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ABSTRACT  

   

This thesis presents a multi-modal motion tracking system for stroke patient 

rehabilitation. This system deploys two sensor modules: marker-based motion capture 

system and inertial measurement unit (IMU). The integrated system provides real-time 

measurement of the right arm and trunk movement, even in the presence of marker 

occlusion. The information from the two sensors is fused through quaternion-based 

recursive filters to promise robust detection of torso compensation (undesired body 

motion). Since this algorithm allows flexible sensor configurations, it presents a 

framework for fusing the IMU data and vision data that can adapt to various sensor 

selection scenarios. The proposed system consequently has the potential to improve both 

the robustness and flexibility of the sensing process. 

Through comparison between the complementary filter, the extended Kalman filter 

(EKF), the unscented Kalman filter (UKF) and the particle filter (PF), the experimental 

part evaluated the performance of the quaternion-based complementary filter for 10 

sensor combination scenarios. Experimental results demonstrate the favorable 

performance of the proposed system in case of occlusion. Such investigation also 

provides valuable information for filtering algorithm and strategy selection in specific 

sensor applications. 
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1. INTRODUCTION 

1.1 Mixed-Reality Rehabilitation 

Mixed-reality rehabilitation (MRR) [1, 2] has recently attracted much attention in 

movement training and therapy.   An MRR system is a user-friendly, easily adjustable, 

interactive environment that is more responsive and more engaging than traditional 

rehabilitation. In MRR, a training patient receives real-time computer-generated visual 

and audio feedback responding to the quality of their movement during the training. An 

MRR system is fully adjustable according to the specific physical and psychological 

status of the training subject to help the subject perform therapeutic rehabilitation with 

enhanced self-confidence. Furthermore, in MRR training patients implicitly learn the 

training movement patterns and accumulate self-correct experience according to the 

system feedback, instead of relying on the explicit instruction from the therapists. 

Implicit learning has been shown to be more effective in promoting motor learning than 

explicit instructions. These advantages of MRR contribute to its increased training 

efficiency. In our research, we have developed a mixed-reality stroke rehabilitation 

system [3] to assist stroke patients in finishing tasks such as reaching and grasping by 

tracking the movement of the affected arm and the torso of the training subject. This 

system has been tested in a pilot study with three patient participants for six 75-minute 

sessions each subject over two weeks [3]. Results show that after this short period of time, 

the participating patients all showed significant motor function improvement such as 

faster reaching speed, better joint coordination and less torso/shoulder compensation [3]. 

1.2 Sensor Fusion Approach 

Effective MRR requires real-time and accurate movement tracking. In addition, such 

movement tracking also needs to be noise-resilient in challenging tracking scenarios, e.g. 

during occlusions caused by the physical therapist walking around the patients while 
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taking care of the training session. These demands can be satisfied through the 

application of sensor fusion approaches. 

Sensor fusion aims to combine sensory data to provide more accurate, complete or 

dependent measurement than that from individual sensors. When observations are 

corrupted by noise (e.g. occlusion) for some sensors, they might still be visible to others. 

Multi-sensor fusion is also important since it can mitigate the effects of errors in 

measurement. Popular sensor fusion algorithms include least mean square (LMS) 

methods, Kalman filters (KF), and particle filters (PF). Proper sensor selection and fusion 

strategy can enable different sensors to compensate for the limitation of each other. For 

example, orientation tracking can be realized by the fusion of vision data and inertial data. 

Vision-based sensing is an intuitive solution to movement tracking for MRR [1, 2]. 

By tracking reflective markers or other identifiers attached to the subjects, visual sensing 

provides accurate measurements of the positions of human bony landmarks such as body 

joints [4], from which the movement of the training subject such as body orientation and 

joint angles can be derived. Furthermore, vision-based marker-less tracking systems [4, 5, 

6, 7, 8] have been developed. However major obstacles such as depth ambiguities, 

kinematic singularities, high computational cost, and limited tracking accuracy still need 

to be overcome for marker-less motion capture to be useful in MRR [9]. For camera-

based visual sensing, occlusion is a major source of tracking failure and error.  To tackle 

this challenge, inertial sensors such as accelerometer, gyroscope, and magnetometer have 

been widely used in movement tracking. The Kalman filter and the complementary filter 

have been adopted to integrate sensor observations from magnetometer and 

accelerometer with the gyro data to obtain reliable movement tracking [10, 11, 13, 14]. 

Such techniques have also been used in MRR [12]. The current trend in inertial sensing is 

to integrate the gyro, accelerometer and magnetometer into a single inertial measure unit 
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(IMU). Existing off-the-shelf IMUs include the Xsens MT9 [15], the MicroStrain G-link 

[16], and the Sparkfun 6DOF V3/V4 IMU sensors [17]. These IMUs are low-cost, 

compact in size, and capable of wireless data transmission. Nevertheless, compared to 

marker-based visual sensing, existing IMUs suffer from inferior tracking accuracy due to 

noticeable measurement noise. A combination of the camera and the IMU will potentially 

compensate their drawbacks for each other while remain their advantages, leading to an 

occlusion-free and highly accurate orientation tracking solution 

In view of the complementary movement tracking strengths of the camera and the 

inertial sensor, integrated solutions using both visual and inertial sensors have recently 

attracted much attention [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. The vision-based 

mark-less tracking techniques have been mainly used in these integrated frameworks. 

Such integrated tracking has also been used in MRR. For example, in [29] a multimodal 

arm movement tracking system for MRR is introduced using static camera and wearable 

inertial sensors. The static video camera detects skin color to capture arm movement, 

while the inertial sensor is attached to the wrist joint of the subject’s arm to provide 

additional motion sensing measurement. This method assumes the shoulder joint of the 

training subject is fixed, and it does not track the torso orientation. 

1.3 Challenges and Motivation 

Although much effort has been devoted to developing integrated visual and inertial 

tracking systems, a number of pressing challenges are yet to be addressed for such 

systems to be useful in MRR. First of all, existing multimodal movement tracking 

methods are usually tailored to specific sensor configurations. Tracking failure can easily 

occur when the targeted sensor configuration is violated. Developing an integrated 

tracking solution that can cope with various sensor configurations according to specific 

sensing conditions is a challenge. Secondly, despite significant progress in multimodal 
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tracking, to our knowledge, there has been no systematic evaluation of tracking 

performance between various sensor configurations based on the same benchmark testing 

data. Such comparative performance study is necessary and extremely useful for sensor 

selection and system design. Furthermore, the reported tracking accuracy of the existing 

tracking systems is low (e.g. center meter accuracy in joint position tracking [29]) and 

can hardly satisfy the needs of precise feedback control in an immersive MRR 

environment. Securing accurate real-time tracking is also a challenge. 

Confronting these challenges, it is highly desired to develop a multimodal sensing 

system for MMR with both satisfying precision and flexible sensor configuration through 

the fusion of the vision and the IMU data. Based on this system, the tracking performance 

of different sensor configurations can be compared. 

1.4 System Overview 

This thesis presents a novel integrated tracking framework for MRR using marker-

based motion capture and inertial sensing (Figures 1 and 2). As illustrated in Figure 2, the 

motion capture cameras distributed around patients track the markers attached on the 

patients, while an IMU composed of gyro, accelerometer, and magnetometer is attached 

to the back-marker board and aligned with the back markers (Figure 3) to track the torso 

orientation. The complementary filter [14], the extended Kalman filter (EKF), the 

unscented Kalman filter (UKF) and the particle filter (PF) are deployed to integrate the 

multimodal movement data and provide quaternion orientation estimation. In the 

proposed approach, along with the magnetometer and accelerometer readings, vectors 

formed by markers also comprise an input to update torso orientation. In the presence of 

occlusion, the filtering algorithms could still provide satisfying measurement of torso 

orientation solely relying on the IMU data. 
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Fig. 1. The Proposed Integrated Movement Tracking Framework 

 

Fig. 2. System Setup and Coordinate Systems 
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Fig. 3. IMU, Back-marker Board and Marker Reference Vectors 

1.5 Contributions 

The major contributions of this thesis are as follows. First of all, the proposed 

integrated tracking based on filtering approaches offers a general sensor fusion 

framework that can cope with various sensing scenarios according to the availability and 

reliability of different sensory data. Through dropping noise-corrupted sensory data and 

switching between different sensor configurations, the system is able to handle 

challenging sensing situations such as occlusion within therapeutic trials. In our 

experiments, a total of 10 typical sensor configurations cases have been investigated and 

evaluated. The results show that the proposed tracking system can work reasonably well 

in all 10 sensing scenarios, and that when the sensing scenarios become challenging, e.g., 

with less sensors, the performance of the proposed tracking approach degrades elegantly. 

Especially, an algorithm has been proposed to improving tracking stability when only one 

reference vector is available. Secondly, a comparative study between different sensing 
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scenarios has been carried out based on the tracking results of the proposed approach in 

10 typical sensor scenarios using the same set of benchmark testing data. Also, the 

performance of four popular sensor fusion filters including the complementary filter, the 

extended Kalman filter (EKF), the unscented Kalman filter (UKF) and the particle filter 

(PF) are compared for the application of quaternion-based orientation tracking. Such 

study is valuable in sensor selection and system design for a particular MRR application. 

Finally, compared to existing work, the marker-based motion capture used in the 

proposed multimodal tracking system secures precise movement tracking for effective 

MRR. 

1.6 Organization 

The outline of this thesis is as follows. Chapter 2 introduces the calibration of the 

motion capture and inertial sensors. In Chapter 3, we introduce the temporal and spatial 

alignment between different sensors. The quaternion orientation representation is 

introduced in Chapter 4. Then the sensor fusion algorithms are described in Chapter 5. 

Chapter 6 clarifies certain implementation details. Experimental results and performance 

analysis are given in Chapter 7.  Finally in Chapter 8, the research is concluded. 

