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ABSTRACT  

   

Spatial uncertainty refers to unknown error and vagueness in geographic 

data. It is relevant to land change and urban growth modelers, soil and biome 

scientists, geological surveyors and others, who must assess thematic maps for 

similarity, or categorical agreement. In this paper I build upon prior map 

comparison research, testing the effectiveness of similarity measures on 

misregistered data. Though several methods compare uncertain thematic maps, 

few methods have been tested on misregistration. My objective is to test five map 

comparison methods for sensitivity to misregistration, including sub-pixel errors 

in both position and rotation. Methods included four fuzzy categorical models: 

fuzzy kappa’s model, fuzzy inference, cell aggregation, and the epsilon band. The 

fifth method used conventional crisp classification. I applied these methods to a 

case study map and simulated data in two sets: a test set with misregistration 

error, and a control set with equivalent uniform random error. For all five 

methods, I used raw accuracy or the kappa statistic to measure similarity. Rough-

set epsilon bands report the most similarity increase in test maps relative to 

control data. Conversely, the fuzzy inference model reports a decrease in test map 

similarity.  
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Chapter 1 

INTRODUCTION 

In a virtual workshop in 2004, Boots and Csillag (2006) identified four 

common reasons to compare area-class maps: to assess accuracy in a map relative 

to ground truth (Congalton and Green 2009), to detect change over time in a 

mapped area (Fisher et al. 2006), to assess predictive models of such temporal 

change (Pontius, Huffaker, and Denman 2004), and to compare landscape patterns 

across space and time (White 2006). In general, such comparisons propose to 

discover some meaningful change or difference between two maps. However, 

unknown error in either map can show false changes or conceal interesting 

differences. In this context, unknown imprecision and error inherent in geographic 

data is referred to as uncertainty (Goodchild 2008). The rising popularity of area-

class maps classified using areal imagery coupled with a growing interest in land 

change analysis necessitates a critical understanding of how common sources of 

uncertainty affect map comparison. Research addressing spatial uncertainty falls 

loosely into six categories: qualifying sources of uncertainty, such as in geocoding 

(Karimi, Durcik, and Rasdorf 2004), rasterizing vector data (Bregt et al. 1991) or 

historical map digitization (Bolstad, Gessler, and Lillesand 1990; Leyk, Boesch, 

and Weibel 2005); modeling fuzzy (Schneider 2008), rough (Worboys and 

Clementini 2001) and probabilistic data objects (Cheng 2009); measuring 

accuracy in crisp (Congalton and Green 2009) and fuzzy data (Ricotta 2005); 

simulating map variation (Goodchild and Dubuc 1987; Parker et al. 2003; 

Grunwald 2009); assessing uncertainty propagation and sensitivity in derived 
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products (Crosetto and Tarantola 2001), such as in slope stability assessment 

(Davis and Keller 1997); and communicating vagary to users (e.g. Ehlschlaeger 

and Goodchild 1994). My research on comparison methods’ sensitivity to 

misregistration relates most to the study of uncertainty propagation. Map 

comparison methods commonly provide both local results in the form of 

difference maps and global results as measures of overall map similarity. My 

work emphasizes the latter, where similarity is a single metric of agreement 

between compared maps, measured in terms of class proportion and distribution. 

In this chapter I address two categories of uncertainty research; I qualify 

misregistration as a source of uncertainty in area-class map comparison, and 

discuss philosophies for modeling such uncertainty. Similarity measures and map 

comparison are discussed further in chapter two. 

Misregistration is a significant source of uncertainty in area-class map 

comparison (Boots and Csillag 2006). Area-class maps divide space into bounded 

regions, where class membership describes attributes common to each region. 

Also called thematic maps and nominal fields, these categorical maps are unique 

in that geometry and attributes are interdependent. This dependency forms 

boundary areas between classes that are distinct from lines and other cartographic 

phenomena, where points may belong to several classes, to no class, or to a class 

not addressable at this scale (Mark and Csillag 1989; Rossiter 2001; Goodchild 

2003). Zhang and Goodchild (2002) describe these as unique phenomena in 

spatial uncertainty. Rossiter (2001) and Foody (2002) review the complex 

interaction of area-class boundaries with several sources of uncertainty, including 
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sensor imprecision, misregistration, and issues of scale, as well as classifier bias 

and taxonomy fitness. Misregistration produces two patterns of error in area-class 

maps. In the first, movement of class boundaries results in highly autocorrelated 

geometric error, where uncertainty in the class identity at one point increases class 

uncertainty in nearby points. This phenomenon may obscure true land cover 

boundary change (Foody 2002). The second error pattern relates to the Modifiable 

Areal Unit Problem (MAUP), where an offset sample area may change identity 

due to mixed-pixel class confusion. Independent studies show that misregistration 

by one-fifth of a pixel may cause a 10% error in measured similarity (Townshend 

et al. 1992; Dai and Khorram 1998). In general, Foody (2002) associates most 

error observed along thematic boundaries with these two patterns of uncertainty. 

The deleterious effect of misregistration on map comparison has motivated further 

research. 

Although methods exist to minimize misregistration of area-class data 

(Bruzzone and Prieto 2000; Stow and Chen 2002; Bruzzone and Cossu 2003), 

some uncertainty will always remain. Many classical map comparison statistics 

do not address the spatial distribution of error within a map (Foody 2002). 

