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ABSTRACT 
 

Peptides offer great promise as targeted affinity ligands, but the space of 

possible peptide sequences is vast, making experimental identification of lead 

candidates expensive, difficult, and uncertain.  Computational modeling can 

narrow the search by estimating the affinity and specificity of a given peptide in 

relation to a predetermined protein target.  The predictive performance of 

computational models of interactions of intermediate-length peptides with 

proteins can be improved by taking into account the stochastic nature of the 

encounter and binding dynamics. A theoretical case is made for the hypothesis 

that, because of the flexibility of the peptide and the structural complexity of the 

target protein, interactions are best characterized by an ensemble of possible 

bound configurations rather than a single “lock and key” fit.   A model 

incorporating these factors is proposed and evaluated.  A comprehensive dataset 

of 3,924 peptide-protein interface structures was extracted from the Protein Data 

Bank (PDB) and descriptors were computed characterizing the geometry and 

energetics of each interface.  The characteristics of these interfaces are shown to 

be generally consistent with the proposed model, and heuristics for design and 

selection of peptide ligands are derived. The curated and energy-minimized 

interface structure dataset and a relational database containing the detailed results 

of analysis and energy modeling are made publicly available via a web repository. 

A novel analytical technique based on the proposed theoretical model, Virtual 

Scanning Probe Mapping (VSPM), is implemented in software to analyze the 
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interaction between a target protein of known structure and a peptide of specified 

sequence, producing a spatial map indicating the most likely peptide binding 

regions on the protein target. The resulting predictions are shown to be superior to 

those of two other published methods, and support the validity of the stochastic 

binding model. 
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CHAPTER 1: PEPTIDE LIGAND DISCOVERY AS AN ENGINEERING 

PROBLEM 

A research pursuit of particular importance, and one that has attracted 

much commercial attention, is the effort to devise a reliable platform for 

constructing targeted affinity ligands having properties similar to those of 

naturally occurring antibodies [1-3].  Natural antibody production methods are 

expensive, time consuming, problematic in terms of quality assurance, not always 

successful, invite animal welfare-related controversy, and scale poorly [1-4].  

Antibodies are large and have poor penetrative properties [5], and may themselves 

provoke undesirable physiological reactions [6]. The need for a practicable 

alternative is acute for applications such as proteomics [7], molecular imaging [1, 

8], separation and purification [3, 9-11], and immunochemical assays [1], to say 

nothing of the boundless scope for non-immunoglobin-based ligands in 

diagnostics [12, 13] and therapeutics [8, 14].  In the literature can be found reports 

of more than fifty different scaffolds for constructing synthetic affinity ligands 

[1]; the extensive review by Hey, et al. [2] lists fourteen that have been launched 

as commercial products.  

Peptides represent a class of ligands whose potential, particularly as drug 

candidates and in diagnostics, is only now beginning to be realized [15].  Peptides 

pose difficult issues in terms of delivery, stability and half-life, and bioavailability 

[16], but there are significant advantages to a category of compounds that offer a 

nearly unlimited and generally non-toxic functional repertoire [17] based entirely 
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on relatively easily synthesized combinations of a small number of well-

characterized amino acids.  These properties readily lend themselves to strategies 

for rational design of engineered peptide-based ligands, a field that is deservedly 

receiving increasing effort and attention [17-27]. Nevertheless, as will be 

developed in the chapters that follow, peptides do not lend themselves well to the 

standard design strategies that have been formulated and optimized mainly in the 

context of small organic molecules targeted at known binding sites.  In short: 

peptides are different. 

A major research effort in the Center for Innovations in Medicine in the 

Biodesign Institute at Arizona State University involves an attempt to leverage the 

advantages of peptide ligands and multivalent binding to devise a synthetic 

scaffold having antibody-like affinity and specificity properties. These 

“synbodies” are constructed according to a template and procedure invented by 

the Center’s Director, Dr. Stephen A. Johnston [28]. As currently conceived, 

construction of a synbody entails identifying two or more peptides that have 

intermediate affinity for the intended target, and attaching them to a linker to 

make a multivalent ligand suitable for use in therapeutic or diagnostic 

applications. [29-32].  The component peptides are chosen by screening a library 

(the “CIM-10K library”) currently containing slightly more than 10,000 pre-
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synthesized random 20-mer peptides1. These are screened against targets via 

robotically spotted peptide microarrays or by high-throughput surface plasmon 

resonance (SPR) analysis.  The selected peptides may then be optimized by 

synthesizing and testing variants with single residue substitutions, and 

incorporating and combining the substitutions that best improve affinity and/or 

specificity [33].  The selected peptides are conjugated to a linker, which 

determines their relative orientation and separation, and provides a scaffold that 

can be functionalized to facilitate detection, surface attachment, or delivery of a 

therapeutic payload. The intent is for the component peptides to bind the targeted 

protein simultaneously at distinct sites, providing an antibody-like affinity 

commensurate with the sum of the binding energies of the individual peptides. 

Specificity should also be enhanced due to the improbability of both peptides 

simultaneously having high affinities for targets other than the one against which 

they were selected. 

Herein lies an engineering challenge. Engineering design implies 

calculation; we do not build jetliners by bolting random parts together. Can the 

process of identifying high affinity peptides be made more a matter of engineering 

design based on quantifiable properties, and less a matter of discovery by trial and 

                                                 

1 The three C-terminal residues are always GSC or GSG, depending on the 
application. The other 17 positions are determined computationally by a 
pseudorandom process with residues selected at equal probability from the set of 
20 naturally occurring amino acids excluding cysteine (to avoid disulfide bridges). 
Where present, the C-terminal cysteine is used for attachment to the array surface.  
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error? The goal of the research presented here is to begin assembling the tools and 

theoretical insights needed to evaluate in advance, through computational 

modeling of the physics and geometry of the interaction between a candidate 

peptide and protein target of known structure, the likelihood that a given peptide 

will display the affinity, specificity, conformational geometry, and cooperative 

binding properties needed for the intended application.   

An ideal end point would be an algorithm capable of specifying, by pure 

computation, the composition of peptides and linkers meeting stated 

requirements, leaving nothing for the chemists to do but assemble the indicated 

parts.  Although the job security of the chemists is not yet in jeopardy, theoretical 

and computational approaches can nevertheless make such potentially useful 

contributions as reducing the size of the library that must be screened; suggesting 

ways to optimize library composition; providing improved criteria for ranking the 

peptides identified by screening; and elucidating peptides’ binding position and 

geometry so as to better inform the selection of suitable linkers.   

Under the synbody design process currently in use, the affinity and 

specificity of peptides for the intended target are inferred from microarray or SPR 

assays, subject to considerable experimental uncertainty and at a cost of screening 

a large number of candidate peptides against multiple targets and/or in the 

presence of competitors. Given the large number of possible peptide sequences – 

about 5.5 x 1021 for 20-mer peptides with 17 variable positions and a 19 amino 

acid alphabet – it is impracticable to search or sample more than an infinitesimal 
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fraction of the sequence space. Taking into account the high cost of synthesizing 

and testing candidate binding elements, there is value in any strategy that can 

focus the screening process on the better candidates and avoid peptides whose 

unsuitability can be predicted a priori. 

Cooperativity -- the ability of the selected peptides, once conjugated to the 

linker, to bind the target simultaneously without undue loss of affinity -- is a 

requirement for which no means of evaluation exists in the current process, short 

of actually constructing and testing synbodies corresponding to each possible 

combination of peptides and linker.  The goal of multivalent binding implies a 

need to select peptides capable of binding at distinct loci, and in positions such 

that the spacing and orientation of the bound peptides is compatible with the 

dimensions and geometry of the linker. Pairs of peptides that compete for the 

same binding site, or that prefer to bind in positions or orientations that the linker 

cannot comfortably span, are unlikely to bind cooperatively when linked. 

Therefore, a particular focus of the work described here (see Chapters 4 and 5) 

has been the computational prediction of peptide binding loci on protein targets 

for which a solved structure is available. 

The task of devising predictive models of peptide-protein binding is made 

more challenging by the considerable uncertainty surrounding a number of 

theoretical questions that relate mainly to the high flexibility of peptides in the 

size range of interest, which arises from the many rotatable bonds present.  How 

flexible is a typical 20-mer peptide? To what extent do these peptides assume 
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stable conformations in solution?  Can binding occur only if the peptide is in a 

conformation that “fits” a specific binding site on the target protein, or can the 

peptide bind partially or suboptimally and then adjust its conformation and 

position?  Do peptides typically bind in a single fixed position, or can they move 

around on the binding site?  Is peptide binding best characterized in terms of a 

single binding site on the target protein, or are there multiple sites to any of which 

alternate conformations of the peptide may bind?   

Obviously, the mechanism and kinetics of binding, and therefore the 

affinity and specificity, depend to a considerable extent on the answers to 

questions of this kind.  For example, the entropic penalty on binding may be very 

large if peptides are completely flexible in solution and held rigidly when bound, 

or it may be modest if peptides assume stable conformations in solution and are 

relatively mobile when bound.  And assessing the aggregate contribution to 

binding energy of all of the non-bonded interactions – hydrogen bonds, salt 

bridges, hydrophobic forces, etc. -- occurring between the bound peptide and the 

protein becomes much more challenging if the peptide is dynamically making and 

breaking interactions as it changes position. 

Chapter 2 addresses these and other matters of theoretical background, 

presents model results relating to peptide flexibility and binding kinetics, and 

concludes by proposing a hypothetical mechanism of peptide binding.  In the 

proposed model, peptide binding is characterized not in terms of the usual shape 

and charge-dependent “lock and key” metaphor, but as a rather mobile and 
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dynamic interaction, best thought of in more probabilistic terms, in which the 

peptide may explore distributions of positions and conformations around multiple 

energy minima. 

Chapter 3 summarizes the results of a comprehensive analysis of the 

properties of the peptide-protein interfaces for which structures are available in 

the Protein Data Bank (PDB), from which are derived heuristics relating to the 

characteristics of peptides most relevant to their protein-binding behavior. These 

will be seen to be generally consistent with the proposed theoretical model. The 

results of this analysis have been distilled in a database, made publicly available, 

that includes detailed descriptors of geometry, energetics, and non-bonded 

interactions, for 3,924 peptide-protein interfaces extracted and curated from the 

PDB.   In Chapter 4, a novel computational technique will be presented for 

evaluating and spatially mapping the chemical and/or interactive properties of 

protein surfaces, and applied to the problem of predicting peptide binding loci; in 

Chapter 5, the predictions of this method will be compared with an experimental 

determination (by others) of binding loci of synbody peptides on AKT-1 protein. 

Chapter 6 will draw conclusions regarding the strengths and weaknesses of the 

model developed in Chapters 2 through 5, and suggest improvements. 
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CHAPTER 2: THEORETICAL BACKGROUND AND LITERATURE 

REVIEW 

It appears that no general theory of peptide-protein binding yet exists. An 

abundance of information can be found pertaining to particular classes of 

interactions involving specific protein types and known binding sites [25, 34-48].  

A very large body of literature exists, for example, on prediction of peptide 

binding to MHC complexes [35, 36, 38-40, 44, 46, 48], using a variety of 

approaches, including bioinformatic or statistically based prediction [35, 37], 

QSAR [39], machine learning [47], structural complementarity-based prediction 

[25, 38], molecular dynamics simulation[38], and energy optimization [44].  

Similar techniques have been used to predict binding of peptides to G protein 

receptors [41], calmodulin [42], SHC and PDZ domains [47], and other proteins 

having known peptide binding domains.  These studies are at best tangential to the 

problem addressed here, since the proteins of interest as synbody targets would 

rarely have even one known peptide binding site, much less two. It is therefore 

necessary to attempt to construct a predictive strategy from a point of departure 

closer to first principles. 

The canonical expression for the affinity of a ligand for a target is the 

familiar relation ΔG = RT log (KD), where KD is the dissociation constant, T is 

absolute temperature, R is the gas constant, and ΔG is the change in Gibbs free 

energy [49-51].  Therefore, one way of predicting affinity is to estimate the 

change in Gibbs free energy based on a suitable computational model. Formally, 
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ΔG comprises an enthalpic and an entropic term: ΔG = ΔH – TΔS, where ΔH is 

the change in enthalpy, T is the absolute temperature, and ΔS is the change in 

entropy between the two states for which ΔG is to be determined.  For modeling 

purposes, the Gibbs free energy can be decomposed in terms of the energy 

contributions of the various forces and interactions present [52], and/or as a 

function of selected descriptors whose contributions or weights are determined by 

fitting to a training set [53-55]. At 30°C, an affinity of 10 μM (KD) corresponds to 

ΔG of approximately -7 kcal/mol,  which can be accounted for, at least in theory, 

by a very few hydrogen bonds (each ~2 to 7 kcal/mole), salt bridges (~3 to 5 

kcal/mole), and/or hydrophobic interactions (~0.5 to 3 kcal/mole). 

As a foundation for a predictive model of peptide binding, the relation 

between ΔG and KD presents several challenges.  As will be shown below, a 

peptide-protein interaction arguably cannot be represented accurately by a single 

peptide conformation in a single bound position, but instead requires 

consideration of an ensemble of states representing a distribution of possible 

bound configurations. The possibility of transitions between these states 

introduces the further potential complication of multi-step kinetics.  Moreover, 

there are a great many factors that potentially influence ΔG.  One recent study 

tested more than 60 different descriptors in an effort to discover an optimal set for 

use in a parameterized binding energy model [54].  Many of these factors depend 

very sensitively on the exact atomic-level dimensions and geometry of the 
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interface, which are at best measurable only approximately by standard x-ray 

crystallography and nuclear magnetic resonance (NMR) techniques. 

These and related theoretical challenges are the primary focus of the 

sections to follow.  The first section will discuss experimental results and 

theoretical considerations indicating the extent of conformational flexibility of 

peptides in general and the intermediate-sized random-sequence peptides of the 

kind employed for synbodies in particular, focusing mainly on the unbound state. 

The implications of this flexibility with regard to the mechanism and kinetics of 

peptide binding to proteins are then addressed.  The chapter will conclude with a 

discussion of what these properties imply regarding the construction of a 

predictive model of peptide binding. 

The nature and extent of peptide flexibility 

The discussion to follow will begin with a brief review of the basic 

geometric and physical properties that determine peptide structure, followed by a 

summary of the literature on peptide structure prediction.  Experimental evidence 

will be presented suggesting that, at least with respect to the intermediate-sized 

random peptides here of interest, considerable peptide flexibility must be assumed 

in order to account for the binding observed in library screening experiments.  

Theoretical evidence and molecular dynamics modeling results will then be 

presented confirming that the peptides of interest appear to occupy a distribution 

of conformations in the unbound solvated state.  
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The structural characteristics of peptides generally 

Peptides are polymers consisting of amino acids linked by peptide bonds.  

Each of the 20 naturally occurring amino acid species has a characteristic side 

chain extending from the Cα atom. The overall structural shape assumed by the 

peptide molecule is determined by a linear “backbone” consisting of the C, N and 

Cα atoms and the bonds between them, with side chains extending as branches 

from the Cα atom at each residue position (except glycine, which has no side 

chain, and proline, whose side chain forms a re-entrant ring rather than a branch). 

 

 

Figure 1.  Structural features of a trimer peptide segment. 

 The geometry of the peptide backbone is determined by the three dihedral 

angles φ, ψ, and ω; the interatomic distances between N and Cα and between Cα 
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and C, and the peptide bond length; and the three bond angles.  See Figure 1. The 

interatomic distances and bond angles vary only slightly, and the peptide bond 

between C and N is relatively planar with the carbonyl oxygen trans to Cα in more 

than 99% of cases, so variation in φ and ψ accounts for most of the backbone 

flexibility of peptide structures [56]. The φ and ψ torsions are not constrained by 

the electronic structure of the bonds, but, as will be seen, rotations about the N - 

Cα (φ) and Cα - C (ψ) bonds are significantly limited by steric constraints and by 

the tendency to prefer orientations that occupy rotational energy minima. Proline 

residues impose a relatively rigid backbone bend, since the cyclic side chain 

constrains rotation about the N - Cα bond. 

The degree of conformational diversity available to side chains depends on 

the residue type. Again, bond lengths and bond angles may be regarded as 

essentially fixed. Some residues (glycine, proline, and, neglecting hydrogen 

positions, alanine) have no rotatable bonds (although the proline ring can adopt 

either of two main conformations), and others (lysine and arginine) have as many 

as five (again neglecting rotations affecting only hydrogen positions).  Rotamer 

statistics determined by molecular dynamics simulation and/or compiled from 

known protein structures indicate that a limited set of preferred side chain 

conformations predominates [57, 58]. 

A further potential determinant of polypeptide structure, highly significant 

in folded proteins, is the tendency for non-bonded interactions such as hydrogen 

bonds to occur between disparate parts of the chain, tending to stabilize folded 
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conformations that foster formation of such contacts. Polypeptide chains also tend 

to favor conformations that hide hydrophobic moieties from the solvent (here 

assumed aqueous). A crucial issue in peptide modeling is the extent to which the 

conformation of a given peptide is likely to be influenced by these factors.  It is 

well established (and obvious from the geometry) that the contact density 

(number of intra-chain contacts per residue), and therefore the opportunity for 

intra-chain non-bonded interactions, increases quite rapidly with chain size for 

chain lengths up to approximately 100 [59].  The conformational entropy, 

meanwhile, increases approximately linearly with the number of rotatable bonds.  

Therefore, as chain lengths become shorter, it becomes much less likely that 

folded conformations can be found in which the improvement in ΔH from intra-

chain interactions can overcome the entropic penalty due to the restriction of 

rotational degrees of freedom.  For peptides whose sequences do not lend 

themselves to sufficient high-enthalpy contacts, as for intrinsically unstructured 

proteins, the TΔS component of free energy is likely to assume relatively greater 

importance than is the case for folded proteins, in which case the structure 

corresponding to the global thermal energy minimum does not necessarily 

represent even the predominant conformation, much less the only one [60].  

 Because peptide backbone bond angles and bond lengths are essentially 

fixed, the distance between the Cα atoms of adjacent residues is an approximately 

constant ~3.8Ǻ. A fully extended 20 residue chain is therefore approximately 7.2 

nm in length, as measured between the terminal Cα atoms.  The average end-to-
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end length of a polymer chain in solution depends upon the temperature and 

solvent conditions ([51] at 621-26; [61]). In “good solvent” conditions, 

interactions between monomers and the solvent are more favorable on average 

than interactions between monomers, and an expanded conformation results. In a 

“poor solvent”, monomers prefer to interact with each other, and the chain tends 

to collapse. The state in which these tendencies are in balance is referred to as the 

“theta” state; in this state, conformational entropy is maximized and the polymer 

chain is in a “random flight” configuration in which the average end-to-end length 

is the length of individual subunits (here 3.8Ǻ) times N1/2, the square root of the 

number of subunits [51, 62].  For given solvent conditions, there is a temperature 

θ corresponding to the theta state, above which the polymer chain tends to extend, 

and below which it tends to compact. The sharpness of the compact-to-extended 

transition, in terms of the temperature range over which it occurs, depends mainly 

on chain flexibility [63] and chain length. For long chains (i.e. proteins), the 

transition may be very sharp, occurring over less than 1°C; no data was found 

specifically for intermediate length peptides, but the theoretical transition for 

polymers of similar molecular weight is much broader (at least tens of degrees) 

[64].   

The outcome of the trade-off between entropy loss and enthalpy gain is 

obviously not determined by chain length and temperature alone, and theoretical 

polymer behavior provides at most an indication of general tendencies.  The 

forces that determine whether a given polypeptide chain folds into a stable 
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structure are complex, and depend sensitively on the composition and geometry of 

the particular sequence.  Even some quite short peptides clearly do fold into stable 

structures [65-67], and others appear at least to display strong secondary structure 

tendencies [68].  The conformations observed in x-ray structures of peptide-

protein interfaces are often taken as further evidence that intermediate length 

peptides adopt stable structures, at least upon binding to a protein [69].  It will be 

shown in Chapter 3 that the x-ray data actually evidences greater conformational 

diversity than usually supposed, a conclusion also supported by molecular 

dynamics modeling of peptide-MHC-I complexes [38].  (Conclusions drawn from 

x-ray structure data are also arguably flawed by selection bias since only ordered 

structures are typically solvable.)  On the other hand, a rather large fraction of 

known protein sequence space involves segments that are intrinsically 

unstructured [70-72]; by some estimates, about 50 percent of mammalian proteins 

have disordered regions at least 30 residues in length [73].  So it is by no means a 

foregone conclusion that intermediate-length peptides would or would not 

necessarily fold, although it is now generally recognized that “in contrast to 

proteins, short peptides do not systematically adopt stable well-defined tertiary 

structures” [74].  It also seems reasonable to hypothesize that intermediate-length 

peptides whose sequences are of biological origin, such as those derived from 

subsequences of known proteins, may be more likely to fold into stable structures 

than the random sequence peptides of interest here, since the latter have not 

evolved under selection for functions that depend on structure. 
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For purposes of designing peptide ligands suitable for incorporation into 

synbodies, arguably the objective should be to select peptides that occupy the 

middle ground between folded and unstructured. These would present a 

reasonable degree of conformational diversity in solution so as to increase the 

probability of a productive encounter with the target, while minimizing the 

entropic penalty on binding as much as possible. These considerations will be 

developed in greater detail in the section on binding kinetics below.  

Computational prediction of peptide structure 

Much progress has been made in computational protein structure 

prediction, as described in recent reviews [75, 76]; the most important prediction 

strategies are ably summarized by Nicosia, et al. [77]. The pace of advance is 

evident from the results of the biennial Critical Assessment of Protein Structure 

Prediction (CASP) competitions [78], in which research groups submit 

predictions after being given the sequences of proteins whose structures have 

been solved but not yet published. The current version of the perennial CASP 

winner, Rosetta, created by the David Baker group at University of Washington, 

routinely predicts backbone structure to within 5Ǻ root mean square deviation 

(RMSD) for protein domains up to 125 residues in length [79]. Another approach, 

comparative modeling, which makes predictions on the basis of the known 

structures of homologous sequences, can achieve accuracies as high as 1-2Ǻ 

RMSD in cases where highly homologous structures are available [75]. 
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If the “thermodynamic hypothesis” -- that the native folded state of a 

protein is the lowest potential energy state [77] -- is accepted, then protein folding 

is, in concept, a simple problem, given an accurate energy function and infinite 

computing power: simply search through all possible conformations for the global 

energy minimum.  Unfortunately, energy functions are not perfectly accurate, and 

improvements in accuracy (e.g. explicit solvent models) come at a cost that may 

easily amount to several orders of magnitude of increase in computation time 

required.  And even if an energy function existed that could compute accurate 

energies instantaneously, the conformation space of a typical protein is far too 

large to be exhaustively searched. Therefore, success in protein folding requires 

finding strategies for confining the search to smaller regions of conformation 

space, and/or directing the search along trajectories most likely to lead to or near a 

global energy minimum. A few purists attack the problem with entirely physics-

based algorithms; here success depends on improved understanding of folding 

mechanisms, so as to guide the search along a folding trajectory hopefully 

corresponding closely to that followed by the actual protein as it folds [80-82].  

Most of the more successful protein structure prediction algorithms, including 

Rosetta, instead seek to confine the search by focusing first on fragments of 

manageable size [83-88], whose structural preferences can be sampled from 

known structures and/or estimated by molecular dynamics simulation [89, 90] or 

Monte Carlo search methods [60], perhaps using simplified energy functions that 

substitute aggregate descriptors for some of the atomic-level detail [91, 92].  
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Computational estimation of the secondary structure tendencies of fragments, for 

which a variety of techniques have been suggested [93, 94], and homology 

modeling, in which the structures of homologous sequences are used as a source 

of guidance [75, 95, 96], may provide additional inputs useful for directing the 

search to the highest likelihood regions of conformation space [90, 97].   

Although computational strategies for predicting peptide structure from 

sequence have tended to borrow heavily from these standard protein structure 

prediction concepts, peptides differ from proteins in ways that present both 

opportunities and challenges. One obvious opportunity is that because peptides 

have very many fewer rotational degrees of freedom than full-length proteins, 

computationally intensive methods such as molecular dynamics modeling [98-

101], Monte Carlo search [69, 102, 103], tabu search [104], and simulated 

annealing [105], become somewhat more practicable.  The principal challenge, 

one that makes solutions obtained from the standard protein folding algorithms 

suspect, is the likelihood that a peptide may occupy a distribution of 

conformations in which intra-chain interactions are transient and relatively 

unimportant, rather than a single folded shape held in place mainly by stable non-

bonded contacts. 

A variety of algorithms for predicting peptide structures and/or ensembles 

of preferred conformations have been tried, with varying degrees of success (e.g. 

[74, 77, 105-113]).  Until relatively recently, methods were often used that, as 

with protein folding, implicitly or explicitly conceptualized the problem in terms 
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of a single structure corresponding to a single global energy minimum [85, 114-

117].  For example, high on any list of tools for polypeptide structural analysis is 

Robetta, a publicly available web server implementation of the very successful 

and well-tested Rosetta algorithm, which, though designed for protein folding, 

will accept a peptide sequence as input and produce a selection of candidate 

folded structures [85, 103, 114, 115].  As already noted, however, methods that 

treat peptides as “little proteins” are likely to produce misleading results when 

applied to sequences that remain wholly or partially disordered in solution, 

although they may be useful for analyzing peptides that adopt stable folded 

structures. In actual comparisons with peptide NMR structures, Robetta tended to 

produce overly compacted conformations bearing little resemblance to the NMR 

models (see [69], Fig. 2).   

The current state of the art of peptide structure prediction appears to be 

defined by three software tools specifically designed for the task -- PepStr [116, 

117], PepLook [69, 118], and PepFold [69, 118] – and by a handful of other 

computational approaches, typically leveraging one or more existing molecular 

analysis packages in a one-off analysis. 

The oldest of the server-based tools, PepStr [116, 117], is aimed primarily 

at predicting the tertiary structures of bioactive peptides, whose activity often 

seems to imply a single predominant structure.  Pepstr generates a starting 

backbone conformation by predicting secondary structure and β-turn 

characteristics, assigns side-chain angles from a rotamer library, and uses 
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molecular dynamics / energy minimization to arrive at a single predicted 

structure. 

PepLook  is a commercial peptide structure prediction tool that identifies a 

“prime” structure and computes an index of its structural stability by generating 

and comparing approximately 100 other low energy structures [69, 118]. At each 

iteration, it generates a large number of structures using φ/ψ pairs randomly 

chosen from a list of 64 preferred combinations.  After energy evaluation, the 

selection of φ/ψ pairs for the next iteration is optimized by reweighting the 

probability of selection for each pair according to the relative proportion of lowest 

energy structures in which it appeared. After 100 to 500 iterations, the best 99 

models are selected, energy minimized, and reported.  The PepLook software is 

not available to end users; instead, the sequence and conditions of interest must be 

submitted to the company (Biosiris), and a quotation requested.  Although the 

computational strategy appears reasonable, no reported analyses using PepLook 

were found other than in the two papers by its authors.  In these, results are 

described for only five peptides, and RMSD comparisons with NMR structures 

are given for only three of those, claiming RMSD of 1.3Ǻ, 2.5Ǻ, and 0.8Ǻ for 

three peptides of length 23, 27, and 20 residues respectively. These results are 

difficult to interpret since it is unclear which of the 99 output models were 

compared with which of the (typically many) models present in the NMR 

structures.  
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The most recent entrant, PepFold [74, 113], begins by extending a concept 

that has found wide usage in protein structure prediction: the structural alphabet 

[119-123].  An example of a very simple structural alphabet is the three-letter 

encoding in which each residue of a sequence is assigned one of the letters ‘a’, 

‘b’, or ‘l’ (corresponding to α-helical, β-strand, or left-handed helical, 

respectively) based on its φ and ψ angles [68, 124].  The sequence obtained by 

assigning one of these structural alphabet letters to each residue provides a rough 

descriptor of structure.  In an analogous fashion, it is possible to construct a larger 

alphabet in which the assignment of letters is based on the geometry of several 

adjacent residues taken as a unit.  PepFold uses a 27-letter alphabet to describe the 

geometry of overlapping 4-residue segments in terms of the six φ and ψ angles 

internal to the segment; in effect, the letters partition the six-dimensional space 

{ψ1, φ2, ψ2, φ3, ψ3, φ4} into 27 partitions, each of which is assigned a letter.  

Determining the optimally informative partition boundaries is obviously a 

significant challenge; the PepFold authors say only that their structural alphabet 

was derived from a hidden Markov model. 

PepFold analyzes a peptide using a classifier trained on a large training set 

derived from PDB structures of proteins.  The classifier takes as input an 8-

residue amino acid sequence (the 4-residue sequence to be assigned a structural 

alphabet letter plus the two flanking residues on either side), and outputs the 

probabilities that the 4-residue sequence would match the structural criteria of 

each of the 27 possible structural alphabet letters. PepFold retains the most 
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probable letters for each overlapping 4-mer in the sequence whose structure is to 

be predicted, and, starting at a random position in the sequence, iteratively adds 

letters in both directions until arriving at the most probable structural alphabet 

sequences. From these, conformations are generated and the most energetically 

favorable are identified via Monte Carlo search using a standard force field for 

energy evaluation.  PepFold’s output is a set of one or more clusters of 

conformations. 

 PepFold appears to be the best of the current freely available analysis 

tools. For each of the peptides in the PepStr test set [117] of 42 bioactive peptides 

-- intermediate-size peptides (length 9 to 20 residues) whose structural tendencies 

are reasonably well represented by folded protein structures -- the PepFold 

solution corresponding to the most populated output cluster of conformations is 

close to the reference NMR model (average 2.8Ǻ Cα RMSD) [113].  By way of 

comparison, PepStr achieved an average 4.0Ǻ Cα RMSD on the same test set [77].  

It may be doubted, however, whether PepFold’s predictions would provide 

an accurate depiction of the conformational ensembles inhabited by the random 

sequence peptides of interest here.  PepFold was trained on folded protein 

structures, and tested against NMR structures using two test sets. The first 

contained 10 short peptides (length 10 to 23) and 13 “mini-proteins” (length 27 to 

49); the second was the PepStr test set already described.  Both test sets represent 

biologically relevant molecules having sufficient structure to possess at least a 

relatively invariant rigid core.  
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Several research groups have published peptide structure prediction results 

obtained by chaining together pre-existing software tools to perform some or most 

of the analysis steps. Klepeis, et al. [125], pioneered the approach of performing a 

global optimization search on a search space defined by a standard energy 

function.  Applying a branch-and-bound search algorithm to search for a global 

energy minimum on an objective function adapted from the widely cited function 

Empirical Conformation Energy Program for Peptides (ECEPP) [126], they were 

able to obtain solution conformations in excellent agreement with experimental 

results for two 5-mer peptides (Cα RMSD < 1.5Ǻ) and one alpha-helical 10-mer 

peptide, decaglycine (Cα RMSD of 0.136Ǻ). All of the peptides studied are 

believed to be highly structured in solution, and only the (assumed) single native 

conformation was sought or reported. 

The recent analysis by Nicosia, et al. [77] appears to represent the high 

water mark of the global energy optimization approach. Using a “generalized 

pattern search” algorithm (a complex procedure for discretizing the search domain 

and combining coarse grained global search with finer grained local search, 

explained in detail in [127]) Nicosia, et al. achieved ~20% improvement in 

predictive performance over the PepStr algorithm on the PepStr dataset.  The 

approach is noteworthy for its ability to proceed without the benefit of any 

statistical or bioinformatic inputs (although secondary structure, β-turn, and other 

similar constraints can be incorporated where available).  The algorithm is used to 

search for (in this case) energy minima in a space defined by ECEPP v. 3 [126], 
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which computes potential energy by summing electrostatic, Lennard-Jones, 

hydrogen bond, and torsion energy terms (here the ECEPP function is 

supplemented by adding a hydration energy term).  The search procedure 

generates many trial conformations as it iterates, and these can be clustered and 

analyzed. Although Nicosia, et al., focused on determining a single preferred 

conformation for each peptide, they note the possibility of “return[ing] the 

representative conformation of each cluster rather than just the conformation with 

the lowest potential energy value.” [77] 

Molecular dynamics provides another possible direction from which to 

approach the prediction problem. Ideally, one could begin with an extended 

conformation and allow the peptide to follow its natural trajectory, which should 

reach a steady state corresponding to the native folded conformation if one exists 

[68, 128]. If the peptide remains disordered, conformations can be sampled over 

the course of a suitably long trajectory and clustered.  The molecular dynamics 

approach will be discussed in greater detail in the next section, and clustering data 

obtained from molecular dynamics experiments on a synbody peptide will be 

presented. 

Taken together, the reported peptide structure prediction efforts of various 

groups just described arguably provide inferential support for the hypothesis that 

intermediate-length peptides in aqueous solution are likely to exist in a range of 

conformations rather than in a single folded state. In the literature can be seen a 

kind of paradigmatic evolution, beginning with an often explicit assumption of a 
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single native structure in earlier publications, and leading to an acknowledgement 

in the most recent papers that many peptides are likely disordered.  The two 

approaches (PepLook and PepFold) claiming the best predictive results both find 

it necessary to output multiple solution conformations, and single-solution 

approaches appear to make significantly poorer predictions, at least in the 

relatively few cases for which such comparisons have been found [69, 113]. This 

is so even though predictive accuracy is typically determined in comparison to 

NMR models, nearly all of which involve molecules that show considerable 

structure.  At least in the case of PepFold, the typical computed solution 

conformations are essentially indistinguishable in terms of predicted energies if 

error ranges are taken into account (differences on the order of 0.5 kcal/mol or 

less).  For their part, the PepLook authors affirmatively acknowledge that “in 

many cases . . . structures obtained by NMR and from in silico calculations were 

eventually divergent,” and explain this by noting that “divergent data may be 

confusing if one is willing to believe that a peptide structure must be unique . . . 

but no longer confusing if we accept structural diversity or, in other words peptide 

polymorphism or disorder.” ([69] at p. 895). 

Peptide conformational freedom in the unbound state 

The φ and ψ backbone dihedral angles of a polypeptide chain refer to 

single bonds between the tetrahedral sp3-hybridized Cα atom and the planar sp2-

hybridized N or C atom, respectively [129].  Although the bonds themselves are 

fully free to rotate, two factors significantly restrict that freedom.  First, many 
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otherwise possible rotations are disallowed because they would cause steric 

collisions.  According to one source, “three quarters of the possible (φ, ψ) 

combinations are excluded simply by local steric clashes.” [130] Second, because 

of repulsive forces between “1-4 pairs” of atoms – pairings between the atoms 

attached to two opposing sigma-bonded atoms – the rotational energy is higher in 

rotations that force these atoms closer together, so rotations that tend to place 1-4 

pairs in trans are energetically favored, although the energy barriers are less than 

those seen between the trans / gauche+ / gauche- energy minima seen for rotations 

about bonds between two sp3-hybridized atoms [129].  These steric restrictions 

and rotational energy barriers partially account for the limited range of preferred 

dihedral angles seen in the familiar Ramachandran plots of φ and ψ frequencies in 

proteins (also influenced by the effects of non-bonded interactions, particularly 

hydrogen bonds, on folding preferences).  