2. SENSOR CALIBRATION 

System calibration is a critical component in information and sensor fusion. In our 

research on multimodal movement tracking, as illustrated by Figure 4, the system 

calibration includes the calibration of individual movement sensors and the temporal and 

spatial alignment across different sensors. In this section, we discuss the calibration of 

individual sensors, and the sensor alignment is discussed in the next section.  

2.1 Motion Capture System Calibration 

Most marker-based motion capture systems come with their custom-made 

calibration modules. Users can easily obtain reliable system calibration through a step-
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by-step calibration procedure. Millimeter accuracy of the 3-D marker location can be 

achieved after a successful calibration. 

 

 

 

 

 

 

 

 

 

 

2.2 IMU Calibration 

In our research, the Sparkfun 6DOF V3 IMU has been used. This IMU contains a 

three-axis accelerometer, a three-axis gyroscope and a two-axis magnetometer. The raw 

readings from the IMU need be converted to engineering values according to equations 

obtained through corresponding calibration procedures. The sampling rate of the IMU 

was set to 201 Hz. Some cyclical noise is introduced in the data when sampling at 200Hz.  

The 1Hz increase in the sample rate eliminated this noise.  The manufacturer’s technical 

support forums verified this error. By collecting data from different sensor placement or 

known rotation rate, calibration equations can be determined through linear regressions, 

which provide both sensitivity and offset. For each sensor placement, the sensor is tested 

on a leveled surface and the edges of the sensor board are assumed to be in line with the 

printed reference axes on the sensor board as shown in Figure 5. 

 

Fig. 4. System Calibration 
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Simultaneously, the inclination angle  of the local magnetic field is measured. In 

Tempe, AZ, where the testing was done, the National Geophysical Data Center reports 

that the magnetic field points downward at an inclination angle of 59.72.  Therefore, a 

significant vertical component of the magnetic field is expected in the testing. According 

to our calibration data,  = 63.34, which in general agrees with the records. Slight 

difference exists due to environmental ferromagnetic materials. The inclination angle 

needs to be reexamined once the sensor is moved to a new space. In this case the 

magnetometer calibration also needs to be redone. 

2.3 Cross Axis Effect 

Cross axis effect, which refers to the asymmetry of the ADC values when the 

magnetometer is rotating around the vertical direction, is observed during calibration. 

The cross axis effect may occur to magnetometers with multiple sensing axes on a single 

chip.  In case of the magnetometer on the Sparkfun IMU used for our research, the 

measurement for the X-axis and the Y-axis originate from the same chip. Therefore, there 

is a chance that each axis is sensitive to magnetic fields orthogonal to their principal 

sensing direction. Ideally, the ADC value along certain axis from the magnetometer 

 

Fig. 5. Sparkfun 6DOF V3 IMU and the IMU-fixed Coordinate System CI 
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responds to the absolute angle between the axis and north. Thus, the reading of a 45 

clockwise rotation from north should be the same as that of a 315 clockwise rotation. 

Somehow, influenced by the cross axis effect, the raw values for X and Y axis illustrated 

in Figure 6 are skewed and asymmetry about the vertical axis, which indicates that 

correction is necessary for accurate measurement of magnetic field to be made. To 

compensate for the cross axis effect, the method developed by Honeywell [30] has been 

implemented in our research.  The corrected values are also shown in Figure 4. It can be 

seen that these corrected values show valid symmetry about the vertical axis, and these 

values are used for calibrating the magnetometer. 

 

 

 

 

 

 

 

3. 

SENSOR ALIGNMENT 

In a sensor fusion approach, it is often required that the sensors are aligned 

temporally and spatially so there observations from different sensors can be effectively 

integrated.  

 
Fig. 6. Comparison Before and After Cross Axis Correction 
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3.1 Temporal Alignment 

The temporal alignment ensures that measurements from different sensors are 

aligned in the same global time frame. In our proposed approach, the motion capture 

system and the IMU run at high sampling rates, 100Hz for the motion capture system and 

201Hz for the IMU.  In addition, the latencies of both systems are also very small. 

Therefore, the observations from the motion capture system and the IMU are simply 

aligned in time according to their arrival time at the processing computer. Specifically, 

whenever a new frame of motion capture data is available, the latest IMU observation is 

then taken and integrated with the motion caption data. Consequently, the integrated 

movement tracking system runs at an average frame rate of 100 Hz.  

3.2 Spatial Alignment 

To achieve spatial sensor alignment in our proposed approach, four different 

coordinate systems are used, including a fixed global coordinate system CG, and three 

local coordinate systems CI, CM and CS, which are respectively attached to and defined on 

the IMU, the back-marker board, and torso of the subject, respectively. These coordinate 

systems are illustrated in Figure 2. Detailed definitions and setup of these coordinate 

systems are given in Table 1. The IMU is mounted on the back-marker board, as shown 

in Figures 2 and 3. The spatial relationships among these three local coordinate systems 

remain fixed throughout a training session.  

In our proposed approach, it is necessary to first align CI and CM by finding the 

rotation matrix     from CI to CM so that the inertial observations can be represented in 

CM. This alignment is done as part of the system calibration when the marker board and 

the IMU are static. To obtain    , we first compute    , the rotation matrix from CI to 

CG, and then    , the rotation matrix from CG to CM, and finally     is given by 

                (1) 
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Table 1. Coordinate System 

Coordinate Systems Description 

Global coordinate system 

CG 

Determined during the calibration of the motion capture 

system 

Marker-based coordinate 

system CM 

Determined by the three markers on the board attached to 

on the back of the subject  

IMU coordinate system CI 
The local coordinate system used by the IMU. The IMU 

readings are measured in CI 

Segmental coordinate 

system CS 

A virtual coordinate system attached to the back of the 

subject so that the Euler angles (pitch, yaw, roll angles) 

encoding the orientation of CS in CG actually correspond 

to the anatomical angles caused by torso joint actions such 

as leaning forward/backward /left/right, and twisting. 

The rotation matrices     and     can be found based on the shared reference 

vectors between CG and CM, and CI and CG. In general, given a pair of shared reference 

column vectors    and    in two coordinate systems CX and CY, the rotation matrix     

from CX to CY can be found. Let             be the reference vectors measured in CX 

and              in CY. A third vector in both coordinate systems can be found as the 

cross-product of the measurement vectors, i.e.,    

     
              

              

                                    (2) 

Let 

 
                
                

                                  (3) 

Then according to the definition of     

             (4) 

and     can be easily found by solving (4).  

Using this approach, both     and     can be obtained. To find    , the normalized 

gravity vector   and local magnetic field   are taken as the two shared reference vectors 

   and    between CG and CI. The measurements of   and   in CI are obtained from the 

readings of the accelerometer and the magnetometer. The measurements of these two 
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reference vectors in CG are determined according to the way CG is defined. In our 

approach, the Y-axis of CG is to the opposite direction of the gravity vector. Thus   in CG 

is 

                  (5) 

The angle  between the Z-axis of CG and the magnetic north can be found using a 

compass. Based on the knowledge of the inclination angle  described in Section 2.2, the 

local magnetic field   in CG can be represented by a normalized constant vector 

                                        (6) 

To find    , as illustrated in Figure 3, two marker vectors    and   formed by 

two pairs of  markers are taken as the shared reference vectors between CG and CM. The 

measurements for computing     and     are taken simultaneously when the marker 

board and IMU are static. Then     can be derived from (1). 

Furthermore, in our proposed approach, we would like to obtain the joint angle 

tracking results in terms of the kinesiology-meaningful anatomical joint actions. For this 

reason, we have introduced the segmental coordinate system CS in which the joint action 

angles correspond to the Euler angles. In our approach, after obtaining the angle tracking 

results in terms of the orientation of CM in CG, we need to further obtain the orientation of 

CS in CG. Therefore, CS and CM need to be aligned. This alignment is carried out in the 

reference position, which refers to a specific initial attitude of the subject so that CS is 

considered to be aligned with CG in this reference position. Therefore, finding the rotation 

matrix     is equivalent to finding the rotation matrix     in the reference position. 

This can be easily done using the procedure presented above. 
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Nomenclature 

CG Global coordinate    Weight matrix 

CM  Marker-based coordinate       Predicted error 

CI  IMU coordinate system   Jacobi matrix of      

CS  Segmental coordinate   State vector 

  Quaternion orientation    Covariance matrix 

   Rotation angle   Sensor observation 

  Rotation axis      State transition function 

   Rotation vector      Measurement function 

     Rotation matrix from CI to CM    Process noise 

     Rotation matrix from CS to CM    Measurement noise 

  Gravity vector    Process noise covariance 

  Magnetic field vector    Measurement noise covariance 

  Marker vector    Kalman gain 

  Angular velocity    Disturbance vector 

      Prediction function    Sigma Point 

   Observed reference vector       Particle state vector 

      Predicted reference vector       Particle weights 

  



  15 

4. QUATERNION BASICS 

4.1 Quaternion Definition 

Various rotation representation methods, such as Euler angles, rotation matrix, 

rotation vector, unit quaternion, etc., have been developed to express the orientation of an 

object (or coordinate frame) relative to a reference coordinate system. Among these 

methods, the quaternion provides a singularity-free description (as opposed to Euler 

angles) of the relative rotation and achieves compactness (as opposed to rotation 

matrices). There are three common ways to define a quaternion. A quaternion 

representation of orientation can be defined as a unit four-dimensional vector 

               
      (7) 

in which 

  
    

    
    

         (8) 

Quaternion does not suffer from the singularity problem like Euler angles since they 

express rotation in terms of a single rotation about an inclined axis. A rotation of angle   

             about unit rotation axis   can be expressed as a normalized quaternion 

vector 

   
     

 

 
 

       
 

 
 
      (9) 

According to equation (9),   and –  generate the same rotation. 

A quaternion can also be expressed as the sum of four elements 

                        (10) 

where i, j and k are the hypercomplex numbers that satisfy 

i
2
 = -1, j

2
 = -1,k

2
 = -1    (11) 

ij = -ji = -1     (12) 

jk = -kj = -1     (13) 
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ki = -ik = -1     (14) 

By the definition given by equation (10), a quaternion can be divided as the real part    

and the virtual part           
 . The virtual part is also called the vector part as it is 

corresponding to the rotation axis in the quaternion definition given by equation (9). 

