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ABSTRACT

Magnetic resonance (MR) imaging with data acquisition on a non-rectangular

grid permits a variety of approaches to cover k-space. This flexibility can be ex-

ploited to achieve clinically relevant characteristics – fast yet full coverage for short

scan times, center out schemes for short Te, over-sampled k-space for robustness to

motion, long acquisition time for improved signal-to-noise (SNR) performance and

benign under-sampling (aliasing) artifact.

This dissertation presents advances in Periodically Rotated Overlapping Par-

allEL Lines with Enhanced Reconstruction (PROPELLER) trajectory design and

improved reconstruction for spiral imaging.

Scan time in PROPELLER imaging can be reduced by tailoring the trajectory to

the required Field-Of-View (FOV). A technique to design the PROPELLER trajec-

tory for an elliptical FOV is described. The proposed solution is a set of empirically

derived closed form equations that preserve the standard PROPELLER geometry

and specify the minimum number of blades necessary.

Reconstructing spiral scans requires accurate trajectory information. A sim-

ple method to measure the deviation from the designed trajectory due to gradient

coupling is presented. A line phantom is used to force a uniform structure in a pre-

determined orientation in k-space. This uniformity permits measurements of zeroth

order trajectory deviations due to gradient coupling.

Spiral reconstruction is also sensitive to B0 inhomogeneities (variations in the

external magnetic field). This sensitivity manifests itself as a spatially varying blur.
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An algorithm to correct for concomitant field and first order B0 inhomogeneity ef-

fects is developed based on de-blurring via convolution by separable kernels. To re-

duce computation time, an empirical equation for sufficient kernel length is derived.

It is also necessary to know the noise characteristics of the proposed algorithm; this

is investigated via Monte-Carlo simulations. The algorithm is further extended to

correct for concomitant field artifacts by modeling these artifacts as blurring due to

a temporally static field map. This approach has the potential for further reduction

in computational cost by combining the B0 map with the concomitant field map to

simultaneously correct for artifacts resulting from both field inhomogeneities and

concomitant field map.
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Chapter 1

INTRODUCTION

Magnetic Resonance Imaging (MRI) is an emission tomography technique used to

form accurate images of an object’s internal structure non-invasively. Nuclear res-

onance, the physical phenomenon behind MRI, was discovered independently by

two teams led by Felix Bloch (1) and Edward Purcell (2). A technique to form

images using this phenomenon was first proposed by Paul Lauterbur in 1973 (3) as

zeugmatography. MRI does not require the introduction of any foreign substance

for image generation as is the case in other emission tomography techniques like

positron emission tomography (PET) and single photon emission computed tomog-

raphy (SPECT). Unlike other forms of tomography like transmission (X-Ray) and

diffraction tomography (Ultra-Sound), MRI is not dependent on an external signal

source to interrogate the object being examined. These characteristics make MRI a

powerful tool for the medical community.

MR imaging is generally cartesian, i.e., data is acquired on a traditional rectan-

gular raster. Non-cartesian MR imaging offer vital advantages like fast acquisition

(spiral imaging), motion correction (PROPELLER imaging) and ultra short Te (ra-

dial imaging). Non-cartesian imaging has its share of constraints – the trajectory

design is non-trivial, gradient sets are required to operate with tighter tolerances, ar-

tifacts are normally severe (cannot be “read through”); both reconstruction and arti-
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fact correction algorithms are computationally intensive. This thesis presents some

work that is expected to make non-cartesian MR imaging more functional. The

conducted work contributes to the areas of elliptical field-of-view PROPELLER

imaging (Chapter 3), spiral gradient delay correction (Chapter 4) and spiral de-

blurring (Chapter 5). The contributions, in brief, are:

• PROPELLER is the predominant trajectory for motion corrected 2D imaging.

It is usually designed for a circular field-of-view (FOV) and is intrinsically

scan time intensive. When imaging oblong objects, savings in scan time can

be achieved if the trajectory is designed for an FOV that closely matches

the object dimensions. An empirical closed form algorithm to design the

PROPELLER trajectory for an elliptical FOV is developed. The trajectory is

demonstrated with both phantom and in-vivo imaging. The SNR performance

and potential savings in scan time are also presented.

• Gradient delays are a source of substantial artifact in spiral imaging. Algo-

rithms to measure delays usually assume no coupling between gradient sets.

A simple experimental setup to measure coupling (if any) between gradient

sets is introduced. The results of the experiment on a 3T GE Signa scanner

are presented and analyzed.

• Off-resonance during spatial encoding causes a spatially varying blur in spiral

imaging. The common causes of field inhomogeneity are B0 inhomogeneity
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and concomitant fields. The spatial variance has traditionally necessitated

computationally expensive correction algorithms. A rapid algorithm based

on separable de-blur kernels to correct concomitant blur in spiral images is

proposed. Details of kernel length requirements, noise performance and ex-

tension to account for first-order effects are also presented. The algorithm is

validated with results from invivo images. The form of the proposed solu-

tion also permits simultaneous B0 inhomogeneity and concomitant field de-

blurring.

This thesis is organized as follows. Chapter 2 presents a concise introduction to

MRI. Chapter 3 presents the extension of PROPELLER imaging to elliptical FOVs.

Chapter 4 presents the work on gradient coupling. Chapter 5 presents extensions to

the deblurring algorithm. Chapter 6 summarizes the contributions of this thesis and

presents directions for future work.
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Chapter 2

MRI: THE BASICS

The application of nuclear magnetic resonance (NMR) as an imaging tool was pio-

neered by Lauterbur (3). The engineering foundations of MRI as it is known today

were laid by Kumar (4) and Mansfield (5). Hardware limitations constrained the

diagnostic utility of MR images till the 1980s. With improvements in magnet tech-

nology, gradient sets, displays and micro-processors, MRI is now an indispensable

diagnostic tool.

This chapter, while giving a brief tour of MRI, serves as an introduction to terms

and concepts referred to later. The NMR basis of MRI can be described by either

classical electrodynamics or quantum mechanics. For the sake of brevity and since

imaging is largely concerned with NMR in liquids (both descriptions are consis-

tent with each other in this regime), the presentation here is largely restricted to

the classical description. The interested reader will find that the quantum mechan-

ical picture (6) gives a mathematically rigorous validation for the more geometric

(hence more intuitive) portrayal by the classical model.

SPINS

Spin, in the NMR/MRI literature, loosely refers to the atomic nucleus of interest.

More explicitly, it refers to the spin quantum number (I) of the atomic nucleus (6).
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The total angular momentum (J) of the nucleus is specified by I (6) as:

J =
∣∣∣~J∣∣∣= ~

√
I(I +1) [2.1]

Here, ~ is the Plancks constant for frequency in Hz. By the Weiner-Eckart theorem,

the magnitude of the magnetic moment (~µ) of the nucleus (6) is given by :

µ = |~µ|= γJ [2.2]

The proportionality constant γ is known as the gyromagnetic ratio. Both I and ~µ

are intrinsic to the nucleus. The actual physical basis for their existence is still not

well understood (6). The classical description of MRI adopts an over-simplified

notion (7) that the nucleus rotates around an axis giving the angular moment and

simultaneously forming the magnetic moment from the revolving electrical charges

within the nucleus.

EXTERNAL MAGNTEIC FIELD

Macroscopic manifestation of~µ is in the form of a net/bulk magnetization (~M, the

vector sum of~µ for all nuclei). Under normal conditions, ~M is zero as the magnetic

moments ~µi can be oriented in any direction and can cancel each other. However,

in the presence of an external magnetic field (B0), the component of~µ along B0 (µz)

is predetermined (7) giving a non-zero ~M. The value of µz is dictated solely by the

value of I (7) :

µz = γ~mI,

mI =−I,−I +1, · · · , I,
[2.3]
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where mI is the magnetic quantum number. Since the only permissible values of I

are zero, integers and half integers (7), nuclei with I = 0 are not MR active. The rest

of this thesis is limited to nuclei with I = 1/2 as MRI is largely based on these spin

1/2 systems. It is also fortuitous that the classical model is considerably simplified

for the spin 1/2 systems – µz has a set magnitude and is oriented either parallel

(spin-up) or anti-parallel (spin-down) with respect to B0.

By classical mechanics, a magnetic moment in an external magnetic field ex-

periences a torque given by ~µ× ~B. By definition, a torque is d~J/dt. Using Eq.

2.2 :

d~µ
dt

= γ~µ×~B0 [2.4]

Solving Eq. 2.4 (7) gives :

µxy (t) = µxy (0)e−iγB0t , [2.5]

µz (t) = µz (0) . [2.6]

The motion of µ, as described by Eq. 2.5 and Eq. 2.6, is a precession about the

direction of B0. Figure 2.1 illustrates the precession of a spin with µz parallel to

B0. The coordinate system depicted in Fig. 2.1 is stationary and called the labo-

ratory reference frame. By convention, the direction of B0 is assumed to be along

z in the laboratory reference frame. The x-y plane is called the transverse plane.

Components of quantities parallel to the x-y plane are referred to as the transverse

component (e.g., µxy, Mxy) and components of quantities along z are referred to as

6



Figure 2.1: Precession of the magnetic moment in the presence of an external mag-
netic field for a spin 1/2 nucleus in a spin-up state.

the longitudinal component (e.g., µz, Mz). A closer inspection of the exponential

term in Eq. 2.5 reveals the frequency of precession as :

ω0 = γB0. [2.7]

This relation is the well-known Larmor equation, and the frequency of precession

is known as the Larmor frequency. From the Larmor equation, spins experiencing

identical external magnetic fields, will have matching Larmor frequencies and are

collectively called isochromats.

The choice between spin-up and spin-down states is arbitrary and dynamic –

the spins keep migrating between the two states. However, at a given temperature,

the total number of spins in either state at any time instant is a constant; this is

7



referred to as thermal equilibrium (7). At thermal equilibrium, however, the number

of spins in the spin-up state is larger than those in the spin-down state (7). It is

straightforward to extrapolate from Fig. 2.1 that this will result in a non-zero Mz

and Mxy = 0.

RF EXCITATION

The net/bulk magnetization (~M) that is generated in the presence of an external

magnetic field has a severe limitation – in practice, it cannot be measured. Measur-

ing Mz is a challenge as it is oriented along B0 and is at-least 3 orders of magnitude

smaller than B0. Fortunately, the transverse component (Mxy) can be measured reli-

ably and accurately, via electromagnetic induction, using appropriate receiver coil

set-ups (7). Radio frequency (RF) excitation is the technique used to tip Mz into the

transverse plane for measurement.

Figure 2.2: The position of Mz at different instants of time under the influence of
an infinite-duration sinusoidal B1 with |Ω|= ω0.

Consider a sinusoidal magnetic field (B1) of infinite duration. From basic Fourier
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transform theory, the oscillations are confined to two components of equal magni-

tude but at frequencies +Ω and −Ω, respectively. Choosing |Ω|= ω0, the compo-

nent of B1 at +Ω is always in-phase with µxy while the other component at +Ω is

always out-of-phase. The out-of-phase component can be ignored as it has no net

effect. The effect of the in-phase component is best studied in a reference frame

with orientation similar to the laboratory reference frame but with its transverse

plane revolving in-sync with µxy (rotating reference frame). In this reference frame,

the spins have a net magnetic moment (Mz) and an angular momentum with the

in-phase component of B1 acting as a constant external magnetic field. Hence,

Mz precesses around B1. This is depicted graphically in Fig. 2.2. The motion of

~M under the influence of B1 is called a nutation and the frequency of precession

nutational frequency (ωn). The requirement |Ω| = ω0 is known as the resonance

condition and usually results in a Ω value in the radio frequency range giving this

technique its name.

SLICE SELECTION

Figure 2.2c strongly suggests that a B1 of infinite length is not desirable if the tip

of Mz is to be restricted to the transverse plane. Practical considerations also neces-

sitate a RF waveform of limited duration (a RF pulse). Without proper care, using

a RF pulse limits another important requirement of MR imaging – slice selection.

MR imaging generally requires exciting spins in a particular slice of interest in the

9



Figure 2.3: The wave shape and the corresponding excitation profile of a hard pulse
(a) and SINC pulse (b) and the slice select gradient, Gslice (c) that accompanies the
SINC pulse for proper slice selection.

object being imaged; shaped RF pulses are used for this purpose.

