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ABSTRACT  

 There has been much research involving simultaneous monitoring of 

several correlated quality characteristics that rely on the assumptions of 

multivariate normality and independence. In real world applications, these 

assumptions are not always met, particularly when small counts are of interest. In 

general, the use of normal approximation to the Poisson distribution seems to be 

justified when the Poisson means are large enough. A new two-sided Multivariate 

Poisson Exponentially Weighted Moving Average (MPEWMA) control chart is 

proposed, and the control limits are directly derived from the multivariate Poisson 

distribution. The MPEWMA and the conventional Multivariate Exponentially 

Weighted Moving Average (MEWMA) charts are evaluated by using the 

multivariate Poisson framework. The MPEWMA chart outperforms the MEWMA 

with the normal-theory limits in terms of the in-control average run lengths.  

An extension study of the two-sided MPEWMA to a one-sided version is 

performed; this is useful for detecting an increase in the count means. The results 

of comparison with the one-sided MEWMA chart are quite similar to the two-

sided case. The implementation of the MPEWMA scheme for multiple count data 

is illustrated, with step by step guidelines and several examples. In addition, the 

method is compared to other model-based control charts that are used to monitor 

the residual values such as the regression adjustment. The MPEWMA scheme 

shows better performance on detecting the mean shift in count data when positive 

correlation exists among all variables.  
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Chapter 1 

INTRODUCTION 

1.1   Overview 

The multivariate control charts are widely used to simultaneously monitor 

several quality characteristics for detecting the mean changes in manufacturing 

industries (i.e. the measurements in production lines or during the inspection). 

Various types of the multivariate charts have been explored and discussed 

extensively, including the Hotelling T2, Multivariate Cumulative Sum 

(MCUSUM), and Multivariate Exponentially Weighted Moving Average 

(MEWMA) charts. Typically, the MEWMA scheme is used to detect a shift in the 

process means, especially for the small shift. The application of the MEWMA 

chart is not only limited to the manufacturing and service business, but has also 

been extended to public health and biosurveillance problems. For example, 

control charting has become more widespread for monitoring disease data and 

activity during recent years.  

Two important assumptions (a multivariate normal distribution and the 

independence of observations) are made before applying the MEWMA scheme. 

In practice, the data are most likely observed as counts or number of events of 

interest, but sometimes the normal assumption is violated. The departure from 

normality can affect the statistical performance of the MEWMA chart. Rather 

than ignoring the normality violation, there is a need to investigate the MEWMA 

chart’s performance and develop an appropriate way of monitoring multiple count 

data. 
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1.2   Statement of the Problem 

The objective of this research is applying the multivariate EWMA control 

chart to a specific problem in industry and syndromic surveillance, particularly for 

modeling counts or count rates from multiple sources. The situation can be found, 

for example, in monitoring several types of defects on a layer of wafer (e.g. 

particles, scratches, and pattern defects) during the fabrication process in the 

semiconductor industry. Indeed, the defects are considered to be count data and 

being monitored at very low level. Such data tend to follow the Poisson 

distribution and depart significantly from the assumption of normality.  

The effect of violation of multivariate normality involving the MEWMA 

chart has not been intensively investigated, and therefore employing the 

traditional MEWMA scheme to monitor the changes in those defects becomes 

questionable. It could possibly result in a high early false alarm rate or a poor 

performance of detecting a shift in the means. In addition, the study of the 

robustness of the normal approximation to the Poisson distribution is too small, 

and it could be problematic for determining the appropriate mean value of the 

Poisson variable to properly approximate by the normal. Thus, an improvement of 

the traditional MEWMA chart is necessary to increase the accuracy of the 

detection performance by assuming a proper structure to those counts. A new 

MEWMA chart for monitoring the multiple correlated count data is proposed as 

an alternative method to the traditional one. 
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1.3   Potential Contributions 

This dissertation consists of three topics related to monitoring multivariate 

Poisson count data. Firstly, there has been some suspicion on the adequacy of 

using the MEWMA chart to monitor correlated counts from multiple sources. 

Since a Poisson distribution is commonly assumed in monitoring count data, the 

new type of the MEWMA chart that relies on the multivariate Poisson distributed-

data is introduced to tackle this problem. The multivariate Poisson model is 

composed as a sum of two Poisson variables (one to represent the positive 

correlation among all variables). This new method is referred to as the 

Multivariate Poisson Exponentially Weighted Moving Average (or MPEWMA) 

control chart. The control limits are straightforwardly derived from Monte Carlo 

simulation results based on the multivariate Poisson distribution, instead of the 

usual the normality assumption.  

A general framework for the construction and use of MPEWMA scheme 

to detect the mean changes in both upward and downward directions is presented. 

The statistical performance of the MPEWMA chart is examined through the run 

length distributions in terms of both the average and standard deviation. A 

comparison of the efficacy is made between the MPEWMA and traditional 

MEWMA charts at several combinations of the factors, such as the number of 

variables and the mean values. Besides understanding the effects on the MEWMA 

performance against the Poisson data, the result can help to clarify whether the 

use of the normal approximation to the Poisson distribution is appropriate or not 

and under what circumstances.  



4 

 

Secondly, an extension of the two-sided MPEWMA chart to the one-sided 

version is discussed for detecting any shift in a specified direction, an upward 

trend. In many situations, it is not necessary to monitor the mean count changes in 

both increasing and decreasing directions. For example in public health 

surveillance, one monitors the number of patients with respiratory disease visiting 

hospital emergency departments or the incidence rates of disease in various 

regions. It is desirable to detect only an increase in those counts because the 

downward shift indicates a better condition, i.e. people tend to become healthier 

or the spread of disease is not apparent. Hence, applying the two-sided 

MPEWMA scheme does not seem appropriate and useful since it should not be 

signaled by a decrease in the count (number of patients) or count rate (the 

incidence rates of disease).  

The Poisson limits of the one-sided MPEWMA chart are again obtained 

through the same simulation procedure. The one-sided MPEWMA chart’s 

performance is investigated and the results reported are the average and standard 

deviation of the run lengths. The performance comparison of the one-sided 

MPEWMA and one-sided MEWMA is examined under a variety of parameter 

conditions. The results could help to understand the robustness of the one-sided 

MEWMA chart to the multivariate Poisson distribution and determine when it is 

appropriate to use the normal approximation to the Poisson data. 

For syndromic surveillance application, interpreting an out-of-control 

signal beyond the control limit as an out-of-control condition is considered to be 

uncertain. A claim that disease has dramatically increased is sometimes 
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overreacting if the out-of-control signal is truly a false alarm. However, waiting 

too long before making the claim can cause delay in the prevention of the disease 

when the disease rate has already increased. This is a trade-off between the 

detection time and the confidence in an increased rate of disease. In general, the 

time for detecting the mean shifts tends to be longer while waiting for more 

signals to occur to ensure an increase in the disease rate. To understand an effect 

of detection time delay on making the claim, the one-sided MPEWMA scheme’s 

performance is examined not only in an individual out-of-control signal, but also 

a run of consecutive out-of-control signal (2, 3, 4, or 5 points in a row). The 

results are reported in terms of the detection time and the percentage of correct 

detection of the out-of-control state under each of the out-of-control condition 

described above. This would help determine whether the risks of making 

decisions affect the detection time or not and how big is the effect; therefore the 

user should be able to make a better decision on detecting a positive shift in the 

disease rate. 

Thirdly, another type of control scheme called the model-based control 

chart has been utilized to monitor several correlated count data. The model-based 

control approaches embrace the process knowledge concept into the use of 

conventional control charts to improve their sensitivity and efficiency. There are 

several ways to implement process knowledge, but one implementation discussed 

in this study is fitting a model to gain more insights into the relationships of 

quality characteristics being monitored. The residuals after fitting the model will 

be plotted on the conventional control charts, and therefore it is sometimes 
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referred to as the residual-based control chart. The regression adjustment 

technique is chosen and used in conjunction with the univariate EWMA scheme. 

The EWMA scheme is selected for study because it is known to be an effective 

method of detecting a small mean shift.  

The performances of those model-based control charts are investigated for 

several combinations of the parameters including mean values, number of 

variables, and various sizes of shift. The average run length (ARL) performances 

are reported and then compared with the two-sided MPEWMA chart. The results 

are discussed in more detail to explain how well the regression analysis works 

with multiple correlated counts, i.e. the performance in removing the correlation 

and the ability to transform data into an approximately normal distribution. 

Moreover, a comparison of the ARL results can assist in determining whether the 

proposed MPEWMA scheme is more useful for early detection of the count 

changes than those model-based control methods.  
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Chapter 2 

BACKGROUND LITERATURE 

2.1   Background 

A Multivariate Exponentially Weighted Moving Average (MEWMA) 

chart is one type of multivariate control charts involving a simultaneous 

monitoring of several correlated quality characteristics. The MEWMA scheme 

was firstly introduced by Lowry et al. (1992) as a multivariate version of the 

univariate EWMA chart for detecting a shift in the mean vectors. In general, the 

MEWMA scheme is applied to monitor the process changes in the manufacturing 

industries. Testik and Borror (2004) have recommended the use of MEWMA to 

detect small and moderate shifts in the process means. Typically, a smaller 

smoothing weight (λ) is used in favor of detection of a smaller size of shift. 

Bersimis et al. (2006) suggested that the MEWMA scheme outperforms the 

multivariate Shewhart chart, and for many practitioners it is easier to implement 

than a multivariate cumulative sum control chart (Fricker, Knitt, and Hu, 2008). 

2.2   Statistical Performance of the MEWMA chart 

The statistical performance of the MEWMA chart is computed and 

reported in terms of the run length properties. There are three different methods of 

calculation. The first method is the simulation technique. Both Average Run 

Length (ARL) and the standard errors of the ARL are derived from simulation 

over 6,000 times. If all variables have equal interest in monitoring the changes, 

the ARL performance will be based on a function of the noncentrality parameter 

(δ) or the shift size (Lowry et al., 1992). If the quality characteristics being 
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monitored are not of equal interest (assuming unequal smoothing weight), the 

ARL will depend on the direction of the shift and can be obtained through the 

regression adjustment method (Hawkins, 1991).  

The second method is using an integral equation. The integral and double-

integral equations are developed to approximate the ARL values. The ARL for the 

in-control case can be estimated by solving a single integral equation whereas the 

ARL for the out-of-control case is computed by solving a double integral equation 

(Rigdon, 1995a; and Rigdon, 1995b). The third method involves the Markov 

Chain approach. The Markov chain model has been extended to estimate the 

ARL. The MEWMA chart’s performance is presented in two conditions: the 

‘zero-state’ and ‘steady-state’ ARL. The ‘zero-state’ ARL is obtained as the 

process starts at the normal condition. The ‘steady-state’ ARL is calculated by 

assuming a shift has been introduced after the normal operating process runs for a 

certain period of time. The ARLs are also reported in terms of a quantity of shift 

size for several parameter combinations (Prabhu and Runger, 1997; Runger and 

Prabhu, 1996). 

2.3   Robustness to non-normal data  

The basic assumptions of independence and multivariate normality 

significantly affect the adequacy of the MEWMA method. Few articles have 

appeared concerning the MEWMA scheme and its performance when it is applied 

to non-normal data. The performances of the MEWMA chart were investigated 

using the multivariate t and gamma distributions with various values of skewness 

and kurtosis up to ten variables (Stoumbos and Sullivan, 2002) and up to twenty 
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variables (Testik, Runger, and Borror, 2003). The MEWMA chart’s performance 

is found to be better than Chi-square (χ2) chart in terms of both larger in-control 

and smaller out-of-control ARL values. In both works the MEWMA scheme 

relies on the asymptotic covariance. Stoumbos and Sullivan (2002) mentioned 

that the use of an exact covariance matrix in calculating the MEWMA statistics 

can actually decrease the robustness again the non-normal data. The MEWMA 

scheme with a large number of data points and a range of the smoothing weight 

(between 0.02 and 0.05) is sufficient to ensure a central limit theorem and hold for 

robustness. For the high dimensional case, a smaller value of the smoothing 

weight (λ) is recommended for increasing robustness to a non-normal 

distribution. However, a significant chance of having early false alarm leads to a 

departure from the multivariate normality, and therefore the robustness becomes 

an issue.  

Testik, Runger, and Borror (2003) state that the in-control performance 

may be decreased in monitoring non-normal data, that is, the false alarm rate is 

likely to increase. Generally, the MEWMA chart with the weight constant of 0.05 

is recommended due to its good performance in detecting the changes and 

robustness under non-normal conditions, similarly to Testik and Borror (2004). 

Testik and Borror (2004) noted that the smaller λ value can provide greater 

robustness, but it also delays the detection time when the MEWMA vectors go in 

the opposite direction relative to the occurrence of a shift. It is referred to as the 

inertia problem. For more details of this problem and solutions, see Lowry et al., 

1992; Niaki and Abbasi, 2005; Woodall and Mahmoud, 2005. Unfortunately, 
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there was no further study on the robustness again multivariate Poisson data for 

the MEWMA scheme.  

In fact, the MEWMA chart is also employed to monitor Poisson counts by 

assuming normality. Typically, the normal approximation for Poisson data will 

suffice for the large mean counts. For the univariate and multivariate control 

charts, several authors have suggested that a good approximation to the Poisson 

distribution with a normal distribution can be obtained if the Poisson mean is 5 or 

more (Xie, Goh, and Kuralmani, 2002), the Poisson mean is greater than 10 

(Joner et al., 2008), the Poisson mean exceeds 12 (Box, Luceño, and Paniagua-

Quiñones, 2009) and the Poisson mean is at least 15 (Montgomery, 2009). 

Moreover, Testik, Runger, and Borror (2003) advised that the central limit 

theorem can be applied to the MEWMA if the number of samples is large enough. 

However, there has been no clear cut-off values for the mean and appropriate 

sample sizes to provide more accurate approximation to the Poisson. 

Since those earlier reviews do not provide much information about the 

efficiency of the traditional MEWMA scheme to Poisson-distributed data, the use 

of the MEWMA chart with the normal-theory limits in such a scenario remains in 

doubt due to the accuracy of the normal approximation. In our study, we 

introduce a new MEWMA scheme based on the multivariate Poisson distribution. 

The simulation method is used to calculate the appropriate control limits and 

estimate the performance of the proposed chart. Details on the multivariate 

Poisson model and parameter estimation are described in Section 2.4. In Section 

2.5, a review of the multivariate control charts that rely on the multivariate 
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Poisson assumption are discussed. In Section 2.6, an extension of the MEWMA 

scheme to the one-sided test is presented. A discussion of other control chart 

techniques for dealing with multivariate data is provided in Section 2.7. 

2.4   Multivariate Poisson Distribution 

2.4.1 Multivariate Poisson Random Variables 

The multivariate Poisson distribution was introduced in two 

different forms. Kawamura (1979) presented the multivariate Poisson model in 

terms of the sum of p independent random Poisson variates. Johnson, Kotz, and 

Balakrishnan (1997) proposed a structure of a multivariate Poisson distribution 

involving the correlated Poisson variates. For the control chart application in this 

research, the multivariate Poisson distribution is based on the work of Johnson, 

Kotz, and Balakrishnan (1997). The p multivariate Poisson random variables are 

defined as 

YYX ii += , for i = 1, 2, …, p         (1) 

where Y and Yi are independent Poisson random variables with means θ and θi, 

respectively and Xi are Poisson random variables with means iθθ +  for i = 1, 2, 

..., p. The variance-covariance matrix of pXX ,...,1 has diagonal elements, 

iiXVar θθ +=)(  and off-diagonal elements, Cov(Xi, Xj) = θ. Elements of the 

variance-covariance matrix are  

iiXVar θθ +=)(   , i = 1, 2, …, p           (2) 

θ=),( ji XXCov  , j = 1, 2, …, p   and i ≠ j    (3) 

The fixed parameter, θ, corresponds to an event or mean common 

to all p random variables. Let’s use the previous scenario where monitoring three 
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types of defects (particles, scratches, and pattern defects) as an example. The 

particle defects on the layer of the wafer (X1) are the combination of the effect of 

particle defects on the layer (Y1) (such as etching process) and the effect of 

original wafer quality (Y). The quality of the original wafer can also affect other 

types of defects; in other words, the scratch defects on the layer of the wafer (X2) 

are the combination of the effect of scratch defects on the layer (Y2) (such as 

polishing process and handling equipment) and, again, the effect of original wafer 

quality (Y). Thus, the effect of original wafer quality is considered as the common 

relationships among all types of defects. Skinners, Runger, and Montgomery 

(2006) have recommended using this model for monitoring several types of 

defects per unit of product (such as defects in assembly automobiles) or defects 

per area of product (such as defects in paper or cloth products).  

