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ABSTRACT

There has been much research involving simultaneous monitoring of
several correlated quality characteristics that rely on the assumptions of
multivariate normality and independence. In real world applications, these
assumptions are not always met, particularly when small counts are of interest. In
general, the use of normal approximation to the Poisson distribution seems to be
justified when the Poisson means are large enough. A new two-sided Multivariate
Poisson Exponentially Weighted Moving Average (MPEWMA) control chart is
proposed, and the control limits are directly derived from the multivariate Poisson
distribution. The MPEWMA and the conventional Multivariate Exponentially
Weighted Moving Average (MEWMA) charts are evaluated by using the
multivariate Poisson framework. The MPEWMA chart outperforms the MEWMA
with the normal-theory limits in terms of the in-control average run lengths.

An extension study of the two-sided MPEWMA to a one-sided version is
performed; this is useful for detecting an increase in the count means. The results
of comparison with the one-sidled MEWMA chart are quite similar to the two-
sided case. The implementation of the MPEWMA scheme for multiple count data
is illustrated, with step by step guidelines and several examples. In addition, the
method is compared to other model-based control charts that are used to monitor
the residual values such as the regression adjustment. The MPEWMA scheme
shows better performance on detecting the mean shift in count data when positive

correlation exists among all variables.
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Chapter 1
INTRODUCTION

1.1 Overview

The multivariate control charts are widely used to simultaneously monitor
several quality characteristics for detecting the mean changes in manufacturing
industries (i.e. the measurements in production lines or during the inspection).
Various types of the multivariate charts have been explored and discussed
extensively, including the Hotelling T? Multivariate Cumulative Sum
(MCUSUM), and Multivariate Exponentially Weighted Moving Average
(MEWMA) charts. Typically, the MEWMA scheme is used to detect a shift in the
process means, especially for the small shift. The application of the MEWMA
chart is not only limited to the manufacturing and service business, but has also
been extended to public health and biosurveillance problems. For example,
control charting has become more widespread for monitoring disease data and
activity during recent years.

Two important assumptions (a multivariate normal distribution and the
independence of observations) are made before applying the MEWMA scheme.
In practice, the data are most likely observed as counts or number of events of
interest, but sometimes the normal assumption is violated. The departure from
normality can affect the statistical performance of the MEWMA chart. Rather
than ignoring the normality violation, there is a need to investigate the MEWMA
chart’s performance and develop an appropriate way of monitoring multiple count

data.



1.2 Statement of the Problem

The objective of this research is applying the multivariate EWMA control
chart to a specific problem in industry and syndromic surveillance, particularly for
modeling counts or count rates from multiple sources. The situation can be found,
for example, in monitoring several types of defects on a layer of wafer (e.g.
particles, scratches, and pattern defects) during the fabrication process in the
semiconductor industry. Indeed, the defects are considered to be count data and
being monitored at very low level. Such data tend to follow the Poisson
distribution and depart significantly from the assumption of normality.

The effect of violation of multivariate normality involving the MEWMA
chart has not been intensively investigated, and therefore employing the
traditional MEWMA scheme to monitor the changes in those defects becomes
questionable. It could possibly result in a high early false alarm rate or a poor
performance of detecting a shift in the means. In addition, the study of the
robustness of the normal approximation to the Poisson distribution is too small,
and it could be problematic for determining the appropriate mean value of the
Poisson variable to properly approximate by the normal. Thus, an improvement of
the traditional MEWMA chart is necessary to increase the accuracy of the
detection performance by assuming a proper structure to those counts. A new
MEWMA chart for monitoring the multiple correlated count data is proposed as

an alternative method to the traditional one.



1.3 Potential Contributions

This dissertation consists of three topics related to monitoring multivariate
Poisson count data. Firstly, there has been some suspicion on the adequacy of
using the MEWMA chart to monitor correlated counts from multiple sources.
Since a Poisson distribution is commonly assumed in monitoring count data, the
new type of the MEWMA chart that relies on the multivariate Poisson distributed-
data is introduced to tackle this problem. The multivariate Poisson model is
composed as a sum of two Poisson variables (one to represent the positive
correlation among all variables). This new method is referred to as the
Multivariate Poisson Exponentially Weighted Moving Average (or MPEWMA)
control chart. The control limits are straightforwardly derived from Monte Carlo
simulation results based on the multivariate Poisson distribution, instead of the
usual the normality assumption.

A general framework for the construction and use of MPEWMA scheme
to detect the mean changes in both upward and downward directions is presented.
The statistical performance of the MPEWMA chart is examined through the run
length distributions in terms of both the average and standard deviation. A
comparison of the efficacy is made between the MPEWMA and traditional
MEWMA charts at several combinations of the factors, such as the number of
variables and the mean values. Besides understanding the effects on the MEWMA
performance against the Poisson data, the result can help to clarify whether the
use of the normal approximation to the Poisson distribution is appropriate or not

and under what circumstances.



Secondly, an extension of the two-sided MPEWMA chart to the one-sided
version is discussed for detecting any shift in a specified direction, an upward
trend. In many situations, it is not necessary to monitor the mean count changes in
both increasing and decreasing directions. For example in public health
surveillance, one monitors the number of patients with respiratory disease visiting
hospital emergency departments or the incidence rates of disease in various
regions. It is desirable to detect only an increase in those counts because the
downward shift indicates a better condition, i.e. people tend to become healthier
or the spread of disease is not apparent. Hence, applying the two-sided
MPEWMA scheme does not seem appropriate and useful since it should not be
signaled by a decrease in the count (number of patients) or count rate (the
incidence rates of discase).

The Poisson limits of the one-sidled MPEWMA chart are again obtained
through the same simulation procedure. The one-sided MPEWMA chart’s
performance is investigated and the results reported are the average and standard
deviation of the run lengths. The performance comparison of the one-sided
MPEWMA and one-sided MEWMA is examined under a variety of parameter
conditions. The results could help to understand the robustness of the one-sided
MEWMA chart to the multivariate Poisson distribution and determine when it is
appropriate to use the normal approximation to the Poisson data.

For syndromic surveillance application, interpreting an out-of-control
signal beyond the control limit as an out-of-control condition is considered to be

uncertain. A claim that disease has dramatically increased is sometimes
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overreacting if the out-of-control signal is truly a false alarm. However, waiting
too long before making the claim can cause delay in the prevention of the disease
when the disease rate has already increased. This is a trade-off between the
detection time and the confidence in an increased rate of disease. In general, the
time for detecting the mean shifts tends to be longer while waiting for more
signals to occur to ensure an increase in the disease rate. To understand an effect
of detection time delay on making the claim, the one-sided MPEWMA scheme’s
performance is examined not only in an individual out-of-control signal, but also
a run of consecutive out-of-control signal (2, 3, 4, or 5 points in a row). The
results are reported in terms of the detection time and the percentage of correct
detection of the out-of-control state under each of the out-of-control condition
described above. This would help determine whether the risks of making
decisions affect the detection time or not and how big is the effect; therefore the
user should be able to make a better decision on detecting a positive shift in the
disease rate.

Thirdly, another type of control scheme called the model-based control
chart has been utilized to monitor several correlated count data. The model-based
control approaches embrace the process knowledge concept into the use of
conventional control charts to improve their sensitivity and efficiency. There are
several ways to implement process knowledge, but one implementation discussed
in this study is fitting a model to gain more insights into the relationships of
quality characteristics being monitored. The residuals after fitting the model will

be plotted on the conventional control charts, and therefore it is sometimes
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referred to as the residual-based control chart. The regression adjustment
technique is chosen and used in conjunction with the univariate EWMA scheme.
The EWMA scheme is selected for study because it is known to be an effective
method of detecting a small mean shift.

The performances of those model-based control charts are investigated for
several combinations of the parameters including mean values, number of
variables, and various sizes of shift. The average run length (ARL) performances
are reported and then compared with the two-sided MPEWMA chart. The results
are discussed in more detail to explain how well the regression analysis works
with multiple correlated counts, i.e. the performance in removing the correlation
and the ability to transform data into an approximately normal distribution.
Moreover, a comparison of the ARL results can assist in determining whether the
proposed MPEWMA scheme is more useful for early detection of the count

changes than those model-based control methods.



Chapter 2
BACKGROUND LITERATURE

2.1 Background

A Multivariate Exponentially Weighted Moving Average (MEWMA)
chart is one type of multivariate control charts involving a simultaneous
monitoring of several correlated quality characteristics. The MEWMA scheme
was firstly introduced by Lowry ef al. (1992) as a multivariate version of the
univariate EWMA chart for detecting a shift in the mean vectors. In general, the
MEWMA scheme is applied to monitor the process changes in the manufacturing
industries. Testik and Borror (2004) have recommended the use of MEWMA to
detect small and moderate shifts in the process means. Typically, a smaller
smoothing weight (1) is used in favor of detection of a smaller size of shift.
Bersimis et al. (2006) suggested that the MEWMA scheme outperforms the
multivariate Shewhart chart, and for many practitioners it is easier to implement
than a multivariate cumulative sum control chart (Fricker, Knitt, and Hu, 2008).

2.2 Statistical Performance of the MEWMA chart

The statistical performance of the MEWMA chart is computed and
reported in terms of the run length properties. There are three different methods of
calculation. The first method is the simulation technique. Both Average Run
Length (ARL) and the standard errors of the ARL are derived from simulation
over 6,000 times. If all variables have equal interest in monitoring the changes,
the ARL performance will be based on a function of the noncentrality parameter

(0) or the shift size (Lowry et al., 1992). If the quality characteristics being
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monitored are not of equal interest (assuming unequal smoothing weight), the
ARL will depend on the direction of the shift and can be obtained through the
regression adjustment method (Hawkins, 1991).

The second method is using an integral equation. The integral and double-
integral equations are developed to approximate the ARL values. The ARL for the
in-control case can be estimated by solving a single integral equation whereas the
ARL for the out-of-control case is computed by solving a double integral equation
(Rigdon, 1995a; and Rigdon, 1995b). The third method involves the Markov
Chain approach. The Markov chain model has been extended to estimate the
ARL. The MEWMA chart’s performance is presented in two conditions: the
‘zero-state’ and ‘steady-state’ ARL. The ‘zero-state’ ARL is obtained as the
process starts at the normal condition. The ‘steady-state’ ARL is calculated by
assuming a shift has been introduced after the normal operating process runs for a
certain period of time. The ARLs are also reported in terms of a quantity of shift
size for several parameter combinations (Prabhu and Runger, 1997; Runger and
Prabhu, 1996).

2.3 Robustness to non-normal data

The basic assumptions of independence and multivariate normality
significantly affect the adequacy of the MEWMA method. Few articles have
appeared concerning the MEWMA scheme and its performance when it is applied
to non-normal data. The performances of the MEWMA chart were investigated
using the multivariate t and gamma distributions with various values of skewness

and kurtosis up to ten variables (Stoumbos and Sullivan, 2002) and up to twenty

8



variables (Testik, Runger, and Borror, 2003). The MEWMA chart’s performance
is found to be better than Chi-square (%) chart in terms of both larger in-control
and smaller out-of-control ARL values. In both works the MEWMA scheme
relies on the asymptotic covariance. Stoumbos and Sullivan (2002) mentioned
that the use of an exact covariance matrix in calculating the MEWMA statistics
can actually decrease the robustness again the non-normal data. The MEWMA
scheme with a large number of data points and a range of the smoothing weight
(between 0.02 and 0.05) is sufficient to ensure a central limit theorem and hold for
robustness. For the high dimensional case, a smaller value of the smoothing
weight (A) is recommended for increasing robustness to a non-normal
distribution. However, a significant chance of having early false alarm leads to a
departure from the multivariate normality, and therefore the robustness becomes
an issue.

Testik, Runger, and Borror (2003) state that the in-control performance
may be decreased in monitoring non-normal data, that is, the false alarm rate is
likely to increase. Generally, the MEWMA chart with the weight constant of 0.05
is recommended due to its good performance in detecting the changes and
robustness under non-normal conditions, similarly to Testik and Borror (2004).
Testik and Borror (2004) noted that the smaller A value can provide greater
robustness, but it also delays the detection time when the MEWMA vectors go in
the opposite direction relative to the occurrence of a shift. It is referred to as the
inertia problem. For more details of this problem and solutions, see Lowry ef al.,

1992; Niaki and Abbasi, 2005; Woodall and Mahmoud, 2005. Unfortunately,
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there was no further study on the robustness again multivariate Poisson data for
the MEWMA scheme.

In fact, the MEWMA chart is also employed to monitor Poisson counts by
assuming normality. Typically, the normal approximation for Poisson data will
suffice for the large mean counts. For the univariate and multivariate control
charts, several authors have suggested that a good approximation to the Poisson
distribution with a normal distribution can be obtained if the Poisson mean is 5 or
more (Xie, Goh, and Kuralmani, 2002), the Poisson mean is greater than 10
(Joner et al., 2008), the Poisson mean exceeds 12 (Box, Lucefio, and Paniagua-
Quidiones, 2009) and the Poisson mean is at least 15 (Montgomery, 2009).
Moreover, Testik, Runger, and Borror (2003) advised that the central limit
theorem can be applied to the MEWMA if the number of samples is large enough.
However, there has been no clear cut-off values for the mean and appropriate
sample sizes to provide more accurate approximation to the Poisson.

Since those earlier reviews do not provide much information about the
efficiency of the traditional MEWMA scheme to Poisson-distributed data, the use
of the MEWMA chart with the normal-theory limits in such a scenario remains in
doubt due to the accuracy of the normal approximation. In our study, we
introduce a new MEWMA scheme based on the multivariate Poisson distribution.
The simulation method is used to calculate the appropriate control limits and
estimate the performance of the proposed chart. Details on the multivariate
Poisson model and parameter estimation are described in Section 2.4. In Section

2.5, a review of the multivariate control charts that rely on the multivariate
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Poisson assumption are discussed. In Section 2.6, an extension of the MEWMA
scheme to the one-sided test is presented. A discussion of other control chart
techniques for dealing with multivariate data is provided in Section 2.7.
2.4 Multivariate Poisson Distribution

2.4.1 Multivariate Poisson Random Variables

The multivariate Poisson distribution was introduced in two
different forms. Kawamura (1979) presented the multivariate Poisson model in
terms of the sum of p independent random Poisson variates. Johnson, Kotz, and
Balakrishnan (1997) proposed a structure of a multivariate Poisson distribution
involving the correlated Poisson variates. For the control chart application in this
research, the multivariate Poisson distribution is based on the work of Johnson,
Kotz, and Balakrishnan (1997). The p multivariate Poisson random variables are
defined as

X, =Y +Y,fori=1,2,...,p (1)

where Y and Y; are independent Poisson random variables with means & and 6,

respectively and X; are Poisson random variables with means &+ 6, for i = 1, 2,
..., p. The variance-covariance matrix of X,,.., X » has diagonal elements,
Var(X,)=0+ 6, and off-diagonal elements, Cov(X;, X;) = 6. Elements of the
variance-covariance matrix are
Var(X,)=0+6, ,i=1,2,..,p (2)
Cov(Xl.,Xj):H J=1,2,..,p andi#j (3)

The fixed parameter, 8, corresponds to an event or mean common

to all p random variables. Let’s use the previous scenario where monitoring three
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types of defects (particles, scratches, and pattern defects) as an example. The
particle defects on the layer of the wafer (X)) are the combination of the effect of
particle defects on the layer (Y;) (such as etching process) and the effect of
original wafer quality (Y). The quality of the original wafer can also affect other
types of defects; in other words, the scratch defects on the layer of the wafer (X>)
are the combination of the effect of scratch defects on the layer (Y,) (such as
polishing process and handling equipment) and, again, the effect of original wafer
quality (Y). Thus, the effect of original wafer quality is considered as the common
relationships among all types of defects. Skinners, Runger, and Montgomery
(2006) have recommended using this model for monitoring several types of
defects per unit of product (such as defects in assembly automobiles) or defects
per area of product (such as defects in paper or cloth products).

The estimation of all parameters, especially the fixed parameter, is
an important issue, if it is not assumed to be known. We provide a brief
description of the various methods for obtaining €; and 6 as follows.