A sinusoidal B1 of limited duration (hard pulse) does not deposit equal energy

at all frequency components (Fig. 2.3a). This causes the spins to tip at different

levels. The frequency components also extend infinitely around Ω preventing slice

selection in the strict sense. Using a RF pulse with a SINC envelope, as shown
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in Fig. 2.3b, deposits energy uniformly at all component frequencies which are

limited around Ω. The range of component frequencies implies that the resonance

condition is satisfied in a spatially dependent manner. This is exploited by inducing

a spatially varying magnetic field (the magnetic field gradient Gslice) along the slice

select direction (Fig. 2.3c) to achieve true slice selection. The description presented

here is essentially for the ideal case, a more thorough treatment (8) is necessary for

generating practical design equations.

SPATIAL ENCODING

The measured signal in a NMR experiment is a net/bulk magnetization (the vector

sum of the individual magnetic moments), precluding any knowledge regarding the

spatial variation of the individual magnetic moments. Reliable spatial information

is paramount for imaging applications. Fortuitously, the precession of the spins can

be used to encode spatial information. Fourier encoding, due to its flexibility –

easy extension to all 3 dimensions of space and ability to exploit the Fast Fourier

Transform (FFT) construct, is the predominant spatial encoding approach.

Fourier encoding is best understood by considering the 1-D case. Extension to

two and three dimensions is straight forward. Consider a horizontal 1-D ensemble

of spins. The net magnetization signal (assuming appropriate excitation and slice

selection) at a particular instant of time t is :

∑
∀x

M (x)e−iω0t . [2.8]
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This equation follows directly from Eq. 2.5, here x is the spatial location. The time

dependence of M has been ignored as it has little bearing on spatial encoding and

effects, if any, can be accounted for during reconstruction. Equation 2.8 explicitly

demonstrates the complete lack of spatial information in the measured signal. Now

if a constant horizontal gradient (a magnetic field oriented along B0 but varying

linearly along the direction of the spin ensemble) of magnitude G is applied, the net

magnetization is modified to :

∑
∀x

M (x)e−i(ω0+γGx)t . [2.9]

The eiω0t term can be ignored as the received signal is always demodulated at the

Larmor frequency. It is self evident that the remaining terms form the Fourier in-

tegral of M(x). By continuously measuring the signal modified by an encoding

gradient, the complete Fourier transform of the spin ensemble is captured. If the

measurements are uniformly spaced in time, a simple FFT is sufficient to recover

all the spatial information. Equation 2.9 can be used to deduce the general form of

the imaging equation in 1-D with time varying gradients as :

S = ∑
∀x

M (x)e−ixkx

kx = γ

t∫
0

Gx (t)dt
[2.10]

Spatial information along other dimensions can also be similarly encoded using gra-

dients played out along the respective dimensions. Spatial dimensions are usually
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orthogonal to each other permitting simultaneous encoding of the required number

of spatial dimensions.

RELAXATION

The RF pulse, while facilitating measurement of the net magnetization, also per-

turbs the thermal equilibrium of the spin system. The process by which the spins

recover is called relaxation and was first described in 1946 (1). The recovery is actu-

ally achieved by two processes longitudinal or spin-lattice relaxation and transverse

or spin-spin relaxation.

The two relaxation processes are independent of each other and exponential in

nature. The equations describing them are known as the Bloch equations (Eq. 2.11

and Eq. 2.13). The associated time constants are dependent on the nuclear species,

local chemical environment and B0, making them distinctive characteristics of the

tissues being imaged. The ability to discern tissues based on the local chemical

environment of their constituent nuclei make longitudinal relaxation and transverse

relaxation the basis of all contrast mechanisms in MRI.

Spin-Lattice Relaxation

The RF pulse in essence introduces vibrations to the nuclei of interest. These vi-

brations are dissipated by being passed on to the molecules formed by the nuclei,

i.e., the lattice around the nuclei (9). If the lattice resonates at the frequency of the

introduced vibrations the recovery is swift. Spin-lattice relaxation dictates the time
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evolution of the longitudinal magnetization (Mz). In the rotating reference frame,

the temporal variation of Mz (1) is :

dMz

dt
=−

(
Mz−M0

T1

)
, [2.11]

giving :

Mz (t) = (Mz (0)−M0)e−t/T1 +M0. [2.12]

Here M0 is the net magnetization at thermal equilibrium and Mz(0) is the longitu-

dinal magnetization just before the application of the RF pulse.

Spin-Spin Relaxation

The individual magnetic moments result in a local magnetic field around each nu-

cleus. These local fields can change the static external magnetic field experienced

(Be f f ) by the neighboring nuclei. Variations in Be f f results in de-phasing of the

individual magnetic moments in the transverse plane diminishing the net transverse

magnetization (9). The more stable and larger the local magnetic fields the more

rapid the de-phasing and consequently faster decay of the net transverse magneti-

zation (Mxy). Thus, the magnitude of Mxy is controlled by the spin-spin relaxation.

In the rotating reference frame, the time evolution of Mxy can be expressed (1) as :

dMxy

dt
=−

(
Mxy

T2

)
[2.13]

giving :

Mxy (t) = Mxy (0)e−t/T2. [2.14]
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Here, Mxy(0) is the transverse magnetization just after the application of the RF

pulse. For a tip angle α, Mxy (0) = Mz (0)sinα.

BASICS OF MR CONTRAST

Contrast in an MR image refers to the ability to discern between tissues based on

the local chemical environments of the constituent spins. MRI has such a large

number of contrast mechanisms that even a brief description of the major contrast

mechanisms (8) is beyond the scope of this report. The discussion here is limited

to the two most basic contrast mechanisms: T1 and T2 weighted imaging. It is also

assumed that the primary excitation pulse is a π/2 pulse (an RF pulse inducing a

flip angle of π/2 is referred to as a π/2 pulse).

The concept of an echo is central to contrast in MRI. An echo is a mecha-

nism to synchronize the individual transverse magnetic moments after a time pe-

riod (Te) following the application of the primary RF pulse. To retain focus on

image contrast, echo mechanisms are described briefly here. The two predominant

echo mechanisms are the spin-echo and gradient-echo. Spin-echoes are achieved

by using a π pulse to flip the individual transverse magnetic moments essentially

reversing the direction of precession so they will be in-sync after a period of time

(7). The gradient-echo achieves the same by using the spatial encoding gradients to

re-phase the individual transverse magnetic moments (7). Another vital parameter

controlling MR contrast is the time to repeat (Tr) – the primary excitation pulse has
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Figure 2.4: The position in time of the primary excitation pulse and the echo from
an arbitrary echo mechanism.

to be repeatedly applied as generally the complete dataset cannot be acquired with

just one excitation. The relationship in time between Te and Tr for an arbitrary echo

mechanism is illustrated in Fig. 2.4.

The contrast of the image is mostly influenced by the value of Mxy (Te). From

Eq. 2.12 :

Mxy (Te) = Mz (0) sinαe−Te/T2. [2.15]

A short Te (Te� T2) results in Mxy (Te) ∝ Mz (0), i.e., the signal depends on Tr as

Mz(0) is the amount of longitudinal magnetization that has recovered from the last

excitation. Now, choosing a short Tr (Tr ≈ 0.5T1) will generate a T1 weighted image

(the contrast is determined largely by the T1 value of the tissue). A long Tr (Tr ≈ T1)

permits an almost full recovery of the longitudinal magnetization, i.e., Mz(0) is a

constant, resulting in Mxy (Te) ∝ e−Te/T2 . Now, choosing a long Te (Te ≈ T2) will

generate a T2 weighted image.

Note that though the T1 and the T2 values vary with tissues; generally, for se-
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quence design, the T1 and the T2 values for the target tissue are used.

K-SPACE TRAJECTORIES

K-space is the Fourier domain in which MR data is acquired. K-space trajectory

refers to the path along which data is acquired. Time varying gradient sets allow

many different options - popular trajectories are traditional raster or cartesian scan

(Fig. 2.5a), projection acquisition (Fig. 2.5b) and spiral scans (Fig. 2.5c). The ori-

entation of the data acquisition path is called the readout direction and each path is

called a readout. In Fig. 2.5, the readout direction for the cartesian scan is along the

horizontal and is the same for all readouts, the projection acquisition has a differ-

ent readout direction for each readout, and the readout direction of the spiral scan

varies with time for a readout but the variation is the same across all readouts. The

readout direction is also called the frequency-encode direction and the direction

perpendicular to the readout direction the phase-encode direction.

K-space trajectories are, in essence, frameworks for sampling k-space; hence,

trajectory design has to comply with the Nyquist criterion and spatial resolution

requirements. The Nyquist criterion for non-cartesian trajectories is generally in-

terpreted to mean any location in k-space is within a traditional Nyquist distance

from some acquired data location (7, 8, 10). Assuming an isotropic field-of-view

of F cm and resolution of R cm, for the cartesian scan (Fig. 2.5a), this means the

distance between horizontal lines is 1
/

Fcycles cm−1, for the projection acquisition
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Figure 2.5: Popular 2-D k-space trajectories: traditional cartesian grid(a), projec-
tion acquisition (b), and spiral scan(c).

(Fig. 2.5b), the arc length between two spokes at their edges is 1
/

Fcycles cm−1,

and for the spiral scan (Fig. 2.5c), the maximum distance between any two consecu-

tive interval is 1
/

Fcycles cm−1. Spatial resolution is ensured by covering at-least a

circle of radius 0.5
/

R cyclescm−1 in k-space. Trajectory design also has to account

for limits on the maximum available gradient and slew (d(Gradient)
/

dt) (8). The

limits are mainly due to hardware and safety concerns.
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FURTHER READING

This chapter introduced the basics of MR image formation spins, the external static

magnetic field, RF excitation, slice selection, spatial encoding, relaxation, image

contrast and k-space trajectories. The description presented here is based on the

classical MR model and is essentially an overview. An in-depth coverage of MR

imaging fundamentals, in a form that will appeal to an electrical engineer, is given

by Liang et. al. (7). Nishimura (10) is another popular source for the first principles

of MR imaging. Bernstein et. al. (8) is the standard source for advanced MRI

topics.
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Chapter 3

ELLIPTICAL FIELD-OF-VIEW PROPELLER IMAGING

Approaches to accelerated imaging are largely based on either under-sampling or

fast trajectories like echo planar imaging (EPI), spiral imaging and turbo PRO-

PELLER. Under-sampling approaches like parallel imaging strive to mitigate the

effects of violating the Nyquist criterion (increased spacing between sample loca-

tions) during reconstruction and generally are computationally intensive. Scan time

for anisotropic field-of-views (aFOVs) can also be reduced by tailoring the trajec-

tory to the FOV: the Nyquist criterion for aFOVs varies with the azimuth, permit-

ting the trajectory to be designed for larger spacing between sample locations along

different directions. Previous studies have demonstrated algorithms for tailoring

cartesian (11, 12), radial (11, 13, 14) and spiral (15) trajectories.

The essence of a tailored trajectory approach is specifying and complying with

a local Nyquist criterion. The advantage of conforming to the Nyquist criterion is

minimal computational overhead, but the savings in scan time depends on the de-

gree to which the FOV is anisotropic and is usually modest. Tailored PROPELLER

can potentially be beneficial in spine imaging (FOV is anisotropic to a high degree)

and diffusion weighted brain-imaging (the modest savings in scan time accumu-

lated over a large number of acquisitions results in substantial overall savings).

This work assumes elliptical FOV (eFOV) because, in practice, most aFOVs are
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elongated regions which can be approximated by an ellipse.

The blades of a PROPELLER scan are usually acquired by systematically ro-

tating the gradient coordinate system of the scanner. For an eFOV, the FOV varies

along both the phase-encode direction (PED) and frequency-encode direction (FED)

at each angular position (Fig. 3.1c). It is straightforward to vary the phase-encode

step size to match the FOV along the PED for each blade. The practical implemen-

tation is further simplified if all blades are required to have the same number of

phase-encodes. The step size along the FED can also be set to support the largest

required FOV (the major axis of the eFOV) as this has negligible effect on scan

time. Supporting a variable FOV in the PED with a fixed number of phase-encodes

and the FED step size supporting the largest FOV, has an unique effect on the PRO-

PELLER trajectory: blade width varies with angular position forming an ellipti-

cal central region in k-space that is sampled by all blades (the shaded region in

Fig. 3.1d; hereafter referred to as the ellipse-of-overlap). In the case of an isotropic

field-of-view (iFOV), this region is circular (the shaded region in Fig. 3.1b; here-

after referred to as the circle-of-overlap). By a proper choice of the angular sam-

pling scheme, the presence of wider blades can be leveraged to critically sample

(the maximum distance between any two sample locations is the Nyquist distance)

k-space with fewer blades resulting in reduced scan time; the larger is the variation

in blade width, the greater are the savings in scan time.