Goodchild (2003) concludes that such measures cannot address area-class 

uncertainty. Recognizing this challenge, researchers in map comparison adapt 

crisp statistics using formal uncertainty models (Hagen 2002; Leyk, Boesch, and 

Weibel 2005). Following the success of this adaptation, modeling uncertainty has 

become a fundamental component of map similarity assessment (Kuzera and 

Pontius 2008). 
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Fuzzy set theory may be the most prevalent foundation for uncertainty 

models, but it is not without competition from multi-valued logics and probability 

theory (Elkan et al. 1994). Uncertainty modeling began in the 1920’s with the first 

trivalent logic published by Łukasiewicz (1970), admitting values for true, false, 

and possible. This work later developed into rough set theory, which defined a set 

as two collections of definite and possible members (Worboys and Clementini 

2001). Łukasiewicz’s work was precursor to the seminal introduction of fuzzy 

sets in 1965 (Zadeh). Zadeh (1978) generalized rough sets to include continuous 

degrees of set membership ranging from zero to one, formalizing a logical 

calculus he termed possibility theory. Where a rough set may represent a forest 

boundary as a constant band of possible membership, fuzzy sets allow a 

continuous transition between areas of definite inclusion and exclusion (Mark and 

Csillag 1989). A prototypical example from Zhu (1997) represents vague soil 

types using fuzzy class membership. Bennett (2001) raises serious questions on 

the utility of fuzzy set theory over multi-valued logics. Despite this, Kay (1994) 

observes fuzzy approaches in widespread use. For a full treatment of this 

ambiguity, see (Elkan et al. 1994). Probabilistic logic also developed in parallel 

with fuzzy set theory (Nilsson 1986). Probabilistic representations describe the 

likelihood of an event. In this logic, event outcomes are known, but conditions 

driving an event are not. While numerically similar, fuzzy sets and probability 

theory are nevertheless philosophically distinct in terms of what each represents. 

Probability theory represents uncertainty of a process, while fuzzy set theory 

represents uncertainty in a result (Gudder 2000). To illustrate, Zadeh (1968) 
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shows propositions such as “in eight coin tosses there are many more tails than 

heads,” which describes probabilistic processes working on fuzzy concepts, 

suggesting that probability theory and fuzzy logic may be complimentary (Zadeh 

1995). 

Models termed fuzzy include many intellectual descendents of Zadeh’s 

(1965) seminal work that can represent registration uncertainty in area-class 

maps. Here the umbrella term may refer to any model that generalizes crisp 

membership to represent vague notions. In general, these models represent 

uncertainty in pixel location or category using a fuzzy pixel with partial 

membership in nearby or similar classes (Hagen 2003). Such models vary in their 

approach to fuzziness. For instance, areal aggregation techniques generalize class 

membership to a coarse geometry, describing regions by the proportion of 

underlying class membership (Pontius, Huffaker, and Denman 2004). This 

effectively smoothes away small errors in class geometry shown in registration 

error (Carmel 2004). Conversely, models related to information theory may 

describe an object using continuous values of belief in uncertain statements 

(Zadeh 1975; Shafer 1976). With proper inference rules, such an approach may 

also suit misregistration. Rough set theory may prove useful too, as egg-yolk 

models effectively generalize possible boundaries while maintaining crisp class 

membership elsewhere (Cohn and Gotts 1996). Any of these fuzzy models can 

adapt a crisp similarity statistic to cases of uncertain registration, but the question 

of their performance at this task remains open (White 2006). 
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Sundaresan, Varshney, and Arora (2007) assessed sensitivity of a fuzzy 

similarity measure under misregistration of remotely sensed land cover images. 

They compared Markov random field change detection (MRFCD) against image 

differencing (ID) with a neighborhood softening technique comparable to that 

used by Hagen (2002), showing that MRFCD is more robust to linear and 

rotational misregistration than softened ID. Although their study may have been 

the first to compare different similarity measures under misregistration 

(Sundaresan, Varshney, and Arora 2007), assessment of only two fuzzy measures 

limits their results. The unique qualities of misregistered thematic maps should 

inform the choice of fuzzy model used in map comparison (Stehman 1999; Cross 

and Sudkamp 2002). In my research I assess registration sensitivity in several 

fuzzy models used for map comparison. This assessment will address the question 

of which thematic map similarity measures can better differentiate between 

registration error and legitimate classification change. 

 To assess model sensitivity, I will adapt the approach used by 

Sundaresan, Varshney, and Arora (2007) for use on categorical maps. I examine 

four fuzzy models for registration sensitivity: the raster-based methods called 

fuzzy kappa (Hagen 2003) and cell aggregation (Pontius, Huffaker, and Denman 

2004), and the vector-based methods known as fuzzy inference (Power, Simms, 

and White 2001) and epsilon bands (Mark and Csillag 1989). These models were 

chosen to provide a representative sample of different approaches that could 

dampen registration error. Test data included 22 simulated area-class maps and a 

case study region in northwestern Arizona. These were progressively 
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misregistered in both liner and rotational patterns. For each misregistration, I 

created a control map with identical error magnitude and random error 

distribution. I then compared similarity metric results, using crisp similarity as a 

performance baseline. 

As discussed in this chapter, fuzzy models are integral components to map 

comparison that may reduce registration sensitivity. Area-class map boundaries 

are unique phenomena significant to change detection research. Classification 

uncertainty due to misregistration increases along these boundaries, which can 

cause significant error in map similarity measures. Error along such boundaries 

should inform fuzzy model selection to reduce similarity measure error (Stehman 

1999; Cross and Sudkamp 2002). In the following chapter, I address literature in 

map comparison by component, examining specific fuzzy models, per-pixel 

comparison techniques, and confusion matrix rules. Chapter three describes 

experimental test data and model parameters, whose results are presented in 

chapter four. I discuss these results critically in chapter five. Finally, chapter six 

supports conclusions of my research and future avenues for advancement. 
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Chapter 2 

BACKGROUND 

The findings of this study contribute to literature in thematic map 

comparison. Boots and Csillag (2006) identify four pursuits in comparison 

research: accuracy assessment comparing maps to data with known error (Rossiter 

2001; Foody 2002), change detection comparing maps over time (Mas 2005; 

Radke et al. 2005), validation of land use simulation against known data (Hagen 

2003; Pontius, Huffaker, and Denman 2004), and landscape pattern analysis 

measured by dozens of assorted metrics (McGarigal and Marks 1995; Zhu 1997; 

Gustafson 1998; White 2006; Williams and Wentz 2008). These categories are 

not independent; they share several important comparison techniques. For 

example, Hagen (2003) designed a fuzzy kappa measure to measure simulation 

validity and to perform multi-temporal land change comparison, and the approach 

by Power, Simms, and White (2001) analyzes landscape patterns within simulated 

maps. Furthermore, when classifiers and class definitions are well known, change 

detection and accuracy assessment are strongly related, and they share use of the 

confusion matrix (Rees 2008). 