2.4.2 Theta Parameter Estimation Methods

Holgate (1964) compared two ways of estimating the parameter
for the bivariate Poisson distribution: 1) the maximum-likelihood estimation and
2) the method of moments. The method of moments is considered efficient with
two uncorrelated variables. If the correlation increases, the efficiency of the
method of moments tends to decrease whereas the maximum-likelihood method
provide more precise due to the reduction in variance of maximum-likelihood

estimator. Karlis (2003) used an EM algorithm to approximate the parameters 6,
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of multivariate Poisson distributions. The E-step is used to calculate the estimates
(or pseudo-values). The estimates are then updated by the M-step. One restriction
is to pick the initial values for 6; in the feasible range such as 6, > 0, otherwise the
final values will not be in the admissible range.

Jost et al. (2006) proposed a new approach based on the composite
likelihood concept of Lindsay (1988) to estimate parameters. The optimal
composite likelihood estimator can be derived by using an iterative approach to

solve the equation relating a pairwise log-likelihood function below

m—-1 m aluv (9) B
55 m 20, -0 0

where mis the number of variables and w,, is the weight where in general

w,=1for 1<u<v<m, and [ (0)is the bivariate marginal log-likelihood

uv

function between two variables X and X .

This new method is more effective than the method of moments,
and requires less computational effort than the maximume-likelihood method. He
also mentioned the disadvantage of Karlis (2003) that the computation becomes
more complicated as the multivariate Poisson distribution involves a large number
of variables (eight or more).

2.5 Multivariate charts for the multivariate Poisson distribution

There have been many articles involved in introducing the new types of
multivariate charts that relied on the multivariate Poisson distribution. The first
control chart for the multivariate Poisson distribution was presented by Patel

(1973). The ‘G-statistic’, similar to the Hotelling T-square statistic, is calculated
13



and plotted on the chi-square control chart. The control scheme discussed in Patel
(1973) has not been used in practice because of the complexity of obtaining the
‘G-statistic’. Skinners, Runger, and Montgomery (2006) proposed two types of
schemes to detect the change in the means of multiple Poisson counts. Firstly, the
Deleted-Y chart based on the moment estimator is recommended for only one or

two variables shifted when the all mean counts are assumed equal. Secondly, the
Y chart computed from the sample mean is proposed to detect a change in all

variables. Since both Deleted-Y and Y statistics are plotted on p individual
Shewhart charts, they may not be easy to use for the higher-dimensional
problems.

Chiu and Kuo (2008) studied two new types of control charts for
monitoring multivariate Poisson counts with correlated variables: 1) the
multivariate Poisson (MP) chart and 2) a Shewhart-type chart. The control limits
of the MP chart can be obtained by either the exact distribution based on the sum
of all Poisson variates or a multiple linear regression method (Kuo and Chiu,
2008). The control limits of the Shewhart-type scheme are derived from the
normal approximation to the Poisson distribution. The result shows that using the
normal approximation to the Poisson distribution is good for a mean count of five
or larger. It can be seen that the MP chart performs better than the Shewhart-type
in terms of the in-control ARL, but the out-of-control ARL performance is
sensitive to an increase in the coefficient of correlation. One limitation of the
result is that the authors only examined the run length performance for two and

three variable problems, not in the higher-dimensional case. In addition, it is
14



restricted to the case of positive correlation among the variables being monitored
because the multivariate Poisson model used in this work is expanded from the
bivariate Poisson model proposed by Holgate (1964).

2.6 MEWMA chart and its extension to the one-sided version

The MEWMA chart is generally applied to monitor both positive and
negative changes in the process means. In addition to the industrial and business
applications, the quality control method also has great potential for use in the area
of public health-care and bioterrorism surveillance. An increasing number of
papers have studied the outcome from applying the control chart to detect and
monitor diseases in public health surveillance. The implementation of the
MEWMA chart for public-care and bioterrorism monitoring has been recently
discussed by many authors (Burkom et al., 2005; Yan, Chen, and Zeng, 2008; and
Woodall, 2006). Rolka et al. (2007) addressed the MEWMA chart as one of
several techniques for detecting events of bioterrorism-related outbreak. However,
it is necessary to improve the outcome and avoid false alarm triggered by
unrelated events. Fricker, Knitt and Hu (2008) found a similar performance
between the directional MCUSUM and MEWMA charts in biosurveillance
application. However, the MEWMA scheme is preferred based on practical
reasons for selecting parameters.

A review of statistical methods in modern biosurveillance, describing a
variety of control charts including the MEWMA chart, is given by Shmueli
(2009). The author outlines some concerns with applying traditional multivariate

charts to syndromic data. One concern is the data most often do not follow a

15



multivariate normal distribution nor is the independence assumption satisfied. It is
difficult to justify that bio-surveillance data follow a multivariate normal
distribution since the variety of data sources come from widely diverse
environments (Shmueli and Fienberg, 2006). Fricker (2009) also noted that the
natural occurrence of autocorrelated data cannot be well monitored by standard
SPC techniques used in manufacturing. Another concern is related to the
covariance structure for standard multivariate SPC techniques. The covariance
structure is often assumed to be constant across time. Empirical evidence has
shown that when the data is syndromic, the covariance structure changes over
time. Therefore, applying the standard multivariate charts in these situations
should be done with caution since the covariance structure departs from its
intended application and original setting. Finally, it is more reasonable to detect
only when an increase in syndromic data has occurred. Consequently, the
standard control charts must be modified so that they are more sensitive to certain
directional shifts. For example, one-sided monitoring techniques modified for
surveillance of syndromic data will often result in better detection performance
than two-sided monitoring methods (Lotze and Shmueli, 2008).

Discussions of the design of MEWMA control chart are extended to a one-
sidled MEWMA for detecting only an increase in the mean shift. The one-sided
MEWMA scheme has been studied and appears in many literatures. FassO (1999)
modified the multivariate EWMA chart for the bivariate case by using a restricted
maximum likelihood estimator (MLE) to the MEWMA statistics. The resulting

one-sided MEWMA control chart is designed to monitor an upward shift in at
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least one quality characteristic when no variables have a decreased rate.
Unfortunately, this approach has not been extensively used because of the
method’s complexity and the restrictive assumptions.

Testik and Runger (2006) extended the one-sided MEWMA proposed by
FassO (1999) for use in a higher dimensional problem. Another control method is
proposed for the case where at least one variable shifts either upward or
downward (one-sided test for some variables) and others move in any direction
(two-sided test for the remaining variables). The new approach is referred to as
the partial one-sided control chart. FassO and Locatelli (2007) also developed an
asymmetric MEWMA chart that is similar to the partial one-sided chart by Testik
and Runger (2006) which allows the remaining quality characteristics to change
in both upward and downward direction. Testik and Runger (2006) and FassO and
Locatelli (2007) obtained the MEWMA statistics by quadratic programming. The
slight difference between the two methods is that the control chart statistics of the
asymmetric MEWMA is computed using the asymptotic covariance matrix, but is
not necessary for the partial one-sided chart.

Sonesson and Frisén (2005) recommended applying an individual upper
CUSUM limit to the MEWMA chart introduced by Lowry ef al. (1992). The
proposed method can detect an upward shift in some quality characteristics
without being affected by the downward shifts of other quality characteristics.
Stoto et al. (2006) modified the multivariate CUSUM (MCUSUM) chart to detect

positive shifts by limiting the MCUSUM statistics to be positive values only.
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Note that each of the methods given above is based on the multivariate normality
assumption.

Joner et al. (2005) and Joner et al. (2008) presented a new one-sided
MEWMA chart to detect a small upward shift in the incidence rates of disease.
This one-sided MEWMA scheme is built up from two works - Sonesson and
Frisén (2005) and Stoto et al. (2006). One good feature of the new control method
is that it should not take too long to detect an abrupt increase when there is
evidence of a continuing decrease in the incidence rates before. This is a result of
placing a ‘barrier’ (or zero) within the equation of MEWMA statistics calculation
to prevent the negative results. Consequently, the decrease does not greatly affect
the next computation for detecting the upcoming increase in the incidence rates.
This approach relies on the assumption that the normal approximation to the true
underlying distribution (such as the Poisson) is appropriate (means greater of 10
or more). There are, however, some situations where the normal approximation to
the Poisson distribution is not necessarily true. In particular, when the process
mean is quite small. In these situations, an adequate mean for using the normal
approximation is still an issue in the multivariate case and, therefore monitoring
techniques based directly on the Poisson distribution are recommended.

Recently, there has been a review of the robustness of the one-sided
MEWMA chart to multivariate Poisson data. Yahav and Shmueli (2010)
investigated the performance of the Hotelling T-square and two types of one-
sidled MEWMA charts (modified Follmann (1996) and Testik and Runger

(2006)’s work) under a simulated multivariate Poisson distribution. The
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multivariate Poisson model is generated by the work of Yahav and Shmueli
(2009). The mean rates (from 1, 5, 10, and 20) are tested and the variance-
covariance matrix is assumed to be known. Two extended one-sided MEWMA
charts show superior performance to the Hotelling T-square based on the in-
control ARL. This finding is similar to the result that the two-sided MEWMA
chart is more robust to the multivariate t and gamma distributions than the
Hotelling T-square, as previously discussed by Stoumbos and Sullivan (2002).

2.7 Other control chart techniques

Control chart methods are normally employed on the raw data. A new
method has been developed by combining other modeling techniques with the
quality control monitoring of multivariate data. In the other words, this new
method consists of two steps in data monitoring: 1) a pre-process step and 2) a
control step. The first step is transforming the multivariate data to gain more
insights into a diagnosis such as applying regression analysis. Once the model has
been found, the residuals are calculated and used in the next step. The second step
is monitoring these residuals on control chart for detecting the mean changes.
Thus, the method is called the model-based control chart, or sometimes it is
referred to as the residual-based control chart.

There have been many papers recently that developed the model-based
control charts (see Hawkins, 1991; 1993; Healy, 1987; Mandel, 1969; Skinner,
Montgomery, and Runger, 2003; and Zhang, 1984). The model-based control
technique was firstly introduced by Mandel (1969). The Regression control chart

was aimed to monitor the varying mean by using the conventional control chart in
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conjunction with the regression method. The idea of Mandel (1969) has been
extended to a cause-selecting chart (Zhang, 1984) for monitoring two process
steps. The outgoing variable is monitored by applying regression to adjust for the
effect of an incoming variable. One good feature is that it can help determine
which subprocess goes out of control. Healy (1987) expanded a CUSUM control
method to detect the mean shift in the multivariate case. The proposed CUSUM
chart based on a linear combination of the variables is recommended if shifts in a
known direction are expected. If the shifts are expected in more than one
direction, the CUSUM of orthogonal linear combinations is needed to assure
independence.

Two types of regression adjustment are proposed by Hawkins (1991;
1993). The first method involves the problem of correlated variables and
expecting a shift in the mean of a single variable does not affect the remaining
variables. Hawkins (1991) recommended applying the Z transformation to the
data rescaled to zero mean and unit variance for further improving the Hotelling
T-squared chart. The control chart based on the Z scaled residuals are obtained
from regressing each variable on all others (e.g. regression Xj on X, Xo,..., Xj.1,
Xj+1,..., Xp) and plotting them in multiple univariate control charts, such as
CUSUM charts. The second method relates to a process having a natural ordering,
and therefore a shift can affect some or all subsequent variables, not the prior
variables. It is referred to as a cascade process. Hawkins (1993) introduced other
ways to transform the X scale to the vector Y and W scales by firstly

standardizing variables to zero mean and unit standard deviation. The Y scaled
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residuals are computed from regression each variable on all preceding variables
(e.g. regression X on X, Xo,..., Xj.1). The vector W is defined by scaling vector
X using principal components. The W scale will work reasonably if a shift has
occurred in the direction of one of the principal components. It is considered less
useful than other scales due to a restriction that shifts of the mean should be in a
direction along one of the principal components axes. However, it is not obvious
that Y or Z scales give a better performance. Those decomposition approaches
can be extended for use with other schemes, including the univariate and
multivariate EWMA charts.

Besides the regression adjustment, another regression technique is
proposed for situations where the data are obtained from a biosurveillance system.
Burkom et al. (2004) discussed the concept of sliding buffers under the baseline
period for aggregated data. He suggested applying the control chart method to
normalized data (i.e. the residuals of linear or Poisson regression) if the raw data
show systematic behaviors. The comparison results indicate that using a multiple
EWMA chart with the baseline length obtained from the empirical test provides
better performance than the Hotelling T-square chart with the residuals of
Provider-count regression. Fricker, Knitt, and Hu (2008) applied the “adaptive
regression model with a sliding baseline” presented by Burkom ef al. (2004) and
Burkom, Murphy, and Shmueli (2007) to remove the systematic components in
the biosurveillance data. The residuals are plotted on the directional multivariate

CUSUM and EWMA charts.
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To effectively eliminate the systematic components, there is a need to
determine the appropriate values of parameters used in the adaptive regression
such as forms of the regression model (linear and quadratic models) and the
length of the sliding baseline. Pre-processing is also suggested to remove
deviation from the normality assumption and autocorrelation (Lotze, Murphy, and
Shmueli, 2008; and Yahav and Shmueli, 2010). Those residuals that go through
the pre-process will satisfy the control chart requirements, and then they are
applicable for the quality control methods.

Lotze, Murphy, and Shmueli (2008) pointed out that the preconditioning
(e.g. linear regression, log regression, and differencing) can reduce the seasonality
impact in the syndromic data. Since there may be many explainable patterns in the
data, a failure to remove all those patterns could have a remarkable effect on the
results of the control charting methods. In particular, biosurveillance data with
extremely low counts significantly departs from the normality assumption. Hence,
using the control chart on the unprocessed data may lead to failure of detection of
the presence of an outbreak or an increasing numbers of false alarm rates. The
preprocessing methods used before applying the CUSUM chart to the actual data
have shown improvements by removing variation from other irrelevant sources.

The ordinary least square regression technique above is limited to the
normally distributed data. For non-normal data, the generalized linear model-
based control charts were initiated to monitor counts (Skinner, Montgomery, and
Runger, 2003) and over-dispersed counts (Skinner, Montgomery, and Runger,

2004) from multiple sources. The deviance residuals are calculated by using the
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predicted value obtained from fitting the generalized linear model with an
appropriate link. The deviance residuals used in conjunction with the C chart
show superior performance to the C chart itself in both univariate and bivariate
cases. The link for the model should be selected with care, since it could result in
bad predictions. Lewis, Montgomery, and Myers (2001) investigated the
confidence interval coverage of the mean response when the incorrect link is
assumed. The result demonstrated that a misspecified link has an impact on the
model performance, especially for Poisson data. Precision is reduced and the
confidence interval coverage is degraded by the misspecified link. In addition, the
normal probability plot of the deviance residuals also showed the possible

insufficiency of the fit model.
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Chapter 3
TWO-SIDED MEWMA CONTROL CHART

3.1 Introduction

A Multivariate Exponentially Weighted Moving Average (MEWMA)
control chart is generally used to simultaneously monitor several correlated
quality characteristics for many applications in manufacturing and business. The
implementation of the MEWMA chart requires an assumption of a multivariate
normal distribution. In real world situations, there has been interest in monitoring
a small change in the count or count rate of occurrence of an event. A few simple
examples of quantities that are monitored are the number of defects found at
inspection stations, the number of car accidents that occurred at major junctions
during peak traffic periods, and the number of customer complaints about service
quality to service providers. These sample counts are usually assumed to follow a
Poisson distribution. Since no extension of the MEWMA chart is developed for
the multivariate Poisson distribution, the normal approximation to the Poisson can
be used for applying the MEWMA chart.

There has been no extensive assessment of the MEWMA control scheme
performance for monitoring multiple Poisson-distributed variables when the
assumption of the normal approximation to the Poisson distribution is not
necessarily valid. The adequacy of the normal-distribution model for traditionally
Poisson-distributed data is an issue of concern, particularly if the process means
are small (say 5 or less). In addition, control chart performance, which

corresponds to the normal approximation assumption, is often evaluated assuming
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the covariance structure does not change along with a shift or change in the
process mean. This is not true for the Poisson distribution because an upward shift
in the mean also results in an increase in the variance. If the covariance matrix
remains constant after a shift in the mean has occurred, then it could affect the
shift size calculation and probably lead to an incorrect summary of the run length
distribution.