Based on (10) – (14), a quaternion is defined on a nonlinear four dimensional unit sphere, 

instead of a linear vector space. Such definition leads to a distinct algebra of treating 

quaternions. 

4.2 Quaternion Algebra 

By analogy to normal complex numbers that also comprises of the real and virtual 

part, the conjugate of a quaternion  , denoted as    is obtained by negating its virtual part 

as 

                          (15) 

When a quaternion   is multiplied by a real number c， every element of   is 

multiplied by c 

                                (16) 

Based on the quaternion definition given by equation (10), the product of two 

quaternions     and     generates a new quaternion    . 

                                                           

                                  

                                   

                                   

                                        (17) 

where “ ”denotes quaternion multiplication. Assuming     represents the rotation 

from the coordinate system C1 to the coordinate system C2, and     represents the 

rotation from the coordinate system C2 to the coordinate system C3, then the quaternion 
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multiplication         implies the rotation from C1 to C3. From this point, the 

quaternion multiplication is not communicative, while quaternion multiplication still 

fulfills the associative law and distributive property of multiplication. 

In contrast to the quaternion multiplication described, the dot product of the two 

quaternions results in a number, like the dot product of vectors 

                                         (18) 

If         ,     and     are orthogonal to each other. Comparing equation (18) 

to the definition of quaternion multiplication shown by equation (17),         is the real 

part of the quaternion multiplication        
  or    

     . 

The norm or length of a quaternion   is defined as the square root of the quaternion 

multiplication of   and its conjugate    

               
    

    
    

    (19) 

If          ,     is the inverse of    , denoted as    
  . Generally the inverse 

of a quaternion   can be calculated by 

                 (20) 

For a unit quaternion  , its inverse     equals its conjugate    

                               (21) 

in this case, from (9),     produces the reversed rotation of  . 

The addition of quaternions still follows the component-wise addition rule, like the 

addition of vectors. 

                                                          (22) 

Note that the addition of the quaternions might break the unit length constraint. Thus 

when quaternion addition happens, the result should be normalized by dividing the non-

zero quaternion norm     to derive a new unit quaternion as a represent of rotation. 
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4.3 Rotation using Quaternion 

A 3-elements vector              
  can be rotated by a unit quaternion   to 

produce a rotated 3-D vector   . The rotation calculation starts with concatenating a zero 

to the head of  , which presents its quaternion form     

                 
       (23) 

Then    rotated by   is given by a quaternion product      derived as 

                   (24) 

And the virtual part of      presents the rotated 3-D vector   . For simplicity, in the 

discussion of the following chapters, the rotation of vector   using quaternion   will be 

denoted by 

               (25) 

5. SENSOR FUSION USING FILTERING APPROACHES 

Sensor fusion can happen in three levels: data-level fusion, feature-level fusion and 

decision-level fusion. Data-level fusion directly combines the data from multiple sensor 

modules. Feature-level fusion firstly parses the sensor data to generate corresponding 

features and then integrate these features. Decision-level fusion is a high-level approach 

that simply takes the computation results from each sensor module and makes choices 

based on these results. This project applies the data-level fusion method using recursive 

filters. The filters take the motion capture and IMU data as input, and provide the 

orientation estimation based on the latest observation. 

Common sensor fusion algorithms include the least mean square filters, the Kalman 

filters and the particles filters. All these filters are recursive estimators.  This means that 

only the estimated state from the previous time step and the current measurement, instead 

of the whole batch of observation and estimate history, are needed to compute the 

estimate for the current state. Generally the filtering process can be conceptualized as two 

http://en.wikipedia.org/wiki/Infinite_impulse_response
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distinct phases: prediction and update. In the prediction phase, the state of the current 

time step is estimated based on the previous state. And in the update step, the current 

observation is employed to refine the result derived from the prediction phase. In this 

work, four filtering algorithms, the complementary filter, the extended Kalman filter, the 

unscented Kalman filter and the particle filter, are implemented and compared when 

fusing the observation from the motion capture system and the IMU for the quaternion-

based orientation tracking task. 

5.1 Quaternion-based Complementary Filter 

In the proposed framework, the orientation of CM is tracked in CG, and we have 

adopted the quaternion-based rotation representation.  A quaternion-based 

complementary filter has been adopted for orientation estimation through sensor fusion. 

Figure 7 illustrates the key elements the proposed multimodal tracking algorithm using 

complementary filter. The complementary filter consists of the prediction and update 

steps. In the prediction step, the orientation at the current time is predicted according to 

the previous estimate and the current rotation rate observation from the gyro. When no 

gyro data is available, the previous orientation estimate is just used as the prediction. In 

the update step, the predicted orientation is refined in an iterative Gauss-Newton 

framework by minimizing the squared observation error.  The Gauss–Newton 

algorithm is used to solve the non-linear least squares problem that aims to minimize a 

sum of squared function values.  A resulting update vector is then obtained to adjust the 

prediction to get the final quaternion estimate. The sensor observations used for update 

are called “complementary data”.  In our research, the marker data and the readings from 

the accelerometer and the magnetometer have been used as the complementary data. 
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Table 2. Sensor Fusion Scenario Selections 

Sensor Fusion 

Scenario 
1 2 3 4 5 6 7 8 9 10 

Motion Capture  √ × √ × √ × √ × √ × 

Magnetometer √ √ × × √ √ × × √ √ 

Accelerometer √ √ √ √ × × × × √ √ 

Gyroscope √ √ √ √ √ √ √ √ × × 

In practice, it is possible that not all of such complementary data is available in 

orientation tracking. Sometimes, a sensor is not selected in system design due to specific 

reasons. For example, in applications requiring low-cost sensing, the motion capture 

system can be optioned out to reduce the cost. In some other cases, certain data is 

unavailable due to sensor failure and large observation noise. For instance, marker 

occlusion can cause tracking failure for the motion capture system. In our research, we 

have systematically studied and evaluated the performance of the complementary filter 

for 10 typical sensing scenarios (Table 2) in multimodal orientation tracking according to 

the availability of complementary sensing data.  

In Table 2, sensing scenarios 1, 3, 5, 7, 9 involve motion capture data and additional 

data from the IMU. In general, commercial motion capture systems provide precise 

tracking results. However, when simple motion capture systems with relatively low 

resolution and precision are employed, integrating the IMU data with the motion capture 

data can improve orientation tracking. 

The sensing scenarios 2, 4, 6, 8, 10 in Table 2 correspond to the cases when the 

motion capture data is unavailable due to system design or marker occlusion. In these 

scenarios, the orientation tracking is performed by using only the IMU data. In Scenario 2, 

all the IMU data is available. In environments where ferromagnetic materials such as iron, 

nickel, or various alloys that exhibit extremely high magnetic exist, the magnetic field 

may be distorted and lack unification over space. Under such circumstances it is not wise 
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to trust the output from the magnetometer, which leads to Scenario 4, including only 

accelerometer and the gyroscope observations. In practice, when large accelerating 

movement occurs frequently, the accelerometer reading becomes unreliable. In such 

cases, Scenario 6 needs to be adopted using only the magnetometer and the gyroscope. 

Furthermore, Scenario 8 corresponds to the case when both the ferromagnetic materials 

and large accelerating movement are present simultaneously. In this scenario, only the 

gyro is used in tracking. Finally, in scenario 10 the magnetometer and the accelerometer 

are used in tracking, corresponding to cases when the gyro is not used. 

 
Fig. 7. Quaternion-based Complementary Filter for Orientation Tracking 
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5.1.1 Prediction of the Quaternion-based Complementary Filter 

When the gyro data is available, it can be used in quaternion prediction. Let    be 

the rotation rate provided by the gyro, representing the rotation rate of CI in CG : 

                 
 

     (26) 

Using the alignment matrix     from CI to CM, the rotation rate of CM can also be 

found as 

                      
     (27) 

Using   , the time derivative of the quaternion representing the orientation of CM in CG 

is given by 

      
 

 
                              (28) 

where       is the quaternion estimate at time k - 1. Then the predicted quaternion 

      is 

    
                    (29) 

where    is the sampling period. In our implementation,   =10ms. The derivation of    
  

is summarized from equation (28) – (29) as function 

   
                     

   

 
           (30) 

When the gyro data is unavailable, the current quaternion estimate is directly used as the 

prediction for the next time instant: 

   
              (31) 

5.1.2 Update of the Quaternion-based Complementary Filter 

When complementary data are available, they are used to further refine    
 . An 

update vector    is found by minimizing the squared error between the observed and the 

predicted complementary reference vectors. When the marker data is available, two 

vectors formed by three markers are used as the maker reference vectors. When the 
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accelerometer is used, the inertial measurement is used as the inertial reference vector. 

When the magnetometer is used, the magnetic measurement is used as the magnetic 

reference vector.  

During tracking, the inertial and magnetic reference vectors are measured in CI. Let 

   and     be these inertial and magnetic reference vectors measured in CI, and     and 

    the same vectors measured in CI.  Given     and    ,      and     can be found using 

    as 

                                           (32) 

During tracking, the marker reference vectors are measured in CG  as      and     . 

For a rotation quaternion prediction   
 , the predicted reference vectors are 

 
 
 
 

 
 
      

       
   

       
 

     
       

   
       

 

       
      

          
   

       
      

         
   

               (33) 

where    and   are the gravity vector and the magnetic field vector in CG as given in (5) 

and (6). Both nG and bG are obtained during system calibration. In (33),     and     

are the marker reference vectors in CM as shown in Figure 3. These two reference vectors 

are constant for a fixed back marker set. 