Although the breadth of research in these four areas of study limits 

generalization of the field as a whole, I describe fuzzy comparison methods 

according to three common functional components: a fuzzy softening technique, a 

set of local comparison functions, and rules for deriving global statistics. The 

general process for map comparison using these three components is illustrated in 

Figure 1. Functions for local comparison of fuzzy pixels or polygons are the point 
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of contact between softening techniques for fuzzy models and global similarity 

measures. In this chapter I address each component, beginning with techniques 

for softening crisp maps into fuzzy models. This leads into a discussion of local 

comparison functions. Following that, I discuss global similarity statistics 

calculated from local comparisons. 

I. Softening Techniques 

Published measures of area-class map similarity have implicit models of 

class membership. Traditional crisp measures define areas as polygons or raster 

cells, assigning one class per area and one area to every point in the study (Foody 

2006; Rees 2008). Power, Sims and White (2001) claim that such classical 

approaches are extremely susceptible to errors in map registration, and are liable 

to propagate such errors. As discussed in chapter one, fuzzy models for class 

membership can reduce this risk. Fuzzy measures of map similarity take 

advantage of this with a softening technique to represent crisp map data in a fuzzy 

model. Formally, I define a crisp area-class map as a set of pixels or polygons P 

classified into a set of categories N by U∈N
P
 ≡ {f : P → N}. A softening 

technique µ then takes the form µ : N
P
 → S

(P×N)
, S

(P×N)
 ≡ {f : P, N → S}, where S 

is the set of qualifiers in the underlying fuzzy model. For example, S is the real-

 
Figure 1. A flow-chart of the general map comparison process 
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valued interval (0,1) for fuzzy sets, or S={true, false, possible} for Łukasiewicz’s 

(1970) trivalent logic. Softening techniques that increase spatial autocorrelation in 

crisp maps have been shown to limit the effect of registration error (Power, 

Simms, and White 2001).  

Power, Simms, and White (2001) soften classified data through a novel 

method based on Mamdani fuzzy inference. Built to model the vagary of human 

speech, Mamdani inference compiles fuzzy evidence with rules to measure 

strength of a theory (Jang 1993). This model is epistemologically distinct from 

probabilistic or possibilistic models, as it describes belief in a given class 

membership. To soften crisp classifications, unique polygons are formed and 

weighted based on their areal proportion of category agreement. Fuzzy linguistic 

labels such as poor and very good are then applied to describe match quality. This 

construction allows fuzzy inference to compare high-level patterns in thematic 

maps while ignoring small changes (White 2006). The approach differs slightly 

from the process illustrated in Figure 1, as polygon overlay unifies compared data 

into a single map prior to softening. Map comparison using polygon overlay has 

been widely critiqued due to the occurrence of spurious polygons (Chrisman 

1989; Goodchild, Guoqing, and Shiren 1992). Power, Simms, and White partially 

address this by using polygon area as a weight. Discrete and continuous epsilon 

bands may further address the issue of spurious polygons in map comparison 

(Worboys and Clementini 2001; Mas 2005). 

Epsilon bands represent one of the earliest and most pervasive models of 

area-class map uncertainty (Mark and Csillag 1989). The model softens nominal 
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data using a distance decay function for class membership near boundaries, while 

areas outside this epsilon distance band retain crisp membership in their attendant 

class. Fuzzy membership then describes class proximity, in contrast to the class 

belief described in Mamdani inference. Originally presented in 1958 by Julian 

Perkal (1986) as a methodology for measurement and comparison of planar 

curves, the first of these models was a simple inclusion-exclusion model strongly 

related to egg-yolk models (Cohn and Gotts 1996) and rough set theory (Worboys 

and Clementini 2001). Mark and Csillag (1989) later applied a probabilistic 

interpretation, proposing several cumulative normal functions for class 

membership within epsilon bands, which have since been applied to land cover 

change detection (Mas 2005). 

Goodchild and Dubac (1987) criticized the epsilon band approach as 

failing to represent autocorrelative effects of error, noting that neighboring points 

along a line are not independent samples. Elaborating, Goodchild (2003) stated 

that any general model of area-class map uncertainty must address class 

membership confusion at every point, observing that the epsilon band model does 

not address confusion beyond the distance band. However, these criticisms do not 

apply to the case of misregistration error. Misregistration is autocorrelated along 

class boundaries, and the epsilon band reflects this correlation. A model of error 

along class boundaries may have no need to address class confusion elsewhere. 

Mark and Csillag (1989) also criticize Perkal’s (1986) discrete formulation, 

proposing that class membership should vary continuously within epsilon bands. 
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Recent literature has disagreed with this position, questioning the utility of 

continuous models for uncertain objects (Bennett 2001). 

The field of multiple resolution map comparison has identified numerous 

methods for reducing the number of cells or polygons within a map (Costanza 

1989; Pontius 2002; Kuzera and Pontius 2008). Land use simulations are 

traditionally validated at an aggregate scale, obscuring individual pixel locations 

in favor of overall classification pattern (Boots and Csillag 2006). The most 

common aggregation approach calculates the areal proportion of class 

membership in a square neighborhood, replacing that neighborhood with a single 

fuzzy pixel (Pontius, Huffaker, and Denman 2004). Figure 2 illustrates fuzzy 

raster aggregation by factors of two and four. Note that location information is 

lost while global class membership remains constant. A crisp equivalent is also 
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Figure 2. Crisp generalization performed by the maximum likelihood classifier, 

and fuzzy cell aggregation performed by fuzzy mean  
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shown, using a maximum likelihood classifier instead of areal proportion. 