A new type of multivariate EWMA chart that relies on the multivariate
Poisson distribution has been studied and proposed to properly handle this
problem. It can be referred to as the multivariate Poisson Exponentially Weighted
Moving Average (MPEWMA) control chart. Monte Carlo simulation is utilized to
obtain the appropriate control limits which correspond to an in-control Average
Run Length (ARL) of 200. The statistical performance of the MPEWMA chart is
reported in the form of ARL and Standard Deviation of the Run Length (SDRL).
In addition, comparison of the proposed MPEWMA and the traditional MEWMA
chart’s performance is made in terms of the ARLs.

In Section 3.2, we assess the normality of the multivariate Poisson
distribution. Section 3.3 describes the MEWMA chart. Section 3.4 discusses the
details of simulation method. Section 3.5 presents and summarizes the ARL and
SDRL results. Section 3.6 develops the general equation to estimate the control
chart’s performance. Section 3.7 compares the performance of the traditional
MEWMA and MPEWMA charts. Section 3.8 illustrates an example of using the

MPEWMA scheme.
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3.2 Normality test on the Poisson distribution

The adequacy of the normal approximation to multivariate Poisson-
distributed data is examined by performing the Anderson-Darling normality test.
We illustrate an example of testing the normality on a four-variate Poisson
distribution, X = [X1, X2, X3, X4]. Suppose all four means (8, + 6, 6,+ 6, 65+ 6,
04 + 0) are assumed equal. We consider five multivariate Poisson distributions
with mean 5, 15, 25, 30, and 35, respectively. Each sample data (X, X,, X3, and
X4) 1s randomly generated from each of these five distributions with various 6
values (0, 0.0005, 0.05, and 1) for a minimum sample size (n) of 100 to 200
observations. The Normal probability plots are constructed and the resulting p-
values from the Anderson-Darling test were calculated. The p-values of the first

two variables (X1 and X2) are reported in Table 1 below.

Table 1 Summary of the p-values from the Anderson-Darling Test (n = 100-

200)
Mean 0=0 06 =0.0005 0=0.05 6=1
P-value of P-value of P-value of P-value of P-value of P-value of P-value of P-value of
5 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.006
15 0.024 0.028 <0.005 <0.005 <0.005 0.11 0.015 0.067
25 0.226 0.018 0.308 0.16 0.005 0.109 0.065 0.085
30 0.193 0.017 0.053 0.048 0.466 0.021 0.098 0.229
35 0.021 0.384 0.131 0.191 0.389 0.115 0.057 0.332

It can be seen that the normal approximation is not always valid,

particularly when the mean of the Poisson process is small (e.g., means of 5 and
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15). As a result, control charts based on the assumption of normal-theory limits
may not be appropriate when monitoring Poisson data. Thus, there is a need for
monitoring techniques based on the true underlying distribution of the data.
3.3 The Multivariate Poisson Exponentially Weighted Moving
Average (MPEWMA) Control Chart
The new type of the MEWMA scheme is developed based on the

traditional multivariate EWMA chart. Lowry ef al. (1992) proposed the MEWMA
as an extension to the univariate EWMA chart. The MEWMA scheme takes into
account recent past data which often results in quicker detection of the shifts in
the process mean. Let’s say that p quality characteristics are being monitored
simultaneously. The MEWMA statistic is given by

Z,=RX,+(I-R)Z_, (5)
where Z, is the /" MEWMA statistics vector, X; is the M observation vector for ¢ =
I, 2, .., n and Zy, = 0. The vector R consists of weights assigned to past
observations in each of the p quality characteristics being monitored and | is the
p x p identity matrix. Specifically, let 7;, represent the weight assigned to the I
quality characteristic, then R = diag (7, 72,..., ¥, ), where 0 <r; <1 and j = 1,
2,..., p. If equal weight is assigned to each random variable so that r; =7, = ... =
r, = A, then

Z,=X,+(1-1)Z,, (6)

The covariance matrix for the random variable Z; is
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s, ={“_(l‘ﬂ)ﬂ }z (7

where )’ is the covariance matrix for the p random variables and is assumed to be
known. (Assuming a known covariance matrix is common when evaluating
monitoring techniques). If the covariance matrix is unknown, then it can be
estimated using a number of possible methods (see, e.g., Sullivan and Woodall,
1995; and Williams et al., 2006). As t — oo, the asymptotic covariance matrix

can be written as

A
2z, = {ﬁ} ) )

The MEWMA control chart statistic is given by
I =7,%,Z, ©)
An out-of-control signal will occur if 7>> H, where H > 0 is a threshold

limit selected in order to achieve a desired in-control ARL. The choices of the
parameters H and A can have significant effects on the performance of the
MEWMA chart and should be selected with care.

Since all p random variables being monitored truly follow a multivariate
Poisson distribution, the data are generated from the multivariate Poisson model,
as earlier discussed in Section 2.4.1, using Monte Carlo simulation. The
MPEWMA statistic is obtained simply through the same steps for calculating the
MEWMA statistics (from Equation (5) — Equation (9)). The asymptotic
covariance matrix as shown in Equation (8) is used as the covariance matrix of the

MPEWMA chart. We also consider two additional factors (the mean value and
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the thetafix parameter) in determining the control limits of the MPEWPA chart.
We will present results for various combinations of these parameters in order to
obtain in-control ARL of interest.

3.4 Data Simulation

The proposed control chart is called the multivariate Poisson exponentially
weighted moving average (or MPEWMA) chart. In this simulation study, the

means 6 +6,,...,0 + 6, generated from the Poisson distribution to be investigated

are 3, 5, 8, 10, and 15. Two smoothing weights (4 = 0.05, and 0.1) are selected for
p=4,6,8, and 10 variables. To simplify the study, the means of all variables are
assumed equal. As previously mentioned, the chosen values of 4 have been shown
to be effective in detecting small shifts in the process mean. Values of 6§ were
arbitrarily chosen to be 0.5 and 1. The MPEWMA control chart is studied under
the “steady-state” condition. A “steady-state” control chart is defined as a control
chart that operates in statistical control for some period of time. To simulate the
steady-state condition and then a shift in the process mean, we allow the control
chart to run under normal conditions for one-hundred time periods before a shift
in the process is introduced at time period 101. The simulation continues until
either the first out-of-control signal is found or the simulation routine reaches
100,000 iterations. Each simulation is replicated 50,000 times to provide more
accurate results.

We are interested in the capability of the monitoring scheme to detect the
increase in the mean (shifts) for one or more of the variables. The scenario of

interest is limited to a permanent upward shift, or a long-lasting increase in the
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means. The performance of the MPEWMA scheme is evaluated using various
sizes of the mean shifts such as increases of one up to four units in one or more
variables. Table 2 displays a list of all shifts that we applied to the four-variable
and then the six-variable cases. To illustrate how to interpret the notation in Table
2, suppose we have four Poisson processes with equal means that are being
monitored simultaneously and a shift of 2 units has occurred in only one of the
processes, say process 3. This can be represented by the notation [0, 0, 2, 0],
which can be interpreted as no shift in the mean for the first two processes, a two
unit shift in mean for the third process, and no shift in the mean for the fourth

process.

Table 2 Shift matrix for four-variable and six-variable cases

No. of Variable shift Variable shift
Shift matrix Xy, X5, X3, X4 Xy, X5, X5, X4 X5, X
1 0,0,0,0 0,0,0,0,0,0
2 1,0,0,0 1,0,0,0,0,0
3 0,1,0,0 0,1,0,0,0,0,
4 2,0,0,0 2,0,0,0,0,0
5 0,2,0,0 0,2,0,0,0,0
6 1,1,0,0 1,1,0,0,0,0
7 2,2,0,0 2,2,0,0,0,0
8 1,0,1,0 1,0,1,0,0,0
9 0,0,2,0 0,0,2,0,0,0
10 1,0,0,1 1,0,0,1,0,0
11 0,0,0,2 0,0,0,2,0,0
12 1,1,1,1 1,0,0,0,1,0
13 2,222 0,0,0,0,2,0
14 3,3,3,3 1,0,0,0,0,1
15 4,444 0,0,0,0,0,2
16 1,1,1,1,1,1
17 2222272
18 3,3,3,3,3,3
19 444444
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The shift size or ‘noncentrality parameter’ (d) is based on Lowry ef al.’s

work (1992) and defined as
S=[(n-n,) 7 (n-p )" (10)

where po represents the mean vector for an in-control process, p represents the
mean vector after a shift has occurred, and ) is the variance-covariance matrix. It
can be noted that equation (10) is also referred to as the Mahalanobis’ distance.
As shown in equation (10), the shift size is related to changes in both the mean

and covariance matrix.

For the multivariate Poisson model, an increase in any element of the
variance-covariance matrix, Y., corresponds to a shift in one or more means, 6 +
6;, which are diagonal elements of the covariance matrix. In other words, we take
into account the effect of the mean shifts on the variance-covariance matrix to
obtain a better estimate of the MPEWMA statistics in equation (9) and the shift
size calculation in equation (10). Table 3 displays the shift size calculation
assuming the means of all four variables are 3 with two values of § (8 = 0.5, and
1). For example, the shift size using equation (10) for the case of [0, 0, 2, 0]
would be 0 = 0.912 (for # = 0.5) and 6 = 0.953 (for 8 = 1). It is important to note
that shifts in the process means will not always result in the same overall shift size
(). For example, [0, 0, 2, 0] and [1, 1, 0, 0] both represent a total two-unit shift in
the process. However, 6 =0.912 for [0, 0, 2, 0] and 0 = 0.689 for [1, 1, 0, 0] when
6 = 0.5. Therefore, there can be slightly different resulting shift sizes for any two

processes that may have the same total unit shift.
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Table 3 Examples of the shift size calculation on four-variable case

No. of Variable shift shift size (J)
Shift matrix X, X,, X5, X, Mean=3 Mean=3

6 =0.5 6=1

1 0,0,0,0 0 0
2 1,0,0,0 0.512 0.542
3 0,1,0,0 0.512 0.542
4 2,0,0,0 0.912 0.953
5 0,2,0,0 0.912 0.953
6 1,1,0,0 0.689 0.707
7 2,2,0,0 1.239 1.265
8 1,0,1,0 0.689 0.707
9 0,0,2,0 0.912 0.953
10 1,0,0,1 0.689 0.707
11 0,0,0,2 0.912 0.953
12 1,1,1,1 0.853 0.756
13 2,2,2,2 1.569 1.414
14 3,333 2.191 2.000
15 4,444 2.744 2.309

3.5 Results

The statistical performance of the proposed MPEWMA chart is
investigated by assessing the run length distribution, including the average run
length (ARL) and standard deviation of the run length (SDRL). The control limit
(H) was chosen to provide the in-control ARL of 200. The appropriate control
limits to achieve the steady-state in-control ARL of 200 are summarized in
Table 4. The ARL performance for different smoothing weights (1) and various
number of quality characteristics (p) are presented in Tables 5 and 6 for § = 0.5

and 8 = 1, respectively.
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The results show that the out-of-control ARLs can be quite different for
processes that have the same number of unit shifts. For example, a shift of two
units in a single mean such as [2, 0, 0, 0] (or 6 = 0.912) with A = 0.1 and 8 = 0.5
has an ARL of 12.491 (see Table 5), while a two-unit shift in two variables such
as [1, 1, 0, 0] (or & = 0.689) has an approximate ARL of 19.648 (again with A =
0.1 and 8 = 0.5). Both are a “shift” of 2 units, but the ARLs and the shift-size of
the mean are fairly different. However, the out-of-control ARLs are similar when
the same number of variables shifts by the same amount. For example, the ARL
for a shifted process such as [1, 1, 0, 0] is roughly the same as the ARL for the
resulting process of [1, 0, 1, 0] or the process of [1, 0, 0, 1] for the same value of
A.

For a complete investigation of the performance of the proposed
MPEWMA chart, the standard deviation of each scenario is calculated and
summarized in Tables 7 and 8. The pooled standard deviations are applied within
the same shift size. Moreover, the accuracy of the true mean of the population can
be evaluated by calculating the standard error of the ARL (SEary). The formula of

the SEARry is given by

S
Vn

where S is the standard deviation, and » is the number of replicates. A total of

SE 0 = (11)

50,000 replications is used for each scenario. Thus, the standard error of the mean
is comparatively small due to the large sample size. The maximum value of SEz;

is around 0.91 whereas the minimum value is approximately 0.005. A smaller
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value of SE,r; implies a more accurate estimate of the true mean of the run
length, and therefore the sample mean is close to the population mean of the run
length. The results clearly demonstrate that the SE,z; decreases monotonically
with an increase of the shift size. The SE g, computed from a large shift size
tends to be small and one obtains a better estimate of the true mean than for a

small size of shift.

3.6 General Equation of the Average Run Length

Since the simulation study is limited to the certain values of the parameter
combination as discussed in Section 3.4, the average run length performance of
the proposed MPEWMA control chart could be further extended to include other
values of those parameters by performing a multiple regression. We fit both the
multiple linear regression and Generalized Linear Models (GLM) to the ARL
values. The five possible variables considered affecting the out-of-control ARL
values are the shift size (), the fixed common mean (6), the smoothing weight
(4), the number of variables being monitored (p), and the process mean of interest
which is assumed to be equal among all process means (x). Cases of no shift (6 =
0) related to an in-control ARL are removed to provide a more accurate model.
The preliminary results show that the GLM with the exponential distribution
provides a better fit to the ARL performance of the MPEWMA scheme as the
ARL values tend to decrease exponentially with increasing the size of shift. The
SAS output indicates that only four parameters (p, J, 4, and u) are statistically
significant (p-value < alpha level of 0.05) as shown in Table 9. The fixed common

mean, @, is not significant and dropped from the fitted model. Table 10 reports the
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output of fitting the model without the fixed common mean variable (6) in SAS.

Thus, the fitted model is

. -1
y= (12)
0.007 +0.0008 p—0.0004 1z +0.0547 1 —0.0840 5

Table 9 The SAS output of fitting the GLM with the exponential distribution to

the ARL values obtained from simulation.

The GENMOD Procedure
Model Information

Data Set WORK .ALLDATA

Distribution Gamma

Link Function Power(-1)

Dependent Variable ARL ARL
Number of Observations Read 1900
Number of Observations Used 1900

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF
Deviance 1894 37.8351 0.0200
Scaled Deviance 1894 1906.2848 1.0065
Pearson Chi-Square 1894 32.5436 0.0172
Scaled Pearson X2 1894 1639.6761 0.8657
Log Likelihood -5132.6491
Full Log Likelihood -5132.6491
AIC (smaller is better) 10279.2981
AICC (smaller is better) 10279.3573
BIC (smaller is better) 10318.1454

Algorithm converged.

Analysis Of Maximum Likelihood Parameter Estimates

Standard Wald 95% Confidence Wald

Parameter DF Estimate Error Limits Chi-Square Pr > ChiSq
Intercept 1 -0.0068 0.0006 -0.0079 -0.0056 129.39 <.0001
Var 1 -0.0008 0.0000 -0.0008 -0.0007 1576.43 <.0001
Mean 1 0.0004 0.0000 0.0003 0.0004 225.06 <.0001
Lambda 1 -0.0547 0.0031 -0.0608 -0.0486 308.19 <.0001
Shiftsize 1 0.0840 0.0005 0.0830 0.0851 24258.5 <.0001
Thetafix 1 -0.0003 0.0003 -0.0009 0.0003 1.08 0.2996
Scale 1 50.3840 1.6293 47.2897 53.6807

NOTE: The scale parameter was estimated by maximum likelihood.
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Table 10 The SAS output after dropping the fix common mean variable from the

model
The GENMOD Procedure
Model Information
Data Set WORK .ALLDATA
Distribution Gamma
Link Function Power(-1)
Dependent Variable ARL ARL
Number of Observations Read 1900
Number of Observations Used 1900
Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 1895 37.8565 0.0200
Scaled Deviance 1895 1906.2884 1.0060
Pearson Chi-Square 1895 32.5559 0.0172
Scaled Pearson X2 1895 1639.3756 0.8651
Log Likelihood -5133.1867
Full Log Likelihood -5133.1867
AIC (smaller is better) 10278.3734
AICC (smaller is better) 10278.4178
BIC (smaller is better) 10311.6711
Algorithm converged.
Analysis Of Maximum Likelihood Parameter Estimates
Standard Wald 95% Confidence Wald
Parameter DF Estimate Error Limits Chi-Square Pr > ChiSq
Intercept 1 -0.0070 0.0006 -0.0081 -0.0059 157.61 <.0001
Var 1 -0.0008 0.0000 -0.0008 -0.0007 1574.78 <.0001
Mean 1 0.0004 0.0000 0.0003 0.0004 224.29 <.0001
Lambda 1 -0.0547 0.0031 -0.0608 -0.0485 307.95 <.0001
Shiftsize 1 0.0840 0.0005 0.0830 0.0851 24266.2 <.0001
Scale 1 50.3557 1.6284 47.2631 53.6505

NOTE: The scale parameter was estimated by maximum likelihood.