The estimation of all parameters, especially the fixed parameter, is 

an important issue, if it is not assumed to be known. We provide a brief 

description of the various methods for obtaining θi and θ as follows. 

2.4.2 Theta Parameter Estimation Methods 

Holgate (1964) compared two ways of estimating the parameter θ 

for the bivariate Poisson distribution: 1) the maximum-likelihood estimation and 

2) the method of moments. The method of moments is considered efficient with 

two uncorrelated variables. If the correlation increases, the efficiency of the 

method of moments tends to decrease whereas the maximum-likelihood method 

provide more precise due to the reduction in variance of maximum-likelihood 

estimator. Karlis (2003) used an EM algorithm to approximate the parameters iθ  
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of multivariate Poisson distributions. The E-step is used to calculate the estimates 

(or pseudo-values). The estimates are then updated by the M-step. One restriction 

is to pick the initial values for θi in the feasible range such as θi > 0, otherwise the 

final values will not be in the admissible range.  

Jost et al. (2006) proposed a new approach based on the composite 

likelihood concept of Lindsay (1988) to estimate parameters. The optimal 

composite likelihood estimator can be derived by using an iterative approach to 

solve the equation relating a pairwise log-likelihood function below 

0)(
ˆ

1

1 1

=
∂

∂
=

−

= +=
∑ ∑ θθθ

θm

u

m

uv

uv
uv

lw           (4) 

where m is the number of variables and uvw  is the weight where in general 

1=uvw for mvu ≤<≤1 , and )(θuvl is the bivariate marginal log-likelihood 

function between two variables uX and vX .  

 This new method is more effective than the method of moments, 

and requires less computational effort than the maximum-likelihood method. He 

also mentioned the disadvantage of Karlis (2003) that the computation becomes 

more complicated as the multivariate Poisson distribution involves a large number 

of variables (eight or more). 

2.5   Multivariate charts for the multivariate Poisson distribution 

There have been many articles involved in introducing the new types of 

multivariate charts that relied on the multivariate Poisson distribution. The first 

control chart for the multivariate Poisson distribution was presented by Patel 

(1973). The ‘G-statistic’, similar to the Hotelling T-square statistic, is calculated 
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and plotted on the chi-square control chart. The control scheme discussed in Patel 

(1973) has not been used in practice because of the complexity of obtaining the 

‘G-statistic’. Skinners, Runger, and Montgomery (2006) proposed two types of 

schemes to detect the change in the means of multiple Poisson counts. Firstly, the 

Deleted-Y chart based on the moment estimator is recommended for only one or 

two variables shifted when the all mean counts are assumed equal. Secondly, the 

Y chart computed from the sample mean is proposed to detect a change in all 

variables. Since both Deleted-Y and Y statistics are plotted on p individual 

Shewhart charts, they may not be easy to use for the higher-dimensional 

problems. 

Chiu and Kuo (2008) studied two new types of control charts for 

monitoring multivariate Poisson counts with correlated variables: 1) the 

multivariate Poisson (MP) chart and 2) a Shewhart-type chart. The control limits 

of the MP chart can be obtained by either the exact distribution based on the sum 

of all Poisson variates or a multiple linear regression method (Kuo and Chiu, 

2008). The control limits of the Shewhart-type scheme are derived from the 

normal approximation to the Poisson distribution. The result shows that using the 

normal approximation to the Poisson distribution is good for a mean count of five 

or larger. It can be seen that the MP chart performs better than the Shewhart-type 

in terms of the in-control ARL, but the out-of-control ARL performance is 

sensitive to an increase in the coefficient of correlation. One limitation of the 

result is that the authors only examined the run length performance for two and 

three variable problems, not in the higher-dimensional case. In addition, it is 
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restricted to the case of positive correlation among the variables being monitored 

because the multivariate Poisson model used in this work is expanded from the 

bivariate Poisson model proposed by Holgate (1964).  

2.6   MEWMA chart and its extension to the one-sided version 

The MEWMA chart is generally applied to monitor both positive and 

negative changes in the process means. In addition to the industrial and business 

applications, the quality control method also has great potential for use in the area 

of public health-care and bioterrorism surveillance. An increasing number of 

papers have studied the outcome from applying the control chart to detect and 

monitor diseases in public health surveillance. The implementation of the 

MEWMA chart for public-care and bioterrorism monitoring has been recently 

discussed by many authors (Burkom et al., 2005; Yan, Chen, and Zeng, 2008; and 

Woodall, 2006). Rolka et al. (2007) addressed the MEWMA chart as one of 

several techniques for detecting events of bioterrorism-related outbreak. However, 

it is necessary to improve the outcome and avoid false alarm triggered by 

unrelated events. Fricker, Knitt and Hu (2008) found a similar performance 

between the directional MCUSUM and MEWMA charts in biosurveillance 

application. However, the MEWMA scheme is preferred based on practical 

reasons for selecting parameters.  

A review of statistical methods in modern biosurveillance, describing a 

variety of control charts including the MEWMA chart, is given by Shmueli 

(2009). The author outlines some concerns with applying traditional multivariate 

charts to syndromic data. One concern is the data most often do not follow a 
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multivariate normal distribution nor is the independence assumption satisfied. It is 

difficult to justify that bio-surveillance data follow a multivariate normal 

distribution since the variety of data sources come from widely diverse 

environments (Shmueli and Fienberg, 2006). Fricker (2009) also noted that the 

natural occurrence of autocorrelated data cannot be well monitored by standard 

SPC techniques used in manufacturing. Another concern is related to the 

covariance structure for standard multivariate SPC techniques. The covariance 

structure is often assumed to be constant across time. Empirical evidence has 

shown that when the data is syndromic, the covariance structure changes over 

time. Therefore, applying the standard multivariate charts in these situations 

should be done with caution since the covariance structure departs from its 

intended application and original setting. Finally, it is more reasonable to detect 

only when an increase in syndromic data has occurred. Consequently, the 

standard control charts must be modified so that they are more sensitive to certain 

directional shifts. For example, one-sided monitoring techniques modified for 

surveillance of syndromic data will often result in better detection performance 

than two-sided monitoring methods (Lotze and Shmueli, 2008).  

Discussions of the design of MEWMA control chart are extended to a one-

sided MEWMA for detecting only an increase in the mean shift. The one-sided 

MEWMA scheme has been studied and appears in many literatures. FassÒ (1999) 

modified the multivariate EWMA chart for the bivariate case by using a restricted 

maximum likelihood estimator (MLE) to the MEWMA statistics. The resulting 

one-sided MEWMA control chart is designed to monitor an upward shift in at 
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least one quality characteristic when no variables have a decreased rate. 

Unfortunately, this approach has not been extensively used because of the 

method’s complexity and the restrictive assumptions.  

Testik and Runger (2006) extended the one-sided MEWMA proposed by 

FassÒ (1999) for use in a higher dimensional problem. Another control method is 

proposed for the case where at least one variable shifts either upward or 

downward (one-sided test for some variables) and others move in any direction 

(two-sided test for the remaining variables). The new approach is referred to as 

the partial one-sided control chart. FassÒ and Locatelli (2007) also developed an 

asymmetric MEWMA chart that is similar to the partial one-sided chart by Testik 

and Runger (2006) which allows the remaining quality characteristics to change 

in both upward and downward direction. Testik and Runger (2006) and FassÒ and 

Locatelli (2007) obtained the MEWMA statistics by quadratic programming. The 

slight difference between the two methods is that the control chart statistics of the 

asymmetric MEWMA is computed using the asymptotic covariance matrix, but is 

not necessary for the partial one-sided chart.  

Sonesson and Frisén (2005) recommended applying an individual upper 

CUSUM limit to the MEWMA chart introduced by Lowry et al. (1992). The 

proposed method can detect an upward shift in some quality characteristics 

without being affected by the downward shifts of other quality characteristics. 

Stoto et al. (2006) modified the multivariate CUSUM (MCUSUM) chart to detect 

positive shifts by limiting the MCUSUM statistics to be positive values only. 
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Note that each of the methods given above is based on the multivariate normality 

assumption. 

Joner et al. (2005) and Joner et al. (2008) presented a new one-sided 

MEWMA chart to detect a small upward shift in the incidence rates of disease. 

This one-sided MEWMA scheme is built up from two works - Sonesson and 

Frisén (2005) and Stoto et al. (2006). One good feature of the new control method 

is that it should not take too long to detect an abrupt increase when there is 

evidence of a continuing decrease in the incidence rates before. This is a result of 

placing a ‘barrier’ (or zero) within the equation of MEWMA statistics calculation 

to prevent the negative results. Consequently, the decrease does not greatly affect 

the next computation for detecting the upcoming increase in the incidence rates. 

This approach relies on the assumption that the normal approximation to the true 

underlying distribution (such as the Poisson) is appropriate (means greater of 10 

or more). There are, however, some situations where the normal approximation to 

the Poisson distribution is not necessarily true. In particular, when the process 

mean is quite small. In these situations, an adequate mean for using the normal 

approximation is still an issue in the multivariate case and, therefore monitoring 

techniques based directly on the Poisson distribution are recommended.  

Recently, there has been a review of the robustness of the one-sided 

MEWMA chart to multivariate Poisson data. Yahav and Shmueli (2010) 

investigated the performance of the Hotelling T-square and two types of one-

sided MEWMA charts (modified Follmann (1996) and Testik and Runger 

(2006)’s work) under a simulated multivariate Poisson distribution. The 
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multivariate Poisson model is generated by the work of Yahav and Shmueli 

(2009). The mean rates (from 1, 5, 10, and 20) are tested and the variance-

covariance matrix is assumed to be known. Two extended one-sided MEWMA 

charts show superior performance to the Hotelling T-square based on the in-

control ARL. This finding is similar to the result that the two-sided MEWMA 

chart is more robust to the multivariate t and gamma distributions than the 

Hotelling T-square, as previously discussed by Stoumbos and Sullivan (2002). 

2.7   Other control chart techniques  

Control chart methods are normally employed on the raw data. A new 

method has been developed by combining other modeling techniques with the 

quality control monitoring of multivariate data. In the other words, this new 

method consists of two steps in data monitoring: 1) a pre-process step and 2) a 

control step. The first step is transforming the multivariate data to gain more 

insights into a diagnosis such as applying regression analysis. Once the model has 

been found, the residuals are calculated and used in the next step. The second step 

is monitoring these residuals on control chart for detecting the mean changes. 

Thus, the method is called the model-based control chart, or sometimes it is 

referred to as the residual-based control chart. 

There have been many papers recently that developed the model-based 

control charts (see Hawkins, 1991; 1993; Healy, 1987; Mandel, 1969; Skinner, 

Montgomery, and Runger, 2003; and Zhang, 1984). The model-based control 

technique was firstly introduced by Mandel (1969). The Regression control chart 

was aimed to monitor the varying mean by using the conventional control chart in 
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conjunction with the regression method. The idea of Mandel (1969) has been 

extended to a cause-selecting chart (Zhang, 1984) for monitoring two process 

steps. The outgoing variable is monitored by applying regression to adjust for the 

effect of an incoming variable. One good feature is that it can help determine 

which subprocess goes out of control. Healy (1987) expanded a CUSUM control 

method to detect the mean shift in the multivariate case. The proposed CUSUM 

chart based on a linear combination of the variables is recommended if shifts in a 

known direction are expected. If the shifts are expected in more than one 

direction, the CUSUM of orthogonal linear combinations is needed to assure 

independence.  

Two types of regression adjustment are proposed by Hawkins (1991; 

1993). The first method involves the problem of correlated variables and 

expecting a shift in the mean of a single variable does not affect the remaining 

variables. Hawkins (1991) recommended applying the Z transformation to the 

data rescaled to zero mean and unit variance for further improving the Hotelling 

T-squared chart. The control chart based on the Z scaled residuals are obtained 

from regressing each variable on all others (e.g. regression Xj on X1, X2,…, Xj-1, 

Xj+1,…, Xp) and plotting them in multiple univariate control charts, such as 

CUSUM charts. The second method relates to a process having a natural ordering, 

and therefore a shift can affect some or all subsequent variables, not the prior 

variables. It is referred to as a cascade process. Hawkins (1993) introduced other 

ways to transform the X scale to the vector Y and W scales by firstly 

standardizing variables to zero mean and unit standard deviation. The Y scaled 
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residuals are computed from regression each variable on all preceding variables 

(e.g. regression Xj on X1, X2,…, Xj-1). The vector W is defined by scaling vector 

X using principal components. The W scale will work reasonably if a shift has 

occurred in the direction of one of the principal components. It is considered less 

useful than other scales due to a restriction that shifts of the mean should be in a 

direction along one of the principal components axes. However, it is not obvious 

that Y or Z scales give a better performance. Those decomposition approaches 

can be extended for use with other schemes, including the univariate and 

multivariate EWMA charts. 

Besides the regression adjustment, another regression technique is 

proposed for situations where the data are obtained from a biosurveillance system. 

Burkom et al. (2004) discussed the concept of sliding buffers under the baseline 

period for aggregated data. He suggested applying the control chart method to 

normalized data (i.e. the residuals of linear or Poisson regression) if the raw data 

show systematic behaviors. The comparison results indicate that using a multiple 

EWMA chart with the baseline length obtained from the empirical test provides 

better performance than the Hotelling T-square chart with the residuals of 

Provider-count regression. Fricker, Knitt, and Hu (2008) applied the “adaptive 

regression model with a sliding baseline” presented by Burkom et al. (2004) and 

Burkom, Murphy, and Shmueli (2007) to remove the systematic components in 

the biosurveillance data. The residuals are plotted on the directional multivariate 

CUSUM and EWMA charts.  
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To effectively eliminate the systematic components, there is a need to 

determine the appropriate values of parameters used in the adaptive regression 

such as forms of the regression model (linear and quadratic models) and the 

length of the sliding baseline. Pre-processing is also suggested to remove 

deviation from the normality assumption and autocorrelation (Lotze, Murphy, and 

Shmueli, 2008; and Yahav and Shmueli, 2010). Those residuals that go through 

the pre-process will satisfy the control chart requirements, and then they are 

applicable for the quality control methods.  

Lotze, Murphy, and Shmueli (2008) pointed out that the preconditioning 

(e.g. linear regression, log regression, and differencing) can reduce the seasonality 

impact in the syndromic data. Since there may be many explainable patterns in the 

data, a failure to remove all those patterns could have a remarkable effect on the 

results of the control charting methods. In particular, biosurveillance data with 

extremely low counts significantly departs from the normality assumption. Hence, 

using the control chart on the unprocessed data may lead to failure of detection of 

the presence of an outbreak or an increasing numbers of false alarm rates. The 

preprocessing methods used before applying the CUSUM chart to the actual data 

have shown improvements by removing variation from other irrelevant sources.  

The ordinary least square regression technique above is limited to the 

normally distributed data. For non-normal data, the generalized linear model-

based control charts were initiated to monitor counts (Skinner, Montgomery, and 

Runger, 2003) and over-dispersed counts (Skinner, Montgomery, and Runger, 

2004) from multiple sources. The deviance residuals are calculated by using the 
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predicted value obtained from fitting the generalized linear model with an 

appropriate link. The deviance residuals used in conjunction with the C chart 

show superior performance to the C chart itself in both univariate and bivariate 

cases. The link for the model should be selected with care, since it could result in 

bad predictions. Lewis, Montgomery, and Myers (2001) investigated the 

confidence interval coverage of the mean response when the incorrect link is 

assumed. The result demonstrated that a misspecified link has an impact on the 

model performance, especially for Poisson data. Precision is reduced and the 

confidence interval coverage is degraded by the misspecified link. In addition, the 

normal probability plot of the deviance residuals also showed the possible 

insufficiency of the fit model.  
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Chapter 3 

TWO-SIDED MEWMA CONTROL CHART 

3.1   Introduction 

A Multivariate Exponentially Weighted Moving Average (MEWMA) 

control chart is generally used to simultaneously monitor several correlated 

quality characteristics for many applications in manufacturing and business. The 

implementation of the MEWMA chart requires an assumption of a multivariate 

normal distribution. In real world situations, there has been interest in monitoring 

a small change in the count or count rate of occurrence of an event. A few simple 

examples of quantities that are monitored are the number of defects found at 

inspection stations, the number of car accidents that occurred at major junctions 

during peak traffic periods, and the number of customer complaints about service 

quality to service providers. These sample counts are usually assumed to follow a 

Poisson distribution. Since no extension of the MEWMA chart is developed for 

the multivariate Poisson distribution, the normal approximation to the Poisson can 

be used for applying the MEWMA chart.  