Approximate bounds can be placed on the extent of backbone diversity by 

estimating the number of meaningfully distinct rotation positions possible at each 

φ and ψ dihedral.  Structural alphabets, described in the preceding section, 

provide a starting point.  A rough lower bound on the number of distinct 

conformations corresponding to locally permissible φ and ψ rotations might be 

taken as the number of possible distinct combinations of the three-letter a-b-l 

alphabet, in which each internal residue is assigned to the right-handed helical (a), 

beta strand (b), or left-handed helical (l) partition of Ramachandran space [68].  In 

that case, for a 20-mer peptide not containing proline, the number of possible 
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distinct backbone conformations would be 318, or 3.87 × 108.  More sophisticated 

analyses reach a finer partitioning on a conformation space of larger (typically 4- 

to 6-mer) fragments so as to optimize the representation of the conformational 

attractors obtained from statistical sampling from known protein structures.  The 

recent study by Pandini, et al. [124] is typical of this approach; a 25-letter 

structural alphabet was found to optimally capture the conformational tendencies 

of 4-residue fragments.  On that basis, a 20-mer peptide might be approximately 

represented by six 4-residue fragments, and the number of distinct conformations 

would be 256, or 2.4 × 108.  For an upper bound, one might assume that each of 

the φ and ψ dihedrals could take one of three possible positions, corresponding to 

assumed rotational energy minima at which the atoms attached to the C or N atom 

are at greatest distance from the atoms attached to the Cα atom; then the number 

of possible conformations for a 20-mer would be 338, or ~1.3 × 1018.  

The foregoing estimates suffer from several obvious inaccuracies. Since 

the structural alphabet categories are derived by sampling from protein structures, 

they implicitly incorporate folding-related structural constraints not necessarily 

present in short peptides. More importantly, it is likely that estimates of this kind 

very greatly overestimate conformational diversity because they do not take non-

local steric collisions into account.  It is difficult to quantify the latter effect, but 

some insight emerges from experience obtained writing and applying software for 

generating random peptide structures.  For the molecular dynamics experiments 

described in the next section, it appeared desirable to start each trajectory with a 
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random conformation so as to eliminate a possible source of bias in sampling. 

Suitable random conformations cannot be generated merely by randomizing all 

dihedral rotations, because doing so would create knots and other impossible 

topologies that molecular dynamics might not relieve since doing so would 

require crossing bonds.  Software was therefore written to take a peptide structure 

as input, randomize all dihedral rotations, and, proceeding outward from a 

randomly chosen starting point in the chain, iteratively perform dihedral rotations 

with backtracking until arriving at a conformation with no steric collisions.  

Steric collisions were counted by identifying all non-bonded atom pairs 

where the distance between atoms was less than or equal to the sum of the van der 

Waals radii of each.  A somewhat surprising observation was that it was necessary 

to reduce all of the van der Waals radii from the values typically assumed (by 

0.22Ǻ, to 0.98Ǻ, 1.48Ǻ, 1.33Ǻ, 1.3Ǻ, and 1.63Ǻ for H, C, N, O, and S, 

respectively) for the collision removal algorithm to converge at all. Even with this 

relaxation of the collision criteria, the likelihood of a collision-free conformation 

resulting from the initial randomly chosen dihedral rotations is vanishingly small.  

Figure 2 shows a histogram of collision counts (number of pairs of atoms in 

collision) for the initial randomized conformations of a 20-mer peptide.  Out of 

one million random conformations generated, none was completely free of steric 

collisions, and from the position and shape of the distribution of collision counts, 

it appears that the probability of obtaining a valid, collision-free conformation of 
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a 20-mer peptide by assigning random rotations to all rotatable bonds is many 

orders of magnitude less than 10-6. 

 

Figure 2.  Histogram of atom-pair collision counts for 106 random conformations 
of a 20-mer peptide. 

Peptide conformational flexibility as observed in molecular dynamics 

experiments. 

To obtain a better understanding of the conformational diversity of CIM-

10K library peptides, molecular dynamics simulations were performed on a 20-

mer peptide selected via SPR experiments for high affinity to TNF-α (peptide 

TNF1, sequence FERDPLMMPWSFLQSRQGSC), and on an affinity-optimized 

variant of the same peptide with four substituted residues (peptide TNF1-opt, 

sequence FERSYLKMPWKFLQSRQGSC, substituted residues shown in bold). 

(The SPR screening was performed by Dr. Paul Belcher and Dr. Chris Diehnelt, 

and the affinity optimization was performed by Dr. Matthew P. Greving).  These 

simulations provide further evidence in support of the conclusion that the random 
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peptides here of interest are of intermediate conformational flexibility in the 

unbound state, each tending to spend much of their time in or near a handful of 

favored regions of conformation space, but also adopting many other shapes as 

they transition between attractors. 

For each sequence, 100 molecular dynamics trajectories, each 10 ns in 

length, were generated using AMBER v.9 [131]. Each trajectory was begun from 

a conformation generated by assigning random values to all rotatable bonds, then 

iteratively rotating randomly chosen bonds to eliminate any steric collisions, then 

minimizing. Trajectories were run using a 2 fs time step, with AmberParm96 

force field parameters, bonds to hydrogens constrained with SHAKE [132], and 

using the GB/SA implicit solvent model, with parameter settings SALTCON = 

0.15, SURFTEN = 0.003, and EXTDIEL = 75 to simulate the salt, surfactant, and 

organic content of the SPR running buffer used for affinity measurements. 

Temperature for all runs was maintained at 300ºK via the Andersen thermostat 

[133] applied at 4 ps intervals. Conformations were sampled at 200 ps intervals 

after discarding the first 5 ns of each trajectory, yielding a total of 2600 samples 

for each sequence. A 2600 × 2600 pairwise distance matrix was computed 

reflecting average RMS distances following structural alignment of the backbone 

atoms of residues 4 through 11, as computed for each pair of conformations using 

Pymol's [134] “fit” function. Clustering was performed by iteratively identifying 

the largest subset of samples having RMS distances within a 1 Å threshold, and 

removing the cluster so identified from the distance matrix.  
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Figure 3 shows representative backbone conformations of the optimized 

region (residues 4 through 11) for each of the ten most highly populated 

conformation clusters for the TNF1 and TNF1-opt peptides, together with 

histograms showing the fraction of the 2,600 samples belonging to each cluster. 

(Conformations are shown with the N-terminal end at top, in descending order left 

to right by cluster size. The graphical representations of Figure 3 were produced 

using Pymol [134].)  

 

Figure 3. Molecular dynamics (MD) conformational analysis of the TNF1 (top) 
and TNF1-opt (bottom) peptides.   

The 8 residue region of TNF1 from residue 4 through residue 11 is of 

particular interest because it is the region in which residue substitutions were 

found to improve the affinity of the peptide for TNF-α. In a total of 39.6 percent 

of the samples taken of TNF1, the residue 4-11 region adopts a conformation 

corresponding to one of the ten most populated clusters shown in Figure 3, with 

15 percent of the samples conforming to the predominant cluster. Note that this 
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tendency for the residue 4-11 region to favor certain conformations does not 

extend to the remainder of the molecule. Figure 4 shows the predominant cluster 

for TNF1; the aligned region can be seen in the center portion of the image, and 

forms a relatively tight cluster, while the distal regions show wide conformational 

diversity. The affinity-optimized variant, TNF1-opt, displays considerably greater 

conformational diversity than TNF1, with the predominant cluster accounting for 

only 2.8 percent of the samples, and the ten largest clusters comprising only 19 

percent of the samples.  It is noteworthy that the mutations that best improved 

affinity appear also to have greatly increased conformational diversity; the 

implications of this observation as they relate to binding kinetics will be 

addressed in a later section.       

 

Figure 4. Predominant conformational cluster for TNF1, with backbone structure 
alignment on residues 4 through 11 and showing disordered ends. 

 Others have observed that “among secondary structure elements, β-turns 

are ubiquitous and major feature of bioactive peptides” [117], and that these may 
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be important as recognition motifs [135].  The tendency to form β-turns, clearly 

seen in the conformations shown in Figure 3 and Figure 4, is typical of the 

behavior seen in shorter (typically 10 ns) molecular dynamics simulations 

performed on a number of other 20-mer sequences from the CIM-10K library. In 

repeated simulations, when a trajectory is begun from a relatively extended 

conformation, the peptide is typically seen to fold over on itself within about 5 ns 

or less, and transient hydrogen bonds form between the residues comprising the 

adjacent legs of the resulting hairpin.  In these trajectories, the position of the β-

turn is not fixed, but shifts along the middle region of the peptide as the legs of 

the hairpin adjust relative to each other, rapidly making and breaking hydrogen 

bonds as they do so. The first and last few residues of the chain typically extend 

outward from the hairpin structure and participate only transiently if at all in these 

interactions.  Over the course of a 10 ns trajectory, no peptides have been 

observed to adopt a stationary conformation, and over longer trajectories, they are 

sometimes seen to return briefly to an extended conformation before again 

forming a β-turn.   

Since protein folding occurs on a much longer time scale than 10 ns, these 

qualitative observations should not be over-interpreted, but the observed behavior 

is consistent with the hypothesis that polypeptides at physiologic temperatures in 

aqueous solvent should find it energetically favorable to adopt more compact 

conformations so as to minimize the exposure of hydrophobic moieties to the 

solvent. Since hydrophobic interactions, unlike hydrogen bonds, are not 
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particularly fastidious in terms of alignment and identity of the interacting 

moieties, it is not surprising that the resulting structures tend to explore a wide 

range of positions. These observations will be addressed further in connection 

with the discussion of binding kinetics.   

Peptide polyspecificity in library screening experiments. 

If protein “shape space” is defined as the set of all possible distinctly 

recognizable combinations of shape, charge, and other relevant characteristics that 

binding regions on proteins can assume, most estimates of the size of that space 

would place it at ~108 or more distinct shapes [136].  (For economy of expression, 

“shape” will be used to refer to the totality of topological, physical, and chemical 

characteristics that determine the capability of a region of a biomolecule to 

participate in a specific binding interface with another biomolecule.)  It has been 

estimated that immune recognition requires repertoire sizes of on the order of 107 

to 108 for ~μM affinities, and up to 1010 for ~nM affinities [137].  Obviously, if 

each peptide were able to recognize only one “shape”, there would be little 

likelihood of finding even one peptide capable of recognizing a given protein 

target from among a library of only 10,000 peptides. 

In fact, in microarray experiments, most of the random 20-mer peptides in 

the CIM-10K library are significantly polyspecific, as is evident from a statistical 

analysis of the peptide microarray experiments performed (by others) in the 

Center for Innovations in Medicine over a several year period.  In 1,322 separate 

microarray experiments involving a large number of distinct analytes ranging 
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from peptides to proteins of various sizes and antibodies, with detection either by 

direct fluorescent labelling of the target or by fluorescent-labelled antibody 

specific for the target of interest, for each of the ~10,000 array peptides there were 

an average of 8 ± 3 targets for which fluorescent intensity was detected at five 

standard deviations or more above mean. In other words, each peptide showed 

considerably above background affinity for (on average) 0.6% ± 0.2% of the 

1,322 analytes applied.  For an alternative perspective, for the same dataset of 

1,322 array experiments, the average number of peptides that showed high 

binding (fluorescent intensity ≥ 5σ above mean) to the applied target in a single 

experiment was 57 ± 24 (0.6% ± 0.2%).   

It would overreach the data to suggest that the foregoing array experiment 

statistics are directly comparable to the antibody repertoire-based estimates of the 

size of shape space described above.  A number of uncertainties may be cited. 

Target label intensities in array experiments give at best a rough estimate of 

affinities. Affinities corresponding to very high fluorescence intensities are 

typically in the low 10’s of micromoles at best. Two array peptides that show 

affinity for a target may be binding different epitopes on the target. Target binding 

on microarrays may involve densely spotted peptides whose behavior arises from 

complex surfaces and/or avidity effects due to interactions of multiple copies of 

the peptide with each other or with the target.  Some of the array experiments 

involved polyclonal sera, with detection by anti-IgG secondary antibody, and in 

those experiments the applied analyte is obviously not homogeneous (although it 
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is believed that the antibodies specific for the antigen vaccinated against 

substantially account for the observed response).  

As a rough estimate, if it is assumed that there are 107 distinct shapes 

recognizable by antibodies of moderate affinity, and the probability that an 

average random 20-mer peptide will recognize a given shape is on the order of 

0.6%, then on average each peptide should be capable of recognizing 6 × 104 

distinct shapes.  The actual number is likely considerably smaller than that, due in 

part to the measurement uncertainties already described, and in part to the lower 

average affinity of peptides as compared to antibodies (since binding at high 

affinity should, on average, require more accurate shape complementarity, hence 

a larger shape space).  Nevertheless, even taking all these reservations into 

account, if microarray experimental data bears any reasonable relationship to 

peptide affinities (and it seems to), it seems clear that each peptide is capable of 

binding at significant affinities to very many more than one target shape.  

  If it is assumed that array binding reflects, at least in significant part, 

interactions each involving a single peptide molecule and a single target molecule, 

then two possible general explanations for the apparent polyspecificity suggest 

themselves.  The first is that the peptide might display multiple “epitopes”; even if 

the peptide assumes a single, relatively rigid structure, different parts of its 

exposed surface might be able to interact with different target shapes. For 

example, each three-residue subsequence of the peptide might be thought of as a 

separate entity capable of binding to an appropriate complementary shape.  It is 
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unlikely that rigid contacts of this kind would be sufficient by themselves to 

explain the observed polyspecificity, since, as will become apparent from the 

analysis of actual peptide-protein interfaces in Chapter 3, the energy of a single 

small contact would typically not be sufficient by itself to explain affinities of the 

magnitudes observed, and larger contacts would imply fewer distinct shapes. The 

other possible explanation is that each peptide is capable of adopting multiple 

conformations, so that it can accommodate a distribution of complementary 

shapes.  These effects are not mutually exclusive, and it seems likely that the 

observed apparent ability of each peptide to recognize multiple target shapes is 

due to both conformational diversity and differences in which region(s) of the 

peptide surface are in contact with a particular target. 

Peptide structural diversity and the mechanism and kinetics of 

binding  

The overall goal of the modeling described here is to inform the 

engineering design of peptide ligands.  The mechanism and kinetics of peptide-

protein binding are of interest because of their potential to inform the choice of 

structural and conformational characteristics that may best contribute to the 

desired binding behavior. It will be seen that affinities determined from single, 

presumed steady-state binding measurements are likely to be misleading if the 

actual binding mechanism deviates substantially from simple 1:1 Langmuir 

binding.  The discussion to follow will begin with a brief review of the general 

theoretical principles underlying ligand-receptor binding kinetics. It will then 
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draw from the literature on the kinetics of analogous interactions in search of the 

elements of a suitable model. After examining data obtained in surface plasmon 

resonance experiments (by others) on a CIM-10K library peptide, this section will 

conclude by suggesting the outlines of a hypothetical binding mechanism and 

discussing its implications as they relate to the selection of peptides for use as 

binding elements in synbodies.  

The kinetics of ligand-receptor binding 

In simplest terms, binding of a ligand L to a receptor R may be described 

by the equilibrium expression: 
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The affinity of the ligand for the receptor may be expressed in terms of the 

dissociation constant, KD (or alternatively by KA, the reciprocal of KD) [53, 138]: 
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KD is expressed as a concentration, kON is the rate constant for the forward 

(association) reaction in (here expressed in units of M-1sec-1), and kOFF is the rate 

constant for the reverse reaction (dissociation) in sec-1.  KD is nominally equal to 

ED50, the ligand concentration at which the occupancy θ = 0.5, meaning that 50% 

of the available receptor binding sites are occupied.  (If [L] = KD, it follows from 

the foregoing expression that [R] = [RL] – that is, the concentration of unbound 

receptor equals the concentration of bound receptor.)  This is, of course, true only 

at equilibrium, and others have noted that true KD may often be much less than 
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experimentally measured ED50 for slow KON interactions where measurement is 

made before the system has reached equilibrium [49].  

 As already noted, the affinity is related to the Gibbs free energy of binding 

ΔG by the relation [49-51]: 

)ln()ln( AD KRTKRTG   

where R is the gas constant and T is the absolute temperature. It is important to 

keep in mind that the affinity, or equivalently ΔG, does not determine how rapidly 

equilibrium is reached.  KD is a ratio of the reverse and forward rate constants 

kOFF and kON.  For example, KD = 1 μM is consistent with kON = 106 M-1sec-1 and 

kOFF = 1 sec-1 (fast on, fast off), or kON = 102 M-1sec-1 and kOFF = 10-4 sec-1 (slow 

on, slow off), or any other values that give the same ratio.  Thus, from the 

standpoint of peptide design, affinity is not the only relevant variable; another is 

the speed at which the association reaches equilibrium, which is determined by 

the magnitudes of kON and kOFF. In particular, the time required to reach 

equilibrium may provide useful insight regarding the nature of the binding 

mechanism. It is also noteworthy that the speed of association and dissociation is 

a potentially engineerable quantity in itself, given an adequate understanding of 

how peptide and/or target properties affect the magnitudes of kON and kOFF, and, 

in the context of therapeutic applications, may have important implications for 

optimizing absorption, distribution, metabolism, and excretion (ADME) 

properties (e.g. [139]).  The association/dissociation speed may also relate to 

specificity; since a relatively non-specific peptide can complex with a larger 
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diversity of target loci, a relatively high association rate would be expected. 

Conversely, a highly specific interaction implies a very slow on rate because there 

are few ways in which it can occur. 

The rate constant kON specifies the rate at which new associations are 

formed.  The rate of association may be approximated by a relation in the general 

form of the Arrhenius equation: 

RTE
ON

aAek /  

where the “prefactor” A provides a measure of the collision frequency and the 

exponential term measures the probability that the collision results in a reaction. 

Ea is the activation energy, corresponding in some models to the change in Gibbs 

free energy from the unbound state to the transition state (ΔG‡). Thus, by way of 

illustration, a simple 1:1 interaction in gas phase can be modeled by: 

RTGB
a e

h

Tk
k /‡  

where ka is (here) the reaction rate constant, kB is Boltzmann’s constant, T is the 

absolute temperature, h is Planck’s constant, and ΔG‡ refers to the Gibbs free 

energy of the transition state.  The exponential is simply the Boltzmann 

distribution based probability that a collision has energy greater than ΔG‡. 

Peptide binding to a protein in solution phase involves complexities that 

are not adequately captured by so simple a model.  First, in solution phase the 

collision rate is greatly reduced due to solvent effects.  This can be taken into 

account in part by approximating the collision frequency on the basis of an 
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assumption that the association rate kON is equivalent to the diffusion rate of the 

ligand through the solvent, given by Dakdiff 4 [51, 140] where D is the 

diffusion constant and a is the radius of the receptor or target.  However, the 

implicit assumption of the diffusion-limited model that every collision will result 

in a stable association seems highly suspect as applied to structurally complex 

ligands like peptides, where many or most collisions may be wrongly oriented, 

occur between peptide and protein loci that are not capable of associating, and/or 

involve suboptimal conformations.   

The “steric” problem – the requirement of optimal conformations and 

correct alignment of the colliding molecules – is sometimes dealt with via the 

concept of “reactive cross-section”, which may be expressed as the product of a 

collision cross-section σ and a steric factor P in a modified Arrhenius-type 

expression such as: 

RTG
a eDaPk /‡

)4(    

(See [50], equations 30.1.7, 30.1.5, and 26.2.5; [51], equation 18.26.) Even for 

interactions involving relatively simple molecules, the steric factor P is typically 

found to be much less than 1.  In a textbook example (see [50], p. 739-40), for the 

gas phase reduction of ethylene to ethane (H2 + C2H4 → C2H6), the steric factor P 

is computed as 1.7 × 10-6, and the author notes that “as a rough guide, the more 

complex the molecules, the smaller the value of P.”  It is hard to ascribe much 

predictive value to a model that requires a rate adjustment by six orders of 
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magnitude on the basis of what amounts to a “fudge factor”.  A further concern is 

that it is not necessarily clear how much, if at all, the conformational, orientation, 

and other constraints to which the steric factor P is addressed are already 

accounted for in the entropic component of the transition state energy ΔG‡.  

Nevertheless, as will be seen in the discussion (below) of SPR data for the 

binding of a CIM-10K peptide to TNF-α, it may be possible to draw useful insight 

about the binding mechanism from a comparison of the estimated encounter rate 

with the observed association rate. Before turning to that analysis, however, it will 

be useful to review the literature and examine the binding models that have been 

proposed for similarly complex interactions. 

Binding models for interactions between complex molecules 

Although ligand-receptor binding affinities are often expressed as though 

derived from simple 1:1 Langmuir equilibria, clearly such a model fails to capture 

fully even the vagaries of rigid ligand binding [141], much less all of the possible 

complexities of interactions involving peptides that exist in a distribution of 

conformations in the free solvated state, are potentially capable of conformational 

adaptations and transitions in the bound state, and may have a range of affinities 

with respect to multiple target sites. In the literature on macromolecular 

interactions can be found two general hypotheses either or both of which may 

contribute to an improved model [142].  The first is the “conformation selection” 

hypothesis [143, 144], in which binding would be assumed to require an 

encounter between an optimally oriented peptide molecule, already in or close to 
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the conformation it will assume in the bound complex, and a binding site having 

complementary shape and charge. The second is the “induced fit” hypothesis 

[145-148], in which the peptide molecule interacts initially in some suboptimal 

manner, and thereafter changes in conformation, orientation, and/or position occur 

in the peptide, the protein binding site, or both, ending in a complementary bound 

conformation.  

It will be argued here that both phenomena likely play a role in peptide 

binding.  The evidence for a diverse ensemble of peptide conformations has 

already been described; no great leap of logic is required to conclude that the 

probability that an encounter will result in an association event will vary 

depending on the peptide conformation and orientation at the time of the 

encounter. The discussion to follow will present the evidence, first from the 

literature and then from the limited experimental data available, that peptide-

protein binding is likely also to involve formation of a temporary complex which 

then slowly transitions into a more stable, higher affinity final state.   

The latter behavior can be described in simplified terms using a double-

equilibrium model, first proposed in the context of protein-protein interactions 

[149-153], and later modified and extended to antibody-antigen binding [138, 

154] and peptide-MHC binding [43].  Upon a productive collision of the ligand 

with the target an “encounter complex” is formed, energetically less favorable and 

therefore of lower affinity than the ultimate bound state, but adequate to maintain 
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temporary contact.  Over time, the complex then transitions to the final bound 

state: 
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and the overall equilibrium affinity constant is given by  

)1( 21 AAA KKK   

where 111 /  kkK A  and 222 /  kkK A  [138]. 

For antibody binding, Lipschultz, et al. [138] first demonstrated this 

multiphasic association in a anti-hen egg white lysozyme experimental system by 

showing in SPR experiments that dissociation rates decreased as association times 

were increased from 2 to 250 minutes.  The minimum times required for the 

second reaction to progress to equimolar concentrations between the encounter 

complex and the final stable state – claimed to be a proxy for the T1/2 of the 

transition from encounter to final state -- ranged up to 17 minutes.  Kourentzi, et 

al. [154], analyzed the kinetics of a similar experimental system in greater detail; 

their results confirmed the two-step mechanism, and showed quite slow forward 

rates for the second equilibrium for some antibody-antigen combinations, with 

equilibration times on the order of hours, and k2 >> k-2. The mechanism implied 

by these findings was consistent with x-ray crystallographic evidence already in 

the literature indicating CDR loop rearrangements upon antigen binding in a 

specific antibody against a virus-derived peptide [147]. 
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The encounter complex model is not, however, the last word in antibody 

binding kinetics. Though not as conformationally diverse as peptides, antibodies 

can exist in multiple unbound conformations, which is one factor contributing to 

their polyspecificity. In an anti-hapten antibody system, James, et al. [155] 

reported x-ray structures consistent with a conformation selection model, and 

kinetics measurements showed an equilibrium in solution between two distinct 

unbound forms, only one of which was capable of binding the antigen.  Perhaps 

more relevant to peptide binding, Tsai et al. [144] have made a strong theoretical 

argument in favor of conformation selection as a model for interactions involving 

intrinsically disordered proteins.  And Lange, et al., [143] have shown by NMR 

experiments on free unbound ubiquitin a measured ensemble that encompasses all 

of the binding site conformations found in 46 ubiquitin crystal structures, of 

which most involved bound complexes.  Thus conformation selection cannot be 

ruled out, nor is it necessary to do so; as Grunberg, et al. [156] have suggested 

based on molecular dynamics and docking simulations, a model  involving “a 

three –step mechanism of diffusion, free conformer selection, and refolding . . . is 

in better agreement with the current data on interaction forces, time scales, and 

kinetics.” 

Although there appears to be no comprehensive theoretical model of the 

binding kinetics of peptides specifically, useful direction can be obtained from 

studies examining peptide binding to specific targets. It will be seen that these are 

generally consistent with a multi-step model that takes into account diffusion, 
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conformation selection, and a slow transition from encounter complex to final 

state. 

 Several groups have analyzed the kinetics of peptide binding to MHC 

class II [43, 49, 157, 158].  MHC binding is arguably somewhat unrepresentative 

of peptide-protein binding generally, in several respects. Because of the role that 

MHC presentation plays in immunity, it is essential that an MHC molecule be 

able to bind a large number of different peptide sequences, so there is an inherent 

bias in favor of polyspecificity.  MHC-II binding is typically highly dependent on 

interactions with a few “anchor” residues [159], and tolerant of moderate peptide 

diversity outside those residues.   Further, the MHC binding process must include 

mechanisms to ensure that presentation will not be dominated by a few of the best 

binding peptides [160]; perhaps for this reason, Kasson, et al. found that a variety 

of peptides bound MHC-II at approximately equal association rates [43].    

From the MHC binding kinetics studies emerge several observations of 

potential relevance. First, the apparently very slow association rate for peptide-

MHC-II binding was explained when it was discovered that unbound MHC-II 

exists in two or more forms, not all of which bind peptide [43, 161]. The inactive 

form, which predominates at equilibrium, converts to the active form at a very 

slow rate [43].  Hence, experimental measurements of ED50 would tend to 

overestimate KD, since part of the receptor population would be in the original 

state and unavailable for binding, and, worse, the proportion in a non-binding-

capable state would be changing until the conversion reached equilibrium.  For 
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the peptide and MHC protein studied by Berezhkovskiy, et al., [49] the error 

(ED50/KD) was found to amount to as much as two orders of magnitude for a 

peptide with a very long dissociation half-life.  This serves as a cautionary 

reminder about the importance of making affinity measurements at equilibrium. It 

also illustrates that when reactants exist in multiple forms, the association rate 

may depend not only on the proportion of binding-capable molecules in the 

ensemble, but also upon the rate at which non-binding-capable molecules convert.  

Thus for peptides in solution in a distribution of conformations, it would be 

expected on the basis of Le Chatelier’s principle that the removal of the binding-

capable conformations by binding to the protein target would cause a net 

transformation of other conformations to the binding-capable form, considerably 

extending the time required to reach equilibrium (cf. [144]). 

 Second, as noted, the range of association rates found by Kasson, et al., for 

20 distinct peptides was quite narrow (4.4 × 104 to 4.0 × 105 M-1sec-1, mean 1.45 

× 105 M-1sec-1) “despite having dissociation rate constants that span a range of 

greater than 10,000-fold”. Notwithstanding the reservations about the unique 

aspects of MHC binding, this data provides at least a point of reference for 

evaluating estimated on rates.  Also, since the sequences in question range from 8 

to 16 residues in length, by the usual method of estimation (a fixed penalty per 

rotatable bond) they would be expected to span a wide range of conformational 

entropy.  Yet the narrow range of association rates implies that the transition state 

energies (ΔG‡) must also lie in a relatively narrow range.  This in turn suggests 
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that the entropic component of ΔG‡ must be relatively unimportant, meaning that 

the peptide must remain relatively flexible and unconstrained in the transition 

state, and transition over time to a more tightly bound final state corresponding to 

the observed dissociation half-times.  Inferential support for this (admittedly 

speculative) hypothesis may also be found in the conclusion reached by Kasson, 

et al. that the transition state depends on relatively nonspecific hydrophobic 

interactions and “does not depend greatly on interactions between the protein and 

side chains of the peptide.”  [43]. This behavior is consistent with the hypothetical 

binding model proposed in the concluding section of this chapter. 

The study by Goldberg, et al. [162] of the association kinetics of a 

modified RNase protein with a 15-residue peptide lends further support to the 

foregoing inferences. Here, the side chains of two residues of the peptide were 

found to contribute most of the affinity and accounted for a large fraction of the 

overall interface.  Substitution at these two positions caused up to a 6 order of 

magnitude loss of affinity, while leaving kON essentially unchanged at about 107 

M-1sec-1 ([162], figure 1), again suggesting that the association mechanism is not 

particularly specific or dependent on native-like interactions between peptide side 

chains and the protein.  The unusually high on rate arguably supports this 

conclusion, since it implies that an unusually high percentage of collisions result 

in an association event. 

Takeda, et al. [163] measured the kinetics of binding of a 7-residue 

peptide to a heat shock protein (Hsc70) in the presence of either MgADP or 
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MgATP.  The ratio of ATP to ADP declines under stress conditions, and is 

thought to regulate the chaperone activity of the heat shock protein, which has a 

relatively high affinity (here KD = 4.3 μM) for peptide in the presence of MgADP 

and a low affinity in the presence of MgATP (KD = 40 to 50 μM).  The high 

affinity binding in the presence of MgADP is characterized by two-step kinetics 

[164], with an initial rapid association (k+1 = 1.21 × 103 M-1sec-1) to a lower 

affinity bound state (KD1 = 14.2 μM), followed by a much slower transition (k+2 = 

0.013 sec-1) to a high affinity final state (K2 = 0.29): 

*)70(7070
2

2

1

1 PHscPHscPHsc
k

k

k

k







   

(In the presence of MgATP, the heat shock protein undergoes a conformational 

change, preventing the transition to a high affinity state, and resulting in single-

step kinetics corresponding closely to the initial rapid but low affinity association.)  

As with MHC binding, chaperones are required to bind a diverse selection of 

disordered polypeptide substrates, so the low specificity may make heat shock 

proteins a poor basis for a general binding model. Nevertheless, the Hsc70 data 

offer yet another example of a peptide-protein binding mechanism characterized 

by rapid formation of an initial complex, followed by slow transition to a high 

affinity final state.  Moreover, the initial complex again inherently involves a low 

specificity, non-fastidious interface. 

Multi-step kinetics were also observed in a study of the interaction of a 

40-residue amyloid-β (Aβ) peptide to an affibody protein (ZAβ3) (a 15.6 kD 
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cysteine-linked homodimer having four helical domains, with certain residue 

positions variable, here selected for high affinity to Aβ) [165].  It was found that 

the bound ZAβ3:Aβ complex has conformational characteristics not found in the 

free affibody or peptide: the C-terminal part of the Aβ peptide (residues 17-36) 

adopts a β-hairpin conformation and 5-residue regions of each of the ZAβ3 

affibody subunits form β-strands.  Analysis of calorimetry data indicated that 

these conformation changes occur during a slow (relaxation time = 13 sec) 

transition phase following rapid formation of a quite high affinity (1 μM KD or 

better) encounter complex. 

It is apparent that in essentially all of the studies found in the literature 

involving the kinetics of interactions reasonably analogous to peptide-protein 

interactions, it was found necessary to incorporate in the binding model an 

induced fit / encounter complex mechanism, conformation selection, or both in 

order to obtain realistic measurements of the kinetic properties upon which 

affinity estimates would be based. It will be shown in a later section that the 

available data relating to CIM-10K library peptides, though limited, supports a 

similar conclusion. 

Multiplicity and non-homogeneity of contact regions 

When a peptide and a protein collide, the encounter results in a contact 

interface, perhaps transient, in which part of the peptide comes into contact with 

part of the protein surface. (More accurately, there is a set of peptide atoms each 

of which is closer than some threshold interaction distance to at least one atom of 
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the protein, and vice versa.) Even for a relatively small protein, the number of 

possible distinct surface patches of appropriate size for interaction with a peptide 

is enormous. Many of these surface patches will be capable, at least in principle, 

of being bound at least weakly by a suitable ligand. A study of the diversity of a B 

cell response to tetanus toxoid estimated that the resulting polyclonal antibody 

repertoire represented on the order of 100 distinct clonal selection events [166], 

suggesting that the tetanus toxoid antigen, at least, exposes many loci potentially 

recognizable by antibodies. Others have estimated that a typical repertoire of 

antibody paratopes can recognize on the order of 10 distinct epitopes on a typical 

50 kD protein [167].   

When the conformational diversity of the peptide is taken into account, as 

well as the range of peptide surface regions that can be presented at various 

rotations / translations, it is obvious that if an ensemble of contact interfaces could 

be constructed by sampling a large number of random encounters, that ensemble 

would encompass a huge range of distinct contact interfaces. In many of the 

interfaces in such an ensemble, only a part of the peptide chain will be in contact 

with the protein. As will be shown in Chapter 3, even in stable bound interfaces, 

the enthalpy of binding appears to be distributed quite non-uniformly over the 

peptide contacts, with a disproportionate contribution attributable to a few “hot 

spot” regions. It is therefore germane to inquire whether it may be advantageous 

to model the peptide as an aggregate of individually interacting fragments. 
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Fragment-based methods are attracting increasing interest, particularly in 

the field of small molecule drug discovery, where they are seen as a way to search 

greater expanses of chemical space while focusing on combinations of moieties 

most likely to contribute the desired binding properties. (E.g. [168-173] and the 

recent review by Hajduk and Greer [174]).  Lead candidates may be constructed 

by joining relatively low affinity fragments (essentially the strategy underlying 

the synbody platform), and/or by improving the affinity of a fragment by 

functional group addition or alteration.  As described in a previous section, many 

protein structure prediction algorithms base their estimates in part on computed or 

statistically sampled structures of short peptide fragments (e.g. [101]), but no 

reports have been found of fragment based design or discovery of intermediate 

length peptide ligands. To extend the concept to peptide ligand design, it would 

be logical to employ computational docking or QSAR methods to identify small 

peptidic fragments of high ligand efficiency (ΔGbind per unit size or molecular 

weight), construct a combinatorial library from the fragments so identified, and 

select the best performers. The main obstacle to such a strategy is the final 

selection step; for reasons explained in detail in Chapter 4, molecular docking of 

full length 20-mer peptides is computationally intractable and chemical synthesis 

and testing of the requisite number of peptides is prohibitively expensive.  It is, 

however, possible to approach the problem probabilistically, and estimate the 

behavior of the combined full length peptide by reference to the spatial 

relationships among the binding loci preferred by the fragments and the fragment 
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binding energies at those loci. In Chapter 4, a strategy along these lines is shown 

to have merit for predicting binding sites of full length peptides. The probabilistic 

approach has another advantage: it allows for the possibility that each fragment 

may have affinity for more than one protein surface locus.  Several small, higher 

affinity fragments of a single highly flexible peptide might be capable of binding 

more than one combination of loci, so that the peptide as a whole might be 

capable of binding in multiple positions, as illustrated in Figure 5. More than one 

possible bound position could also occur if two or more larger fragments, each 

able by itself to supply the entire binding energy required for the peptide to bind, 

are each complementary to a different locus on the protein, or if a single larger 

fragment is able to adopt alternative conformations each complementary to a 

different locus.       