A comparison between the simulated and fitted ARL from the above
equation is provided in Figure 1. Figure 1 displays the plot of the out-of-control
ARL values of the simulation and those from the fitted model for all cases as a
function of 6. However, using the general equation gives a slightly larger out-of-
control ARL than the simulation method. It can be noted that the general equation
may not provide good approximations for the small shift size and large number of
variables. We can see from Figure 1.d, when the size of shift is around 0.25 with

fifteen-variables, the out-of-control ARL based on equation (12) is approximately
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380, with the simulated value being close to 125. Thus, it can be noted that one
should use the general equation with caution to approximate the out-of-control
ARL value for the small shift size (say less than 0.3) and large number of

variables (ten or more).

Figure 1 The comparison of the simulated and calculated ARL plots separated

by the number of variables.

I ! I ! I ! I ! I ' I ' I ! I
All Four-variable Cases § All Six-variable Cases |
<& ¢ < Simulated ARL <& ¢ < Simulated ARL
Q + + + Calculated ARL + + + Calculated ARL
80 — % i
| R |
o o B
< <
40 | N
0
0
Shiftsize Shiftsize
a. All Four-variable Cases b. All Six-variable Cases

! I ! I ! I ! I
:‘: All Ten-variable Cases
& & < Simulated ARL
+ + + Calculated ARL

Shiftsize

c. All Ten-variable Cases
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3.7 Effect of Changing the Common Variable

In Section 3.5, we discussed the statistical performances of the MPEWMA
chart with two thetafix values (6= 0.5, and 1). The ARL values reported in Table
5 — 6 are calculated by assuming the mean of the common variable () remains
the same. However, sometimes both the mean of the common variable and other
variables (i.e. 6;) increase simultaneously. Thus, we extend the investigation of
the proposed MPEWMA scheme into the case of monitoring the mean shift in the
common variable (X). Five mean values of the common variable are tested (6 =
0.5, 1, 1.5, 2, and 2.5). The smoothing weight of 0.05 is selected in this study.
Table 11 shows the ARL performances of the MPEWMA chart when the common
variable and one of the other variables shift together. For two variables shifted
and all variables shifted, please see Table 12 and 13, respectively.

It can be seen that an increase in the common variable has an effect on the
in-control ARL for the mean of 3, but there is a little or none for the mean of 5 or
larger. The out-of-control ARL values show a significant decrease in case of one
or two variables shifted (Table 11 - 12), particularly for a small unit of shift
matrix. It is worthy to note that the combination of increase in both common
variable and all variable means could cause a dramatic increase in the out-of-
control ARL values (see Table 13). This corresponds to the small shift size (0)
computed from Equation (10). An increase in the mean of the common variable

can result in a large covariance matrix, and produce the small shift size.
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3.8 Comparison of the MPEWMA and MEWMA Control Chart

To gain more insight into the performance of the MEWMA chart under
the multivariate Poisson distribution, a comparison is made between the
MEWMA and MPEWMA scheme’s performance. The control limits of the
steady-state MEWMA chart based on the work of Prabhu and Runger (1997) are
established assuming the multivariate normal distribution. The ARL performance
of the MEWMA chart is reported in Table 14 in terms of a quantity of the shift
size. For the proposed MEWMA monitoring scheme, the multivariate Poisson
data are generated using the simulation method and conditions similar to that
discussed in Section 3.4. The normal-theory limits are placed on the MPEWMA
chart to obtain the true performance of the MEWMA based on the multivariate
Poisson. The ARL performance comparisons are shown in Tables 15 — 16 for 6 =
0.5 and 1, respectively. The in-control and out-of-control ARLs are both
investigated to evaluate the robustness of the MEWMA chart

3.8.1 Out of-Control ARL Comparison

Comparing two control charts that have shifted by some amount, the chart
with a smaller out-of-control ARL is preferred. For a fair comparison, the in-
control ARLs for the two methods must be approximately equal. The traditional
MEWMA chart and the proposed MPEWMA chart perform similarly in detecting
the same shift in the process means as reported in Tables 15 and 16. It can be
noticed that if the shift size, 0, is less than 0.6, the out-of-control ARLSs obtained
from the MPEWMA chart are slightly but not much worse than the out-of-control

ARLs for the MEWMA chart.
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Table 14 The Steady State ARL for the MEWMA chart proposed by Prabhu and

Runger (1997)
p )
(Shift size) ~ 0.05 0.1
4 H 11.22 12.73
0 199.98 200.05
0.5 29.52 33.12
1 12.27 11.38
1.5 7.75 6.7
2 5.71 4.8
3 3.82 3.14
6 H 14.6 16.27
0 199.88 200
0.5 31.91 37.08
1 13.31 12.41
1.5 8.43 7.25
2 6.23 5.18
3 4.17 3.38
10 H 20.72 22.67
0 200.06 200.06
0.5 36.87 44.19
1 15.23 14.32
1.5 9.64 8.23
2 7.11 5.83
3 4.76 3.79
15 H 27.82 30.03
0 200.05 199.95
0.5 41.78 51.23
1 17.13 16.3
1.5 10.8 9.21
2 7.97 6.48
3 5.32 4.18

3.8.2 In-Control ARL Comparison
The most important result from this study concerns the in-control ARLs.
As alluded to previously, out-of-control ARLs of two or more monitoring
schemes can only be compared fairly if the corresponding in-control ARLs are
approximately the same value. Notice the in-control ARLs reported in Tables 15

and 16. The in-control ARLs for the MPEWMA for data that comes from a
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multivariate Poisson distribution are close to 200. However, when the MEWMA
using the normal-theory limits from Prahbu and Runger (1997) is applied to
multivariate Poisson distributed data, the in-control ARLs are not the advertised
value of 200. In fact, when the control limit for the MEWMA based on the
normality assumption is applied to the multivariate Poisson-distributed data, a
substantial reduction in the in-control ARL occurs. For example, instead of an in-
control ARL near 200 as expected, the true in-control ARL ranges from 170 to
190 (see Tables 15 - 18). That is, using the MEWMA chart assuming multivariate
normality when the underlying distribution is truly multivariate Poisson, results in
a 5-15% reduction the in-control ARL and thus, an increase in false alarms. This
reduction is quite obvious for small process means (5 or less) and a large number
of variables (10 or more). A large in-control ARL for the MPEWMA indicates
that it will result in fewer false alarms than the MEWMA scheme for normally
distributed data.

The results have significant implications in practice. Specifically, we have
shown that if one simply assumes the normality assumption applies (and uses
published normal-theory limits) when in fact the underlying distribution is
something such as the multivariate Poisson, expect an increase in out-of-control
signals when the process is truly in control. The practitioner may be stopping the
process when a signal occurs, when in fact the process is still in control.

3.8.3 SRDL Comparison
We also examined the standard deviation of the run length (SDRL). Tables

19, 20, 21 and 22 give the SDRLs for the MEWMA and MPEWMA control
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charts for two values of 8 (4 = 0.5 and 6 = 1, respectively). The SDRL results are
quite similar to those ARL results for both in-control and out-of-control
processes. The MEWMA relied on the normal theory approximation provides
considerably lower SDRL values than the MPEWMA for the in-control case. On
the other hand, there is no difference in the out-of-control SDRL performance,

particularly when the size of shift becomes large.
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3.9 Examples

We illustrate how to apply the proposed MPEWMA control chart to a
situation where we monitor four different types of GaN-epitaxial layer defects
(particles, micropits, microcracks, crescents) that may occur after polishing the
sapphire substrates in the light emitting diode (LED) manufacturing process. The
count for each defect type follows a Poisson distribution with a mean of 3. A total
of three-hundred observations are collected at inspection points over two months.
It is appropriate to apply the MPEWMA scheme since the numbers of defects
tends to follow a multivariate Poisson rather than the normality assumption. The
values of all theta parameters (6, 6,, 63, 64, and ) are needed to be determined
before using the MPEWMA control chart. Two ways of obtaining these parameter
values are: using the true mean value (if they are known) and the estimated value
of the means (if they are unknown).

3.9.1 True Parameter Value
Suppose we know that the true value of @ is 1. The sample mean and the

variance-covariance matrix of the four-variate Poisson data are given by

3 g+ 6 0 0 3 10 10 1.0
. le,+0| |3 .|l 6 6+ o 6 | |10 3 10 10
=|. -

3

ol
I
|

6 6 6+6 6 | [10 1.0 3 10
6 6 0 6+60| |10 10 10 3

Thus, all 6, 60,, 65, 04 are equal to 2. The MPEWMA chart is constructed

using a smoothing weight of 0.05 (A = 0.05). To demonstrate the 7, computations,
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6 0
. . 1 0
consider the first period, X, = 3 ,A=0.05,and Z, = ol
5 0
0.15
. -0.10
The calculation of Z; is Z, =A(X,-X )+(1—/1)Z0= o | Since
0.10
0.15
-0.10 A 0.05 *
Z = ,and 2, = —— 2= S, we obtain
o 2 {2—/1} {2—0.05} e oo
0.10

T} =7Z,%, Z, =0.7556

Table 23 presents the sample calculations of Z; and T, ' for the first ten
observations. The control limit of the MPEWMA chart can be read directly from
Table 4 (H = 11.49). If the MEWMA scheme is employed instead of the
MPEWMA, the normal-theory limit is obtained from Table 11 (H = 11.22). It is
noticed that the T-square statistics of the MPEWMA and MEWMA control charts
are identical, but the control limit of the proposed MPEWMA chart (H = 11.49
for Poisson limit) is slightly wider than the traditional MEWMA chart (H = 11.22

for Normal limit).
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Table 23 Example of calculations the T-square statistics of the MPEWMA chart

for the first 10 observations.

MPEWMA (A = 0.05)

Obs  x1 X2 X3 x4 Z T,
1 6 1 3 5 0.1500 -0.1000 0.0000 0.1000 0.7556
2 7 7 6 4 0.3425 0.1050 0.1500 0.1450 1.5595
3 1 3 1 3 0.2254 0.0998 0.0425 0.1378 0.7597
4 3 3 4 5 0.2141 0.0948 0.0904 0.2309 0.9772
5 4 1 1 2 0.2534 -0.0100 -0.0141 0.1693 1.3007
6 4 5 5 7 0.2907 0.0905 0.0866 0.3609 2.2616
7 2 2 1 0 0.2262 0.0360 -0.0178 0.1928 1.1327
8 3 3 2 4 0.2149 0.0342 -0.0669 0.2332 1.5099
9 4 2 1 4 0.2149 0.0342 -0.0669 0.2332 2.8385
10 2 1 1 2 0.1914 -0.1166 -0.2554 0.2079 3.0921

Figure 2 Comparison of the MPEWMA and MEWMA charts on monitoring the

number of defects
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Figure 2 displays the comparison of applying the normal and Poisson
control limits to the T-square statistics when the data truly comes from the

multivariate Poisson distribution. These two limits perform similarly when the
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process shifts to an out of control state as the first out-of-control signal occurs at
the same period 207. This may result from the similar out-of-control ARL
performance. However, it can be seen that the normal-theory limit gives 5 false
alarms whereas only 3 false alarms occur under the Poisson limit. These false
alarms arise between period 62 and period 74 as shown in Figure 2 inset. The
MPEWMA scheme reduces the number of false alarms that indicate the chance of
misinterpreting the in-control process to be out-of-control status due to the better

in-control ARL performance.

Figure 3 Comparison of the MPEWMA and MEWMA charts based on the in-

control condition

I I I I I I I I I I I I
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We provide another example to amplify the importance of a larger in-
control ARL value. Let’s continue with the previous example by considering the

new scenario of an in-control process over a long period (a total of 400
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observations). Figure 3 shows a comparison between the MPEWMA and
MEWMA charts on monitoring an in-control process. The plot shows that no
alarm is given in the first two hundred periods by using the Poisson limit on the
MPEWMA scheme whereas the MEWMA relied on the normal limit signals 2
false alarms at period 151 and 161, respectively. After that both schemes
simultaneously detect the out-of-control signals at period 307 to 310. The result
demonstrates a difference in false alarm rate as the wider control limit produces
fewer false alarms. Thus, the MEWMA chart tends to have more false alarms than
the MPEWMA, resulting in more stops in production pace to investigate and fix a
problem when one does not occur.
3.9.2 Parameter Estimation

We also look at the scenario where the estimated values of 8y, 0,, 65, 0,
and 6 are used in place of the true values. If the values of all parameters are
unknown, we would estimate these values from historical data if available. (See
Section 3.2.1 for details on various methods of estimating these parameters.). The
purpose of using estimates is that in practice, the mean values will not necessarily
be known, but historical data from an in-control process may be available. Going
back to the previous example, all the theta parameter values (6, 6, 65, 0,4, and )
are obtained by applying the composite likelihood concept (Jost et al. (2006)) to
the historical data set with 100 observations. The estimation of the theta
parameters are 0; = 2.3791, 6, =2.0652, 6; =2.1085, 6, = 2.4543, and 6 = 0.7607.
Therefore, the sample means and variance-covariance matrix based on the

estimated theta parameters are
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2.3791+0.7607 3.1398 3.1398 0.7607 0.7607 0.7607

X 2.0652+0.7607 2.8259 d . 107607 2.8259 0.7607 0.7607
2.1085+0.7607 2.8692 0.7607 0.7607 2.8692 0.7607

2.4543+0.7607 3.2150 0.7607 0.7607 0.7607 3.2150

It can be seen that the mean values of all four variables are roughly three
and the thetafix parameter is about 1. Thus, the same control limit (H = 11.49) is
chosen for the smoothing weights of 0.05. Again, we calculate the T-square
statistics by following the steps described above. Two T-square statistics based on
the true and estimated value of all theta parameters are plotted in Figure 4. These
two MPEWMA schemes show the same pattern, but they have the magnitude
differences of the T-square statistics. The effect of the estimation of the theta
parameters (6, 0, 05, 64, and 0) could make substantial differences in magnitude

for both directions toward increasing or decreasing the T-square statistics.

Figure 4 Comparison of the two MPEWMA charts using the true and estimated

mean and variance-covariance matrix.
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Chapter 4
ONE-SIDED MEWMA CONTROL CHART

4.1 Introduction

The multivariate exponentially weighted moving average (MEWMA)
control chart is frequently used to monitor both decreasing and increasing mean
shifts in several processes concurrently. The MEWMA scheme is commonly
employed in industry and manufacturing, but is finding increased popularity in
monitoring public health and bioterrorism surveillance data. Regardless of
application, the MEWMA control chart is most often constructed assuming that
the underlying distribution of the data is multivariate normal. In other words, the
common assumption of the central limit theorem or the normal approximation
will apply when the true underlying distribution of the data is not normal (or
multivariate normal) and in some cases not even continuous. Examples would
include monitoring the increase in the rate of occurrences such as the number of
cracks in road pavement surfaces, number of misprints and errors found on
manuscript pages, or number of failures observed during testing processes. In
each of these situations, the data collected most commonly follows a Poisson or
multivariate Poisson distribution. However, the control charts applied are based
on normal theory assuming the central limit theorem will apply.

There is an interest in detecting a positive shift in count since the upward
trend is evidence for abnormal conditions in the manufacturing process or public
health surveillance. For instance, a large number of defects observed during the

inspection periods or an increasing number of daily visit to clinic and health care
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counts. These can be considered as a signal to stop and fix an existing problem
whereas the downward direction shows a good performance (i.e. less number of
defects found or the process has improved product quality). Hence, applying the
one-sided MEWMA scheme is more appropriate than the two-sided because it
will not signal if the mean counts decrease.