There has been no extensive assessment of the MEWMA control scheme 

performance for monitoring multiple Poisson-distributed variables when the 

assumption of the normal approximation to the Poisson distribution is not 

necessarily valid. The adequacy of the normal-distribution model for traditionally 

Poisson-distributed data is an issue of concern, particularly if the process means 

are small (say 5 or less). In addition, control chart performance, which 

corresponds to the normal approximation assumption, is often evaluated assuming 
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the covariance structure does not change along with a shift or change in the 

process mean. This is not true for the Poisson distribution because an upward shift 

in the mean also results in an increase in the variance. If the covariance matrix 

remains constant after a shift in the mean has occurred, then it could affect the 

shift size calculation and probably lead to an incorrect summary of the run length 

distribution. 

A new type of multivariate EWMA chart that relies on the multivariate 

Poisson distribution has been studied and proposed to properly handle this 

problem. It can be referred to as the multivariate Poisson Exponentially Weighted 

Moving Average (MPEWMA) control chart. Monte Carlo simulation is utilized to 

obtain the appropriate control limits which correspond to an in-control Average 

Run Length (ARL) of 200. The statistical performance of the MPEWMA chart is 

reported in the form of ARL and Standard Deviation of the Run Length (SDRL). 

In addition, comparison of the proposed MPEWMA and the traditional MEWMA 

chart’s performance is made in terms of the ARLs.  

In Section 3.2, we assess the normality of the multivariate Poisson 

distribution. Section 3.3 describes the MEWMA chart. Section 3.4 discusses the 

details of simulation method. Section 3.5 presents and summarizes the ARL and 

SDRL results. Section 3.6 develops the general equation to estimate the control 

chart’s performance. Section 3.7 compares the performance of the traditional 

MEWMA and MPEWMA charts. Section 3.8 illustrates an example of using the 

MPEWMA scheme. 
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3.2   Normality test on the Poisson distribution 

The adequacy of the normal approximation to multivariate Poisson-

distributed data is examined by performing the Anderson-Darling normality test. 

We illustrate an example of testing the normality on a four-variate Poisson 

distribution, X = [X1, X2, X3, X4]. Suppose all four means (θ1 + θ, θ2 + θ, θ3 + θ, 

θ4 + θ) are assumed equal. We consider five multivariate Poisson distributions 

with mean 5, 15, 25, 30, and 35, respectively. Each sample data (X1, X2, X3, and 

X4) is randomly generated from each of these five distributions with various θ 

values (0, 0.0005, 0.05, and 1) for a minimum sample size (n) of 100 to 200 

observations. The Normal probability plots are constructed and the resulting p-

values from the Anderson-Darling test were calculated.  The p-values of the first 

two variables (X1 and X2) are reported in Table 1 below.   

 

Table 1   Summary of the p-values from the Anderson-Darling Test (n = 100-

200) 

P-value of 
X1

P-value of 
X2

P-value of 
X1

P-value of 
X2

P-value of 
X1

P-value of 
X2

P-value of 
X1

P-value of 
X2

5 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 0.006
15 0.024 0.028 < 0.005 < 0.005 < 0.005 0.11 0.015 0.067
25 0.226 0.018 0.308 0.16 0.005 0.109 0.065 0.085
30 0.193 0.017 0.053 0.048 0.466 0.021 0.098 0.229
35 0.021 0.384 0.131 0.191 0.389 0.115 0.057 0.332

θ = 1Mean θ = 0 θ = 0.0005 θ = 0.05

 

 

It can be seen that the normal approximation is not always valid, 

particularly when the mean of the Poisson process is small (e.g., means of 5 and 
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15). As a result, control charts based on the assumption of normal-theory limits 

may not be appropriate when monitoring Poisson data. Thus, there is a need for 

monitoring techniques based on the true underlying distribution of the data. 

3.3   The Multivariate Poisson Exponentially Weighted Moving 

Average (MPEWMA) Control Chart 

The new type of the MEWMA scheme is developed based on the 

traditional multivariate EWMA chart. Lowry et al. (1992) proposed the MEWMA 

as an extension to the univariate EWMA chart. The MEWMA scheme takes into 

account recent past data which often results in quicker detection of the shifts in 

the process mean. Let’s say that p quality characteristics are being monitored 

simultaneously.  The MEWMA statistic is given by  

( ) 1−−+= ttt ZRIRXZ             (5) 

where Zt is the tth MEWMA statistics vector, Xt is the tth observation vector for t = 

1, 2, ..., n and Z0 = 0. The vector R consists of weights assigned to past 

observations in each of the p quality characteristics being monitored and I is the  

p × p identity matrix. Specifically, let rj, represent the weight assigned to the jth 

quality characteristic, then R = diag (r1, r2,…, rp ), where 0 < rj ≤ 1 and j = 1, 

2,…, p. If equal weight is assigned to each random variable so that r1 = r2 = … = 

rp = λ, then  

( ) 11 −−+= ttt ZXZ λλ            (6) 

The covariance matrix for the random variable Zt is 
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where ∑ is the covariance matrix for the p random variables and is assumed to be 

known.  (Assuming a known covariance matrix is common when evaluating 

monitoring techniques).  If the covariance matrix is unknown, then it can be 

estimated using a number of possible methods (see, e.g., Sullivan and Woodall, 

1995; and Williams et al., 2006).   As t → ∞, the asymptotic covariance matrix 

can be written as 

∑
⎭
⎬
⎫

⎩
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⎧

−
=∑ ∞→ λ

λ
2tZ                                  (8) 

The MEWMA control chart statistic is given by 

ttt t
T ZZ Z

12 −∑′=                                  (9) 

An out-of-control signal will occur if 2
tT > H, where H > 0 is a threshold 

limit selected in order to achieve a desired in-control ARL. The choices of the 

parameters H and λ can have significant effects on the performance of the 

MEWMA chart and should be selected with care.  

Since all p random variables being monitored truly follow a multivariate 

Poisson distribution, the data are generated from the multivariate Poisson model, 

as earlier discussed in Section 2.4.1, using Monte Carlo simulation. The 

MPEWMA statistic is obtained simply through the same steps for calculating the 

MEWMA statistics (from Equation (5) – Equation (9)). The asymptotic 

covariance matrix as shown in Equation (8) is used as the covariance matrix of the 

MPEWMA chart. We also consider two additional factors (the mean value and 
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the thetafix parameter) in determining the control limits of the MPEWPA chart. 

We will present results for various combinations of these parameters in order to 

obtain in-control ARL of interest.  

3.4   Data Simulation  

The proposed control chart is called the multivariate Poisson exponentially 

weighted moving average (or MPEWMA) chart. In this simulation study, the 

means kθθθθ ++ ,...,1  generated from the Poisson distribution to be investigated 

are 3, 5, 8, 10, and 15. Two smoothing weights (λ = 0.05, and 0.1) are selected for 

p = 4, 6, 8, and 10 variables. To simplify the study, the means of all variables are 

assumed equal. As previously mentioned, the chosen values of λ have been shown 

to be effective in detecting small shifts in the process mean. Values of θ were 

arbitrarily chosen to be 0.5 and 1. The MPEWMA control chart is studied under 

the “steady-state” condition. A “steady-state” control chart is defined as a control 

chart that operates in statistical control for some period of time. To simulate the 

steady-state condition and then a shift in the process mean, we allow the control 

chart to run under normal conditions for one-hundred time periods before a shift 

in the process is introduced at time period 101. The simulation continues until 

either the first out-of-control signal is found or the simulation routine reaches 

100,000 iterations. Each simulation is replicated 50,000 times to provide more 

accurate results.  

We are interested in the capability of the monitoring scheme to detect the 

increase in the mean (shifts) for one or more of the variables. The scenario of 

interest is limited to a permanent upward shift, or a long-lasting increase in the 
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means. The performance of the MPEWMA scheme is evaluated using various 

sizes of the mean shifts such as increases of one up to four units in one or more 

variables. Table 2 displays a list of all shifts that we applied to the four-variable 

and then the six-variable cases. To illustrate how to interpret the notation in Table 

2, suppose we have four Poisson processes with equal means that are being 

monitored simultaneously and a shift of 2 units has occurred in only one of the 

processes, say process 3.  This can be represented by the notation [0, 0, 2, 0], 

which can be interpreted as no shift in the mean for the first two processes, a two 

unit shift in mean for the third process, and no shift in the mean for the fourth 

process.  

 

Table 2   Shift matrix for four-variable and six-variable cases 

No. of Variable shift Variable shift
Shift matrix X1, X2, X3, X4 X1, X2, X3, X4 X5, X6

1 0,0,0,0 0,0,0,0,0,0
2 1,0,0,0 1,0,0,0,0,0
3 0,1,0,0 0,1,0,0,0,0,
4 2,0,0,0 2,0,0,0,0,0
5 0,2,0,0 0,2,0,0,0,0
6 1,1,0,0 1,1,0,0,0,0
7 2,2,0,0 2,2,0,0,0,0
8 1,0,1,0 1,0,1,0,0,0
9 0,0,2,0 0,0,2,0,0,0

10 1,0,0,1 1,0,0,1,0,0
11 0,0,0,2 0,0,0,2,0,0
12 1,1,1,1 1,0,0,0,1,0
13 2,2,2,2 0,0,0,0,2,0
14 3,3,3,3 1,0,0,0,0,1
15 4,4,4,4 0,0,0,0,0,2
16 1,1,1,1,1,1
17 2,2,2,2,2,2
18 3,3,3,3,3,3
19 4,4,4,4,4,4  
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The shift size or ‘noncentrality parameter’ (δ) is based on Lowry et al.’s 

work (1992) and defined as 

( ) ( ) 1 / 2
0 0

1[ ]δ ′ −= − ∑ −μ μ μ μ        (10) 

where μ0 represents the mean vector for an in-control process, μ represents the 

mean vector after a shift has occurred, and ∑ is the variance-covariance matrix. It 

can be noted that equation (10) is also referred to as the Mahalanobis’ distance.  

As shown in equation (10), the shift size is related to changes in both the mean 

and covariance matrix.  

For the multivariate Poisson model, an increase in any element of the 

variance-covariance matrix, ∑, corresponds to a shift in one or more means, θ + 

θi, which are diagonal elements of the covariance matrix. In other words, we take 

into account the effect of the mean shifts on the variance-covariance matrix to 

obtain a better estimate of the MPEWMA statistics in equation (9) and the shift 

size calculation in equation (10). Table 3 displays the shift size calculation 

assuming the means of all four variables are 3 with two values of θ (θ = 0.5, and 

1). For example, the shift size using equation (10) for the case of [0, 0, 2, 0] 

would be δ = 0.912 (for θ = 0.5) and δ = 0.953 (for θ = 1). It is important to note 

that shifts in the process means will not always result in the same overall shift size 

(δ). For example, [0, 0, 2, 0] and [1, 1, 0, 0] both represent a total two-unit shift in 

the process.  However, δ = 0.912 for [0, 0, 2, 0] and δ = 0.689 for [1, 1, 0, 0] when 

θ = 0.5. Therefore, there can be slightly different resulting shift sizes for any two 

processes that may have the same total unit shift. 
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Table 3   Examples of the shift size calculation on four-variable case 

No. of Variable shift 
Shift matrix X1, X2, X3, X4 Mean = 3 

θ = 0.5
Mean = 3 
θ = 1

1 0,0,0,0 0 0
2 1,0,0,0 0.512 0.542
3 0,1,0,0 0.512 0.542
4 2,0,0,0 0.912 0.953
5 0,2,0,0 0.912 0.953
6 1,1,0,0 0.689 0.707
7 2,2,0,0 1.239 1.265
8 1,0,1,0 0.689 0.707
9 0,0,2,0 0.912 0.953

10 1,0,0,1 0.689 0.707
11 0,0,0,2 0.912 0.953
12 1,1,1,1 0.853 0.756
13 2,2,2,2 1.569 1.414
14 3,3,3,3 2.191 2.000
15 4,4,4,4 2.744 2.309

shift size (δ) 

 

 

3.5   Results 

The statistical performance of the proposed MPEWMA chart is 

investigated by assessing the run length distribution, including the average run 

length (ARL) and standard deviation of the run length (SDRL). The control limit 

(H) was chosen to provide the in-control ARL of 200. The appropriate control 

limits to achieve the steady-state in-control ARL of 200 are summarized in    

Table 4. The ARL performance for different smoothing weights (λ) and various 

number of quality characteristics (p) are presented in Tables 5 and 6 for θ = 0.5 

and θ = 1, respectively.  
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The results show that the out-of-control ARLs can be quite different for 

processes that have the same number of unit shifts. For example, a shift of two 

units in a single mean such as [2, 0, 0, 0] (or δ = 0.912) with λ = 0.1 and θ = 0.5 

has an ARL of 12.491 (see Table 5), while a two-unit shift in two variables such 

as [1, 1, 0, 0] (or δ = 0.689) has an approximate ARL of 19.648 (again with λ = 

0.1 and θ = 0.5). Both are a “shift” of 2 units, but the ARLs and the shift-size of 

the mean are fairly different. However, the out-of-control ARLs are similar when 

the same number of variables shifts by the same amount. For example, the ARL 

for a shifted process such as [1, 1, 0, 0] is roughly the same as the ARL for the 

resulting process of [1, 0, 1, 0] or the process of [1, 0, 0, 1] for the same value of 

λ.   

For a complete investigation of the performance of the proposed 

MPEWMA chart, the standard deviation of each scenario is calculated and 

summarized in Tables 7 and 8. The pooled standard deviations are applied within 

the same shift size. Moreover, the accuracy of the true mean of the population can 

be evaluated by calculating the standard error of the ARL (SEARL). The formula of 

the SEARL is given by 

n
SSE ARL =      (11) 

where S is the standard deviation, and n is the number of replicates. A total of 

50,000 replications is used for each scenario. Thus, the standard error of the mean 

is comparatively small due to the large sample size. The maximum value of SEARL 

is around 0.91 whereas the minimum value is approximately 0.005. A smaller 
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value of SEARL implies a more accurate estimate of the true mean of the run 

length, and therefore the sample mean is close to the population mean of the run 

length. The results clearly demonstrate that the SEARL decreases monotonically 

with an increase of the shift size. The SEARL computed from a large shift size 

tends to be small and one obtains a better estimate of the true mean than for a 

small size of shift.  

3.6   General Equation of the Average Run Length 

Since the simulation study is limited to the certain values of the parameter 

combination as discussed in Section 3.4, the average run length performance of 

the proposed MPEWMA control chart could be further extended to include other 

values of those parameters by performing a multiple regression. We fit both the 

multiple linear regression and Generalized Linear Models (GLM) to the ARL 

values. The five possible variables considered affecting the out-of-control ARL 

values are the shift size (δ), the fixed common mean (θ), the smoothing weight 

(λ), the number of variables being monitored (p), and the process mean of interest 

which is assumed to be equal among all process means (μ). Cases of no shift (δ = 

0) related to an in-control ARL are removed to provide a more accurate model. 

The preliminary results show that the GLM with the exponential distribution 

provides a better fit to the ARL performance of the MPEWMA scheme as the 

ARL values tend to decrease exponentially with increasing the size of shift. The 

SAS output indicates that only four parameters (p, δ, λ, and μ) are statistically 

significant (p-value < alpha level of 0.05) as shown in Table 9. The fixed common 

mean, θ, is not significant and dropped from the fitted model. Table 10 reports the 
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output of fitting the model without the fixed common mean variable (θ) in SAS. 

Thus, the fitted model is   

δλμ 0840.00547.00004.00008.0007.0
1ˆ

−+−+
−

=
p

y       (12) 

 

Table 9   The SAS output of fitting the GLM with the exponential distribution to 

the ARL values obtained from simulation. 

                                        The GENMOD Procedure 
                                         Model Information 
                  Data Set              WORK.ALLDATA 
                  Distribution                 Gamma 
                  Link Function            Power(-1) 
                  Dependent Variable             ARL    ARL 
                              Number of Observations Read        1900 
                              Number of Observations Used        1900 
 
                               Criteria For Assessing Goodness Of Fit 
                  Criterion                     DF           Value        Value/DF 
                  Deviance                    1894         37.8351          0.0200 
                  Scaled Deviance             1894       1906.2848          1.0065 
                  Pearson Chi-Square          1894         32.5436          0.0172 
                  Scaled Pearson X2           1894       1639.6761          0.8657 
                  Log Likelihood                        -5132.6491 
                  Full Log Likelihood                   -5132.6491 
                  AIC (smaller is better)               10279.2981 
                  AICC (smaller is better)              10279.3573 
                  BIC (smaller is better)               10318.1454 
            Algorithm converged. 
 
