert Cell Mixer (Mixer) with a resistive load as shown 

in Figures 20 and 21. The input parameters for the model are the width and 

length of the transistors and the R, L and C components connected to the 

circuit. For the mixer, we exclude the matching network parameters for 

model computation. We consider both single fault and simultaneous fault 

injection: there can be one or multiple faults in each faulty instance of the 

circuit.  

 In this section, we show that the adaptive modeling procedure works 

well for both single and simultaneous fault injection scenarios. The circuit 

responses we model are gain, input impedance, output impedance, Noise 

Figure and IIP3 for the Low Noise Amplifier, and Conversion gain, IIP3, Noise 

Figure, LO-RF, RF-IF and LO-IF port isolation parameters for the Mixer. Gain 

and IIP3 are assumed to measured up to the accuracy of +/-0.1dB, while the 
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input and output impedance are assumed to be measured with an accuracy of 

about +/-5 ohms. Noise Figure is assumed to be measured with an accuracy 

of about +/-0.5 dB. Similarly for the mixer, the port isolation parameters are 

assumed to be measured with an accuracy of about +/-5 dB. These 

uncertainties in the measurement are incorporated to emulate the 

limitations of the ATE measurement. 

 

Fig. 20. Cascode Low Noise Amplifier 

 For the LNA, there are 2 transistors, 3 inductors, and a capacitor. We 

consider fault injection into each of the width and length of the transistor, 3 

inductors and the capacitor, 8 faults in total. In our Mixer, there are 6 input 

transistors, 4 resistors and 2 inductors. The number of faults are 2 for each 

transistor, 1 for each resistor and inductor thus 18 faulty circuit instances in 

all. Apart from the single injected faults, we also consider two global faults 
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each for the Mixer and LNA. The global faults are Vth shift and simultaneous 

faults in the widths of the transistor. In case of these test circuits, not all fault 

injections cause a specification violation. In making a fault dictionary we 

consider only non-redundant faults ie., faults that cause a specification 

violation. The fault dictionary for the LNA and Mixer is shown in Table II. 

 

Fig. 21. Double balanced Gilbert cell mixer 
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TABLE II 

Fault dictionary of LNA and Mixer 

LNA Mixer 

Fault Fault location Fault Fault location 

F1 W(M2) G1 RD1 

F2 L(M2) G2 W(M1) 

F3 L6 G3 L(M1) 

F4 C1 G4 I_bias 

F5 L4 G5 Rs1 

F6 L3 G6 W(M3) 

F7 W(M2) and W(M3) G7 W(M1) and W(M2) 

F8 Vth G8 Vth 

  

 The transistors width and length are assumed to exhibit a variation of 

+/-10%, while variations in the passive components are set at +/-20%. These 

values correspond to the tolerance window of the process parameters which 

span for 3σ on either side. It is assumed that the injected faults cause a 

maximum deviation of up to 10σ from the nominal value. It should be noted 

that the amount of deviation we inject for faulty components has no effect on 

our modeling technique. We merely use this fault injection method as a 

conduit to evaluate the performance of our technique in terms of accuracy of 

computing a test metric, the probability of failing a specification, fail 

probability, in this case.  

 We performed 5000 MC simulations for each fault instance to form 

the baseline. In our experiment, we set the value of error budget for pass/fail 

probability computation to 2%. Threshold T1 is chosen such that the yield of 

the fault free distribution is 100%. As a first step, we obtain the first order 

coefficients using the RLS approach. We evaluate the suitability of this model 
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order by comparing the accuracy in test statistics that can be achieved. If the 

accuracy meets the user defined specification, we use it to compute the test 

statistics. In the case of tight threshold(s), where linear model may not be 

adequate, we perform extra 4n simulations and compute the second order 

coefficients. If second order model also proves to be inadequate, we need to 

resort to higher order modeling or Monte Carlo simulations whichever is 

computationally feasible. 