We propose a one-sided multivariate Poisson EWMA (MPEWMA)
control chart to detect small and medium upward shifts in the process when the
process consists of count data. For our method, we do not assume the normal
approximation is appropriate and instead construct the control charts using the
multivariate Poisson distribution. The average run length (ARL) and standard
deviation of the run length (SDRL) are examined for both steady-state in-control
and out-of-control processes. We then compare the MPEWMA with the
MEWMA control schemes. In addition, we examine the performance of the
MPEWMA chart when a signal is defined as two or more points in a row beyond
the control limits. There are several applications where a single point beyond the
control limits is not of concern, but rather a run of say 2, 3, 4, or 5 points is of
concern. This is often the case in monitoring public health data.

4.2 One-sided MPEWMA chart

The one-sided MPEWMA chart has been established by the works of

Joner et al. (2005) and Joner ef al. (2008). The one-sided MEWMA statistic is
z,=max{A(X, - 1) +(1-2)Z,, 0} (13)

where Zy = 0, and 4 is the smoothing weight. The maximum operator is defined as
a comparison of the two element-wise vectors. Thus, Z, will be equal to or greater
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than 0, and the one-sided MPEWMA chart shows only a signal for an increase in
the means. Suppose we are monitoring p random variables simultaneously.

Assuming all p variables are given equal weight (4 > 0), the covariance matrix of

2212{11—(1—1)’ }z (14)

Z,is given by

2-1
where )’ is assumed to be the known covariance matrix of the p random variables.

The asymptotic covariance matrix (+—o0) can be shown to be

A
z, ={m}z (15)

An out-of-control signal is generated if
MEW, =2,y 7> H (16)

where H is the control limit chosen to achieve a specific in-control ARL. The

asymptotic covariance matrix is again used to calculate the statistics MEW, given

in Equation (16). To monitor the multivariate Poisson data, the one-sided
MPEWMA statistics are computed using the above Equations (13) — (16). The
covariance matrix of the one-sidled MPEWMA chart is obtained from the
asymptotic covariance matrix given in Equation (15). The performance of the
MEWMA control chart depends on several parameters including the number of
variables (p), the variable mean values, and the smoothing weight (4). Similar to
the two-sided MPEWMA chart, the mean and the thetafix values are additionally
considered in establishing the control limits of the one-sided MPEWMA when the

multivariate Poisson data are simulated following the method of the two-sided
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case. We obtain appropriate control limits that will result in the desired in-control
ARL for various practical combinations of these parameters.

4.3 Simulation Conditions

Monte-Carlo simulation is used to generate the multivariate Poisson
distribution as the sum of two independent Poisson random variables. The Poisson
data is produced under the same conditions applied to the two-sided version. The
threshold or control limit (H) was selected to achieve a desired in-control average
run length (ARL) of 200. To evaluate the statistical performance of the proposed
one-sided scheme, we consider both average run length (ARL) and standard
deviation of run length (SDRL) when testing various combinations of parameters
discussed previously for various shift sizes. Several shift sizes are added to the
mean of one or more variables simultaneously by one, two, and three units. Joner
et al. (2008) noted that the shift size should be calculated in terms of percentage
change, not the units of the standard deviation as previously proposed by Lowry
et al. (1992). Since a Poisson distribution has the property that the variance is
equal to its mean, it may not be easy to interpret the shift size in situations where
the out-of-control condition is due to a standard deviation increase. The

percentage of change developed based on Lucas (1985) is given by

% of shift = x 100 (17)

where u is the unit of the shift size, and g, is the mean of the data before the shift
has occurred. To illustrate, suppose we simultaneously monitor four Poisson
process means when all means are equal to 3. In addition, we are interested in a
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two unit shift in the second process variable, and there are no shifts in the other

variables (variables 1, 3, and 4). The shift size percentage in the second process
using Equation (17) is %x 100 = 67 % whereas the percentages of shift size in the

other processes (variable 1, 3, or 4) are zero. Thus, it can be seen that a two unit
shift in any of these four variables (variable 1-4) would result in the same shift
size (67%). Consider a unit of two shifts of one unit in the first and second
variables that also represents a two-unit shift in the process means. The

percentages of shift size in the first and second process means using equation (17)

are %x 100 = 33%. It shows that the percentage of two-unit shift size calculated

from a two-unit shift in one variable is not equivalent to one-unit shift in each of
two variables. Therefore, the same unit shift in the mean will not always have the
same values for the percentage of the shift.

4.4 Results

We investigate the one-sided MPEWMA control chart under the “steady-
state” condition. That is, we assume that the control chart operates under normal
conditions for two-hundred time periods before a shift occurrs at period 201. The
out-of-control average run length (ARL) is calculated as the average number of
samples taken before detecting an upward shift when the process actually goes out
of control. It helps to determine how quickly the proposed chart detects this
upward shift. Summaries of the ARL performances for the control limits chosen

to achieve the steady-state ARL of 200 are shown in Table 24 (for 8 = 0.5) and
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Table 25 (for § = 1). Examining these tables, it can be seen that the out-of-control
ARL drops significantly when a large shift is added to any single mean. We
illustrate this reduction using the previous example of monitoring four process
means. From Table 20 with 4 = 0.05, and 8 = 0.5, the ARL value decreases from
28.574 (33% shift in one variable) to 12.277 (67% shift in one variable). In
addition, the out-of-control ARL value in Table 20 is reduced from 28.574 (33%
shift in any one variable shifted) to 16.907 (33% shift in any two variables
shifted), and to 10.263 (33% shift in all four variables shifted).

Since the means of all variables are equal, we found that a number of units
shifted in the mean and not the variable shifted is directly related to the chart’s
ability in detecting the upward shift. Again, we use the previous example of
monitoring four variables to demonstrate this relationship. Suppose now we are
interested in a two-unit shift in the process mean. A shift of two units can be
denoted by either two units in a single mean (variable 1 [2, 0, 0, 0], variable 2 [0,
2, 0, 0], variable 3 [0, 0, 2, 0], and variable 4 [0, 0, 0, 2]) or one unit in any two
means (variable 1 and 2 [1, 1, 0, 0], variable 1 and 3 [1, 0, 1, 0], and variable 1
and 4 [1, 0, 0, 1]). The out-of-control ARL of 12.277 for two units in a single
mean shift are approximately the same among these four variables ([2, 0, 0, 0], [0,
2,0,01,[0,0, 2, 0], and [0, 0, 0, 2]). However, the out-of-control ARL of 16.907
for a unit shift in two means [1, 1, 0, 0] is similar to those of [1, 0, 1, 0] or [1, 0, O,
1].

In addition to the ARL performance of the one-sided MPEWMA chart, we

examine the standard deviation of the run length (SDRL) for all scenarios. The
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SDRL is calculated by pooling the standard deviations among the same shift size.
Table 26 and 27 display the summarized SDRL values of the one-sided
MPEWMA scheme for 8 = 0.5 and 6 = 1, respectively. The SDRLs have the same
behavior as the ARLSs, but are substantially lower than the ARL.

4.5 The one-sided MPEWMA and MEWMA Chart Comparisons

We next compare the proposed one-sided MPEWMA with the one-sided
MEWMA chart introduced by Joner et al. (2008). The one-sidled MEWMA
scheme has been developed by using normal approximations to Poisson
distributions. The means of each count data are large enough (let’s say 10 or
larger) to appropriately assume the normal approximation. Thus, the data are
simulated from a multivariate normal distribution and the in-control ARL values
are calculated based upon 10,000 replicates. The control limits are chosen to
provide a specific in-control ARL of 100 with certain correlation value (p = 0.2,
0.5, and 0.7). The summary of the one-sided MEWMA chart’s performance is
presented in Table 28.

In this study, we investigate three different scenarios of a 20% shift in 10
variables with all means p = 10: 1) a shift in variable 1 only; 2) a shift in variables
1, 2, and 4; and, 3) a shift in variables 1, 6, and 10. The control limits of each shift
case (1) H = 12.325; 2) H = 14.695; and 3) H = 14.430 for different selected
values of A) are presented on the left side of Table 28. For the purpose of
comparison, the control limits of the proposed one-sided MPEWMA chart are
developed based on the same correlation value (o= 0.5). The multivariate Poisson

correlation structure is given by
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0
SNy T R (18)

where 0, 6;, and 6, are the Poisson means of Y, Y;, and Y;, respectively. Since we
know that the process means of the first two variables (Y; and Y>) are 10 (6 + 6;
and 0 + 6,), then the value of 6 is determined to be 5 (obtained using Equation

(18)) and, consequently, both §; and 8, are equal to 5.

Table 28 Summary of the one-sided MEWMA chart’s performance proposed by

Joner et al. (2008) for 10 variables with p=0.5.

One-sided MEWMA chart
Control out-of-

Variable Shifted % shift Mo A limit (H) _control ARL SEarL
1 20 10 0.05 12.325 15.01 0.031

1 20 50 0.19 15.960 5.10 0.009

1 10 100 0.11 14.695 8.34 0.015
1,2,and 4 20 10 0.11 14.695 9.09 0.019
1,2,and 4 20 50 0.37 16.970 3.00 0.005
1,2,and 4 10 100 0.22 16.255 497 0.009
1,6, and 10 20 10 0.10 14.430 7.08 0.013
1,6, and 10 20 50 0.44 17.120 2.28 0.004
1, 6,and 10 10 100 0.26 16.510 3.80 0.007
All 10 100 0.34 16.890 3.15 0.006

Table 29 Comparison of the performance between the one-sided MEWMA and

MPEWMA charts for in-control ARL of 100 when 0 = 5.

Normal theory limits with u = 10  Poisson limits with u = 10
out-of- out-of-

Variable % Control Control
. X A o control SEarL o control  SEar.
Shifted shift limit (H) ARL limit (H) ARL
10 1 20 0.05 12.325 15.010 0.031 12.68 20.144 0.063

1,2,and4 20 0.11 14.695 9.090 0.019 15.420 10.903 0.035
1,6,and 10 20 0.10 14.430 7.080 0.013 15.140 10.737  0.034
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Table 29 shows a comparison of two one-sided schemes for an in-control
ARL of 100. The Poisson-limits obtained for the chosen three cases are 12.68,
15.420, and 15.14 respectively. The out-of-control ARLs are 20.144, 10.903, and
10.737. The results indicate that the control limits calculated from the normal
approximation are narrower than the Poisson distribution themselves. The
differences in detecting the same shift in the mean vectors of both one-sided
control charts are quite small.

We investigate another issue of applying the normal-theory limits to the
multivariate Poisson distribution. Let us use the above conditions as an example.
Suppose we ignore the Poisson assumption and use the normal approximation for
the Poisson distribution. In the other word, the control limits from the normal-
theory (H = 12.325, 14.695, and 14.430) are applied to the data generated from
the multivariate Poisson distribution. The important result here is that the one-
sided MEWMA charts of all three scenarios have in-control ARLs much lower
than the stated level of 100 as shown in Table 30. The in-control ARLs are
sufficiently dropped to 91.392, 81.773, and 83.565, respectively. In order to
achieve the in-control ARL of 100, the Poisson limits (H = 12.68, 15.42, and
15.14) should be applied instead of those normal-theory limits. Moreover, the out-
of-control ARLs are 19.428, 10.208, and 10.114 and they are quite similar to the
expected values (20.144, 10.903, and 10.737) on the right hand side of Table 29.
In practice, one can also expect an earlier false alarm when the normal

approximation is applied to multivariate Poisson data.
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Table 30 The performance of the one-sided MEWMA applied to the multivariate

Poisson distribution with 8 = 5 (The advertised in-control ARL of 100).

Normal theory limits with u = 10

Control In-control out-of-

, . o) i
p Variable Shifted % shift A limit (H) ARL controlARL SEarL
10 1 20 0.05 12.325 91.392 19.428 0.061

1,2,and 4 20 0.1 14.695 81.773 10.208 0.033

1,6, and 10 20 0.10  14.430  83.565 10.114 0.045

4.6 Individual and a Row of Out-of-Control Signal

Commonly, an out-of-control signal in the one-sided MPEWMA control
chart occurs if a single point is out of control. However, there are some situations
where we are interested in consecutive points plotting beyond the control limit for
a signal. For example, suppose we are monitoring the incidence rates of asthma
from several locations over 120 weeks. Suppose one out-of-control signal is given
at period 100 and no other signals are detected. It is quite difficult to conclude that
the asthma rate has increased and that there is evidence for spread of asthma
disease in those areas since only one signal has occurred. Thus, it would be better
to wait for several out-of-control signals in a row rather than an individual out-of-
control signal. In this section, we study the detection performance on four test
cases in which data are generated by the multivariate Poisson model. The details
of each case are described below.

Case 1: Four variables each with y =3 and 6 = 1.

Case 2: Four variables each with u =3 and 8 =0.5.

Case 3: Six variables each with u =5 and 6 = 1.
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Case 4: Six variables each with u =5 and 8 =0.5.

To assure the steady-state condition, the process runs in control for the
first 200 time periods. After that, the process shifts to an out-of-control state by
one of three different shift sizes randomly applied to demonstrate the proposed
chart performance — one unit shift in the first variable, one unit shift in the first
two variables, and one unit shift in all variables. The shifts [1, 0, 0, 0], [1, 1, 0, 0],
and [1, 1, 1, 1] are used for the case of four variables. Two smoothing weights
used are 4 = 0.05 and 4 = 0.1. The control limits are obtained from Tables 24-25.
For instance, the control limits of case 1 are 9.8 (A =0.05) and 11.68 (4 =0.1) as
shown in Table 25.

We examine two different approaches for signaling an out-of-control state
using the same control limits - an individual signal and a run of signals. A run of
signals is defined by any two or more consecutive out-of-control signals. Four
scenarios of the runs of out-of-control signals are tested, including two, three,
four, and five points in a row, respectively. To demonstrate how to declare an out-
of-control signal in these scenarios, let’s assume that we are interested in a run of
three out-of-control signals. If an individual signal or two consecutive out-of-
control points signal are found, the process is not considered out-of-control. When
we detect three out-of-control points in a row, it means that we also detect an
individual and two out-of-control points in a row in the earlier period. Suppose
three consecutive out-of-control points are found at period 205, 206 and 207. We
treat these three out-of-control signals as one of an individual out-of-control point

at the time period 205, one of the two out-of-control points in a row at the time
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period 206, and one of the three out-of-control points in a row at the time period
207.