Because class information is lost, the crisp process is referred to as generalization 

rather than aggregation. Carmel (2004) found that aggregation is effective at 

reducing registration error when using a factor 3-10 times as large as the average 

pixel offset distance. However, these results were established against only a single 

source map. 

II. Local Comparison 

While comparison functions for crisp polygons or pixels are obvious and 

intuitive, extension of these principals to their softened counterparts is not. Crisp 

categorical similarity at the local scale is described by a binary function, which 

yields true (or one) when class membership is equal, and false (or zero) 

otherwise. Difference is traditionally defined as similarity’s compliment; crisp 

difference then is the binary negation of this similarity measure. However, there is 

no single agreed upon definition for similarity of vague categorical maps. The 

extension principal from fuzzy set theory allows crisp measures of global 

similarity to be used on fuzzy data (McBratney and Odeh 1997; Woodcock and 

Gopal 2000). Formally, the extension principal allows that for similarity measures 

f : N
P
, N

P
 → ℜ relating crisp maps U,U'∈N

P
 to a real value using crisp set 

operations, any softening method of the form µ : N
P
 → (0,1)

(P×N)
 can be 

composed with f such that f (µ (U), µ (U')) = v, v ∈ ℜ (Cross and Sudkamp 2002). 

However, the extension principal does not provide a unique mapping, which 

means that a crisp similarity measure may have several fuzzy equivalents.  
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Discrete multi-valued logics such as rough sets allow multiple comparison 

functions. If comparison results are constrained to the output set {true, false, 

possible}, Worboys and Clementini (2001) note that functions must bias either 

toward definite or indefinite response. To illustrate, consider a pair of cells a,b∈P 

in the softened map µ(U) defined over three classes, a with known membership 

(true, false, false) and b with vague membership (possible, false, possible). A 

similarity result of possible would bias toward indefinite response. A result of 

true or false shows definite bias. Importantly, similarity and difference can now 

have independent meaning (Cross and Sudkamp 2002). For example, dissimilarity 

of cells may be given definite positive (true-leaning) bias while similarity is 

assigned indefinite bias. For rough set models, it may be inappropriate to measure 

continuous similarity (Bennett 2001). 

Fuzzy set theory supports numerous varieties of continuous local 

comparison. While crisp sets use the set difference operation to measure 

similarity, Cross and Sudkamp (2002) report that fuzzy set operations union, 

intersection, compliment, and difference suffer ongoing contention among 

researchers, leaving no formulation generally accepted. Fisher et. al. (2006) favor 

the Bounded Difference over traditional fuzzy intersection for local similarity. 

Kuzera and Pontius (2008) compare a local similarity measure based on 

multiplication with one based on the arithmetic minimum. However, they only 

examine fuzzy membership values that sum to unity; some softening techniques 

do not share this constraint (Cross and Sudkamp 2002). In addition, some fuzzy 

measures (e.g. Power, Simms, and White 2001) define similarity as non-
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commutative, meaning that the order of maps matters during comparison, or more 

formally that ∃U,U'∈N
P
 | f (µ (U), µ (U')) ≠ f (µ (U'), µ (U)).  

III. Global Similarity 

Similarity statistics for area-class maps seek improved numeric estimates 

for the vague human notion of compatibility (Cross and Sudkamp 2002). The 

earliest and most direct of these, a ratio of common to total map area, has been 

called classification accuracy, the coefficient of areal agreement, fraction correct, 

area of agreement, crisp difference, and raw similarity among other terms (Foody 

2002; Foody 2006). Accuracy statistics are often used to measure map similarity; 

this is justified in fuzzy maps when class definitions do not change (Rees 2008). 

Raw accuracy is widely agreed to overestimate similarity (Power, Simms, and 

White 2001), prompting further methods research. Accuracy provides an excellent 

example of global similarity measures’ dependence on local comparison. In rough 

sets, accuracy measures with definite bias will clearly overestimate crisp 

classification accuracy, while indefinite bias will underestimate the crisp case 

(Cohn and Gotts 1996). 

The confusion matrix is perhaps the most common and well established 

method for quantifying accuracy for nominal maps. It is alternately known as the 

error matrix, contingency matrix, and the cross-tabulation matrix (Pontius, 

Shusas, and McEachern 2004; Rees 2008). The matrix describes omission and 

commission errors in nominal data, giving a per-class fractional accuracy for a 

map along with an overall fraction correct. There are countless methods to 
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compile confusion matrices with desirable properties by varying local comparison 

techniques (Kuzera and Pontius 2008). 

The Kappa statistic was adapted from the confusion matrix by Cohen 

(1960) to account for chance agreement due to category frequency. Later studies 

showed that this statistic consistently underestimates map similarity (Congalton 

1991). It follows that all results of map similarity assessment should fall between 

raw accuracy and kappa measures (Power, Simms, and White 2001). Despite this 

noted drawback, Cohen’s kappa has seen widespread use and popularity in 

accuracy and similarity assessment (Congalton 1991; Monserud and Leemans 

1992; Foody 2002; Foody 2006; Hagen-Zanker 2009). 

Spatial scientists have used the extension principal to apply other formerly 

crisp geostatistics to fuzzy nominal maps (McBratney and Odeh 1997). Davis and 

Keller combine fuzzy data layers by computing the minimum class membership 

among a collocated set of pixels (Davis and Keller 1997); this is identical to a 

fuzzy set intersection operation (Cross and Sudkamp 2002). One noteworthy 

example is the fuzzy kappa similarity metric, which softens map data using a per-

pixel equivalent to the epsilon band model (Hagen 2003). Hagen-Zanker (2009) 

improved upon this statistic to account for spatial autocorrelation. A recent review 

compiles further examples (Kuhnert, Voinov, and Seppelt 2005).  

In this chapter I addressed methods and literature in area-class map 

comparison. I discussed softening techniques used in change detection, simulation 

validation, and landscape pattern analysis. Softening techniques are found to 

effect local map comparison of (Cross and Sudkamp 2002); for instance, a 
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representation of fuzzy class belief may use a different measure of similarity than 

a representation of class proximity or areal proportion. I also examined traditional 

measures of similarity that have been adapted for use in fuzzy map comparison. 