According to the sensor availability, at time k multiple combinations exist to 

formulate the observation reference vector     and the corresponding predicted reference 

vector     
   . Table 3 lists the integrated reference vectors and their predictions for all the 

10 typical scenarios (Table 2) discussed in our research. At time k, given     and the 

quaternion prediction    
 , the weighted measurement prediction error      

   is  

     
                   

       (34) 
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where   is a diagonal weighting matrix and its elements are computed as the inverse of 

the standard deviations of the components in    ,     and      and     when the sensor 

board is static. The squared error function is given by 

     
            

        
               (35) 

Table 3. Complementary Data in Typical Sensing Scenarios 

Scenarios Prediction 
Update using complementary data 

          
   

1 √      
      

 
      

       
          

         
           

           
      

2 √      
      

 
         

         
      

3 √      
       

       
          

          
           

      

4 √           
   

5 √      

 
      

       
          

          
           

      

        6 √           
   

7 √       
       

           
           

      

8 √ N/A N/A 

9 ×     
      

 
      

       
          

         
           

           
      

10 ×      
      

 
         

         
      

The squared error function     
 

   is minimized by the Gauss-Newton iteration [31]. 

The Gauss–Newton algorithm solves non-linear least squares problems by forcing the 

gradient (vector derivative) of the squared error function to zero. In this technique, the 

prediction measurement function       is approximated by the first two terms of its 

Taylor series expansion at    
  

    
 

             
 

                 (36) 

where   is the Jacobi matrix of      evaluated at    
  

         
   

   
 
     

 
      (37) 

According to the method given in Appendix A, the Jacobi matrix of the predicted 

measurement     
 

  ,     
 

  ,        

   and        

  , noted as   ,   ,     and    , can be 

derived. The combination of these Jacobi matrices forms  , as shown in Table 4. 

http://en.wikipedia.org/wiki/Non-linear_least_squares
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Table 4. Jacobi Matrix X for Different Scenarios 

Scenarios     
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3      
 

  
 
       

  
 
        

  
 
      

     
     

    

4     
 

      

5      
 

  
 
       

  
 
        

  
 
      

     
     

    

6     
 

      

7        

  
 
        

  
 
       

     
    

8 N/A N/A 

9      
 

  
 
     

 

  
 
        

  
 
        

  
 
      

    
     

     
    

10      
 

  
 
     

 

  
 
      

    
    

Using the linear part of (36), the weighted measurement prediction error     
 

   can 

be approximated as 

    
 

                      
 

         

       
 

             (38) 

According to the inverse law of transposed matrices 

      
 

       
 
     

 

  
 
             (39) 

Substitute (38) and (39) into the squared error function (35) 

    
 

               
 

       
 
    

 

        

     
 

  
 
    

 

       
 

  
 
      

             
 

                  (40) 

Collect terms by making use of the inverse law of transposed matrices again, which 

provides  

    
 

  
 
                  

 

     (41) 

Then equation (40) can be simplified to 
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                 (42) 

Based on vector calculus, the gradient (vector derivative) of      at      is expressed as 

 
     

  
      

               
 

                (43) 

It can be proved that when   is of full rank, the squared error function   given by 

(35) is follows a positive definite quadratic form. And the unique minimum of the 

positive definite      can be found when the gradient of      at    
  equals zero, which 

yields the result 

                         
 

      (44) 

Then the refined quaternion estimate at time n+1 is given by 

        
 

            
 

           (45) 

where   is a scalar filter gain.  

5.1.3 Reduced Order Filter 

Note that     has to remain as a unit quaternion, so that the calculation of the Jacobi 

matrix   is valid. Moreover, such constraint promises the solution     is unique.  Or else, 

  will not be of full rank, and     turns to be singular. 

The reduced order filter promises the updated     is still a unit quaternion when it is 

updated by (45) and considerably simplifies the matrix computation. In (45),    
  is a unit 

quaternion. The norm of the updated quaternion orientation     is 
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         (46) 

Thus only when    is orthogonal to    
  (    

      ), the length of the updated 

orientation quaternion    remains to be 1. According to the Orthogonal Quaternion 

Theorem of [15], if    is orthogonal to    
 , it can be written into the form 

      
 

        (47) 

where   is a vector given by 

                        (48) 

Consequently, only a 3-element vector  , instead of a 4-element quaternion   , needs to 

be solved to update   . The vector can still be solved using the Gauss-Newton method as 

follows. 

Replace the    in (38) with (48), the linearization of the predicted measurement 

becomes 

    
 

             
 

        
 

     

     
 

        
 

                    (49) 

And the partial differential calculus of      with respect to   is given by 

  

   
      

 

          (50) 

  

   
      

 

          (51) 

  

   
      

 

          (52) 

Now build a new Jacobi matrix    by combining (50) – (52) 

    
  

   
 

  

   
 

  

   
       (53) 

Consequently the predicted measurement       at    
  can be approximated by 
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              (54) 

Then the minimum of the positive definite      can be found using the method specified 

by equation (34) – (44), which yields the result 

         
       

  
  

       
 

      (55) 

And the final update quaternion    can be derived by equation (47). Since    is a 3 by 3 

matrix while   is a 4 by 4 matrix, the calculation of (55) is more efficient that given by 

(44). 

5.1.4 Tracking with Single Reference Vector 

The complementary filter-based tracking algorithm described in previous section 

necessitates at least two reference vectors to decide the rotation between two coordinate 

systems. In practice, it is possible that the magnetometer or the accelerometer is the only 

available complementary sensor (Scenarios 4 and 6 in Table 1).  In these cases, extra care 

needs to be taken to secure the tracking stability. When only one reference vector is 

available, the rotation about the direction of the reference vector should not be updated 

for such rotation does not affect the measurement prediction error. 

 

Fig. 8. Filtering Strategy with Single Reference Vector 
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To track the orientation with only one reference vector, the rotation about the 

reference vector obtained in the Gauss-Newton iteration needs to be excluded. To this 

end, we have developed a method to accomplish such constrained update. Assume that 

the local magnetic field is the only complementary data available. Define a new global 

coordinate system CN and one of its axes (the X-axis in our research) is aligned with the 

local magnetic field. The spatial alignment between CN and CG is predetermined by a 

rotation matrix   .  

During the orientation tracking, before the Gauss-Newton iteration, the predicted 

quaternion    
  is first converted to a rotation matrix    

 , indicating the predicted rotation 

from CG to CM. Using    , the predicted rotation matrix from CN to CM is given by 

   
     

         (56) 

And the corresponding Euler angles (in X-Y-Z convention) representing the rotation from 

CN to CM are 

        
     

     
 ]     (57) 

where    
  is the Euler angle around the X-axis of CN, parallel to the local magnetic field. 

After the Gauss-Newton process as introduced in the previous section, the above 

quaternion-to-Euler angles procedure is carried out again to infer the Euler angles from 

CN to CM  

        
     

     
 ]     (58) 

using the updated quaternion. Since   
 is unobservable from only the local magnetic field, 

it should not be updated in the Gauss-Newton process. Therefore, a refined set of Euler 

angles    is obtained by replacing     
  in    with    

  in   : 

       
     

     
 ]    (59) 

    is then taken as the updated Euler angle from CN to CM, as illustrated by Figure 8. The 

corresponding quaternion      from CG to CM can be found by first obtaining the rotation 
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matrix from CG to CM as          
  and then inferring    from    . The same 

approach can be adopted when only the inertial data is available. Such strategy can also 

be applied to other filtering algorithms described in the following sections about the 

Kalman filters (KF) and the particle filter (PF). Like the complementary filter, KF and PF 

compose of the prediction and update steps, thus the process illustrated by Figure 8 can 

be implemented on them in a similar measure. As shown by the experimental results, this 

proposed algorithm is effective in improving tracking stability when only one reference 

vector is available. 

5.2 Quaternion-based Extended Kalman Filter 

The Kalman filters aims to use measurements     undermined by noise or other 

inaccuracies to reconstruct values that tend to be closer to the true values of the 

measurements and their associated calculated values represented by a state vector    . 

Classical Kalman is a recursive estimator based on linear dynamical systems discretized 

in the time domain described by the process model (predict model, state transition model) 

and the measurement model (observation model).  The process model predicts the 

revolution of the state vector and describes the influence of the process noise based on 

the state transition function                   

                                               (60) 

where F is the state transition matrix applied to the estimated state vector of previous 

iteration       , B is the input-control matrix applied to input    , and     is the process 

noise (system noise) that follows a zero mean multivariate normal distribution with the 

covariance matrix  . For systems with no control input, like the proposed orientation 

tracking system, the state transition function can be simplified to be               

                                     (61) 
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 The measurement model generates the measurement (or observation)     of the true 

state     according to the measurement function              

                                  (62) 

where H is the measurement matrix multiplied to the state vector of the current time step 

   , and     is the measurement noise (observation noise) that follows a zero mean 

multivariate normal distribution with the covariance matrix R. Note that both the 

measurement function              and the measurement function              are of 

linear form, which is the underlying precondition for implementing the basic Kalman 

filter. 

The filtering process of the Kalman filters contains two phases: prediction and 

update. The prediction phase uses the state estimate from the previous time step to 

produce an estimate of the state at the current time step. This predicted state estimate is 

also known as the a priori state estimate because, although it is an estimate of the state at 

the current time step, it does not include observation information at the current time step. 

In the update phase, the priori prediction is combined with the current observation 

information to refine the state estimate. This improved estimate is termed as the a 

posteriori state estimate. Given the previous posteriori state estimate      , the prediction 

step calculates a priori state estimate    
  according to  

   
                      (63) 

In addition, a priori covariance matrix   
  is produced by  

  
           

         (64) 

where      is an posteriori estimate covariance matrix as a measure of the accuracy of 

the previous state estimate. In the update step,    
  and   

  are further refined by 

        
                  

           (65) 

              
       (66) 
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where     is the Kalman gain defined as  

      
   

      
   

            (67) 

It can be proved that Kalman filter yields MMSE (minimum mean-square error) 

estimate when applied to systems that can be modeled by the linear measurement 

function               and the measurement function             . Somehow such 

conditions are highly restrictive. The difficulty of filtering unit quaternion data stems 

from the nonlinear nature of unit quaternion space. Since the implementation of classical 

Kalman filter necessitates linear non-linear process and measurement models, it is not 

capable of estimating the quaternion state. The extended Kalman Filter (EKF) is an 

expansion of the Kalman filter to the nonlinear system simply by linearizing the 

nonlinear models so that the traditional linear Kalman filter equations can be applied. 