                            Analysis Of Maximum Likelihood Parameter Estimates 
                                   Standard     Wald 95% Confidence          Wald 
Parameter    DF    Estimate       Error           Limits           Chi-Square    Pr > ChiSq 
Intercept     1     -0.0068      0.0006     -0.0079     -0.0056        129.39        <.0001 
Var           1     -0.0008      0.0000     -0.0008     -0.0007       1576.43        <.0001 
Mean          1      0.0004      0.0000      0.0003      0.0004        225.06        <.0001 
Lambda        1     -0.0547      0.0031     -0.0608     -0.0486        308.19        <.0001 
Shiftsize     1      0.0840      0.0005      0.0830      0.0851       24258.5        <.0001 
Thetafix      1     -0.0003      0.0003     -0.0009      0.0003          1.08        0.2996 
Scale         1     50.3840      1.6293     47.2897     53.6807 
NOTE: The scale parameter was estimated by maximum likelihood. 
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Table 10   The SAS output after dropping the fix common mean variable from the 

model 

                                        The GENMOD Procedure 
                                         Model Information 
               Data Set              WORK.ALLDATA 
               Distribution                 Gamma 
               Link Function            Power(-1) 
               Dependent Variable             ARL    ARL 
                       Number of Observations Read        1900 
                       Number of Observations Used        1900 
 

Criteria For Assessing Goodness Of Fit 
               Criterion                     DF           Value        Value/DF 
               Deviance                    1895         37.8565          0.0200 
               Scaled Deviance             1895       1906.2884          1.0060 
               Pearson Chi-Square          1895         32.5559          0.0172 
               Scaled Pearson X2           1895       1639.3756          0.8651 
               Log Likelihood                        -5133.1867 
               Full Log Likelihood                   -5133.1867 
               AIC (smaller is better)               10278.3734 
               AICC (smaller is better)              10278.4178 
               BIC (smaller is better)               10311.6711 
         Algorithm converged. 
 
                        Analysis Of Maximum Likelihood Parameter Estimates 
                               Standard     Wald 95% Confidence          Wald 
Parameter    DF    Estimate       Error           Limits           Chi-Square  Pr > ChiSq 
Intercept     1     -0.0070      0.0006     -0.0081     -0.0059        157.61      <.0001 
Var           1     -0.0008      0.0000     -0.0008     -0.0007       1574.78      <.0001 
Mean          1      0.0004      0.0000      0.0003      0.0004        224.29      <.0001 
Lambda        1     -0.0547      0.0031     -0.0608     -0.0485        307.95      <.0001 
Shiftsize     1      0.0840      0.0005      0.0830      0.0851       24266.2      <.0001 
Scale         1     50.3557      1.6284     47.2631     53.6505 
NOTE: The scale parameter was estimated by maximum likelihood. 
 

A comparison between the simulated and fitted ARL from the above 

equation is provided in Figure 1. Figure 1 displays the plot of the out-of-control 

ARL values of the simulation and those from the fitted model for all cases as a 

function of δ. However, using the general equation gives a slightly larger out-of-

control ARL than the simulation method. It can be noted that the general equation 

may not provide good approximations for the small shift size and large number of 

variables. We can see from Figure 1.d, when the size of shift is around 0.25 with 

fifteen-variables, the out-of-control ARL based on equation (12) is approximately 
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380, with the simulated value being close to 125. Thus, it can be noted that one 

should use the general equation with caution to approximate the out-of-control 

ARL value for the small shift size (say less than 0.3) and large number of 

variables (ten or more).  

 

Figure 1   The comparison of the simulated and calculated ARL plots separated 

by the number of variables. 
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3.7   Effect of Changing the Common Variable 

In Section 3.5, we discussed the statistical performances of the MPEWMA 

chart with two thetafix values (θ = 0.5, and 1). The ARL values reported in Table 

5 – 6 are calculated by assuming the mean of the common variable (θ) remains 

the same. However, sometimes both the mean of the common variable and other 

variables (i.e. θ i) increase simultaneously. Thus, we extend the investigation of 

the proposed MPEWMA scheme into the case of monitoring the mean shift in the 

common variable (X). Five mean values of the common variable are tested (θ = 

0.5, 1, 1.5, 2, and 2.5). The smoothing weight of 0.05 is selected in this study. 

Table 11 shows the ARL performances of the MPEWMA chart when the common 

variable and one of the other variables shift together. For two variables shifted 

and all variables shifted, please see Table 12 and 13, respectively.  

It can be seen that an increase in the common variable has an effect on the 

in-control ARL for the mean of 3, but there is a little or none for the mean of 5 or 

larger. The out-of-control ARL values show a significant decrease in case of one 

or two variables shifted (Table 11 - 12), particularly for a small unit of shift 

matrix. It is worthy to note that the combination of increase in both common 

variable and all variable means could cause a dramatic increase in the out-of-

control ARL values (see Table 13). This corresponds to the small shift size (δ) 

computed from Equation (10). An increase in the mean of the common variable 

can result in a large covariance matrix, and produce the small shift size. 
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3.8   Comparison of the MPEWMA and MEWMA Control Chart  

To gain more insight into the performance of the MEWMA chart under 

the multivariate Poisson distribution, a comparison is made between the 

MEWMA and MPEWMA scheme’s performance. The control limits of the 

steady-state MEWMA chart based on the work of Prabhu and Runger (1997) are 

established assuming the multivariate normal distribution. The ARL performance 

of the MEWMA chart is reported in Table 14 in terms of a quantity of the shift 

size. For the proposed MEWMA monitoring scheme, the multivariate Poisson 

data are generated using the simulation method and conditions similar to that 

discussed in Section 3.4. The normal-theory limits are placed on the MPEWMA 

chart to obtain the true performance of the MEWMA based on the multivariate 

Poisson. The ARL performance comparisons are shown in Tables 15 – 16 for θ = 

0.5 and 1, respectively. The in-control and out-of-control ARLs are both 

investigated to evaluate the robustness of the MEWMA chart 

3.8.1   Out of-Control ARL Comparison 

Comparing two control charts that have shifted by some amount, the chart 

with a smaller out-of-control ARL is preferred.  For a fair comparison, the in-

control ARLs for the two methods must be approximately equal. The traditional 

MEWMA chart and the proposed MPEWMA chart perform similarly in detecting 

the same shift in the process means as reported in Tables 15 and 16. It can be 

noticed that if the shift size, δ, is less than 0.6, the out-of-control ARLs obtained 

from the MPEWMA chart are slightly but not much worse than the out-of-control 

ARLs for the MEWMA chart. 
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Table 14   The Steady State ARL for the MEWMA chart proposed by Prabhu and 

Runger (1997) 

δ  
(Shift size) 0.05 0.1

4 H 11.22 12.73
0 199.98 200.05

0.5 29.52 33.12
1 12.27 11.38

1.5 7.75 6.7
2 5.71 4.8
3 3.82 3.14

6 H 14.6 16.27
0 199.88 200

0.5 31.91 37.08
1 13.31 12.41

1.5 8.43 7.25
2 6.23 5.18
3 4.17 3.38

10 H 20.72 22.67
0 200.06 200.06

0.5 36.87 44.19
1 15.23 14.32

1.5 9.64 8.23
2 7.11 5.83
3 4.76 3.79

15 H 27.82 30.03
0 200.05 199.95

0.5 41.78 51.23
1 17.13 16.3

1.5 10.8 9.21
2 7.97 6.48
3 5.32 4.18

p λ

 

 

3.8.2   In-Control ARL Comparison 

The most important result from this study concerns the in-control ARLs.  

As alluded to previously, out-of-control ARLs of two or more monitoring 

schemes can only be compared fairly if the corresponding in-control ARLs are 

approximately the same value.  Notice the in-control ARLs reported in Tables 15 

and 16.  The in-control ARLs for the MPEWMA for data that comes from a 
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multivariate Poisson distribution are close to 200. However, when the MEWMA 

using the normal-theory limits from Prahbu and Runger (1997) is applied to 

multivariate Poisson distributed data, the in-control ARLs are not the advertised 

value of 200. In fact, when the control limit for the MEWMA based on the 

normality assumption is applied to the multivariate Poisson-distributed data, a 

substantial reduction in the in-control ARL occurs.  For example, instead of an in-

control ARL near 200 as expected, the true in-control ARL ranges from 170 to 

190 (see Tables 15 - 18). That is, using the MEWMA chart assuming multivariate 

normality when the underlying distribution is truly multivariate Poisson, results in 

a 5-15% reduction the in-control ARL and thus, an increase in false alarms. This 

reduction is quite obvious for small process means (5 or less) and a large number 

of variables (10 or more). A large in-control ARL for the MPEWMA indicates 

that it will result in fewer false alarms than the MEWMA scheme for normally 

distributed data.  

The results have significant implications in practice.  Specifically, we have 

shown that if one simply assumes the normality assumption applies (and uses 

published normal-theory limits) when in fact the underlying distribution is 

something such as the multivariate Poisson, expect an increase in out-of-control 

signals when the process is truly in control.  The practitioner may be stopping the 

process when a signal occurs, when in fact the process is still in control. 

3.8.3   SRDL Comparison 

We also examined the standard deviation of the run length (SDRL). Tables 

19, 20, 21 and 22 give the SDRLs for the MEWMA and MPEWMA control 
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charts for two values of θ (θ = 0.5 and θ = 1, respectively). The SDRL results are 

quite similar to those ARL results for both in-control and out-of-control 

processes. The MEWMA relied on the normal theory approximation provides 

considerably lower SDRL values than the MPEWMA for the in-control case. On 

the other hand, there is no difference in the out-of-control SDRL performance, 

particularly when the size of shift becomes large.  
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3.9   Examples 

We illustrate how to apply the proposed MPEWMA control chart to a 

situation where we monitor four different types of GaN-epitaxial layer defects 

(particles, micropits, microcracks, crescents) that may occur after polishing the 

sapphire substrates in the light emitting diode (LED) manufacturing process. The 

count for each defect type follows a Poisson distribution with a mean of 3. A total 

of three-hundred observations are collected at inspection points over two months. 

It is appropriate to apply the MPEWMA scheme since the numbers of defects 

tends to follow a multivariate Poisson rather than the normality assumption. The 

values of all theta parameters (θ1, θ2, θ3, θ4, and θ) are needed to be determined 

before using the MPEWMA control chart. Two ways of obtaining these parameter 

values are: using the true mean value (if they are known) and the estimated value 

of the means (if they are unknown). 

3.9.1   True Parameter Value 

Suppose we know that the true value of θ is 1. The sample mean and the 

variance-covariance matrix of the four-variate Poisson data are given by 
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Thus, all θ1, θ2, θ3, θ4 are equal to 2. The MPEWMA chart is constructed 

using a smoothing weight of 0.05 (λ = 0.05). To demonstrate the Tt
2 computations,  
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consider the first period, 
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Table 23 presents the sample calculations of Zt and Tt
2 for the first ten 

observations. The control limit of the MPEWMA chart can be read directly from 

Table 4 (H = 11.49). If the MEWMA scheme is employed instead of the 

MPEWMA, the normal-theory limit is obtained from Table 11 (H = 11.22). It is 

noticed that the T-square statistics of the MPEWMA and MEWMA control charts 

are identical, but the control limit of the proposed MPEWMA chart (H = 11.49 

for Poisson limit) is slightly wider than the traditional MEWMA chart (H = 11.22 

for Normal limit).  
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Table 23   Example of calculations the T-square statistics of the MPEWMA chart 

for the first 10 observations. 

T2
t

1 6 1 3 5 0.1500 -0.1000 0.0000 0.1000 0.7556
2 7 7 6 4 0.3425 0.1050 0.1500 0.1450 1.5595
3 1 3 1 3 0.2254 0.0998 0.0425 0.1378 0.7597
4 3 3 4 5 0.2141 0.0948 0.0904 0.2309 0.9772
5 4 1 1 2 0.2534 -0.0100 -0.0141 0.1693 1.3007
6 4 5 5 7 0.2907 0.0905 0.0866 0.3609 2.2616
7 2 2 1 0 0.2262 0.0360 -0.0178 0.1928 1.1327
8 3 3 2 4 0.2149 0.0342 -0.0669 0.2332 1.5099
9 4 2 1 4 0.2149 0.0342 -0.0669 0.2332 2.8385

10 2 1 1 2 0.1914 -0.1166 -0.2554 0.2079 3.0921

x4
MPEWMA (λ = 0.05)

ZtObs x1 x2 x3

 

 

Figure 2 Comparison of the MPEWMA and MEWMA charts on monitoring the 

number of defects 
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Figure 2 displays the comparison of applying the normal and Poisson 

control limits to the T-square statistics when the data truly comes from the 

multivariate Poisson distribution. These two limits perform similarly when the 
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process shifts to an out of control state as the first out-of-control signal occurs at 

the same period 207. This may result from the similar out-of-control ARL 

performance. However, it can be seen that the normal-theory limit gives 5 false 

alarms whereas only 3 false alarms occur under the Poisson limit. These false 

alarms arise between period 62 and period 74 as shown in Figure 2 inset. The 

MPEWMA scheme reduces the number of false alarms that indicate the chance of 

misinterpreting the in-control process to be out-of-control status due to the better 

in-control ARL performance.  

 

Figure 3 Comparison of the MPEWMA and MEWMA charts based on the in-

control condition 
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We provide another example to amplify the importance of a larger in-

control ARL value. Let’s continue with the previous example by considering the 

new scenario of an in-control process over a long period (a total of 400 
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observations).  Figure 3 shows a comparison between the MPEWMA and 

MEWMA charts on monitoring an in-control process. The plot shows that no 

alarm is given in the first two hundred periods by using the Poisson limit on the 

MPEWMA scheme whereas the MEWMA relied on the normal limit signals 2 

false alarms at period 151 and 161, respectively. After that both schemes 

simultaneously detect the out-of-control signals at period 307 to 310. The result 

demonstrates a difference in false alarm rate as the wider control limit produces 

fewer false alarms. Thus, the MEWMA chart tends to have more false alarms than 

the MPEWMA, resulting in more stops in production pace to investigate and fix a 

problem when one does not occur. 

3.9.2   Parameter Estimation  

We also look at the scenario where the estimated values of θ1, θ2, θ3, θ4, 

and θ are used in place of the true values. If the values of all parameters are 

unknown, we would estimate these values from historical data if available. (See 

Section 3.2.1 for details on various methods of estimating these parameters.). The 

purpose of using estimates is that in practice, the mean values will not necessarily 

be known, but historical data from an in-control process may be available. Going 

back to the previous example, all the theta parameter values (θ1, θ2, θ3, θ4, and θ) 

are obtained by applying the composite likelihood concept (Jost et al. (2006)) to 

the historical data set with 100 observations. The estimation of the theta 

parameters are θ1 = 2.3791, θ2 = 2.0652, θ3 = 2.1085, θ4 = 2.4543, and θ = 0.7607. 

Therefore, the sample means and variance-covariance matrix based on the 

estimated theta parameters are 
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It can be seen that the mean values of all four variables are roughly three 

and the thetafix parameter is about 1. Thus, the same control limit (H = 11.49) is 

chosen for the smoothing weights of 0.05. Again, we calculate the T-square 

statistics by following the steps described above. Two T-square statistics based on 

the true and estimated value of all theta parameters are plotted in Figure 4. These 

two MPEWMA schemes show the same pattern, but they have the magnitude 

differences of the T-square statistics. The effect of the estimation of the theta 

parameters (θ1, θ2, θ3, θ4, and θ) could make substantial differences in magnitude 

for both directions toward increasing or decreasing the T-square statistics. 

 

Figure 4   Comparison of the two MPEWMA charts using the true and estimated 

mean and variance-covariance matrix. 
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Chapter 4 

ONE-SIDED MEWMA CONTROL CHART 

 4.1   Introduction 

The multivariate exponentially weighted moving average (MEWMA) 

control chart is frequently used to monitor both decreasing and increasing mean 

shifts in several processes concurrently. The MEWMA scheme is commonly 

employed in industry and manufacturing, but is finding increased popularity in 

monitoring public health and bioterrorism surveillance data. Regardless of 

application, the MEWMA control chart is most often constructed assuming that 

the underlying distribution of the data is multivariate normal. In other words, the 

common assumption of the central limit theorem or the normal approximation 

will apply when the true underlying distribution of the data is not normal (or 

multivariate normal) and in some cases not even continuous. Examples would 

include monitoring the increase in the rate of occurrences such as the number of 

cracks in road pavement surfaces, number of misprints and errors found on 

manuscript pages, or number of failures observed during testing processes. In 

each of these situations, the data collected most commonly follows a Poisson or 

multivariate Poisson distribution. However, the control charts applied are based 

on normal theory assuming the central limit theorem will apply.  