 

Figure 5. Alternate binding positions from fragment binding at multiple loci. 



 

54 

 

 The theta state-related polymer properties of polypeptides provide an 

interesting perspective on the question of what fragment sizes are most 

informative. As discussed in a previous section, the degree of polymer chain 

expansion or collapse depends on the temperature and solvent conditions, with 

temperatures above the theta temperature favoring expanded states. The dynamics 

of this behavior varies, however, depending on the length scale.  For a segment of 

the chain to collapse against another segment, the magnitude of the forces 

mediating the collapse must be on the order of  kBT or above, and a very short 

segment cannot interact over a sufficient area for the attractive forces to sum to 

the requisite energy  [62]. Therefore, according to “blob theory” [62, 63, 175], 

polymer chain expansion and collapse occurs at the scale of “blobs”, which are 

fragments of the maximum size such that the balance of forces within the 

fragment remains below the “order of kBT” threshold.  Pappu et al. have estimated 

that for a range of protein sequences, the “blob” scale is about 7 residues [62, 

175]. This estimate meshes rather well with the data on the TNF1 and TNF1-opt 

peptides discussed above in connection with Figure 3 and Figure 4.  Recall that all 

of the four substitutions that were found (by others) to best optimize the affinity 

of the TNF1 peptide for TNF-α were within the 8-residue segment from residues 

4 to 11. Moreover, as is clearly seen in Figure 4 for the predominant cluster (and 

was also true for other clusters), in molecular dynamics simulations it was 

possible to find in the sampled ensemble tight clusters of conformations of the 

same 8-residue region, in which the conformations of the remainder of the peptide 
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were dissimilar. These data arguably support a hypothesis that the 8-residue 

fragment is acting as a relatively independent subunit whose binding properties 

can be analyzed as a separate fragment. 

This does not necessarily mean that fragment interactions at a smaller 

length scale are irrelevant. Arguably, the size of (relatively) independently 

binding fragments relates to the issue of specificity. By definition, an optimally 

specific ligand would bind strongly to a single locus on a single target and bind 

very weakly or not at all to any other substrate. Other factors being equal, high 

structural diversity implies low specificity -- the greater the diversity of shapes 

that a ligand can adopt, the greater is the diversity of potentially complementary 

target loci.  At one extreme, a peptide in which each residue behaves 

independently of each other residue will be capable of high conformational 

diversity, and likely exhibit a high degree of non-specific binding.  At the other 

extreme would be a rigid ligand; the highly specific protein-protein binding upon 

which many regulatory processes depend is enabled by binding sites that are held 

relatively rigid by the folded structure underlying them.  A peptide in which the 

independently acting units are ~7-residue blobs, where the blobs are each capable 

of a limited repertoire of preferred conformations, may represent a practicable 

compromise.  From the peptide microarray data already presented, it appears 

likely that most CIM-10K library peptides inhabit the higher structural diversity 

end of the spectrum. 
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Association kinetics of CIM-10K library peptides 

Equilibration behavior observed in peptide microarray binding tends to 

confirm the hypothesis of slow transition to a final equilibrium.  In experiments 

by Rebecca Halperin on robotically spotted peptide microarrays each having 

approximately 10,000 distinct features corresponding to the CIM-10K library, 

fluorescently labelled monoclonal anti-P53 was applied generally in accordance 

with the protocol described in [176], with fluorescence intensities measured (on 

separate arrays) immediately after application, and after incubation times of 18   
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Figure 6. Array intensity vs. incubation time. 
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minutes, one hour, and 18 hours.  Figure 6 shows raw fluorescence intensities 

measured for peptides registering above an arbitrary intensity threshold.  

Increasing the incubation time from 18 minutes to one hour increases the 

intensities corresponding to these higher-binding peptides by approximately an 

order of magnitude; the intensities rise further as the incubation time is lengthened 

to 18 hours. 

 These data are obviously far from conclusive regarding the kinetics of 

antibody binding to the array peptides.  Others have observed that although 

peptide microarray data is useful for distinguishing “good binders” from “non-

binders”, the error range for array-based affinity measurement may be quite high 

[177].  And, reservations about accuracy aside, Figure 6  merely shows slow 

equilibration, which could be caused either by a conformation selection 

mechanism or by a slow transition to final state after initial encounter, or both, or 

by other confounding factors such as aggregation. 

Available SPR data on CIM-10K library peptides is not ideal for 

examining equilibration rates because the association times used in SPR assays 

were short.  The sensorgram shown in Figure 7 is typical of SPR data for binding 

of peptides selected from the CIM-10K library, in solution phase, as “good” 

binders to surface-affixed target proteins.  Here, in an experiment conducted by 

Dr. Paul Belcher and Dr. Chris Diehnelt, peptide TNF-1 (sequence 

FERDPLMMPWSFLQSRQGSC) was flowed at concentrations ranging from 800 
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nM to 27 μM over TNF-α affixed to the gold surface of the SPR chip using a 

Biacore A-100 SPR instrument.  (See [33] for experimental details.)  

 

Figure 7.  SPR sensorgram applying peptide TNF1 to TNF-α 

Assuming simple 1:1 Langmuir kinetics, kON and kOFF can be estimated 

from the sensorgram, giving results that are in close agreement with the affinity 

(KD of approximately 2 × 10-5) estimated by the Biacore software.  kOFF is easily 

computed from the observed 9 second dissociation half-time (the time required 

after the beginning of the dissociation phase for the response to drop by 50%, 

from 7.4 RU to 3.7 RU, referring to the 27μM curve). Since the decay is 

exponential,  

  1
1/21/2 sec077.0 /T0.69302T/)2ln( OFFk  

Computation of kON is less straightforward, since during the association phase 

both association and dissociation are occurring, and dissociation increases as 

occupancy increases.  To compute kON, the time constant kob for the (assumed) 
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exponential rise to the steady state plateau level Ymax may be computed by fitting 

the data to: 

)1(max
tkobeYY   

Using the foregoing relation, an approximation of kob can be obtained from the 

time required for the response to rise from zero to (say) 90% of Ymax, here 

approximately 12 seconds as shown in Figure 7:    

tkobe19.0  
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Given the applied peptide concentration [P] and the already estimated kOFF, 

kON and KD can be computed:  

 113
6

11

sec1026.4
1027

sec077.0sec192.0

][












 Mx
MxP

kk
k OFFob

ON  

Mx
k

k
K

ON

OFF
D

5108.1   

From the measured KD of 18 μM and the applied peptide concentration [P] 

of 27 μM, the occupancy can be computed: 
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It should be obvious from the SPR sensorgram (Figure 7) and from the 

known characteristics of the interacting species that a simple kinetics model is 

unlikely to describe accurately the mechanism of at work here.  Two observations 

(most easily seen in the 27 μM trace) are worthy of note:  (1) the SPR response 
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appears to be continuing to rise at the end of the 60 second association phase, 

although the smoothed association curve appears to flatten (solid lines, fitted by 

software provided by Biacore, using an unknown algorithm); and (2) in the 190 

second dissociation phase shown, during which the peptide concentration in the 

applied buffer was zero, the response does not return to zero. 

Assuming they are real and not due to measurement error, nonspecific 

binding, aggregation, or other artifacts, these observations can be explained by 

either of two general mechanisms.  

First, the peptide may be capable of binding to more than one site, at 

different affinities.  Suppose, for a greatly oversimplified example, that the 

peptide has a high affinity of 1.6 μM for its preferred binding site, with k+1 = 25 

M-1sec-1 and k-1 = 0.00004 sec-1. Suppose further that the peptide is also capable 

of relatively weak and non-specific binding to other sites, with an average affinity 

of 100 μM, corresponding to k+2 = 800 M-1sec-1 and k-2 = 0.08 sec-1. If it is 

assumed that these binding mechanisms are independent, the system is equivalent 

to: 
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where C1 represents the the peptide in complex with the high affinity site and C2 

the complex with the low affinity site(s). See [178]. Representing the 

concentration of the target protein by T, the concentration of the preferred binding 
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site by T1, the concentration of the weaker binding sites by T2, and the 

concentrations of peptide and the bound complexes by P, C1, and C2, respectively, 

the kinetics are described by: 
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where T1’, T2’, C1’, and C2’ are the time derivatives of the respective 

concentrations. To simulate an SPR experiment, the peptide concentration P is 

taken as constant during the association phase, and as zero during the dissociation 

phase. For starting concentrations T1 = 100 μM, T2 = 300 μM, P = 27 μM, and 

rates k+1 = 25 M-1sec-1, k-1 = 0.00004 sec-1, k+2 = 800 M-1sec-1, k-2 = 0.08 sec-1, the 

foregoing system was iterated by finite differences, giving the behavior shown in 

Figure 8.    

On the assumptions stated, the affinity of the peptide for the preferred 

binding site is KD = 1.6 μM, and for the low affinity binding, KD = 100 μM; there 

are assumed to be three low affinity sites and one high affinity site per molecule. 

The resulting kinetics are essentially indistinguishable from the actual 

experimental data of Figure 7.   The low affinity, fast on / fast off binding to 

suboptimal sites swamps the measured response to produce an affinity estimate, 

~18 μM, calculated as from Figure 7 on the basis of 1:1 kinetics, that is more than 

an order of magnitude worse than the “true” affinity.  
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Figure 8. SPR simulation including low affinity non-specific binding. 

The second mechanism that could explain the observed sensorgram data is 

a sequential equilibrium of the kind already discussed: 

21
2

2

1

1 CCTP
k

k

k

k







   

where the peptide P and target protein T initially form an encounter complex C1, 

and the encounter complex undergoes a change in conformation, position, or both 

to arrive at a final state C2. The kinetics are described by: 
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where P is the peptide concentration, again held constant during the association 

phase and set to zero during disassociation, T is the target protein concentration, 

Low affinity sites (blue)

High affinity site (yellow) 

Unbound target (green) 



 

63 

 

C1 and C2 are the concentrations of the encounter complex and final bound 

complex, respectively, and T’, C1’, and C2’ are the time derivatives of T, C1, and 

C2.  Figure 9 shows the simulated response for assumed starting concentrations of 

T = 100 μM, P = 27 μM, and C1 = C2 = 0, with rates k+1 = 4100 M-1sec-1, k-1 = 

0.077 sec-1, k+2 = 0.00173 sec-1, and k-2 = 0.00231 sec-1, corresponding to 

relatively rapid formation of the encounter complex, followed by a slow transition 

to the final bound state. Again, the response data is identical in practical terms to 

the measured response shown in Figure 7, but if the process is allowed to reach 

equilibrium (requiring ~30 minutes), the affinity indicated by the total occupancy 

at equilibrium (θ = 0.72) is 10.7 μM. 
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Figure 9. SPR simulation for encounter / transition model. 
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Conformation selection could be a factor in either of the foregoing 

mechanisms.  For an SPR-type experiment in which the concentration of peptide 

is held constant during the association phase, conformation selection can be 

simulated by reducing the assumed peptide concentration to that fraction of the 

total concentration representing the binding-capable conformation. From the 

molecular dynamics sampling already described, it appears likely that that 

fraction may be quite small; even the largest conformation cluster for the 

optimized TNF1-opt peptide in Figure 3 comprised only 2.8% of the ensemble, 

and there is no reason to suppose that the largest cluster necessarily corresponds 

to the binding-capable conformation. If, for example, it is assumed that only 1 

percent of the ensemble comprises conformations that are capable of binding, then 

to obtain an SPR response equivalent to that for a 1:1 binding mechanism with KD 

= 18 μM and [P] = 27 μM, as approximated by Figure 7, it would be necessary to 

assume a 100-fold increase in the association rate for that conformation, implying 

kON = 4.26 × 105 and a “true” affinity of 0.18 μM. This line of reasoning is of 

interest in part for its potential to allow better estimation of the entropic 

component of ΔG. As will be seen in Chapter 3, it is feasible, albeit 

computationally nontrivial, to estimate ΔH from force field or other factors, given 

the exact geometry of a peptide-protein interface.  ΔS cannot be determined from 

the structure of the bound complex. If, however, experiments could be devised 

that would report the association constant of the binding-capable conformation 

alone, then the value of ΔG computed from that association constant would be 
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entirely due to ΔH except for the 6 degrees of rotational and translational freedom 

of the peptide relative to the protein (assuming the protein is rigid), and that 

entropic penalty would be the same in all cases. A strategy to place bounds on the 

binding-capable fraction of the ensemble might be to evaluate the extent to which 

the bound conformations of peptides in known interfaces correspond to 

conformations in a free liquid phase ensemble computed by molecular dynamics 

methods. A database of peptide-protein interface structures has already been 

assembled in connection with the work described in Chaper 3, and methods for 

sampling and clustering the free peptide ensemble were explored as previously 

described in this chapter, so performing the analysis should be relatively 

straightforward, if demanding in terms of computational resources. 

It would be also be useful to know the relative importance of conformation 

selection and post-encounter transition for purposes of better optimizing synbody 

peptides.  If conformation selection is the dominant mechanism in peptide 

binding, the optimal strategy would obviously be to design peptides that strongly 

favor the binding-capable conformation.  If binding depends mainly on a post-

encounter transition, however, a better candidate might be a peptide that forms 

non-specific encounter complexes easily and is flexible enough to “hunt” for a 

high affinity final state. The two mechanisms may also have different implications 

regarding multivalent binding: if peptide binding were entirely a matter of 

conformation selection, then the association rate for a bivalent interaction should 

be much less than that of individual peptides, since the probability of both 



 

66 

 

peptides being in binding-capable conformations would be the product of the 

probabilities for each peptide separately, assuming independence.  

An upper bound on the encounter rate can be estimated based on diffusion. 

The diffusion constant D depends on the size and structure of the diffusing 

molecule, and on solvent properties and temperature.  For a molecule of the size 

of a peptide in aqueous solution, the possible range of values is small; the 

reported diffusion coefficient measured at 298°K and 0.5 mM concentration for a 

16-mer peptide of Dpeptide =  2.37 × 10-6 cm2/sec ([179], figure 3) furnishes a 

reasonable basis for an estimate.   The TNF-α homotrimer has the shape of a 

truncated cone about 6 nm in height and 5.5 nm across the base [180, 181], so the 

radius may be estimated at approximately 3 nm. Its diffusion coefficient may be 

approximated as Dprotein = 1.1 × 10-6 cm2/sec, as measured for lysozyme, a protein 

of similar size and shape to TNF-α [182].  Then  
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[140]. The diffusion-controlled collision rate per molecule of target is the product 

of kdiff and the concentration: 
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The number of encounter complex-forming events per second required to produce 

the observed on rate is given by  
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Therefore the diffusion controlled rate is a factor of 1.93 × 106 faster than the 

observed association rate.  It must be emphasized that this merely establishes a 

bound; it is not valid to conclude that the actual collision rate is 213,000 per 

second, because the derivation of the expression for the diffusion controlled rate 

is based on an assumption that all ligand molecules bind immediately upon 

collision, producing a ligand concentration of zero at the target surface, with 

diffusion toward the target driven by the resulting concentration gradient (see [51, 

140]).  Since it is apparent that only a very small fraction of peptide-protein 

encounters result in formation of a bound complex, presumably the concentration 

gradient is greatly reduced. 

 An alternate method here proposed for estimating whether the interaction 

dynamics provide adequate opportunity for conformation selection is to compute 

what might be termed the average dwell time; that is, how much time, on average, 

each target molecule spends in close proximity to a peptide molecule before a 

complex is formed.  This can be estimated using a model in which a unit volume 

is populated by a quantity of target molecules equivalent to the target 

concentration of interest, placed at random positions within the unit cube (with 

steric overlap, i.e. centers closer than the sum of molecular radii, disallowed).  

The volume is further populated by a quantity of ligand molecules corresponding 

to the ligand concentration, again placed randomly and with steric overlap 
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disallowed. It is then a simple matter to determine the percentage of target 

molecules that are closer than an arbitrary interaction threshold distance to a 

ligand molecule. This model may also be more realistic in terms of the 

hypothesized dynamics than a diffusion-driven collision model, in the context of 

interactions taking place in a solvent between large, slow moving, relatively 

flexible molecules, where solvent caging effects (see [140] at 226; [183, 184]) 

may tend to keep interacting pairs from separating rapidly after an unproductive 

encounter. 

 Again assuming a peptide concentration of 27 μM, a cube 1000 nm on a 

side would contain 254,161002.6101027 123
3

156   M
m

L

L

M
N pep 

 

peptide molecules. If peptides are modeled as spheres of radius 1.5 nm, and the 

target protein molecules are modeled as spheres of radius 3 nm, the volume from 

which the centers of target molecules must be excluded  is 

63 102.616254)5.4(
3

4
 nmVpep  nm3. A reasonable distance defining the 

range at which a peptide and protein molecule might be deemed to be interacting 

is given by the the Bjerrum length, the distance at which the energy of 

electrostatic attraction of two opposite single charges is equal to the thermal 

energy RT; this is about 7Å in water at physiological temperatures [51].  Then the 

volume surrounding a peptide within which the presence of the center of a target 

molecule could be said to represent an interaction is 
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63
int 104.316254)2.5(

3

4
 pepVnmV  nm3. That volume represents 

%34.0)102.6101/(104.3 696   of the volume not occupied by peptide, 

suggesting that, on average, 55 of the target molecules (0.34% of 16,254) are 

within the Bjerrum distance of a peptide at any given time.  

 Based on the observed association time constant kob = 0.192 for binding of 

peptide TNF1 at 27 μM concentration to TNF-α, the time required to reach 10 

percent target occupancy is 0.95 second.  Therefore, in the first second, 1,711 of 

the 16,254 target molecules in the 1000 nm cube would be expected to have 

formed complexes with peptide.  Then the average dwell time required for a 

complex to result is 55/1,711 = 0.032 seconds, abundant time to allow 

conformation selection or post-encounter transition or both. (By way of 

comparison, recall that the distribution of peptide conformations shown in Figure 

3 was obtained by sampling from a 0.000001 sec molecular dynamics trajectory, 

and appeared to span reasonably completely the range of conformations visited by 

the TNF1 peptide.) 

A hypothetical model of peptide-protein binding 

It should be clear from the evidence reviewed in this chapter that peptide 

binding to proteins is far too complex a process to be captured accurately by a 

simple system of differential equations based on the usual combination of mass 

action and heuristically determined parameters. Assuming hypothetically the 
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tentative conclusions expressed in the preceding discussion, an improved model 

should address at least the following issues: 

1. Peptide conformation. The free peptide in solution inhabits a 

conformational ensemble of indeterminate diversity. The fraction of these 

conformations capable of leading to a stable complex is likely very small 

and difficult to estimate, making the TΔS component of ΔG a matter of 

guesswork. 

2. Rotation and translation. Even if the conformations are compatible, a 

collision will not result in even transient complex formation unless both 

the peptide and the protein are positioned and oriented such that contact 

occurs between regions of the peptide and loci on the protein that are 

capable of interacting such that the aggregate ΔH of all moieties in contact 

is sufficiently negative to overcome the entropic penalty. 

3. Multiplicity of binding configurations. A single binding site cannot be 

assumed. There are potentially multiple ways of choosing a conformation 

of the peptide and a region on the protein target that can be placed in 

(perhaps partial) contact such that a negative ΔG results. 

4. Post-encounter transitions. It must be expected that a peptide, once in at 

least transiently stable contact with the protein, may undergo changes in 

position and/or conformation to find deeper energy minima to the extent 

that the energy required to cross any intervening barriers can be supplied 

by thermal fluctuations. 
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5. Distributed affinity. Consider a “snapshot” of a single bound peptide-

protein complex: the affinity is determined (ignoring entropic effects) by 

ΔH, which may be regarded as the sum of the ΔH contributions of all of 

the various contacts. As will be shown in the next chapter, these 

contributions are far from uniform, and it is common for a few “hot spot” 

residues, often separated by stretches of relatively low affinity, to account 

for most of the aggregate ΔH. 

6. Steady state dynamics.  As will be shown in greater detail in the next 

chapter, peptides, even when stably bound, are far from immobile. A 

peptide side chain moiety in a non-bonded interaction with the protein 

target can often, by a minor shift requiring energy well within the bounds 

of thermal fluctuations, find and make another non-bonded interaction 

with no significant net loss of energy.  

To these might be added further complicating factors such as flexibility of the 

protein at scales ranging from minor side chain positional adjustments to large 

movements around hinge regions; the potential for the peptide to bind to the 

modified protein surface created when another molecule of the same peptide has 

already bound; and coordination by ions present in the solution. 

The main conclusion to be drawn is that a model that represents peptide-

protein binding in terms of a single paired configuration is inadequate; a 

probabilistic model is required.  The following thought experiment will serve to 

illustrate the concept: Consider a conformational ensemble of free peptide in 
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solution, from which a single conformation is selected at random. Choose also a 

random selection from the conformational ensemble of the protein target. Choose 

random orientations in space for both the peptide and the protein, choose random 

vectors of approach with random translations between them, and bring the two 

into contact along those vectors at speeds randomly chosen based on a Boltzmann 

distribution.  Now allow the complex to relax to its local energy minimum (for 

example, by molecular dynamics starting with the initial contact state and 

velocities), and determine the ΔG corresponding to that state.  

If the foregoing process could be repeated a sufficient number of times to 

sample the problem space adequately, one could in principle construct an energy 

landscape expressing average ΔG as a function of the bond rotations in the 

peptide and the relative rotational and translational initial contact positions of 

peptide and protein.  The working hypothesis underlying the studies presented in 

the chapters to follow is that such a landscape would typically have many more 

than a single local energy minimum, many more than one of those minima would 

have negative ΔG, and relatively low-barrier transitions may exist between nearby 

minima. The result would be an ensemble of bound complexes corresponding to 

the various energy minima, with abundances presumably approximating a 

Boltzmann distribution.  

It is not possible to perform the experiment just described on 20-residue 

peptides using currently available computing resources. It is, however, entirely 

feasible to perform an analogous experiment by fragment based methods, in 
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which energy landscapes along the lines described are computed for overlapping 

trimer fragments and combined to produce a composite spatial mapping of 

binding probabilities onto the protein surface. As will be seen in Chapter 4, the 

resulting maps predict the predominant binding sites of peptides in x-ray 

structures of peptide-protein complexes with an accuracy superior to that of other 

reported methods. Predictions using the same probability mapping method are 

shown in Chapter 5 to be consistent with binding site measurements made (by 

others) by cross-linking a CIM-10K library peptide to AKT-1 protein and 

determining the surface residues involved by mass spectrometry. 

Before describing the energy mapping experiments, however, Chapter 3 

will further develop the theoretical foundations of the proposed model, by 

examining in detail the actual measurable characteristics of peptide-protein 

interfaces for which solved structures are available. 
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CHAPTER 3:  CHARACTERISTICS OF PEPTIDE-PROTEIN 

INTERFACES 

Abstract 

PDB structures involving peptides bound to proteins furnish a rich source 

of information about the characteristics that contribute to stable peptide-protein 

associations, information that is potentially useful in engineering peptide ligands. 

A dataset (“PPRMint”, for “Peptide-Protein Reduced Minimized 

Interfaces”) of 3,924 energy-minimized interfaces was assembled from the PDB, 

each interface comprising a single peptide chain of at least 8 and not more than 32 

residues, together with the segments of the protein chain(s) with which each is 

associated.  These were analyzed to extract descriptors of geometry, interactions, 

and other characteristics potentially affecting affinity. An energy model was 

trained using 75 interfaces for which experimental affinity data was available 

from the PDBBind database, and the model was used to estimate energy 

contributions by residue and interaction type. The PPRMint dataset represents all 

peptide-protein interfaces in the PDB as of July 27, 2008 that met the relevant 

selection criteria. It has been made available in a public web repository, together 

with a relational database, readily accessible using Microsoft Office, containing 

the detailed results of an analysis of each interface, peptide residue, and non-

bonded interaction.  Based on an analysis of the peptide-protein interfaces in the 

dataset, peptide and interface characteristics are identified and summarized that 
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appear to influence affinity and may provide useful guidance in the design of 

peptide ligand libraries and the selection of leads for optimization.  

The results presented here suggest that peptide ligands should target 

protein surface sites that are rich in aromatic and charged residues and that 

preferably lie in concavities, and that the peptides themselves should also be rich 

in aromatic and charged residues, and of intermediate flexibility.  Optimum 

attainable affinities appear to be in the 10 nM range, more or less independent of 

length for peptides in the range from about 12 to 20 residues.    

Background  

Despite considerable and growing interest in peptides for therapeutics and 

diagnostics, discovery of peptide ligands remains much more a matter of trial and 

error than of intelligent design.  One potential source of insight into the 

mechanisms of peptide binding is the large and growing pool of PDB structures 

that contain peptide-protein interfaces. Although a few recent studies have begun 

mining this vein[185-187], and although there is an extensive literature describing 

the properties of protein-protein interfaces [188-197], protein interfaces with 

intrinsically disordered proteins [70, 71, 198-200], interactions among the 

residues of folded proteins [201], secondary structure characteristics of folded 

proteins [202], and other similar observations derived from analyses of PDB-

derived datasets, many of the characteristics of peptide-protein interfaces have not 

yet been explored, and the factors that influence affinity and specificity remain a 

matter of debate. In the present work, a dataset (“PPRMint”, for “Peptide-Protein 
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Reduced Minimized Interfaces”) of 3,924 protein interfaces with 8- to 32-mer 

peptides was extracted from PDB structures and analyzed.  Descriptors were 

computed relating to the geometry of the interfaces, the geometry and energetics 

of the non-bonded interactions between peptide and protein, residue frequencies 

and spatial relationships between peptide and protein residues, estimated binding 

energy contributions at the interface and residue levels, and other factors. This 

information, together with other descriptive information, has been recorded in the 

tables of a Microsoft Access relational database which has been made available 

for download, together with the structures of the 3,924 extracted and minimized 

interfaces in a standardized PDB-compliant format that facilitates further analysis 

(see Appendix 1). This data has been used to inform exploration for heuristics, 

presented here, that might be used to guide the discovery of peptide ligands.    

For clarity regarding terminology: Each of the interfaces in the PPRMint 

dataset consists of a contiguous peptide chain, uniformly designated the “P” chain 

in the extracted interface files, and a second chain, designated the “I” (interacting) 

chain that is a composite of all residues that are within a 25Ǻ distance cutoff from 

any part of the peptide chain and that belong to the molecular entity to which the 

peptide is bound. The “I” chain may contain residues derived from more than one 

chain in the original PDB structure, and gaps due to the exclusion of residues 

beyond the cutoff distance may be present.  The subset of I chain residues that are 

actually in close contact with the peptide (having any atom within 4Ǻ of any atom 

of the peptide) are referred to collectively as the “I-site”; in effect, the “I-site” 
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residues form the surface patch to which the peptide is bound. (When a peptide 

residue is described as ‘in contact’ with an I-site residue, it is meant that at least 

one atom in the peptide residue is within 4Ǻ of an atom of the I-site residue.) The 

entire protein to which the peptide is bound is referred to as the “target”.  The 

problem of redundancy was handled by clustering structures into groups each 

comprising one or more highly similar structures, rather than by restricting the 

dataset to a single exemplar of each structure; these are referred to as “redundancy 

groups”. Finally, where appropriate, when referring to values or properties for 

which entries exist in the tables of the database, the name of the relevant database 

field is shown in parentheses. 

Energy estimates were made using two distinct models.  A computer 

program,  “PopTop” (for “POlyPeptideTOPology”), was written that analyzes a 

PDB structure,  identifies and quantifies each of the various individual 

interactions that might be expected to contribute to binding, and computes various 

descriptors relating to size, compactness, and surface area. Source code for 

PopTop is made available at 

http://www.innovationsinmedicine.org/pprmint/source/PopTop. The “PopTop 

model” refers to a 9-parameter energy model employing descriptors computed by 

the PopTop software, with weights fitted to affinity data using a training set of 75 

peptide-protein interactions from the PDBBind database of Wang et al. [203, 

204].  To provide a basis for comparison, a second model, the “Autodock-based 

model”, was employed, using energy components obtained using the Autodock 
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molecular docking application [205, 206], in combination with size-related 

descriptors obtained from PopTop, with weights trained using the same training 

set.      

Methods 

A comprehensive dataset of PDB structures was assembled containing 

peptides in the 8 to 32 residue size range bound to protein surfaces.  From these 

were extracted the peptide-protein interfaces, which were energy-minimized.  On 

the resulting 3,924 interfaces, containing 61,130 peptide residues, geometric 

measurements were made and other descriptors were extracted, interaction 

energies were predicted using two distinct models, and the resulting data was 

uploaded to a Microsoft Access relational database to facilitate inquiry concerning 

various interface properties. 

Assembly of PPRMint dataset 

The 52,103 files contained in the Protein Data Bank as of July 27, 2008 

were downloaded in PDB format and pre-screened to identify those possibly 

containing peptide chains interacting with other peptides or proteins.  After 

excluding the 56 files lacking coordinate data, the remaining 52,047 files were 

found to contain 128,079 chains, of which 11,413 chains in 6,084 files had 

lengths in the range 8 to 32 residues (based on the number of residues shown in 

the corresponding SEQRES lines [207]), inclusive.  Of these 6,084 files, those in 

which the peptide chain was the only chain present (1,240 files) were excluded; 

also excluded were those in which all of the chains in the 8 to 32 length range had 
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at least one residue that was not one of the standard 20 amino acids (3,570 files, 

many containing nucleotide chains, and others whose peptide chains contained 

modified or non-natural residues), and those in which the only possible interacting 

chain(s) were either shorter than 8 residues or contained no standard amino acid 

residues (24 files). (A number of files belonged to more than one of the foregoing 

excluded categories.)  Following this screen, 1,813 files remained.  These files 

were then hand-screened to categorize by interaction type and to examine each 

structure so as to exclude any non-conforming interfaces missed by the automated 

pre-screen.  1,351 files remained after excluding 170 files involving peptides 

complexed to other peptides, 117 files involving insulin complexes, 126 files in 

which peptides were wholly or partially buried in the protein, 60 files involving 

peptides as part of ribosomal or other large complexes, and 103 files rejected for 

other reasons (with some files again being rejected on more than one criterion).   

Extraction and minimization of interfaces 

From the 1,351 PDB files, interfaces were extracted by identifying, in 

each file, all peptide chains having a length of at least 8 and not more than 32 

residues, and writing the ATOM lines corresponding to each such peptide to a 

separate file together with all ATOM lines corresponding to all residues having 

any atom within 25Ǻ of any atom in the peptide. The 25Ǻ cutoff distance was 

chosen so as to reduce the size and complexity of the interface files without 

excluding parts of the structure close enough to affect significantly the 

electrostatic terms of the energy models.  For uniformity, in the interface files, the 
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peptide chain is always given a chain ID of “P”, and the ATOM lines belonging to 

the protein portion of the interface are given a chain ID of “I”.  This may result in 

the “I” chain containing segments derived from more than one chain in the 

original structure, and makes it necessary for subsequent analyses to correctly 

handle backbone gaps and to avoid modifying charges on gap-boundary-terminal 

amines and carboxyls.   

Because many PDB structures involve crystallization arrangements in 

which multiple complexes are stacked closer than 25Ǻ apart, it was then 

necessary to visually inspect and correct all interfaces in which the “I” chain 

contained segments from more than one chain in the original PDB file, to remove 

any nearby segments belonging to adjacent structures that are not part of the 

specific object with whose surface the peptide is interacting.  After excluding 

interfaces in which the interacting surface was not clearly determinable or in 

which other data integrity issues were found, a total of 3,924 corrected interfaces 

were extracted from the 1,351 PDB files.  These have been made publicly 

available at http://www.innovationsinmedicine.org/pprmint/dataset.  Naming 

conventions and file contents are described in the file readme.pdf in that directory. 

When  energy prediction models were applied to a subset of the interface 

files corresponding to peptide-protein interactions for which published affinity 

data is available (as described below), it was found that the Autodock energy 

function produced poor results, traceable to improbably high positive van der 

Waals energies for a few atom pairs.  Molecular dynamics energy minimization of 
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the interfaces was tested under several choices of parameters, as was modification 

of the energy function to impose an arbitrary cutoff on positive atom pair 

energies. Minimization produced the best agreement with published values, and 

was therefore performed on all 3,924 interfaces, using Amber 9 [208].  Each 

interface was prepared and checked using tleap and any errors corrected, followed 

by 250 cycles of steepest descent and 250 cycles of conjugate gradient 

minimization with cut = 12.0Ǻ.  

Construction of database 

A relational database was constructed containing an ‘Interfaces’ table 

having one record for each of the 3,924 interfaces; a ‘Residues’ table having one 

record for each of the 61,130 residues belonging to the peptides in the 3,924 

interfaces, with each keyed to the corresponding interface record; and ‘Hbonds’, 

‘SaltBridges’, and ‘CationPi’ tables having one record for each of the 30,583 

interactions satisfying the gross screening criteria for hydrogen bonds, the 7,090 

interactions satisfying the criteria for salt bridges, and the 11,387 interactions 

satisfying the criteria for cation-pi interactions (5,078 distinct interactions 

discounting furcations), respectively, each keyed to the records of the 

participating residues and including the details of the bond geometry of each. 