 Table III and Table IV show the results of our accuracy driven model 

order selection procedure for each of the faults in LNA and Mixer. We see 

that certain responses require higher order modeling in order to meet the 

error budget. Table V compares the number of simulations required to model 

the response parameters under all fault scenarios using the proposed 

approach against the conventional Monte Carlo simulations. The number of 

simulation setups required to evaluate the response parameters are different 

for the LNA and Mixer. For the LNA, gain, input impedance, output 

impedance and Noise Figure simulations require a single tone setup, while 

the IIP3 measurement requires a two tone setup, thus 2 distinct setups. For 

the case of mixer, we require one simulation setup for evaluating gain, port 

isolation parameters and Noise Figure, one setup for IIP3 computation 

needing 2 distinct setups. Since we use 5000 fault simulations for each fault 

as baseline to evaluate our method, we would need 10,000 simulations for 

LNA and Mixer respectively (2 distinct setups). 
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 As there are eight faults in the dictionary, we require 80,000 

simulations for the LNA and another 80,000 simulations for the mixer to 

evaluate our method. Based on the model order that we obtain, the number 

of simulations we require are either 4n (first order) or 8n (second order), n 

being the number of inputs. Nonetheless, in our experiments we have not 

used fault simulation techniques for estimating the first order model of the 

faulty circuits [29-30]. Using these techniques, we could potentially remove 

additional simulations that are required for the second order model. We 

assume that we resort to Monte Carlo simulations when the second order 

model does not meet the accuracy requirement. The simulation savings are 

expected to reduce with tighter thresholds as the required modeling order 

increases proportionally. 
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TABLE III 

Model order selection for LNA 

Output parameters Faults Model order 

Gain 

F1 
F2 
F3 
F4 
F5 
F6 
F7 
F8 

2 

2 
1 

2 
>2 
2 

1 
2 

Zin 

F1 
F2 
F3 
F4 
F5 
F6 
F7 
F8 

1 
2 

1 
1 

2 
2 

1 
2 

Zout 

F1 
F2 
F3 
F4 
F5 
F6 
F7 
F8 

2 
2 

>2 

1 
2 

1 
1 

2 

Noise Figure 

F1 
F2 
F3 
F4 
F5 
F6 
F7 
F8 

1 

1 
1 

1 
1 
1 

1 
1 

IIP3 

F1 1 
F2 1 

F3 1 
F4 1 

F5 1 
F6 1 

F7 1 
F8 1 
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TABLE IV 

Model order selection for Mixer 

Output parameters Faults Model order 

RF-IF isolation 

G1 
G2 
G3 
G4 
G5 
G6 
G7 
G8 

2 

>2 
2 

1 
1 

2 
1 

2 

Conversion Gain 

G1 
G2 
G3 
G4 
G5 
G6 
G7 
G8 

2 
2 

1 
1 

2 
2 

1 
2 

IIP3 

G1 
G2 
G3 
G4 
G5 
G6 
G7 
G8 

1 
1 

>2 
1 

2 
1 
1 

1 

Noise Figure 

G1 
G2 
G3 
G4 
G5 
G6 
G7 
G8 

1 

1 
1 

1 
1 

1 
1 

1 

LO-RF isolation 

G1 
G2 
G3 
G4 
G5 
G6 
G7 
G8 

2 
2 

2 
1 

1 
2 

1 
2 

LO-IF isolation 

G1 2 
G2 2 

G3 1 
G4 1 

G5 1 
G6 2 
G7 1 

G8 2 
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TABLE V 

Simulation statistics for LNA and Mixer 

Circuit Monte Carlo  Proposed Speedup 

LNA 80,000 10,608 7.54x 

Mixer 80,000 11,376 7.03x 

 

 Table VI and Table VII compares the fail probability computed from 

both the approaches for the base case of 5000 MC simulations for an LNA and 

Mixer respectively. Here, the table is tabulated based on the assumption that 

the maximum attainable fail probability is 100% for each fault. However, this 

is not true in reality, as we have to account for the probability of fault 

occurrence and the probability for each fault. If we assume that the 

probability of fault occurrence to be 10% and probability of a fault to be 
6

1
, 

the accuracy boost in fail probability computation we get would be an 

increase in magnitude by two orders.  

 The fail probability is computed for each of the response parameters 

for all the fault scenarios in the dictionary. This table illustrates that our 

approach works well and satisfies the error budget for most of the cases 

except for a few. The error in test metric computation for some cases is more 

than 2%. These cases are depicted separately for each output parameter at 

the bottom. Our method predicts these inadequacies in the model 

beforehand by performing few faulty SPICE simulations. See the 

corresponding faults and parameters tables III and IV. 
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 Table VIII compares the Test escape computed from SPICE and 

adaptive model order approach. To compute the test escape associated with 

an LNA we regard Gain, Zin1 and Zout to be the measured parameters from 

which one evaluates test metrics such as pass/fail statistics. The pass/fail 

statistics for the other 2 parameters namely IIP3 and Noise figure along with 

the test pass determine the overall pass/fail statistics. Similarly for the Mixer, 