There is an interest in detecting a positive shift in count since the upward 

trend is evidence for abnormal conditions in the manufacturing process or public 

health surveillance. For instance, a large number of defects observed during the 

inspection periods or an increasing number of daily visit to clinic and health care 
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counts. These can be considered as a signal to stop and fix an existing problem 

whereas the downward direction shows a good performance (i.e. less number of 

defects found or the process has improved product quality). Hence, applying the 

one-sided MEWMA scheme is more appropriate than the two-sided because it 

will not signal if the mean counts decrease. 

We propose a one-sided multivariate Poisson EWMA (MPEWMA) 

control chart to detect small and medium upward shifts in the process when the 

process consists of count data.  For our method, we do not assume the normal 

approximation is appropriate and instead construct the control charts using the 

multivariate Poisson distribution.  The average run length (ARL) and standard 

deviation of the run length (SDRL) are examined for both steady-state in-control 

and out-of-control processes. We then compare the MPEWMA with the 

MEWMA control schemes.  In addition, we examine the performance of the 

MPEWMA chart when a signal is defined as two or more points in a row beyond 

the control limits.   There are several applications where a single point beyond the 

control limits is not of concern, but rather a run of say 2, 3, 4, or 5 points is of 

concern.  This is often the case in monitoring public health data. 

4.2   One-sided MPEWMA chart 

The one-sided MPEWMA chart has been established by the works of 

Joner et al. (2005) and Joner et al. (2008). The one-sided MEWMA statistic is 

( ){ }0ZIXZ ,)(max 10 −−+−= ttt λμλ            (13) 

where Z0 = 0, and λ is the smoothing weight. The maximum operator is defined as 

a comparison of the two element-wise vectors. Thus, Zt will be equal to or greater 
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than 0, and the one-sided MPEWMA chart shows only a signal for an increase in 

the means. Suppose we are monitoring p random variables simultaneously. 

Assuming all p variables are given equal weight (λ > 0), the covariance matrix of 

Zt is given by 

( )[ ]
Σ

⎭
⎬
⎫

⎩
⎨
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−
−−
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λ

λλ
2

11 2t

Zt
        (14) 

where ∑ is assumed to be the known covariance matrix of the p random variables. 

The asymptotic covariance matrix (t→∞) can be shown to be 
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−
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∞→ λ
λ

2tZ          (15) 

An out-of-control signal is generated if   

HZZMEW
tZ ttt >= ∑−1'                     (16) 

where H is the control limit chosen to achieve a specific in-control ARL. The 

asymptotic covariance matrix is again used to calculate the statistics tMEW  given 

in Equation (16). To monitor the multivariate Poisson data, the one-sided 

MPEWMA statistics are computed using the above Equations (13) – (16). The 

covariance matrix of the one-sided MPEWMA chart is obtained from the 

asymptotic covariance matrix given in Equation (15). The performance of the 

MEWMA control chart depends on several parameters including the number of 

variables (p), the variable mean values, and the smoothing weight (λ). Similar to 

the two-sided MPEWMA chart, the mean and the thetafix values are additionally 

considered in establishing the control limits of the one-sided MPEWMA when the 

multivariate Poisson data are simulated following the method of the two-sided 
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case. We obtain appropriate control limits that will result in the desired in-control 

ARL for various practical combinations of these parameters.  

4.3   Simulation Conditions 

Monte-Carlo simulation is used to generate the multivariate Poisson 

distribution as the sum of two independent Poisson random variables. The Poisson 

data is produced under the same conditions applied to the two-sided version. The 

threshold or control limit (H) was selected to achieve a desired in-control average 

run length (ARL) of 200. To evaluate the statistical performance of the proposed 

one-sided scheme, we consider both average run length (ARL) and standard 

deviation of run length (SDRL) when testing various combinations of parameters 

discussed previously for various shift sizes. Several shift sizes are added to the 

mean of one or more variables simultaneously by one, two, and three units. Joner 

et al. (2008) noted that the shift size should be calculated in terms of percentage 

change, not the units of the standard deviation as previously proposed by Lowry 

et al. (1992). Since a Poisson distribution has the property that the variance is 

equal to its mean, it may not be easy to interpret the shift size in situations where 

the out-of-control condition is due to a standard deviation increase. The 

percentage of change developed based on Lucas (1985) is given by 

100% ×=
a

ushiftof
μ

         (17) 

where u is the unit of the shift size, and μa is the mean of the data before the shift 

has occurred. To illustrate, suppose we simultaneously monitor four Poisson 

process means when all means are equal to 3. In addition, we are interested in a 
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two unit shift in the second process variable, and there are no shifts in the other 

variables (variables 1, 3, and 4). The shift size percentage in the second process 

using Equation (17) is %67100
3
2

=× whereas the percentages of shift size in the 

other processes (variable 1, 3, or 4) are zero. Thus, it can be seen that a two unit 

shift in any of these four variables (variable 1-4) would result in the same shift 

size (67%). Consider a unit of two shifts of one unit in the first and second 

variables that also represents a two-unit shift in the process means. The 

percentages of shift size in the first and second process means using equation (17) 

are 100
3
1

× = 33%. It shows that the percentage of two-unit shift size calculated 

from a two-unit shift in one variable is not equivalent to one-unit shift in each of 

two variables. Therefore, the same unit shift in the mean will not always have the 

same values for the percentage of the shift. 

4.4   Results 

We investigate the one-sided MPEWMA control chart under the “steady-

state” condition. That is, we assume that the control chart operates under normal 

conditions for two-hundred time periods before a shift occurrs at period 201. The 

out-of-control average run length (ARL) is calculated as the average number of 

samples taken before detecting an upward shift when the process actually goes out 

of control. It helps to determine how quickly the proposed chart detects this 

upward shift. Summaries of the ARL performances for the control limits chosen 

to achieve the steady-state ARL of 200 are shown in Table 24 (for θ = 0.5) and 
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Table 25 (for θ = 1). Examining these tables, it can be seen that the out-of-control 

ARL drops significantly when a large shift is added to any single mean. We 

illustrate this reduction using the previous example of monitoring four process 

means. From Table 20 with λ = 0.05, and θ = 0.5, the ARL value decreases from 

28.574 (33% shift in one variable) to 12.277 (67% shift in one variable). In 

addition, the out-of-control ARL value in Table 20 is reduced from 28.574 (33% 

shift in any one variable shifted) to 16.907 (33% shift in any two variables 

shifted), and to 10.263 (33% shift in all four variables shifted).  

Since the means of all variables are equal, we found that a number of units 

shifted in the mean and not the variable shifted is directly related to the chart’s 

ability in detecting the upward shift. Again, we use the previous example of 

monitoring four variables to demonstrate this relationship. Suppose now we are 

interested in a two-unit shift in the process mean. A shift of two units can be 

denoted by either two units in a single mean (variable 1 [2, 0, 0, 0], variable 2 [0, 

2, 0, 0], variable 3 [0, 0, 2, 0], and variable 4 [0, 0, 0, 2]) or one unit in any two 

means (variable 1 and 2 [1, 1, 0, 0], variable 1 and 3 [1, 0, 1, 0], and variable 1 

and 4  [1, 0, 0, 1]). The out-of-control ARL of 12.277 for two units in a single 

mean shift are approximately the same among these four variables ([2, 0, 0, 0], [0, 

2, 0, 0], [0, 0, 2, 0], and [0, 0, 0, 2]). However, the out-of-control ARL of 16.907 

for a unit shift in two means [1, 1, 0, 0] is similar to those of [1, 0, 1, 0] or [1, 0, 0, 

1].   

In addition to the ARL performance of the one-sided MPEWMA chart, we 

examine the standard deviation of the run length (SDRL) for all scenarios. The 
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SDRL is calculated by pooling the standard deviations among the same shift size. 

Table 26 and 27 display the summarized SDRL values of the one-sided 

MPEWMA scheme for θ = 0.5 and θ = 1, respectively. The SDRLs have the same 

behavior as the ARLs, but are substantially lower than the ARL.  

4.5   The one-sided MPEWMA and MEWMA Chart Comparisons 

We next compare the proposed one-sided MPEWMA with the one-sided 

MEWMA chart introduced by Joner et al. (2008). The one-sided MEWMA 

scheme has been developed by using normal approximations to Poisson 

distributions. The means of each count data are large enough (let’s say 10 or 

larger) to appropriately assume the normal approximation. Thus, the data are 

simulated from a multivariate normal distribution and the in-control ARL values 

are calculated based upon 10,000 replicates. The control limits are chosen to 

provide a specific in-control ARL of 100 with certain correlation value (ρ = 0.2, 

0.5, and 0.7). The summary of the one-sided MEWMA chart’s performance is 

presented in Table 28.  

In this study, we investigate three different scenarios of a 20% shift in 10 

variables with all means μ = 10: 1) a shift in variable 1 only; 2) a shift in variables 

1, 2, and 4; and, 3) a shift in variables 1, 6, and 10. The control limits of each shift 

case (1) H = 12.325; 2) H = 14.695; and 3) H = 14.430 for different selected 

values of λ) are presented on the left side of Table 28. For the purpose of 

comparison, the control limits of the proposed one-sided MPEWMA chart are 

developed based on the same correlation value (ρ = 0.5). The multivariate Poisson 

correlation structure is given by 
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( )( )ji
ij

θθθθ
θρ

++
= ,  i ≠ j       (18) 

where θ, θi, and θj are the Poisson means of  Y, Yi, and Yj, respectively. Since we 

know that the process means of the first two variables (Y1 and Y2) are 10 (θ + θ1 

and θ + θ2), then the value of θ is determined to be 5 (obtained using Equation 

(18)) and, consequently, both θ1 and θ2 are equal to 5.  

 

Table 28   Summary of the one-sided MEWMA chart’s performance proposed by 

Joner et al. (2008) for 10 variables with ρ = 0.5. 

Variable Shifted % shift µ0 λ Control 
limit (H)

out-of-
control ARL

SEARL

1 20 10 0.05 12.325 15.01 0.031
1 20 50 0.19 15.960 5.10 0.009
1 10 100 0.11 14.695 8.34 0.015

1, 2, and 4 20 10 0.11 14.695 9.09 0.019
1, 2, and 4 20 50 0.37 16.970 3.00 0.005
1, 2, and 4 10 100 0.22 16.255 4.97 0.009

1, 6, and 10 20 10 0.10 14.430 7.08 0.013
1, 6, and 10 20 50 0.44 17.120 2.28 0.004
1, 6, and 10 10 100 0.26 16.510 3.80 0.007

All 10 100 0.34 16.890 3.15 0.006

One-sided MEWMA chart

 

 

Table 29   Comparison of the performance between the one-sided MEWMA and 

MPEWMA charts for in-control ARL of 100 when θ = 5. 

p Variable 
Shifted

% 
shift λ Control 

limit (H)

out-of-
control 
ARL

SEARL
Control 
limit (H)

out-of-
control 
ARL

SEARL

10 1 20 0.05 12.325 15.010 0.031 12.68 20.144 0.063
1, 2, and 4 20 0.11 14.695 9.090 0.019 15.420 10.903 0.035

1, 6, and 10 20 0.10 14.430 7.080 0.013 15.140 10.737 0.034

Normal theory limits with u = 10 Poisson limits with u = 10
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Table 29 shows a comparison of two one-sided schemes for an in-control 

ARL of 100. The Poisson-limits obtained for the chosen three cases are 12.68, 

15.420, and 15.14 respectively. The out-of-control ARLs are 20.144, 10.903, and 

10.737. The results indicate that the control limits calculated from the normal 

approximation are narrower than the Poisson distribution themselves. The 

differences in detecting the same shift in the mean vectors of both one-sided 

control charts are quite small.  

We investigate another issue of applying the normal-theory limits to the 

multivariate Poisson distribution. Let us use the above conditions as an example. 

Suppose we ignore the Poisson assumption and use the normal approximation for 

the Poisson distribution. In the other word, the control limits from the normal-

theory (H = 12.325, 14.695, and 14.430) are applied to the data generated from 

the multivariate Poisson distribution. The important result here is that the one-

sided MEWMA charts of all three scenarios have in-control ARLs much lower 

than the stated level of 100 as shown in Table 30. The in-control ARLs are 

sufficiently dropped to 91.392, 81.773, and 83.565, respectively. In order to 

achieve the in-control ARL of 100, the Poisson limits (H = 12.68, 15.42, and 

15.14) should be applied instead of those normal-theory limits. Moreover, the out-

of-control ARLs are 19.428, 10.208, and 10.114 and they are quite similar to the 

expected values (20.144, 10.903, and 10.737) on the right hand side of Table 29. 

In practice, one can also expect an earlier false alarm when the normal 

approximation is applied to multivariate Poisson data. 
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Table 30 The performance of the one-sided MEWMA applied to the multivariate 

Poisson distribution with θ = 5 (The advertised in-control ARL of 100). 

p Variable Shifted % shift λ Control 
limit (H)

In-control 
ARL

out-of-
controlARL

SEARL

10 1 20 0.05 12.325 91.392 19.428 0.061
1, 2, and 4 20 0.11 14.695 81.773 10.208 0.033

1, 6, and 10 20 0.10 14.430 83.565 10.114 0.045

Normal theory limits with u = 10

 

 

4.6   Individual and a Row of Out-of-Control Signal 

Commonly, an out-of-control signal in the one-sided MPEWMA control 

chart occurs if a single point is out of control. However, there are some situations 

where we are interested in consecutive points plotting beyond the control limit for 

a signal. For example, suppose we are monitoring the incidence rates of asthma 

from several locations over 120 weeks. Suppose one out-of-control signal is given 

at period 100 and no other signals are detected. It is quite difficult to conclude that 

the asthma rate has increased and that there is evidence for spread of asthma 

disease in those areas since only one signal has occurred. Thus, it would be better 

to wait for several out-of-control signals in a row rather than an individual out-of-

control signal. In this section, we study the detection performance on four test 

cases in which data are generated by the multivariate Poisson model. The details 

of each case are described below. 

Case 1: Four variables each with µ = 3 and θ  = 1. 

Case 2: Four variables each with µ = 3 and θ  = 0.5. 

Case 3: Six variables each with µ = 5 and θ  = 1. 
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Case 4: Six variables each with µ = 5 and θ  = 0.5. 

To assure the steady-state condition, the process runs in control for the 

first 200 time periods. After that, the process shifts to an out-of-control state by 

one of three different shift sizes randomly applied to demonstrate the proposed 

chart performance – one unit shift in the first variable, one unit shift in the first 

two variables, and one unit shift in all variables. The shifts [1, 0, 0, 0], [1, 1, 0, 0], 

and [1, 1, 1, 1] are used for the case of four variables. Two smoothing weights 

used are λ = 0.05 and λ = 0.1. The control limits are obtained from Tables 24-25. 

For instance, the control limits of case 1 are 9.8 (λ = 0.05) and 11.68 (λ = 0.1) as 

shown in Table 25. 

We examine two different approaches for signaling an out-of-control state 

using the same control limits - an individual signal and a run of signals. A run of 

signals is defined by any two or more consecutive out-of-control signals. Four 

scenarios of the runs of out-of-control signals are tested, including two, three, 

four, and five points in a row, respectively. To demonstrate how to declare an out-

of-control signal in these scenarios, let’s assume that we are interested in a run of 

three out-of-control signals. If an individual signal or two consecutive out-of-

control points signal are found, the process is not considered out-of-control. When 

we detect three out-of-control points in a row, it means that we also detect an 

individual and two out-of-control points in a row in the earlier period. Suppose 

three consecutive out-of-control points are found at period 205, 206 and 207. We 

treat these three out-of-control signals as one of an individual out-of-control point 

at the time period 205, one of the two out-of-control points in a row at the time 
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period 206, and one of the three out-of-control points in a row at the time period 

207. 