5.2.1 State Vector 

The state vector x of the quaternion-based EKF has two forms depending on 

whether the gyroscope data is involved for the orientation tracking. When using the 

gyroscope measurement, the state vector x comprises of two parts: the orientation in the 

form of a unit quaternion                 
 and the rotation rate      

             
 

 

    
 

  
        (68) 

Thus the length of the state vector is 7. The quaternion part   holds the same 

meaning as in section 5.1, representing the orientation of CM in CG. And    is the 

angular velocity of CM in CG derived from the measurement of the gyroscope by (27). 

When the gyroscope measurement is not utilized, the state vector x is simplified to the 4-

element quaternion 

           (69) 
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5.2.2 Process Model 

If gyroscope data is not involved, the priori state estimate     is simply previous 

posteriori state estimate      plus noise. Then  

                                                                      (70) 

where     is a 4-element vector denoting the process noise of the quaternion. 

When gyroscope data is involved, it can contribute to the prediction of the 

quaternion orientation estimate within the process model according to a nonlinear state 

transition function 

                       
 

  
 
   

  
  

  
 
 
    

             
     

    
  

  
 
 
   (71) 

where    is a 3-element vector denoting the process noise of the quaternion. The angular 

velocity integration function              is defined by equation (30) in section 5.1.1. 

Table 5. Measurement Noise v in Different Sensor Fusion Scenarios 

Scenarios   

1     
     

     
     

    

2     
     

     
    

3     
     

     
    

4     
     

    

5     
     

     
    

6     
     

    

7         
    

8 N/A 

9     
     

         
    

10     
     

     
    

5.2.3 Measurement Model 

The measurement model relates the measurement value     to the state vector     

through a nonlinear measurement function 

                     
 

  
 
 
         

    
  

 
 

                               (72) 



  34 

where   is the combination of the motion capture camera measurement noise    , the 

gyroscope measurement noise    , the accelerometer measurement noise    , and the 

magnetometer measurement noise    , depending on different sensor fusion scenario as 

shown in Table 5. The nonlinear quaternion rotation function      also varies in sensor 

selection situations as defined previously in Table 3. 

5.2.4 Linearization of the Nonlinear Models 

Since it necessitate linear model to employ the standard Kalman filter loops, the 

nonlinear process model                and measurement model              have to be 

linearized. A straight-forward way to achieve this goal is to adopt a first order Taylor 

expansion of the nonlinear models to provide local approximation within the current state 

as below 

    
  

  
       

                    (73) 

    
  

  
    

                       (74) 

where    is the Jacobi matrix of                evaluated at        

     
  

  
       

        (75) 

and    is the Jacobi matrix of              evaluated at    
  

     
  

  
    

         (76) 

The calculation of the Jacobi matrices    is similar to the derivation of   in section 

5.1.2.    in different scenarios are listed in Table 6, where   ,   ,     and     are the 

Jacobi matrices for quaternion rotation, as defined in Table 4 . The calculation of    is 

expanded in Appendix C. Substitute    and    into equation (63) – (67), then the 

traditional Kalman filter procedure will work for the nonlinear system. Since the unit 

quaternion constraint needs to be maintained, the quaternion part of the state vector is 

normalized after equation (63) and equation (66). 
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Table 6. The Jacobi Matrices Hk for Different Scenarios 

Scenarios    

1    
    

     
     

      

2    
    

      

3    
     

     
      

4    
      

5    
     

     
      

6    
      

7     
     

      

8 N/A 

9    
    

     
     

    

10    
    

    

When only one reference vector is available, similar to the approach taken for the 

quaternion-based complementary filter: the rotation about the direction of the reference 

vector is excluded in the update step according to the method clarified in section 5.1.4.  

5.3 Quaternion-based Unscented Kalman Filter 

When the system defined by the process models and measurement models are highly 

nonlinear, the extended Kalman filter may give poor performance. The Unscented 

Kalman Filter (UKF) employs unscented transform to select a set of points called sigma 

points around the mean of the estimate. The mean and covariance of the estimate can 

later be reconstructed by propagating these sigma points through the nonlinear functions. 

Such measure allows a better performance than a standard EKF since it approximates the 

nonlinearity more precisely. 

5.3.1 System Modeling 

The quaternion-based UKF for orientation tracking share the same state vectors and 

measurement model with the EKF described above. Note that since the orientation 

estimate   is a unit quaternion, its four elements are no longer independent with each 

other. Such constraint leads to a different strategy of sampling and treating noise in the 

UKF. 
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The UKF add disturbance to the orientation estimate   through quaternion 

multiplication. The process noise of the quaternion     is a 3-element vector, which can 

be regarded as a rotation vector to represent a random rotation with the angle 

                             (77) 

and the unit rotation axis 

         
   

     
             (78) 

The quaternion representation of this disturbance rotation is 

     
     

  

 
 

        
  

 
 
               (79) 

The process noise is applied to the original quaternion component   through quaternion 

multiplication. When no gyro data is involved 

                                                            (80) 

This method of dealing quaternion noise leads to the change of the size of the block of 

the process noise covariance   that is corresponding to the quaternion noise. Since the 

process noise of the quaternion     is interpreted as a 3-element rotation vector, its 

covariance   becomes a 3 by 3 matrix, unlike the 4 by 4 matrix adopted in the EKF. 

Accordingly, the covariance matrix   measures the accuracy of the estimated orientation 

in the rotation vector form, and agrees with the size of  . 

When gyro data contributes to the orientation prediction 

                       
 

  
 
   

  
  

  
 
 
   

                   

         
 

    (81) 

where               is the angular velocity integration function defined by equation 

(30) in section 5.1.1. Consequently, the process noise covariance   and the estimate 
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covariance   are expanded to be 6 by 6 matrices. Note it is also valid to introduce the 

process noise before integrating the angular velocity, which presents 

                    
           

       

         
 

        (82) 

Since the model defined by (82) facilitates the generation of the sigma points, it is 

employed by the quaternion-based UKF. 

5.3.2 Sigma Points Generation 

The filtering procedure of the quaternion-based UKF contains three major steps. 

Prior to the prediction step and the update step, the sigma points are selected in a proper 

way so that they can recover the mean and covariance of the state estimate. Provided the 

previous state estimate      and the N by N estimate covariance matrix     , the loop of 

unscented Kalman filter starts with generating a set of sigma points                    

near      . This sampling process resembles the way of introducing noise to the state 

vector described previously in the process model part, because the sigma points can be 

interpreted as a set of disturbed state vectors formed by imposing known disturbances on 

the original state vector. Let    be the disturbance vectors 

                        (83) 

where          is the i-th (i = 1, „, N) column of the matrix resulted from the Cholesky 

decomposition of     . When the gyroscope data is not involved,      is a 3 by 3 matrix. 

Thus      is a 3-element rotation vector to represent the rotation disturbance. Using the 

method described by equation (77) – (79), the rotation vector     can be converted to its 

quaternion form    . Then the 2N sigma points are created by  

 
                                                                  

                
                 

                    
    (84) 
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In view of the fact that the procedure of dealing with the process noise (with 3 by 3 

covariance    ) and that for producing sigma points are very similar, the process noise 

can be included in the sigma points through 

                          (85) 

When the angular velocity is part of the state vector,       and   are 6 by 6 matrices. As 

described in the process model defined by equation (83), the process noise is applied to 

the state vector in advance of the prediction with gyroscope data. Thus it is still valid to 

derive    from        . 

                    
    
   

    (86) 

where     is the disturbance to the angular velocity estimate that contains 3 components. 

Then the 2N sigma points are created by  

 
 
 

 
      

            

          

                                    

     
            

  

          

                        

   (87) 

5.3.3 Prediction of the Quaternion-based Unscented Kalman Filter 

Within the prediction step, the nonlinear state transition function will take these 

sigma points       as the input to produce a new set of predicted sigma points    
       

        . Firstly consider the case without involving gyroscope: the output of the state 

transition function is a quaternion 

  
                   (88) 

The mean and covariance of    
   respectively provides the priori state estimate    

  and 

priori covariance matrix   
 . The computation of the mean and covariance of quaternion 

vectors will be elaborated in this section. 
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The orientations represented by the unit quaternion vectors belong to a nonlinear 

manifold (a four dimensional unit sphere), instead of the linear vector space. Constrained 

by the nonlinearity and the fixed unit length, the mean and covariance of quaternion 

vectors cannot be computed in the ways designed for the vector space. Take an extreme 

case for example, the weighted sum of the quaternion vectors [1, 0, 0, 0]
T
 and [-1, 0, 0, 

0]
T
 yields a zero vector, while as stated in section 4.1, they produce the same rotation. 