Included in this database are the results of energy estimates and other 

computations described here. The database was constructed using Microsoft 

Access, so as to make it readily accessible both to end users needing the simple, 

spreadsheet-like behavior available to any Microsoft Office user, and to those 
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wishing programmatic access using an ODBC connection. The database, together 

with descriptive material, has been made publicly available at 

http://www.innovationsinmedicine.org/pprmint/database. (As used herein, the 

“PPRMint dataset” refers to the 3,924 PDB format interface structure files; the 

“PPRMint database” refers to the relational database.) 

Extraction of descriptive data and energy components using PopTop 

Using the PopTop software, each of the 3,924 interfaces was analyzed and 

a number of descriptive quantities were computed, both at the interface level and 

the residue level, of which a weighted sum of the most informative are 

incorporated into an overall energy scoring function, with weights calibrated by 

fitting to published affinity data. PopTop identifies and reports on the various 

interactions that may contribute energy by examining all pairings of P chain 

atoms with I chain atoms where the distance between the two is less than 5Ǻ plus 

the sum of the van der Waals radii of the two. For all such pairings, an evaluation 

is made to determine whether a hydrogen bond, salt bridge, or pi-cation 

interaction is present and if so to estimate its energy, and also to estimate the 

energy corresponding to the hydrophobic, electrostatic, and van der Waals forces 

between the pair.  PopTop also computes and reports other quantities describing 

geometric properties, such as peptide end-to-end length, peptide radius of 

gyration, and difference in solvent accessible surface area between the bound 

complex and each of the interacting entities taken separately. 
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Interaction-based descriptors 
Any pairings of specific atoms in specific residues whose identities 

conform to the atlas of main chain and side chain hydrogen bond types as 

described in [209] are evaluated according to the hydrogen bond energy model 

described in [210, 211], which determines interaction energy as a function of 

geometry and hybridization:   
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where V0 = 8 kcal/mol and R0 = 2.80Ǻ, R is the distance between the hydrogen 

and the acceptor, θ is the donor-hydrogen-acceptor angle, φ is the angle made by 

the hydrogen, the acceptor, and the atom to which the acceptor is bonded, ψ is the 

dihedral angle formed by donor, hydrogen, acceptor, and the atom to which the 

acceptor is bonded, and F(θ,φ,ψ) depends upon donor and acceptor hybridization 

as follows: 

sp3 donor, sp3 acceptor: )5.109(cos))(exp(cos 262  F  

sp3 donor, sp2 acceptor:  262 cos))(exp(cos F  

sp2 donor, sp3 acceptor: ))(2exp(cos 64  F  

sp2 donor, sp2 acceptor: ]),(max[cos))(exp(cos 262  F  

Any pairings of lysine ζ-N, arginine η-N, or an N-terminal backbone N 

atom with an aspartate δ-O, glutamate ε-O, or a C-terminal carboxyl O atom 

between the peptide chain and the I-site at a distance of 5Ǻ or less are evaluated 

according to the model described in [211]: 
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where V0 = 8 kcal/mol, R0 = 3.2Ǻ, and R is the distance between cation and 

anion. 

Both energy functions are in the form of 12-10 Lennard-Jones potentials, 

and therefore reach high positive energies quickly as distances become closer than 

optimal. Since it is hypothesized that peptide interfaces are flexible enough that 

any such overly close pairings would be eliminated by movement, and given the 

inaccuracies inherent in PDB coordinates, it was regarded as unrealistic to impose 

large positive energy penalties merely because of slightly smaller than ideal 

spacing, so the foregoing models were modified to report energies based on the 

optimum distance where the measured distance is closer than optimum. 

Since the overall energy model is calibrated by fitting to training data, 

since the relative predictive accuracy of various theoretical energy models is in 

any case a matter of debate, and since PDB coordinates are at best only 

approximately accurate, the choice of energy models for estimating hydrogen 

bond, salt bridge, and cation-pi energies was motivated mainly by a desire for a 

qualitatively realistic relationship between energy and optimality of the 

interaction geometry, without necessarily expecting absolute quantitative 

accuracy.  PopTop identifies and evaluates potential cation-pi interactions 

between the aromatic rings of phenylalanine, tyrosine, and tryptophan and the 

charged amines of lysine, arginine, and the backbone N terminus, for all pairings 
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where the distance between cation and ring centroid is ≤ 8Ǻ.  (Pairings involving 

histidine were not evaluated, since its participation in cation-pi interactions 

depends upon its protonation state, see [212], which is not reliably determinable 

from PDB data.)  For the cation-pi energy function, a heuristic expression was 

devised in the general form of a 5-4 Lennard-Jones potential that approximates 

the theoretical relationship between energy and cation position relative to the 

aromatic ring for a benzene – NH4
+ system as reported graphically in Figure 2(d) 

of  [213]: 
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RRadj , R is the distance between the centroid of the aromatic 

ring and the cationic atom, θ is the angle between a normal to the plane of the ring 

and a vector from the centroid of the ring to the cationic atom, and R0 is 2.8Ǻ.  

PopTop employs a hydrophobicity / desolvation energy model that is 

based generally on the approach described by Fernandez-Recio et al. [214], in 

which the change in desolvation energy on binding is given by: 


i

iidesolv ASAE   

where ASAi is the change in accessible surface area (ASA) of atom i on binding, σi 

is an ‘atomic solvation parameter’ (ASP) measuring the contribution to solvation 
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energy per unit ASA for atoms of the type of atom i as derived from octanol/water 

transfer energies of N-acetyl amino acid derivatives, and the summation is over 

all atoms whose ASAs change on binding.  Because one of the goals of the project 

was to obtain insights about how the various residue types in the peptide 

participate in binding, making it necessary to estimate energy contributions at the 

residue level as well as for the entire interface, the hydrophobicity model was 

modified to address two main issues. First, to determine the overall energetic 

favorability of the binding of an individual residue of the peptide, it is necessary 

to also take into account the desolvation of the protein residue(s) to which it 

binds, and atoms belonging to the peptide residues may often affect the 

desolvation of atoms belonging to more than one protein residue.  Second, the 


i

ii ASA model implicitly assumes that every atom is transferred from an 

aqueous environment to an octanol-like hydrophobic environment, which is not 

necessarily the case. As others have noted [54, 215], it may therefore be 

preferable to take into account the hydrophobic complementarity of each atom 

with the microenvironment in which it finds itself after binding. (A further 

reservation is that the computation of ASA on the unbound structures assumes 

that their conformations in solution would be the same as the bound 

conformation, obviously unlikely to be true on average for the peptide and 

perhaps only approximately true for the protein. Attempting to predict the 

distribution of peptide conformations in solution is beyond the scope of the 
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current project. The problem might be addressed in part by generating 

distributions of conformations of each peptide in solution by molecular dynamics, 

as described in Chapter 2, but doing so for 3,924 peptides was deemed 

impracticable.) 

PopTop computes and reports two distinct estimates of energy relating to 

hydrophobic interactions.  The first measure (EDS) uses the 
i

ii ASA model to 

compute the desolvation energy of the atoms and residues of the peptide, and also 

reports, for each peptide residue, an estimate of the desolvation energy of that part 

of the protein chain allocable to the peptide residue.  This allocation is made by 

examining each pair of interacting atoms and computing the proportion of the 

ASA change of each attributable to the other. It is assumed that given two 

interacting atoms a1 and a2 separated by a distance d, the surface area of a1 from 

which water is excluded by a2 can be estimated by computing the area of the 

spherical cap of radius r1 equal to the van der Waals radius of atom a1, whose 

boundary is defined by the point of contact of a 1.5A probe sphere contacting 

both atoms.  This measure is not entirely accurate, even leaving aside the usual 

reservations about treating atoms as rigid spheres, because the spherical cap on a1 

from which water is excluded by a2 may include area from which water would 

also be excluded by another nearby atom a3; however, it does provide a 

reasonable basis on which the total desolvation energy contribution of the protein 

side of the interface can be prorated among the peptide atoms. PopTop reports this 



 

88 

 

“opposite chain” allocable desolvation energy (ocEDS) for each peptide residue 

and for the entire peptide. 

Since the foregoing analysis provides an estimate of the amount of surface 

area of each peptide atom affected by each nearby protein atom, it is then possible 

to estimate the extent to which each atom is positioned next to other atoms having 

compatible hydrophobicity properties, and adjust energy estimates accordingly.  

For each pairing of atom a1 with an interacting atom a2 in close enough proximity 

to produce an ASA change on binding, the EDS value calculated for a1 (the 

product of a1’s ASA change attributable to a2 and a1’s ASP σ1) is taken as the 

estimate of the maximum desolvation energy change that would occur if a2 

provided an octanol-like hydrophobic environment, and then multiplied by an 

additional factor μ = 1 – (1.8181 φ), where φ is the hydrophilicity index of atom 

a2 adapted from the hydrophilicity scale of Kuhn et al. [216]. The values of φ for 

various atom types range from a value of 0 for hydrophobic atoms such as the 

backbone carbons of the very hydrophobic residues isoleucine and leucine, to a 

maximum of 0.635 for the η oxygen of tyrosine. Where atom a1 is positioned next 

to a very hydrophobic atom having φ = 0, then μ = 1, and the resulting adjusted 

desolvation energy (EHYB) is equal to the computed maximum desolvation 

energy EDS.  An assumption is made that the γ oxygens of serine (φ = 0.491) and 

threonine (φ = 0.601) have approximately water-like properties, so at their 

average φ of 0.55, the foregoing heuristic expression yields μ =  0, and the EDS 

attributable to this pairing is disregarded, since a1 has in effect moved from an 
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aqueous environment in the solvent to another aqueous-like environment in the 

interface. μ becomes slightly negative when a1 is adjacent to atoms having φ > 

0.55, reflecting a transition from aqueous solvent to an even more hydrophilic 

environment. PopTop reports both the EHYB of each peptide residue and also 

each peptide residue’s allocable share (ocEHYB) of the energy change 

attributable to protein residues to which it is adjacent. 

PopTop’s electrostatic energy model follows the electrostatic component 

of the Autodock force field [205].   Charges are assigned to each atom according 

to its residue and type based on the Amber ff94 force field parameters [217].  

Each atom ai in the peptide is assigned an electrostatic energy equal to the sum of 

the energies computed for each pairing of ai with each atom aj of the protein 

within a distance cutoff of approximately 8Ǻ (5Ǻ plus the sum of van der Waals 

radii), according to the Coulomb relation: 

  ijij

ji
ij rr

qq
kEES


  

where k is the Coulomb constant, qi and qj are the charges on ai and aj 

respectively, rij is the distance between  ai and aj, and ε(rij) is a distance-dependent 

dielectric constant as described in  [218, 219]. ε(rij) is computed as 

 
Brke

B
Ar  
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where B = ε0 , the dielectric constant of bulk water (78.4 at 25ºC), A = -8.5525, k 

= 7.7839, and λ = 0.003627 Ǻ-1. 
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PopTop computes van der Waals energies for each pair of interacting 

atoms ai and aj  using a Lennard-Jones 12-6 potential closely patterned after the 

van der Waals component of the Autodock force field model [205]: 

612
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Aij and Bij are parameters derived from the Amber force field [220] each of 

whose magnitude depends on the identities of atoms ai and aj as H, C, O, N, or S: 
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where rmin(i) and ε(i) depend on the identity of atom ai as H, C, O, N, or S as 

follows: If ai is H, rmin(i) = 2.0, ε(i) = 0.02; if ai is C, rmin(i) = 4.0, ε(i) = 0.15; if ai 

is O, rmin(i) = 3.2, ε(i) = 0.2; if ai is N, rmin(i) = 3.5, ε(i) = 0.16; and if ai is S, 

rmin(i) = 4.00, ε(i) = 0.2.  WVDW is an Autodock weight factor equal to 0.1662.  

(Weight factors on individual energy components are arbitrary since, as described 

below, new weights are computed by training the overall model specifically to 

peptide-protein binding data.)  

Geometric descriptors 
PopTop also computes and reports several geometric measures that were 

hypothesized to be informative for purposes of energy prediction.  These include: 
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1. Plen: the length of the peptide, expressed as the number of residues in the 

chain for which coordinates are present in the PDB file (note that in 

peptide-protein interfaces it is not uncommon for one or both ends of the 

peptide to be unbound and unstructured, with no coordinates given in the 

PDB structure). 

2. SRlen: the length of the peptide, expressed as the number of residues 

shown in the SEQRES lines of the original PDB file, which should 

ordinarily reflect the full length of the peptide used in the crystallization or 

NMR experiment [221]. 

3. Rg: the radius of gyration of the peptide chain (necessarily based on the 

segment for which coordinates are given), computed as the square root of 

the mean of the squared distances between each Cα atom and the centroid 

of all Cα atoms. 

4. Endlen: the peptide chain end-to-end distance, computed as the distance 

between the Cα atoms of the N-terminal and C-terminal residues for which 

coordinates are present in the PDB file. 

5. ASA, ASAunb, and ocdASA: respectively, the ASA of the peptide chain 

in its bound form; the ASA of the peptide chain taken by itself, without 

the interacting chain(s) present; and the total difference in ASA of the 

protein with and without the peptide present. 
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Energy descriptors using Autodock 

A Python script was written to set up inputs for each interface, run the 

Autodock docking software based on the bound position of the peptide, and parse 

energy values from the Autodock output. Unfortunately, the most detailed 

Autodock output (written by Autodock to a *.dlg file) provides only three 

independent descriptors: vdW_HB_DS_en, which comprises the energy 

attributable to van der Waals forces, hydrogen bonds, and desolvation (all 

expressed in a single quantity); es_en, representing energy due to electrostatic 

forces; and tors_en, the torsional free energy, essentially a fixed multiple of the 

number of rotatable bonds in the ligand (intended to account for the entropic 

penalty for restricting bond rotations as a result of binding).  Autodock outputs the 

first two on an atom by atom basis, allowing values of each to be parsed out and 

allocated to each residue of the peptide.         

Fitting of energy scoring functions to peptide-protein affinity data 

A dataset for use in training the weights of both the PopTop and Autodock 

energy scoring functions was obtained by extracting affinity data for the relevant 

interfaces from the PDBBind database [203, 204].  The entire PDBBind database 

was downloaded as of October 23, 2008, consisting of more than 3000 

interactions (most pertaining to small molecule and other interactions not 

involving peptides), and data was extracted for the 75 interactions whose PDB 

ID’s corresponded to peptide-protein interfaces present in the PPRMint dataset. 

Because of multiple models in NMR structures and because many crystal 
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structures contain multiple instances of the same peptide-protein pairing, 250 

interfaces in the PPRMint dataset matched peptide-protein pairings in the 

PDBBind 75-peptide training set. Descriptors were extracted separately for each 

of these 250 interfaces, and were averaged in cases of multiple interfaces 

representing the same PDBBind interaction.  The stated pKD values (converted to 

energies in kcal/mol) from the PDBBind database were used to train the energy 

models. 

Of the descriptors reported by PopTop as described above, nine were 

selected as providing the most informative fit to training data. Six of these were 

measures intended to reflect the energy contribution of hydrophobic interactions 

(EHYB and ocEHYB), hydrogen bonds (EHB), salt bridges (ESB), cation-pi 

interactions (ECP), and van der Waals forces (EVDW) as described above, and 

three, radius of gyration of the peptide (Rg), length of the peptide expressed as 

number of residues (Plen), and solvent accessible surface area of the peptide in its 

bound state (ASA), relate to the dimensions of the peptide and the interface.  The 

predicted binding energy is given by  


i

ii dwcE     

where c is the constant basis term, di are the nine descriptors, and wi are the 

corresponding weights which were trained by regression fitting to the energies 

derived from the PDBBind database for the training set.   



 

94 

 

A similar linear model was evaluated using six descriptors: the three 

obtained using Autodock (vdW_HB_DS_en, es_en, and tors_en) together with the 

same three geometric descriptors as used for the PopTop energy model (Rg, Plen, 

and ASA), trained similarly using the PDBBind training set.  Regression statistics 

were computed for each of the two scoring functions, as well as several descriptor 

subsets (see Table 1), for the training set as a whole and for leave-one-out cross-

validation.  The weights thus determined for the PopTop and the Autodock-based 

energy functions were then applied to the corresponding descriptors over the 

entire 3,924-interface PPRMint dataset and total energies (PT_Ettl and AD_Ettl, 

respectively) computed for all interfaces and for all peptide residues in each 

interface. In computing the residue-level total energies, the energy contributions 

due to descriptors that relate to the entire interface as a whole rather than to 

individual residues (such as radius of gyration, peptide length, ASA, and the 

Autodock torsion term) were allocated equally over all peptide residues that are in 

contact with the protein. 

 Training Set Cross-validation 
Energy Function rP ME SE rP ME SE 

PopTop, 9-parameter 0.72 1.07 1.37 0.60 1.24 1.60
AutoDock, 6-parameter 0.66 1.21 1.50 0.54 1.36 1.68
PopTop, 6 energy descriptors 0.48 1.42 1.73 0.32 1.57 1.90
AutoDock, 3 energy descriptors 0.35 1.50 1.85 0.13 1.60 2.04
3 size descriptors only 0.61 1.28 1.57 0.55 1.36 1.66

Table 1. Energy function regression statistics. Pearson correlation coefficient (rP), 
mean absolute error (ME) (kcal/mol), and standard error (kcal/mol) for the energy 
functions underlying the energy statistics reported herein (Poptop 9-parameter and 
Autodock). 
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Assessing redundancy and clustering of related structures 

For each interface, an interface ‘signature’ was computed consisting of a 

colon-delimited text string in which each field begins with the single-letter amino 

acid code of the peptide residue and is followed by the amino acid codes of all 

protein residues within 4Ǻ of the peptide residue, in descending order by distance 

between the two closest atoms in the residue pair).  Each interface was assigned to 

a peptide redundancy group by assembling an n × n similarity matrix M (where n 

is the total number of interfaces in the dataset), each of whose elements mij is set 

to 1 if the signature of interface i is similar to that of interface j, and to 0 

otherwise. Two signatures are automatically deemed similar if the two interfaces 

are alternate models of the same NMR structure. Otherwise, an ungapped 

alignment is performed, in which the first sequence is compared to the second in 

each possible alignment having an overlap of at least 5 residues; if in the best 

alignment there are any mismatches in the overlap region, the two signatures are 

deemed dissimilar. Each interface is assigned a peptide redundancy group ID 

number (‘Qgrp’), with groups determined from the connectivity matrix by 

assigning to a redundancy group all interfaces corresponding to the elements of 

the row of M having the highest 1-norm, setting to zero all rows and columns of 

M corresponding to the interfaces so selected, and repeating these steps until no 

non-zero elements remain.  Each interface is also assigned a second peptide 

redundancy group ID number (‘Pgrp’) in an identical fashion except that the 

similarity criteria are made more stringent by regarding as a mismatch not only 
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any residue mismatch in the overlap region but also the presence of any surface-

bound residue outside the overlap region.   

The Pgrp and Qgrp groupings are focused on similarity of the peptide 

sequences. A further grouping (‘Rgrp) is assigned, using the same clustering 

strategy, based on similarity of the overall interface as described by the signature. 

For two interfaces to be deemed similar for this grouping, both must belong to the 

same Pgrp and, in addition, the set of protein residues to which each peptide 

residue is bound must agree in both interfaces for at least half the bound residues 

in the peptide.  The set of protein residues to which two peptide residues are 

bound are deemed to agree if and only if the closest protein residue to each is 

among the closest three of the other (to allow for minor variations in ordering of 

interacting residues by distance). 

The 61,130 individual peptide residues were also clustered into 14,592 

residue-level redundancy groups (‘Rgrp’ in the Residues table) according to the 

following criteria: Two peptide residues are assigned to the same redundancy 

group if and only if (1) their parent interfaces belong to the same interface level 

redundancy group (Rgrp), (2) the number of I-site residues interacting with each 

(within 4Ǻ) differs by no more than two, (3) each residue type interacting with the 

peptide residue having the fewer interacting residues is also present in the set of 

residues interacting with the peptide residue having the more interacting residues, 

and (4) the flanking residue types in both directions are the same for both residues.  



 

97 

 

Computation of isoelectric points and charges 

Net charges on peptides (Pchg) were computed based on the full peptide 

sequence as shown in the SEQRES lines of the PDB file at pH 7.4 using: 
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where r refers to the moieties capable of protonation, qr is -1 for residues D, E, C, 

and Y and the C-terminal carbonyl, and +1 for residues H, K, R and the N-

terminal amine, nr is the number of times moiety r appears in the sequence, and 

pKr is the pK value of moiety r as given in [222]. Net charges on I-sites (Isitechg) 

were computed similarly for the set of residues comprising the I-site, assuming no 

charged N- or C-termini. The pI of each peptide was computed by performing a 

binary search for a pH value giving a charge Q in the range (-0.001, 0.001) as 

computed by the foregoing equation.  

Results 

Energy scoring function regression fitting and validation 

As shown in Table 1, an energy model based solely on the 6 PopTop 

descriptors relating to estimated energies of non-bonded interactions, or on the 

three aggregated parameters output by Autodock alone, provided a Pearson 

correlation (rP) with training data of 0.48 and 0.35, respectively and mean 

absolute error of 1.32 and 1.50 kcal/mol, respectively). With three descriptors of 

the peptide’s size and geometry (radius of gyration (Rg), length (number of 

residues) (Plen), and solvent accessible surface area of the peptide (ASA)) added 
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to both models, results were rP = 0.72 and ME = 1.07 kcal/mol for the PopTop 

model and rP = 0.60 and ME = 1.24 for the Autodock-based model.  On leave-

one-out cross-validation, the 9-parameter PopTop model produced a correlation of 

0.60 and a mean absolute error of 1.24 kcal/mol (0.90 pKD units); the 6-parameter 

Autodock-based model produced a correlation of 0.54 and a mean absolute error 

of 1.36 kcal/mol (0.99 pKD units).  Table 2 shows the fitted descriptor weights for 

both models, as well as the relative contribution of each descriptor to the 

computed total interface energies. The correlation between the PopTop and 

Autodock-based models was high (rP = 0.87 over the 75 interfaces of the 

PDBBind-based training set, rP = 0.88 over the 3,924 interfaces of the full 

dataset). 

General characteristics of PPRMint dataset 

The 3,924 interfaces comprising the PPRMint dataset make up 941 

distinct redundancy groups by the most restrictive measure of similarity used 

(Rgrp); these encompass a broad cross-section of target proteins, which may be 

loosely categorized by type as shown in Figure 10.  Immunological molecules 

(antibodies and MHC’s) account for about a quarter of the dataset, enzymes and 

receptor proteins together account for about another quarter, conserved domains 

(PDZ, SH2, and SH3) account for a few percent, and the remaining ~40% 

encompass a range of other protein types.  (The type categories in the database 

were obtained in a partially automated fashion from PDB header descriptions, and 
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are intended to provide a general breakdown; an item by item verification has not 

been undertaken.)  

  Contribution to interface 

  total energy (kcal/mol) 

 Weight Mean Range σ 

PopTop 9-Parameter Energy Function     

Hydrophobic interaction energy:     
attributable to peptide 
(EHYB) -0.0934 -0.10 1.06 0.23 

attributable to protein (ocEHYB) -0.2176 -0.60 1.82 0.45 

Energy due to hydrogen bonds (EHB) -0.0330 0.83 2.32 0.52 

Energy due to salt bridges (ESB) 0.0345 -0.38 1.47 0.29 
Energy due to cation-pi interactons 
(ECP) 0.0252 -0.41 1.44 0.39 
Energy due to van der Waals forces 
(EVDW) 0.0755 -1.22 1.38 0.42 

Radius of gyration (Rg) 0.5445 3.89 3.64 0.74 

Peptide accessible surface area (ASA) 0.0038 2.31 3.51 0.87 
Length of peptide (no. of residues) 
(Plen) -0.4938 -4.89 6.42 1.20 

Constant basis term -7.8259 -7.83 0.00 0.00 

Autodock-based 6-parameter Energy 
Function     

Energy due to van der Waals forces, 
hydrogen bonds, and desolvation 
(EVHDS) -0.0053 0.06 0.18 0.03 

Energy due to electrostatic forces (EES) 0.2833 -0.88 2.57 0.52 

Energy from rotatable torsions (ETOR) -0.0070 -0.07 0.12 0.02 

Radius of gyration (Rg) 0.2162 1.54 1.45 0.29 

Table 2. Energy function parameter weights and average magnitudes of 
corresponding contributions to energy. Descriptor parameter weights for energy 
functions and mean, range, and standard deviation of the contributions of each 
descriptor to computed total interface energy over the training set of 78 PDBBind 
peptide-protein interfaces.  

Figure 11 shows the distribution of peptide lengths (number of residues) in 

the dataset by three measures: total length of each peptide as determined from the 

SEQRES lines of the underlying PDB file (SRlen); the length of the segment for 
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which coordinates are given in the PDB structure (Plen); and the length of the 

segment actually in contact with the I-site (Bndlen). The distribution of peptide 

lengths in the PPRMint dataset is highly skewed toward the shorter end, with the 

majority of peptides having lengths in the 8 to 14 residue range. The unbound 

tails (the peptide residues not in actual contact with the target) account for 19.4% 

of the residues of the peptides (average over 941 redundancy groups). 
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Figure 10. Interfaces by type.  

The 3,924 peptides together comprise 65,850 residues. The Residues table 

of the PPRMint database contains records for each of the 61,130 residues for 

which coordinates are present in the underlying PDB structures; each of these is 

assigned to one of 14,592 redundancy groups (Rgrp), each containing residues 

that are similarly situated in terms of their surroundings, both with respect to the 
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peptide to which they belong and the composition of the I-site region with which 

they are in contact  The estimated binding energies fall in a range from 

approximately -4 to -20 kcal/mol, with approximately 80% of the distribution 

falling in the -6 to -10 range (see Figure 12).  
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Figure 11.  Distribution of peptide lengths and contact lengths. Histogram of 
peptide lengths (number of residues) as reflected in PDB SEQRES lines (SRlen) 
(yellow), residues for which coordinates exist in PDB file (Plen) (red), and span 
of residues in contact with protein (Bndlen) (blue). (Data for 941 interface 
redundancy groups.)  

The distribution of isoelectric points of the peptides (based on the full 

sequence as shown in the SEQRES records) is bi-modal, favoring sequences that 

are either strongly negatively charged or moderately positively charged, as shown 

in Figure 13.   
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Figure 12. Distribution of estimated energies. Histogram of binding energies for 
941 interface redundancy groups as computed by PopTop model (blue) and 
Autodock-based model (red); also shown are energies obtained from PDBBind 
database for the 75 distinct interfaces for which such data is available (yellow; 
counts rescaled by 941/75 to facilitate comparison).  

 

  

Figure 13. Peptide isoelectric points. Histogram of average isoelectric points for 
peptides representing 941 redundancy groups (Rgrp), based on full sequences as 
reported in SEQRES lines of PDB file. 
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The distribution of positive and negative charges within individual 

peptides was quite heterogeneous, with many peptides containing several 

positively and negatively charged residues, as shown in Figure 14. Essentially no 

correlation was seen between the heterogeneity / homogeneity of charge in the 

peptides and the estimated binding energies.  At the residue level, charged 

residues were, as expected, paired with oppositely charged residues or nominally 

uncharged residues in the great majority of cases (48% and 47% of pairings, 

respectively).   

Surprisingly, however, as shown in Figure 15, although there was some 

tendency for each peptide and its I-site to be opposite in net charge, in many of 

the interfaces this was not the case, and, even more surprisingly, there was little 

correlation (rP = 0.13) between the estimated binding energy and the product of 

the peptide net charge and I-site net charge. 
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Figure 14. Distribution of charge in peptides.  Number (vertical axis) of peptides 
having counts of positive charges (K, R, and N-terminal residue) and negative 
charges (D, E, and C-terminal residue) as shown (averages by group over 941 
redundancy groups, residue composition as per SEQRES lines).  Color indicates 
estimated binding energy (PopTop model), on scale ranging from 0 (blue) to -20 
kcal/mol (red).  

  

 

No. of interfaces 

No. of positive charges 

No. of  
negative 
charges 



 

105 

 

 

�10

�5

0

5

10

�10
�5

0
5

10

0

20

40

 

Figure 15. Distribution of charges in interfaces. Number (vertical axis) of 
interfaces in which the charge on the peptide and the charge on the I-site is as 
shown (averages by group over 941 redundancy groups).  Color indicates 
estimated binding energy (PopTop model), on scale ranging from 0 (blue) to -20 
kcal/mol (red). 

In the peptides in the PPRMint dataset, shown in Figure 16 (blue bars), by 

comparison to residue frequencies in vertebrates generally, arginine, leucine, and 

proline are the most over-represented and cysteine and valine are the most 

underrepresented.  In the residues comprising the I-sites (Figure 16, red bars), the 

standouts are the aromatics, with tryptophan and tyrosine fully three-fold more 

abundant than in vertebrates generally.  As Figure 17(a) shows, by comparison to 

frequencies reported by others for datasets of peptide-protein interfaces and 

Charge  
on 
peptide Charge  

on I-site 

No. of interfaces 
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protein-protein interfaces, the peptides in the PPRMint dataset have a somewhat 

higher abundance of proline, arginine, lysine, and glutamate. It is common for 

peptides to have unbound ‘tails’ at either end that are not in close contact with the 

protein surface, as noted, and these account for about 20% of the residues, on 

average. The residue composition of these unbound tails differs considerably from 

bound portions, with serine, glycine, and the charged residues arginine, lysine, 

and glutamate much more abundant in the unbound tails and the hydrophobic 

residues isoleucine and leucine and the aromatics phenylalanine, tyrosine, and 

tryptophan more abundant in the bound portions. 
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Figure 16. Amino acid frequencies in peptides and I-sites relative to frequencies 
in vertebrates generally. Ratio of amino acid frequencies for peptides (blue) and I-
sites (red) for 941 interface redundancy groups (Rgrp), to amino acid frequencies 
in vertebrates generally. Peptide frequencies are based on full sequences as 
reported in SEQRES lines of PDB files. 
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Figure 17. Amino acid frequencies in peptides. Histogram of amino acid 
frequencies (percent) for peptides of 941 redundancy groups (Rgrp), based on full 
sequences as reported in SEQRES lines of PDB files (blue), compared to: (a) 
frequencies reported by London et al. for peptides in another dataset of 100 
peptide-protein interfaces (red) and by Glaser et al. for protein-protein interfaces 
(yellow); and (b) frequencies in the bound (red) and unbound (yellow) portions of 
the chains.  

Given the complex topology of peptide-protein interfaces, it would be 

inaccurate to characterize binding in terms of particular peptide residues 

Percent 

Residue 
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interacting with particular target residues, even if the mobility of the interface 

were ignored. Usually, each peptide residue has atoms within the Bjerrum length 

of atoms from multiple target residues. Nevertheless, it is instructive to ask 

whether there is a higher than random tendency for certain residue types to be 

present in the I-site at or near particular peptide residue types. Table 3 shows, for 

the 14,592 non-redundant clusters of peptide residues, the number of I-site 

residues of each amino acid type that were nearest to each peptide amino acid 

type (as measured by the distance between the closest atoms of each). By this 

measure, the most frequent pairings were of the positively charged residues R and 

K in the peptide with the negatively charged residues D and E in the I-site. Other 

frequent pairings were P in the peptide with W and Y in the I-site, and L in the 

peptide with K or L in the I-site.  

The bound conformations of the peptides in the PPRMint dataset are 

nearly all relatively extended, with the actual end-to-end length of the peptides 

exceeding the  theoretical rms end-to-end length for a random flight conformation 

(equal to the distance between alpha carbons, 3.8Ǻ, times 1n , where n is the 

number of residues [51, 61]) by an average ratio of 1.76; the peptides in 845 of 

the 941 interface groups are at or above theoretical rms random flight 

conformation length (Figure 18). 

The secondary structure tendencies of the bound conformations of the 

peptides were evaluated by categorizing each residue into one of three mesostates 

– helical (‘a’), including α, 310, and π helices; extended β strand (‘b’); or left-
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handed helical (‘l’) – based on backbone Ramachandran angles, according to the 

method of Ho and Dill [68].  As shown in Figure 19(a), most peptides had 10% or 

fewer residues in the left-handed helical compartment of Ramachandran space, 

and residues categorized as helical (including α, 310, or π forms) and extended β-

strand comprised, respectively, percentages of total peptide composition that were 

distributed fairly evenly over the range from 0 to 100%, with β-strand 

predominating.  Overall, 44.6% of the residues of the peptides in the 941 interface 

groups were categorized as helical, 51.1% as extended β-strand, and 4.3% as left-

handed helical.   
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Figure 18. Peptide actual lengths vs. random flight lengths. End-to-end lengths of 
peptides in interfaces (distance between terminal Cα atoms, Ǻ) vs. number of 
residues, averages for each of 941 redundancy groups. Colors indicate estimated 
binding energy per residue according to PopTop model: red, energy >= 75% of 
maximum in set; orange, >= 50%; green, >= 25%; cyan, lowest 25%.  Lower line: 
theoretical random flight length for number of residues present. Upper line: 
maximum possible fully extended length. 

As Figure 19(b) shows, extended β-strand residues often occur in 

contiguous stretches spanning 50% or more of the length of the peptide; helical 

segments are typically somewhat shorter.  This data again suggests that many of 

the peptides are bound in relatively extended conformations generally lacking in 

internal structure. 