Conversion gain, LO-IF, RF-IF and LO-RF port isolation parameters 

contribute to test pass/fail statistics while Noise Figure and IIP3 along with 

the test pass/fail statistics contribute to overall pass/fail statistics. Test 

escape is defined as the number of circuit instances that pass the test 

criterion but fail the overall criterion. 
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TABLE VI 

Fail probability comparison for all faults in the dictionary of an LNA 

assuming a threshold T1 

Output parameters Faults SPICE (in %) Ours (in %) Error (in %) 

Gain 

F1 
F2 
F3 
F4 
F6 
F7 
F8 
F5 

58.98 59.66 0.68 
0.12 0.02 0.1 

43.32 44.72 1.4 
24.65 23.95 0.7 

34.65 34.76 0.11 
0 0 0 

22.79 23.76 0.97 
54.1 50.39 3.71 

Zin 

F1 
F2 
F3 
F4 
F5 
F6 
F7 
F8 

91 90.04 0.96 

99.24 99.86 0.62 
63.5 62.98 0.52 

99.87 100 0.13 
28.9 28 0.9 

76.6 75.9 0.7 
0 0 0 

37.48 36.11 1.37 

Zout 

F1 
F2 
F4 
F5 
F6 
F7 
F8 
F3 

99.78 98.7 1.08 

0.76 0.02 0.74 
43.7 43.11 0.59 

99.2 98.98 0.22 
99.65 99 0.65 

0 0 0 

19.28 20.05 0.77 
99.96 90.34 9.62 

Noise Figure 

F1 
F2 
F3 
F4 
F5 
F6 
F7 
F8 

0 0.12 0.12 
99.98 100 0.02 

0 0.16 0.16 
0 0 0 

0 0 0 
0 0.83 0.83 

0 0 0 
68.79 68.17 0.62 

IIP3 

F1 
F2 
F3 
F4 
F5 
F6 
F7 
F8 

100 100 0 

100 100 0 
100 100 0 

99.08 98.58 0.44 
100 100 0 

100 99.34 0.66 
100 100 0 

37.63 37.17 0.46 
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TABLE VII 

Fail probability comparison for all faults in the dictionary of a Mixer 

assuming a threshold H1 

Output parameters Faults SPICE (in %) Ours (in %) Error (in %) 

RF-IF isolation 

G1 
G3 
G4 
G5 
G6 
G7 
G8 
G2 

100 100 0 
99.7 100 0 

100 100 0 
100 100 0 

100 100 0 
0 0 0 

82.63 81.87 1.24 
96.7 100 3.3 

Conversion Gain 

G1 
G2 
G3 
G4 
G5 
G6 
G7 
G8 

61.9 62.08 0.18 
45.34 46.56 1.22 

38.4 39.7 1.3 
99.94 99.98 0.04 
1.36 2.13 0.77 

99.91 99.53 0.38 
2.76 2.53 0.23 

48.91 47.5 1.41 

IIP3 

G1 
G2 
G4 
G5 
G6 
G7 
G8 
G3 

0.06 0 0.06 

55.67 56.23 0.56 
1.38 0.66 0.72 

100 99.73 0.27 
91.5 91 0.5 

97.34 98.11 0.77 
42.63 42.65 0.02 

79.34 84.67 5.33 

Noise Figure 

G1 
G2 
G3 
G4 
G5 
G6 
G7 
G8 

23.76 98.7 1.08 
0.76 0.02 0.74 

43.7 43.11 0.59 
99.2 98.98 0.22 

99.65 99 0.65 
0 0 0 

19.28 20.05 0.77 
99.96 90.34 9.62 

LO-RF isolation 

G1 
G2 
G3 
G4 
G5 
G6 
G7 
G8 

93 91 2 
78.45 79.16 0.71 

99.67 99.93 0.26 
100 100 0 
100 99.98 0.02 

99.3 99.65 0.35 
0 0 0 

58.63 57.65 1.02 

LO-IF isolation 

G1 
G3 
G4 
G5 
G6 
G7 
G8 
G2 

100 100 0 

99.7 100 0.3 
100 100 0 

100 100 0 
100 100 0 

0 0 0 
82.63 81.87 1.24 

96.7 100 3.3 
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TABLE VIII 

Test escape comparison 

Fault SPICE Ours 

F1 55.36 55.76 

F2 0.12 0.02 

F3 36.92 35.02 

F4 0 0 

F5 35.78 37.99 

F6 56.5 55.8 

F7 0 0 

F8 5.89 6.17 

G1 61.84 62.08 

G2 0 3.78 

G3 45.87 43.94 

G4 99.94 99.98 

G5 0 0 

G6 91.89 92.9 

G7 0 0 

G8 65.15 63.29 

 