The intrinsic gradient descent algorithm proposed by [33] provides a solution for 

computing the mean of quaternion orientations. This method aims to find a quaternion 

vector, the sum of whose errors with the members of the quaternion set          

          reaches the minimum. Then this quaternion is a good estimate of the mean of 

this quaternion set     . The error (rotation) between two quaternion vectors is quantified 

by a rotation vector   , which can be summed in the vector space. Ideally the error sum 

equals zero when the true mean of the quaternion vector    is located. The search of the 

quaternion mean is realized in a recursive manner. The quaternion mean estimate     can 

be initialized with a random quaternion vector. During every loop, the errors between     

and each quaternion member   , represented by a quaternion, is updated as 

    
         

      (89) 

Following equation (77) – (79),    
 is translated to the rotation vector   . Then,   , the 

mean of the error rotation vector set      is be calculated as 

    
 

  
   

  
      (90) 

Let     be the corresponding quaternion form of   . The estimate of the quaternion mean 

    is adjusted for next round of iteration by 

                    (91) 
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When the length of    is a smaller than a pre-decided threshold, implying     is close to 

the real quaternion mean   , the loop can be terminated with 

                    (92) 

Since     
   presents the predicted priori state estimate    

  

      
       

                  (93) 

Note at the end of the recursion the error rotation vector set      ends up to be the errors 

between the quaternion mean    and the members of     . According to the definition of 

the covariance, the covariance of the orientation      is 

             
 

  
     

   
    (94) 

Because    are a rotation vector, the covariance matrix given by (94) is 3 by 3. Since 

      
   presents the predicted priori estimate covariance   

  

  
        

            
 

  
     

   
    (95) 

Now consider the case involving the gyroscope data for prediction, each predicted 

sigma point   
  is extended to 7 elements 

  
              

  

  
     (96) 

The calculation of the mean of the angular velocity vectors    can follow the standard 

procedure for multivariate variables in the vector space. 

    
 

  
   

  
      (97) 

Consequently 

     
       

     
  
  
     (98) 

  
         

    
 

  
  

  

        
  

       
 

  
   (99) 
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5.3.4 Update of the Quaternion-based Unscented Kalman Filter 

The update step calculates the Kalman gain     to indicate the extent of adjustment 

that needs to be made based on the difference between the real observation and that 

derived from the state vector. The update begins with propagating the predicted sigma 

points {  
   through the nonlinear measurement function to produce a new set of 

measurement sigma points     
               .  

  
      

          (100) 

Then the predicted measurement   
  is defined as the mean of the measurement sigma 

points     
   

    
       

     
 

  
   

   
     (101) 

And the predicted measurement covariance     is defined as the covariance of    
   

           
    

 

  
    

     
     

     
     

   (102) 

Depending on whether the angular velocity    is included in the predicted sigma points 

  
 , the state-measurement cross-covariance matrix is defined as 

     
 

  
      

     
     

     (103) 

or 

     
 

  
  

  

          
     

     
     (104) 

where    is the by-product of the recursive quaternion mean calculation – the differences 

between the quaternion mean    and the members of      contained by the predicted 

sigma points {  
  , as described in the previous section. 

Provided the covariance matrices defined by equation (102) – (104), the Kalman 

gain     can be calculated as 

                       (105) 
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Eventually the updated state vector     and estimate covariance    can be obtained 

through the following equations 

                        
       (106) 

              
       (107) 

When only one reference vector is available, similar to the approach taken for the 

quaternion-based complementary filter: the rotation about the direction of the reference 

vector is excluded in the update step according to the method clarified in section 5.1.4. 

5.4 Quaternion-based Particle Filter 

The particle filters (PF) approximates the posterior probability distribution function 

(pdf) of the state vector    given all available observations             . A set of 

samples    
     termed as the particles with associated weights    

                 are 

used to characterize this required pdf. The particles and their weights are updated 

sequentially along with the state evolution when new observations become available. 

When the particle number   is sufficiently large, the particles propagated through the 

nonlinear system can precisely capture the posterior mean and the posterior covariance 

for any nonlinearity. Such manner allows the particle filters to approach the Bayesian 

optimal estimate, so they can potentially outperform the EKF or UKF. 

5.4.1 System Modeling 

The state vector    , process model               and measurement model 

             of the particle filter are identical with those of the EKF. Since in the system 

described by 

                      (108) 

                      (109) 
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the noise vectors     and     are both Gaussian, the conditional pdf of     and     

comply with the normal distribution as 

                             )   (110) 

                           )    (111) 

5.4.2 Particle Propagation 

The chosen particle filter for the quaternion-based orientation tracking is the 

sequential importance resampling (SIR, also named as the bootstrap filter) algorithm 

proposed by N. J. Gordon etc. During every iteration of the SIR, a set of particles 

   
                are drawn from the predicted state estimate    

  according to the 

Gaussian distribution (110). The weights    
                (importance) of these 

renewed particles are evaluated by         
     given by equation (111). Besides 

updating the particles and their weights, resampling is executed at the end of every cycle 

to pick up the particles with larger weights. The selected particles end up with equal 

weights and their mean provides the state estimate    . 

The prediction step generates the predicted state estimate    
  according to equation 

(109). The particles    
                 scattered around    

  follows the Gaussian 

distribution 

      
       

          
   )      (112) 

Thus the particle set    
                 can be viewed as   predicted state 

estimate vectors    
  perturbed by the zero-mean Gaussian noise set     

          

        with covariance  . The method of introducing noise into the state vector is 

discussed section 5.3.1 when presenting the process model of the UKF. 

The weight   
   of the drawn particle   

     is proportional to the product of the 

weight of      
    and the conditional pdf of the current observation     
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         )   (113) 

Considering that the weights needs to be normalized,   
    is given by 

   
   

      
           

         
            

         )   (114) 

  
       

   
    

    
          (115) 

The major bulk of the resulted weights may fall on only a handful of or even just one 

particle. In such scenario, the weights of most particles are close to zero. Consequently 

these particles can hardly contribute to the state estimate.  Thus this phenomenon, termed 

as the particle degeneracy, is highly undesired. The particle degeneracy can be overcome 

through particle resampling. Particle resampling screens particles with negligible weights 

and replace them with particles with large weights, which will possess the same weights 

  
       . The resampling schemes can be implemented in every cycle, like in the 

original SIR, or when the degeneracy phenomenon has been detected. In our experiments, 

the stratified resampling method (proposed by Kitagawa 1996) once the weight set 

   
                 has been update. Note that, since at the end of the loop the 

resampled particles have the same weights, equation (114) can be simplified to 

   
   

          
              

         )    (116) 

The updated state estimate     is given by the mean of the resampled particles as 

         
      

 

 
   

    
      (117) 

When only one reference vector is available, similar to the approach taken for the 

quaternion-based complementary filter: the rotation about the direction of the reference 

vector is excluded in the update step. These can be achieved by excluding the rotation 

about the direction of the reference vector when generating the particle set    
         

        according to the method clarified in section 5.1.4. This promises that the 
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particles always share the same rotation around the reference vector, which is only 

watched by the gyroscope. 

6. IMPLEMENTATION ISSUES 

6.1 Data Smoothing 

Smoothing the IMU data is often necessary to reduce observation noise. In our 

research, we have conducted a comparative study to examine the performance of the 

moving average (MA) filter and the 2
nd

 order Savitzky-Golay (SG) filter. Let      be the 

original data to be smoothed. The MA filter is defined as 

     
 

 
         

       (118) 

where S is the size of the moving window and v(n) is the smoothed data. The SG filter is 

defined as 

               
  
      

    (119) 

where    represents the number of data points used “to the left” of the data point n, or, 

coming before the data point n;    is the number of points “to the right” of it, or, coming 

after that data point; ci’s are the SG coefficients pre-computed according to the filter 

order, nL and nR. 

Table 7. Performance Comparison of the SG Filter and the MA Filter 

Low-pass filter 

parameters 

STD () in the static case 
STD () and latency in the 

 dynamic movement case 

Pitch Yaw Roll Sum Pitch Yaw Roll Sum 
Latency 

(ms) 

SG 

nL = 38, 

nR = 10 
0.105 0.738 0.065 0.908 0.895 1.693 0.619 3.207 100 

nL = 43, 

nR = 5 
0.137 0.970 0.090 1.198 0.871 1.957 0.670 3.498 50 

nL = 45, 

nR = 3 
0.161 1.137 0.105 1.403 1.002 2.322 0.734 4.058 30 

MA 

S = 20 0.115 0.805 0.072 0.993 0. 947 1.786 0.651 3.384 100 

S = 10 0.158 1.222 0.105 1.485 0.996 2.304 0.722 4.022 50 
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In our research, we have conducted systematic study to evaluate and compare these 

two data smoothing approaches. The performance of the smoothing methods was 

analyzed based on the orientation tracking results obtained from the smoothed IMU data. 

Data collected from both static IMU and moving IMU has been used. As shown in Figure 

9, in the dynamic case the IMU sensor board was manually rotated by consecutively 

cycling the sensor through the angles of pitch, yaw and roll between 30 and 30. Table 

7 lists the standard deviations of the tracking results for both static and dynamic cases 

using the two data smoothing methods.  

Fig.  9. Motion Composed of Consecutive Cycling the Sensor through Angles of Pitch, 

Yaw and Roll between -30 and 30. 

For the dynamic case, the latency was also obtained by reading the peak position of 

the correlation between the results from the IMU and that from the motion capture system. 

Let h(n) and g(n), n=0,1    1, be the tracking results obtained using the IMU data and 

that from the motion capture data, respectively. Their discrete correlation is given by 

                  
   
       j=N      -1 (120) 

where       is the periodic signal by repeating g(·) with a period of N. If the highest value 

appears at frame p, it indicates that due to the smoothing technique, h(n) lags behind p 

frames comparing to g(n). For a sample rate of 100Hz, the latency is p10ms.  
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As shown in Table 4, when using the MA filter, the latency is about half of S, the 

moving average window length. When using the SG filter, the latency is around the 

length of nR. The maximum overall latency allowed by MRR system is 30ms, which 

implies that the S must be smaller than 6 frames/60ms for the MA filter or nR must be 

lower than 3 frames/30ms for the SG filter. As shown in Table 4, when nR = 3 frames, the 

SG filter reached the same accuracy of the MA filter with S=10 frames and in this case, 

the latency of the SG filter is 30% lower than that of the MA filter. Furthermore, given 

comparable latency, for instance, when SG filter with nR= 5 frames and MA filter with S 

= 10 frames, the SG filter leads to more accurate tracking than the MA filter. These 

experimental results indicate that in our application of orientation tracking, the SG filter 

provides superior accuracy to the MA filter when mitigating the latency to the same level. 

Thus the SG filter has been used to smooth IMU data in our experiments with nL = 45, nR 

= 3 to meet the system requirements. 