We evaluate the performance of the one-sided MPEWMA chart for
monitoring the 500 simulated data based on two criteria — the percentage of cases
where an out-of-control signal is detected and the time period of the first out-of-
control signal detection after the shift has occurred at period 201. Table 31
presents the percentage of cases where an out-of-control signal has been detected
using the one-sided MPEWMA chart. The one-sided MPEWMA scheme is able
to detect the mean shift when at least one out-of-control signal has occurred. The
results indicate that the percentage of cases decreases as the number of
consecutive out-of-control points increases, particularly for mean shifts of one or
two variables. The reason for the reduction in the percentage of cases corresponds
to the lower chance of having consecutive out-of-control points, particularly for a
small shift size. A significant decrease in the percentages of detected cases
occurred for larger smoothing weights. For example, consider a unit shift in one
out of six variables from Case 4 (i.e. the shift matrix [1, 0, 0, 0, 0, 0]). When A =
0.05, there is no obvious difference between using either an individual signal
(99.98%) or two to five out-of-control points in a row (98.63% - 99.94%).
However, for A = 0.1, the differences between two the approaches are large -
99.67% for detecting an individual signal and as low as 71.64% for detecting a

run of two to five out-of-control signals.
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Table 31 The percentage of cases that detected an out-of-control signal for all

four scenarios

The percentage of detecting an out-of-control
Case A shift matrix 1 point 2 points 3 points 4 points 5 points
1 0.05 [1,0,0,0] 100.00 100.00 100.00 100.00  99.99
[1,1,0,0] 100.00 100.00 100.00 100.00  100.00
[1,1,1,1] 100.00  100.00 100.00 100.00  100.00
0.1 [1,0,0,0] 100.00  99.95 99.56 98.47 96.30
[1,1,0,0] 100.00 100.00 100.00 100.00 100.00
[1,1,1,1] 100.00 100.00 100.00 100.00  99.99
2 0.05 [1,0,0,0] 100.00  100.00  99.99 99.99 99.99
[1,1,0,0] 100.00 100.00 100.00  100.00  100.00
[1,1,1,1] 100.00 100.00 100.00 100.00 100.00
0.1 [1,0,0,0] 100.00  99.86 99.22 97.66 94.55
[1,1,0,0] 100.00 100.00 100.00 100.00  99.99
[1,1,1,1] 100.00 100.00 100.00  100.00  100.00
3 0.05 [1,0,0,0,0,0] 99.98 99.87 99.69 99.27 98.63
[1,1,0,0,0,0] 100.00 100.00 100.00 100.00 100.00
[1,1,1,1,1,1T 100.00 100.00 100.00 100.00  100.00
0.1 [1,0,0,0,0,0] 99.68 96.99 90.88 82.07 71.52
[1,1,0,0,0,0] 100.00  99.99 99.66 98.71 96.60
]
]
]
]

[1,1,1,1,1,17 100.00 100.00 100.00 100.00 100.00
4 0.05 [1,0,0,0,0,0] 99.98 99.94 99.62 99.2 98.63
[1,1,0,0,0,0] 100.00  99.99 99.99 99.99 99.99

[1,1,1,1,1,17 100.00 100.00 100.00 100.00  100.00
0.1 [1,0,0,0,0,0] 99.67 97.38 91.71 82.41 71.64
[1,1,0,0,0,0] 100.00 100.00  99.86 99.04 97.42
[1,1,1,1,1,1] 100.00 100.00 100.00 100.00  100.00

Table 32 reports the average period of time to detect the first out-of-
control signal for all four scenarios. The average of the times is calculated from
the first out-of-control signal detected by the one-sided MPEWMA scheme within
each replication. For example, the first case study with A = 0.05 shows that the

first individual out-of-control signal is detected with average time of 29.0907
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(period = 230) after the shift [1, 0, 0, 0] has occurred at period 200. The results
demonstrate that the shift in one and two variables can be quickly detected by a
single out-of-control point as compared to a run of consecutive out-of-control
points for all four cases. A run of 5 consecutive out-of-control points is the
slowest out of control condition to be detected since we have to wait until all five
consecutive points exceed the control limit. For example, consider Case 4 with A
= 0.1. The time until the first out-of-control signal occurs increases from 58.284
(an individual) to 82.7172, 101.8237, 117.0436, and 127.6594 for two, three, four,
and five points in a row, respectively. Thus, it will take an average of 69
additional periods to detect an out-of-control situation when applying a run of five
out-of-control points instead of an individual.

The time-delay for detection tends to become shorter with larger numbers
of variables shifted. Consider the previous example with individual out-of-control
signal. The time to detect the first out-of-control signal reduces from 58.284 to
31.711, and 11.9623 when the number of variables shifted increases to two and
six variables, respectively. The use of an individual approach is recommended
over a run of 2 or more occurs for detecting a shift in one or two variables. The
consecutive out-of-control points method improves if shifts occur in two or more
variables. There is no considerable increase in detection time. For instance, if all
six variables shifted (the shift [1, 1, 1, 1, 1, 1]) such as in Case 4, the detection

time increases from 12.7318 to 14.2853, 15.6401, 16.914, and 18.1616.
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Table 32 Summary of the first out-of-control signal period detected by the one-

sided MPEWMA chart for all four scenarios

The first period to detect an out-of-control signal
Case A shift matrix 1 point 2 points 3 points 4 points 5 points
1 0.05 [1,0,0,0] 29.0907 34.2840 38.9742 43.0704 46.9790
[1,1,0,0] 18.5769 21.3951 23.8374 26.0050 28.2012
[1,1,1,1] 139113 15.7539 17.3141 18.7701 20.1483
0.1 [1,0,0,0] 36.6166 51.0260 65.4608 78.1542 90.3734
[1,1,0,0] 20.8885 27.3465 33.4023 39.5808 45.7962
[1,1,1,1] 13.9071 17.1756 21.0479 24.4276 27.6739
2 0.05 [1,0,0,0] 29.5135 35.0677 39.9803 44.3125 48.7262
]
]
]
]

[1,1,0,0 18.1188 20.9985 23.4479 25.6407 27.7250

[1,1,1,1 12.6268 13.9811 152246 16.4003 17.5337
0.1  [1,0,0,0] 373561 52.6916 67.6304 82.7736 95.1820
[1,1,0,0] 20.1862 26.5004 32.5465 38.7679  45.035
[1,1,1,1]  11.7540 14.7180 17.3741 19.8542 22.3003
1,0,0,0,0,0] 45.1418 55.6943 64.5467 72.4852 79.9108
1,1,0,0,0,0] 27.3583 32.4666 37.0147 40.9685 44.9837
LLLLIL,1] 13.9702 16.1032 17.8595 19.4734 20.9719
1,0,0,0,0,0] 58.31  82.0819 101.2547 115.6195 126.9829
1,1,0,0,0,0] 33.9501 47.3816 61.2324 74.6788 87.5655
LLLLIL1] 141226 183333 22.1978 26.0304 29.8291
1,0,0,0,0,0] 452154 557593 64.6804 732164 80.8801
1,1,0,0,0,0] 264281 31411 355505 39.4522 43.3637
LL,1LL,1,1] 127318 14.2853 15.6401 16914 18.1616
1,0,0,0,0,0] 58.284 82.7172 101.8237 117.0436 127.6594
1,1,0,0,00] 31.711 44.8519 57.8931 70.8977 84.1669
1L1,1,1,1,1] 119623 152091 18.1433  20.9336 23.6991

3 0.05

0.1

4  0.05

0.1

— e e e e e

4.7 Examples

We illustrate an example of using the one-sided MPEWMA chart to
monitor public-health data. Let’s consider the monitoring of one of six common
air pollutants, Carbon Monoxide (or CO). The hourly CO concentration (in parts

per million (ppm)) at 4 different stations being monitored are denoted by X; where
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i=1,2, 3, and 4. The hourly average CO concentration measured from each
station, X;, is the combination of the overall and the areca effects. The effect on
overall CO in the atmosphere can be represented by Y and the effect of CO
emissions at each area is represented by Y; for i = 1, 2, 3, and 4. Thus, it is
reasonable to assume the data can be sufficiently modeled by a multivariate
Poisson distribution assuming a correlation exists between variables. Suppose the
mean hourly CO concentration for each of the 4 stations is 3 ppm and the
common effect is 0.5 (6 = 0.5). Given this information, the sample mean and the
covariance matrix are given by

3 05 05 05
05 3 05 05
05 05 3 05
05 05 05 3

Wo=1[3,3,3,3] and X =

Data are collected on day ¢ for £ = 1, 2,..., 200 over a 6 month period. In
this example, we use the known means and covariance matrix to compute the one-
sided MPEWMA (or MEW,) statistics. A smoothing weight of 0.05 is selected,
and the control limit obtained from Table 24 is 10.29. For From Equation (13),

Z, =max{A(X, — 1) +(1-1)Z,, 0}

To illustrate the calculations of the MEW, statistics considered

Z, = max+0.05(

9

3
3

" Dh+(1-0.05
3
3

S O O O
S O O O
|

3
3
3
7 0.2

Using Equation (15) we obtain:
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A 0.05
27 = 2—/12_ 2—0.052'

Day 1: the MEW;, statistics using Equation (16) is
MEW, =7,y 'Z, =0.5547

The calculations of the MEW; statistics for the first 10 samples are presented in
Table 33. If the values of 6,, 6>, 05, 84, and 6 are unknown, we can estimate all
these parameters from historical data by using several methods (for more details,
see Section 2.4.2).

Figure 5 displays the plot of the one-sided MPEWMA chart for the hourly
CO concentration. The first out-of-control signal is given at period 116 since the
MEW, statistics of 16.0734 exceeds the control limits (H = 10.29). If we consider
a run of out-of-control signals instead of an individual, the first out-of-control
signal is still found at the same period 116 for the cases of two and three signals
in a row. However, the first out-of-control signal is detected at period 121 while
waiting for four and five out-of-control signals to occur. The time-delay of
detection with 5 periods could be problematic, particularly if the mean hourly CO
concentration exceeds the air quality standard. Hence, the individual signal
method can be implemented if the mean hourly CO concentration lies near the
level of the air quality standard. Implementation of the long-run (n = 4, and 5)
method can be applied when the mean hourly CO concentration is far beyond the

standard level of the air quality.
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Table 33 Example of the calculation of the first 10 samples of the one-sided
MPEWMA statistics.

A=0.05
Z MEW,
0 0 0 0

0.0000 0.0000 0.0000 0.2000 0.5547
0.1500 0.2500 0.2500 0.2900 2.0814
0.1425 0.3375 0.2875 0.2255 2.4673
0.0354 0.3206 0.2731 0.4142 3.5767
0.0000 0.1546 0.3095 0.2935 2.2160
0.1000 0.1469 0.2940 0.3788 2.6136
0.0950 0.2395 0.1793 0.4099 2.6793
0.0902 0.1775 0.2203 0.4894 3.4562
0.0357 0.0187 0.2593 0.5649 4.7149
0.1840 0.0177 0.2963 0.4367 3.3632
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Figure 5 The one-sided MPEWMA chart of the hourly CO concentration
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Chapter 5
COMPARISON OF THE MULTIVARIATE CHARTS FOR MULTIVARIATE
POISSON DATA

5.1 Introduction

There have been many studies on the quality control methods for
monitoring multivariate data. In general, the control charts are applied to the raw
or unprocessed data. The adequacy of the normality and independence
assumptions must be assessed before applying any control scheme. It is not
always appropriate to assume normality in the situation where the variables
follow the Poisson distribution, particularly for small mean counts. If the data
depart from the normality assumption, then methods based on other distributions
should be employed. The process knowledge has been utilized to improve the
sensitivity of the control chart by fitting a regression model to the data. The
coefficients of the model are estimated by the regression technique. The residuals
from the model are plotted on the conventional control chart. Thus, this method is
referred to as the model-based or the residual-based control charting. The model-
based control method has relied on the normally distributed data because the
control statistics are based on residuals.

There are a few studies of the model-based control approach on
monitoring multivariate Poisson data. It is interesting to investigate the model-
based control chart’s performance in detecting a shift in the mean count. Two
regression analyses are chosen to demonstrate the ability for modeling the Poisson

counts. The Poisson counts are generated through Monte Carlo simulation. The
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residuals are plotted on the multiple Exponentially Weighted Moving Average
(EWMA) charts because of the good performance for detecting a small mean
shift. The Average Run Length (ARL) performances are reported and evaluated
by several combinations of the parameters including mean values, number of
variables, and various sizes of shift. In addition, we make a comparison between
those model-based schemes and the multivariate Poisson EWMA chart, for which
the control limits are directly obtained from the Poisson distribution. The results
can help clarify a better method for the early detection of a mean shift.

5.2 Methodology

Typically, the Ordinary Least Squares (OLS) regression is performed to
estimate the coefficients of the model. The model computed from the OLS is
limited to normal data. In this study, two regression techniques are selected to
model the Poisson distributed data - the regression adjustment and generalized
linear regression. The details of each regression method are discussed below.

5.2.1 Regression Adjustment

Hawkins (1993) introduced the regression-adjustment based on Y and Z
scales. The standardization of the original scale is recommended before
transformation into the Y and Z scales. All X, Y, and Z scales correspond to the
Hotelling T statistics. The Hotelling T? statistic is

TP =X, —w)' 27 (X, — ) (19)

The 7° can be expressed as

TP=Y'Y=)7Y] (20)



where Y; is the decomposition of 7°. Y can be rewrite in terms of the linear
transformation of X as

Y =C(X - p) b3))
where C is the Cholesky decomposition over the lower triangular root of
the inverse of the covariance matrix (CC’= 2 ). Another decomposition
of T* is

T} =(X, - )'Z (22)
where Z=Y"(X, - ) and Zisap x 1 vector.

The residuals obtained from both regression techniques above are plotted
on the multiple Exponentially Weighted Moving Average (EWMA) charts to
monitor the shift in means separately since the residuals are considered as
independent and approximately normally distributed. The discussion of the
EWMA chart is provided below.

5.2.2 Exponentially Weighted Moving Average Chart

Roberts (1959) proposed the EWMA chart by defining the control
statistics as previously shown in Equation (6) where Zy = po. The value of the
smoothing weight (1) ranges from O to 1. The control limits of the steady-state

EWMA are given by
UCL=pu,+Lo A (27)
Hy )

CL =y, (28)
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[ A
LCL=u,-Lo,|—— 29
Hy o ) (29)

where L is the multiple of standard deviation used in the control limits.

5.3 Simulation Results

The multivariate Poisson data is simulated by the Monte Carlo simulation
as the sum of two independent Poisson random variables. The Poisson counts are
generated under the same conditions as previously discussed in Sections 3.4 and
4.3. Two different regression methods are applied to the simulated multivariate
Poisson data. The residuals are computed and plotted on multiple EWMA charts.
In this study, we consider using the EWMA chart with the smoothing weight (1)
of 0.05 due to its good performance in detection of a small shift. For each
regression technique, the control limits (L) of the EWMA chart are independently
chosen to achieve an in-control ARL of 200 (performed with 10000 repetitions).

The out-of-control ARL performances of these two residual-based control
charts are tested against a wide variety of conditions. We shift the mean of one or
more variables, at the same time, by adding one, two, three and four unit sizes.
The shift has occurred at the period of 200 to ensure the steady-state condition.
The results appear in the relation between the region shifted and percentage of

change. The percentage of change is calculated using Equation (17). For example,

the shift of one unit in the mean of 3 is %x 100 =33%. The performance of all

two residual-based control methods on monitoring the multivariate Poisson-

distributed data are reported in terms of the ARL values below.
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The appropriate multiple of sigma employed in the control limits for the
regression adjustment are L = 2.15, 2.2, 2.25, and 2.3 (for €= 0.5) and L = 2.35,
2.4,2.45, and 2.55 (for 8= 1) to obtain the desired in-control ARL of 200 for the
case of four, six, ten, and fifteen variables, respectively. Table 30 presents the
ARL performance of four EWMA charts (four-variable case) obtained from both
Y and Z scales. The ARL values reported in all the tables below are chosen from
the lowest ARL among all multiple EWMA charts. The regression adjustment on
the Y scale performs as well as the Z scale for both thetafix values (6= 0.5, and
1) due to the similar in-control and out-of-control ARLs. It is noticed that the in-
control ARLs of the Z scale are slightly less than the Y scale, but the difference
tends to be larger for a mean of 5 or smaller. However, it is unclear whether the Y
scale has actually outperformed the Z scale or not.

5.4 Comparison of model-based control charts

We compare the proposed two-sided multivariate Poisson EWMA
schemes to the other two model-based control methods for monitoring the
multiple counts. As we stated earlier, there is no difference in applying the
regression adjustment on the Y and Z scales. For the purpose of comparison, the
regression adjustment on the Y scale is selected based on the larger in-of-control
ARL performance. The comparisons of all control charts are summarized in Table
33 — 40. The performances of the two model-based control methods are quite
comparable due to the similar out-of-control ARLs. It is clearly shown that the

two-sided MPEWMA chart provides the smallest out-of-control ARL values
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among all three methods. Hence, the two-sided MPEWMA method has superior
performance than those two residual-based control charts for all scenarios.

5.5 Examples

Reconsider the problem of monitoring four types of defects in the LED
manufacturing process as we early mentioned in Section 3.9. We simulate the
number of defects by setting the mean of each defect type to 3 with a common
mean of 0.5. A shift in the first defect type to the new mean of 4 is generated to
determine the out-of-control performance. Three different control methods are
used to monitor the defects: the regression adjustment with the EWMA chart, the
generalized linear model with the EWMA chart, and the multivariate Poisson
EWMA chart. Both the EWMA and MPEWMA charts are constructed using the
smoothing weight of 0.05 (4 = 0.05).

A comparison of the EWMA charts for the regression adjustment on both
Y and Z scales is shown in Figure 6. The EWMA statistics and the control limits
for the Y scale are little different from the Z scale. The out-of-control signals are
given by the EWMA chart of Y1 and Z1 at the same time during period 276 to
period 293. In addition, the EWMA scheme of Y2 also detects one additional out-
of-control signal during period 270 to 272. In other words, there is an indication
that the process has changed. The MPEWMA chart is plotted in Figure 7. It
signals an out-of-control condition at period 266 because the T-square statistics
exceed the control limit. Thus, it will require 10 samples less than the regression

adjustment technique to detect an increase in the mean number of defects.
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Table 34 The Average Run Lengths performance of the regression adjustment

with the multiple EWMA charts for 4 variables case.