These statistics are also tightly related to local comparison methods (Kuzera and 

Pontius 2008). In chapter three, I propose an experiment to assess these concepts 

of fuzzy similarity for sensitivity to misregistration. 
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Chapter 3 

EXPERIMENT 

I designed an experiment to compare five methods of similarity 

assessment under various conditions of misregistration. This experiment design 

relates to that used by Sundaresan, Varshney, and Arora (2007) on areal imagery. 

My experiment formed 328 test cases: 64 misregistrations of a case study area and 

12 misregistrations each of 22 simulated maps. Cases separated equally into two 

test series, L and R, respectively built using linear and rotational misregistration. 

Misregistration distances were examined in 0.25 pixel increments up to a total 

offset of 8 pixels. Additionally, the experiment includes a control dataset with 

randomly distributed error for each test case in L and R, denoted by the series 

C(L) and C(R). My experiment examines five comparison methods for area-class 

maps: fuzzy kappa, epsilon band, cell aggregation, fuzzy inference, and a null 

method for crisp similarity. Each comparison method yields a similarity measure 

based on raw accuracy; the fuzzy kappa, epsilon band, and null comparisons 

further weight this for expected accuracy to derive a form of the kappa statistic. 

Including parameter variation, this experiment measures 18 similarity statistics for 

each test case and its control, producing 11,808 statistical results. In this chapter I 

discuss the case study area and procedures used to misregister it. I go on to 

describe simulation of random test maps. Finally, I describe the five comparison 

methods. 
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I. Case study 

For this case study I chose a map from the US Geological Survey’s 

(USGS) National Land Cover Database (NLCD) published in 2003. The chosen 

map categorizes 80,000 km
2
 of remotely sensed imagery at a 30 meter resolution; 

it describes parts of Arizona, Utah, Nevada and California with fifteen distinct 

land cover types defined by the NLCD 2001 land cover class descriptions (Homer 

et al. 2004). From this area, I selected a square test region 2
13

 pixels across, 

  
Figure 3. The procedure used to generate test maps for case study and simulated 

source data. 
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removing highly localized map features in the process. The resulting square map 

lacked atypical features, and was deemed representative of those nominal maps 

most commonly compared using the methods under evaluation. The USGS 

reports cross-validation accuracy of 0.946 for the case study map. My experiment 

uses this map to simulate ground truth, so accuracy metadata was discarded 

before further analysis. 

This experiment emulates linear and rotational misregistration with a 

resampling technique described here. The overall procedure for test map creation 

is shown in Figure 3. In the first step, misregistration was accomplished by 

resampling, or assigning class membership for each pixel (x,y) in a new map from 

a source map pixel located at (x',y'). Linear misregistration is the most common 

form of registration error used in research (Townshend et al. 1992; Dai and 

Khorram 1998; Carmel 2004; Sundaresan, Varshney, and Arora 2007). Here I 

induced linear misregistration by resampling with x=x' and y=y'+k, where k is a 

constant whole number of pixels (i.e. the offset distance times four). Rotational 

misregistration is a less common alternative to linear shifts in uncertainty studies. 

The resampling formula for rotational maps defines source pixels by an angle of 

rotation about map center. For my experiment, I derived an angle of rotation to 

approximate the root mean squared error (RMSE) in a one-pixel linear offset. A 

reasonable first guess was the rotation angle required to shift a cell in the middle 

of any map edge by two pixels. This guess was trimmed experimentally, resulting 

in an angle of 0.027976456° in the case study map.  
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It is important to realize that resampling was performed on source maps 

whose dimensions were each eight times that of test data found in sets L and R. 

There are two causes for this change in resolution. First, misregistration leaves 

undefined pixels near map edges. Following a resample, the test map procedure 

crops undefined pixels, halving map dimensions. The second cause of resolution 

change relates to sub-pixel misregistration. To replicate sub-pixel misalignment 

using the whole-pixel resampling method described above, this procedure 

generalizes cropped maps. This generalization was modeled on the maximum 

likelihood classifier; it assigns each square region of 16 cells the most common 

class found within (see Figure 2). Ties are resolved at random, as suggested in 

(Saura and Martínez-Millán 2000). The test map procedure reduced case study 

map dimensions to 2
10

 (1024) pixels on a side, with a pixel resolution of 120 

meters. 

The test map procedure described in Figure 3 also creates a control map. 

Such maps are used to compare model performance on two patterns of error: 

misregistration and random distribution. Control maps are formed in two stages. 

First, a standard crisp error matrix calculates per-class omission and commission 

errors caused by resampling. The procedure then reproduces the error matrix in 

another copy of the generalized source map, locating error with a uniform random 

distribution. Example control maps for 8-pixel offset members of R are shown in 

Figure 4. 

I ran the test creation procedure on the case study map 32 times each for 

linear and rotational misregistration. Offset distances ranged from 0.25 to 8 pixels  
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Figure 4. Sample test maps, pixel color indicating crisp class identity. 
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Figure 5. Map simulation procedure  

 

with a 0.25 pixel linear increment. Later analysis refers to linear and rotational 

misregistration sets from case study data as LCS and RCS, respectively. 

II. Simulated maps 

To generalize beyond my single case study, I require a number of 

categorical maps with properties representative of area-class phenomena. For this 

problem, Saura and Martínez-Millán (2000) propose an efficient landscape 

simulation algorithm. This approach creates artificial maps with the appearance of 

authentic landscape classes (Hagen-Zanker 2009). The model works in four 

stages, as illustrated in Figure 5. The first step builds a binary percolation map, 

flagging each map cell with probability p. This probability controls average 

cluster size of a simulated map. The second simulation step identifies clusters of 

neighboring flagged cells. Saura and Martínez-Millán (2000) suggest several 

possible neighborhoods for this stage, including a default equal-area 

neighborhood and one that induces anisotropy or directional effects in data. In the 

third step, each cluster is assigned a class with equal probability. Finally, cells not 
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marked in the percolation stage are assigned the class most frequent among their 

neighboring eight cells. 