Radial trajectories need a non-uniform angular sampling scheme to take ad-
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Figure 3.1: Image space orientation and the corresponding blade configuration in
k-space for isotropic FOV (a and b) and elliptical FOV (c and d). The edges of
the blade have been color coded to indicate the supported FOV. The long and short
edges for eFOV blades (with the exception of the first blade) are colored differently
to illustrate that they support separate FOVs along the PED and FED.

vantage of an aFOV (11, 13, 14). The PROPELLER trajectory is also radial in

nature, suggesting a similar approach to tailoring it for an eFOV. The algorithm

presented here utilizes the PROPELLER geometry to generate a non-iterative em-

pirical closed-form solution. It further specifies the minimum number of blades
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necessary to critically-sample k-space, helping retain a scan prescription procedure

similar to standard PROPELLER. The results are also consistent with those from

an iterative approach (16).

PROPELLER TRAJECTORY DESIGN

Mathematical formulation is simple if the major axis of the eFOV is assumed to be

aligned with the initial PED of the scanner. In practice, this is not a restriction as

the initial FED orientation can be set by the operator. This work assumes left/right

as the initial FED orientation leading to a horizontal first blade. Further, the blade

along the major axis of the eFOV is the widest and that along the minor axis of

the eFOV is the narrowest indicating that the major axis of the ellipse-of-overlap is

aligned with the minor axis of the eFOV (Fig. 3.1c and Fig. 3.1d).

A review of iFOV design will serve to introduce notation, PROPELLER geom-

etry and trajectory design. The iFOV PROPELLER trajectory design specifies the

number of blades from operator requirements; the blade angles are then generated

using the specified number of blades. With fixed operator requirements, the number

of blades is a function of the central region of overlap in k-space. This relationship

is dictated by the PROPELLER geometry.

iFOV PROPELLER

The iFOV PROPELLER trajectory has a distinct geometry : given the radius of the

circle-of-overlap (P) and the number of blades (n), there is an unique circle – the
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critical circle – on which the vertices of consecutive blades coincide (Fig. 3.1a).

In terms of sampling, the critical circle is the biggest circle in k-space which is

critically-sampled by n blades each of width 2P. From Fig. 3.1a, the radius of the

critical circle (ℜn
P) is given by :

ℜ
n
P =

P
sin
(

π

2n

) . [3.1]

Assuming large n (i.e. n� π
/

2) permits the polygon formed by the blades to

approximate the critical circle giving the blade length as 2ℜn
P.

The iFOV PROPELLER trajectory design (17) generates the minimum number

of blades necessary to critically sample k-space (nmin) using Eq. 3.1 with P and

ℜn
P specified by operator requirements. In an actual scan, the blade width is equal

to the number of phase encodes per blade (L) giving P = L/2 and ℜn
P = Me f f

/
2,

where Me f f = FOV/resolution. Using the small angle approximation for the sine

term (as n� π
/

2) in Eq. 3.1 gives

nmin =
(
πMe f f

)/
2L. [3.2]

The over-sampling factor (nex) is accounted for by extending Eq. 3.2 as

n = nex
(

πMe f f
/

2L
)
. [3.3]

Once the number of blades is determined, the blade angles (θi) are generated from

θi = (i−1)θ0, [3.4]

where θ0 = π/n.
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Number of Blades for eFOV

An eFOV is characterized in image space by FOVshort (the minor axis of the eFOV)

and FOVlong (the major axis of the eFOV). In k-space, it is characterized by N,

Nmin, Θi (the equivalents of n, nmin and θi, respectively), the semi-major (A) and

semi-minor (B) axes of the ellipse-of-overlap (Fig. 3.1b), and the ellipse ratio (r)

defined as

r = B/A = FOVshort/FOVlong [3.5]

Here FOVshort and FOVlong refer to the small and large dimension of the eFOV

(in image space) respectively. The proposed angular sampling scheme is designed

to mimic the geometry of the standard PROPELLER trajectory. This ensures that

the concept of a critical circle is preserved for an eFOV. A closed form expression

for the radius of the critical circle for an eFOV (ℜN
A,B) is vital for a design solution

similar to that for iFOV. Deriving an equation for ℜN
A,B is mathematically intractable

due to the complex equations that are involved. Instead, it is relatively simple to

show empirically (page 31) that

ℜ
N
A,B ≈

(
2ℜ

N
α +ℜ

N
β

)/
3. [3.6]

Here ℜN
α is the radius of the critical circle for an iFOV PROPELLER trajectory

with N blades and a circle-of-overlap whose area is equal to that of the ellipse-of-
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overlap. Thus α, the radius of the circle-of-overlap, is given by

α =
√

Ea/π, [3.7]

where Ea = Ellipse Area = πAB. Similarly, ℜN
β

is the radius of the critical circle

for an iFOV PROPELLER trajectory with N blades and a circle-of-overlap whose

perimeter is equal to that of the ellipse-of-overlap. Hence β, the radius of the circle-

of-overlap, is given by

β = Ep/2π, [3.8]

where Ep = Ellipse Perimeter = π(A+B)
(

1+ 3h
10+
√

4−3h

)
and h =

(A−B
A+B

)2
. The

expression for the ellipse perimeter is an approximation proposed by Ramanujan

(18).

Analogous to the iFOV design process, operator requirements give B = L/2,

A = B/r and ℜN
A,B = Me f f

/
2. Here, Me f f = FOVlong

/
resolution (eFOV scans have

isotropic resolution as the blades have equal length). With A, B and ℜN
A,B specified

and still assuming N� π
/

2, Nmin can be generated from Eq. 3.6 and Eq. 3.1 as

Nmin =
3πMe f f

4(2α+β)
[3.9]

and accounting for nex gives

N =
nex 3πMe f f

4(2α+β)
. [3.10]

Blade Angles for eFOV

It is instructive to compare Θi with θi for identical L, Me f f and N = n. From a simul-

taneous plot of Θi and θi (Fig. 3.2a), it is evident that Θi follow θi with sinusoidal
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deviations. This is yet another effect of blades with varying width – beginning with

the horizontal blade, the blades get wider (with respect to the horizontal blade) and

need to rotate less to maintain the standard PROPELLER geometry; but from the

vertical blade onwards, the blades get thinner (with respect to the vertical blade)

and need to rotate more to maintain the standard PROPELLER geometry. The dif-

ference Θi−θi (r1 in Fig. 3.2b) suggests that Θi ≈ θi + k1 sin2θi (k1 is a weighting

factor to be determined) and Θi− [θi + k1 sin2θi] (r2 in Fig. 3.2b) hints at a more

refined estimate :

Θ̂i = θi + k1 sin2θi + k2 sin4θi. [3.11]

Again k2 is a weighting factor to be determined. The order of the residual Θi− Θ̂i

(r3 in Fig. 3.2b) is tolerable in practice (19).

The only pre-determined values of Θi are 0 and π/2 (assuming even number of

blades); unfortunately, they are not helpful in solving for k1 and k2, necessitating

an empirical approach. The structure of Eq. 3.11 suggests that the two weighting

factors are functions of both r and N. Blade angles Θi can be determined at all

practical values of r and N using the recursive approach detailed in the following

section. Curve fitting Eq. 3.11 to these predetermined values of Θi will determine

k1 and k2. From Figs. 3.2c-d, it is evident that N has negligible effect on the values

of k1 and k2. The numerical values of k1 and k2 are then fit to a bi-exponential
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giving

k1 = 0.4391e0.4515r−0.4607e−4.985r−0.6803

k2 = 0.09514e−5.048r +0.09781e−23.06r.

[3.12]

As described in the following section, Θi can be generated recursively based on the

knowledge of ℜN
A,B. Nonetheless, a closed form solution is preferred as it enhances

the ease of implementation.

Generating Θi Recursively

Given A, B, N, ℜN
A,B with blade length set to 2ℜN

A,B , consider the kth blade (bk).

The long edges of a blade are always tangential to the ellipse-of-overlap (Fig. 3.1b).

From co-ordinate geometry, each vertex of bk has only one unique pair of tangents

to the ellipse-of-overlap and these tangents are not parallel to each other. Given

that the blade length is 2ℜN
A,B, the critical circle by definition forces bk to share

each of its vertices with either bk−1 or bk+1. This implies that of the two tangents

to the ellipse-of-overlap from any vertex of bk, one is a long edge of either bk−1 or

bk+1 as the other is a long edge of bk itself. Therefore if Θk is known, Θk+1 can

be deduced using an appropriate vertex of bk as the guide/seed point. The angle

between the pair of tangents (Φ) from the seed point to the ellipse-of-overlap can

be computed by comparing the equation for the tangent pair to the equation for a

line pair. It is evident that Θk+1 = Θk +Φ. The tangent that is a long edge of bk+1

(specified by the current seed point and Θk+1) is a cord of the critical circle; thus,

the next seed point is given by the other end of this cord. The angular position of
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Figure 3.2: Blade angles from a typical eFOV scan in comparison to a similar iFOV
scan (a). The residuals when Θi are approximated by θi and a series of sine terms
(b). Here r1 = Θi−θi, r2 = Θi− [θi + k1sin(2θi)] and r3 = Θi− [θi + k1sin(2θi)+
k2sin(4θi)]. The computed and estimated (from Eq. 3.12) values of k1 (c) and k2 (d)
as a function of r (ellipse ratio) with different N (number of blades). It is evident
that the effect of N on k1 and k2 is minimal.
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Figure 3.3: Blade angles are generated recursively (a-c) based on a seed point (la-
beled consecutively) provided by the previous blade. The dashed line indicates how
the next seed point is generated by the current seed point. The iterative procedure
to determine ℜN

A,B (d-f) follows from recursively generating the blade angles. Con-
straining the estimates to be between ℜN

B and ℜN
A helps in rapid convergence to the

final solution (e). As indicated by the intermediate estimates (d and f), the vertical
position of the final seed point is a good indicator of estimation error.

the initial blade is always known, making the initiation of this recursive algorithm

trivial. Due to the assumed orientation of the eFOV, in this work, the initial blade is

horizontal (Θ1 = 0). Figures 3.3a-c graphically describe this procedure beginning

with the initial blade.
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Empirically Determining ℜN
A,B

The recursive approach outlined above has a valuable feature: the actual final seed

point can be pre-determined (Fig. 3.3c). If an estimate of ℜN
A,B is used in the re-

cursive algorithm, the vertical position of the achieved final seed point is a good

indicator of whether the estimate is greater or lesser than the actual value. This

information can be used to iteratively improve the estimates via bisection till the

required accuracy is attained (Figs. 3.3d-f). The initial range of ℜN
B < ℜN

A,B < ℜN
A

was sufficient for a quick convergence.

Equation 3.6 can be derived empirically using this procedure. ℜN
A,B is estimated

at all practical values of r (0 < r≤ 1 in steps of 0.05) and N (10≤ N ≤ 200 in steps

of 5). The ratio κ =
(

ℜN
A,B−ℜN

α

)/(
ℜN

β
−ℜN

A,B

)
can then be computed at each

value of r and N. The computed values reveal that κ ≈ 0.5, a constant immune to

variations in r and N, validating Eq. 3.6.

EFOV IN PRACTICE

In practice, N is determined by Eq. 3.10 then Θi by Eq. 3.11 and Eq. 3.12. The

blade width and the associated phase-encode step size (StepSizePE =BladeWidth
/

L)

for each blade can then be inferred using co-ordinate geometry. Consider the line

segments PQ and SR in Fig. 3.1b, it is evident that they are conjugate diameters

of the ellipse-of-overlap. Given the blade angle and the dimensions of the ellipse-

of-overlap, the point P can be determined by the equation for the gradients of the
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conjugate diameters and the equation for the ellipse-of-overlap. Point P, with the

blade angle, specifies the equation for the corresponding long edge of the blade.

The blade width is twice the perpendicular distance of the origin from this long

edge.