6.2 Estimating the Z Axis Reading of the Magnetometer 

Since magnetometer integrated in the Sparkfun 6DOF v3 IMU only provides 

measurements on the X-Y plane, the magnetic reading in the Z axis needs to be estimated 

to provide three dimensional measurements as the input of the filters. In our research, we 

have developed a robust procedure to secure the estimation of the Z component of the 

magnetic vector. 

The estimation process composes of two stages. First, from given the magnitude of 

the local magnetic field and the observed X and Y components, the length of Z 

component can be calculated. Then the sign of the Z component needs to be found. 

Determining the sign of the Z component is challenging, especially when its length is 

close to zero. To obtain reliable estimate for the sign of the Z component, in our research, 

we have placed the IMU in a specific configuration so that the Z component is always 
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positive in the range of torso motion. This is achieved by properly adjusting the 

orientation of the IMU on the back-marker-board of the subject so that at the initial 

neutral position of the subject the local magnetic field is aligned with the Z axis of CI. In 

other word, Z component of the magnetic vector reaches its maximum at the initial 

position (Fig. 10 (a)). Consequently, within the range of motion (usually between 30 

and 30), there will always be a large positive portion of the local magnetic field 

projected onto the Z axis of CI (Fig. 10 (b)). Considering the local magnetic field may 

vary in different rehabilitation environments due to the change of the facing direction of 

the patient and the distribution of ferromagnetic objects, a hinged connector is made to 

connect the IMU and the marker board and to make the orientation of the IMU easily 

adjustable for various system configurations. 

 
Fig. 10. (a) At the initial position, the local magnetic field is paralleled with Z-axis of 

the IMU’s coordinate system. (b) During the orientation tracking, the angles between the 

Z-axis and the local magnetic field are smaller than 90 degree. Thus the the local 

magnetic field is always positive. 
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7. EXPERIMENTAL RESULTS AND ANALYSIS 

Experiments have been conducted to evaluate and compare the tracking performance 

of the 10 typical sensing scenarios using the complementary filter, the extended Kalman 

filter (EKF), the unscented Kalman filter (UKF), the particle filter (PF). All the sensing 

scenarios and filtering algorithms have been tested using the same set of benchmark data. 

In our experiments, we have recorded data containing random rotations composed of 

repeatedly cycling the sensor through various angles of pitch yaw, and roll performed on 

the inertial sensor mounted on the marker board. Figure 11 shows a typical movement 

trial. A total of 10 trials of such random motion have been recorded as the benchmark 

testing dataset. The accuracy of all filtering algorithms in each sensor fusion scenario has 

been evaluated using the tracking results derived from the motion capture system as the 

reference in view of its high accuracy.  

 
Fig. 11.  An Exemplar Random Motion Trial 

Out of the 10 sensing scenarios, seven of them, except Scenarios 4, 6, and 8, fall into 

the case of updating with two reference vectors.  Thus these seven scenarios are able to 
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provide drifting-free measurements. The tracking results, including the averaged 

accuracy, measured by the root mean square difference (RMSD), and the latency, are 

shown in Table 8. Table 8 (b) – (d) gives the results from the proposed complementary 

filter framework, the extended Kalman filter (EKF), the unscented Kalman filter (UKF) 

and the particle filter (PF) respectively.  

Generally, a number of observations can be made based on these results.  First of all, 

when the motion capture system is functional (Scenarios 1, 3, 5, 7, and 9), the tracking 

results from shown in Table 8 (a) – (d) are all close to the reference data using only the 

motion capture system, implying all four sensor fusion methods can present precise 

orientation tracking with motion capture data. It is mainly because of the higher weights, 

or smaller observation matrix, applied to the motion capture data in the fusion 

frameworks in light of its high tracking accuracy. Figure 12 – 15 shows the RMSDs of 

the four methods for the scenarios when the motion capture data is available (Scenarios 1, 

3, 5, 7, and 9) from one testing trial. 

Then, the latency of the four filters shown by Table 8 (a) – (d) are comparable with 

each other. Thus the processing time of the filter algorithms does not affect the lag a lot. 

The latency mainly relies on specific smoothing techniques and sensor selection. When 

the motion capture data are present, since no smoothing measures are applied to the 

vision data, no lag is observed comparing to the reference, which is solely from the 

motion capture data. Without the motion capture data, smoothing the IMU readings 

causes a lag around 26ms for all four filtering algorithms. 

When it comes to the accuracy of the four chosen filters, for odd scenarios in Table 

8 (scenario 1, 3, 5, 7 and 9, these scenarios involve motion capture data), the RMSD of 

proposed complementary filter is smaller than that from the Kalman filters and the 

particle filter. This makes sense considering that the Gauss-Newton method applied in the 
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complementary filter is a least square algorithm that aims to minimize the square error 

between the fitted parameters and the observation in solving every single iteration. Since 

when the majority of the weights are assigned to the motion capture data, the Gauss-

Newton iteration tends to give results mainly depending on the recently available motion 

capture data. Simultaneously, the motion capture data is used to generate references.  

This makes the complementary filter agree with the reference very well for every single 

frame. Instead of pursuing a minimum least square error for every frame, the Bayesian 

approaches (i.e. the Kalman filters and the particle filter) aim to minimize the mean 

square error over time by constructing the probability density function (PDF) of the state 

vectors. Though the KFs and the PFs are optimal or suboptimal estimators in the sense 

that they yields minimum mean square error (MMSE), their estimation might not follow 

the reference (tracking results derived from the motion capture observation, without 

considering noise) as closely as the least square methods. For example, the least square 

filter can respond to peak-shaped noise in observation, and make corresponding changes 

in final results instantly, while the Bayesian approaches might ignore the peak in 

observation and result in smoothed results. Among the Bayesian methods, the UKF 

outperformed the EKF as expected, since the former better approximate the nonlinearity. 

Somehow, the particle filter, which is usually considered a better estimator than the 

Kalman filters, provides the largest RMSD when motion capture data is involved. A 

possible explanation is that the particle number (2000) might be insufficient to precisely 

approximate the nonlinear model. Since sampling method is like a random search, its 

accuracy heavily depends on the sample volume. Experiments do show an improvement 

of the PF when the particle number increases. 

When the motion capture data is unavailable, the complementary filter, the Kalman 

filters and the particle filter still produces long-lasting valid angles when two reference 
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vector are used for orientation tracking (i.e., both the inertial and magnetic field vectors 

are available) such as in Scenarios 2 and 10. The key difference between Scenarios 2 and 

10 is that the former consists of all three IMU sensors and the latter only uses 

accelerometer and magnetometer without the gyro. By comparing the performances of 

these two scenarios as shown by Table 8 (a) – (d), it can be seen that adding the gyro only 

slightly improves the tracking accuracy and almost makes no impact on the latency. 

The rank of the RMSDs of the four filtering algorithms for fusion within the IMU 

(Scenario 2 and 10) varies from the odd scenarios. The particle filter clearly outperforms 

the complementary filter and the Kalman filters, which demonstrates the advantage of the 

particle filter when handling noisy IMU data. The complementary filter provides the 

second smallest RMSD, closely followed by the UKF. The EKF presents the worst result. 

Theoretically, the UKF and EKF should be superior tracking solutions to the 

complementary filter based on the least square method. Somehow, the Bayesian 

approaches desire a proper system model to fully unleash their potential. In our methods 

Gaussian model are imposed on both the process model and the observation model, 

which may not be the exact case for our tracking task. This might undermine the 

performance of the Bayesian methods.  

In our experiments, we have observed drifting from the gyro (i.e., tracking using 

only gyro in Scenario 8) or when only one reference vector is used for tracking (e.g., 

Scenarios 4 and 6 ). Table 9 lists the average drifting rates for these three scenarios over 

20 seconds. Figure 16 – 19 shows the RMSDs for Scenarios 2, 4, 6 8, and 10 using the 

same testing trial data as Figure 12 – 15. From Figure 16 – 19, it can be seen that in 

scenario 2 and 10, the complementary filter, the EKF, the UKF and the PF all succeed in 

correcting the drifting with 2 reference vectors. 
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Table 8. Tracking Performance Comparison (without Drifting) 

 (a) The Complementary Filter  

Sensor Fusion 

Options 
Root Mean Square Difference () 

Latency (ms) 
Pitch Yaw Roll 

1 2.4514×10
-2 

1.3850×10
-2 0.1532 0 

2 1.7683 3.4194 1.7398 27 

3 1.1889×10
-2

 1.3202×10
-2

 0.1622 0 

5 1.9048×10
-2 

3.0501×10
-2 0.1815 0 

7 5.873×10
-3

 2.671×10
-3

 0.1617 0 

9 2.6149×10
-2 

2.1346×10
-2 0.1828 0 

10 1.8417 3.4946 1.7864 27 

(b) EKF 

Sensor Fusion 

Options 
Root Mean Square Difference () 

Latency (ms) 
Pitch Yaw Roll 

1 0.5042
 

0.6282
 

0.4234 0 

2 2.2509 4.0259 2.4480 26 

3 0.5042 0.6282 0.4234 0 

5 0.5041
 

0.6287
 

0.4238 0 

7 0.5041 0.6287 0.4238 0 

9 0.5033
 

0.6297
 

0.4233 0 

10 2.4001 4.2036 2.8624 27 

(c) UKF 

Sensor Fusion 

Options 
Root Mean Square Difference () 

Latency (ms) 
Pitch Yaw Roll 

1 0.1392
 

0.1175
 

0.2070 0 

2 1. 6509 3.6503 1. 6480 26 

3 0. 1721 0. 1106 0. 1685 0 

5 0. 1722
 

0. 1106
 

0. 1686 0 

7 0. 2237 0. 1703 0. 1806 0 

9 0. 0846
 

0. 1811
 

0. 1556 0 

10 1.8729 4.0383 1.9223 27 

 (d) PF 

Sensor Fusion 

Options 
Root Mean Square Difference () 

Latency (ms) 
Pitch Yaw Roll 

1 0.3968
 

0.5937
 

1.0801 0 

2 1.1000 2.3543 0.8501 26 

3 0.4232 0.5067 0.8820 0 

5 0.4188
 

0.5407
 

0.9285 0 

7 0.4789 0.2496 0.3088 0 

9 0.8907
 

1.7507
 

1.0289 0 

10 1.1423 2.7504 1.1704 26 
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Fig. 12. Difference between the results from the motion capture system and those from 

the quaternion-based complementary filter when motion capture information is used. 
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Fig. 13. Difference between the results from the motion capture system and those from 

the quaternion-based EKF when motion capture information is used. 
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Fig. 14. Difference between the results from the motion capture system and those from 

the quaternion-based UKF when motion capture information is used. 
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Fig. 15. Difference between the results from the motion capture system and those from 

the quaternion-based particle filter when motion capture information is used. 
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When no sufficient source can be used to remove the drifting, like the cases with 

only one reference vector, we have further validated the necessity of using the method 

introduced in Section 5.1.4. Figure 20 shows the tracking results with and without using 

the proposed algorithm that handles the tracking with only one reference vector in 

Scenario 6 when only the magnetometer reading is used in the update step. It can be seen 

that the tracking accuracy has been largely improved by using the proposed method for 

fusing the information from the gyro and that about the single reference vector. 