 

 

 

Pres All Unb A C D E F G H I K L M N P Q R S T V W Y
A 1071 180 22 7 27 70 40 13 25 48 73 72 27 50 23 48 80 28 32 78 50 79
C 248 72 5 28 6 7 4 14 3 4 5 9 3 10 2 16 18 5 8 11 7 10
D 762 172 9 0 2 4 6 17 30 6 171 20 6 22 6 36 138 26 23 13 10 44
E 957 229 13 0 6 17 17 11 19 15 154 20 18 29 13 48 162 39 21 29 19 76
F 501 31 17 1 7 19 22 14 18 18 37 32 9 31 20 28 30 26 28 30 24 58
G 817 169 26 2 27 45 41 17 24 21 78 32 17 36 19 46 59 39 23 16 32 51
H 342 39 11 5 20 50 5 5 2 19 20 27 7 14 8 13 12 27 10 19 10 18
I 658 53 18 9 7 70 30 23 17 46 33 60 24 25 2 26 30 24 39 36 15 72
K 992 183 24 1 136 197 23 22 37 27 37 28 13 42 19 39 29 29 20 21 27 40
L 1488 119 45 5 31 122 56 34 23 75 221 145 38 64 33 63 87 42 59 79 42 104
M 342 37 14 0 6 30 20 7 12 21 29 29 5 18 8 19 19 11 13 10 13 20
N 495 82 7 5 23 41 28 15 8 12 40 14 11 36 8 34 38 15 17 14 15 30
P 1166 154 13 11 33 49 64 30 20 36 50 31 14 66 39 47 62 48 48 37 136 178
Q 637 126 25 3 29 37 19 11 24 15 50 41 16 29 11 39 47 24 26 23 13 31
R 1111 184 20 5 223 276 25 14 18 17 30 26 16 36 5 43 31 26 29 27 21 38
S 970 201 36 6 64 112 15 19 26 15 95 33 16 30 16 59 56 24 35 39 25 49
T 679 116 14 5 45 37 26 16 12 24 46 20 6 33 20 35 58 23 16 38 42 47
V 637 54 24 3 11 25 23 20 24 46 39 63 16 35 16 33 28 24 41 38 24 49
W 198 17 5 2 2 12 9 10 7 9 10 22 16 8 5 11 14 11 9 8 4 7
Y 520 48 3 2 32 29 11 12 30 26 42 23 18 28 24 28 43 27 13 24 23 33

All 2266 351 100 737 1249 484 324 379 500 1260 747 296 642 297 711 1041 518 510 590 552 1034  

Table 3. Relative prevalence of non-redundant pairings of peptide residues with target residues. Counts of target residue type 
in closest proximity to peptide residue for 14,591 non-redundant pairings.  Peptide residues are in left-most column, columns 
identified in top row indicate the target protein residue type. “Unb” column contains the counts for peptide residues that have 
no target residue with any atoms within 4Ǻ of any atoms of the peptide residue. Mean count: 30.8; standard deviation (σ):32.9. 
Blue: more than 0.5σ below mean; grey: between -0.5σ and + 0.5σ; yellow: between +0.5σ and 3σ; orange: above 3σ. 
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Figure 19. Distributions of secondary structure tendencies in peptides. 
Percentages (vertical axis) of peptides in interfaces having (a) percentages shown 
(horizontal axis) of helical (blue), extended β-strand (red), and left-handed helical 
(green) residues, and (b) wherein the longest contiguous subsequence of helical 
(blue) and β-strand (red) residues comprised the percentage shown (horizontal 
axis) of the total length of the peptide (averages by group over 941 redundancy 
groups). 

Variation in bound position within redundancy groups 

To assess the extent to which the position of the bound peptide varies 

relative to the protein surface in essentially identical interfaces, a pairwise 

comparison was made of binding ‘signatures’ (as described above) for each pair 
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% of peptides 

% of peptides 
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of interfaces in each of the 150 interface redundancy groups (Rgrp) that contain 

five or more interfaces.  With the peptide residues in each pair of signatures 

aligned for optimal matchup, for each pair of peptide residues in the pair of 

aligned signatures, a count was made of the number of proximal (within 4Ǻ) I-site 

residues associated with one signature and not the other. The resulting count, 

taken over all the peptide residues in the pair of signatures, and divided by the 

total number of proximal protein residues associated with either peptide, gives a 

measure of the fraction of I-site residues that are different in the signatures of the 

two interfaces.  By populating a square difference matrix with these difference 

fractions, selecting the column having the minimum L1-norm as representing the 

most compact representation of the cluster, and taking the mean of the pairwise 

differences comprising the elements of the column, a measure was obtained that 

may be thought of as a kind of ‘radius’ of the cluster, and representative of the 

average percent variability in position of the peptides in the redundancy group. As 

shown in Figure 20(a), in approximately half of these redundancy groups, there is 

approximately ten percent or more average difference between the sets of I-site 

residues in proximity to the peptide in any pair of interfaces in the group.  The 

variability of estimated binding energy was also evaluated among interfaces 

belonging to the same redundancy group; as Figure 20(b) shows, typical 

coefficients of variation of estimated binding energy are in the range of 5 to 10 

percent. 
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Relationship of gross geometric characteristics to estimated binding 

energy 

On average, the binding energies as estimated by both energy models 

increase monotonically with length over the range of peptide lengths represented 

in the dataset, with the average per-residue energy contribution levelling off at 

approximately -0.4 kcal/mol for chain lengths of about 20 or above, as shown in 

Figure 21. 

Interfaces in which the peptide occupies a concavity in the target tend to 

have correspondingly larger estimated binding energies than those in which the 

peptide is more superficially associated, as shown in Figure 22(a), which plots the 

estimated binding energy against the ratio of the peptide’s ASA in the bound 

interface to its ASA in the same conformation but without the presence of the 

target (rP = 67%). Similarly, there is a strong correlation between estimated 

binding energy and the ratio of the number of residues in the I-site to the number 

of residues in the peptide, implying that when the peptide is ‘surrounded’ by a 

larger number of I-site residues, improved energy may be expected (Figure 

22(b)). 
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Figure 20. Variability in peptide position relative to protein surface residues. 
Frequency histograms of (a) redundancy groups by average fraction of residues 
within 4A of each peptide residue differing between any two interfaces in the 
redundancy group; (b) redundancy groups by coefficients of variation of predicted 
binding energy (PopTop model), for 150 redundancy groups (Rgrp) containing at 
least five members. 
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Figure 21. Binding energy vs. peptide length.  Binding energies (a) per unit 
peptide length (line is least squares fit to cubic) and (b) for entire interface, vs 
peptide length (as determined from SEQRES). Energies as estimated by PopTop 
model, averages over 941 redundancy groups (Rgrp). 
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Figure 22. Estimated binding energy vs embeddedness. Binding energy per 
residue vs. (a) percentage of peptide’s accessible surface area that is no longer 
accessible in the complex with protein; (b) ratio of number of residues in I-site to 
number of residues in peptide. Averages for each of 941 redundancy groups. 
Blue: energies as estimated by PopTop model. Red: energies from PDBBind 
database for 75 redundancy groups of interfaces present in PDBBind database. 

For the interfaces of the PPRMint dataset, no significant gross relationship 

was seen between chain extendedness and estimated binding energy (rP = 0.15); 

however, as Figure 23 makes apparent, the peptides having the highest estimated 
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per-residue binding energy form a cluster characterized by actual end to end 

lengths of approximately double the theoretical rms length for random flight 

conformations.  
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Figure 23. Estimated binding energy vs ratio of actual length to random flight 
length. Binding energy per residue vs. ratio of end-to-end lengths of peptides in 
interfaces (distance between terminal Cα atoms, Ǻ) to theoretical random flight 
length (Ǻ), averages for each of 941 redundancy groups. Blue: energies as 
estimated by PopTop model. Red: energies from PDBBind database for 75 
redundancy groups of interfaces present in PDBBind database. 

To assess the relationship, if any, between peptide secondary structure 

tendencies and binding energy, the interface binding energies as estimated by the 

PopTop model (averaged over each interface redundancy group (Rgrp)) were 

compared with the percentages of each peptide sequence categorized (by 

mesostate, as described above) as having helical, extended β-strand, and left-

handed helical tendencies, and with the lengths of the longest contiguous helical 

and β-strand subsequences in each peptide.  Little correlation was seen between 
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the helical, β-strand, and left-handed helix percentages and the estimated binding 

energy per residue (rP = 0.26, -0.27, and 0.06, respectively), even after 

normalizing the estimated binding energies to eliminate the dependence on 

peptide length by dividing the estimated energy per residue by the value given by 

the regression line in Figure 21(a) (rP = 0.32, -0.33, and 0.06, respectively).  There 

did appear to be some negative relationship between the length of the longest beta 

strand as a percentage of peptide length, and the estimated binding energy per 

residue normalized for length effects (rP = 0.44); as is evident from Figure 24, the 

likelihood of having a higher than average per-residue binding energy declines 

noticeably if the longest beta strand segment occupies more than about half of the 

sequence. 
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Figure 24. Estimated binding energy per residue vs maximum beta strand length. 
Binding energy per residue, normalized to eliminate dependence on peptide 
length, vs. length of longest contiguous beta strand as percentage of peptide 
length, averages for each of 941 redundancy groups. Blue: energies as estimated 
by PopTop model. Red: energies from PDBBind database for 75 redundancy 
groups of interfaces present in PDBBind database. 
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Relationship of peptide composition to binding energy 

The contributions of each peptide residue to binding energy were 

estimated based on both the PopTop model (Table 4) and the Autodock-based 

model (Table 5), with the energy contributions further allocated according to the 

amino acid type of the nearest neighboring residue in the I-site.  (Data reflects 

averages for each category over the 14,592 non-redundant residue pairings as 

clustered in the (Rgrp) residue redundancy groups.) Results from both models 

identify generally the same peptide residues and residue pairings as making the 

greatest and least energy contributions; both attribute relatively high energies to 

charge-charge interactions and aromatics.



 

 

 

PresAvg  A C D E F G H I K L M N P Q R S T V W Y
A -0.73 0.18 -0.65 -0.79 -0.85 -0.86 -0.80 -0.87 -0.75 -0.69 -0.77 -0.72 -0.80 -0.74 -0.76 -0.74 -0.72 -0.75 -0.79 -0.71 -0.80 -1.03
C -0.82 0.10 -0.57 -0.75 -0.90 -0.96 -0.84 -0.97 -0.80 -0.81 -0.83 -1.04 -0.78 -0.70 -1.23 -0.96 -0.82 -0.88 -0.81 -0.92 -0.70 -0.96
D -0.68 0.21 -0.81 -0.69 -0.57 -0.69 -0.76 -0.76 -0.60 -0.92 -0.74 -0.74 -0.71 -0.70 -0.72 -1.00 -0.82 -0.75 -0.77 -0.73 -1.01
E -0.66 0.25 -0.75 -0.67 -0.76 -0.54 -0.77 -0.73 -0.59 -0.91 -0.81 -0.56 -0.82 -0.57 -0.71 -0.97 -0.90 -0.80 -0.63 -0.71 -1.00
F -0.83 0.23 -0.81 -1.30 -0.62 -0.80 -0.85 -0.82 -0.85 -0.79 -0.98 -0.96 -0.74 -0.89 -0.89 -0.79 -0.86 -0.92 -1.06 -0.84 -0.76 -1.09
G -0.76 0.17 -0.74 -0.66 -0.86 -0.89 -0.84 -0.94 -0.80 -0.80 -0.81 -0.74 -0.82 -0.77 -0.67 -0.82 -0.72 -0.82 -0.83 -0.74 -0.85 -1.02
H -0.71 0.25 -0.67 -0.92 -0.82 -1.07 -0.62 -0.22 -0.86 -0.70 -0.88 -0.89 -0.65 -0.55 -0.95 -0.71 -0.65 -0.93 -0.64 -0.97 -0.57 -0.82
I -0.75 0.23 -0.74 -1.00 -0.82 -0.94 -0.86 -0.69 -0.80 -0.69 -0.89 -0.73 -0.83 -0.56 -1.03 -0.80 -0.79 -0.82 -0.74 -0.76 -0.76 -0.80
K -0.67 0.26 -0.62 -0.65 -1.18 -1.08 -0.78 -0.77 -0.46 -0.50 -0.70 -0.60 -0.74 -0.73 -0.51 -0.58 -0.63 -0.69 -0.65 -0.60 -0.57 -1.26
L -0.76 0.19 -0.76 -0.81 -0.82 -0.91 -0.81 -0.76 -0.73 -0.80 -0.89 -0.78 -0.79 -0.77 -0.79 -0.81 -0.76 -0.80 -0.95 -0.78 -0.67 -1.03
M -0.63 0.27 -0.75 -0.78 -0.90 -0.60 -0.68 -0.62 -0.74 -0.77 -0.51 -0.58 -0.77 -0.61 -0.75 -0.75 -0.71 -0.71 -0.69 -0.69 -0.89
N -0.70 0.24 -0.44 -0.94 -0.85 -0.87 -0.70 -0.69 -0.88 -0.72 -0.75 -0.60 -0.80 -0.77 -0.74 -0.73 -0.62 -0.78 -0.70 -0.68 -0.79 -0.78
P -0.73 0.24 -0.78 -0.84 -0.87 -0.87 -0.75 -0.76 -0.74 -0.75 -0.69 -0.89 -0.85 -0.79 -0.76 -0.74 -0.74 -0.79 -0.77 -0.64 -0.74 -0.76
Q -0.64 0.26 -0.69 -0.71 -0.71 -0.81 -0.73 -0.47 -0.68 -0.52 -0.64 -0.62 -0.80 -0.83 -0.59 -0.59 -0.68 -0.60 -0.88 -0.53 -0.69 -0.84
R -0.69 0.23 -0.78 -0.77 -1.27 -1.16 -0.82 -0.71 -0.57 -0.63 -0.47 -0.63 -0.67 -0.71 -0.52 -0.65 -0.66 -0.63 -0.67 -0.61 -0.74 -0.99
S -0.75 0.21 -0.56 -0.86 -0.84 -0.90 -0.86 -0.74 -0.76 -0.66 -0.80 -0.88 -0.77 -0.79 -0.91 -0.64 -0.84 -0.76 -0.70 -0.79 -0.81 -1.04
T -0.70 0.21 -0.62 -0.69 -0.81 -0.92 -0.70 -0.72 -0.64 -0.64 -0.76 -0.74 -0.71 -0.69 -0.75 -0.80 -0.67 -0.79 -0.79 -0.77 -0.75 -0.94
V -0.70 0.18 -0.60 -0.63 -0.85 -0.74 -0.64 -0.74 -0.68 -0.68 -1.01 -0.75 -0.60 -0.67 -0.74 -0.67 -0.79 -0.75 -0.84 -0.64 -0.77 -1.10
W -0.84 0.15 -0.73 -0.67 -1.24 -0.95 -0.82 -0.73 -1.01 -0.73 -0.80 -0.87 -1.08 -0.71 -1.31 -0.65 -0.99 -0.84 -0.87 -0.93 -0.76 -1.02
Y -0.84 0.29 -0.83 -0.91 -1.10 -1.24 -0.59 -0.90 -0.77 -0.66 -0.81 -0.95 -0.78 -0.95 -1.13 -0.71 -0.95 -1.15 -0.91 -1.05 -0.69 -0.93
Avg -0.70 -0.82 -0.88 -0.91 -0.74 -0.74 -0.74 -0.69 -0.80 -0.77 -0.75 -0.75 -0.81 -0.73 -0.78 -0.81 -0.79 -0.75 -0.73 -0.97  
Table 4. Predicted interaction energies for non-redundant pairings of peptide residues with target residues (PopTop model). 
Residue-level contributions to binding energies (kcal/mol, as estimated by PopTop model) for peptide residues of the type 
shown in the left-most column when the target residue type in closest proximity is that shown in the top row, averages based 
on 14,591 non-redundant pairings.. “Unb” column contains the energies for peptide residues that have no target residue with 
any atoms within 4A of any atoms of the peptide residue.  Mean: -0.78. Standard deviation (σ): 0.15.  Blue: more than 2 σ 
above mean; light blue: between +1σ and +2σ; grey: between -1σ and +1σ; yellow: between -1σ and -2σ; orange: more than 2σ 
below mean (note energies are negative, lower value connotes higher energy interaction). 
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Pres Avg  A C D E F G H I K L M N P Q R S T V W Y
A -0.85 0.28 -0.80 -0.89 -0.98 -0.92 -0.93 -0.96 -0.85 -0.86 -0.94 -0.87 -0.97 -0.91 -0.89 -0.85 -0.81 -0.90 -0.93 -0.87 -0.95 -1.05
C -0.94 0.15 -0.54 -1.00 -0.99 -1.09 -0.94 -1.21 -0.93 -0.91 -0.98 -1.28 -0.88 -0.86 -1.49 -1.04 -0.85 -0.96 -0.92 -1.16 -0.82 -1.02
D -0.70 0.29 -0.77 -0.58 -0.41 -0.67 -0.94 -0.85 -0.53 -1.03 -0.75 -0.83 -0.82 -0.73 -0.79 -1.05 -0.98 -0.81 -0.66 -0.84 -1.06
E -0.64 0.36 -0.77 -0.47 -0.58 -0.51 -0.74 -0.74 -0.52 -0.97 -0.78 -0.63 -0.86 -0.57 -0.72 -0.93 -0.98 -0.84 -0.59 -0.67 -1.03
F -0.81 0.36 -0.95 -1.17 -0.63 -0.74 -0.93 -0.72 -0.94 -0.93 -0.98 -0.90 -0.86 -0.89 -0.84 -0.71 -0.73 -0.86 -0.91 -0.93 -0.82 -0.99
G -0.87 0.27 -0.93 -0.71 -0.86 -0.97 -0.99 -1.08 -0.92 -0.95 -0.94 -0.84 -0.97 -0.94 -0.80 -0.95 -0.83 -0.95 -1.02 -0.91 -0.96 -1.07
H -0.67 0.38 -0.65 -0.93 -0.76 -0.94 -0.68 -0.24 -0.71 -0.66 -0.84 -0.92 -0.59 -0.58 -0.91 -0.63 -0.66 -0.93 -0.55 -1.01 -0.49 -0.74
I -0.86 0.35 -0.93 -1.17 -0.73 -0.91 -0.98 -0.91 -0.94 -0.92 -1.04 -0.95 -1.05 -0.69 -1.08 -0.87 -0.90 -0.88 -0.88 -0.95 -0.84 -0.84
K -0.66 0.39 -0.66 -0.47 -1.16 -1.05 -0.82 -0.90 -0.47 -0.54 -0.65 -0.69 -0.81 -0.76 -0.42 -0.57 -0.49 -0.73 -0.70 -0.72 -0.58 -0.97
L -0.86 0.28 -0.90 -0.84 -0.78 -1.05 -0.96 -0.76 -0.78 -0.95 -1.10 -0.97 -1.00 -0.82 -0.91 -0.90 -0.87 -0.84 -1.08 -0.97 -0.79 -1.12
M -0.67 0.52 -0.76 -0.78 -0.80 -0.67 -0.87 -0.64 -0.85 -0.85 -0.63 -0.62 -0.89 -0.72 -0.78 -0.76 -0.82 -0.71 -0.82 -0.73 -0.91
N -0.75 0.37 -0.45 -1.03 -0.87 -0.91 -0.75 -0.80 -0.93 -0.76 -0.79 -0.65 -0.78 -0.79 -0.72 -0.88 -0.74 -0.91 -0.77 -0.78 -0.90 -0.82
P -0.77 0.36 -0.81 -0.92 -0.75 -0.77 -0.88 -0.73 -0.78 -0.81 -0.69 -0.94 -0.90 -0.88 -0.85 -0.80 -0.78 -0.88 -0.91 -0.70 -0.82 -0.85
Q -0.61 0.39 -0.67 -0.58 -0.61 -0.82 -0.64 -0.49 -0.72 -0.51 -0.66 -0.61 -0.78 -0.85 -0.58 -0.59 -0.65 -0.56 -0.87 -0.58 -0.65 -0.77
R -0.54 0.36 -0.56 -0.74 -1.01 -1.00 -0.64 -0.66 -0.41 -0.52 -0.36 -0.54 -0.55 -0.62 -0.26 -0.56 -0.57 -0.46 -0.52 -0.54 -0.58 -0.65
S -0.82 0.31 -0.65 -0.97 -0.97 -0.95 -0.87 -0.84 -0.87 -0.82 -0.90 -0.94 -0.83 -0.85 -1.01 -0.70 -0.91 -0.86 -0.79 -0.87 -0.91 -1.04
T -0.77 0.31 -0.70 -0.72 -0.92 -1.01 -0.76 -0.78 -0.72 -0.72 -0.90 -0.84 -0.78 -0.73 -0.80 -0.87 -0.75 -0.85 -0.87 -0.91 -0.90 -0.93
V -0.80 0.27 -0.65 -0.78 -0.84 -0.77 -0.77 -0.89 -0.79 -0.89 -1.09 -0.92 -0.83 -0.74 -0.91 -0.78 -0.92 -0.84 -0.93 -0.80 -0.86 -1.14
W -0.77 0.24 -0.72 -0.72 -1.24 -0.88 -0.81 -0.77 -1.03 -0.80 -0.61 -0.97 -1.00 -0.65 -1.23 -0.55 -0.64 -0.71 -0.76 -0.68 -0.60 -1.00
Y -0.73 0.44 -0.70 -0.80 -0.99 -1.06 -0.61 -0.73 -0.66 -0.69 -0.70 -0.74 -0.66 -0.84 -1.14 -0.64 -0.67 -1.03 -0.83 -0.92 -0.63 -0.83

Avg -0.73 -0.85 -0.85 -0.88 -0.79 -0.80 -0.78 -0.76 -0.85 -0.84 -0.82 -0.80 -0.84 -0.76 -0.78 -0.85 -0.83 -0.82 -0.77 -0.94  

Table 5. Predicted interaction energies for non-redundant pairings of peptide residues with target residues (reweighted 
Autodock model). Residue-level contributions to binding energies (kcal/mol, as estimated by Autodock-based model) for 
peptide residues of the type shown in the left-most column when the target residue type in closest proximity is that shown in 
the top row, averages based on 14,591 non-redundant pairings.. “Unb” column contains the energies for peptide residues that 
have no target residue with any atoms within 4A of any atoms of the peptide residue.  Mean: -0.82. Standard deviation (σ): 
0.17.  Blue: more than 2 σ above mean; light blue: between +1σ and +2σ; grey: between -1σ and +1σ; yellow: between -1σ and 
-2σ; orange: more than 2σ below mean (note energies are negative, lower value connotes higher energy interaction).

122 



 

123 

 

As Figure 25 shows, there appears to be a significant relationship between 

the relative abundance of aromatic (F, W, Y) residues and overall binding energy, 

both for energies derived from the PopTop model predictions and for actual 

energies from the PDBBind training set (rP of  0.63 and 0.42, respectively). 
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Figure 25. Influence of aromatic and charged residues on estimated binding 
energies. Binding energies per unit peptide length (SRlen) vs. percent aromatic 
residues (F, Y, W) shown in SEQRES of peptide plus all I-site residues within 4A 
of any peptide residue. Blue: energies as estimated by PopTop model. Red: 
energies from PDBBind database for 75 redundancy groups of interfaces present 
in PDBBind database. 

Figure 26 (blue bars) depicts the relative abundance of the various amino 

acids among the ‘hot spot’ peptide residues contributing more than 1.25 kcal/mol 

to estimated binding energy (the top ten percent of residues in terms of 

contribution to estimated binding energy), as compared to the overall residue 

frequencies present in the peptides. The results of a peptide hot spot analysis by 

London, et al. [185], using a different method (computational alanine scanning) 

on a 103-interface dataset, are shown by way of comparison (red bars).  By the 
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approach used here, the positively charged residues R and K and the aromatics F, 

Y, and W are the most overrepresented.  
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Figure 26. Frequencies of hot spot residues relative to all residues. Blue: ratio of 
frequencies of residues contributing at least 1.25 kcal/mol of binding energy as 
estimated by PopTop model to overall residue frequencies in peptides 
representing 941 redundancy groups (Rgrp).  Red: ratio of frequencies of hot spot 
residues (as determined by ‘computational alanine scanning’) to overall residue 
frequencies in peptide-protein interface dataset reported by London et al. 

Abundance and quality of hydrogen bonds, salt bridges, and cation-pi 

interactions 

Detailed descriptors of hydrogen bond geometry were extracted and 

included in the Hbonds table in the PPRMint database for each pairing of a 

hydrogen bond donor atom with a hydrogen bond acceptor atom at a distance of 

3.6Ǻ or less. Only pairings of a peptide atom with an I-site atom were included; 

intra-chain pairings were not analyzed.  30,583 pairings were found, but many 
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have quite poor bond geometry. There are 19,488 H bonds for which the (non-

regression weighted) hydrogen bond energy model estimates an energy of -1.0 

kcal/mol or better (-8.0 kcal/mol is the optimum for a ‘perfect’ bond under this 

model); in 9,503 (48.8%) the peptide is the donor and in 9,985 (51.2 %), the 

acceptor. 11864 (60.9 %) were bonds to the peptide main chain, and 7624 (39.1 

%) to the peptide side chain. These frequencies are in close agreement with those 

reported by London, et al. [185] (63.0 % and 37.0 %, respectively).  The number 

of H bonds per 100Ǻ2 of interface area was 1.00 (σ = 0.55); there were an average 

of 6.73 (σ =  4.28) H bonds per peptide (averages over 941 interface redundancy 

groups, with interface area taken as the increase in solvent accessible surface area 

of the target on removal of the peptide).  The distribution of bond angles and 

donor-acceptor distances is depicted in Figure 27(a); the distribution of D-A 

distances and bond angles in the dataset (see Figure 27(a)) is in close agreement 

with that found by McDonald, et al. for hydrogen bonds in proteins [223].  The 

great majority of bonds have donor-acceptor distances close to the mean of 2.90 

(σ =  0.2Ǻ), and bond angles in the range 140º to 180º.  Figure 27(b) shows the 

distribution of energies as estimated by the (raw, non-regression weighted) 

hydrogen bond model already described. 
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Figure 27. Hydrogen bond geometries.  Histograms of 19,496 hydrogen bond 
donor-acceptor pairs having energy as estimated by raw (non-regression 
weighted) H bond model ≤ -1.0 kcal/mol, (a) by donor-acceptor distance (Ǻ) and 
angle made by donor, donor hydrogen, and acceptor (θ, degrees); color indicates 
estimated energy on scale from -1.0 kcal/mol (dark blue) to -8.0 kcal/mol (dark 
red) (based on simplified version of H bond energy as function of D_A distance 
and angle only). (b) by energy as estimated by raw H bond model. 
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Similarly, the SaltBridges table in the PPRMint database includes records 

for all pairings of a lysine ζ-N, arginine η-N, or an N-terminal backbone N atom 

with an aspartate δ-O, glutamate ε-O, or C-terminal carboxyl O atom between the 

peptide chain and the I-site, at a distance of 5Ǻ or less. Of 7,090 such pairings, 

6,049 had energies better than -1.0 kcal/mol as estimated by the (raw, non-

regression weighted) salt bridge model. In 3,958 (55.8%) of these pairings, the 

cation belonged to the peptide; in 3,132 (44.2%), to the I-site. The average 

number of salt bridges per 100Ǻ2 of interface area was 0.31 (σ =  0.19); there 

were an average of 2.02 (σ =  1.34) salt bridges per peptide (averages over 941 

interface redundancy groups).  Table 6 shows the breakdown of salt bridges by 

type; the most abundant, accounting for 29.6% of all salt bridges, were pairings of 

arginine or lysine in the peptide with glutamate in the target.  Figure 28 compares 

the distribution of cation-anion separations as measured for the PPRMint dataset 

with the theoretical salt bridge energy function that was used to compute ESB. 

The CationPi table of the database encompasses all pairings between 

peptide and I-site involving phenylalanine, tyrosine, or tryptophan on one side of 

the interface and a charged amine of lysine, arginine, or the backbone N terminus 

on the other, if the cation to ring centroid distance is ≤ 8Ǻ.  Of 7,564 such 

pairings, 746 were sufficiently far from optimal to produce estimated energies 

worse than -1.0 kcal/mol according to the energy model used. Of the remaining 

6,818, the peptide contributed the cation in 5,022 cases (73.7%), the aromatic ring 

in 1,796 (26.3%).   
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Cation in peptide Anion in peptide 

Type Count Percent Type  Count Percent 
K-D 381 5.4 D-K 432 6.1 
R-D 787 11.1 D-R 595 8.4 
K-E 881 12.4 E-K 704 9.9 
R-E 1216 17.2 E-R 479 6.8 
N-D 135 1.9 D-N 2 0.0 
N-E 489 6.9 E-N 7 0.1 
K-O 34 0.5 O-K 679 9.6 
R-O 20 0.3 O-R 224 3.2 
N-O 15 0.2 O-N 10 0.1 
Total 3958 55.8 Total 3132 44.2 

Table 6. Salt bridges by type. Counts of cation-anion pairings ≤ 5Ǻ across 
interfaces. Types: K = lysine, R = arginine, D = aspartate, E = glutamate, N = N-
terminal backbone N, O = C-terminal carboxyl O. In each pair, peptide residue 
appears first, followed by I-site residue. 

   

 

Figure 28. Distribution of salt bridges by cation-anion separation. Histogram of 
salt bridges by cation-anion distance (Ǻ), with salt bridge model energy function 
overlaid for comparison (well depth 8 kcal/mol). 
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The average number of such interactions per 100Ǻ2 of interface area was 

0.39 (σ = 0.41); there were an average of 2.53 (σ = 2.81) per peptide (averages 

over 941 interface redundancy groups).  As Table 7 shows,  the most abundant 

pairings, accounting for 37.4% of the total, were of a cation in the peptide with 

tyrosine in the I-site; the importance of tyrosine in molecular recognition has been 

noted by others [224].  The distribution of cation to ring centroid distances and 

angles is shown in Figure 29, and illustrates that a majority of the cation-pi 

pairings are quite suboptimal. 

 
Cation in peptide Ring in peptide 

Type Count Percent Type Count Percent
K-F 294 4.3 F-K 220 3.2
K-W 258 3.8 W-K 76 1.1
K-Y 466 6.8 Y-K 212 3.1
R-F 607 8.9 F-R 557 8.2
R-W 589 8.6 W-R 157 2.3
R-Y 834 12.2 Y-R 565 8.3
N-F 386 5.7 F-N 1 0.0
N-W 334 4.9 W-N 4 0.1
N-Y 1254 18.4 Y-N 4 0.1

Total 5022 73.7 Total 1796 26.3

Table 7. Cation-pi interactions by type. Counts of cation-pi pairings with r ≤ 8Ǻ 
across interfaces. N refers to N-terminal backbone N; in each pair, peptide residue 
appears first, followed by I-site residue. 

Discussion  

A dataset was constructed of 3,924 representative peptide-protein interface 

structures using PDB data, and a number of structural and geometric 

characteristics of those interfaces were extracted and quantified.  From these, 
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energetic contributions of non-bonded interactions were estimated and a relational 

database was constructed to facilitate extraction of statistics and testing of 

hypotheses regarding the contribution of various factors to peptide binding. From 

this data inferences were drawn that support a tentative set of heuristics to guide 

the construction of peptide libraries and the selection of candidate peptide 

sequences for evaluation as ligands, and that may provide useful direction for 

further inquiry. 
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Figure 29. Cation-pi geometries. Histogram of 6,818 pairings of cations with 
aromatic rings between peptides and I-sites where energy as estimated by model 
is ≤ -1.0 kcal/mol, by cation to ring centroid distance (r, Ǻ) and angle between 

r 

Count 

θ 



 

131 

 

line from cation to ring centroid and line perpendicular to plane of ring (θ, 
degrees).  Color indicates estimated energy on scale from -1.0 kcal/mol (dark 
blue) to -8.0 kcal/mol (dark red). 

Binding energy prediction model 

The choice of energy scoring functions was constrained by the desire to 

enable evaluation of the relative quality and importance of specific interactions 

whose contribution to peptide-protein binding were desired to be analyzed in 

detail -- hydrophobic interactions, hydrogen bonds, salt bridges, cation-pi 

interactions, van der Waals forces, and electrostatic interactions – and to enable 

estimates of the contributions of specific residues to the binding energy of the 

entire interface. The choice was therefore made to base the model primarily on 

descriptors representing estimates of the actual energies of the interactions of 

interest, computed using functions describing energies in terms of the specific 

geometry and characteristics of each individual interaction. It was discovered that 

a scoring function based on these energy descriptors alone, whether expressed in 

six separate parameters as in the PopTop model or in three aggregated parameters 

as output by Autodock, provided only mediocre predictive performance (see 

Table 1). After experimentation to determine what additional parameters would 

be most informative, to both models were added three general descriptors of the 

peptide’s size and geometry: radius of gyration (Rg), length in number of residues 

(Plen), and solvent accessible surface area (ASA), producing considerable 

improvement in performance.  The scoring function using the six separate PopTop 

energy descriptor terms plus the three geometric descriptors, which is the scoring 
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function by which the energy statistics reported herein were calculated except 

where otherwise noted, correlated with the PDBBind-derived training set at rP = 

0.72 (ME = 1.07 kcal/mol (0.78 pKD units); on leave-one-out cross-validation, rP 

= 0.60 and ME = 1.24 kcal/mol ( 0.90 pKD units)).  

There is an extensive literature on binding energy scoring functions, ably 

reviewed by others [53, 225], all addressing functions primarily or exclusively 

designed for and trained on protein interactions with small molecules.  Wang, et 

al. [225] benchmarked 14 scoring functions on the full PDBBind ‘refined’ dataset 

of (then) 800 protein-ligand complexes [204].  The best performer had rP = 0.566 

and ME = 1.95 kcal/mol (1.42 pKD units), and the average was rP of 0.39 and ME 

of 2.19 kcal/mol (1.59 pKD units).  The average standard error on cross-validation 

reported for the Autodock 4 energy scoring function [205] was 2.63 kcal/mol 

(1.91 pKD units).  A scoring function recently reported by Sotrifer et al. [54], 

using seven descriptors selected as most informative from a 66-descriptor dataset, 

achieved a Q2 on cross-validation of 0.72 and standard error of estimate of 1.08 

pKD units (approximately corresponding to rP of 0.85 and SPRESS of 1.49 

kcal/mol).  Imperfect though the comparison obviously is, the performance of the 

PopTop scoring function seems reasonably within the range achieved by others, 

even without taking into account that peptides arguably present a more difficult 

predictive task owing to the large number of rotatable bonds (which add to the 

uncertainty regarding the unbound state), and owing to the difficulty of measuring 
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peptide affinities accurately and the consequent likelihood of greater experimental 

error in the training dataset.  

Table 2 shows the fitted descriptor weights for both models, as well as the 

relative contribution of each descriptor to the computed total interface energies. 