I. Regression adjustment |. Regression adjustment I. Regression adjustment |. Regression adjustment

Y scale + EWMA Z scale + ENMA Y scale + EWMA Z scale + ENMA
Mean Actual Region % shift Thetafix =0.5, L =2.15 Thetafix =0.5,L=2.15 Thetafix=0.5,L=2.35 Thetafix=0.5,L=2.35
Shifted and A = 0.05 and A = 0.05 and A = 0.05 and A = 0.05
ARL* ARL* ARL* ARL*
3 None 0 199.779 201.066 204.186 205.795
1 33 30.486 29.748 31.753 28.791
2 33 31.362 29.460 34.370 28.786
(1,2) 33 30.067 29.805 31.497 28.170
All 33 29.335 29.047 30.771 27.684
1 67 14.943 14.584 16.459 14.689
2 67 15.317 14.413 17.484 14.837
1,2) 67 14.094 14.042 14.506 14.500
All 67 12.579 12.940 13.240 13.492
All 100 5.041 5.255 5.472 5.744
All 133 2.057 2.124 2.185 2.682
5 None 0 209.706 207.846 228.679 227.277
1 20 39.606 39.378 44.504 42.768
2 20 40.446 39.349 46.206 42.553
(1,2) 20 39.245 39.155 43.553 41.850
All 20 38.630 38.528 43.105 41.368
1 40 20.155 20.027 23.356 22.335
2 40 20.595 20.158 23.861 22.210
1,2) 40 19.432 19.959 21.982 21.609
All 40 18.389 18.870 20.753 20.584
All 60 9.647 9.998 11.013 11.062
All 80 4.418 4.593 5.340 5.816
8 None 0 211.364 212.532 239.254 237.014
1 125 48.887 48.899 55.520 54.901
2 125 48.697 47.983 57.197 55.284
(1,2) 125 48.269 48.389 55.433 54.388
All 125 47.461 47.558 55.005 54.360
1 25 26.103 26.016 29.807 29.458
2 25 25.994 25.731 30.647 29.604
1,2) 25 26.243 26.510 29.135 28.948
All 25 24.777 25.330 28.328 28.320
All 375 14.489 14.864 17.231 17.556
All 50 8.406 8.692 10.466 10.482
10 None 0 213.104 211.939 240.106 237.920
1 10 52.220 52.308 60.219 59.850
2 10 52.406 51.910 61.246 59.852
(1,2) 10 51.620 52.794 59.943 58.780
All 10 51.291 51.414 59.139 58.520
1 20 28.679 28.873 33.925 33.557
2 20 29.157 28.858 34.482 33.709
(1,2) 20 28.514 28.185 33.738 33.178
All 20 28.170 28.809 32.537 32.458
All 30 17.274 17.724 20.165 20.023
All 40 10.644 10.987 12.941 12.741
15 None 0 210.976 210.613 241.091 240.296
1 6.67 58.348 58.322 67.401 67.355
2 6.67 59.274 58.726 68.229 67.650
1,2) 6.67 58.701 58.278 67.194 67.202
All 6.67 58.554 58.155 67.178 67.197
1 13.33 35.133 35.190 41.751 41.693
2 13.33 35.237 34.922 42177 41.573
(1,2) 13.33 35.397 35.181 41.640 41.226
All 13.33 34.586 34.386 40.691 40.410
All 20 22.213 22.716 26.309 26.558
All 26.67 15.465 15.877 18.262 18.557

Note: ARL* represents the lowest ARL obtained from those EWMA control charts
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Table 35 Comparison of the Average Run Lengths between four multiple

EWMA charts for thetafix = 0.5 and 4 variables case.

I. Regression Adjustment of Y

scale + EWMA Il MPEWMA
Mean Actual Region Shifted % shift L =2.15and A =0.05 A =0.05
3 ARL* H=11.49
None 0 199.779 210.573
1 33 30.486 23.033
2 33 31.362 23.139
(1,2) 33 30.067 15.693
All 33 29.335 12.170
1 67 14.943 10.053
2 67 15.317 10.014
(1,2) 67 14.094 7.202
All 67 12.579 5.724
All 100 5.041 3.839
All 133 2.057 2.945
) ARL* H=11.48
None 0 209.706 211.002
1 20 39.606 31.196
2 20 40.446 31.417
(1,2) 20 39.245 21.916
All 20 38.630 15.469
1 40 20.155 13.682
2 40 20.595 13.725
(1,2) 40 19.432 9.496
All 40 18.389 7.087
All 60 9.647 4.661
All 80 4418 3.541
38 ARL* H=11.47
None 0 211.364 209.804
1 12,5 48.887 38.307
2 12,5 48.697 38.359
(1,2) 12.5 48.269 28.732
All 12.5 47.461 20.030
1 25 26.103 18.503
2 25 25.994 18.484
(1,2) 25 26.243 12.445
All 25 24777 8.833
All 375 14.489 5.650
All 50 8.406 4.268
10 ARL* H=11.46
None 0 213.104 210.250
1 10 52.220 40.090
2 10 52.406 40.379
(1,2) 10 51.620 32.180
All 10 51.291 22.557
1 20 28.679 21.395
2 20 29.157 21.345
(1,2) 20 28.514 14.056
All 20 28.170 9.755
All 30 17.274 6.298
All 40 10.644 4.719
15 ARL* H=11.46
None 0 210.976 211.350
1 6.67 58.348 43.318
2 6.67 59.274 43.390
(1,2) 6.67 58.701 37.281
All 6.67 58.554 28.040
1 13.33 35.133 27.658
2 13.33 35.237 27.209
(1,2) 13.33 35.397 18.160
All 13.33 34.586 12.045
All 20 22.213 7.677
All 26.67 15.465 5.700
Note: ARL" represents the lowest ARL obtained from those indiviqual EWMA control charts

94



Table 36 Comparison of the Average Run Lengths between six multiple EWMA

charts for thetafix = 0.5 and 6 variables case.

I. Regression Adjustment of Y

scale + EWMA Il MPEWMA
Mean Actual Region Shifted % shift L=2.2andA=0.05 A =0.05
3 ARL* H=14.93
None 0 203.872 210.021
1 33 30.944 24.692
2 33 32.276 25.041
(1,2) 33 30.344 16.836
All 33 29.855 11.546
1 67 15.350 10.708
2 67 15.676 10.775
(1,2) 67 14.402 7.565
All 67 12.488 5.429
All 100 4.795 3.613
All 133 1.871 2.806
5 ARL* H=14.9
None 0 212.519 210.145
1 20 40.244 33.167
2 20 41.369 33.810
(1,2) 20 40.128 23.745
All 20 39.677 14.179
1 40 20.844 14.994
2 40 21.380 14.956
(1,2) 40 19.997 10.191
All 40 18.651 6.526
All 60 9.409 4.340
All 80 4.405 3.302
8 ARL* H=14.89
None 0 216.016 209.733
1 12.5 49.459 39.937
2 12.5 50.370 40.162
(1,2) 12,5 49.531 30.922
All 12.5 49.134 17.841
1 25 26.927 20.249
2 25 26.815 20.105
(1,2) 25 26.197 13.422
All 25 25.408 7.926
All 375 14.814 5.193
All 50 8.384 3.913
10 ARL* H=14.89
None 0 216.923 209.776
1 10 53.915 42.413
2 10 54.153 42.072
(1,2) 10 53.222 34.616
All 10 53.477 20.322
1 20 29.879 23.477
2 20 30.146 23.382
(1,2) 20 29.411 15.354
All 20 28.775 8.804
All 30 17.345 5.687
All 40 10.932 4.226
15 ARL* H=14.9
None 0 220.222 211.031
1 6.67 60.392 44.087
2 6.67 60.793 44.251
(1,2) 6.67 60.3692 39.832
All 6.67 59.676 25.218
1 13.33 36.041 30.108
2 13.33 36.487 29.906
(1,2) 13.33 36.558 19.734
All 13.33 35.546 10.772
All 20 22.579 6.844
All 26.67 15.369 5.077
Note: ARL" represents the lowest ARL obtained from those indiviqual EWMA control charts
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Table 37 Comparison of the Average Run Lengths between ten multiple EWMA

charts for thetafix = 0.5 and 10 variables case.

I. Regression Adjustment of Y

scale + EWMA (parshift) IV MPEWMA
Mean Actual Region Shifted % shift L =2.25and A=0.05 A =0.05
3 ARL* H=21.17
None 0 205.650 211.413
1 33 31.829 27.844
2 33 31.874 27.484
(1,2) 33 31.273 18.429
All 33 29.756 10.817
1 67 15.555 11.864
2 67 15.804 11.947
(1,2) 67 14.370 8.194
All 67 12.269 5.138
All 100 4.917 3.490
All 133 1.813 2.683
) ARL* H=21.15
None 0 216.317 211.050
1 20 41.380 36.894
2 20 41.635 36.646
(1,2) 20 41.451 26.348
All 20 40.070 13.183
1 40 21.224 16.634
2 40 21.592 16.645
(1,2) 40 20.671 11.122
All 40 18.588 6.134
All 60 9.400 4.055
All 80 4.183 3.129
3 ARL* H=21.14
None 0 222.257 211.074
1 12.5 50.793 42.561
2 12,5 50.869 41.737
(1,2) 12.5 50.351 34.729
All 12.5 49.767 16.073
1 25 27.551 22.901
2 25 27.271 22.945
(1,2) 25 26.903 15.084
All 25 25.235 7.221
All 37.5 14.683 4.768
All 50 8.421 3.593
10 ARL* H=21.13
None 0 222.673 210.791
1 10 54.563 44.087
2 10 55.142 43.807
(1,2) 10 54.506 37.626
All 10 54.382 17.910
1 20 30.709 26.519
2 20 31.236 26.900
(1,2) 20 30.345 17.321
All 20 29.378 7.910
All 30 17.628 5.184
All 40 10.567 3.874
15 ARL* H=21.12
None 0 223.709 210.355
1 6.67 62.139 45.261
2 6.67 61.988 44.668
(1,2) 6.67 62.373 42.046
All 6.67 61.821 21.944
1 13.33 37.378 33.580
2 13.33 38.140 33.371
(1,2) 13.33 37.641 22.388
All 13.33 37.154 9.415
All 20 22.978 6.048
All 26.67 15.284 4.525
Note: Al Note: ARL" represents the lowes obtained from those individua control cha
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Table 38 Comparison of the Average Run Lengths between fifteen multiple

EWMA charts for thetafix = 0.5 and 15 variables case.

I. Regression Adjustment of Y

scale + EWMA Il MPEWMA
Mean Actual Region Shifted % shift L=2.3andA=0.05 A =0.05
3 ARL* H=28.39
None 0 205.740 212.430
1 33 31.672 30.162
2 33 32.463 30.304
(1,2) 33 31.251 20.124
All 33 30.273 10.565
1 67 16.030 12.937
2 67 16.176 12.811
(1,2) 67 14.781 8.785
All 67 12.330 5.019
All 100 4.798 3.405
All 133 1.858 2.620
) ARL* H=28.34
None 0 219.482 210.961
1 20 42.388 39.355
2 20 42.255 38.929
(1,2) 20 41.857 28.677
All 20 40.785 12.826
1 40 21.743 18.390
2 40 22.007 18.343
(1,2) 40 20.841 12.093
All 40 18.679 5.891
All 60 9.459 3.952
All 80 4.272 3.032
8 ARL* H =28.31
None 0 224872 211.828
1 12.5 52.618 44.036
2 12.5 52.194 43.131
(1,2) 12.5 51.708 37.589
All 12,5 51.556 15.397
1 25 28.099 25.128
2 25 28.215 25.454
(1,2) 25 27.550 16.411
All 25 25.760 6.839
All 37.5 14.868 4.520
All 50 8.234 3.445
10 ARL* H=28.30
None 0 227.023 210.381
1 10 56.338 44.687
2 10 56.652 44.460
(1,2) 10 56.398 39.743
All 10 55.517 16.573
1 20 31.323 29.444
2 20 31.613 29.497
(1,2) 20 31.127 18.847
All 20 29.791 7.423
All 30 17.806 4.856
All 40 10.566 3.674
15 ARL* H=28.30
None 0 228.241 211.097
1 6.67 62.679 45.247
2 6.67 63.514 45.592
(1,2) 6.67 63.251 43.665
All 6.67 62.422 19.954
1 13.33 38.284 36.140
2 13.33 38.806 36.230
(1,2) 13.33 38.494 24.969
All 13.33 37.236 8.740
All 20 23.182 5.645
All 26.67 15.644 4.220

Note: ARL" represents the lowest ARL obtained from those individual EWMA control charts
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Table 39  Comparison of the Average Run Lengths between four multiple

EWMA charts for thetafix = 1 and 4 variables case.

I. Regression Adjustment of Y

scale + EWMA Il MPEWMA
Mean  Actual Region Shifted % shift L =2.35and A=0.05 A =0.05
3 ARL* H=11.49
None 0 204.186 209.945
1 33 31.753 20.736
2 33 34.370 20.817
(1,2) 33 31.497 14.953
All 33 30.771 13.964
1 67 16.459 9.149
2 67 17.484 9.207
(1,2) 67 14.506 6.882
All 67 13.240 6.408
All 100 5.472 4.268
All 133 2.185 3.270
3 ARL* H=11.48
None 0 228.679 211.177
1 20 44.504 30.391
2 20 46.206 30.196
(1,2) 20 43.553 21.806
All 20 43.105 17.223
1 40 23.356 13.242
2 40 23.861 13.126
(1,2) 40 21.982 9.591
All 40 20.753 7.746
All 60 11.013 5.099
All 80 5.340 3.875
3 ARL* H=11.47
None 0 239.254 210.074
1 12.5 55.520 37.854
2 12.5 57.197 37.638
(1,2) 12.5 55.433 28.970
All 12.5 55.005 21.736
1 25 29.807 18.116
2 25 30.647 18.225
(1,2) 25 29.135 12.614
All 25 28.328 9.508
All 37.5 17.231 6.068
All 50 10.466 4.570
10 ARL* H=11.46
None 0 240.106 209.354
1 10 60.219 39.709
2 10 61.246 40.308
(1,2) 10 59.943 32.740
All 10 60.139 24.204
1 20 33.925 21.140
2 20 34.482 21.131
(1,2) 20 41.227 14.247
All 20 32.537 10.489
All 30 20.165 6.681
All 40 12.941 4.974
15 ARL* H=11.46
None 0 241.091 209.510
1 6.67 67.401 42.515
2 6.67 68.229 42.743
(1,2) 6.67 67.194 37.760
All 6.67 67.178 29.715
1 13.33 41.751 27.403
2 13.33 42177 27.163
(1,2) 13.33 41.640 18.112
All 13.33 40.691 12.778
All 20 26.309 8.038
All 26.67 18.262 5918

Note: ARL" represents the lowest ARL obtained from those Tndividual EWMA control charts

98



Table 40 Comparison of the Average Run Lengths between four multiple

EWMA charts for thetafix = 1 and 6 variables case.

|. Regression Adjustment of Y

scale + EWMA Il MPEWMA
Mean Actual Region Shifted % shift L=2.4and A=0.05 A =0.05
3 ARL* H=14.95
None 0 200.876 208.494
1 33 31.785 22.197
2 33 33.611 22.134
(1,2) 33 30.815 15.431
All 33 30.243 13.465
1 67 16.433 9.808
2 67 17.326 9.734
(1,2) 67 14.716 7.068
All 67 12.736 6.255
All 100 5.226 4.141
All 133 1.993 3.178
) ARL* H=14.92
None 0 227.943 209.71
1 20 44.665 32.773
2 20 46.177 32.322
(1,2) 20 44.064 23.033
All 20 43.544 16.392
1 40 23.334 14.274
2 40 24.001 14.368
(1,2) 40 22.108 10.003
All 40 20.676 7.453
All 60 10.632 4.883
All 80 5.036 3.706
3 ARL* H=14.91
None 0 240.600 210.096
1 12,5 56.772 39.621
2 12.5 57.988 39.804
(1,2) 12,5 56.733 31.109
All 12.5 55.291 20.175
1 25 30.547 19.880
2 25 30.956 19.747
(1,2) 25 30.068 13.406
All 25 28.798 8.900
All 37.5 16.806 5.757
All 50 9.930 4.284
10 ARL* H=14.91
None 0 240.673 210.320
1 10 62.300 41.720
2 10 62.523 42.455
(1,2) 10 61.038 35.049
All 10 60.527 22.494
1 20 34.627 23.239
2 20 34.970 22.995
(1,2) 20 34.269 15.485
All 20 33.082 9.718
All 30 20.394 6.218
All 40 13.038 4.648
15 ARL* H=14.90
None 0 244579 209.452
1 6.67 69.809 43.628
2 6.67 69.694 43.870
(1,2) 6.67 68.722 39.950
All 6.67 68.576 27.270
1 13.33 43.161 30.238
2 13.33 43.677 29.860
(1,2) 13.33 43.185 19.963
All 13.33 42.221 11.535
All 20 26.667 7.308
All 26.67 18.113 5.398