I generated 22 random maps of three classes: 11 each for isotropic and 

anisotropic neighborhoods. For these maps, p ranged from 0.50 to 0.60 in 0.01 

increments. For each random source map, test maps were created using the same 

procedure as applied to case study data. However, note that offset distances for 

simulated source maps are exponential, i.e. {0.25,0.5,1,2,4,8}, reducing 32 test 

maps for the case study area to 6 for each simulated map. Figure 4 illustrates the 

effects of both changes to p and the neighborhood parameter following the crop 

and generalization steps. Dimensions of simulated maps following the crop and 

generalize operations are 256 pixels square. In chapter 4 I discuss linear and 

rotational misregistration sets from simulated data, referring to them as LSim and 

RSim, respectively. 

III. Compared measures 

My experiment assesses registration sensitivity in five area-class map 

comparison methods: fuzzy kappa, epsilon band, cell aggregation, fuzzy 

inference, and null (a traditional crisp comparison). Recall the three components 

of map comparison discussed in the previous chapter: softening techniques, local 

comparison schemes, and measures of global similarity. I chose these five 

comparison methods to represent the breadth of research in these three component 

areas, including four different softening techniques for uncertain thematic maps, 

four methods of local comparison, and fuzzy approximations of raw accuracy and 

the kappa statistic: the two most popular measures for accuracy assessment  
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(Foody 2006). Figure 6 describes these comparison method components. Below I 

describe each comparison method, emphasizing their fuzzy softening technique. 

The popular method by Hagen (2003) represents fuzziness of location for 

his well-known fuzzy kappa statistic. This approach defines degrees of class 

membership for a cell as the fuzzy union of all cell classes within a given radius, 

subject to specified distance decay. Assuming crisp class definitions, membership 

for a class in a given cell is equal to the distance decay function evaluated for the 

nearest member of that class, including the cell itself. This approach reflects 

methods common in fuzzy map comparison literature; it views fuzzy membership 

as continuous possibility through location. My experiment tested three models 

based on linear distance decay with a radius of 2, 4, and 8 pixels, examining raw 

accuracy and the kappa statistic for each.  

The epsilon band model used in my study defines boundaries between two 

classes as possibly belonging to each neighboring class within a constant distance 

epsilon (Cohn and Gotts 1996). Cells beyond this distance have crisp set 

membership in a single class. This possibilistic model takes no position on the 

likelihood or degree of membership inside a boundary. It was included in this 

study to represent egg-yolk models and rough set theory. My experiment 

examined three discrete bands of 2, 4, and 8 pixel epsilon distances, and 

compared them using raw accuracy and the kappa statistic. 

This experiment evaluates a cell aggregation method developed by Pontius 

et. al. (2004) for softening hard classified maps. Their approach reduces the 
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number of pixels in a crisp map, aggregating pixel values using the fuzzy mean 

operation. The factor parameter determines the length of a square aggregation 

neighborhood in pixels. Each neighborhood will become a single larger pixel 

whose fuzzy class is the areal proportion of crisp membership within overlapped 

pixels. Figure 2 illustrates this. Categorical map aggregation methods stem from 

research in generalization and multiple-resolution map comparison. I examine cell 

aggregation using factors of 2, 4, and 8 pixels 

The fuzzy inference system tested here was developed by Power, Simms, 

and White (2001) and implemented by Visser and de Nijs (2006). This model 

distinguishes one map as the template, measuring similarity for each template 

map polygon. For this experiment, the ground truth dataset was always chosen as 

the template map. Importantly, Power, Simms, and White’s (2001) method does 

not measure per-class fuzzy membership for template polygons. Their method 

instead measures fuzzy belief in two tiers of linguistic concepts. The first tier 

approximates the crisp proportion of areal agreement in a template polygon using 

five fuzzy concepts: very low, low, medium, high, and very high. Disagreement is 

judged similarly, and polygon size is approximated with fuzzy concepts for small 

and large. The second tier applies fuzzy logic to these twelve variables, 

estimating belief in five terms for overall local similarity, from very poor to 

perfect. Finally, these beliefs are “defuzzified” into a single similarity term for 

each polygon in (0,1). The fuzzy inference system as formulated in 2001 produces 

one global similarity metric, computed in the same way as raw accuracy. Power, 
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Simms, and White (2001) report this value as comparable with both accuracy and 

the kappa statistic. 

My experiment employs a null model reflecting the traditional measures of 

similarity in thematic data. In this model, class membership is crisp and 

unequivocal. Though the approach has no parameters, it supports the now familiar 

raw accuracy and kappa coefficient statistics. These results provide a benchmark 

for minimal performance of the other four models. 

This experiment is designed to reveal the relationship between 

misregistration and map similarity, and to qualify changes in this relationship due 

to misregistration pattern, fuzzy softening technique, offset distance, map cluster 

size, and anisotropy. Control data and the null model provide a baseline for 

comparing these effects. In the following chapter, I discuss experimental results. 
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Chapter 4 

RESULTS 

Classification error introduced in simulated test data is described in 

Table 1. As intended, a strong positive correlation is evident between 

misregistration distance and error introduced in the LSim and RSim datasets. The 

additional error due to misregistration of anisotropic maps was also expected. It is 

interesting to note that isotropic error in the LSim series shows consistently lower 

mean accuracy than anisotropic error in RSim. It seems that the neighborhood used 

to simulate source maps will not produce sufficient anisotropy to supersede error 

caused by the rotational resampling approach. The precise relationship between 

error induced by linear and rotational misregistration cannot be identified here, 

but data supports the general claim that rotational misregistration may cause more 

error in area-class maps than linear offset with equivalent RMSE. 