A water-phantom experiment is ideal to verify the attained FOV and SNR of the

new trajectory. In-vivo experiments further validate the trajectory. A scan with the

major axis of the eFOV not aligned with the initial PED to demonstrate the possible

aliasing errors, was included in both experiments. All experiments were conducted

on a 3T GE HDX scanner using a modified PROPELLER FSE sequence. All scans

were axial, 5 mm thick single-slice acquisitions.

The eFOV and iFOV scans for the water-phantom experiment were prescribed

with ET L = 47, Tr = 2400 ms, Te = 166 ms, resolution = 0.98 mm and nex = 1.

Here ET L refers to the echo train length and specifies the blade width. The iFOV

trajectory was designed for a FOV = 26cm, while the eFOV trajectory was designed

for an FOVshort = 13 cm and FOVshort = 26 cm. The in-vivo experiments were

prescribed with ET L = 47, Tr = 4000 ms, Te = 87.6 ms, resolution = 0.75 mm and

nex = 1 . The iFOV trajectory now supported a FOV = 24 cm, while the eFOV

trajectory supported a FOVshort = 18 cm and FOVshort = 24 cm.

The eFOV trajectory is designed to yield either a critically sampled or over-

sampled k-space allowing standard gridding reconstruction (20) with sampling den-

sity correction (21). Hence, the eFOV PROPELLER reconstruction differs from
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standard PROPELLER reconstruction in only the k-space locations used to grid the

acquired data. Requiring the major axis of the eFOV to be aligned with the initial

PED of the scanner, while simplifying the mathematical formulation, also ensures

that the first blade has equal phase encode and frequency encode step sizes. This is

sufficient to specify the semi-major (A) and semi-minor (B) axes of the ellipse-of-

overlap and the ellipse ratio (r). Equation 3.11 and Eq. 3.12 can now be used to

determine the blade angles. The phase-encode step size for each blade can then be

computed as described above.

The achieved FOV is best established by the point spread function (PSF) of the

designed trajectory. The full PSF (2FOV wide) was computed by gridding, with

sampling density correction, a dataset of all ones to a grid of spacing 0.5/FOVlong

and transforming to image space. The generated PSFs were then raised to a power

of 0.35 to aid in better visualization of the achieved FOVs.

With other scan parameters being fixed, a reduced scan time implies reduced

SNR. The SNR ratio of two comparable PROPELLER scans with different number

of blades is expected to be proportional to the ratio of the number of blades as the

achieved SNR is proportional to the square root of the total ADC time, and the total

ADC time of a PROPELLER scan is proportional to the number of blades in the

scan. The SNR values for the water phantom experiments were determined using

the single-image approach (22), while the SNR values for the in-vivo experiments

were computed via the dual-image approach (22).
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Figure 3.4: Water phantom image eFOV (b) in contrast to iFOV (a) with the corre-
sponding PSFs (c-d). Individual blades showing variation in blade width (e-h) and
the generated angles (i). Volunteer image eFOV (l) and iFOV (k). The possible
aliasing artifacts when the major axis of the eFOV is not aligned with the initial
PED for the water phantom (j) and the volunteer (m).
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RESULTS

The water-phantom experiments produced an eFOV scan with N = Nmin = 6

(Me f f = 265; Scan Time = 32 s) and an iFOV scan with n = nmin = 9 (Me f f = 265;

Scan Time = 39 s). The in-vivo experiment yielded an eFOV scan with N = Nmin =

21 (Me f f = 320; Scan Time = 104s) and an iFOV scan with n = nmin = 25 (Me f f =

320; Scan Time = 120 s).

The final water-phantom images from iFOV (Fig. 3.4a) and eFOV (Fig. 3.4b)

scans are visually similar. The achieved SNR values are in agreement with the

expected values (SNReFOV
/

SNRiFOV = 75.5
/

91.7 = 0.823 ≈ 0.816 =
√

6
/

9 =√
Nmin

/
nmin).The varying blade width of the eFOV scan is clearly visible in

Figs. 3.4e-h, and the generated angles (Fig. 3.4i) follow the pattern described be-

fore. The aliasing errors when the major axis of the eFOV is not aligned with the

initial FED (Fig. 3.4j) are not dramatic but still visually discernible.

The corresponding full PSFs for iFOV (Fig. 3.4c) and eFOV (Fig. 3.4d) clearly

exhibit the circular and elliptical FOV that the trajectories were designed for. The

seemingly aggressive streaking in the PSFs is a secondary by-product of raising the

PSFs to a fractional power. Since the trajectories are designed to at least critically

sample k-space, the residual streaks are just as likely due to imperfections in grid-

ding and sampling density correction as due to the trajectory itself, confounding

any quantitative analysis.
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The in-vivo images (iFOV in Fig. 3.4k and eFOV in Fig. 3.4l), again, are visu-

ally similar. The achieved SNR ratio concurs with the estimated ratio

(SNReFOV
/

SNRiFOV = 62.4333
/

69.0736 = 0.904 ≈ 0.916 =
√

21
/

25 =√
Nmin

/
nmin). Due to a more rounded FOV (r = 0.75), the aliasing errors when

the major axis of the eFOV is not aligned with the initial FED (Fig. 3.4m) are more

benign than those for the water phantom.

EFOV TRAJECTORY PERFORMANCE

Other angular sampling schemes can also be used for tailoring the PROPELLER

trajectory to an eFOV. Consecutive blades, in a standard PROPELLER scan, ad-

vance by a constant angle, traversing arcs of constant length on the circle-of-overlap.

This suggests two alternatives to the proposed non-uniform angular scheme – equi-

angle (blades advance by a constant angle) and equi-arc (blades advance by travers-

ing arcs of constant length on the ellipse-of-overlap). However, for a fixed Me f f

and a fixed nex, both of these schemes require more blades to critically sample k-

space than the proposed scheme (Figs. 3.5a-c). The proposed scheme offers the

maximum savings in scan time (smallest Nmin) while preserving the standard PRO-

PELLER geometry to a large extent.

A similar geometry permits a design procedure that is similar to a standard scan,

making practical application straightforward, and also gives a direct measure of

reduction in scan time – Nmin. From Eq. 3.9, Nmin is a function of r, and Fig. 3.5d
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Figure 3.5: Various angular sampling schemes in comparison to each other - equi-
arc (a), equi-angle (b) and proposed (c). Nmin as a measure of potential savings in
scan time (d) for L = 47 and Me f f = 265.

illustrates potential savings as a function of r. Greater savings are observed for

more elongated FOVs. In general, the human head has r ≈ 0.7 and, for r in this

range ,Nmin is less than nmin by just 20 percent. Despite the modest savings, when

applied to protocols needing repeated acquisitions, the accumulated overall savings

will potentially be substantial.

The proposed non-uniform angular sampling scheme is similar to the one gen-

erated by the iterative approach (16) with the added advantage of specifying Nmin,

making it possible to design a scan based on operator prescription similar to iFOV.

Since the algorithm needs to be implemented on both the scanner and the recon-
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struction computer, the iterative approach may also result in different angles due to

differences in hardware architecture and software library used.

As the proposed trajectory maintains standard PROPELLER geometry, imple-

menting PROPELLER motion correction just requires using updated k-space co-

ordinates. This is further facilitated by the constant step size along the FED. This

ensures that, though the proposed trajectory is designed for an eFOV, the receiver

bandwidth of the scanner supports a full iFOV eliminating any blurring due to the

object moving out of the eFOV. In practice, nex can be increased such that discard-

ing a couple of corrupted blades will not affect the final image.

SUMMARY

This work introduces an empirical non-iterative closed-form solution for tailor-

ing the PROPELLER trajectory to an elliptical FOV for reducing scan time. The

performance has been experimentally demonstrated to be comparable to standard

PROPELLER scans. The prescription and reconstruction procedures are largely

similar to standard PROPELLER, making practical application straightforward.

Though the possible savings are a function of the FOV dimensions, when applied

to protocols requiring a large number of acquisitions, like diffusion weighted PRO-

PELLER, even FOVs with modest reductions will potentially result in significant

overall savings.
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Chapter 4

MEASURING GRADIENT COUPLING FOR SPIRAL TRAJECTORIES

Gradient delays are the first-order manifestations of gradient system imperfections

(8). These delays cause a timing mismatch between different gradient channels and

data acquisition (Fig. 4.1), resulting in reduced image quality. The image degrada-

tion is pronounced in non-Cartesian scans like spiral imaging. Figure 4.2 illustrates

the potential artifact via a simulation. The cost of mismatch is further accentuated

in 3D scans like Spiral Projection Imaging (SPI).

Figure 4.1: An example of timing mismatch between gradients and readout for an
arbitrary axial 2D trajectory.

Current methods (23, 24, 25, 26) to measure and correct gradient imperfections

are usually based on measuring delays while playing out waveforms on an indi-

vidual gradient channel. However, spiral scans, particularly SPI (3D non-cartesian

scan), require waveforms to be played out concurrently on two or more gradient

channels, making it necessary to account for delays due to interactions between the
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gradient channels, if they exist. This work presents a simple approach to measuring

the changes (if any) in gradient delays due to gradient coupling while playing out

spiral waveforms.

Figure 4.2: Artifact in a 2D spiral reconstruction from the timing mismatch shown
in Fig. 4.1 for ∆ = 0µs (a); ∆ = 3µs (b); difference image to better illustrate the
artifact (c). All images are windowed identically

THE MEASUREMENT ALGORITHM

While playing out a waveform on a gradient channel, a delay results in a delayed

or shifted acquisition of k-space data. Traversing the k-space trajectory associated

with the waveform in the opposite direction forces the collected k-space data to

shift in the opposite direction. Since the amount of both shifts is the same, they

can be estimated by cross-correlating the two acquired k-space sequences. A shift

in the k-space sequence is a direct consequence of the gradient delay; hence, any

measure of the shift is also an estimate of the delay. Interaction between two gra-

dient channels (if any) will affect the gradient delay on both channels. The effect

on any one gradient channel can be measured by concurrently playing out the ad-
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ditional waveform on the other gradient channel while following the measurement

procedure described above.

Traversing the k-space trajectory in the opposite direction is straight forward:

the same waveform is played out, only with the sign reversed. Fig. 4.3a depicts the

k-space trajectory pair that can be used to measure the effect of coupling between

x and y gradient channels on the x channel for a 2D spiral sequence. A vertically

uniform k-space, particularly a function of the form M (kx,ky)= δ(kx) (the dark ver-

tical line in Fig. 4.3a), will facilitate having a substantial signal near the cross-over

sections of the trajectories and will minimize the difference in the k-space structure

due to the divergent paths of the two segments. This can be achieved by selec-

tively exciting a horizontal line of spins or by a line phantom. This work utilized

the line phantom due to the practical simplicity of this approach. The necessity of

the line phantom is evident in the zoomed-in portion of Fig. 4.3a – without the k-

space structure of the phantom, the amount of overlap between the two trajectories

is minimal and is not conducive for estimating shifts via correlation.

MEASUREMENTS IN PRACTICE

The k-space shift was measured by correlating the magnitude data from correspond-

ing segments of the trajectory pairs and determining the shift of the peak correlation

value from its expected position. The expected position of the peak correlation had

to be computed for every segment, as the trajectory design does not always ensure
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a data acquisition location at the point of overlap. This measured k-space gap can

then be used to estimate the time delay using the approximation that an incremen-

tal change in time is equal to an incremental change in k-space normalized by the

product of the gradient strength G and the gyromagnetic ratio γ as given by:

dk
dt

= γG [4.1]

Separate delays are measured for each overlapping segment and the results averaged

to yield a single time delay for the gradient channel.

The line phantom was constructed by sandwiching a thin layer (< 1mm thick) of

water-based gel between two plates of glass (Fig. 4.4a). Glass plates, approximately

23cm long and 7cm wide, were found to be convenient (Fig. 4.4b). The gradient

Figure 4.3: A typical k-space spiral trajectory pair to measure the effect of coupling
between x and y gradient channels on the x channel for a 2D spiral sequence (a). A
zoom-in of the marked portion (b) depicts the amount of overlap between the two
trajectories.
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Figure 4.4: Schematic of the line phantom (a) and the actual constructed phantom
(b).

delays can be measured in each of the three imaging planes. The phantom needs

to be oriented appropriately for each plane (Fig. 4.5). Each of the planes gives

the delays for two gradient sets x and y gradient delay from the axial (x-y) plane,

y and z gradient delay from the sagittal (y-z) plane, x and z gradient delay from

the coronal (x-z) plane. The multiple measurements serve to cross-validate the

estimates. If the line in k-space is non-orthogonal to the orientation of the gradient

channel being studied, measurements can be considerably skewed. Hence, a six-

inch plastic level was used to position the phantom orthogonally to the orientation

of the gradient channel being considered.