B. DOE based hierarchical process variations method 

 We use a cascode LNA, same as the one shown above to evaluate the 

efficiency of the DOE based method. The fault dictionary under which we 

analyze using our method is shown in the table below. We have evaluated only 

single fault injection scenario ie., only one fault in a circuit instance. Since our 

method is based on modeling, which has a strong mathematical foundation, we 

would expect our method to perform well for multiple fault injection scenarios as 

well. As described in the previous section, there are 8 possible faulty circuit 

instances and we choose only 6 among them that cause violation in at least one of 

the specifications. The tolerances and variations in the process parameters are 

exactly same as used in previous method to maintain consistency. Nonetheless, it 
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is assumed that the injected faults cause a maximum deviation of 6σ (unlike 10σ 

in the previous section) from the nominal value to be more realistic. 

TABLE IX 

Fault dictionary of LNA for DOE based method 

Fault Fault location 

H1 Global inductance shift 

H2 L6 

H3 Global shift in Vth 

H4 C1 

H5 L(M2) 

H6 W(M2) 

 

 50K Monte Carlo simulations for each of the faults in the dictionary are 

conducted to form the baseline for evaluating the efficiency of the proposed 

method. A notable feature of this method is the incorporation of process model 

(see Chapter 5, section E.) to form the 50K Monte Carlo samples. The 3σ 

tolerances for the inter die variations are +/-10% of the mean and the 3σ intra die 

variation is limited to +/-1% of the mean for the transistor process parameters 

such as Width and Length. For the case of resistances, inductances and 

capacitance, the inter die variations would be +/-20% and the intra die variations 

would be +/-2% of their mean values respectively. As in the previous method, we 

account for inaccuracies is the measuring equipment in our model. The 

approximation parameters are kept exactly the same as in the previous method. 

 As a first step, we use heuristics and DOE to classify the Monte Carlo 

circuit instances into three parts certainly failing, certainly passing, ambiguous. 

Then, we resolve the circuit instances in the ambiguous bin by using localized 
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linear polynomial models based on the process model. Guard bands are also used 

to account for inaccuracies in the models. The circuit instances falling in the 

guarded region are simulated readily to evaluate their status. Our proposed 

method is compared with the recently published work on test statistics estimation 

using kernel based non parametric density estimation techniques by 

Stratigopulous et.al [31]. For comparison purposes, four output parameters are 

used, namely gain, Noise Figure, IIP3 and S11.  

 It is reported in [31] that, the kernel based density estimation method for 

synthetic JPDF construction works well if the dimension of the JPDF is less. Our 

hierarchical DOE based method does not have any such constraint; we restricted 

our comparison to four dimensional case due to extensive computation time 

requirements of the density estimation method for higher dimensions. To show 

results on a higher dimensional JPDF, we also evaluated our technique for 6 

output parameters. The two additional parameters apart from the previously 

mentioned four are the gain of the LNA at pass-band limits.  

 Table VIII shows the accuracy in estimating the test metrics of faulty 

instances for different guard banding situations for four parameter case. For 

certain fault cases such as (H1, H2) the nominal response of at least one of the 

output parameter is at least 10σ away from the mean of the fault free circuit. In 

such situations, we assume that all the circuit instances of that particular fault fail, 

thus avoiding the need to perform any complicated analysis. Column 1 shows 

different guard banding situations, column 2 comprises instances from the fault 

dictionary where FF indicates the fault free case. Columns 3, 4 and 5 show the 
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number of circuit instances that have been determined as passing, failing and 

doubtful respectively for each case in the dictionary. Column 6 contains the 

number of misclassified circuit instances in the end.  

The misclassification count is a sum of two components: passing circuits 

classified as failing (YL) and failing circuits classified as passing (TE). This 

behavior is generally common among those circuit instances whose output 

parameter falls close to the specification threshold(s). In order to keep the 

misclassified circuits to a minimum, we associate guard bands based on the RMS 

error in modeling a particular output parameter around the specification 

threshold(s). One would expect the misclassified circuit instances to reduce and 

the simulation cost to increase with higher guard banding as illustrated in the 

Table X. Figure 22 displays the effect of guard banding and simulation savings on 

the misclassification number for the fault free circuit scenario with four output 

parameters. 
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TABLE X 

Fail probability estimation for four parameter case 

Guard 
band 

Faults 
Certain pass (out 

of 50K) 
Certain fail (out 

of 50K) 