We evaluate the performance of the one-sided MPEWMA chart for 

monitoring the 500 simulated data based on two criteria – the percentage of cases 

where an out-of-control signal is detected and the time period of the first out-of-

control signal detection after the shift has occurred at period 201. Table 31 

presents the percentage of cases where an out-of-control signal has been detected 

using the one-sided MPEWMA chart. The one-sided MPEWMA scheme is able 

to detect the mean shift when at least one out-of-control signal has occurred. The 

results indicate that the percentage of cases decreases as the number of 

consecutive out-of-control points increases, particularly for mean shifts of one or 

two variables. The reason for the reduction in the percentage of cases corresponds 

to the lower chance of having consecutive out-of-control points, particularly for a 

small shift size. A significant decrease in the percentages of detected cases 

occurred for larger smoothing weights. For example, consider a unit shift in one 

out of six variables from Case 4 (i.e. the shift matrix [1, 0, 0, 0, 0, 0]). When λ = 

0.05, there is no obvious difference between using either an individual signal 

(99.98%) or two to five out-of-control points in a row (98.63% - 99.94%). 

However, for λ = 0.1, the differences between two the approaches are large - 

99.67% for detecting an individual signal and as low as 71.64% for detecting a 

run of two to five out-of-control signals.  
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Table 31 The percentage of cases that detected an out-of-control signal for all 

four scenarios  

Case λ shift matrix 1 point 2 points 3 points 4 points 5 points 
[1,0,0,0] 100.00 100.00 100.00 100.00 99.99
[1,1,0,0] 100.00 100.00 100.00 100.00 100.00
[1,1,1,1] 100.00 100.00 100.00 100.00 100.00
[1,0,0,0] 100.00 99.95 99.56 98.47 96.30
[1,1,0,0] 100.00 100.00 100.00 100.00 100.00
[1,1,1,1] 100.00 100.00 100.00 100.00 99.99
[1,0,0,0] 100.00 100.00 99.99 99.99 99.99
[1,1,0,0] 100.00 100.00 100.00 100.00 100.00
[1,1,1,1] 100.00 100.00 100.00 100.00 100.00
[1,0,0,0] 100.00 99.86 99.22 97.66 94.55
[1,1,0,0] 100.00 100.00 100.00 100.00 99.99
[1,1,1,1] 100.00 100.00 100.00 100.00 100.00

[1,0,0,0,0,0] 99.98 99.87 99.69 99.27 98.63
[1,1,0,0,0,0] 100.00 100.00 100.00 100.00 100.00
[1,1,1,1,1,1] 100.00 100.00 100.00 100.00 100.00
[1,0,0,0,0,0] 99.68 96.99 90.88 82.07 71.52
[1,1,0,0,0,0] 100.00 99.99 99.66 98.71 96.60
[1,1,1,1,1,1] 100.00 100.00 100.00 100.00 100.00
[1,0,0,0,0,0] 99.98 99.94 99.62 99.2 98.63
[1,1,0,0,0,0] 100.00 99.99 99.99 99.99 99.99
[1,1,1,1,1,1] 100.00 100.00 100.00 100.00 100.00
[1,0,0,0,0,0] 99.67 97.38 91.71 82.41 71.64
[1,1,0,0,0,0] 100.00 100.00 99.86 99.04 97.42
[1,1,1,1,1,1] 100.00 100.00 100.00 100.00 100.00

4 0.05

0.1

2 0.05

0.1

3 0.05

0.1

The percentage of detecting an out-of-control 

1 0.05

0.1

 

 

Table 32 reports the average period of time to detect the first out-of-

control signal for all four scenarios. The average of the times is calculated from 

the first out-of-control signal detected by the one-sided MPEWMA scheme within 

each replication. For example, the first case study with λ = 0.05 shows that the 

first individual out-of-control signal is detected with average time of 29.0907 
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(period = 230) after the shift [1, 0, 0, 0] has occurred at period 200. The results 

demonstrate that the shift in one and two variables can be quickly detected by a 

single out-of-control point as compared to a run of consecutive out-of-control 

points for all four cases. A run of 5 consecutive out-of-control points is the 

slowest out of control condition to be detected since we have to wait until all five 

consecutive points exceed the control limit. For example, consider Case 4 with λ 

= 0.1. The time until the first out-of-control signal occurs increases from 58.284 

(an individual) to 82.7172, 101.8237, 117.0436, and 127.6594 for two, three, four, 

and five points in a row, respectively. Thus, it will take an average of 69 

additional periods to detect an out-of-control situation when applying a run of five 

out-of-control points instead of an individual.  

The time-delay for detection tends to become shorter with larger numbers 

of variables shifted. Consider the previous example with individual out-of-control 

signal. The time to detect the first out-of-control signal reduces from 58.284 to 

31.711, and 11.9623 when the number of variables shifted increases to two and 

six variables, respectively. The use of an individual approach is recommended 

over a run of 2 or more occurs for detecting a shift in one or two variables. The 

consecutive out-of-control points method improves if shifts occur in two or more 

variables. There is no considerable increase in detection time. For instance, if all 

six variables shifted (the shift [1, 1, 1, 1, 1, 1]) such as in Case 4, the detection 

time increases from 12.7318 to 14.2853, 15.6401, 16.914, and 18.1616. 
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Table 32 Summary of the first out-of-control signal period detected by the one-

sided MPEWMA chart for all four scenarios  

Case λ shift matrix 1 point 2 points 3 points 4 points 5 points 
[1,0,0,0] 29.0907 34.2840 38.9742 43.0704 46.9790
[1,1,0,0] 18.5769 21.3951 23.8374 26.0050 28.2012
[1,1,1,1] 13.9113 15.7539 17.3141 18.7701 20.1483
[1,0,0,0] 36.6166 51.0260 65.4608 78.1542 90.3734
[1,1,0,0] 20.8885 27.3465 33.4023 39.5808 45.7962
[1,1,1,1] 13.9071 17.1756 21.0479 24.4276 27.6739
[1,0,0,0] 29.5135 35.0677 39.9803 44.3125 48.7262
[1,1,0,0] 18.1188 20.9985 23.4479 25.6407 27.7250
[1,1,1,1] 12.6268 13.9811 15.2246 16.4003 17.5337
[1,0,0,0] 37.3561 52.6916 67.6304 82.7736 95.1820
[1,1,0,0] 20.1862 26.5004 32.5465 38.7679 45.035
[1,1,1,1] 11.7540 14.7180 17.3741 19.8542 22.3003

[1,0,0,0,0,0] 45.1418 55.6943 64.5467 72.4852 79.9108
[1,1,0,0,0,0] 27.3583 32.4666 37.0147 40.9685 44.9837
[1,1,1,1,1,1] 13.9702 16.1032 17.8595 19.4734 20.9719
[1,0,0,0,0,0] 58.31 82.0819 101.2547 115.6195 126.9829
[1,1,0,0,0,0] 33.9501 47.3816 61.2324 74.6788 87.5655
[1,1,1,1,1,1] 14.1226 18.3333 22.1978 26.0304 29.8291
[1,0,0,0,0,0] 45.2154 55.7593 64.6804 73.2164 80.8801
[1,1,0,0,0,0] 26.4281 31.411 35.5505 39.4522 43.3637
[1,1,1,1,1,1] 12.7318 14.2853 15.6401 16.914 18.1616
[1,0,0,0,0,0] 58.284 82.7172 101.8237 117.0436 127.6594
[1,1,0,0,0,0] 31.711 44.8519 57.8931 70.8977 84.1669
[1,1,1,1,1,1] 11.9623 15.2091 18.1433 20.9336 23.6991

0.1

1

2

3

4

0.1

0.05

0.1

0.05

The first period to detect an out-of-control signal     

0.05

0.1

0.05

 

 

4.7   Examples 

We illustrate an example of using the one-sided MPEWMA chart to 

monitor public-health data. Let’s consider the monitoring of one of six common 

air pollutants, Carbon Monoxide (or CO). The hourly CO concentration (in parts 

per million (ppm)) at 4 different stations being monitored are denoted by Xi where 
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i = 1, 2, 3, and 4. The hourly average CO concentration measured from each 

station, Xi, is the combination of the overall and the area effects. The effect on 

overall CO in the atmosphere can be represented by Y and the effect of CO 

emissions at each area is represented by Yi for i = 1, 2, 3, and 4. Thus, it is 

reasonable to assume the data can be sufficiently modeled by a multivariate 

Poisson distribution assuming a correlation exists between variables. Suppose the 

mean hourly CO concentration for each of the 4 stations is 3 ppm and the 

common effect is 0.5 (θ = 0.5). Given this information, the sample mean and the 

covariance matrix are given by 

µ0 = [3, 3, 3, 3]  and ∑  =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

35.05.05.0
5.035.05.0
5.05.035.0
5.05.05.03

 

Data are collected on day t for t = 1, 2,…, 200 over a 6 month period. In 

this example, we use the known means and covariance matrix to compute the one-

sided MPEWMA (or MEWt) statistics. A smoothing weight of 0.05 is selected, 

and the control limit obtained from Table 24 is 10.29. For From Equation (13), 

( ){ }0ZXZ ,1)(max 0011 λμλ −+−=  

To illustrate the calculations of the MEWt statistics considered 
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Using Equation (15) we obtain:  
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Day 1: the MEWt statistics using Equation (16) is  

5547.01
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1
== ∑−

Z
ZZMEW  

The calculations of the MEWt statistics for the first 10 samples are presented in 

Table 33. If the values of θ1, θ2, θ3, θ4, and θ are unknown, we can estimate all 

these parameters from historical data by using several methods (for more details, 

see Section 2.4.2). 

Figure 5 displays the plot of the one-sided MPEWMA chart for the hourly 

CO concentration. The first out-of-control signal is given at period 116 since the 

MEWt statistics of 16.0734 exceeds the control limits (H = 10.29). If we consider 

a run of out-of-control signals instead of an individual, the first out-of-control 

signal is still found at the same period 116 for the cases of two and three signals 

in a row. However, the first out-of-control signal is detected at period 121 while 

waiting for four and five out-of-control signals to occur. The time-delay of 

detection with 5 periods could be problematic, particularly if the mean hourly CO 

concentration exceeds the air quality standard. Hence, the individual signal 

method can be implemented if the mean hourly CO concentration lies near the 

level of the air quality standard. Implementation of the long-run (n = 4, and 5) 

method can be applied when the mean hourly CO concentration is far beyond the 

standard level of the air quality. 
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Table 33   Example of the calculation of the first 10 samples of the one-sided 
MPEWMA statistics. 
 

MEWt

0 0 0 0
1 3 3 3 7 0.0000 0.0000 0.0000 0.2000 0.5547
2 6 8 8 5 0.1500 0.2500 0.2500 0.2900 2.0814
3 3 5 4 2 0.1425 0.3375 0.2875 0.2255 2.4673
4 1 3 3 7 0.0354 0.3206 0.2731 0.4142 3.5767
5 2 0 4 1 0.0000 0.1546 0.3095 0.2935 2.2160
6 5 3 3 5 0.1000 0.1469 0.2940 0.3788 2.6136
7 3 5 1 4 0.0950 0.2395 0.1793 0.4099 2.6793
8 3 2 4 5 0.0902 0.1775 0.2203 0.4894 3.4562
9 2 0 4 5 0.0357 0.0187 0.2593 0.5649 4.7149

10 6 3 4 1 0.1840 0.0177 0.2963 0.4367 3.3632

x4
λ = 0.05

ZtObs x1 x2 x3

 
 

 
 

Figure 5   The one-sided MPEWMA chart of the hourly CO concentration 
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Chapter 5 

COMPARISON OF THE MULTIVARIATE CHARTS FOR MULTIVARIATE 

POISSON DATA 

5.1   Introduction 

There have been many studies on the quality control methods for 

monitoring multivariate data. In general, the control charts are applied to the raw 

or unprocessed data. The adequacy of the normality and independence 

assumptions must be assessed before applying any control scheme. It is not 

always appropriate to assume normality in the situation where the variables 

follow the Poisson distribution, particularly for small mean counts. If the data 

depart from the normality assumption, then methods based on other distributions 

should be employed. The process knowledge has been utilized to improve the 

sensitivity of the control chart by fitting a regression model to the data. The 

coefficients of the model are estimated by the regression technique. The residuals 

from the model are plotted on the conventional control chart. Thus, this method is 

referred to as the model-based or the residual-based control charting. The model-

based control method has relied on the normally distributed data because the 

control statistics are based on residuals. 

There are a few studies of the model-based control approach on 

monitoring multivariate Poisson data. It is interesting to investigate the model-

based control chart’s performance in detecting a shift in the mean count. Two 

regression analyses are chosen to demonstrate the ability for modeling the Poisson 

counts. The Poisson counts are generated through Monte Carlo simulation. The 
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residuals are plotted on the multiple Exponentially Weighted Moving Average 

(EWMA) charts because of the good performance for detecting a small mean 

shift. The Average Run Length (ARL) performances are reported and evaluated 

by several combinations of the parameters including mean values, number of 

variables, and various sizes of shift. In addition, we make a comparison between 

those model-based schemes and the multivariate Poisson EWMA chart, for which 

the control limits are directly obtained from the Poisson distribution. The results 

can help clarify a better method for the early detection of a mean shift. 

5.2   Methodology 

Typically, the Ordinary Least Squares (OLS) regression is performed to 

estimate the coefficients of the model. The model computed from the OLS is 

limited to normal data. In this study, two regression techniques are selected to 

model the Poisson distributed data - the regression adjustment and generalized 

linear regression. The details of each regression method are discussed below. 

5.2.1 Regression Adjustment  

Hawkins (1993) introduced the regression-adjustment based on Y and Z 

scales. The standardization of the original scale is recommended before 

transformation into the Y and Z scales. All X, Y, and Z scales correspond to the 

Hotelling T2 statistics. The Hotelling T2 statistic is  

)()( 12 μμ −∑′−= −
iiiT XX              (19) 

The T2 can be expressed as 

∑
=

==
p

j
ji YT

1

22 ' YY                    (20) 
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where Yj is the decomposition of T2. Y can be rewrite in terms of the linear 

transformation of X as 

)( μ−= XCY                          (21) 

where C is the Cholesky decomposition over the lower triangular root of 

the inverse of the covariance matrix (CC′ = Σ -1). Another decomposition 

of T2 is 

ZX )(2 ′−= μiiT                    (22) 

 where )(1 μ−∑= −
iXZ  and Z is a p × 1 vector.  

The residuals obtained from both regression techniques above are plotted 

on the multiple Exponentially Weighted Moving Average (EWMA) charts to 

monitor the shift in means separately since the residuals are considered as 

independent and approximately normally distributed. The discussion of the 

EWMA chart is provided below. 

5.2.2 Exponentially Weighted Moving Average Chart 

Roberts (1959) proposed the EWMA chart by defining the control 

statistics as previously shown in Equation (6) where Z0 = μ0. The value of the 

smoothing weight (λ) ranges from 0 to 1. The control limits of the steady-state 

EWMA are given by 

λ
λσμ
−

+=
20 LUCL        (27) 

0μ=CL              (28) 
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λ
λσμ
−

−=
20 LLCL        (29) 

where L is the multiple of standard deviation used in the control limits. 

5.3   Simulation Results 

The multivariate Poisson data is simulated by the Monte Carlo simulation 

as the sum of two independent Poisson random variables. The Poisson counts are 

generated under the same conditions as previously discussed in Sections 3.4 and 

4.3. Two different regression methods are applied to the simulated multivariate 

Poisson data. The residuals are computed and plotted on multiple EWMA charts. 

In this study, we consider using the EWMA chart with the smoothing weight (λ) 

of 0.05 due to its good performance in detection of a small shift. For each 

regression technique, the control limits (L) of the EWMA chart are independently 

chosen to achieve an in-control ARL of 200 (performed with 10000 repetitions).  

The out-of-control ARL performances of these two residual-based control 

charts are tested against a wide variety of conditions. We shift the mean of one or 

more variables, at the same time, by adding one, two, three and four unit sizes. 

The shift has occurred at the period of 200 to ensure the steady-state condition. 

The results appear in the relation between the region shifted and percentage of 

change. The percentage of change is calculated using Equation (17). For example, 

the shift of one unit in the mean of 3 is %33100
3
1

=× . The performance of all 

two residual-based control methods on monitoring the multivariate Poisson- 

distributed data are reported in terms of the ARL values below. 
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The appropriate multiple of sigma employed in the control limits for the 

regression adjustment are L = 2.15, 2.2, 2.25, and 2.3 (for θ = 0.5) and L = 2.35, 

2.4, 2.45, and 2.55 (for θ = 1) to obtain the desired in-control ARL of 200 for the 

case of four, six, ten, and fifteen variables, respectively. Table 30 presents the 

ARL performance of four EWMA charts (four-variable case) obtained from both 

Y and Z scales. The ARL values reported in all the tables below are chosen from 

the lowest ARL among all multiple EWMA charts. The regression adjustment on 

the Y scale performs as well as the Z scale for both thetafix values (θ = 0.5, and 

1) due to the similar in-control and out-of-control ARLs. It is noticed that the in-

control ARLs of the Z scale are slightly less than the Y scale, but the difference 

tends to be larger for a mean of 5 or smaller. However, it is unclear whether the Y 

scale has actually outperformed the Z scale or not.  