RESULTS

All experiments were conducted on a GE Signa Excite 3T scanner with a 150/40

gradient system. The constructed line phantom (Fig. 4.4b) was first tested in the

orientation depicted in Fig. 4.5a with a stock Cartesian gradient-echo (SPGR) se-
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Figure 4.5: Phantom orientations for gradient delay measurement in the three imag-
ing planes: axial plane (a,b); sagittal plane (c,d); coronal plane (e,f). In all the im-
ages, the axes labeled in the same color as the phantom (black) indicate the plane
which contains the phantom. These orientations give multiple measurements of the
delays: x gradient delay (a,e); y gradient delay (b,c); z gradient delay (d,f).
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Figure 4.6: The achieved image space (a) and k-space (b) from the constructed
phantom. The phantom was in the orientation depicted in Fig. 4.5a.

quence. The resulting image-space (Fig. 4.6a) and k-space data (Fig. 4.6b) are

consistent with the design objectives suggesting that positioning with a plastic level

is adequate.

A 2-D constant density spiral trajectory designed for a 24cm FOV, 1mm isotropic

resolution and 16 spiral interleaves, was used to measure the gradient delays in the

axial, sagittal and coronal planes. The estimated delays from playing out each gra-

dient waveform individually and in appropriate pairs for each plane orientation, are

given in Table 4.1.

X Gradient Delay (µs) Y Gradient Delay (µs) Z Gradient Delay (µs)
Single Both Single Both Single Both
Gradient Gradients Gradient Gradients Gradient Gradients

XY plane -1.71 -1.69 -3.79 -3.78 – –
XZ plane -1.67 -1.7 – – -4.62 -4.58
YZ plane – – -3.76 -3.77 -4.51 -4.46

Table 4.1: Gradient delay measurements made on a line phantom. For each gradient
axis, results are provided for both single gradient and dual gradient acquisitions for
two scan planes.
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DISCUSSION

Experimental results for the zoom gradients on the 3T GE Signa Excite scanner

(Table 4.1) show that the measured delays from gradient pairs closely follow those

from individual gradients. This suggests that, for spiral scans on this scanner, de-

lay on a gradient channel is not substantially influenced by the other two gradient

channels.

The whole experiment requires a minimum of 16 Trs with more Trs improving

the SNR of the acquired data. It is recommended that the whole experiment be

carried out at least once to check for indication of gradient coupling. If there are no

indications of coupling, the delay estimates from individual gradients (27) will be

sufficient. Measurements on individual gradients require a minimum of just 6 Trs.

The placement of the phantom as described above is currently painstaking. This

can be remedied by constructing a MR friendly phantom positioning jig that can be

snapped into place in the receiver coils with help of slots/grooves.

Correcting for the delays can be implemented either during data acquisition

or during reconstruction. Correction during data acquisition entails shifting the

gradient waveforms by the negative of the measured delay, while correcting during

reconstruction requires the k-space locations used during gridding and sampling

density correction to be shifted by the measured delay. In either case, the gradient

waveforms or the k-space trajectory need to be re-sampled, and a simple linear
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interpolation was found to be adequate. Due to the simplicity of implementation,

correction during reconstruction was adopted for this study.

The accuracy of the measured delays is about 0.5µs (27). The delays do not

account for all gradient system imperfections. A more thorough approach would

be to measure the played out k-space trajectory but requires prohibitively long scan

times. Image reconstruction accounting for these delays eliminate approximately

two-thirds of the total root-mean-square error resulting from k-space coordinate

discrepancies for the MR system and spiral sequence used in this study (27).

SUMMARY

This work presents a simple algorithm to measure gradient coupling (if any) for the

spiral trajectory. No major redesign of the trajectory or pulse sequence is required.

The required line phantom is readily constructed from easily available material.

Experimental results for the spiral trajectories on the gradient system and scan-

ner used in this study, suggest that the gradient channels have negligible effect on

the delay in other gradient channels.
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Chapter 5

SPIRAL DE-BLURRING

An important design specification of a MR system is the static external field (B0)

it can generate. This gives the system a characteristic resonant frequency ω0 as

determined by the Larmor equation. The signal receivers of the system are tuned

to this frequency. This also is the base/carrier frequency used to induce nuclear

resonance with a RF pulse. Any deviation from ω0 is known as off-resonance and

results in blurring the acquired images. The greater the off-resonance, the greater

the blurring. Off-resonance can vary spatially; hence, the resulting blur is also a

spatially varying artifact.

The complexity of the induced blurring depends on the k-space trajectory used

to acquire the image. The effect in Cartesian scans is less complex compared to

those on non-cartesian scans like spiral scans. The following sections provide an

in-depth coverage of off-resonance, its effects, and approaches to controlling the

resulting artifacts.

BASICS OF OFF-RESONANCE

The leading cause of off-resonance is the B0 in-homogeneity (7, 9) – the spin sys-

tem being imaged experiences a deviation in the effective external magnetic field

and, hence, have an on-resonant frequency that differs from the system’s expected

Larmor frequency.
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Figure 5.1: Flux lines for a homogeneous B0 field (a). Flux lines for para-magnetic
substance (b). Flux lines for dia-magnetic substance (c).

Though manufacturing tolerance may result in B0 in-homogeneity, the domi-

nating source is the sudden changes in the magnetic properties of the object being

imaged. In particular, for brain imaging, the transitions from air to tissue around

the nasal cavities generate severe in-homogeneity. Air is para-magnetic : it tends to

strengthen the external magnetic field locally, while hydrogen the major constituent
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of human tissue is dia-magnetic : it tends to weaken the external magnetic field lo-

cally. Figure 5.1a shows flux lines for an ideal homogeneous field, while Fig. 5.1b

and Fig. 5.1c show the effects of para-magnetism and dia-magnetism, respectively.

Since these air-tissue and tissue-tissue interfaces are characteristic of the object, the

B0 in-homogeneity is object dependent.

Mathematics of Imaging with Off-Resonance

In MR imaging, only the component of the magnetic moment in the transverse

plane can be measured; for notational convenience, this is represented as m(x). Let

M(kx) be the Fourier transform of m(x) and let S(kx; t) be the raw acquired signal.

Though the treatment that follows is for one-dimensional signals, it can be easily

extended to 2 and 3 dimensions. The effective magnetic field experienced by the

spins is

Be f f = B0 +∆B (x)+Gxx [5.1]

where ∆B (x) is the total deviation in magnetic field at x, and Gx (G/cm) is the spa-

tial encoding gradient (a static auxiliary magnetic field along B0 with a magnitude

that varies linearly with x). Using the Larmor equation, we have the precession

frequency as

ω
′
e f f = ω0 +∆ω (x)+ γGxx [5.2]
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As ω0 is the base/carrier frequency for signal detection, it can be ignored, resulting

in

ωe f f = ∆ω (x)+ γGxx [5.3]

The phase ϕ acquired by m(x) in time dt
′
is given by

ϕ = ωe f f dt
′

[5.4]

Now, φ the total phase acquired by m(x) at time t is given by

φ =

t∫
t0

ϕ =

t∫
t0

ωe f f dt
′

[5.5]

where t0 is the time instant at which data acquisition began. As ∆ω (x) is static

(time-invariant)

φ =

t∫
t0

ωe f f dt
′
= ∆ω (x)(t− t0)+ γx

t∫
t0

Gxdt
′

[5.6]

φ = ∆ω (x)(t− t0)+ xkx (t) [5.7]

Therefore, m(x) acquires a phase φ at time t.

The measured value of the raw acquired signal at time t is the sum of m(x) over

all x and is given by

S (kx; t) =
∫
x

m(x)e− j2πφdx =
∫
x

m(x)e− j2π(∆ω(x)(t−t0)+xkx(t))dx [5.8]
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If ∆ω (x)= 0 or the magnetic field is homogeneous, then the measured signal S(kx; t)

is the Fourier transform of m(x)

S (kx; t) =
∫
x

m(x)e− j2π(kx(t))xdx [5.9]

The Nature of Off-Resonance and its Effects

∆ω (x) can be spatially invariant, vary linearly or non-linearly in the spatial domain.

The resulting blurring has characteristic forms and is called zeroth, first and higher

order effects, respectively. If ∆ω (x) is spatially invariant, then ∆ω (x) = ∆0 and

S (kx; t) =
∫
x

m(x)e− j2π(∆0(t−t0)+xkx(t))dx

= e− j2π∆0(t−t0)
∫
x

m(x)e− j2π(kx(t))xdx

= e− j2π∆0(t−t0)M (kx)

[5.10]

This shows that zeroth order effects generate a superfluous linear phase in k-space

along the trajectory.

For ∆ω (x) = ∆0 +∆1x (linearly varying in the spatial domain),

φ = (∆0 +∆1x)(t− t0)+ xkx(t)

= ∆0(t− t0)+ x{∆1(t− t0)+ kx(t)}

= ∆0(t− t0)+ xk
′
x(t)

S (kx; t) =
∫
x

m(x)e− j2πφdx

[5.11]

Not only is a linear phase introduced to the collected data, the trajectory is also

distorted. Figure 5.2 depicts the artifacts for Cartesian scans; these effects are man-

ifested as geometric distortions – zeroth order effects as shifting in spatial domain,
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Figure 5.2: Cartesian scan with zeroth order effects (a) and with first order effects
(b).

and the first order effects add rotation increasing in the direction of the trajectory in

the spatial domain.

The effects on a spiral scan are more complex. Figure 5.3 shows the zeroth

order effects, while Fig. 5.4 shows the distortion of trajectory due to the first order

effects. An algebraic formulation of the effects has been given by (28).

A Measure of Blur in an MR Image

All the literature cited in this study use the Point Spread Function (PSF) to quantify

the blurring. PSFs for spiral scans at different values of zeroth order off-resonance
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Figure 5.3: An example of blurring in a spiral scan.

Figure 5.4: Spiral trajectory distortion due to first order effects.

are shown in Fig. 5.5. It can be easily observed that the PSF is increasingly distorted

with greater off-resonance, but the region of support of the PSF is always finite.

Measuring the Local Resonant Frequency

Many of the de-blurring algorithms described in this study require an accurate map

of the off-resonance in the spatial domain. This map is often referred to as the field

map, frequency map, off-resonance map or the Local Resonant Frequency (LRF)

map.

The field map is usually estimated using two images that are collected at differ-
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Figure 5.5: Blurred PSFs.

ent echo times. The off-resonance at some point is given by the ratio of the phase

difference between values at that point and the difference in echo times. Care needs

to be taken while evaluating the phase difference to account for the phase warping.

Both gradient echo (29, 30, 31) and spin echo sequences (32, 33) can be used for

this purpose.

Spatial Characteristics of the Field Map

Figure 5.6 depicts an actual field map, demonstrating the spatial dependence of the

field map. Further, a majority of de-blurring algorithms assume that the field map

varies slowly, i.e., the image can be segmented into finite regions each with zeroth

order blurring at different values. Figure 5.7 shows a series of images with simu-

lated blurring and which are de-blurred to correct for zeroth order effects at different

values. As the de-blurred images clearly show, different parts of the image come
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Figure 5.6: An example field map.

into focus as the value of the zeroth order off-resonance is varied. This indicates

that the field maps may be assumed to be varying slowly. This demonstration is

only an informal validation of the assumption that field maps vary slowly; a more

rigorous proof can be found in the literature (34, 35).

DE-BLURRING ALGORITHMS: A REVIEW

Modern scanners have shim coils to help generate uniform fields (31); however,

these coils are designed to compensate only for large global variations in the main

magnetic field (17). This accounts for partial in-homogeneity corrections, necessi-

tating further processing.