Ambiguous(out 
of 50K)  

Misclass(out 
of 50K) 

Simulation 
count 

5σ 

H1 
H2 
H3 
H4 
H5 
H6 
FF 

 

0 50000 0 0 1 
0 50000 0 0 1 

0 50000 0 0 2401 
1 49999 0 0 3160 

11015 35220 3765 11 98359 

35930 11099 2971 13 82611 
41478 5575 2947 46 94176 

     

4.5σ 

H1 
H2 
H3 
H4 
H5 
H6 
FF 

 

0 50000 0 0 1 

0 50000 0 0 1 
0 50000 0 0 2401 

1 49999 0 0 3160 
11216 35394 3390 15 90859 

11291 36066 2643 15 76051 
41653 5637 2710 46 89436 

     

4σ 

H1 
H2 
H3 
H4 
H5 
H6 
FF 

 

0 50000 0 0 1 

0 50000 0 0 1 
0 50000 0 0 2401 
1 49999 0 0 3160 

11410 35576 3014 19 83339 
11456 36194 2350 21 70191 

41843 5720 2437 51 83976 
     

3.5σ 

H1 
H2 
H3 
H4 
H5 
H6 
FF 

 

0 50000 0 0 1 
0 50000 0 0 1 

0 50000 0 0 2401 
1 49999 0 0 3160 

11604 35755 2641 27 75879 
11658 36313 1616 27 63771 

42041 5777 2182 56 78876 
     

3σ 

H1 
H2 
H3 
H4 
H5 
H6 
FF 

 

0 50000 0 0 1 

0 50000 0 0 1 
0 50000 0 0 2401 

1 49999 0 0 3160 
11791 35953 2256 33 68179 

11828 36434 1738 32 57951 
42275 5847 1878 63 72796 

     

2.5σ 

H1 
H2 
H3 
H4 
H5 
H6 
FF 

 

0 50000 0 0 1 

0 50000 0 0 1 
0 50000 0 0 2401 
1 49999 0 0 3160 

12001 36113 1886 38 60779 
11992 36587 1421 38 51611 

42485 5942 1573 80 66696 
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Fig. 22. Variation of Misclassification with guard banding and simulation savings 

 Simulation count shown in the last column of Table X is a sum of three 

components 

1. 7
4
 DOE simulations to classify the circuit as certainly passing/certainly 

failing/ambiguous 

2. Number of simulations required to construct localized linear models to 

evaluate the status of the ambiguous circuit instances 

3. Simulation of circuit instances in the guarded region 

The total simulation count shown in column 6 is the number of simulations 

required to evaluate the status of 10
6
 circuit instances. Table XI shows the test 

statistics evaluation for the case of six output parameters. Table XII shows the 

total savings in simulation for both the cases: four parameter and six parameter 

cases for different guard banding scenarios. 
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TABLE XI 

Fail probability estimation for six parameter case 

Guard 
band 

Faults 
Certain pass (out 

of 50K) 
Certain fail (out 

of 50K) 

Ambiguous(out 
of 50K)  

Misclass(out 
of 50K) 

Simulation 
count 

5σ 

H1 
H2 
H3 
H4 
H5 
H6 
FF 

 

0 50000 0 0 1 
0 50000 0 0 1 

0 50000 0 0 2401 
1 49999 0 0 3160 

10806 35645 3549 11 91638 

11001 36039 2960 15 79990 
36582 6783 6635 47 192026 

     

4.5σ 

H1 
H2 
H3 
H4 
H5 
H6 
FF 

 

0 50000 0 0 1 

0 50000 0 0 1 
0 50000 0 0 2401 

1 49999 0 0 3160 
11001 35805 3194 15 84538 

11188 36174 2638 15 73550 
37209 6835 5956 47 178446 

     

4σ 

H1 
H2 
H3 
H4 
H5 
H6 
FF 

 

0 50000 0 0 1 

0 50000 0 0 1 
0 50000 0 0 2401 
1 49999 0 0 3160 

11185 35974 2841 15 77478 
11342 36306 2352 15 67830 

37801 6917 5282 47 164966 
     

3.5σ 

H1 
H2 
H3 
H4 
H5 
H6 
FF 

 

0 50000 0 0 1 
0 50000 0 0 1 

0 50000 0 0 2401 
1 49999 0 0 3160 

11368 36150 2482 15 70298 
11547 36426 2027 15 61330 

38434 6981 4585 47 151026 
     

3σ 

H1 
H2 
H3 
H4 
H5 
H6 
FF 

 