Table 1. Mean and standard deviation for raw accuracy of simulated 

data by pixel offset distance 

Mean of raw accuracy 

  0.25 0.5 1 2 4 8 

              

anisotropic 0.914 0.831 0.698 0.563 0.473 0.425 

LSim 

isotropic 0.926 0.858 0.744 0.613 0.506 0.440 

       

anisotropic 0.935 0.883 0.790 0.669 0.558 0.477 

RSim 

isotropic 0.939 0.889 0.800 0.680 0.565 0.481 

Standard deviation of raw accuracy 

              

anisotropic 0.029 0.058 0.104 0.144 0.153 0.146 

LSim 

isotropic 0.026 0.049 0.089 0.130 0.151 0.150 

       

anisotropic 0.022 0.041 0.072 0.112 0.139 0.145 

RSim 

isotropic 0.022 0.039 0.069 0.109 0.137 0.145 
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This study assessed sensitivity of individual metrics to variation in model 

parameters. Figure 7 shows similarity results from aggregation, fuzzy kappa, and 

epsilon kappa measures plotted using three radii values. Increase to the fuzzy 

kappa statistic radius seems to have limited effect on its outcome. The 

aggregation method shows a slight lag due to changes in radius, but aggregation 

similarity never drops below crisp agreement, as expected. Transitions in this 

graph merit investigation. On tests over two pixels in offset distance, fuzzy kappa 

reports lower similarity estimates than the traditional kappa statistic. Furthermore, 

fuzzy inference underestimates both kappa results for sub-pixel misregistration. 

The most unusual of the three expected error measures on display here is the 

epsilon kappa. This measure shows notable decline once misregistration distance 
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Figure 7. Method similarity results with varying radii by logarithmic 

misregistration distance, averaged over linear and rotational misregistration. 
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extends beyond its radius. It seems that this decline does not result in lower 

similarity estimates than those of fuzzy kappa. 

Misregistration distance was shown to have a logarithmic relationship 

with accuracy-based measures for all metrics except discrete epsilon bands. The 

effect is illustrated in Figure 8. This graph shows results only from case study 

data, plotting similarity method results for each quarter pixel offset. 

Neighborhood-based softening methods were expected to behave similarly under 

increasing misregistration distance. The cell aggregation and fuzzy kappa 

methods show this correlation. It was surprising that the epsilon band metric did 

not share this logarithmic relation at low pixel offset distances. Such a 

relationship seems to exist for offsets above 2 pixels; this is an artifact of 

averaging results for the epsilon band widths described in Figure 7. 

To understand the sensitivity of comparison methods to linear and 

rotational error, I compared average accuracy statistics for test and control data. 

Figure 8 shows average results for C(LCS) and C(RCS) as dashed lines. Green lines 

depict the null model. As expected, test and control accuracy for the null model 

overlap, while fuzzy models report greater similarity in test data. Strangely, fuzzy 

inference reports greater similarity on control data than it does on misregistered 

test maps. This behavior is repeated in LSim and RSim.  A summary of test and 

control results for simulated data is illustrated in Figure 9. Misregistration pattern 

and simulated anisotropy do not greatly affect differences between test and 

control results.  
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Figure 8. Method similarity results by equivalent misregistration distance, 

averaged over linear and rotational misregistration and method parameters 
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Figure 9. Method similarity results by rotational and linear misregistration, 

averaged over misregistration distance and method parameters 



  33 

The distribution of raw similarity estimates for each of the five models is 

of interest in relating model performance on misregistration error. Mean and 

standard deviation of accuracy statistics from each similarity measure served as 

preliminary indication of sensitivity. Results of this investigation are listed in 

Table 2. Increasing offset distance shows positive correlation with standard 

deviation. For further analysis, Table 2 was expanded to describe changes per 

model. Results were plotted in Figure 10 to visually distinguish model 

performance under progressive error. Models are listed from left to right by 

increasing variance in reported similarity. Three significant observations come 

from this data. The epsilon method shows the lowest variance, reporting near-total 

similarity on offsets of two pixels or less. Despite offering the lowest absolute 

measures of similarity, the fuzzy inference metric is less sensitive to increasing 

misregistration than either fuzzy kappa or cell aggregation. Finally, fuzzy kappa 

and cell aggregation metrics show nearly identical variation due to misregistration 

distance. 

Table 2. Mean and standard deviation for accuracy statistics of 

simulated data by pixel offset distance 

Mean of accuracy 

 0.25 0.5 1 2 4 8 

cell aggregation 0.953 0.928 0.895 0.818 0.704 0.616 

epsilon band 0.999 0.999 0.999 0.999 0.996 0.961 

fuzzy inference 0.778 0.737 0.681 0.594 0.520 0.469 

fuzzy kappa 0.976 0.956 0.925 0.856 0.777 0.715 

null 0.928 0.865 0.758 0.631 0.525 0.456 

Standard deviation of accuracy 

cell aggregation 0.014 0.020 0.027 0.049 0.076 0.085 

epsilon band 0.001 0.001 0.001 0.001 0.004 0.032 

fuzzy inference 0.024 0.033 0.048 0.083 0.097 0.098 

fuzzy kappa 0.008 0.015 0.026 0.049 0.060 0.056 

null 0.026 0.051 0.091 0.129 0.145 0.144 
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In this chapter I analyzed numerical results from the experiment described 

in Figures 4-6. This experiment produced valid test data with expected error 

properties. I have highlighted unique characteristics of accuracy and kappa results 

obtained from the five map comparison methods examined, including strong 

performance of the epsilon band method and questionable behavior of fuzzy 

inference. In the following chapter I discuss specific findings of my research. 
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Figure 10. Misregistration distance similarity results by similarity measure, 

averaged over linear and rotational misregistration and method parameters 
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Chapter 5 

DISCUSSION 

My study has demonstrated that rotational misregistration may lead to 

increased variance in similarity assessments when compared with linear 

misregistration of equivalent RMS error. As results were controlled for relative 

number of classification errors, this variance relates to the distribution of error by 

misregistration. While this distribution is known, its representation within 

uncertainty models is of principal concern. By sampling from autocorrelated 

error, per-pixel comparisons of misregistered maps also show spatially dependent 

error (Foody 2002). In light of this, per-pixel comparison maps for models of 0.25 

and 4 pixel offsets are shown in Figures 11 and 12, respectively. Model variation 

due to error distribution are noticeable for most measures; these changes 

propagate through similarity statistics (Power, Simms, and White 2001), resulting 

in increased variation observed in Table 2. Uncertainty models of misregistration 

have generally favored linear offsets for experimental assessment. It is possible 

that such studies underestimate measure sensitivity due to registration error. 