Till the mid 1990s, the most popular MR imaging schemes were the spin-

warp imaging (10), 2DFT (10), projection reconstruction (PR) (10) and echo pla-

nar imaging (EPI) (10). It is thus natural that studies in this period concentrated

in developing correction schemes for these imaging techniques. One of the earli-
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Figure 5.7: A blurred image (a) de-blurred at -15 Hz (b), -30 Hz (c), and at -45 Hz
(d).

est approaches to handle artifacts due to B0 in-homogeneity in post-processing for

2DFT imaging was published in 1978 (36). It was only in 1985 that a scheme that

could correct for all effects (shifting and geometric distortions) of in-homogeneity

in a 2DFT scan was proposed (33, 37). The algorithm involved a two-step ap-

proach. First, the shifting due to the zeroth order effects was handled by linear

interpolation. This was followed by an algebraic approach to correct for geometric

distortions. This algorithm is also applicable to variations of the EPI scan (38). A

curvilinear reconstruction to correct for these effects in a PR scan had already been
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described by Lai (39). Spin-warp imaging was found to be comparatively immune

to blurring (40). A good review and comparison of these methods can be found

in (41). A major contribution of these studies to de-blurring spiral scans and other

non-cartesian scans has been the development of field map estimation techniques.

Algorithms for de-blurring spiral scans fall into three broad categories – the

conjugate phase reconstruction (CPR) methods, the image space approaches and

the automatic methods. The following sub-sections give an overview of these tech-

niques.

Conjugate Phase Reconstruction

Conjugate phase reconstruction was introduced in 1988 (34). However, the term

conjugate phase was coined by Noll (42) who also gave a more general form of the

method. It is the standard method to correct for blurring. As shown before, the

collected data in the presence of in-homogeneity is given by

s(t) =
∫

m(r)e[−ik(t)r−i∆ω(r)t]dr [5.12]

Assuming a slow varying field map, m(r) can be recovered by compensating for

phase accrual via synchronously demodulating the collected signal at each point

using the field map. Mathematically, this process can be represented as

m̂(r) = ∑
j

s(t j)ei∆ω(r)t jC( j,r) [5.13]

where C( j,r) is a complex weighting function given by C ( j,r) = e[ik(t j)r]w( j).

Here w( j) is the sampling density correction weights (21). The name conjugate
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phase reconstruction follows as each collected data point is multiplied by the con-

jugate of the accrued in-homogeneity phase.

A slightly variation to this process gives the SPHERE (Simulated PHase Evolu-

tion REwinding) reconstruction (43). SPHERE is a two step process – an estimate

of the image space is obtained by standard reconstruction of the collected data. A

corrected estimate of k-space is then obtained as

sc (t) =
∫

m̃(r)e[−ik(t)r+i∆ω(r)t]dr [5.14]

The corrected image is then obtained by a standard reconstruction of the above.

This can be iterated to improve the accuracy of correction.

Time Segmentation

Though reconstruction as formulated in Eq. 5.14 is possible, it is computationally

intensive. A time segmented approach to speed up compensation was also proposed

by Noll (42). The data is windowed into L+1 sets according to the collection time

t j. If the read out time is T , the windows are centered at τ = T/L and are 2τ wide.

Each segment is separately reconstructed, corrected and summed to give the final

image. Mathematically, this is equivalent to

m̂(r) =
L

∑
l=0

[
∑

j
s
(
t j
)
a
(
t j− lτ

)
ei∆ω(r)t jC ( j,r)

]
[5.15]

where a(.) is the windowing function. The speed up is possible by the approxima-

tion that the in-homogeneity correction term is nearly constant over the window.
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Then the reconstruction is

m̂(r) =
L

∑
l=0

ei∆ω(r)lτ

[
∑

j
s
(
t j
)
a
(
t j− lτ

)
C ( j,r)

]
[5.16]

Here lτ is the center of the window. The reconstruction for each window

∑
j

s
(
t j
)
a
(
t j− lτ

)
C ( j,r) [5.17]

is fast if the standard reconstruction is fast. As mentioned before, C( j,r) is a

weighting function given by

C ( j,r) = e[ik(t j)r]w( j) [5.18]

where w( j) is the sampling density correction weights (21) used in the gridding

reconstruction (20).

Frequency Segmentation

Computational complexity of the CPR can also be controlled by segmenting the

off-resonance frequency range (44). Here, the range of off-resonance frequencies

is uniformly quantized and a base image is reconstructed for each frequency with

correction for only the zeroth order effects. The final image is formed pixel by

pixel – the value at any location is the average of the pixel values at that location of

two base images with the closet off-resonance frequency. This approach has been

extended such that the reconstructed pixel value is the weighted average of the pixel

values of all base images (45). Both of these quantize the off-resonance frequencies
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in a one dimensional manner, a better speed up can be achieved by quantizing in

two dimensions (46).

Automatic Methods

All of the methods described above require an accurate field map. Generating a field

map entails increased scan times and assumes that the field map is time invariant. In

most applications, these constraints are satisfied. But, in applications like real-time

cardiac and lung imaging, increased scan times are not desirable and the field map

varies with time. For such cases, a class of methods that ”automatically” de-blur

the images are attractive.

Use of a focusing measure to iteratively de-blur each image pixel (44) attempts

automatic de-blurring by adopting a modified focusing measure from radio astron-

omy. The de-blurring then proceeds in the basic frequency segmented approach.

The focusing measure is the sum of a nonlinear function of the imaginary parts of

the pixel values around a predetermined area around the pixel. An extension of

this approach to include support for a large range of sharply varying off-resonance

frequencies has also been proposed (47) – the area of summation and the range of

off-resonance frequencies are successively fine tuned until the required robustness

is achieved.
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Summary

As is evident from the above, CPR is the basis for all other classes of de-blurring

methods. CPR is the continuous domain formulation of the problem, and each

method attempts an optimal approximation by different approaches to discretization

of the continuous formulation (Yudilevich et. al (28) give a thorough analytical

treatment of the continuous formulation). A rigorous analysis of these methods with

the development of the general form of each method has been made (48). The study

indicates that frequency segmentation approaches provide the best approximation.

DE-BLURRING WITH SEPARABLE KERNELS

This technique was introduced (49) as a computationally fast alternative to the con-

jugate phase methods. It is a frequency segmented approach that is implemented

in image space. It assumes that an accurate field map is available and that it varies

slowly in image space. The image is first reconstructed with the basic gridding

technique. The range of off-resonance frequencies is uniformly quantized and a

de-blurring kernel is generated for each frequency. If fi denotes an off-resonant

frequency, then the de-blurring kernel is

I.F.T.
{(

f it
[
MT Ffi

])−1
}

[5.19]

where I.F.T. is the inverse Fourier transform, MT Ffi is the modulation transfer

function given by the Fourier Transform of the point spread function, PSFfi , for a

constant off-resonance fi. Further, f it[MT Ffi] denotes modeling the MT Ffi based
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on the characteristics of the spiral trajectory. Usually, spiral trajectories are tra-

versed with a constant linear velocity allowing t the acquisition time to be expressed

as

t ∝ k2
x + k2

y [5.20]

Since the phase accrual due to off-resonance is proportional to t, it can be mod-

eled as a 2D separable quadratic, ei(k2
x+k2

y), making this approach computationally

efficient.

A kernel table is first generated using the maximum off-resonance frequency in

the field map. Each pixel in the corrected image is the result of two 1D (three if cor-

recting 3D data-sets) convolutions with the kernel specified by the offset frequency

at that pixel. Care is taken to ensure that the convolutions are centered on the pixel

of interest. Figure 5.8 illustrates this graphically.

SUFFICIENT KERNEL LENGTH

Visual inspection of a typical kernel table (Fig. 5.9) indicates that computation cost

can be further reduced by using a varying kernel length. The kernels are Fourier

transforms of the complex conjugate of the respective MT Ffi; hence, the convo-

lution of the blurred PSF and the associated kernel should ideally result in a sinc

function. This gives a metric to measure the kernel performance as

ErrorMetric =
∑ |PSFc−PSFi|2

∑ |PSFi|2
[5.21]
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Figure 5.8: Flowchart for rapid 2D de-blurring via separable kernels.

where PSFc is the de-blurred PSF and PSFi the ideal sinc PSF . The kernel perfor-

mance is expected to improve with increasing kernel length. This is demonstrated

in Fig. 5.10 for a total phase accrual (φb) of 5 cycles. The kernel performance as a

function of kernel length for φb = 1−10 cycles is illustrated in Fig. 5.11 and, as ex-

pected, the performance improves with increasing kernel length. Since the amount

of introduced blur is proportional to φb (Fig. 5.5), it is straightforward to anticipate

that the sufficient kernel length is a function of φb. The kernel performance was

tested for varying kernel lengths given by

Kernel Length = 2(4φb +n) [5.22]
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Figure 5.9: A typical kernel table exhibiting the bow tie structure indicating the
variation in kernel length.

for n = 0,3,20. The results are superimposed on Fig. 5.11. In practice, a SNR

of 100 is suffcient for most MR applications (50), i.e., any reduction in residual

error beyond 10−2 level is lost. Figure 5.11 indicates that kernel lengths greater

than 2(4φb + 3) are not computationally efficient; hence, a kernel length given by

2(4φb + 3) is sufficient for practically effective and computationally efficient de-

blurring.
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Figure 5.10: Kernel performance for φb = 5 cycles with different kernel length : 10
(a), 22 (b), and 52 (c).
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Figure 5.11: Kernel performance for different values of φb (1 - 10 cycles) as a
function of kernel length (darker lines indicate lower values of φb and lighter lines
indicate larger values). Performance results for kernel length given by Eq. 5.22 for
n = 0 (magenta), n = 3 (blue), and n = 20 (cyan), are also superimposed.

LINEAR FIELD MAP CORRECTION

A linear variation in space of the field map (∆ω) can be accounted for by a first

order term (∆1). In one dimension, this is represented as:

∆ω (x) = ∆0 +∆1x [5.23]

The presence of ∆1 is equivalent to a spurious gradient during spatial encoding (Eq.

5.11). For spiral scans, this manifests itself as a distortion in the trajectory (Fig. 5.4

and (51)). The trajectory distortion results in a change in sampling density. This dis-

crepancy in sampling density can be estimated by density compensation algorithms

(21). However, the trajectory distortion varies with each pixel, and estimating the
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density compensation is computationally intensive. Hence, an analytical solution

for estimating the change in sampling density is desired. This section presents a

closed form solution based on the characteristics of the spiral trajectory.

Modeling the Change in Sampling Density

In accounting for the zeroth order effects, the acquisition time t was assumed to be

(49) :

t = ck2
r [5.24]

where c is a constant scalar and k2
r = k2

x +k2
y . For ease of presentation, the estimate

of change in sampling density is first derived in one dimension, and then extended

to multiple dimensions. Let ki be the i-th undistorted k-space location and let Ki

be the corresponding distorted k-space location. With both ki and Ki normalized to

±0.5, for a given spurious gradient G and resolution r, Ki can be expressed as

Ki = ki + γrGti [5.25]

Using Eq. 5.24, Eq. 5.25 can be rewritten as

Ki = ki + γrGck2
i [5.26]

Let K∆
i be defined as

K∆
i = (ki +∆)+ γrGc(ki +∆)2 [5.27]

where ∆ is the normalized Nyquist distance. For every Ki, K∆
i corresponds to the

next k-space location that is acquired as specified by the original trajectory. By
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definition, any change in sampling density at any location is given by the distance

between adjacent sample locations scaled by the reference distance between adja-

cent sample locations, i.e., the Nyquist distance. Assuming that the distortion due

to G does not cause the trajectory to fold over itself,
(
K∆

i −K
)/

∆ is proposed as

an estimate of the change in sampling density. From Eq. 5.26 and Eq. 5.27, the

change in sampling density at Ki is

δ(SDi) = 1+0.5B∆+Bki [5.28]

with B ∆
= 2γrGc. Equation 5.26 can also be used to solve for ki as

ki =
(
−1±

√
1+2BKi

)/
B [5.29]

Only the positive root will result in ki between ±0.5 giving

δ(SDi) = 0.5B∆+
√

1+2BKi [5.30]

The constant c is specified by the analog to digital conversion (ADC) time (the

duration of the data acquisition window) as, by definition, kmax = 0.5 is acquired at

the end of the data acquisition window giving

c = 4ADC [5.31]

Since this treatment assumes that G does not cause the trajectory to fold over, it

is necessary to determine the critical value (Gc) at which G begins to cause the

trajectory to fold over. Gc is given by the value of G for which δ(SDi) = 0 at
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ki =−kmax. Using −kmax =−0.5 in Eq. 5.28, we get

Gc = [γrc(1−∆)]−1 [5.32]

Since the trajectory distortion results in a change in sampling density, the compen-

sation that is needed to correct for the trajectory distortion is a multiplication in

k-space by the inverse of the change in sampling density, i.e., the kernel magnitude

in k-space needs to set as

|kernelMTF|= [δ(SDi)]
−1 [5.33]

To ensure that the kernel is separable in two dimensions, Eq. 5.30 can be linearized

using a Maclaurin series expansion (52) and by setting the high order terms of the

expansion to zero

|kernelMTF|= [1+BKi]
−1 [5.34]

with G≤ 0.45Gc.