The large contribution of the peptide length descriptor in both models evidences a 

strong general correlation between peptide length and affinity.  It may be doubted 

that this correlation holds true for all possible peptide sequences, keeping in mind 

the selection bias inherent in working from a training set containing only peptides 

actually bound in interfaces. Nevertheless, for peptides known to bind at some 

measurable affinity, it does not seem unreasonable to suppose that each additional 

residue makes some contribution to affinity, on average, assuming it is able to 

make productive contact with the protein surface.  Viewed in this way, the peptide 

length descriptor may be regarded as representing a rough aggregate of the 

average per-residue contributions of the various forces, and the weighting of the 

descriptors of the actual forces as in effect fine tuning the contribution of each as 

it differs from the aggregate embodied in the weighted length descriptor. (Indeed, 

in most if not all parameterized energy scoring functions, there is considerable 

overlap between descriptors – for example, a salt bridge term and an electrostatic 

term can hardly be said to be perfectly orthogonal.) Accordingly, the mean 

contribution of each of the PopTop energy-related descriptors is relatively small, 

and each has a range and variance such that the contribution can be either positive 

or negative for a given interface. The considerable improvement in predictive 
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accuracy obtained by including the size-related terms suggests a likelihood that 

the energetics of these peptide interfaces are not particularly well captured by 

descriptors that focus only on the details of the atom-level non-bonded 

interactions. Several possible reasons suggest themselves. First, as discussed in 

greater detail below, analysis of those interfaces in the PPRMint dataset that are 

present in multiple redundant versions strongly suggests that peptide-protein 

interfaces are much more mobile and dynamic than ligand-protein interactions are 

usually assumed to be, with many transient non-bonded interactions, so the non-

bonded interaction descriptors are arguably aiming at a moving target. Second, 

with respect to the hydrogen bond descriptor and to a lesser degree the salt bridge 

descriptor, it must be kept in mind that any available donors or acceptors in either 

the peptide or the I-site are likely, in the unbound state, to be hydrogen bonded 

with water, so that a hydrogen bond in the peptide-protein interface does not 

necessarily reflect a large change in energy (and, if the bond geometry is poor, 

may even be energetically inferior to the solvated state). Third, for a molecule 

having the flexibility of a typical peptide, it is not surprising that most of the 

contribution of van der Waals forces could be encompassed in a gross per-residue 

aggregate, since it would be expected that the peptide would arrange itself in such 

a way as to avoid greatly suboptimal inter-atomic distances.  

Interface composition and redundancy 

Any peptide-protein interface structure dataset, regardless of how selected, 

is inherently very far from an unbiased sampling of peptide-protein affinity space. 
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The PDB contains only those complexes that are either amenable to NMR 

analysis or that can be crystallized, and then only those that involve molecules of 

sufficient interest to justify the effort and expense. Nearly all peptides in the PDB 

are of biological origin; there is essentially no sampling of random or artificial 

sequences.  Obviously, therefore, no claim is made that the PPRMint dataset is 

representative of peptides in general; it does, however, represent a kind of 

‘existence proof’ of what outcomes can reasonably be expected from those 

combinations of peptide and interface characteristics that are adequately 

represented in the sample.  

It is common in assembling structural datasets to make careful selection of 

the structures presumed most accurate, typically by including only X-ray 

structures of resolution less than some fairly strict cutoff, and to avoid inclusion 

of structures presumed redundant, typically by rejecting any structures having 

sequence and/or structural similarity to any of the structures retained. The goal of 

all such analyses is to extract the most accurate information possible from raw 

data that is noisy and represents a sparse and far from random sampling of the 

search space. Careful exclusion of all but the (presumed) highest quality data is 

one strategy for doing so, but it is not clear that the presumed improvement in 

accuracy necessarily compensates for the resulting reduction in sample 

population.  Particularly in the context of peptide-protein interfaces, rejection of 

all but the very highest-resolution X-ray structures has several negative 

consequences.  It greatly reduces the diversity of a sample population that is 
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already badly biased by virtue of including only structures that happen to have 

been studied and solved. It ignores all of the inaccuracies arising from causes 

other than poor resolution, such as guesswork in model fitting. Most importantly 

from the standpoint of the present analysis, it implicitly assumes that a single 

structure can adequately represent an interface that, according to the evidence 

presented in Chapter 2, may be quite dynamic and mobile. A different approach 

was therefore chosen, and the decision was made to include in the PPRMint 

dataset all peptide-protein pairings available in the PDB at the time the sample 

was taken, if they could fairly be characterized as interactions of an 8- to 32-mer 

peptide with a surface of a protein. NMR structures as well as X-ray structures 

were included, regardless of resolution and redundancy.  The approach chosen 

opens the possibility of employing methods analogous to the use of signal 

averaging to measure a weak, noisy electrical signal, an approach that produces 

results far superior to those that would be obtained by attempting to identify and 

select the single “best” sample from a sample set.   

A further reservation regarding the common practice of relying on 

sequence similarity cutoffs to eliminate redundant data is that whether or not two 

data points are redundant depends on what information is sought. The inclusive 

approach allows grouping of data according to similarity criteria tailored to each 

property being analyzed, and at a level corresponding to the property of interest – 

extracting groups of similar interfaces for interface level properties, groups of 

similar residue pairs for properties at the level of residue interactions, etc. Since 
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the detailed characteristics of each interface are exposed in the relational database, 

it requires only a simple SQL query to extract subsets or groupings based on any 

desired combination of criteria. 

Implications for peptide ligand design 

Based on the results already described, several observations may be 

offered that may provide useful insight regarding the design of peptide libraries 

and the selection of peptide leads. 

1. A  practicable optimized affinity limit is about 10 nM kD. As Figure 

21(b) shows, for peptides in the 8 to 20 residue size range, the energy distribution 

rarely extends below approximately -11 kcal/mol, corresponding to KD of 

approximately 10 nM.  

2. Peptide length is relatively unimportant. As also appears from Figure 

21(b), the distributions of estimated binding energy are similar for all lengths 

from 8 to about 20, with a few outliers in the -13 kcal/mol range for lengths above 

12. The data suggests that somewhat better energies can be obtained for lengths 

above 20, but since the average marginal gain per residue is then only about 0.4 

kcal/mol on average, any gain may be illusory due to offset by the increase in 

entropic penalty. Given the apparent lack of dependence on length, an effective 

strategy may be to screen on libraries of (say) 20-mers, with the expectation that 

doing so increases the probability of the peptide having some sub-region capable 

of binding the target as compared to shorter peptides, and that any ‘hits’ might 

then be optimized down to a shorter length.      
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3. Peptides prefer to bind in ‘arroyos’. It is well understood that 

polypeptides find it energetically advantageous to fold in such a way as to hide 

hydrophobic moieties from the solvent, so it is not surprising that interface 

configurations that remove more of the peptide surface from exposure to solvent 

would be favored, at least to the extent that doing so tends to bury hydrophobic 

regions more so than hydrophilic ones. It is also logical that moieties in contact 

are usually contributing energy to the interface, since otherwise they would 

presumably tend not to remain in contact. The data shows a clear energy gain on 

average from increased burial of peptide surface (Figure 22(a)), or, expressed in 

another way, from larger numbers of I-site residues in contact with the peptide 

(Figure 22(b)). Analogously, London, et al. concluded, using other methods, that 

peptides “tend to bind in the largest pockets available on the protein surface” 

[185]. 

4. Aromatic residues in the interface enhance binding. The data show 

tryptophan and tyrosine fully three-fold overrepresented in I-sites, and 

phenylalanine 1.5-fold overrepresented (see Figure 16).  At least over the range 

spanned by the dataset, the interfaces with better estimated energies tend to be 

characterized by relatively higher percentages of aromatic residues (Figure 25).  

In the ‘hot spot’ residues making the greatest contribution to estimated binding 

energy, the aromatics are the most overrepresented (2.5-fold, 2.7-fold, and 3-fold 

for tyrosine, phenylalanine, and tryptophan, respectively, see Figure 26). The 
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aromatics were also the most abundant ‘hot spot’ residues in the 103-interface 

dataset analyzed by London et al. using different methods [185]. 

5. Peptides should be relatively unstructured (but not too much). In theory, 

an overly flexible peptide should bind poorly, other factors being equal, because 

of the larger decrease in conformational entropy on binding. On the other hand, a 

peptide that maintains an overly rigid structure should be less able to adapt to the 

target surface so as to find an optimal fit. One measure of “foldedness” relates to 

the tendency of polymers to exhibit random flight behavior under θ conditions 

and expand or collapse as conditions deviate from θ [51].  A substantial majority 

of the peptides in the dataset have end-to-end lengths greater than the theoretical 

random flight lengths, suggesting a relatively un-collapsed state. See Figure 18. It 

may be noted, however, that a number of the interfaces in the shorter length 

ranges having the best estimated binding energies do have end-to-end lengths 

somewhat smaller than their theoretical random flight lengths, consistent with the 

hypothesis that peptides short enough to comprise a single “blob” (see Chapter 2) 

may have relatively stable conformations, which may lead to excellent binding if 

that conformation happens to be highly complementary to a binding site on the 

target.  It may be hypothesized that the optimal state for peptides in relatively 

small libraries may be somewhat  extended as compared to the θ state, so as to 

provide both reasonable diversity and adequate affinity.  As Figure 23 shows, the 

peptides with the best per-residue energetics appear to cluster around an end-to-

end length to random flight length ratio of about 2. The distribution of secondary 
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structure tendencies arguably supports the view that excessive flexibility is 

undesirable: for the peptides that have the best per-residue estimated energies, the 

longest contiguous stretch of residues in the extended-β compartment of 

Ramachandran space comprises about 20% of the peptide length (see Figure 19). 

6. Salt bridges enhance binding. Pairings of arginine or lysine with 

aspartate or glutamate were by far the highest frequency pairings in the dataset 

(Table 3): of the 11,871 peptide residues in contact with the I-site, for fully 1,457 

(12.3%) of these, the peptide residue was one of the charged residues, and the 

closest I-site contact was one of the oppositely charged residues.  In the great 

majority of the charged residue pairings, the atomic spacing between the charged 

atoms was close to ideal, as shown in Figure 28. In terms of estimated energy 

contribution, pairings in which the peptide residue is the cation are favored over 

those in which the peptide residue is the anion, with arginine-aspartate, arginine-

glutamate, and lysine-aspartate pairings all estimated to contribute energy at least 

three standard deviations above the average for all pairings.  Arginine and lysine 

are also among the most overrepresented types among ‘hot spot’ residues in 

peptides (those contributing at least -1.25 kcal/mol to the estimated binding 

energy, see Figure 26).  It seems reasonable to infer from this data that the salt 

bridges, an average of approximately two per peptide, provide relatively fixed 

‘anchors’ tethering the peptide to the I-site and stabilizing the overall positioning 

of the peptide in the interface.  
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7. Hydrogen bonds in interfaces are relatively unimportant. Hydrogen 

bonds were considerably less abundant (1.00 bonds per 100Ǻ2 of interface area (σ 

= 0.55)) than reported by London, et al., for their database of 103 peptide-protein 

interfaces (1.6 H bonds per 100Ǻ2), but in agreement with the H bond density of 

1.0 per 100Ǻ2 in protein-protein interfaces found by Xu et al. [188].  The net 

regression-weighted contribution of the (average) 6.73 hydrogen bonds per 

interface ranged from -1.49 to + 3.15 kcal/mol, with an average of +0.83 (σ = 

0.52); in effect, on average, hydrogen bonds tended to worsen estimated binding 

energy.  As previously noted, this may be, in part, an artifact arising from the non-

orthogonality of the hydrogen bond energy term and the length and area terms of 

the energy function.  More importantly, however, it appears that many of the 

hydrogen bond donors and acceptors present in the bound state find themselves in 

quite suboptimal geometries where their energetic contributions are far from ideal 

(Figure 27(b)), providing little improvement, if any, over the solvated state in 

which they are hydrogen bonded to water. The energy of hydrogen bond donor-

acceptor pairings is quite sensitive to small changes in geometry, and because 

they are relatively abundant, with many suboptimal pairings present, any motion 

of the peptide appears likely to worsen the geometry of some pairings while 

improving that of others. For all these reasons, it may be hypothesized that in 

designing peptides for optimal affinity to proteins, there is little to be gained by 

attempting to engineer hydrogen bonds into the interface. 
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8. Binding can likely be improved by increasing the opportunities for 

cation-pi interactions. Given the already noted strong overrepresentation of 

aromatic residues in I-sites and their correlation with higher energies, and given 

the high abundance of arginine and lysine in the peptides in the dataset, it is not 

surprising that cation-pi interactions appear to play an important role in these 

interfaces.  Cation-pi interactions are of particular interest because of the potential 

for energies approximately double or more that of an optimally positioned 

hydrogen bond, with considerably less dependence on exact positioning [213].  

Pairings of cations with aromatic rings with energies better than -1.0 kcal/mol 

according to the raw (non-regression weighted) cation-pi model used were 

somewhat more abundant than salt bridges in the interfaces, averaging about 2.5 

per interface. In the majority (73.7%), the cation belonged to the peptide and the 

aromatic residue to the I-site. According to the model employed, the energy of a 

cation-pi interaction is optimal when the distance from the positively charged 

atom to the ring centroid is about 2.8Ǻ, and the cation is positioned on the 

perpendicular axis of the aromatic ring. As Figure 29 shows, the pairings of 

cations with nearby aromatic rings spanned a wide range of geometries, most 

quite far from ideal.  It may be hypothesized that the significance of the 

distribution shown in Figure 29 is that peptide-protein interfaces are likely to 

contain cation-pi pairings that make energy contributions that are not insignificant 

even when the geometry is suboptimal, and, more importantly, have the potential 

to improve as the peptide shifts in position. 
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9. It is not essential for the peptide and the I-site to be oppositely charged. 

An unexpected finding was that absolute charge complementarity at the interface 

level does not appear to be of great importance.  As shown in Figure 15, although 

charge-complementary interfaces are more common in the dataset than interfaces 

in which the estimated net charge of the peptide is of the same sign as that of the 

I-site, there are many counterexamples.  Charge complementarity of charged 

residues individually is, as expected, nearly absolute; it may be that interface-

level charge complementarity would tend to correspond to a relatively non-

specific tendency to bind any oppositely charged protein surface, and that in 

interfaces in which the peptide has been selected for specificity, a complementary 

pattern of mixed charges would be expected. In support of this hypothesis, it may 

be noted that many of the peptides in the dataset contained mixed charges (see 

Figure 14 for distribution). 

10. Peptides in interfaces are not rigid or immobile. The data reported 

here tends to support the hypothesis, advanced by others both for protein-protein 

interfaces [226] and for peptide-protein interfaces [185], that a few “hot spot” 

residues contribute disproportionately to the binding energy in a peptide-protein 

interface (see Figure 26).  It may be suggested that the hot spot hypothesis, taken 

to its logical conclusion in the context of peptide-protein binding, implies a model 

in which the peptide is viewed as a relatively dynamic entity, in which a few hot 

spot interactions anchor the peptide to the protein surface at relatively fixed loci, 

and the peptide regions between hot spots make relatively modest or negligible 
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contributions to ΔG and are to some extent mobile. Although the obvious 

limitations of x-ray and NMR structures for drawing conclusions about ligand 

mobility must be acknowledged, analysis of groups of redundant interfaces 

(Figure 20) does appear to indicate that peptide binding is considerably more 

dynamic than a “lock and key” model would suggest.  In most cases, the bound 

conformations of the peptides in the dataset appear unlikely to represent stable 

folded shapes (Figure 18 and Figure 19). The relative overrepresentation of 

positively charged residues and aromatic residues in hot spots implies that the hot 

spot interactions are likely to favor salt bridges and cation-pi interactions. Both of 

these have the potential for relatively high energy contributions, and both can 

tolerate moderate changes in position – particularly rotations that do not greatly 

affect separation distance. Clearly, a very few reasonably configured salt bridges 

and/or cation-pi interactions are sufficient to contribute energy on the order 

required to attain the affinities observed.  It may be hypothesized that the energy 

contributed by the non-hot spot regions of the peptide may be attributable to the 

effect of attractions such as hydrophobic forces, electrostatics, and van der Waals 

attractions, that combine to produce a very modest and relatively non-position 

specific attraction, and to moieties that participate in weak hydrogen bonds or 

poorly configured cation-pi interactions that are easily traded for others as the 

position on the protein surface changes.   

12. Library peptides should be overrepresented in R, K, W, Y, F, I, L, D, 

E, and P. Based on abundances in hot spot residues and higher affinity interfaces, 
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and on the higher estimated energies for suitable pairings involving these 

residues, it appears that the residues most likely to contribute disproportionately 

to the affinity of a peptide ligand for a randomly chosen protein target are the 

aromatics W, Y, and F; the positively charged residues R and K, and the 

hydrophobic residues I and L.  D, E, or both should also be included to provide an 

oppositely charged partner for pairing with positive charges on the protein 

surface.  One other possibly desirable inclusion is proline. The data shows a quite 

high frequency of P-W and P-Y pairings, and although the trained energy model 

does not predict an unusually high energy attributable to them, it may be 

suspected that these pairings are over-represented in interfaces for a reason.  

Although there are a few poly-proline subsequences in the dataset, contiguous 

peptide subsequences of 3 or more prolines account for only 11% of the non-

redundant P-W and P-Y pairings, so the reason does not appear to be bias on 

account of poly-prolines.  It may be speculated, based in part on observations 

from molecular dynamics simulations of peptides, that peptides may tend to 

benefit from the well known tendency of proline residues to introduce bends in 

the chain, facilitating the tendency of the peptide to non-specifically fold over 

against itself in solution and minimize hydrophobic surface, thereby reducing its 

conformational diversity in solution and consequently the entropic penalty on 

binding, while preserving sufficient mobility to allow adaptation to the protein 

surface. 
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From the foregoing observations, the tentative outlines of a design strategy 

may be seen to emerge. The first step would entail an analysis of the surface of 

the protein target to identify contiguous surface regions that are enriched in 

aromatics and charges and that are located in a depression or ‘arroyo’.  Within 

those regions, residues suitable for anchoring the peptide hot spot residues would 

be identified. A candidate peptide sequence having a length in the 12 to 20 

residue range would be defined by first selecting aromatics and charged residues 

suitable for the anchor sites on the protein surface – R or K in juxtaposition to 

protein surface aromatics or negative charged residues, and aromatics or D or E 

residues opposite positively charged protein surface residues. “Spacer” residues 

would then be filled in between the hot spot residues, taking into account the 

distances between adjacent intended anchor loci. It may be possible to fine tune 

the specificity / affinity tradeoff by adjusting the number and positions of I and L 

residues in the spacers, to obtain more or less favorable hydrophobicity matching. 

And, if it is possible to include a proline residue in the middle region of the 

peptide while maintaining reasonable compatibility with the inter-anchor 

distances notwithstanding the resulting proline-induced kink, doing so may be 

worthwhile. 

A similar strategy might be employed to prioritize leads obtained from 

peptide microarray selection: the candidate sequences might be analyzed for 

conformity to the criteria just described, in order to select a smaller number for 

testing and optimization. 
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It must be emphasized that the design process just described is not 

envisioned as a substitute for random library screening, which remains essential. 

If anything, the results reported here imply a binding mechanism much more 

dependent on unpredictable stochastic processes than is thought to be the case for 

rigid, lock and key models.  The intent is to infer ways in which the random 

screening might be made more efficient by biasing the random library away from 

sequences that are less likely to produce useful leads. 

Conclusions  

Detailed geometric, energetic, and other descriptors have been computed 

for a dataset of 3,924 minimized peptide-protein interfaces extracted from the 

PDB, and compiled in a publicly accessible relational database (see 

http://www.innovationsinmedicine.org/pprmint/pprmint.mdb).  Using this data, 

statistics have been extracted on various properties of the peptides and their 

binding sites that can be estimated and/or designed for, with a view to obtaining 

heuristics of potential use in designing and optimizing peptide libraries and in 

prioritizing leads.  The data suggest that it should be feasible to improve the 

efficiency of peptide ligand selection using libraries of peptides in the 12 to 20 

residue range, enriched in charged and aromatic residues, and that it should 

generally be possible after selection and optimization to obtain peptide ligands 

having affinities as high as approximately 10 nm. 
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CHAPTER 4: PREDICTION OF PROTEIN-PEPTIDE INTERACTIONS 

BY VIRTUAL SCANNING PROBE MAPPING 

Abstract  

Peptides represent an increasingly important class of ligands for use in 

therapeutics and diagnostics.  Peptide-protein binding depends in significant part 

upon protein surface physical and chemical characteristics that can be estimated 

and mapped computationally. 

Peptide binding loci were predicted for eight randomly selected peptide-

protein complexes, using Virtual Scanning Probe Mapping (VSPM), a new 

strategy for spatially mapping the interactive properties of a macromolecular 

surface of known composition and geometry by systematically interrogating the 

surface computationally with molecular probe entities containing moieties 

representative of the interactions of interest. As applied to a test set of eight PDB 

structures involving peptides from 8 to 16 residues in length, in complex with 

proteins and for which solved structures of both the bound complexes and the 

unbound proteins are available, the set of protein surface residues predicted to 

comprise the peptide binding site included at least  25% or more of the binding 

site residues in seven of the eight cases, and at least 50% in four of the eight 

cases, for a mean true positive rate of 45% and false positive rate of 9% for 

residue-level predictions based on the bound form protein structure. For 

predictions based on the unbound protein structures, at least 24% of the correct 
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binding site residues were predicted in six of the eight cases, and at least 49% in 

four of the eight. 

The VSPM method predicts peptide binding loci with an accuracy that 

compares favorably to other available computational strategies, makes correct 

predictions in some cases where other methods fail, and, being entirely physics-

based, can be applied to arbitrary structures that include non-natural residues. 

VSPM furnishes a general strategy of potential use in applications where the 

spatial distribution of the interactive characteristics of a macromolecular surface 

is of interest. 

Background  

In keeping with the considerable and growing interest in the discovery of 

peptide ligands for use in therapeutic, diagnostic, and other applications, a major 

research focus in the Center for Innovations in Medicine has been the 

development of methods for engineering multivalent peptide-based ligands 

capable of participating in specific, high-affinity interactions with protein or other 

macromolecular targets [29-32]. This has involved the use of a large library 

(currently about 10,000) of random sequence 20-mer peptides to investigate the 

affinity behavior of peptides in interactions with a variety of biological analytes, 

typically in a spotted microarray format or by SPR. From these experiments, lead 

peptides are selected and optimized. In addition to its obvious relevance to the 

effect of ligand binding on target function, information identifying the region(s) 

preferred by each peptide on the surface of the target protein is of particular 
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interest in the context of designing multivalent peptide-based ligands, where the 

selected peptides should bind at distinct loci and where the geometry and 

dimensions of the multivalent ligand should be consistent with the required 

spacing between the binding loci of the component peptides.  Here a general 

computational method is described for mapping the spatial distribution of protein 

surface interactive properties, and an evaluation is made of its performance in 

predicting the peptide binding loci in a test set of eight randomly chosen protein-

peptide complexes for which PDB structures of both the bound complex and the 

unbound protein are available. 

The method proceeds by scanning the target protein surface in a manner 

analogous to scanning probe microscopy, but using “virtual” probes selected for 

their ability to capture particular surface properties of interest. The interactive 

tendencies of these probes at various points on the surface are determined and 

mapped computationally.  The goal is not to ask precisely where a peptide binds, 

a question that impliedly assumes a single binding locus and arguably ignores the 

probabilistic nature of peptide binding kinetics. Instead, the objective is to 

estimate the spatial distribution of protein surface binding propensities with 

respect to each of the interactive moieties exposed by the peptide, keeping in 

mind that residues present in flexible peptide ligands can likely interact, with 

varying energies and dwell times, at multiple loci.  As reported here, by 

interrogating the surface of a protein for which a solved structure is available, 

using multiple small probe entities representative of the various residue 
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combinations present in a peptide of interest, constructing spatial maps of the 

energetics of the interactions of each probe with the protein surface, and 

aggregating and mapping the information obtained thereby, it is possible to make 

surprisingly accurate predictions of the highest probability binding sites and, in 

some cases, the approximate structural arrangement of the peptide. 

Peptide binding site prediction 

Available experimental strategies for determining peptide binding loci on 

proteins are not practicable on any significant scale. Methods such as x-ray 

crystallography of bound peptide-protein complexes, SAR by NMR [227], and 

deuterium exchange mapping [228, 229], are costly and time-consuming, often 

require artificial conditions that may not represent accurately the interaction of 

interest, and are likely to fail or produce misleading results when applied to 

relatively unstructured regions or entities. Some insight can be obtained by cross-

linking bound peptides to the protein surface and locating the sequence positions 

of the cross-linked residues by mass spectroscopy [229-232], but such 

experiments depend on the presence of cross-linkable moieties at or near the 

peptide binding site, are technically demanding, and (typically) locate only the N-

terminus of the peptide and that only within a radius commensurate with the size 

of the cross-linker (typically on the order of 1 nm). See Chapter 5. 

An alternative is to attempt to model the protein-peptide interaction using 

computational tools. Established methods include computational docking [233, 

234]; bioinformatic prediction based on sequence or motif similarity with known 
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complexes [235]; and identification of potential binding hot spots based on 

surface chemical properties [214].   

Computational docking has proved impracticable in the context of 

peptides and proteins in the size ranges of interest, for several reasons.  First, the 

size of the search space increases exponentially with the number of 

conformational degrees of freedom in the ligand, so computational docking 

typically works poorly when applied to peptides more than a very few residues in 

size.  Although impressive progress has been made in extending the ability of 

docking search to cope with conformational flexibility [236, 237], the number of 

torsional degrees of freedom present in a typical 8- to 20-residue peptide exceeds 

current capabilities.  Second, if the flexibility of protein surface residues is also 

taken into account, the complexity of the search multiplies by additional orders of 

magnitude, but if this is not done, the unbound surface being explored may differ 

considerably from the actual surface shape present in the bound complex [238, 

239]. Third, unlike typical small molecule docking, where the binding pocket or 

other region being targeted is known in advance, the large size of the peptide in 

comparison to the target surface and the relative weakness of the interactions 

between its residues and the target make it necessary to search the entire surface 

(referred to as “blind” docking), greatly increasing the size of the search space 

[234].  Although other analytical approaches may be employed that significantly 

improve efficiency over that of blind docking by pre-identifying the most likely 

binding sites [240], it is unclear that doing so would greatly reduce the scope of 
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the docking search for the peptides here of interest, which are in any case often so 

large that a genetic algorithm search over a pre-computed force field grid (such as 

that employed by AutoDock [205, 206]) would require a very large grid box 

merely to ensure that the permuted conformations generated by the genetic 

algorithm would remain within the grid boundaries.  

Similarity-based bioinformatic methods are limited by the need for 

training data on which to base predictions.  Structural data on peptide-protein 

bound complexes is available for only a relatively small number of interacting 

pairs, so it is unlikely that existing databases will contain structural relationships 

that are directly comparable to those present in a given unknown interaction, even 

where the unknown interaction is one that occurs naturally in biology, and much 

less for interactions involving peptides that have sequences and/or chemical 

properties not found in nature. Others have had some success in overcoming this 

lack of training data by sampling structural relationships present in folded 

proteins [235], but this strategy again presupposes naturally occurring 

relationships, and in any case often fails when applied to particular complexes. 

Several methods have been reported for assessing the more general 

question of which residues or atoms on a protein surface are most likely to be 

involved in interactions with other polypeptide entities, based on factors such as 

evolutionary conservation, statistical analysis or machine learning based on 

databases of known structures [241], and identification  of surface characteristics 

such as hydrophobicity [214]. Methods of this kind contribute important 
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information, but they suffer from several inherent limitations, particularly when 

applied to the analysis of the binding propensities of random sequence 

oligopeptides of arbitrary composition.  Random peptides present no evolutionary 

relationships to rely on; there is no database of evolutionarily or functionally 

similar complexes to use as a training set. Random sequences seem likely to 

inhabit regions of conformation space that are uncharacteristic of naturally 

occurring entities, raising the probability that they will also present combinations 

of chemical properties that differ from those typical of biological sequences. 

Existing bioinformatic methods are, in principle, not readily extensible to peptides 

containing non-natural residues, so their utility is narrowly limited in terms of 

future expansion of the repertoire of components available for engineering desired 

properties (a significant drawback given the incentive to make peptide 

therapeutics resistant to enzyme degradation).  Finally, none of the computational 

methods reviewed (including that reported here) make correct predictions in all 

cases, or with more than approximate accuracy, so the addition of physics-based 

strategies to the repertoire of analytical tools should provide another useful 

informational input. 

Methods 

To apply the VSPM strategy to the peptide binding site identification 

problem, software was written that leverages the ability of the AutoDock 4 suite 

of computational docking software [205, 206] to estimate the energy of 

interaction between an arbitrarily defined probe ligand and an arbitrary point on a 
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molecular surface. This strategy extends the docking paradigm beyond the usual 

focus on a single docking site, and instead asks how the binding energy landscape 

of the entire surface appears from the standpoint of the probe ligand. In principle, 

a spatial map could be made of the estimated ΔG of interaction by exhaustively 

computing energies at each point on the surface at some suitable interval and for 

multiple orientations and conformations of the probe. The current implementation 

instead constructs the map by sampling, and expresses the result in terms of the 

(Boltzmann weighted) likelihood of the probe binding at each surface point.  In 

effect, within the limitations of AutoDock’s search algorithm, it simulates an 

ensemble consisting of a large number of random encounters between the probe 

and the protein.   

The protein surface is interrogated using a set of ‘probe’ entities that are, 

taken together, representative of the composition of the peptide ligand of interest, 

but which are individually small enough for reasonably efficient computational 

docking search. The protein surface is divided into overlapping regions that cover 

the entire surface of the target protein. Via multiple parallel runs of AutoDock, a 

sample population of docked solutions (each referred to as a docking “pose”) is 

generated for each probe entity in each region.  After appropriate reweighting for 

estimated energies and to adjust for various factors that bias the search, the target 

surface is mapped according to the frequency of samples near each surface atom, 

resulting in a score for each surface atom that represents the relative likelihood 

that the atom is part of a region having a propensity to bind the selected probe(s).  
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The discussion to follow summarizes the steps performed by the software 

implementation of the VSPM method as applied to the peptide binding site 

prediction problem. This is embodied in a suite of Python programs that manage 

the preparation of the inputs (in part via callouts to suitable external utilities); set 

up, schedule, and reassemble the output from multiple parallel docking runs on 

the ASU high performance computing cluster, of multiple probes in multiple 

overlapping target protein surface regions;  extract and analyze the outputs, 

reweight them, and map them to the protein surface; generate statistical 

comparisons between the predicted and actual binding sites; and, finally, search 

for combinations of samples that satisfy geometric constraints derived from 

peptide sequence information.  

Generation of probe entities 

A set of probe entities is first defined that is collectively representative of 

the composition of the peptide of interest. To facilitate the docking search, the 

probes are limited to structures having no more than approximately ten rotatable 

bonds. Obvious candidates are otherwise relatively inert entities in which a 

moiety exposed by the peptide of interest is embedded; and small subsequences 

from the peptide itself.  To arrive at a practicable probe size, blind docking 

experiments were performed with short peptide sequences in size ranges from two 

to seven residues. It was found that trimers appeared to represent the best 

compromise for capturing as much of the specific chemical character of the 

peptide as possible while keeping the number of torsional degrees of freedom 
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within practicable bounds. For the range of docking search parameters used, 

AutoDock is able to dock peptide trimers and produce docking poses most of 

which are substantially in contact with the protein surface, while tetramer and 

larger peptide subsequences tend often to result in docking poses that are only 

partially in contact with the protein surface. The results reported here are based on 

two probe types: (1) probes consisting of one residue present in the peptide, 

flanked by a single alanine residue in each direction; and (2) probes consisting of 

the set of all (fully overlapping) trimers generated from the sequence of the 

peptide of interest.  The software generates these probes in automated fashion 

from the input peptide sequence, producing starting structures for each probe in 

PDB format using the tleap utility of the Amber 9 molecular dynamics suite 

[131].  It then converts these to the pdbqt format required by AutoDock, using the 

prepligand4.py utility supplied with the AutoDock 4 release, accepting the default 

choice of rotatable bonds.  

Preparation of the target protein for blind docking 

AutoDock performs its docking search by attempting to optimize the 

position and conformation of the ligand within a three-dimensional rectangular 

box in which force field values have been pre-computed at each point in a grid 

lattice within the box (and can therefore be efficiently computed at any arbitrary 

point within the box by interpolation). The VSPM software automates the 

allocation of the space surrounding the target protein to three-dimensional 

rectangular grid boxes that overlap in all dimensions by an average of 50 percent, 
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and that together provide multiply overlapping coverage of the entire protein 

surface. For the structures presented here, the number of grid boxes required 

ranged from 1 to 24, depending on the size of the target protein, and using the 

AutoDock default grid lattice spacing of 0.375Ǻ. Finer grid lattice spacings did 

not appear to improve the overall results significantly, but increased the number 

of grid boxes required, which in turn increases the computing time required and 

exacerbates the bias arising from grid box edges discussed below. After 

computing the accessible surface area of each target protein atom using the utility 

MSMS [242] with a probe ball radius of 1.4Ǻ, and converting the target protein 

PDB structure to the required pdbqt format using the AutoDock utility 

prepreceptor4.py, the software sets up and queues parallel jobs for computation of 

the grid force field matrices by AutoGrid for each grid box. 

Docking search 

After the grid maps have been generated by AutoGrid and the probe 

structures have been created, sets of input files for AutoDock are created, one set 

for each probe in each grid box, and these are run in parallel on the ASU high 

performance computing cluster to produce 25 individual solutions, or “docking 

poses”, for each probe in each grid, with a maximum of 2,500,000 energy 

evaluations and 27,000 generations of the genetic algorithm per solution. These 

poses, together with their docked energies as estimated by AutoDock, are parsed 

from the AutoDock output and converted to PDB format, resulting in a large 

number (25 times the number of probe entities times the number of grid boxes) of 
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samples representing possible interactions between the probe moieties 

representing the peptide and the residues exposed on the surface of the target 

protein. Except as noted, AutoDock default parameters were used. 

Mapping of target surface loci affected by sampled docking poses 

The target surface is arbitrarily defined as the set of atoms of the target 

protein having an accessible surface area of at least 1Ǻ2 as computed by MSMS 

using a 1.4Ǻ probe ball radius. The binding site of each sampled docking pose is 

determined by identifying the set of target surface atoms each of which is within a 

threshold distance of 4Ǻ from at least one atom of the docked probe. The goal is 

to estimate the extent to which the number of probes that dock to a given target 

surface locus exceeds the number that would be expected at that locus if the 

sampled docking poses were distributed randomly.  This is computed in the form 

of a likelihood ratio, in which the numerator represents the actual count of the 

number of times a target surface atom is part of a probe binding site, and the 

denominator represents the number of “hits” the same target atom would be 

expected to receive under the null hypothesis in which probe docking loci are 

distributed randomly over the protein surface. This computation requires that the 

expected random hit counts be adjusted to remove several sources of obvious 

bias, and that the numerator be adjusted so as to weight the probe binding pose 

solutions by energy. The resulting likelihood ratios are  mapped onto the target 

protein surface by generating scripts for visualization using Pymol 2.4 [243]. 
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Predicted binding sites are identified as the set of all target residues containing at 

least one atom having a likelihood ratio above a specified cutoff. 