The epsilon band model faired remarkably well during analysis. It 

reported the highest raw similarity on all test datasets, and the lowest raw 

similarity variance of all five models. Its kappa statistic estimated near-total 

similarity for misregistration distances up to the radius parameter, with kappa 

scores consistently higher than fuzzy kappa beyond this distance. To explain this 

behavior, recall that aggregation represents class membership as a normalized 

proportion of area, and that fuzzy kappa membership describes nearest neighbor 
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distance. While these philosophies credit partial similarity in misregistered 

classes, rough set theory ascribes total similarity to any class appearing within an 

epsilon band boundary for that class. Figure 11 shows epsilon model behavior on 

linear and rotational misregistration. The egg-yolk approach has intriguing 

properties for similarity comparison of misregistered maps. 

While I expected a decrease in all neighborhood similarity estimates once 

misregistration distance exceeded method radius, this was not seen in aggregation 

or fuzzy kappa metrics. These measures show smooth transitions for parameter 

analysis in Figure 7. Furthermore, model results in Figure 10 show high variance 

due to misregistration, close to that measured in the null model. Aggregation and 

fuzzy kappa representations in Figures 6 and 7 agree with this assessment, 

showing close resemblance to the null model. Prior analysis also noted that these 

models produce nearly identical similarity estimates. Although these models 

showed few compelling traits for misregistration, demonstrating similarities 

between aggregation and fuzzy kappa models is an interesting result of this study. 

Analysis revealed uncommon behavior in the fuzzy inference metric. As 

mentioned during a review of literature, any metric for classification accuracy 

should produce values between those of raw accuracy and the kappa statistic 

(Power, Simms, and White 2001). While Power, Simms, and White (2001) report 

fuzzy inference scores falling within appropriate bounds, this did not hold for sub-

pixel misregistration. Figure 7 depicts fuzzy inference values dropping below 

fuzzy- and crisp kappa estimates on test maps offset by one pixel or less. The 

unusual behavior of fuzzy inference comparison can be partly explained by its  
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Figure 11: Difference intensity maps of the 0.25-pixel misregistration of L and R 

datasets (from left). From top: null model, aggregation model, fuzzy kappa model, 

and egg-yolk model. Brighter intensity indicates a higher degree of difference 
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Figure 12: Difference intensity maps of the 4-pixel misregistration of L and R 

datasets (from left). From top: null model, aggregation model, fuzzy kappa model, 

and egg-yolk model. Brighter intensity indicates a higher degree of difference 
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unique philosophic basis. As discussed, the fuzzy inference model quantifies 

belief in map similarity, rather than fraction of agreement or a kappa equivalent. 

This may prohibit unqualified comparison between fuzzy inference and other 

models. 

My analysis is limited by my choice of control and test data. Simulated 

and case study data were chosen to represent common area-class maps 

encountered during map comparison. However, I did no conduct a detailed 

analysis of patch size, edge length, or autocorrelation in mapped classes. 

Furthermore, not all interesting map changes are approximated by a uniform 

random distribution. 

In this chapter I discussed the principal findings of my research. I 

discussed why the epsilon band model may show uncommon effectiveness in 

modeling misregistration uncertainty. Neither fuzzy kappa nor cell aggregation 

faired as well in this experiment, despite being neighborhood-oriented comparison 

methods. I also questioned behavior observed in the fuzzy inference measure. In 

the following chapter I discuss the significance of my work. 
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Chapter 6 

CONCLUSION 

The results of my study demonstrate that a discrete epsilon band method 

shows remarkably low sensitivity to small registration error. By using a 

possibilistic view of class membership, local movement of class boundaries are 

effectively ignored. This allows the discrete epsilon band to achieve high 

accuracy assessments on misregistered test data with low variability due to 

increasing misregistration. These traits encourage further research on epsilon 

bands in area-class map similarity assessment, and reassert the utility of 

Łukasiewicz’ trivalent logic. 

In contrast, my experiment demonstrated poor performance of the fuzzy 

inference approach for modeling misregistration. As discussed in the prior 

section, this method gave invalid similarity results when comparing maps with 

sub-pixel registration errors. Furthermore, fuzzy inference consistently reported 

greater similarity on control data than in the test dataset. It is therefore 

inappropriate to use fuzzy inference to model misregistration error. 

This research addresses a significant outstanding problem in area-class 

map comparison. Although numerous comparison methods exist, many have 

unknown performance under common error conditions. Investigations of land use 

change often encounter data with questionable registration, such as historical land 

use maps. Correcting error in such cases is often impossible. My research 

suggests that a discrete epsilon band may address this best of the representative 
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sample of models tested. This knowledge can improve the accuracy of land 

change analysts or other experts working with uncertain area-class maps. 

Propagation of uncertainty is an ongoing issue in similarity assessment. 

Along with improved approaches for map registration, future research should 

pursue comparison methods resistant to registration error. Sensitivity assessment 

of more comparison methods such as those used in pattern analysis will contribute 

to this agenda. Also significant is the representation of underlying map data; an 

experiment adapting raster-based comparison methods to vector maps may 

provide different results than this approach, which evaluated vector-based 

comparison methods with raster data. Finally, many applications of map 

comparison seek to identify nonsystematic map change with patterns other than a 

uniform random distribution. To further address this, future assessments can 

misregister maps containing such changes.  
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