Efficacy of the First Order De-Blur Kernels

The first order de-blur kernel design follows that for zeroth order kernels – the

phase is the conjugate of the phase accrual in k-space, and the magnitude in k-

space is now specified by Eq. 5.33. The value of B is determined by the change in

total phase accumulated per pixel ( dφb in units of cycles per pixel) as

B = 8 dφb [5.35]
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dφb (centi-cycles per pixel) 1 2 3 4 5 6 7 8 9
Percent Improvement 29 36 38 38 38 37 36 35 33

Table 5.1: Improvements in correcting for a linear field map using a first order
kernel in comparison to a zeroth order kernel.

The result in one dimension is shown in Fig. 5.12 for typical values of φb and dφb

with and without non-uniform magnitude. The percent improvement was computed

as

Percent Improvement =
(

Errorzeroth order kernel−Errorfirst order kernel

Errorzeroth order kernel

)
×100

[5.36]

Table 5.1 lists the percent improvement for various values of dφb.

Sufficient First Order Kernel Length

The kernel length computed using Eq. 5.22 with n = 3 has to be verified for first

order kernels. Figure 5.13 plots the residual error after first order correction for

different values of dφb as a function of zeroth order sufficient kernel length. The

Figure 5.12: First order kernel performance in comparison to the zeroth order ker-
nel. The first order residual error (Error 1) is 33 percent less than the zeroth order
residual error (Error 2).
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achieved error values indicate that the kernel length given by Eq. 5.22 with n = 3

is indeed sufficient.

Figure 5.13: First order kernel performance as a function of kernel length computed
using Eq. 5.22 with n = 3.

NOISE CHARACTERISTICS

De-blurring with separable kernels is essentially a deconvolution technique. Decon-

volution approaches are generally sensitive to noise. A Monte-Carlo simulation was

used to investigate the noise characteristics of de-blurring with separable kernels.

The blurred PSF is corrupted with N instants of zero-mean white Gaussian noise

(the variance was as per the required SNR) and then de-blurred with the associated

kernels. Figure 5.14 depicts this procedure graphically. The standard deviation (σ)
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of each pixel, the mean deviation of each value from the average value of the pixel

across the N versions of the PSF , is then computed pre- and post-correction. For

good noise characteristics, pre- and post-compensation σ values need to be compa-

rable.

The results for zeroth order correction (Fig. 5.15) indicates that the pre- and

post-correction σ values are indeed comparable implying good noise performance.

For first order correction the pre- and post-correction σ are comparable till 9 centi-

cycles per pixel shift (Fig. 5.16a), after which there is noise amplification (Fig. 5.16b).

The spurious first order gradient G results in different phase accumulation at each

pixel which is specified in cycles per pixel shift. Usually this per pixel shift is on

the order of 0.01 cycles hence the use of centi-cycles for ease in presentation. This

is expected as the magnitude of the kernel MT F is no longer constant (Eq. 5.34).

Whether this is acceptable in practice depends on the SNR of the image being cor-

rected. The fall in post-correction σ values towards the edges are due to partial

convolutions effects (as indicated by the asymmetric nature in the first order kernel

result shown in Fig. 5.16).

CONCOMITANT FIELD CORRECTION

Imaging gradients necessary for spatial encoding also generate unintended addi-

tional spatially varying magnetic fields. Though these concomitant fields (Bc) are

inadvertent, they are not due to any hardware imperfections. In reality, they are
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Figure 5.14: Graphical representation of the Monte Carlo procedure adopted for
investigating the noise performance of the de-blurring via separable kernels.

Figure 5.15: Noise performance of a typical zeroth order kernel.

predicted by Maxwell’s equations and hence unavoidable. The nature of their oc-

currence precludes any attempts to measure them. Fortunately, closed form first

order approximations using the Maxwell equations can be derived (8, 53). This
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Figure 5.16: First order kernel noise performance for 9 centi-cycles per pixel shift
(a), and 11 centi-cycles per pixel shift (b).

can be demonstrated succinctly for a constant gradient along the x-direction (Gx).

Maxwell equations for magnetic fields state:

−→
∇ •−→B = 0,

1
µ0

−→
∇ ×−→B = ε0

∂
−→
E

∂t +
−→
J .

[5.37]

where
−→
∇ is the derivative operator,

−→
E the electric field,

−→
J the current density,

µ0 the permeability, and ε0 the permittivity of free space. For an MRI scanner,

∂
−→
E /∂t ≈ 0 and

−→
J ≈ 0 (8), giving:

∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z
= 0 [5.38]
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∂Bx

∂y
=

∂By

∂x
[5.39]

∂By

∂z
=

∂Bz

∂y
[5.40]

∂Bz

∂x
=

∂Bx

∂z
[5.41]

By definition, ∂Bz
/

∂x = Gx, ∂Bz
/

∂y = Gy and ∂Bz
/

∂z = Gz. Let G⊥ be a transverse

gradient defined as

G⊥
∆
=

∂Bx

∂y
=

∂By

∂x
[5.42]

Equation 5.38 specifies ∂Bx
/

∂x and ∂By
/

∂y as

∂Bx
∂x

∆
=−αGz

∂By
∂y

∆
=−(1−α)Gz,

[5.43]

where α is a dimensionless parameter.
−→
B is a spatially varying vector and can be

linearized as: 
Bx

By

Bz

=


∂Bx
∂x

∂Bx
∂y

∂Bx
∂z

∂By
∂x

∂By
∂y

∂By
∂z

∂Bz
∂x

∂Bz
∂y

∂Bz
∂z




x

y

z

 . [5.44]

Here, Bz refers to only the spatially varying component. Using Eq. 5.40 - Eq. 5.43

and the assumption that only a constant linear gradient along the x-direction exists,

Eq. 5.44 reduces to 
Bx

By

Bz

=


0 G⊥ Gx

G⊥ 0 0

Gx 0 0




x

y

z

 [5.45]
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MRI scanners use cylindrical gradients; consequently, G⊥ ≈ 0 (8), giving

Bx = Gxz

Bz = Gxx
[5.46]

Equation 5.46 clearly demonstrates that a linearly varying magnetic field in one

direction generates an additional magnetic field perpendicular to the original field.

Derivation for the more general case follows the procedure outlined above giv-

ing the first-order approximation of the generated concomitant field Bc for a general

3D gradient waveform as (53):

Bc =

(
g2

z

8B0

)(
x2 + y2)+(g2

x +g2
y

2B0

)
z2−

(
gxgz

2B0

)
xz−

(
gygz

2B0

)
yz [5.47]

Equation 5.47 has been shown to be an adequate estimate of concomitant fields for

correction (53, 54).

Rapid Concomitant Field Correction

Variations in the effective B0 due to the concomitant fields will also result in ad-

ditional phase accrual in k-space during spatial encoding. This additional phase

(Φc (t)) is given by:

Φc (t) = γ

t∫
0

Bc (τ)dτ. [5.48]

The effect of Φc (t) on image quality is similar to B0 in-homogeneity. It has been

demonstrated (54) that traditional de-blurring algorithms for spiral trajectories can

be modified to account for the effects of concomitant fields. Traditional de-blurring

algorithms are, however, handicapped by long computation times. An investigation
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Figure 5.17: The phase accrual in k-space for a single pixel with a typical sagittal
spiral scan (a). The profile through the origin (b) clearly illustrates the quadratic
nature of the accrual. The trajectory had 4 interleaves, Gmax of 4 G/cm and ADC of
42.5 ms. The pixel location was assumed to be x = 2cm, y = 2cm and z = 12cm.

of the phase accrual in k-space from Eq. 5.48 for a typical spiral trajectory reveals

that it is approximately quadratic (Fig. 5.17). This is fortuitous as a quadratic phase

accrual in k-space can be corrected rapidly using separable de-blur kernels (49).

Though the separable de-blur kernel approach is rapid, it still requires a time-

independent field map. As is evident from Eq. 5.47, the expression for concomi-

tant fields is time-dependent. The quadratic phase accrual again provides the work

around, as each pixel can now be assumed to have an off-resonance frequency

(∆ fc (x,y,z)) given by

∆ fc (x,y,z) =
Max Phase Accrual for pixel at(x,y,z)(Φmax

c (x,y,z))
ADC Time (T)

. [5.49]

where Φmax
c is Φc(t) at t = ADC Time, and ADC Time is the data acquisition win-
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dow length. The resulting virtual field map is time-independent permitting the use

of the rapid de-blurring algorithm.

Computing the Virtual Field Map

Computing the virtual field map directly from Eq. 5.49 is time consuming as ∆ fc

at every pixel is a summation of N terms (N = # of acquired samples) (Eq. 5.48).

The equation for maximum accrued phase after a rearrangement of terms can be

rewritten as:

Φmax
c (x,y,z) = γ

2B0

[
(x2+y2)

4

T∫
0

gz (τ)
2 dτ+ z2

T∫
0

(
gx (τ)

2 +gy (τ)
2
)

dτ

−xz
T∫
0

gx (τ)gz (τ)dτ− yz
T∫
0

gy (τ)gz (τ)dτ

] [5.50]

The four integrations do not vary with pixel location and need to be computed only

once. Using these pre-computed summation values, ∆ fc (x,y,z) can be computed

swiftly.

Validation in 2D

The proposed algorithm was validated with both simulation and phantom data.

The original image for the simulation was acquired using a 240x240 image-matrix

Cartesian spoiled gradient echo sequence. As indicated by Eq. 5.8, the simulation

was computed by evaluating:

M (ky,kz) = ∑m(y,z)ei2π[yky(n)+zkz(n)+∆ fc(y,z) t(n)] [5.51]

The simulation trajectory was a 5-interleave Archimedean spiral designed for 24cm

FOV, 1mm resolution and 4.00G/cm Gmax. The x-offset was assumed to be 2 cm.
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Figure 5.18: Concomitant field correction results for simulated sagittal images: vir-
tual field map (a); uncorrected image (b); de-blurred image (c) and original image
(d).

The phantom data was acquired on a 3T GE Signa Excite scanner with 150/40

gradient system. The acquisition trajectory was a 7-interleave Archimedean spiral

designed for 22.4cm FOV, 1mm resolution and 2.25G/cm Gmax. The sagittal slice

had an x-offset of 1.2cm. To reduce the effect of B0 in-homogeneities, 5 iterations of

the high order shimming (to produce a uniform B0 field) sequence that is provided

by the scanner manufacturer, were carried out.

The raw data was reconstructed using standard gridding reconstruction (20) and

sampling density correction (9). The reconstructed data was then de-blurred using

the separable kernels (49).

The simulation trajectory resulted in an ADC time of 28 ms giving a maximum

off-resonance frequency of 54 Hz. The computed virtual field map and the achieved

de-blurring using separable kernels are shown in Figs. 5.18a-c; the original Carte-

sian image is also shown in Fig. 5.18d for reference. The trajectory for the phantom

images also resulted in an ADC time of 28 ms but with a maximum off-resonance

frequency of 21 Hz. The computed virtual field map and the achieved de-blurring
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using separable kernels are shown in Figs. 5.19a-c, and magnified portions of the

uncorrected and de-blurred images are also shown in Fig. 5.19d for easy compari-

son.

Discussion

The de-blurred images from both the simulation and the phantom experiments

(Fig. 5.18c and Fig. 5.19d) clearly demonstrate the efficacy of the proposed method

to correct for concomitant effects in spiral scans. The understated improvements in

the phantom experiments are consistent with the smaller ∆ f max
c (21 Hz as compared

to 54 Hz in the simulations). The computed virtual field maps are also consistent

Figure 5.19: Concomitant field correction results for phantom sagittal images: vir-
tual field map (a); uncorrected image (b) and de-blurred image (c) with the marked
portions of both images zoomed-in (left: uncorrected image; right: de-blurred im-
age) for easy comparison (d).
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with Eq. 5.47 – increase in ∆ fc is more aggressive along the z-direction than along

the y-direction and, in both cases, the increase is quadratic. The quadratic rela-

tionship is explicitly visible along the z-direction. The raw phantom images also

reflect the blurring predicted by Eq. 5.47 – blurring is more subtle along the vertical

axis in comparison to the horizontal axis. The amount of correction depends on the

accuracy of the virtual field map and the efficacy of the separable kernel algorithm.