Reweighting of expected hit counts to eliminate sources of bias 

A goal of the model is to measure the extent to which the probe docking 

poses in the sample set exhibit a preference for particular loci on the target 

surface. The subdivision of the target surface into grid regions for docking 

potentially biases the resulting sample population in at least three ways:  

(1) The aggregate target protein surface area contained within each grid 

box varies according to the size of the grid box and the topology of the target 

surface.  Since a fixed number of samples are collected for each probe in each 

grid box, a target surface atom within a grid box that encompasses a larger 

proportion of the target surface is less likely to be part of a given binding locus 

than an atom in a grid box encompassing a smaller proportion of the target 

surface, other factors being equal. This effect is nonlinear with respect to the 

amount of target surface area enclosed: for a grid box enclosing a small target 

surface area approximately equal to the surface area occupied by a single docking 

pose, every docking pose would affect every target surface atom within the grid 

box, so the a priori probability of a given target surface atom being affected by a 

hypothetical docking would be unity.  (Obviously, such grid layouts are to be 

avoided; the example is offered merely to illustrate the nonlinearity.) 

(2) A second source of bias arises from grid overlap. The VSPM software 

attempts to lay out grid box arrangements with substantial overlap, so as to reduce 
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the bias arising from edge effects discussed below. Target surface atoms that 

“belong” to more than one grid box obviously have a correspondingly increased 

likelihood of being counted as part of a probe binding site. 

(3) Additional bias arises from AutoDock’s tendency to disfavor docking 

sites near the edges of grid boxes. AutoDock uses a genetic algorithm-based 

search to look for ligand (probe) positions that maximize the energy as computed 

using the force field grid maps pre-computed by AutoGrid. Poses that result in all 

or part of the probe being outside the geometric confines of the rectangular grid 

box are disallowed, since AutoDock cannot compute an estimated energy for 

atoms outside the grid box.  For a probe whose center of mass is near a grid box 

edge, some otherwise possible orientations would be disallowed because they 

would place one or more ligand atoms outside the grid, while for a probe nearer 

the center of the grid, all possible orientations would be permitted. Statistics taken 

from multiple docking runs indicated that target surface atoms within about 2Ǻ or 

less from a grid box edge are about five times less likely to be included in a 

docking site than target surface atoms that are 10Ǻ or more from the nearest grid 

box edge, with the probability increasing approximately linearly between those 

limits (and, curiously, dropping off somewhat above about 25Ǻ from the nearest 

grid box edge).  

Energy weighting of the probe docking poses 

Given the hypothesis that peptide interactions with proteins are driven by 

relatively non-fastidious interactions between peptide moieties and protein surface 
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moieties, it seems reasonable to suppose that interactions represented by probe 

docking poses with lower estimated ΔG (i.e. in which ΔG is a larger negative 

number) would have a higher probability of occurring than those corresponding to 

less energetic poses.  For the results reported here, docking poses were weighted 

within each probe type (i.e. each distinct trimer sequence) by Boltzmann ratio 

according to the estimated docking energy reported by AutoDock for each pose, 

and then normalized over the various probe types so as to maintain the Boltzmann 

weighting within each probe type while weighting each probe type equally 

overall. This weighting strategy is not entirely satisfying, given that the collision 

rates and binding affinities of small probes may deviate substantially from 

Boltzmann weighting in terms of their contribution to the overall collision rate 

and binding affinity of a much larger peptide. Further, the genetic algorithm based 

search would be expected to return samples drawn disproportionately from the 

higher energy regions of the fitness space.  Although somewhat relaxed values of 

the AutoDock search parameter settings were chosen relative to the number of 

rotatable bonds, so as to ‘detune’ the search and cause a wider diversity of 

solution poses to be sampled, it may be that some improvement in predictive 

performance could be obtained by reweighting on a distribution representing 

some compromise between a Boltzmann distribution and a uniform distribution. 

The equal weighting as between different probe types in maps based on multiple 

probe types is also conceptually questionable, but was found necessary because 
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otherwise the highest affinity probes dominate the mapping to the point that any 

information about the likely position of less energetic moieties is completely lost.  

Computation of likelihood ratios 

The VSPM software first computes the total number of expected “hits” 

available to be allocated over the set of target protein surface atoms. For each 

grid, the expected hit count is computed as Eg = Ep Pg, where Eg is the expected 

total number of hits for all target surface atoms within grid g, Ep is the average 

number of target surface atoms affected by each probe docking pose (as 

determined by statistics taken over all probe docking poses in all grids), and Pg is 

the total number of probe docking poses within grid g.  This expected hit count is 

then allocated uniformly over all target surface atoms within the grid, after which 

the adjustment for edge effect is applied, decreasing the expected hit count for 

atoms ≤ 2Å from the nearest grid edge by a factor of 5.0, and for atoms between 

2Å and 10Å by 10.0 divided by the distance from the nearest grid edge.  All 

counts are then normalized so that the total expected count for the grid Eg remains 

unchanged. The individual atom counts over the multiple grids are summed, atom 

by atom, resulting in a count Ea for each target surface atom representing the sum 

of that atom’s edge-effect-adjusted share of Eg for each grid to which that atom 

belongs (keeping in mind that because the grids overlap, each atom may belong to 

more than one grid). These atom-by-atom counts Ea are used as the denominator 

of the likelihood ratio for each atom. 



 

164 

 

A total expected hit count Es for all atoms of the target protein surface is 

computed as the sum of the individual surface atom expected hit counts Ea over 

all surface atoms. A per-atom hit value Np is computed for each probe docking 

pose by allocating the total expected hit count Es over all probes in proportion to 

their respective Boltzmann weights (normalized to equalize the overall weight of 

each probe type). The allocated hit count for each probe docking pose (divided by 

the number of surface atoms affected by each probe) is then posted to the hit 

count Na for each target surface atom that is ≤ 4Å from any atom in the probe 

docking pose. Thus, the sum of Na over all target surface atoms is made to equal 

the sum of Ea over all target surface atoms, and the likelihood ratio Ma = Na / Ea 

for any atom reflects that atom’s propensity to be included in the docking sites of 

the probes. The set of target residues predicted as the binding site for the peptide 

can be taken as the set of residues containing at least one surface atom for which 

Ma exceeds a suitable threshold, and the individual Ma values can be color-

mapped onto the surface for visualization. 

Evaluation of predictions 

The model was evaluated based on its performance in predicting the set of 

residues belonging to the actual peptide binding site, for a set of eight protein-

peptide complexes for which PDB structures of both the bound complex and the 

unbound form of the protein were available. The eight complexes were selected 

randomly from a dataset of 402 such complexes published by Petsalaki, et al. 

[235] A requirement was imposed that the selected structures must include a 
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peptide of at least 8 and not more than 20 residues and a target protein of at least 

90 residues, in which the peptide in the bound complex was substantially in 

contact with the target protein (many of the complexes in the Petsalaki dataset had 

only one or two residues in contact).  Predictions were evaluated by comparing 

the set of residues predicted as belonging to the peptide binding site with the set 

of residues that actually contain at least one atom within 4Ǻ of at least one atom 

of the peptide, based on the positions per the PDB structure of the bound 

complex.  For each of the eight proteins tested, predictions were made based on 

both the PDB structure of the bound protein-peptide complex with the peptide 

removed, and also based only on a PDB structure of the same protein in its 

unbound form. For each unbound structure, the set of residues predicted for the 

binding site was mapped to the identical residues of the PDB structure of the 

bound complex for comparison with the position of the bound peptide and 

extraction of statistics.  Receiver operating characteristic (ROC) plots were 

prepared using Mathematica 7.0 [244]. 

Benchmarking 

Predictions were compared with similar predictions made using Pepsite 

[235], a peptide binding prediction algorithm based on statistics of spatial 

relationships drawn from PDB structures of folded proteins, and Optimal Docking 

Areas (ODA), an algorithm for locating protein binding hotspots based on 

hydrophobicity. Both algorithms are accessible via web servers [245, 246]. 

Pepsite returns five solutions each containing the predicted locations of the Cα 



 

166 

 

atoms of several (but typically not all) of the residues of the bound peptide. To 

enable comparison with the VSPM predictions, Pepsite’s prediction was taken as 

the set of target residues having any atom within 5Ǻ of any of the atoms 

comprising any of the five solutions.  The Pepsite server does not accept peptide 

sequences longer than 10 residues; since five of the peptides in the test set are 

longer, for those complexes, first ten and last ten residues were submitted in 

separate runs, and the union of the two result sets was taken as Pepsite’s 

prediction.  ODA returns a tabulation of values each representing the computed 

desolvation energy of a surface region, on a residue by residue basis, making it 

necessary to impose an arbitrary cutoff to identify a solution set. For each target 

protein, these values were ranked, and ODA’s prediction was taken as that 

percentage of the lowest energy (i.e. highest negative energy) residues equalling 

(as nearly as possible) the percentage of surface residues encompassed by the 

VSPM prediction for the same structure. 

Applying geometric constraints 

Finally, in an attempt to improve predictive accuracy, search was made for 

combinations of probe poses such that residues that are adjacent in the peptide 

sequence are placed at plausible spacings on the protein surface. Using probes 

comprising the set of overlapping trimer subsequences of the peptide of interest, 

the search algorithm attempted to identify solution sets each comprising exactly 

one probe docking pose of each probe type, chosen such that, within each set, 

adjacent overlapping trimer probes are positioned with their overlapping residues 
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in reasonable register with each other and without steric interference between the 

non-overlapping portions of the chain. This amounts to a search of the space of all 

possible correctly sequence-ordered combinations of docking poses, with the 

geometric constraints being expressed, together with any other selection criteria, 

in the form of a fitness function.  The potential complexity of the search is O( 

(p•g)t ) where t is the number of overlapping trimers, p is the number of docking 

poses obtained per probe per grid, and g is the number of grids; thus, for a typical 

search over 25 probe poses in each of 10 grids for each of 10 overlapping trimer 

probes, the number of possible combinations, ignoring geometric constraints, is 

25010 or approximately 1024.  Three search algorithms were evaluated: dynamic 

programming, genetic algorithm, and tree search with pruning. Dynamic 

programming offers the advantages of high efficiency and guaranteed discovery 

of the global optimum; however, it attempts to build solution sequences 

recursively, and therefore must assume that the fitness contribution of recursively 

incorporated partial solutions is fixed and independent of the composition of the 

remainder of the solution. It was discovered that there is a tendency for docking 

poses, regardless of probe sequence, to prefer some of the same regions on protein 

surfaces, resulting in sterically impossible solution sets in which non-adjacent 

probe docking poses attempt to occupy the same space on the target surface. It 

was therefore necessary to take into account the overall steric plausibility of the 

solution set, which changes as each additional pose is added, making dynamic 

programming unsuitable.  A genetic algorithm was tried, which has the advantage 
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of placing no restrictions on the fitness function, but convergence was 

unacceptably slow and there is no guarantee of reaching the global optimum. The 

search space in question does have one important exploitable characteristic, 

however: if a requirement is imposed that each individual pair of adjacent 

overlapping probe docking poses in the solution set satisfy the given geometric 

proximity constraints, then it is possible to perform a breadth-first tree search in 

which the entire branch descending from any pair not satisfying such constraints 

can be pruned and eliminated.  Further, for the partial solution sets that remain, 

the overall steric plausibility can be evaluated and taken into account, and any 

partial branches failing to meet the steric criteria can also be pruned at each step. 

Thus, the set of partial solution sets satisfying the geometric and steric constraints 

remains at a reasonable size at each iteration, and the set of solution sets 

remaining after the last trimer in sequence has been added can then be evaluated 

and an optimal solution selected on the basis of any desired fitness criteria.  (The 

explanation for the poor convergence of the genetic algorithm likely lies in its 

inability to exploit the opportunity to permanently exclude any solution sets 

containing geometrically impermissible pairings, which, in the tree search 

algorithm, enormously reduces the size of the search space while preserving the 

guarantee of finding the global optimum.) 

 For the results here reported, a requirement was imposed that for a next-

in-sequence docking pose to be added to a solution set, the following constraints 

must be satisfied: 



 

169 

 

(1) The sets S1 and S2 of target surface atoms within 5Å of any atom in 

the two overlapping residues shared by the probe pose to be added and the next 

preceding pose is determined. (Thus, for example, if the last pose of the growing 

solution set has the sequences ACD and the pose to be added has the sequence 

CDE, the set S1 is the set of target surface atoms “occupied” by residues C and D 

of the ACD pose and the set S2 is the set of target surface atoms “occupied” by 

residues C and D of the CDE pose.) A score in the range 0 to +100 is assigned 

based on the ratio of the accessible surface area shared by the two sets to the 

unshared accessible surface area, such that +100 signifies that S1 and S2 are 

identical and 0 signifies that S1 and S2 are entirely disjoint.  A similar score is 

obtained representing the degree of surface overlap between the first residue of 

the trimer sequence to be added and the last residue of the penultimate trimer of 

the existing set.  A weighted average is taken of these two scores.  

(2) In a similar manner, a score is obtained representing the extent to 

which the surface atoms affected by the trimer pose to be added overlap the set of 

surface atoms affected by residues of the growing solution set that precede the 

residues of the pose to be added in the peptide sequence (i.e. the residues whose 

positions the added pose should not overlap). A high score here represents a 

solution set wherein the pose to be added is “doubling back” and attempting to 

occupy surface positions already occupied by a preceding part of the chain.  

Because the method of assigning surface atoms as occupied by docking 

poses is imprecise, and it is possible for a surface atom to be within 5Å of atoms 
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from two docking poses that are not in fact in collision, and because in 

performing the initial tree search it is preferable to err on the side of inclusion, 

prospective additions to a solution set are rejected if the pose to be added has 

more than 35% overlap with the non-corresponding residues of the preceding 

chain. An addition is also rejected if the weighted average overlap percentage 

between the first two residues of the pose to be added and the corresponding 

residues of the solution set is less than 35%.  As described below, other criteria 

are applied to select one or more particular solutions from the final (large) set of 

solutions that satisfy the threshold geometric criteria; the overlap cutoffs affect 

only the liberality of the pruning, not the selection of the ultimate solution. 

Each iteration of the search corresponds to the addition of one trimer 

position from the peptide of interest.  Thus, for example, for a peptide 

ACDEFGHI, for which sample docking poses have been generated for the trimers 

ACD, CDE, DEF, EFG, FGH, and GHI, the first iteration evaluates all possible 

combinations of ACD poses and CDE poses, and retains as tentative solution sets 

any pairs of ACD + CDE poses that satisfy the foregoing constraints. In the next 

iteration, each pairing of each of the retained solutions with each DEF pose is 

similarly evaluated, and each ACD + CDE + DEF set satisfying the constraints is 

retained. The search proceeds in this manner until the end of the sequence is 

reached or until no additions satisfying the constraints can be made. To account 

for the possibility that only part of the peptide chain may bind, the search is 

repeated starting with the second and each subsequent trimer in sequence, and any 
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partial solutions longer than a specified minimum are retained. The end result is a 

large set of tentative solutions, each solution comprising a full or partial ordered 

series of unique docking poses that together correspond to the peptide sequence 

and satisfy the given constraints. Because the search algorithm prunes any 

branches that do not satisfy the constraints, and retains and attempts to extend all 

partial solutions that do, the final set of solutions is guaranteed to contain all 

possible combinations that satisfy the constraints (subject to tightening of the 

constraints in the event that the set of solutions becomes too large). The intent is 

that all solutions are retained in this set except those that are obviously 

impossible, as where probes representing adjacent parts of the peptide sequence 

are so far apart that they could not plausibly belong to a contiguous chain.  

The solutions in the set of tentative solutions are then scored and ranked 

according to a linear combination of two equally weighted factors: (1) the 

aggregate predicted energy of the probes comprising the solution, and (2) the 

extent to which the solution does or does not lie in the regions of the target 

surface most likely to belong to the binding site, as measured by the target surface 

atom likelihood ratios already described.  Each score is scaled by the length of the 

predicted bound chain segment. 

Results and discussion 

In the following sections the results of VSPM-based binding site 

predictions are presented for a test set of eight peptide-protein complexes for 

which PDB structures are available for both the bound complex and the unbound 
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protein (see Table 8), first using relatively generic probes and then using probes 

specifically derived from the peptide sequences of interest to improve predictive 

accuracy, and address factors affecting the performance of each of the strategies 

described. These results are compared to those obtained from two other published 

approaches for identifying likely interaction sites, and it is shown that the VSPM 

method correctly finds peptide binding sites in several cases where the other 

methods fail. An evaluation is then made of the potential for improving the 

solution by incorporating positional constraints derived from the known peptide 

sequence.  Finally, the discussion turns to issues affecting VSPM-based 

predictions generally, and to the implications of the reported results as they relate 

to the mechanism of peptide binding.  

Maps derived from simple, single-amino acid probes are informative 

regarding spatial distribution of binding preferences. 

As expected, the use of probes having different chemical characteristics 

results in maps having quite different patterns of predicted likelihood of 

interaction. Figure 30(a)-(d) compares the maps obtained using a positively 

charged probe (an Ala-Lys-Ala tripeptide), a negatively charged probe (Ala-Glu-

Ala), a hydrophobic probe (Ala-Ile-Ala), and an aromatic probe (Ala-Trp-Ala), on 

opposite faces of a representative protein structure.  
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PDB 
ID 

Peptide 
Sequence 

Protein 
Chain 

Chain 
Length 

Description 

1MK9 HMWDTANNPLYKEA F, H 378 Integrin beta-3 talin 
chimera 

1TWB ACNDENYA B 106 Hydrolase 
1U8T SILSQAEIDALLN B 122 Signalling protein 
1VWG CHPQGPPC B 121 Streptavidin 
1X8S HREMAVDCP A 98 PAR-6 PDZ domain 
2BP3 TFRSSLFLWVR B 91 Filamin actin binding 

protein 
2FF6 ETNEKNPLPDK A 360 Structural protein 
2IVZ GASDGSGWSSENNPWG D 387 TOLB 

Table 8. Description of the eight peptide-protein complexes comprising the test 
set. 

Protein surface interaction maps obtained using simple, single-amino 

acid probes that correspond to the amino acids present in a particular 

peptide are together predictive of the residues comprising the binding site of 

the peptide. 

When maps of this kind are compared to the actual binding loci of the 

corresponding residues in peptides in bound complexes with proteins, the 

correspondence is considerably better than would be expected by chance. For the 

8 peptide-protein complexes evaluated, the protein surface residues having a 

likelihood ratio > 3.0 on interrogation with a probe in the form Ala-X-Ala 

comprised 40.4 percent of the protein surface residues actually in contact with 

residue(s) X of the bound peptide. Maps of this kind would be expected to over-

predict, giving a relatively high false positive rate (here, 14.1 percent overall), 

because each PDB structure contains only a single bound peptide in a single 

locus, but there may often be multiple surface loci that show interactivity with a 
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given probe type (see Figure 30). The false positive rate can of course be reduced 

by imposing a more stringent likelihood ratio cutoff, but doing so reduces 

sensitivity.  Figure 31 (dashed line) shows a receiver operating characteristic 

(ROC) plot of the relationship between true positive rate (TPR) and false positive 

rate (FPR) for the 63 Ala-X-Ala-based predictions of individual peptide residue 

positions in the 8 complexes. 
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(a)

(b)

(c)

(d)
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Figure 30 (preceding page). VSPM map of PDB:1TWB, generic probes. Opposite 
(180 degree rotated) faces of PDB:1TWB. Dark regions have  likelihood ratio > 
3.0for interaction with probes (a) Ala-Asp-Ala, (b) Ala-Ile-Ala, (c) Ala-Lys-Ala, 
and (d) Ala-Trp-Ala. 

 
 

   0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

 
 

Figure 31. Receiver operating characteristic curves, Ala-X-Ala probes vs. trimer 
subsequence probes.  Receiver operator characteristic curve for predictions of 
residues interacting with Ala-Res-Ala probes representing residues present in 
bound peptides (dashed line) or trimer probes representing all trimer 
subsequences present in bound peptide (solid line), for 8 protein-peptide 
complexes, reflecting TP rate vs. FP rate at various likelihood ratio cutoffs as 
shown. 

When interaction maps are computed based on combined interrogation of 

the surface using multiple single-amino acid probes, they typically highlight one 
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or more larger regions that might be expected to have a relatively higher affinity 

for binding by a peptide that contains residues corresponding to those of the 

probes.  Figure 32 compares, for the eight protein-peptide complexes of the test 

set, the known position of the peptide from the bound complex with the surface 

regions having a likelihood ratio > 3.0 for interaction with simple Ala-X-Ala 

probes with X representing each of the residues of the peptide. In seven of the 

eight cases, the predicted loci correspond to at least part of the binding site of the 

bound peptide. Again as expected, additional loci away from the actual binding 

site are also predicted, some of which are in parts of the molecules not visible in 

Figure 32. 

Binding site prediction accuracy is improved using probes that take 

into account flanking residues in the peptide of interest. 

It seems reasonable to hypothesize that predictive accuracy should be 

improved to whatever extent additional information about the specific ligand of 

interest can be incorporated into the design of the probes. In particular, probes 

that more accurately model the microenvironment resulting from the interactions 

between peptide residues and their neighboring residues should improve results. 

For sets of probes in the form A-X-B, consisting of all of the possible contiguous 

trimer subsequences from the bound peptide, the protein surface residues having a 

likelihood ratio > 3.0 on interrogation with the probe comprised, in aggregate, 

44.4 percent of the protein surface residues actually in contact with the 
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corresponding residue X of the bound peptide, with a false positive rate of 13.9.  

The ROC relationship is shown in Figure 31 (solid line). 
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(a) (b)

(c) (d)

(e) (f)  

(g) (h)
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Figure 32 (Preceding page). VSPM maps of test set, Ala-X-Ala probes. Combined 
surface interaction maps based on probes Ala-residue-Ala. (a) PDB:1MK9, (b) 
PDB:1TWB, (c) PDB:1U8T, (d) PDB:1VWG, (e) PDB:1X8S, (f) PDB:2BP3, (g) 
PDB:2FF6, (h) PDB:2IVZ. Blue: residues with interaction likelihood ratio > 3.0. 
Red: peptide from bound complex. 

The combined surface maps using peptide trimer probes extracted 

from the sequence of the bound peptide are predictive of the binding loci of 

the peptides in the bound complexes. 

When the surface interrogation datasets from probes consisting of all of 

the possible contiguous trimer subsequences from the bound peptide are 

combined to produce a single protein surface map, and again setting the 

likelihood ratio operating point at 3.0 (i.e. considering the predicted binding site 

to comprise all surface residues containing at least one atom whose likelihood 

ratio is > 3.0), at least 50 percent of the actual binding site residues are predicted 

for four of the eight complexes, with a false positive rate less than 10 percent 

(Figure 33 and Figure 34, black lines; black arrows indicate operating points). At 

least 25 percent of the true binding site residues are predicted for seven out of 

eight of the complexes, again with a false positive rate less than 10 percent. 
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Figure 33. Receiver operating characteristic curves, contiguous trimer probes. 
Receiver operating characteristic curves for (a) PDB:1MK9, (b) PDB:1TWB, (c) 
PDB:1U8T, and (d) PDB:1VWG, each comparing true positive rate (vertical axis) 
vs. false positive rate (horizontal axis) for the set of residues predicted as 
comprising the peptide binding site, as function of likelihood ratio threshold 
chosen. Predictions based on contiguous trimer probes using bound structure of 
protein (black lines), unbound form of same protein (red lines, PDB ID shown in 
parenthesis), and Ala-X-Ala probes applied to bound form (blue lines). Arrows: 

operating point based on likelihood ratio threshold of 3.0.    / : TPR vs FPR 
values for highest ranking solution with geometric constraints shown for bound 
and unbound structure, respectively.  
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Figure 34.  Receiver operating characteristic curves, contiguous trimer probes. 
ROC curves for (a) PDB:1X8S, (b) PDB:2BP3, (c) PDB:2FF6, (d) PDB:2IVZ, 
each comparing true positive rate (vertical axis) vs. false positive rate (horizontal 
axis) for the set of residues predicted as comprising the peptide binding site, as 
function of likelihood ratio threshold chosen. Predictions based on contiguous 
trimer probes using bound structure of protein (black lines), unbound form of 
same protein (red lines), and Ala-X-Ala probes applied to bound form (blue 

lines). Arrows: operating point based on likelihood ratio threshold of 3.0.    / : 
TPR vs FPR values for highest ranking solution with geometric constraints shown 
for bound and unbound structure, respectively. 
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As shown in Table 9, for these predictions, the overall mean positive 

predictive value (PPV) is 0.44, TPR is 0.45, and specificity is 0.91. As is apparent 

comparing these ROC plots with the corresponding ROC plots for similar 

predictions based on Ala-X-Ala probes (Figure 33 and Figure 34, blue lines, blue 

arrows indicate operating points; see Figure 31, solid line, for composite plot), use 

of the more specifically tailored probes considerably increased predictive 

performance (PPV of 0.44 as compared to 0.28 for the Ala-X-Ala probes at 

likelihood ratio cutoff of 3.0; see Table 2).  Figure 35 and Figure 36 show 

molecular images of each of the eight target proteins reflecting the predicted 

mapping in comparison to the known position of the bound peptide, colored to 

reflect the regions corresponding to true positive (red), false positive (yellow), 

true negative (blue), and false negative (green) predictions.  See the supplemental 

files (Appendix 1) for Pymol session files corresponding to each mapping. 

 



 

184 

 

Operating Point 
2.5 3 (Likelihood Ratio 

Cutoff) TPR FPR PPV SPC TPR FPR PPV SPC 
1MK9 Bound 0.24 0.23 0.12 0.77 0.14 0.18 0.1 0.82 
(1MIX) Unbound 0.17 0.15 0.04 0.85 0.17 0.13 0.04 0.87 
 AXA  0.16 0.22 0.09 0.78 0.15 0.18 0.1 0.82 
1TWB Bound 0.56 0.08 0.61 0.92 0.56 0.04 0.75 0.96 
(1ZSZ) Unbound 0.5 0.17 0.38 0.83 0.5 0.13 0.45 0.87 
 AXA 0.5 0.23 0.32 0.77 0.5 0.17 0.39 0.83 
1U8T Bound 0.64 0.19 0.33 0.81 0.6 0.16 0.35 0.84 
(5CHY) Unbound 0.62 0.06 0.59 0.94 0.62 0.05 0.66 0.95 
 AXA 0.04 0.2 0.02 0.8 0 0.18 0 0.82 
1VWG Bound 0.87 0.09 0.59 0.91 0.87 0.08 0.62 0.92 
(1STP) Unbound 0.82 0.08 0.52 0.92 0.82 0.08 0.53 0.92 
 AXA 0.74 0.16 0.42 0.84 0.69 0.13 0.44 0.87 
1X8S Bound 0.63 0.04 0.77 0.96 0.56 0.04 0.75 0.96 
(1RY4) Unbound 0.57 0.22 0.25 0.78 0.43 0.2 0.21 0.8 
 AXA 0.58 0.08 0.62 0.92 0.56 0.06 0.68 0.94 
2BP3 Bound 0.5 0.12 0.53 0.88 0.3 0.06 0.59 0.94 
(2AAV) Unbound 0.5 0.14 0.44 0.86 0.49 0.09 0.54 0.91 
 AXA 0.44 0.17 0.42 0.83 0.33 0.12 0.42 0.88 
2FF6 Bound 0.32 0.14 0.14 0.86 0.26 0.1 0.16 0.9 
(1IJJ) Unbound 0.29 0.16 0.11 0.84 0.18 0.11 0.09 0.89 
 AXA 0.16 0.14 0.07 0.86 0.16 0.12 0.09 0.88 
2IVZ Bound 0.26 0.09 0.18 0.91 0.26 0.09 0.19 0.91 
(1C5K) Unbound 0.26 0.11 0.15 0.89 0.24 0.1 0.15 0.9 
 AXA 0.24 0.1 0.16 0.9 0.22 0.09 0.15 0.91 
Mean Bound 0.5 0.12 0.41 0.88 0.45 0.09 0.44 0.91 
 Unbound 0.47 0.14 0.31 0.86 0.43 0.11 0.33 0.89 
 AXA 0.36 0.16 0.26 0.84 0.33 0.13 0.28 0.87 

Table 9. Statistics for VSPM peptide binding site predictions using peptide trimer 
probes. True positive rate (TPR), false positive rate (FPR), positive predictive 
value (PPV), and specificity (SPC) for predictions of surface residues belonging 
to peptide binding sites in the peptide-protein complexes from the PDB ID’s 
indicated (bound complexes in bold, unbound forms of protein target in 
parentheses), at likelihood ratio cutoffs 2.5 and 3.0, based on composite protein 
surface map from the set of contiguous trimers derived from the sequence of each 
peptide. 
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Figure 35 (Preceding page). VSPM maps of test set, contiguous trimer probes. 
Surface map images for peptide binding loci predictions based on probes 
comprising all trimer sequences present in peptides for the PDB peptide-protein 
complexes shown. Coloring is by residue, red: true positive; yellow: false 
positive; blue: true negative; green: false negative.  (a) PDB:1MK9 (b) 
PDB:1TWB (c) PDB:1U8T (d) PDB:1VWG. 
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Figure 36 (Preceding page). VSPM maps of test set, contiguous trimer probes. 
Surface map images for peptide binding loci predictions based on probes 
comprising all trimer sequences present in peptides for the PDB peptide-protein 
complexes shown. Coloring is by residue, red: true positive; yellow: false 
positive; blue: true negative; green: false negative.  (a) PDB:1X8S (b) PDB:2BP3 
(c) PDB:2FF6 (d) PDB:2IVZ. 

Comparison with Pepsite and ODA methods 

The foregoing results from the VSPM method were compared with data 

obtained using two other methods that can be adapted to make predictions of this 

kind and that appear to be representative of the current state of the art: the 

“Pepsite” algorithm of Petsalaki et al., and the “Optimal Docking Area” analysis 

of Fernandez-Recio et al. For the eight complexes in the test set, the VSPM 

method performed well by comparison, achieving an overall mean PPV of 0.44 as 

compared to 0.16 for ODA and 0.12 for Pepsite, with a mean TPR of 0.45 and 

FPR of 0.09, as compared to 0.25 and 0.16 for ODA and 0.21 and 0.20 for 

Pepsite.  Statistics for each of the eight complexes are shown in Table 10, and 

molecular images showing the predicted binding loci are shown in Figure 37 and 

Figure 38 (ODA) and Figure 39 and Figure 40 (Pepsite). ODA and Pepsite may 

be disadvantaged in this comparison in that neither program is designed 

specifically for the task to which they were put, and obtaining the predictions 

shown required certain adaptations and parameter choices (described in the 

methods section) that the creators of those programs might well have made 

differently. Both programs nevertheless performed admirably, and the comparison 
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is offered merely by way of providing an objective benchmark for assessing the 

VSPM method. Indeed, although the VSPM method succeeded in identifying 

binding sites in three of the complexes where ODA and Pepsite failed to do so 

(TPR of 56%, 30%, and 26%, respectively for complexes PDB:1TWB, 

PDB:2BP3, and PDB:2FF6, compared to  0%, 0%, and 5%, respectively, for 

ODA and 0%, 0%, and 0% for Pepsite), ODA and Pepsite located the binding site 

in one complex where the VSPM method performed poorly (TPR of 62% for 

ODA and 38% for Pepsite vs. 14% for the VSPM method on PDB:1MK9), and 

ODA outperformed the VSPM method on one other complex (39% vs. 26% on 

PDB:2IVZ). 
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  TPR FPR PPV SPC 
1MK9 VSPM 0.14 0.18 0.10 0.82

ODA 0.62 0.13 0.39 0.88
Pepsite 0.38 0.20 0.21 0.84

  
1TWB VSPM 0.56 0.04 0.75 0.96

ODA 0.00 0.17 0.00 0.84
Pepsite 0.00 0.09 0.00 0.92

  
1U8T VSPM 0.60 0.16 0.35 0.84

ODA 0.21 0.24 0.11 0.78
Pepsite 0.21 0.29 0.10 0.71

  
1VWG VSPM 0.87 0.08 0.62 0.92

ODA 0.33 0.17 0.23 0.84
Pepsite 0.53 0.31 0.21 0.78

  
1X8S VSPM 0.56 0.04 0.75 0.96

ODA 0.38 0.18 0.30 0.93
Pepsite 0.44 0.16 0.37 0.88

  
2BP3 VSPM 0.30 0.06 0.59 0.94

ODA 0.00 0.15 0.00 0.85
Pepsite 0.00 0.25 0.00 0.78

  
2FF6 VSPM 0.26 0.10 0.16 0.90

ODA 0.05 0.14 0.03 0.86
Pepsite 0.00 0.13 0.00 0.91

  
2IVZ VSPM 0.26 0.09 0.19 0.91

ODA 0.39 0.13 0.19 0.88
Pepsite 0.09 0.15 0.04 0.88

  
Mean VSPM 0.45 0.09 0.44 0.91

ODA 0.25 0.16 0.16 0.86
 Pepsite 0.21 0.20 0.12 0.84

 

 

Table 10. Comparison of VSPM predictions with Pepsite and ODA methods. 
Comparison of predictions for VSPM, the Optimal Docking Area method of 
Fernandez-Recio et al. (ODA) [13], and the Pepsite method of Petsalaki et al. [12, 
26] 
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Figure 37 (Preceding page). Mapping of predictions of ODA method applied to 
test set. Predictions by Optimal Docking Areas method [13] of binding ‘hot spots’ 
(yellow) for the proteins shown.  Actual bound position of the each peptide is 
shown in red. (a) PDB:1MK9 (b) PDB:1TWB (c) PDB:1U8T (d) PDB:1VWG. 
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Figure 38 (Preceding page). Mapping of predictions of ODA method applied to 
test set. Predictions by Optimal Docking Areas method [13] of binding ‘hot spots’ 
(yellow) for the proteins shown.  Actual bound position of the each peptide is 
shown in red. (a) PDB:1X8S (b) PDB:2BP3 (c) PDB:2FF6 (d) PDB:2IVZ. 
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Figure 39 (Preceding page). Mapping of predictions of Pepsite method applied to 
test set. Predictions (yellow) by Pepsite algorithm [12, 26] of binding sites of 
peptides in the complexes shown. Actual bound positions are shown in red. (a) 
PDB:1MK9 (b) PDB:1TWB (c) PDB:1U8T (d) PDB:1VWG. 
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Figure 40 (Preceding page). Mapping of predictions of Pepsite method applied to 
test set. Predictions (yellow) by Pepsite algorithm [12, 26] of binding sites of 
peptides in the complexes shown. Actual bound positions are shown in red. (a) 
PDB:1X8S (b) PDB:2BP3 (c) PDB:2FF6 (d) PDB:2IVZ. 

Predictions are robust with respect to differences between bound and 

unbound structures. 