Besides, it can be seen from Table 9 (a) – (d) that, compared to using the gyro alone 

in Scenario 8, deploying an extra sensor, such as the accelerometer in Scenario 4 and the 

magnetometer in Scenario 6, helps mitigating the drifting. A 10% improvement in the 

drift rate has been obtained by Scenario 4 for the complementary filter in Table 9 (a). 

Table 9 (c) – (d) show that this strategy also works for other filters that composes of the 

prediction and the update phases. Note that from Table 9 it is clear that Scenario 4 using 

the accelerometer is better than Scenario 6 using the magnetometer. This is because in 

our experiments, the readings from the accelerometer are less noisy than those of the 

magnetometer. As illustrated by Table 10, when the sensors are static, the standard 

deviations of the inertial vector are less than those of the magnetic field vector. 

Finally, the computational costs of the four adopted filters are compared. The 

averaged running time (in Matlab code) for processing a 60s trial using the 

complementary filter, the EKF, the UKF and the PF are listed in Table 11. From Table 11 

we can see that, the computational complexity of the PF is much higher. Such high 

computation load results from the resampling of the PF. The time complexity of the 

resampling step is proportional to the particle number. Such operation introduces a loop 

into every iteration of the PF, which dramatically amplifies the running time in Matlab.  

The complementary filter requires the least time to finish the processing.  
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Fig. 16. Difference between the results from the motion capture system and those from 

the quaternion-based complementary filter without using motion capture data. 
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Fig. 17. Difference between the results from the motion capture system and those from 

the quaternion-based EKF without using motion capture data. 
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Fig. 18. Difference between the results from the motion capture system and those from 

the quaternion-based UKF without using motion capture data. 
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Fig. 19. Difference between the results from the motion capture system and those from 

the quaternion-based particle filter without using motion capture data. 
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Fig. 20. Comparison between tracking results with (blue curves) and without (red) 

using the single reference vector handling algorithm for Scenario 6 when only the 

magnetometer reading is available as the complementary data 

Table 9. Average Drifting Rates using Single Reference Vector in 20s 

 (a) Complementary Filter 

Sensing 

scenarios 
Average drifting rates in 20s (/s) 

Pitch Yaw Roll 

4 0.0871
 

0.1775
 

0.3575 

6 0.0940 0.2208 0.3708 

8 0.0988 0.2484 0.3957 

 (b) EKF 

Sensing 

scenarios 
Average drifting rates in 20s (/s) 

Pitch Yaw Roll 

4 0.0976
 

0.1892
 

0.3890 

6 0.1123 0.2459 0.3827 

(c) UKF 

Sensing 

scenarios 
Average drifting rates in 20s (/s) 

Pitch Yaw Roll 

4 0.0627
 

0.1858
 

0.3826 

6 0.1065 0.2479 0.3810 

(d) PF 

Sensing 

scenarios 
Average drifting rates in 20s (/s) 

Pitch Yaw Roll 

4 0.0839
 

0.1951
 

0.3421 

6 0.0963 0.1928 0.3433 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-50

0

50

100
Pitch (Degree)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-100

-50

0

50
Yaw (Degree)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-100

-50

0

50
Roll (Degree)

Frame Number

 

 

Tracking result of scenario 6 using standard complementary filter

Tracking result of scenario 6 using the method for incomplete complementary data

Reference



  64 

Table 10. Standard Deviations of IMU Reference Vectors in Static Case 

Reference vector X Y Z 

Inertial vector 0.0022
 

0.00082
 

0.00037 

Magnetic field vector 0.0023 0.0025 0.0010 

Table 11. Averaged Time Cost for Processing a 60s Trial 

Filtering algorithms 
Complementary 

filter 
EKF UKF PF 

Running time (s) 2.9175
 

3.7203
 

4.4018 2166.1245 

In summary, with respect to the tracking accuracy in the proposed system, the 

complementary filter provides smaller RMSD in all scenarios than the Kalman filters. 

Such observation implies the complementary filter is quite satisfying in describing the 

nonlinearity for the quaternion-based orientation tracking task. Also, the complementary 

filter does not require extensive computation. Thus it is a proper choice for fusing data 

from the motion capture system and that from the IMU. The particle filter is promising 

for handling noisy sensory data for systems with sufficient computational sources. 

8. CONCLUSION 

The proposed multimodal movement tracking framework using the quaternion-based 

filtering algorithms can work reasonably well in a wide range of sensing scenarios in 

terms of sensor combination. When the sensing scenarios become challenging, e.g., using 

less sensors, the performance of the proposed tracking approach degrades elegantly. The 

four filters implemented for this project: the complementary filter, the extended Kalman 

filter, the unscented Kalman filter and the particle filter, all demonstrate their capability 

in the fusion of motion capture data and IMU data. Through the comparison between the 

Bayesian approaches (the Kalman filters and the particle filter) and the least square 

approach (the complementary filter), it can be concluded that the complementary filter is 

a more effective method for integrating the IMU output and the vision information. When 

handling sensor fusion within the IMU, the particle filter provides superior performance.  
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APPENDIX A 

THE JACOBI MATRIX FOR QUATERNION ROTATION 
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Let      represents a quaternion rotation function that rotates a fixed vector   to    

with quaternion   in the pattern given by 

                   (A-1) 

Its Jacobi matrix  , whose j-th column    is defined as partial differential calculus 

      
     

     
    

          

     
   (A-2) 

where    is the j-th ccomponent of quaternion   (j = 1, 2, 3, 4). Note that, since in 

equation (A-1)    is only the virtual part of the quaternion product,      is a 3-element 

vector. Thus the length of    is 3. Consequently   is a 3 by 4 matrix. 

The calculation of    takes use of the product rule of differential calculus 

       
          

      
     

    

     
            

  

     
  

 (A-3) 

According to the definition of quaternion given by (10), 
  

   
 is derived by 

  

   
                    (A-4) 

  

   
                   (A-5) 

  

   
                   (A-6) 

  

   
                   (A-7) 

Since   is a unit quaternion, its inverse     equals its conjugate   , as demonstrated in 

equation (21) 

                               (A-8) 

Thus, 
    

     
 can be calculated as 

    

   
                    (A-9) 
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                     (A-10) 

    

   
                     (A-11) 

    

   
                    (A-12) 

Substitute (A-4) – (A-12) into (A-3) produces the four columns of   

       
          

   
               (A-13) 

       
          

   
                    (A-14) 

       
          

   
                    (A-15) 

       
          

   
                    (A-16) 

Since      returns a 3-element rotated vector,    only takes the virtual part of the 

quaternions in equation (A-13) through (A-16).  Combining (A-13) – (A-16) presents the 

3 by 4 Jacobi matrix   as 

                       (A-17) 
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APPENDIX B 

PROOF OF THE ORTHOGONAL QUATERNION THEOREM 
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The orthogonal quaternion theorem: If two quaternions     and     are orthogonal 

to each other,     can be written into the form 

                 (B-1) 

where   is unique vector resulting from 

       
           (B-2) 

Proof: Using the quaternion notation given by equation (1) 

                             (B-3) 

                    (B-4) 

The quaternion multiplication       produces     

                                                          

                                                 (B-5) 

Then the dot product between     and     is 

                                                              

                                                      

 (B-6) 

which shows that     and     are orthogonal to each other.  

Substitute (B-5) into (B-2) presents 

       
          

              (B-7) 

which proves uniqueness. Thus the orthogonal quaternion theorem holds true. 
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APPENDIX C 

DERIVATION OF THE JACOBI MATRIX   FOR          
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The state transition function          returns a 4-element predicted quaternion 

orientation    
  as 

   
            =       (C-1) 

when gyroscope data is not involved in the filtering. Then   is a 4 by 4 identity matrix. 

When gyroscope data is introduced into the prediction step,    
  is a 7-element 

vector as     as 

   
             

               

      

    (C-2) 

where               is defined as 

                   
   

 
                

   

 
                   

 

 (C-3) 

Note that in (C-3),        is in its quaternion form, whose virtual part equals the vector 

      .   turns to be a 7 by 7 matrix, which can be defined in the form 

   
  

  
  

  
               

      

 

  
   

  

  

  

  

      
    (C-4) 

where the  -th column of the 4 by 4 matrix 
  

  
 is  

 
  

  
 
 
  

  

   
 

   

 

  

     
                      (C-5) 

and the  -th column of the 4 by 3 matrix 
  

  
 is  

 
  

  
 
 
 

   

 
    

  

   
               (C-6) 

Since in               given by (C-3),        is also used a quaternion. Thus 

  

   
 = 

  

   
              (C-7) 

Consequently 
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               (C-8) 

The calculation of 
  

     
             has been clarified by (A-4) – (A-7). 
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