Note: ARL" represents the lowest ARL obtained from those individual EWMA control charts
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Table 41 Comparison of the Average Run Lengths between four multiple

EWMA charts for thetafix = 1 and 10 variables case.

|. Regression Adjustment of Y

scale + EWMA Il MPEWMA
Mean Actual Region Shifted % shift L =2.45and A =0.05 A =0.05
3 ARL* H=21.19
None 0 197.275 212.060
1 33 32.077 24.349
2 33 32.365 24.588
(1,2) 33 31.020 16.435
All 33 29.859 13.139
1 67 16.505 10.540
2 67 17.134 10.564
(1,2) 67 14.974 7.416
All 67 12.428 6.050
All 100 4.932 4.054
All 133 1.935 3.084
) ARL* H=21.14
None 0 228.754 211.92
1 20 44.765 35.644
2 20 46.138 35.442
(1,2) 20 44175 25.038
All 20 43.858 16.014
1 40 23.215 15.755
2 40 23.726 15.704
(1,2) 40 22.255 10.711
All 40 20.034 7.254
All 60 10.483 4.773
All 80 4.796 3.606
3 ARL* H=21.13
None 0 242.032 212.212
1 12,5 57.075 41.982
2 12.5 58.389 42.035
(1,2) 12,5 57.266 34.383
All 12.5 56.624 19.318
1 25 30.948 22.011
2 25 31.413 22.269
(1,2) 25 30.376 14.767
All 25 28.893 8.502
All 37.5 16.691 5.466
All 50 9.634 4.102
10 ARL* H=21.13
None 0 243.229 209.904
1 10 61.899 43.342
2 10 63.042 43.475
(1,2) 10 62.262 37.833
All 10 62.045 21.214
1 20 35.300 26.039
2 20 35.549 25.893
(1,2) 20 35.086 17.165
All 20 33.288 9.069
All 30 20.053 5.859
All 40 12.468 4.387
15 ARL* H=21.12
None 0 247.037 211.668
1 6.67 69.722 44877
2 6.67 70.594 45.454
(1,2) 6.67 70.066 42.3493
All 6.67 69.559 24.629
1 13.33 43.729 33.124
2 13.33 44513 33.064
(1,2) 13.33 43.757 22.402
All 13.33 42.201 10.523
All 20 26.792 6.738
All 26.67 17.866 4.998

Note: ARL" represents the lowest ARL obtained from those individual EWMA control charts
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Table 42  Comparison of the Average Run Lengths between four multiple

EWMA charts for thetafix = 1 and 15 variables case.

|. Regression Adjustment of Y

scale + EWMA Il MPEWMA
Mean Actual Region Shifted % shift L =2.55and A =0.05 A =0.05
3 ARL* H=28.41
None 0 201.580 209.948
1 33 32.816 26.690
2 33 33.627 26.711
(1,2) 33 32.145 17.530
All 33 30.419 12.831
1 67 17.629 11.360
2 67 17.898 11.326
(1,2) 67 15.920 7.863
All 67 12.801 5.956
All 100 5.156 3.912
All 133 2.012 3.015
) ARL* H=28.34
None 0 236.314 210.28
1 20 46.573 37.585
2 20 47.508 37.684
(1,2) 20 46.552 27.600
All 20 45137 15.965
1 40 24.260 17.299
2 40 24.845 17.218
(1,2) 40 23.929 11.493
All 40 20.944 7.162
All 60 11.135 4.700
All 80 5.065 3.563
8 ARL* H=28.32
None 0 247.979 212.357
1 12,5 59.843 43.275
2 12.5 60.348 43.340
(1,2) 12,5 59.056 36.480
All 12.5 58.423 18.810
1 25 32.939 24.787
2 25 33.154 24.597
(1,2) 25 31.877 16.130
All 25 30.136 8.248
All 37.5 17.611 5.371
All 50 10.208 4.005
10 ARL* H=28.31
None 0 250.813 211.739
1 10 64.449 44.388
2 10 65.815 44.621
(1,2) 10 64.435 39.922
All 10 63.555 20.420
1 20 36.650 28.375
2 20 37.369 28.833
(1,2) 20 36.436 18.800
All 20 34.622 8.776
All 30 21.103 5.724
All 40 13.093 4.284
15 ARL* H=28.3
None 0 255.313 211.468
1 6.67 72.635 45.452
2 6.67 73.671 46.359
(1,2) 6.67 72.568 43.198
All 6.67 71.895 23.741
1 13.33 46.328 35.940
2 13.33 46.750 36.070
(1,2) 13.33 46.248 24.901
All 13.33 44.604 10.014
All 20 27.925 6.431
All 26.67 18.832 4.808

Note: ARL" represents the lowest ARL obtained from those individual EWMA control charts
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Figure 6 Plots of EWMA charts of the regression adjustment on both Y and Z
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Figure 7 Plots of MPEWMA chart with H = 11.49
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Chapter 6
CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion

We presented a new type of the multivariate Exponentially Weighted
Moving Average control chart for monitoring multiple related count data. This
kind of data can usually be found when monitoring several types of defects per
unit of product or defects per area of product in the manufacturing process. In
fact, often the number of defects is small and tends to depart from a normal
distribution. There is also some common relationship among all variables and
consequently it can be assumed that the multivariate Poisson distribution holds.
The multivariate Poisson EWMA (or MPEWMA) chart has been proposed to
detect small and medium changes in the mean counts. The Poisson limits are
directly derived from the multivariate Poisson distribution, instead of the

normality.

We have demonstrated that control chart performance in monitoring
multivariate Poisson-distributed data is slightly different between a scheme based
on normal-theory limits and a scheme based directly on multivariate Poisson-
distribution limits. ARL tables are presented to show the general performance of
the MPEWMA scheme. The control limits of the proposed method are slightly
wider than those that relied on the normality assumption. Based on the ARL
results, we find that the proposed control chart produces out-of-control ARL

values similar to the standard normal-theory MEWMA. However, the MPEWMA
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control chart is superior to the traditional MEWMA in terms of the in-control
ARL. The use of the normal-theory limits can lead to substantially smaller in-
control ARL values than what is stated when the data follow a multivariate
Poisson distribution. Thus, the result shows the potential of using the MPEWMA
with Poisson-distributed data in reducing the false alarm rate. The standard
deviation run length is provided, and therefore the standard error of the mean can
be obtained if desired. Furthermore, we illustrate some examples of

implementation the MPEWMA chart in practice.

We extended the two-sided multivariate Poisson EWMA to the one-sided
control chart based on the multivariate Poisson assumption as a method for
detecting only upward shifts in the mean of multiple count data. The control limits
are again established using the multivariate Poisson distribution instead of the
normal approximation limits. The results indicate that the multivariate Poisson-
distribution limits are wider than the normal-theory limits. The statistical
performances of the one-sidled MPEWMA scheme are presented by both average
and standard deviation of the run length. The results indicate that applying the
one-sided MEWMA with the normal-theory limits to the multivariate Poisson
distribution can result in a smaller in-control ARL than the advertised value.
MEWMA causes a high false alarm rate when the process is actually in control.

Four case studies are illustrated to investigate the one-sidled MPEWMA
performance for detecting a single and a run of out-of-control signals (2 to 5
consecutive points). The time-delay in detection tends to increase with the amount

of out-of-control points waiting to signal, particularly when there is a shift in a
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few variables. The use of the consecutive points method is similar to the single
point method when monitoring a shift in all variables because it takes a slightly
longer time to detect the first out-of-control signal. The single point approach is
preferred to detect a shift in one or possible two variables since it reduces
detection times compared to a long run of out-of-control signals.

The proposed MPEWMA chart is also compared with other model-based
control charts for monitoring count data from multiple sources. Two techniques
for model building are investigated: 1) the regression adjustment and 2) the
generalized linear model. We consider the regression adjustment based on two
ways of decomposing the Hotelling T* statistics, and they are called the Y and Z
scales. For the generalized linear model, Poisson regression is selected for
modeling the Poisson distribution. The residuals (computed from the regression
adjustment) and deviance residuals (calculated from the Poisson regression) are
plotted on the multiple EWMA charts as those residuals are approximately
normally distributed. The comparison results show that the MPEWMA scheme
outperforms two residual-based control charts for all scenarios due to the small
out-of-control ARL values. Hence, the MPEWMA chart can detect changes in the
mean of a Poisson count earlier than those model-based control methods. Fewer
samples will be taken to indicate that the process mean has increased.

6.2 Future work

Several concerns of the multivariate Poisson EWMA chart still require
further exploration. Firstly, this paper uses a multivariate Poisson model that

allowed only positive correlation. It is also interesting to develop the multivariate

106



Poisson distribution with the general correlation structure, and therefore a new
control scheme can be extended to allow negative correlation among variables. A
theoretical framework of the multivariate Poisson model and an effective method
for generating data are desirable to examine the statistical performance of the new
scheme.

Secondly, one disadvantage of using the multivariate control scheme is in
interpretation of the out-of-control signal. It is not easy to determine which
quality characteristic is associated with the mean shift signal, particularly for the
high dimensional case. Moreover, the change in either local (6;) or common (6)
variables can result in an increased mean. An advanced method is needed to
identify the variables that correspond to an increase in the mean. Consequently, a
proper action can be taken to correct the problem.

Thirdly, it is necessary to investigate additional conditions of the
parameters. For example, a study on the effect of the thetafix parameter and its
role in the average run length performance. In this research, we have only
explored two values of 6, 0.5 and 1, and the ARL values of 8 = 0.5 appear to be
slightly larger than for the 8 = 1. The parameter should vary over a wide range of
values in oder to investigate the MPEWMA chart’s performance. The results are
needed to gain more insight into the detection of the mean change in the common
variable. In addition, we simplified the process monitoring problem by assuming
that all quality characteristics have equal means. This is too restrictive an
assumption in many real word applications. The mean of one variable can be

different than the others. Thus, it is more appealing to estimate the control chart
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performance under this circumstance (i.e. unequal means of the variables). One
more thing, the change in the means is limited to a permanent upward shift, in
other words, the count means increase and hold on to the new level after the shift
has occurred. However, the shift is sometimes happen during a certain period of
time (e.g. the spike of the mean shift). It is also a good idea to find some way to
detect this spike shift as well as the permanent shift in the multiple count data.
Lastly, an existing method of estimation the theta parameters in the
multivariate Poisson model is not guaranteed to have a good performance in the
high dimensional problems. The advanced method is needed to provide more
accurate the theta estimates. Thus, phase I of the proposed MPEWMA chart can
be established based on this method. The statistical performance of the
MPEWMA scheme in phase I will be evaluated on the basis of the run length

distribution.
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APPENDIX A

MATLAB CODING FOR OBTAINING THE CONTROL LIMITS

OF THE MPEWMA CHART
close all;
clear all;
% Set the variables
n=4; % number of variables of interest
lamda = 0.05; % define value of lambda
M=3; % define value of the mean vector
thetafix = 0.5; % define value of the common mean
t=0; % define the trail value of the control limit
shift position =201; % set the occurrence of the mean shift
cycle = 50000; % set the number of maximum cycles
Ip_max = 100000; % set the number of maximum loops to prevent infinity run

% Set the location to safe result file
dir = 'H:\Research\Result\";

% Normal Theory limits
nlamdaH =[4,0.05,11.22;4,0.1,12.73;6,0.05,14.60;6,0.1,16.27;10,0.05,20.72;
10,0.1,22.67;15,0.05,27.82;15,0.1,30.03];

% Assign shift matrix

shiftmatrix =[0,0,0,0;1,0,0,0;0,1,0,0;2,0,0,0;0,2,0,0;1,1,0,0;2,2,0,0;1,0,1,0;0,0,2,0;
1,0,0,1;0,0,0,2;1,1,1,1;2,2,2,2:3,3,3,3;4,4,4,4];

countshift = max(size(shiftmatrix));

% Fix variables

Me = zeros(n,1);

Cov = zeros(n,n);

Yi = zeros(n,1);

Xi0 = zeros(n+1,1);
theta tmp = zeros(n,1);
countall = ones(1,cycle);

% Using trial and error based on the normal limits to obtain the Poisson limits
countnlH = max(size(nlamdaH(:,1)));
for i=1:countnlH
if (nlamdaH(i,1)==n) & (nlamdaH(i,2)== lamda)
H = nlamdaH(i,3);
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end
end
H=H +t;

% Find mean vector assuming all means are equal
fori=1m
Me(i) = M;
end
% Find covariance matrix
fori=1mn
forj=1l:n
ifi==]
Cov(i,j) = Me(i);
else
Cov(i,j) = thetafix;
end
end
end

lamda001 = 1/(lamda/(2-lamda));
thetafix N = thetafix*ones(n,1);

% Calculate the control limits for each shift matrix
for s = 1:countshift

shift = shiftmatrix(s,:)';

cyc_cnt=1;

% To satisfy the steady-state condition, each cycle will loop for at least 200
% periods. If fail before reaching 200 loops, we re-do simulation. If not fail
% after 200 loops pass, the simulation continues until fail or reach Ip_max
while (cyc_cnt<=cycle)
Me_shift = Me;
theta tmp = Me_shift - thetafix N;
z = zeros(n,1);
Ip ent=1;
while (Ip_cnt <Ip max)
% Generate Xi and Yi
Xi0 = poissrnd([thetafix;theta tmp]);
for i=1:n
Yi(i) = Xi0(i+1) + Xi0(1);
end

% Calculate T-square based on asymptotic assumption
z = (lamda*(Xi-Me)) + ((1-lamda)* z);
invCov = inv(Cov);
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Covarinv = lamda001*invCov;
Tlsquare = z' * Covarinv * z;

% Check if the T-square is in or out of control

if (T1square > H)
if (Ip_cnt<shift position)
Ip ent=1;
z = zeros(n,1);
Me shift = Me;
theta_tmp = Me_shift - thetafix N;
else
break;
end
else

if (Ip_cnt==shift_position)
%Change in the mean vector after the shift period
Me shift = Me + shift;
theta_tmp = Me_shift - thetafix N;
%Change in the variance-covaraince matrix after the shift period
fori=l:n
forj=1m
ifi==j
Cov(i,j) = Me_shift(i);
else
end
end
end
end
Ip ent=1p cnt+ 1;
end
end
countall(cyc_cnt) =1p_cnt - shift position - 1;
cyc_cnt=cyc cntt+l;
end
countall s(s,:) = countall(:);

% Create the result file

str = strcat('Total ARL','M=',num2str(M),'thetafix=",num2str(thetafix), H=',
num2str(H),'VAR=",num2str(n),'S=",num2str(s), Lamda=',num2str(lamda),
'Poi=",num2str(shift_position),".dat");

filename = [dir,str];

fidl = fopen(filename,'w");

% Print the average run length from all cycles and run length of each cycle
fprintf(fid1,"\n%12s',ARL");
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MeanARL = mean(countall s(s,:));

fprintf(fid1,’' %12.3f,MeanARL);

fprintf(fid1,"\n%12s','"Loop");

fprintf(fid1,' %10s%2d",'No,s=,s);

fprintf(fid1,"\n');

for cyc_cnt = l:cycle;
fprintf(fid1,"%12d',cyc_cnt);
fprintf(fid1,' %12d',countall s(s,cyc cnt));
fprintf(fid1,"\n");

end

fclose(fidl);

end
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