Absent a solved structure of the peptide-protein complex of interest – 

which, if available, would make binding site prediction unnecessary – any “real 

life” predictions would have to be based on unbound structures of the target, and 

these can be expected to differ from the bound form. Protein surfaces often 

change upon binding by a peptide, particularly in the binding region; even the 

highest resolution structural models are to some degree inaccurate; and proteins 

often contain relatively unstructured regions.  The predictions described to this 

point have all been made on the basis of analyzing the target protein in its exact 

bound conformation. To assess the sensitivity of the VSPM method to error in the 

protein structure being mapped, maps were constructed based on the unbound 

forms of the eight target proteins comprising the test set. These maps were 

computed using as probes, for each target, the set of all contiguous trimer 

subsequences of the peptide; the surface residues predicted to comprise the 

binding site were then mapped over to the target in the bound complex for 

purposes of evaluating the accuracy of the prediction.  The ROC plots for these 

predictions are shown in Figure 33 and Figure 34 (red lines) and the TPR, FPR, 
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PPV, and specificity statistics are shown in Table 9. At the same operating point 

as for the bound forms (likelihood ratio cutoff of 3.0, red arrows), three of the 

four binding sites identified using the bound form of the target protein were 

identified at a TPR of 50 percent or above (50%, 62%, and 82%, respectively for 

PDB:1MIX/PDB:1TWB, PDB:5CHY/PDB:1U8T, and PDB:1STP/PDB:1VWG), 

and two others were predicted with TPR of 43% and 49%, respectively 

(PDB:1RY4/PDB:1X8S and PDB:2AAV/PDB:2BP3), albeit at the cost of a 

somewhat higher FPR (13%, 5%, 8%, 20%, and 9%). For one structure 

(PDB:5CHY/PDB:1U8T), surprisingly, using the unbound structure resulted in a 

substantially improved prediction (PPV of 66% vs. 35%, due to a reduction in 

false positives). Overall for the eight targets, for predictions based on the unbound 

structures as compared to those from the bound forms, the mean TPR declined 

slightly from 45% to 43%, the mean FPR rose slightly from 9% to 11%, and the 

mean PPV declined from 44% to 33%. 

The VSPM approach can be extended to take into account geometric 

constraints based on the known sequence relationship among peptide 

residues. 

For five of the eight test structures, the search for plausible combinations 

of adjacent individual trimer poses based on geometric constraints produced 

reasonably good predictions of the binding loci, with a mean PPV of 68 percent, 

TPR of 66 percent, and FPR of 6 percent for the average of the ten highest scoring 

solution sets for each complex (see Table 11; “selected solution” refers to the 
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optimal solutions as selected by selection criteria in which overall energy and 

positioning in high likelihood ratio surface regions are weighted equally (scaled 

by length); “best solution in set” refers to ranking of all solutions satisfying the 

geometric constraints by PPV; RMSD’s are alpha carbon average RMS distances 

as compared to the bound peptide for the residues present in the solution; “Len” is 

the chain length (number of residues) of the solution set).  

For three of the complexes (PDB:1X8S, PDB:1VWG, and PDB:1U8T), 

the solution selected by the algorithm was in reasonable register with the bound 

peptide, with RMS deviations of  2.80Ǻ,  7.76Ǻ, and 5.45Ǻ, respectively, 

between the Cα positions of the predicted solution and those of the bound peptide 

(Figure 41).  For two of the structures, however (PDB:2FF6 and PDB:2IVZ) the 

success rate in predicting the surface residues belonging to the binding site was 

zero percent.  See Figure 33 and Figure 34, for TPR / FPR values for each 

complex for solutions based on the bound structure and unbound structure (black 

dot and red dot, respectively). 

The success rate appears to be limited by two factors.  First, the simple 

selection criterion by which the solution sets were ranked sometimes performs 

poorly in selecting an optimally predictive solution from the set of pose 

combinations that satisfy the geometric constraints, as can be seen from the 

statistics for the highest PPV solutions in each set (see Table 11, right hand 

columns). For example, for one of the complexes (PDB:2FF6) for which the 

selected solution had a true positive rate of zero in predicting the surface residues 
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comprising the binding site, a solution existed in the set of geometrically plausible 

solutions that would have had a TPR of 68 percent and a FPR of only 1 percent. 

Given a sufficiently large training set, it would likely be possible to train or 

evolve a recognizer that would perform much better at selecting the optimal 

solution from the output of the tree search. A second factor is that the set of 

solutions emerging from the tree search may not necessarily contain any very 

good solutions if the population of sampled poses does not contain poses 

approximately representative of the bound positions of the corresponding residues 

in the peptide. Thus, for one of the structures (PDB:2IVZ), even the best solution 

in the set of solutions conforming to the geometric constraints has a PPV of only 

28 percent.  This problem is likely in part due to insufficient sampling; 

presumably, with a much larger sample population, or, better yet, with 

enumerative evaluation of the entire surface, the required poses would be present. 
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PPV TPR FPR Len RMS TPR FPR Len RMS
1MK9 0.18 0.29 0.15 10.2 19.32 0.64 0.03 5.2 8.98

0.17 0.28 0.16 10.0 19.00 0.67 0.02 5.0 6.96
(1MIX) 0.11 0.05 0.02 5.0 0.11 0.00 5.0

1TWB 0.68 0.63 0.06 5.0 10.58 0.78 0.05 5.4 7.98
0.71 0.63 0.05 5.0 10.49 0.88 0.03 5.0 5.86

(1ZSZ) 0.64 0.56 0.07 6.0 0.88 0.01 6.0

1U8T 0.71 0.66 0.04 5.0 5.20 0.67 0.03 5.0 5.72
0.71 0.71 0.04 5.0 5.45 0.64 0.02 5.0 6.87

(5CHY) 0.34 0.71 0.23 13.0 0.29 0.04 5.0

1VWG 0.73 0.95 0.06 5.4 6.66 0.97 0.05 5.0 6.39
0.82 0.93 0.03 5.0 7.76 0.93 0.03 5.0 7.76

(1STP) 0.67 0.67 0.05 5.0 0.67 0.05 5.0

1X8S 0.68 0.57 0.06 5.8 3.79 0.68 0.03 5.8 3.79
0.60 0.56 0.08 6.0 2.80 0.75 0.03 6.0 2.80

(1RY4) 0.21 0.19 0.17 7.0 0.56 0.08 6.0

2BP3 0.57 0.49 0.11 5.4 11.16 0.72 0.07 6.0 12.28
0.13 0.11 0.20 5.0 13.67 0.56 0.03 5.0 8.76

(2AAV) 0.75 0.50 0.05 5.0 0.67 0.03 5.0

2FF6 0.00 0.00 0.05 11.0 14.84 0.67 0.01 6.0 14.04
0.00 0.00 0.04 11.0 15.07 0.68 0.01 6.0 14.18

(1IJJ) 0.00 0.00 0.07 5.0 0.68 0.02 5.0

2IVZ 0.00 0.00 0.09 5.0 23.06 0.48 0.09 8.0 15.73
0.00 0.00 0.09 5.0 22.94 0.48 0.09 8.0 15.61

(1C5K) 0.19 0.20 0.07 5.0 0.48 0.09 9.0

Best 0.45 0.45 0.08 0.72 0.70 0.04 9.36
Best  0.39 0.40 0.09 0.77 0.70 0.03 8.60
Unbnd 0.37 0.36 0.09 0.63 0.54 0.04

Best 0.68 0.66 0.06 0.78 0.76 0.04 7.23
Best  0.60 0.59 0.08 0.84 0.75 0.03 6.41
Unbnd 0.52 0.53 0.11 0.73 0.61 0.04

Selected Solution Best Solution In Set
PPV
0.73

0.8
0.4

0.78
0.88
0.93

0.77
0.82
0.57

0.76
0.82
0.67

0.84
0.86
0.64

0.74
0.83
0.86

0.86
0.87
0.68

0.28
0.28
0.31

Averages for all
11.83
12.15

Averages for 1TWB, 1U8T, 1VWG, 1X8S, and 2BP3
7.48
8.03

 

Table 11. Statistics for VSPM predictions incorporating geometric constraints. 
Results from tree search for sets of individual poses conforming to geometric 
constraints.  For each complex, the upper line reflects the average of the ten 
highest ranked solutions, the second line represents the highest ranked solution, 
and the third line represents the highest ranked solution based on the unbound 
structure.  
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Figure 41 (Preceding page). VSPM solution sets with geometric constraints. 
Highest ranking solution sets of overlapping trimer poses satisfying geometric 
constraints for  (a) PDB:1MK9, (b) PDB:1TWB, (c) PDB:1U8T, (d) PDB:1VWG, 
(e) PDB:1X8S, (f) PDB:2BP3, (g) PDB:2FF6, (h) PDB:2IVZ.  Red: trimer poses 
belonging to solution set. Note that the solution set typically does not cover the 
entire peptide sequence. Blue: residues of bound peptide corresponding to 
residues present in solution set. Yellow: residues of bound peptide not 
corresponding to residues present in solution set. 

Algorithm performance generally, failure cases, and potential 

improvements 

The essential concept underlying the VSPM strategy is the use of an 

arbitrary chemical moiety as a probe to map the properties of a surface by 

repeatedly positioning the probe at multiple points on the surface and computing 

the forces on the probe, the interaction energy, or some other quantity of interest.  

The results presented above show that this approach is capable of contributing 

useful information to the analysis of peptide-protein interactions; in particular, as 

applied to the eight test structures, it correctly predicts binding regions in three 

cases where the other prediction algorithms used for comparison failed. Although 

the computation time required is substantial – approximately 50 to 200 processor-

hours per structure – the ability to analyze arbitrary or novel ligands without any 

need for bioinformatic data or data on evolutionary relationships may prove 

advantageous in appropriate cases, particularly where non-natural residues and/or 

non-biological sequences are involved.  

The binding site prediction strategy performed poorly on two of the eight 

test complexes. In both cases, the reason appears to be that the probes, being 
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small, are able to bind in topologically restricted locations – a deep crevice, in the 

case of PDB:1MK9, and a pore, in the case of PDB:2IVZ – that a full length 

peptide would be unable to penetrate. Both regions contain multiple loci for 

which individual trimer probes appeared to have quite high affinity, as often 

seems to be the case with pronounced surface concavities, and in the context of a 

Boltzmann weighting scheme, these loci swamp the signal from the remainder of 

the surface.  If the full length 16-mer peptide of PDB:2IVZ somehow managed to 

work its way past the steep energy barrier and into the predicted binding region 

inside the pore, no doubt it would be very stably bound there, and likewise for the 

14-mer peptide of PDB:1MK9 in the deep cleft.  It should be possible to filter the 

mapping results to eliminate or downweight topologically restricted loci, perhaps 

via a local density constraint, but for purposes of this evaluation it was thought 

preferable to avoid such departures from generality. 

In ideal terms, a virtual surface interrogation strategy might map 

interaction energy over a multidimensional space, as a function of both the spatial 

position on the target surface and additional dimensions to represent the 

orientation of the probe and the allowed bond rotations.  For entities such as 

peptide trimers, which typically have approximately ten conformational degrees 

of freedom, such a space is too large to enumerate and evaluate exhaustively at 

any resolution likely to be useful, so it is necessary to reduce the set of points to 

be evaluated.  This might perhaps be done most advantageously by specifying an 

arbitrary grid of target surface points and, at each point, using a suitable 
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optimization procedure such as a genetic algorithm to determine a conformation 

and rotation of the probe that produces an energy value at or near the minimum 

achievable at that point. The local optimization would, in effect, simulate the 

effect of approaching a protein surface locus with a physical entity such as an 

AFM probe to which is conjugated (say) a peptide trimer: presumably the peptide 

trimer would arrange its bond rotations so as to achieve a local energy minimum. 

Future development plans include writing software to implement a strategy of this 

kind, but for purposes of prototyping and evaluating the potential utility of 

VSPM, it seemed preferable to leverage the already existing and well-tested 

functionality offered by AutoDock. The most laborious aspect of the computation 

required for energy mapping – the evaluation of the energy of a ligand at a 

particular position and in a particular conformation – is a task for which 

AutoDock is well suited.   The sampling strategy worked adequately, but did 

require extensive reweighting to remove sources of bias that would not be present 

if the surface space were searched enumeratively rather than sampled. 

It would also be possible, in an enumerative algorithm of the kind just 

described, to improve search efficiency and also generate data pre-filtered for a 

specific task, by incorporating conformational or other geometric constraints. For 

example, for a peptidic probe, one could sample and cluster conformations from a 

molecular dynamics trajectory of the probe, and use the resulting conformations 

as starting points for the local optimizations. Another constraint that would likely 

be useful in the context of peptide binding site prediction would be to prohibit 
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poses in which either terminus of the probe is oriented toward the target surface in 

such a way as to prevent extension of the chain.  Doing so would automatically 

eliminate a large number of solution poses that could not be part of a longer chain.  

Enumeration offers the further advantage of producing a single, deterministic 

solution, as compared to the sampling strategy employed here, where, owing to 

the stochastic nature of the genetic algorithm employed by AutoDock, results of 

successive runs may vary somewhat even for identical inputs, . 

In the experiments presented here, no attempt was made to take into 

account unstructured regions of either the peptide or the protein target.  In the 

case of unstructured regions of the protein, it is not feasible to do so since atomic 

coordinates are required for the energy evaluation. In the VSPM mapping, it 

would be possible to include probes representative of the regions of the peptide 

for which no coordinates are given in the PDB structure, but this was not done. 

Implications regarding mechanism of peptide-protein binding 

It is surprising that a strategy that relies on sampling from a large number 

of (presumably) suboptimal binding poses involving small pieces of a bound 

peptide could provide any useful information at all, and even more surprising that 

it can do so on the basis of an unbound form of the target structure which differs 

significantly from the bound form.  Of the hundreds of trimer docking poses 

comprising the sample set from which each map is constructed, typically very 

few, if any, match the position of the peptide in the bound complex closely 

enough so that the specific atom-level interactions between the probe and the 



 

208 

 

target surface would be the same as those present in the bound complex depicted 

by the PDB structure, or even between the same pairs of atoms.  Those few poses 

that are in even approximate register with the corresponding part of the bound 

peptide are essentially never those with lowest estimated energy. Clearly, one 

thing that this prediction method is not doing is detecting interactions that are 

both essential for binding and highly sensitive to position.   

This conclusion is underscored by the difficulty encountered in attempting 

to estimate individual residue positions by searching for combinations of 

individual poses from sample sets that satisfy geometric constraints such that they 

could plausibly represent the approximate structure of a bound peptide.  Even in 

the four out of eight cases (see Figure 33, black dots) where the search resulted in 

significantly improved identification of the surface residues involved in the 

binding site, the specific binding poses comprising the solution were typically in 

poor register with the position of the peptide in the PDB structure of the bound 

complex, and were sometimes oriented oppositely or at least differently, as the 

relatively high RMS distances testify (see Table 4). Further, the sample sets often 

did not contain poses from which a single set of overlapping poses could be 

constructed that would be in low-RMSD congruence with the bound position. If 

the position of the peptide as depicted in the PDB structure does represent the 

global energy minimum, then it may be that what the search algorithm is finding 

is various combinations of individual poses that correspond to local minima that 

may be nearby in configuration space and may represent fragments of possible 
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transition states that lie between some initial encounter complex and the final 

stable state.  It is also possible that the positions given in the PDB structures are 

artificially stabilized as a result of crystallization, and do not accurately reflect the 

dynamic nature of the complex as it exists in solution.  

Several experimental observations arguably support the implication that a 

less fastidious, more probabilistic binding model is needed.  In contrast to the near 

binary specificity observed in nucleic acid microarray experiments, a typical pure 

protein target will show significant affinity for a relatively large proportion of 

random 20-mer peptides. Experiments by others have shown that the affinity of a 

selected random sequence peptide for a specific protein target can be optimized 

by systematic substitution of a few individual residues, and that the binding 

energy improvements resulting from these substitutions can be approximately 

additive [33]. These and other observations, discussed in detail in Chapter 2, 

strongly suggest that these intermediate length peptides typically exist in solution 

(and on a peptide microarray surface) in a distribution of conformations, rather 

than in any stable, folded structure. 

The hypothesis that seems most consistent with the computational results 

just presented, and with the experimental observations described in Chapters 2 

and 3, is that the conformational and positional space surrounding a typical 

peptide binding site must contain many energy minima, and there must be many 

admissible transitions among those minima.  In effect, the energy minima 

corresponding to peptide binding sites must usually lie in gentle valleys, not 
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vertical bore-holes, in the positional and conformational energy landscape.  As 

discussed in the preceding chapters, it is hypothesized that the interactions of 

interest are unlikely to be characterized by the usual “lock and key” paradigm of 

molecular docking, and that interactions between proteins and random peptides in 

the 8- to 20-mer size range are best understood via a model in which a given 

peptide is viewed as a relatively flexible entity made up of a series of moieties 

capable of energetically modest and non-fastidious interaction with suitable 

protein surface features, perhaps interspersed by relatively inert regions that 

contribute relatively little to ΔG. Similarly, the protein may be thought of as 

exposing a mostly inert surface except for a scattering of small regions capable of 

interacting more strongly with the interactive moieties exposed by the peptide.  

Such a hypothesis would explain the otherwise surprising success of the 

VSPM binding site predictions, and in particular those based on the unbound 

protein structures.  A well-known limitation of computational docking is that it 

depends on estimating interatomic forces that are very sensitively dependent on 

distance, so that very small errors in the positions of the atoms in the target 

protein can result in large errors in the energies of the docking poses being 

searched.  Given that structural models derived from X-ray or NMR experiments 

can, at best, provide only an approximate representation of one or a few 

conformational samples, “rigid” docking strategies fail to provide meaningful 

predictions in many cases. This is especially so for interactions wherein the 

protein surface shape changes appreciably upon binding of the ligand. If, 
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however, the hypothesis is correct that the binding of intermediate-length peptides 

is less a matter of exact atom-level positioning and more a matter of finding 

bound positions capable of accommodating a few relatively non-fastidious 

interactions, then the problem of binding site prediction becomes much less 

dependent on perfectly accurate positioning of the protein surface atoms.  

Therefore, it should be possible to obtain reasonable estimates of binding loci 

using unbound target protein structures whose exact surface geometries may 

differ significantly from the final bound structure.   

This binding model, if correct, also has intriguing implications for the 

design of peptide ligands of high affinity and specificity: it means that the goal 

should not be to find a single bound position and conformation of very high 

energy; instead, it should be to find a cluster of positions and conformations, 

which can be of lower energy, but which occupy points that are near each other in 

positional and conformational space and are not separated by high energy barriers. 

It may be noted that the latter goal is one that is potentially quite amenable to 

computational search and optimization, while the former is not. 

Conclusions  

A method, virtual scanning probe mapping, has been introduced for 

assessing and spatially mapping the interactive properties of a surface with 

respect to an arbitrary chemical probe entity, by computational means. It has been 

shown that the method is capable of extracting information useful in predicting 

peptide binding loci on proteins. Unlike bioinformatic approaches, the method 
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relies entirely on physics-based analysis, and so is not restricted to naturally 

occurring entities or to sequences that are well-represented in databases.  As 

applied to a test set of eight peptide-protein complexes selected randomly from 

the PDB, the method performs well in predicting the protein surface residues 

belonging to the peptide binding site. 
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CHAPTER 5: PREDICTION OF BINDING LOCI ON AKT-1 PROTEIN 

The VSPM method described in Chapter 4 was used to analyze the 

binding properties of AKT-1 protein, a target for which a bivalent synbody was 

discovered experimentally by microarray screening (by others) [32]. Here a 

comparison is presented between the binding loci predicted by the VSPM 

algorithm and the AKT-1 surface moieties identified in cross-linking experiments 

(also by others).  

AKT structure and function 

AKT, also called protein kinase B, is a serine/threonine protein kinase that 

is activated following ligand binding to G protein coupled receptors, receptor 

tyrosine kinases, or other cell surface receptors, whereupon AKT phosphorylates 

a large number of other signalling molecules within the cell [247-249].  Because 

of its involvement in signalling pathways that affect cell proliferation and 

suppression of apoptosis, AKT has received much attention as a possible cancer 

drug target [247, 250-252].   

AKT has three distinct domains. The 118 residues (in AKT-1) beginning 

at the N-terminus correspond to the pleckstrin homology (PH) domain that binds 

phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3). This is linked by a 39 

amino acid hinge region of unknown structure [253] to the central catalytic 

domain, followed by an unstructured C-terminal hydrophobic domain [254].  In 

humans, AKT exists in three similar isoforms (AKT-1, AKT-2, and AKT-3); 

these have about 60% sequence identity in the PH domains, 25% in the hinge 
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region, and 85% homology in the kinase domains. Discovery of a highly AKT-

specific inhibitor has proved challenging, in part because the important residues in 

the two most easily targeted sites, the ATP binding pocket and the PH domains 

that bind the PI(3,4,5)P3 head groups, are highly conserved, making it difficult to 

find inhibitors that can differentiate among related kinases [253].  

Two x-ray structures (PDB:3CQU and PDB:3CQW) of the catalytic 

domain (residues 144 through 478 as numbered in PDB:3CQU) were available at 

the time the analysis reported here was performed [255]. These structures are co-

crystals of AKT-1 with a pyrrolopyrimidine inhibitor and a synthetic peptide, 

“Crosstide”, which binds in the catalytic cleft of AKT. (Crosstide is a 

commercially available [256] peptide whose sequence (GRPRTSSFAEG) is 

derived from glycogen synthase kinase, is readily phosphorylated by AKT and 

other serine/threonine kinases, and is therefore used in kinase activity assays 

[257].)  Comparison of these PDB structures by backbone structural alignment 

shows them to be approximately identical except in the position of the loop 

around residue 160, which appears to control access to the active site, and is in a 

more “open” position in 3CQW by approximately 4Ǻ. Even leaving aside the 

(presumably) unstructured hinge region, AKT has been described as a “very 

flexible enzyme” [253]. Two additional similar x-ray structures, PDB:3MV5 and 

PDB:3MVH, again of the AKT-1 kinase domain co-crystallized with pyrimidine-

based inhibitors, were recently published in May, 2010 [258]. An x-ray structure 

has also been published of the PH domain (PDB:1H10) [259], in complex with  
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PI(3,4,5)P3. Another study describes a structure localizing a peptide inhibitor on 

the PH domain using NMR techniques [254].  

Cross-linking of synbody peptides to AKT 

Cross-linking experiments were performed by Dr. Matthew P. Greving in 

which each of the two peptide binding elements of a synbody having high affinity 

and specificity for AKT-1 was bound and cross-linked to AKT-1, a trypsin digest 

was performed, and the resulting fragments were identified by mass 

spectrographic analysis. The peptide sequences were: 

TRF23: FRGWAHIFFGPHVIYRGGSC 

TRF26: AHKVVPQRQIRHAYNRYGSC  

Table 12 shows the tryptic fragments identified on cross-linking, with the 

plausible cross-linked residues shown in bold type.  C-terminal lysines of 

fragments are assumed not to represent possible cross-link sites since trypsin 

would be unlikely to cleave at a site where a cross-link is present. Lysines whose 

amine groups are not surface-exposed in the x-ray structure are likewise assumed 

not to represent valid cross-link sites.  The cross-link site for fragment 5 cross-

linked to TRF23 could not be determined because there is a 17-residue gap in the 

x-ray structure from residue M446, and the fragment cannot be matched to the 

structure. All fragments involving cross-links to peptide 23 contained only the N-

terminal FR residues from the peptide. All fragments involving cross-links to 

peptide TRF26 contained the N-terminal fragment AHKVVPQR of the peptide. 

 



 

216 

 

Peptide AKT 
Fragment 

AKT Fragment Sequence Possible cross- 
linked residues 

TRF23 1 (R)DLKLENLMLDK(D)-Ox  K276 
TRF23 2 (R)YYAMKILKKEVIVAK(D)  K179, K182, K183 
TRF23 3 (R)YYAMKILKKEVIVAK(D)-Ox K179, K182, K183 
TRF23 4 (R)DLKLENLMLDKDGHIK(I)  K276, K284 
TRF23 5 (R)RPHFPQFSYSASGTAKGDP(-) None 
TRF26 1 (K)LLGKGTFGKVILVK(E) K158, K163 
TRF26 2 (R)FFAGIVWQHVYEKK(L) K419 
TRF26 3 (K)NVVYRDLKLENLMLDK(D) K276 

Table 12. Tryptic fragments from cross-linking peptides to AKT. 

   Based upon the data in Table 12, the following conclusions may be 

drawn: 

1. There is an unambiguous cross-link of peptide TRF23 to AKT residue 

K276. 

2. There is a cross-link of peptide TRF23 to at least one of AKT residues 

K179, K182, or K183; however, of these, only K182 has a reasonably 

surface-accessible amine. 

3. A cross-link of peptide TRF23 to AKT residue K284 is possible, but 

not necessary to explain the data since the same fragment contains 

K276. 

4. There are unambiguous cross-links of peptide TRF26 to AKT residues 

K276 and K419. 

5. Peptide TRF26 cross-linked to AKT residue K158, K163, or both. 
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Comparison of cross-link sites to binding sites predicted by VSPM 

Figure 42(a) shows the two amines corresponding to AKT residues K182 

(green) and K276 (blue). The region within a 1 nm radius of each is shaded in 

grey, indicating the approximate length of the cross-linker. Figure 42(b) shows 

the reverse face of the AKT molecule, with K284 shown in cyan and the surface 

locus corresponding to K183 (almost completely buried) in green. Figure 42(c) 

and (d) show a spatial mapping of the binding likelihood ratio of peptide 23 as 

computed by the VSPM method described in Chapter 4 (darker red indicates 

higher likelihood).  Figure 42(e) and (f) show a spatial mapping of the binding 

likelihood ratio of the N-terminal trimer (FRG) of peptide 23, that being the point 

at which the peptide would be cross-linked. As is apparent from Figure 42(c) and 

(e), the VSPM prediction is in complete agreement with the cross-linking data 

regarding the region surrounding residue K276 (blue in Figure 42(a), (c), and (e)).  

The predicted binding propensity map is less satisfying with respect to residue 

K182 (green in Figure 42(a), (c), and (e)), but given the size of the cross-linker it 

is plausible that a peptide bound where indicated by the higher probability region 

could cross-link to that residue. The VSPM map also indicates a high-probability 

region on the opposite face (Figure 42 (d)), but it appears that the binding 

propensity at that site is not due to the N-terminal portion of the peptide (Figure 

42(f)).  

These data are consistent with the known peptide binding properties of 

AKT-1.  Residue K276 (blue in Figure 42 (a), (c), and (e)) lies inside a furrow 
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that can be seen running vertically in the figure; the Crosstide peptide, which 

mimics a natural substrate of AKT, binds in the same furrow, as seen in  Figure 

43, which shows the x-ray structure of PDB:3CQU with the Crosstide peptide 

bound.  
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Figure 42. Cross-link sites and predicted binding sites, peptide TRF23 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 43.  AKT-1 showing position of Crosstide peptide. 

The cross-linking data indicates that peptide TRF26 is cross-linking to at least 
three distinct AKT residues. .  
Figure 44 shows the locations of the amines on the AKT surface: K276 (blue,  
Figure 44(a), (c), and (e)), K158 and K163 (green,  
Figure 44(a), (c), and (e)), and K419 (cyan,  

Figure 44(b), (d), and (f)). Again, the VSPM algorithm finds the highest 

binding likelihood in the substrate binding cleft, in the region surrounding residue 

K276, and to a lesser extent on the opposite face within cross-linking distance 

from residue K419.    

Implications regarding binding specificity 

These data provide further support for the hypothesis developed in the 

preceding chapters that intermediate length random peptides are unlikely to bind 

in a single fixed configuration.  The N-terminal amine of peptide TRF23 cross-

links to at least two distinct loci that are ~22Ǻ apart, and the N-terminus of 

peptide TRF26 cross-links to at least three distinct loci, none of which is closer 

than ~17Ǻ from any of the others, and one of which is on the opposite face of the 
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AKT molecule from the others. Clearly, the cross-linking data cannot be 

explained by a fixed position of either peptide. The VSPM predictions also 

indicate two distinct binding regions for each peptide, and appear to be generally 

consistent with the cross-linking data.  
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Figure 44. Cross-link sites and predicted binding sites, peptide TRF26. 

(a) (b) 

(c) (d) 

(e) (f) 
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CHAPTER 6: CONCLUDING REMARKS 

The central argument of the preceding chapters is that peptide-protein 

interfaces are dynamic entities, and that the binding behavior of random, 

intermediate length peptides must be evaluated in probabilistic terms that take 

into account the multiplicity of positions and conformations that may exist in an 

ensemble of bound complexes, rather than in terms of a single bound position in a 

single binding site.  

The peptides of interest are flexible and adopt a broad distribution of 

conformations in their free solvated state. Evidence for this conclusion, discussed 

in Chapters 2 and 3, includes modeling studies of the range of conformational 

variability resulting from bond rotations; statistical data from a large number of 

microarray experiments; conformational sampling and clustering from molecular 

dynamics modeling, and theoretical analysis described in the pertinent scientific 

literature.  

A simple “lock and key” model fails to explain the observed kinetics of 

peptide-protein binding. The promiscuity of peptides in microarray and SPR 

experiments (Chapter 2), the long incubation times required for equilibrium to be 

established (Chapter 2), the positional variability observed in PDB structures 

where multiple models of the same interface are available (Chapter 3), the 

surprising success of a probabilistically driven binding site prediction model 

(Chapter 4), and experimental evidence indicating multiple cross-linking loci 

(Chapter 5) are difficult to reconcile with an assumption that interfaces are static. 
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Conversely, these observations, as well as the observed binding behavior in SPR 

experiments (Chapter 2) are readily explained if it is assumed that multiple bound 

configurations are present. 

In the course of developing this argument, several inquiries were pursued 

that yielded results of possible future utility for the purpose of discovering and 

optimizing peptide ligands for use in synbodies.  As described in Chapter 3, a 

comprehensive dataset was constructed, containing all peptide-protein interfaces 

present in the Protein Data Bank at the time the dataset was compiled that could 

be reasonably regarded as comprising a protein and a surface-bound intermediate-

length peptide. The interfaces were extracted, with anomalous or non-standard 

representations corrected, and were energy minimized and analyzed to extract a 

wealth of statistical data about interface geometry and other measurable 

characteristics. Non-bonded interactions (hydrogen bonds, salt bridges, cation-pi 

interactions, and hydrophobic interactions) were identified and described in detail 

in a relational database, and energies were evaluated according to a detailed 

model, with weights trained on the basis of experimentally determined affinities. 

These data provide a basis for inferring heuristics, discussed in detail in Chapter 

3, to inform the design and selection of peptide ligands. The “sanitized” and 

minimized interface dataset and the relational database containing the results of 

analysis have been made publicly available via a web repository, together with the 

source code for the PopTop and VSPM software (see Appendix 1 for locations). 



 

225 

 

Also developed in the course of the inquiry was a novel general technique 

for spatial mapping of the chemical or other characteristics of a target 

macromolecule by interrogating its surface with small probe entities whose 

interactions provide a local measure of the interactive characteristics desired to be 

mapped. In Chapter 4, this “Virtual Scanning Probe Mapping” (VSPM) technique 

was applied to produce a spatial map of the likelihood of binding by a specified 

peptide, and was shown to predict peptide binding sites in a test set of eight PDB 

interfaces more accurately than other published methods. The method was also 

shown, in Chapter 5, to predict the likely binding region of two specific synbody 

peptides on AKT-1 protein in a manner reasonably consistent with evidence from 

cross-linking experiments and with the known peptide-binding behavior of AKT-

1. 

By way of indicating future directions, more extensive testing against 

specific experimental data would be useful. For example, the VSPM strategy can 

be readily extended to rank peptides in terms of likely binding affinity for a 

specified protein target, and the resulting predictions can be evaluated in 

comparison with microarray or SPR binding patterns, given the availability of 

suitable experimental data, extraction of which is currently underway.  Efforts are 

also underway, in a collaboration between the Center for Innovations in Medicine 

and another laboratory, to obtain an x-ray structure of a synbody bound to a 

protein target. If obtainable, data of that kind would be of great interest for 

validating VSPM binding site predictions (again with some reservations about 
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bias due to crystallization).  For another example, the hypotheses of Chapter 2 

regarding binding kinetics and equilibration times should be readily amenable to 

falsification given appropriate experimental data.  

There are also obvious improvements to be made in the implementation of 

the VSPM algorithm.  As noted in Chapter 3, an enumerative search strategy is 

likely to yield better results than the sampling approach used in the existing 

prototype.  And pre-determining the ensemble of probe conformations on the 

basis of molecular dynamics sampling and clustering of the peptide’s 

conformations in solution would likely improve accuracy and computational 

efficiency.  An improved VSPM algorithm, combined with a classifier based on 

the heuristics derived in Chapter 3, might prove capable of substantially 

improving peptide microarray screening efficiency by filtering out peptides that 

are predictably unlikely to bind. 

From an engineering design standpoint, peptide ligands offer both 

challenge and opportunity. The challenge arises from the complex and dynamic 

binding behavior, arguably requiring a model that takes into account many 

possible intermediate states and reaction paths. The opportunity lies in the 

possibility of devising ligands that can recognize complex macromolecular targets 

“holistically”, in a manner that is not necessarily dependent on the interaction of a 

specific moiety at a specific site.  For that potential to be realized, considerable 

work remains to be done, both from a theoretical standpoint and in development 

of practicable models and algorithms.  
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APPENDIX A 

SUPPLEMENTAL MATERIALS 
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A publicly accessible repository for supplemental materials has been 

established at http://www.innovationsinmedicine.org/pprmint.  The contents are 

listed below. “Readme” files are included in subdirectories where explanatory 

information is needed.  

Subdirectory File(s) Description 

dataset *.pdb 3,924 curated, energy minimized PDB format 
files each containing a single peptide-protein 
interface, with peptide atoms designated as chain 
P and target atoms within 25Ǻ of any P chain 
residue as chain I 

   
database pprmint.mdb A Microsoft Access relational database 

containing results of analysis of the 3,924 
PPRMint interfaces. See readme.pdf for details 
of tables and fields. 

   
poptop *.vb Application source code for PopTop software 

(VB.net) 
   
vspm *.pse Pymol session files corresponding to VSPM 

mapping of test set interfaces shown in figures, 
viewable using Pymol molecular viewer [134]. 

   
vspm vspm.zip Zip archive containing application source code (9 

Python programs) and readme.pdf describing 
usage, inputs, outputs, options, dependencies, 
and system requirements. 
 

 

 

 