5.4   Comparison of model-based control charts 

We compare the proposed two-sided multivariate Poisson EWMA 

schemes to the other two model-based control methods for monitoring the 

multiple counts. As we stated earlier, there is no difference in applying the 

regression adjustment on the Y and Z scales. For the purpose of comparison, the 

regression adjustment on the Y scale is selected based on the larger in-of-control 

ARL performance. The comparisons of all control charts are summarized in Table 

33 – 40. The performances of the two model-based control methods are quite 

comparable due to the similar out-of-control ARLs. It is clearly shown that the 

two-sided MPEWMA chart provides the smallest out-of-control ARL values 
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among all three methods. Hence, the two-sided MPEWMA method has superior 

performance than those two residual-based control charts for all scenarios.  

5.5 Examples 

Reconsider the problem of monitoring four types of defects in the LED 

manufacturing process as we early mentioned in Section 3.9. We simulate the 

number of defects by setting the mean of each defect type to 3 with a common 

mean of 0.5. A shift in the first defect type to the new mean of 4 is generated to 

determine the out-of-control performance. Three different control methods are 

used to monitor the defects: the regression adjustment with the EWMA chart, the 

generalized linear model with the EWMA chart, and the multivariate Poisson 

EWMA chart. Both the EWMA and MPEWMA charts are constructed using the 

smoothing weight of 0.05 (λ = 0.05).  

A comparison of the EWMA charts for the regression adjustment on both 

Y and Z scales is shown in Figure 6. The EWMA statistics and the control limits 

for the Y scale are little different from the Z scale. The out-of-control signals are 

given by the EWMA chart of Y1 and Z1 at the same time during period 276 to 

period 293. In addition, the EWMA scheme of Y2 also detects one additional out-

of-control signal during period 270 to 272. In other words, there is an indication 

that the process has changed. The MPEWMA chart is plotted in Figure 7. It 

signals an out-of-control condition at period 266 because the T-square statistics 

exceed the control limit. Thus, it will require 10 samples less than the regression 

adjustment technique to detect an increase in the mean number of defects.   
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Table 34   The Average Run Lengths performance of the regression adjustment 

with the multiple EWMA charts for 4 variables case. 

I. Regression adjustment 
Y scale + EWMA

I. Regression adjustment 
Z scale + EWMA

I. Regression adjustment 
Y scale + EWMA

I. Regression adjustment 
Z scale + EWMA

Mean Actual Region 
Shifted % shift Thetafix = 0.5, L = 2.15 

and λ = 0.05
Thetafix = 0.5, L = 2.15 

and λ = 0.05
Thetafix = 0.5, L = 2.35 

and λ = 0.05
Thetafix = 0.5, L = 2.35 

and λ = 0.05
ARL* ARL* ARL* ARL*

3 None 0 199.779 201.066 204.186 205.795
1 33 30.486 29.748 31.753 28.791
2 33 31.362 29.460 34.370 28.786

(1,2) 33 30.067 29.805 31.497 28.170
All 33 29.335 29.047 30.771 27.684
1 67 14.943 14.584 16.459 14.689
2 67 15.317 14.413 17.484 14.837

(1,2) 67 14.094 14.042 14.506 14.500
All 67 12.579 12.940 13.240 13.492
All 100 5.041 5.255 5.472 5.744
All 133 2.057 2.124 2.185 2.682

5 None 0 209.706 207.846 228.679 227.277
1 20 39.606 39.378 44.504 42.768
2 20 40.446 39.349 46.206 42.553

(1,2) 20 39.245 39.155 43.553 41.850
All 20 38.630 38.528 43.105 41.368
1 40 20.155 20.027 23.356 22.335
2 40 20.595 20.158 23.861 22.210

(1,2) 40 19.432 19.959 21.982 21.609
All 40 18.389 18.870 20.753 20.584
All 60 9.647 9.998 11.013 11.062
All 80 4.418 4.593 5.340 5.816

8 None 0 211.364 212.532 239.254 237.014
1 12.5 48.887 48.899 55.520 54.901
2 12.5 48.697 47.983 57.197 55.284

(1,2) 12.5 48.269 48.389 55.433 54.388
All 12.5 47.461 47.558 55.005 54.360
1 25 26.103 26.016 29.807 29.458
2 25 25.994 25.731 30.647 29.604

(1,2) 25 26.243 26.510 29.135 28.948
All 25 24.777 25.330 28.328 28.320
All 37.5 14.489 14.864 17.231 17.556
All 50 8.406 8.692 10.466 10.482

10 None 0 213.104 211.939 240.106 237.920
1 10 52.220 52.308 60.219 59.850
2 10 52.406 51.910 61.246 59.852

(1,2) 10 51.620 52.794 59.943 58.780
All 10 51.291 51.414 59.139 58.520
1 20 28.679 28.873 33.925 33.557
2 20 29.157 28.858 34.482 33.709

(1,2) 20 28.514 28.185 33.738 33.178
All 20 28.170 28.809 32.537 32.458
All 30 17.274 17.724 20.165 20.023
All 40 10.644 10.987 12.941 12.741

15 None 0 210.976 210.613 241.091 240.296
1 6.67 58.348 58.322 67.401 67.355
2 6.67 59.274 58.726 68.229 67.650

(1,2) 6.67 58.701 58.278 67.194 67.202
All 6.67 58.554 58.155 67.178 67.197
1 13.33 35.133 35.190 41.751 41.693
2 13.33 35.237 34.922 42.177 41.573

(1,2) 13.33 35.397 35.181 41.640 41.226
All 13.33 34.586 34.386 40.691 40.410
All 20 22.213 22.716 26.309 26.558
All 26.67 15.465 15.877 18.262 18.557

Note: ARL* represents the lowest ARL obtained from those EWMA control charts  

 



94 

 

Table 35   Comparison of the Average Run Lengths between four multiple 

EWMA charts for thetafix = 0.5 and 4 variables case. 

I. Regression Adjustment of Y 
scale + EWMA II MPEWMA

Mean Actual Region Shifted % shift L = 2.15 and λ = 0.05 λ = 0.05
3 ARL* H = 11.49

None 0 199.779 210.573
1 33 30.486 23.033
2 33 31.362 23.139

(1,2) 33 30.067 15.693
All 33 29.335 12.170
1 67 14.943 10.053
2 67 15.317 10.014

(1,2) 67 14.094 7.202
All 67 12.579 5.724
All 100 5.041 3.839
All 133 2.057 2.945

5 ARL* H = 11.48
None 0 209.706 211.002

1 20 39.606 31.196
2 20 40.446 31.417

(1,2) 20 39.245 21.916
All 20 38.630 15.469
1 40 20.155 13.682
2 40 20.595 13.725

(1,2) 40 19.432 9.496
All 40 18.389 7.087
All 60 9.647 4.661
All 80 4.418 3.541

8 ARL* H = 11.47
None 0 211.364 209.804

1 12.5 48.887 38.307
2 12.5 48.697 38.359

(1,2) 12.5 48.269 28.732
All 12.5 47.461 20.030
1 25 26.103 18.503
2 25 25.994 18.484

(1,2) 25 26.243 12.445
All 25 24.777 8.833
All 37.5 14.489 5.650
All 50 8.406 4.268

10 ARL* H = 11.46
None 0 213.104 210.250

1 10 52.220 40.090
2 10 52.406 40.379

(1,2) 10 51.620 32.180
All 10 51.291 22.557
1 20 28.679 21.395
2 20 29.157 21.345

(1,2) 20 28.514 14.056
All 20 28.170 9.755
All 30 17.274 6.298
All 40 10.644 4.719

15 ARL* H = 11.46
None 0 210.976 211.350

1 6.67 58.348 43.318
2 6.67 59.274 43.390

(1,2) 6.67 58.701 37.281
All 6.67 58.554 28.040
1 13.33 35.133 27.658
2 13.33 35.237 27.209

(1,2) 13.33 35.397 18.160
All 13.33 34.586 12.045
All 20 22.213 7.677
All 26.67 15.465 5.700

Note: ARL* represents the lowest ARL obtained from those individual EWMA control charts  
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Table 36   Comparison of the Average Run Lengths between six multiple EWMA 

charts for thetafix = 0.5 and 6 variables case. 

I. Regression Adjustment of Y 
scale + EWMA II MPEWMA

Mean Actual Region Shifted % shift L = 2.2 and λ = 0.05 λ = 0.05
3 ARL* H = 14.93

None 0 203.872 210.021
1 33 30.944 24.692
2 33 32.276 25.041

(1,2) 33 30.344 16.836
All 33 29.855 11.546
1 67 15.350 10.708
2 67 15.676 10.775

(1,2) 67 14.402 7.565
All 67 12.488 5.429
All 100 4.795 3.613
All 133 1.871 2.806

5 ARL* H = 14.9
None 0 212.519 210.145

1 20 40.244 33.167
2 20 41.369 33.810

(1,2) 20 40.128 23.745
All 20 39.677 14.179
1 40 20.844 14.994
2 40 21.380 14.956

(1,2) 40 19.997 10.191
All 40 18.651 6.526
All 60 9.409 4.340
All 80 4.405 3.302

8 ARL* H = 14.89
None 0 216.016 209.733

1 12.5 49.459 39.937
2 12.5 50.370 40.162

(1,2) 12.5 49.531 30.922
All 12.5 49.134 17.841
1 25 26.927 20.249
2 25 26.815 20.105

(1,2) 25 26.197 13.422
All 25 25.408 7.926
All 37.5 14.814 5.193
All 50 8.384 3.913

10 ARL* H = 14.89
None 0 216.923 209.776

1 10 53.915 42.413
2 10 54.153 42.072

(1,2) 10 53.222 34.616
All 10 53.477 20.322
1 20 29.879 23.477
2 20 30.146 23.382

(1,2) 20 29.411 15.354
All 20 28.775 8.804
All 30 17.345 5.687
All 40 10.932 4.226

15 ARL* H = 14.9
None 0 220.222 211.031

1 6.67 60.392 44.087
2 6.67 60.793 44.251

(1,2) 6.67 60.3692 39.832
All 6.67 59.676 25.218
1 13.33 36.041 30.108
2 13.33 36.487 29.906

(1,2) 13.33 36.558 19.734
All 13.33 35.546 10.772
All 20 22.579 6.844
All 26.67 15.369 5.077

Note: ARL* represents the lowest ARL obtained from those individual EWMA control charts  
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Table 37   Comparison of the Average Run Lengths between ten multiple EWMA 

charts for thetafix = 0.5 and 10 variables case. 

I. Regression Adjustment of Y 
scale + EWMA (parshift) IV MPEWMA

Mean Actual Region Shifted % shift L = 2.25 and λ = 0.05 λ = 0.05
3 ARL* H = 21.17

None 0 205.650 211.413
1 33 31.829 27.844
2 33 31.874 27.484

(1,2) 33 31.273 18.429
All 33 29.756 10.817
1 67 15.555 11.864
2 67 15.804 11.947

(1,2) 67 14.370 8.194
All 67 12.269 5.138
All 100 4.917 3.490
All 133 1.813 2.683

5 ARL* H = 21.15
None 0 216.317 211.050

1 20 41.380 36.894
2 20 41.635 36.646

(1,2) 20 41.451 26.348
All 20 40.070 13.183
1 40 21.224 16.634
2 40 21.592 16.645

(1,2) 40 20.671 11.122
All 40 18.588 6.134
All 60 9.400 4.055
All 80 4.183 3.129

8 ARL* H = 21.14
None 0 222.257 211.074

1 12.5 50.793 42.561
2 12.5 50.869 41.737

(1,2) 12.5 50.351 34.729
All 12.5 49.767 16.073
1 25 27.551 22.901
2 25 27.271 22.945

(1,2) 25 26.903 15.084
All 25 25.235 7.221
All 37.5 14.683 4.768
All 50 8.421 3.593

10 ARL* H = 21.13
None 0 222.673 210.791

1 10 54.563 44.087
2 10 55.142 43.807

(1,2) 10 54.506 37.626
All 10 54.382 17.910
1 20 30.709 26.519
2 20 31.236 26.900

(1,2) 20 30.345 17.321
All 20 29.378 7.910
All 30 17.628 5.184
All 40 10.567 3.874

15 ARL* H = 21.12
None 0 223.709 210.355

1 6.67 62.139 45.261
2 6.67 61.988 44.668

(1,2) 6.67 62.373 42.046
All 6.67 61.821 21.944
1 13.33 37.378 33.580
2 13.33 38.140 33.371

(1,2) 13.33 37.641 22.388
All 13.33 37.154 9.415
All 20 22.978 6.048
All 26.67 15.284 4.525

Note: ARNote: ARL* represents the lowest ARL obtained from those individual EWMA control cha 
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Table 38   Comparison of the Average Run Lengths between fifteen multiple 

EWMA charts for thetafix = 0.5 and 15 variables case. 

I. Regression Adjustment of Y 
scale + EWMA II MPEWMA

Mean Actual Region Shifted % shift L = 2.3 and λ = 0.05 λ = 0.05
3 ARL* H = 28.39

None 0 205.740 212.430
1 33 31.672 30.162
2 33 32.463 30.304

(1,2) 33 31.251 20.124
All 33 30.273 10.565
1 67 16.030 12.937
2 67 16.176 12.811

(1,2) 67 14.781 8.785
All 67 12.330 5.019
All 100 4.798 3.405
All 133 1.858 2.620

5 ARL* H = 28.34
None 0 219.482 210.961

1 20 42.388 39.355
2 20 42.255 38.929

(1,2) 20 41.857 28.677
All 20 40.785 12.826
1 40 21.743 18.390
2 40 22.007 18.343

(1,2) 40 20.841 12.093
All 40 18.679 5.891
All 60 9.459 3.952
All 80 4.272 3.032

8 ARL* H = 28.31
None 0 224.872 211.828

1 12.5 52.618 44.036
2 12.5 52.194 43.131

(1,2) 12.5 51.708 37.589
All 12.5 51.556 15.397
1 25 28.099 25.128
2 25 28.215 25.454

(1,2) 25 27.550 16.411
All 25 25.760 6.839
All 37.5 14.868 4.520
All 50 8.234 3.445

10 ARL* H = 28.30
None 0 227.023 210.381

1 10 56.338 44.687
2 10 56.652 44.460

(1,2) 10 56.398 39.743
All 10 55.517 16.573
1 20 31.323 29.444
2 20 31.613 29.497

(1,2) 20 31.127 18.847
All 20 29.791 7.423
All 30 17.806 4.856
All 40 10.566 3.674

15 ARL* H = 28.30
None 0 228.241 211.097

1 6.67 62.679 45.247
2 6.67 63.514 45.592

(1,2) 6.67 63.251 43.665
All 6.67 62.422 19.954
1 13.33 38.284 36.140
2 13.33 38.806 36.230

(1,2) 13.33 38.494 24.969
All 13.33 37.236 8.740
All 20 23.182 5.645
All 26.67 15.644 4.220

Note: ARL* represents the lowest ARL obtained from those individual EWMA control charts  
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Table 39   Comparison of the Average Run Lengths between four multiple 

EWMA charts for thetafix = 1 and 4 variables case. 