The form of the proposed approach – using a static pre-computed virtual field

map to correct for concomitant fields, has further potential computational advan-

tages. The virtual field map can be combined with the B0 field map (a simple

addition should suffice) permitting correction for both artifacts simultaneously, ef-

fectively reducing the computation time by half. Past solutions (54) require a sep-

arate step for concomitant correction. This combined field map can also be used

with other de-blurring techniques such as time segmentation (42) and frequency

segmentation (44).

Empirical evidence suggests that the concomitant effects are not visible in all

spiral scans (54). A closer look at Eq. 5.47 helps explain this – Bc effects decrease

with increasing B0, and increase with increasing maximum used gradient and in-

creasing ADC time. Larger objects will also have larger Bc effects. Equation 5.47

also reveals that axial scans experience a constant off-resonance from concomitant

fields. Solutions to correct for constant off-resonance are exceptionally efficient

(both in terms of artifact elimination and computation time) even for spiral scans
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(8). With the MRI industry moving towards 3T scanners and the possibility of de-

rating the gradients, these factors seem to play down the effects of concomitant

fields. For non-cartesian trajectories designed for fast coverage of k-space (im-

plying long ADC times), concomitant field effects are a handicap and need to be

corrected.

DE-BLURRING IN 3D

Non-cartesian 3D trajectories have certain undeniable advantages – fast scanning

(typical scan times are just a third of that for Cartesian scans), benign aliasing pat-

terns, potential 3D rigid body motion correction/robustness while preserving or ex-

ceeding the SNR performance of Cartesian scans. These attributes are compelling

enough to warrant the development of algorithms for 3D spiral de-blurring.

Floret Trajectory

The floret is a recently introduced 3D trajectory based on spirals (55). Here the

base spiral plane is under-sampled in-plane (Fig. 5.20a), then stretched out in the

direction perpendicular to the plane (Fig. 5.20b). The stretching forms cones of

different angles. A number of such base spirals form a hub (Fig. 5.20c). Multiple

hubs are used to fully cover k-space. The hub parameters determine whether the

amount of overlap between hubs is less (Fig. 5.20d) or more (Fig. 5.20e).
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Figure 5.20: The base spiral trajectory used to form the Floret trajectory (a); the
base spiral is stretched and rotated (b) to form a hub (c). The hub parameters
specify the amount of overlap between the hubs: less (d) or more (e).

Phase Accumulation in k-Space for the Floret Trajectory

Figure 5.21 shows the phase accumulation in k-space for a typical Floret trajectory

and constant B0 in-homogeneity. The phase accumulation along the the three pri-

mary axes is also shown in Fig. 5.22. The phase accumulation in k-space due to

concomitant fields for a given point is illustrated in Fig. 5.23, and Fig. 5.24 depicts

the phase accumulation along the three primary axes. It is evident that the accumu-

lation can be approximated by a 3D quadratic function in both cases, permitting the

use of the rapid de-blurring algorithm for both B0 in-homogeneity and concomitant

field correction.
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Figure 5.21: The phase accumulation in k-space for a typical Floret trajectory and
a constant B0 off-resonance of 50 Hz.

Bo Map Estimation

B0 maps can be generated from two data sets collected at different Tes as the differ-

ence in Tes allows phase accrual, at every pixel, that is proportional to the frequency

offset. A weighted average of the estimates from different coils then gives the final

estimate of the frequency offset. This procedure can be represented as (56) :

∆ω = ]
N

∑
i=1

FiSi [5.52]

where N is the number of coils, Fi is the complex data of the i-th coil collected at

the first Te value, Si is the complex data of the i-th coil collected at the second Te

value, and ] denotes the phase.

B0 maps can be collected at lower resolution and interpolated (zero-padding in

k-space) to the required higher resolution. The accuracy of such maps depends
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Figure 5.22: Phase accumulation along x-axis (a), y-axis (b) and z-axis (c) for the
Floret trajectory and constant B0 off-resonance in Fig. 5.21.

on the amount of interpolation. To determine the permissible resolution limits, in-

vivo data was collected at 1.5 mm resolution and 24 cm FOV. Lower resolution

datasets were generated from the collected dataset by progressively excluding high

frequency content in k-space. Field maps were then computed from all the datasets.

Figure 5.25 plots the RMS difference between the low resolution field maps and

the field map at the original resolution. The residual RMS values suggest that field

maps can be collected at a resolution that is 0.5mm lower than the target resolution,

and Fourier interpolated.

Collecting field map data at a lower resolution helps improve the SNR and keeps
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Figure 5.23: The concomitant phase accumulation in k-space for a typical Floret
trajectory and pixel location (x = 0 cm; y = 5 cm; z = 5 cm).

the scan time small. The SNR can be further improved by using a TA of 1000 (57)

as tissue contrast is not an objective in field map data. These factors together make

it possible to generate a high-SNR high-dynamic range using just 2 scans.

The datasets were also filtered in k-space with a Hamming window to achieve a

smooth field map (Figs. 5.26d-f). Also, since the Floret trajectory is used to collect

the field map datasets, care is necessary to ensure that there is minimal blurring in

the field map datasets. This is ensured by limiting the ADC time; ADC times of

1.5 ms or less were found to be sufficient. For the Floret trajectory, ADC times can

be limited by using a combination of a high number of spiral interleaves (5000),

low resolution (1.5 mm), high gradient magnitude (4 G/cm) and high slew rate (13

G/cm/ms).
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Figure 5.24: Concomitant field phase accumulation along x-axis (a), y-axis (b) and
z-axis (c) for the Floret trajectory and pixel location in Fig. 5.23.

Figure 5.25: RMS values of the difference between the field maps from lower res-
olution datasets and the field map from the corresponding high resolution (1.5mm)
dataset.

Results

In-vivo data was acquired on a 3T GE scanner. The B0 map data was collected

with 24 cm FOV , 1.5 mm resolution, 5000 spiral interleaves, 15 ms Tr, 10 degree
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Figure 5.26: Representative axial (a,d), sagittal (b,e) and coronal (c,f) slices show-
ing the smoothing (d-f) by filtering in k-space with a Hamming window. The field
maps are displayed on a range of +200Hz (red) and −200Hz (blue).

flip angle and a Te difference of 0.4 ms. The resulting ADC time was 1.5 ms.

The blurred data was collected with 24 cm FOV , 1.0 mm resolution, 3000 spiral

interleaves, 18.5 ms Tr, 20 degree flip angle and a Te difference of 3.4 ms. The

resulting ADC time was 6 ms. All acquisitions were collected with fat suppression

via spectral spatial RF (8).

The data was first reconstructed with regular gridding and sampling density cor-

rection. The B0 maps and the virtual concomitant field maps were then computed

using the approach outlined previously. The blurring correction for both zeroth-

order and first-order effects was then carried out using the separable method out-

lined before. The dataset had a total phase accumulation in k-space of 7.5 cycles

89



due to B0 in-homogeneity and 0.5 cycles due to concomitant fields.

The B0 correction results for representative axial (Fig. 5.27), sagittal (Fig. 5.28)

and coronal (Fig. 5.29) slices from the Floret data set are shown. The results are in

tune with the collected field map. The residual artifact is due to inaccuracies in the

field map. The field map inaccuracy has also introduced some artifact (Fig. 5.28,

Fig. 5.29).

The field map inaccuracies are probably due to bad estimates at locations with

low signal strength. The efficacy of fat suppression also has a large impact on the

field map estimates. Further work to incorporate water-fat separation techniques

and field map estimation with more accurate smoothing conditions to account for

locations with low signal strength is expected to help achieve improved results.
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Figure 5.27: A representative axial slice collected using a Floret trajectory (a)
and corrected for concomitant (b), B0 in-homogeneity (c). The green arrows in-
dicate improvement. The associated concomitant map (d) is displayed on a range
of +75Hz (red) and −75Hz (blue). The associated B0 map (e) is displayed on a
range of +200Hz (red) and −200Hz (blue). Note that the concomitant map values
for this slice are minimal (consistent with Eq. 5.47); hence, the image (d) is all
green. Also the B0 deviations are for the most part negative; hence, the B0 map (d)
is for the most part blue.
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Figure 5.28: A representative sagittal slice collected using a Floret trajectory (a)
and corrected for concomitant (b) B0 in-homogeneity (c). The green and red arrows
indicate resulting improvement and distortion, respectively. The associated con-
comitant map (d) is displayed on a range of +75Hz (red) and −75Hz (blue). The
associated B0 map (e) is displayed on a range of +200Hz (red) and−200Hz (blue).
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Figure 5.29: A representative coronal slice collected using a Floret trajectory (a)
and corrected for concomitant (b), and B0 in-homogeneity (c). The green and red
arrows indicate resulting improvement and distortion, respectively. The associated
concomitant map (d) is displayed on a range of +75Hz (red) and −75Hz (blue).
The associated B0 map (e) is displayed on a range of +200Hz (red) and −200Hz
(blue).
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Chapter 6

CONCLUSION

Practical application of post Cartesian imaging requires efficient trajectory design,

accurate knowledge of the trajectory deviations (if any) and reconstruction to handle

potential artifacts. This work presents advances in trajectory design (Chapter 3),

trajectory estimation (Chapter 4) and improved reconstruction (Chapter 5).

CONTRIBUTIONS

Traditionally, 2-D scans are designed to support an isotropic field-of-view (iFOV).

When imaging elongated objects, significant savings in scan time can potentially be

achieved by supporting an elliptical field-of-view (eFOV). This work presents an

empirical closed form solution to adapt the PROPELLER trajectory for an eFOV.

The proposed solution is built on the geometry of the PROPELLER trajectory per-

mitting the scan prescription and data reconstruction to remain largely similar to

standard PROPELLER. The proposed solution is validated by experimental results,

the point spread function (PSF) depicting the achieved FOV and a comparison of

SNR performance to iFOV scans. Details of the possible savings in scan time have

also been described.

Conventional trajectory measurements are carried out on single gradient chan-

nels. The effect (if any) of playing out waveforms concurrently on multiple gra-

dient channels is generally assumed to be negligible. This work presents a simple
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approach to measure this effect on zeroth-order deviations (gradient delays) for spi-

ral waveforms. The proposed method uses a line phantom to generate a uniform

structure in k-space. The orientation of the structure is pre-determined via the po-

sition of the phantom. This prior information helps in estimating gradient coupling

effects (if any).

Spatial encoding for spiral scans is sensitive to B0 in-homogeneities. The re-

sulting artifact is a spatially varying blur. Due to the nature of the spiral trajectory,

the zeroth-order blur effects can be corrected in a computationally efficient manner

with separable kernels. This work presents extensions to include first-order and

concomitant field correction. The first-order effect is modeled as an unaccounted

change in sampling density. The nature of the spiral trajectory is used to derive

an analytical expression for the deviation in sampling density on a pixel-by-pixel

basis. It is also demonstrated that the trajectory characteristics permit modeling the

concomitant field effects as blur due to a static in-homogeneity map. An empirical

equation for sufficient kernel length is also derived. The SNR performance of the

algorithm is illustrated. Steps to estimate a B0 field map are also outlined. The al-

gorithm is demonstrated on a 3-D in vivo floret trajectory dataset. These advances

are expected to make post Cartesian imaging more accessible for applications in the

clinic.
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FUTURE WORK

Field map accuracy is one of the prominent factors in achieving good deblurring.

Water-fat signal separation has a significant impact on the B0 map estimation and

de-blurring itself. Future work to estimate the B0 map more accurately will require

a water-fat separation algorithm incorporated into it. Locations with low signal

strength also contribute to inaccuracies in the estimated field map. Identifying these

low signal regions and interpolating the field map in such areas will also help im-

prove the field map accuracy. It is expected that a multi-level deblurring to account

for both water and fat signals with accurate field maps from water-fat separated

datasets, will help improve deblurring for B0 and concomitant field artifacts.
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