0 50000 0 0 1 

0 50000 0 0 1 
0 50000 0 0 2401 

1 49999 0 0 3160 
11543 36630 2127 15 63198 

11711 36551 1738 15 55550 
39069 7054 3877 47 136866 

     

2.5σ 

H1 
H2 
H3 
H4 
H5 
H6 
FF 

 

0 50000 0 0 1 

0 50000 0 0 1 
0 50000 0 0 2401 
1 49999 0 0 3160 

11742 36479 1779 15 56238 
11876 36704 1420 15 49990 

39662 7163 3175 47 122826 
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TABLE XII 

Simulation savings for different guard band scenarios 

No. parameters Guard band/σRMS Simulation savings 

4 

2.5 
3 

3.5 
4 

4.5 
5 

27.08 

24.45 
22.31 

20.57 
19.09 
17.81 

6 

2.5 21.38 
3 19.14 

3.5 17.35 
4 15.83 

4.5 14.62 
5 13.54 

 

Figure 23 compares the error in fail probability comparison (50K MC 

simulation results as base) between proposed approach (guard band of 2.5σRMS) 

and the method presented in [31] for all the fault scenarios in the dictionary and 

Fault free circuit. To ensure a fair comparison, the number of circuit simulations 

required to compute the JPDF for each fault in Kernel based density estimation 

approach is kept same as the number of simulations required by our method for 

that particular fault. The proposed method performs better than the kernel based 

density estimation for faulty scenarios and the difference is significant for the 

fault free case. 

For fault scenarios H1 and H2, since the mean values of the response are 

more than 10σ from the nominal value of the fault free circuit, we directly classify 

all the circuit instances as failing. For these faults, both methods are very close to 

the classifications obtained through Monte-Carlo simulations. For faults H3, H4, 

H5, H6 our method performs slightly better than kernel density estimation. Even 

though the error is less than 0.7% in kernel based method, the number of 
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misclassified circuit instances is in the order of around 7,000 out of a million. For 

the fault free case our method offers higher accuracy and the error in the kernel 

based method is around 3%. 

 

Fig. 23. Accuracy comparison between the proposed approach and method in [31] 

for four parameter case. 



  71 

Chapter 7 

CONCLUSION 

 Due to the increasing process variability with scaling technologies, the 

nature of the response of the analog/RF circuits has become probabilistic in 

nature. Monte Carlo analysis takes process variations into account but 

present a large simulation overhead. Our approach addresses this issue by 

taking process variations into account and constructs a suitable model based 

on the allowable error in test statistics computation. Some of the applications 

of this approach would be a quick and a firsthand estimation of the Yield and 

Fault coverage statistics that could be easily integrated into the design flow. 

 In this work we propose two approaches to evaluate the test metrics. The 

first method uses an adaptive model order selection technique with the 

model order determined by the error budget. The second method uses 

hierarchy in process variations and modeling to compute the test metrics 

with increased accuracy. 

 The first method uses a top down approach, where in we start with a 

required accuracy on test metric computation. Based on this error budget we 

estimate the coefficients in first order using robust regression techniques. In 

case the linear model does not satisfy the error budget, we move to second-

order modeling and once again use robust regression techniques to obtain 

the coefficients. To compute the cross terms we solve a system of linear 

equations and choose the best coefficient set based on the proposed 
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methodology. Experiments on an LNA and a Mixer show that we could 

potentially obtain a speed up of 7.54x and 7.03x for a chosen threshold when 

it comes to the computation of the pass/fail probability. 

 The biggest limitation of the first method is the maximum achievable 

accuracy in terms of test statistics evaluation. The constraint on accuracy can 

be attributed to modeling the entire input space. We remedy this problem to 

a good extent by constructing localized linear models based on the hierarchy 

in process variations: die-to-die variations, where the number of variables is 

small and limited but the variation amount is large, and within die variations, 

where the number of variables is large and scales with circuit, but the 

variation amount is small.  

 We present a two step procedure based on DOE and first order models to 

response evaluation. The first step uses heuristics based on 7n DOE levels to 

classify the circuit instance as certainly passing/certainly failing and 

ambiguous. The circuit instances in the ambiguous bin are evaluated by 

constructing localized linear models for within-die variations by using die-

die variation instances as fixed points. The proposed method is compared 

against the recent work on test metrics computation based on adaptive 

kernel density estimation and our method has been found to perform better 

especially for the fault free case. 
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