I. Regression Adjustment of Y 
scale + EWMA II MPEWMA

Mean Actual Region Shifted % shift L = 2.35 and λ = 0.05 λ = 0.05
3 ARL* H = 11.49

None 0 204.186 209.945
1 33 31.753 20.736
2 33 34.370 20.817

(1,2) 33 31.497 14.953
All 33 30.771 13.964
1 67 16.459 9.149
2 67 17.484 9.207

(1,2) 67 14.506 6.882
All 67 13.240 6.408
All 100 5.472 4.268
All 133 2.185 3.270

5 ARL* H = 11.48
None 0 228.679 211.177

1 20 44.504 30.391
2 20 46.206 30.196

(1,2) 20 43.553 21.806
All 20 43.105 17.223
1 40 23.356 13.242
2 40 23.861 13.126

(1,2) 40 21.982 9.591
All 40 20.753 7.746
All 60 11.013 5.099
All 80 5.340 3.875

8 ARL* H = 11.47
None 0 239.254 210.074

1 12.5 55.520 37.854
2 12.5 57.197 37.638

(1,2) 12.5 55.433 28.970
All 12.5 55.005 21.736
1 25 29.807 18.116
2 25 30.647 18.225

(1,2) 25 29.135 12.614
All 25 28.328 9.508
All 37.5 17.231 6.068
All 50 10.466 4.570

10 ARL* H = 11.46
None 0 240.106 209.354

1 10 60.219 39.709
2 10 61.246 40.308

(1,2) 10 59.943 32.740
All 10 60.139 24.204
1 20 33.925 21.140
2 20 34.482 21.131

(1,2) 20 41.227 14.247
All 20 32.537 10.489
All 30 20.165 6.681
All 40 12.941 4.974

15 ARL* H = 11.46
None 0 241.091 209.510

1 6.67 67.401 42.515
2 6.67 68.229 42.743

(1,2) 6.67 67.194 37.760
All 6.67 67.178 29.715
1 13.33 41.751 27.403
2 13.33 42.177 27.163

(1,2) 13.33 41.640 18.112
All 13.33 40.691 12.778
All 20 26.309 8.038
All 26.67 18.262 5.918

Note: ARL* represents the lowest ARL obtained from those individual EWMA control charts  
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Table 40   Comparison of the Average Run Lengths between four multiple 

EWMA charts for thetafix = 1 and 6 variables case. 

I. Regression Adjustment of Y 
scale + EWMA II MPEWMA

Mean Actual Region Shifted % shift L = 2.4 and λ = 0.05 λ = 0.05
3 ARL* H = 14.95

None 0 200.876 208.494
1 33 31.785 22.197
2 33 33.611 22.134

(1,2) 33 30.815 15.431
All 33 30.243 13.465
1 67 16.433 9.808
2 67 17.326 9.734

(1,2) 67 14.716 7.068
All 67 12.736 6.255
All 100 5.226 4.141
All 133 1.993 3.178

5 ARL* H = 14.92
None 0 227.943 209.71

1 20 44.665 32.773
2 20 46.177 32.322

(1,2) 20 44.064 23.033
All 20 43.544 16.392
1 40 23.334 14.274
2 40 24.001 14.368

(1,2) 40 22.108 10.003
All 40 20.676 7.453
All 60 10.632 4.883
All 80 5.036 3.706

8 ARL* H = 14.91
None 0 240.600 210.096

1 12.5 56.772 39.621
2 12.5 57.988 39.804

(1,2) 12.5 56.733 31.109
All 12.5 55.291 20.175
1 25 30.547 19.880
2 25 30.956 19.747

(1,2) 25 30.068 13.406
All 25 28.798 8.900
All 37.5 16.806 5.757
All 50 9.930 4.284

10 ARL* H = 14.91
None 0 240.673 210.320

1 10 62.300 41.720
2 10 62.523 42.455

(1,2) 10 61.038 35.049
All 10 60.527 22.494
1 20 34.627 23.239
2 20 34.970 22.995

(1,2) 20 34.269 15.485
All 20 33.082 9.718
All 30 20.394 6.218
All 40 13.038 4.648

15 ARL* H = 14.90
None 0 244.579 209.452

1 6.67 69.809 43.628
2 6.67 69.694 43.870

(1,2) 6.67 68.722 39.950
All 6.67 68.576 27.270
1 13.33 43.161 30.238
2 13.33 43.677 29.860

(1,2) 13.33 43.185 19.963
All 13.33 42.221 11.535
All 20 26.667 7.308
All 26.67 18.113 5.398

Note: ARL* represents the lowest ARL obtained from those individual EWMA control charts  
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Table 41   Comparison of the Average Run Lengths between four multiple 

EWMA charts for thetafix = 1 and 10 variables case. 

I. Regression Adjustment of Y 
scale + EWMA II MPEWMA

Mean Actual Region Shifted % shift L = 2.45 and λ = 0.05 λ = 0.05
3 ARL* H = 21.19

None 0 197.275 212.060
1 33 32.077 24.349
2 33 32.365 24.588

(1,2) 33 31.020 16.435
All 33 29.859 13.139
1 67 16.505 10.540
2 67 17.134 10.564

(1,2) 67 14.974 7.416
All 67 12.428 6.050
All 100 4.932 4.054
All 133 1.935 3.084

5 ARL* H = 21.14
None 0 228.754 211.92

1 20 44.765 35.644
2 20 46.138 35.442

(1,2) 20 44.175 25.038
All 20 43.858 16.014
1 40 23.215 15.755
2 40 23.726 15.704

(1,2) 40 22.255 10.711
All 40 20.034 7.254
All 60 10.483 4.773
All 80 4.796 3.606

8 ARL* H = 21.13
None 0 242.032 212.212

1 12.5 57.075 41.982
2 12.5 58.389 42.035

(1,2) 12.5 57.266 34.383
All 12.5 56.624 19.318
1 25 30.948 22.011
2 25 31.413 22.269

(1,2) 25 30.376 14.767
All 25 28.893 8.502
All 37.5 16.691 5.466
All 50 9.634 4.102

10 ARL* H = 21.13
None 0 243.229 209.904

1 10 61.899 43.342
2 10 63.042 43.475

(1,2) 10 62.262 37.833
All 10 62.045 21.214
1 20 35.300 26.039
2 20 35.549 25.893

(1,2) 20 35.086 17.165
All 20 33.288 9.069
All 30 20.053 5.859
All 40 12.468 4.387

15 ARL* H = 21.12
None 0 247.037 211.668

1 6.67 69.722 44.877
2 6.67 70.594 45.454

(1,2) 6.67 70.066 42.3493
All 6.67 69.559 24.629
1 13.33 43.729 33.124
2 13.33 44.513 33.064

(1,2) 13.33 43.757 22.402
All 13.33 42.201 10.523
All 20 26.792 6.738
All 26.67 17.866 4.998

Note: ARL* represents the lowest ARL obtained from those individual EWMA control charts  
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Table 42   Comparison of the Average Run Lengths between four multiple 

EWMA charts for thetafix = 1 and 15 variables case. 

I. Regression Adjustment of Y 
scale + EWMA II MPEWMA

Mean Actual Region Shifted % shift L = 2.55 and λ = 0.05 λ = 0.05
3 ARL* H = 28.41

None 0 201.580 209.948
1 33 32.816 26.690
2 33 33.627 26.711

(1,2) 33 32.145 17.530
All 33 30.419 12.831
1 67 17.629 11.360
2 67 17.898 11.326

(1,2) 67 15.920 7.863
All 67 12.801 5.956
All 100 5.156 3.912
All 133 2.012 3.015

5 ARL* H = 28.34
None 0 236.314 210.28

1 20 46.573 37.585
2 20 47.508 37.684

(1,2) 20 46.552 27.600
All 20 45.137 15.965
1 40 24.260 17.299
2 40 24.845 17.218

(1,2) 40 23.929 11.493
All 40 20.944 7.162
All 60 11.135 4.700
All 80 5.065 3.563

8 ARL* H = 28.32
None 0 247.979 212.357

1 12.5 59.843 43.275
2 12.5 60.348 43.340

(1,2) 12.5 59.056 36.480
All 12.5 58.423 18.810
1 25 32.939 24.787
2 25 33.154 24.597

(1,2) 25 31.877 16.130
All 25 30.136 8.248
All 37.5 17.611 5.371
All 50 10.208 4.005

10 ARL* H = 28.31
None 0 250.813 211.739

1 10 64.449 44.388
2 10 65.815 44.621

(1,2) 10 64.435 39.922
All 10 63.555 20.420
1 20 36.650 28.375
2 20 37.369 28.833

(1,2) 20 36.436 18.800
All 20 34.622 8.776
All 30 21.103 5.724
All 40 13.093 4.284

15 ARL* H = 28.3
None 0 255.313 211.468

1 6.67 72.635 45.452
2 6.67 73.671 46.359

(1,2) 6.67 72.568 43.198
All 6.67 71.895 23.741
1 13.33 46.328 35.940
2 13.33 46.750 36.070

(1,2) 13.33 46.248 24.901
All 13.33 44.604 10.014
All 20 27.925 6.431
All 26.67 18.832 4.808

Note: ARL* represents the lowest ARL obtained from those individual EWMA control charts  
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Figure 6   Plots of EWMA charts of the regression adjustment on both Y and Z 

scales  
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Figure 7   Plots of MPEWMA chart with H = 11.49 
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Chapter 6 

CONCLUSION AND RECOMMENDATIONS 

6.1   Conclusion 

We presented a new type of the multivariate Exponentially Weighted 

Moving Average control chart for monitoring multiple related count data. This 

kind of data can usually be found when monitoring several types of defects per 

unit of product or defects per area of product in the manufacturing process. In 

fact, often the number of defects is small and tends to depart from a normal 

distribution. There is also some common relationship among all variables and 

consequently it can be assumed that the multivariate Poisson distribution holds. 

The multivariate Poisson EWMA (or MPEWMA) chart has been proposed to 

detect small and medium changes in the mean counts. The Poisson limits are 

directly derived from the multivariate Poisson distribution, instead of the 

normality. 

We have demonstrated that control chart performance in monitoring 

multivariate Poisson-distributed data is slightly different between a scheme based 

on normal-theory limits and a scheme based directly on multivariate Poisson-

distribution limits. ARL tables are presented to show the general performance of 

the MPEWMA scheme. The control limits of the proposed method are slightly 

wider than those that relied on the normality assumption. Based on the ARL 

results, we find that the proposed control chart produces out-of-control ARL 

values similar to the standard normal-theory MEWMA. However, the MPEWMA 
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control chart is superior to the traditional MEWMA in terms of the in-control 

ARL. The use of the normal-theory limits can lead to substantially smaller in-

control ARL values than what is stated when the data follow a multivariate 

Poisson distribution. Thus, the result shows the potential of using the MPEWMA 

with Poisson-distributed data in reducing the false alarm rate. The standard 

deviation run length is provided, and therefore the standard error of the mean can 

be obtained if desired. Furthermore, we illustrate some examples of 

implementation the MPEWMA chart in practice.  

We extended the two-sided multivariate Poisson EWMA to the one-sided 

control chart based on the multivariate Poisson assumption as a method for 

detecting only upward shifts in the mean of multiple count data. The control limits 

are again established using the multivariate Poisson distribution instead of the 

normal approximation limits. The results indicate that the multivariate Poisson-

distribution limits are wider than the normal-theory limits. The statistical 

performances of the one-sided MPEWMA scheme are presented by both average 

and standard deviation of the run length. The results indicate that applying the 

one-sided MEWMA with the normal-theory limits to the multivariate Poisson 

distribution can result in a smaller in-control ARL than the advertised value. 

MEWMA causes a high false alarm rate when the process is actually in control. 

Four case studies are illustrated to investigate the one-sided MPEWMA 

performance for detecting a single and a run of out-of-control signals (2 to 5 

consecutive points). The time-delay in detection tends to increase with the amount 

of out-of-control points waiting to signal, particularly when there is a shift in a 
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few variables. The use of the consecutive points method is similar to the single 

point method when monitoring a shift in all variables because it takes a slightly 

longer time to detect the first out-of-control signal. The single point approach is 

preferred to detect a shift in one or possible two variables since it reduces 

detection times compared to a long run of out-of-control signals. 

The proposed MPEWMA chart is also compared with other model-based 

control charts for monitoring count data from multiple sources. Two techniques 

for model building are investigated: 1) the regression adjustment and 2) the 

generalized linear model. We consider the regression adjustment based on two 

ways of decomposing the Hotelling T2 statistics, and they are called the Y and Z 

scales. For the generalized linear model, Poisson regression is selected for 

modeling the Poisson distribution. The residuals (computed from the regression 

adjustment) and deviance residuals (calculated from the Poisson regression) are 

plotted on the multiple EWMA charts as those residuals are approximately 

normally distributed. The comparison results show that the MPEWMA scheme 

outperforms two residual-based control charts for all scenarios due to the small 

out-of-control ARL values. Hence, the MPEWMA chart can detect changes in the 

mean of a Poisson count earlier than those model-based control methods. Fewer 

samples will be taken to indicate that the process mean has increased. 

6.2 Future work 

Several concerns of the multivariate Poisson EWMA chart still require 

further exploration. Firstly, this paper uses a multivariate Poisson model that 

allowed only positive correlation. It is also interesting to develop the multivariate 
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Poisson distribution with the general correlation structure, and therefore a new 

control scheme can be extended to allow negative correlation among variables. A 

theoretical framework of the multivariate Poisson model and an effective method 

for generating data are desirable to examine the statistical performance of the new 

scheme. 

Secondly, one disadvantage of using the multivariate control scheme is in 

interpretation of the out-of-control signal. It is not easy to determine which 

quality characteristic is associated with the mean shift signal, particularly for the 

high dimensional case. Moreover, the change in either local (θi) or common (θ) 

variables can result in an increased mean. An advanced method is needed to 

identify the variables that correspond to an increase in the mean. Consequently, a 

proper action can be taken to correct the problem. 

Thirdly, it is necessary to investigate additional conditions of the 

parameters. For example, a study on the effect of the thetafix parameter and its 

role in the average run length performance. In this research, we have only 

explored two values of θ, 0.5 and 1, and the ARL values of θ = 0.5 appear to be 

slightly larger than for the θ = 1. The parameter should vary over a wide range of 

values in oder to investigate the MPEWMA chart’s performance. The results are 

needed to gain more insight into the detection of the mean change in the common 

variable. In addition, we simplified the process monitoring problem by assuming 

that all quality characteristics have equal means. This is too restrictive an  

assumption in many real word applications. The mean of one variable can be 

different than the others. Thus, it is more appealing to estimate the control chart 



108 

 

performance under this circumstance (i.e. unequal means of the variables). One 

more thing, the change in the means is limited to a permanent upward shift, in 

other words, the count means increase and hold on to the new level after the shift 

has occurred. However, the shift is sometimes happen during a certain period of 

time (e.g. the spike of the mean shift). It is also a good idea to find some way to 

detect this spike shift as well as the permanent shift in the multiple count data. 

Lastly, an existing method of estimation the theta parameters in the 

multivariate Poisson model is not guaranteed to have a good performance in the 

high dimensional problems. The advanced method is needed to provide more 

accurate the theta estimates. Thus, phase I of the proposed MPEWMA chart can 

be established based on this method. The statistical performance of the 

MPEWMA scheme in phase I will be evaluated on the basis of the run length 

distribution. 
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APPENDIX A  

MATLAB CODING FOR OBTAINING THE CONTROL LIMITS  

OF THE MPEWMA CHART 

 
close all;  
clear all;  
  
% Set the variables 
n = 4;   % number of variables of interest   
lamda = 0.05;  % define value of lambda   
M = 3;   % define value of the mean vector   
thetafix = 0.5;  % define value of the common mean   
t = 0;   % define the trail value of the control limit 
shift_position = 201; % set the occurrence of the mean shift   
cycle = 50000;  % set the number of maximum cycles  
lp_max = 100000; % set the number of maximum loops to prevent infinity run 
 
% Set the location to safe result file 
dir = 'H:\Research\Result\'; 
 
% Normal Theory limits 
nlamdaH =[4,0.05,11.22;4,0.1,12.73;6,0.05,14.60;6,0.1,16.27;10,0.05,20.72; 
10,0.1,22.67;15,0.05,27.82;15,0.1,30.03]; 
  
% Assign shift matrix 
shiftmatrix =[0,0,0,0;1,0,0,0;0,1,0,0;2,0,0,0;0,2,0,0;1,1,0,0;2,2,0,0;1,0,1,0;0,0,2,0; 
1,0,0,1;0,0,0,2;1,1,1,1;2,2,2,2;3,3,3,3;4,4,4,4]; 
countshift = max(size(shiftmatrix)); 
 
% Fix variables 
Me = zeros(n,1); 
Cov = zeros(n,n); 
Yi = zeros(n,1); 
Xi0 = zeros(n+1,1); 
theta_tmp = zeros(n,1); 
countall = ones(1,cycle); 
 
% Using trial and error based on the normal limits to obtain the Poisson limits  
countnlH = max(size(nlamdaH(:,1))); 
for i=1:countnlH 
    if (nlamdaH(i,1)== n) & (nlamdaH(i,2)== lamda) 
        H = nlamdaH(i,3); 
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    end 
end  
H = H + t; 
 
% Find mean vector assuming all means are equal 
for i = 1:n 
    Me(i) = M; 
end 
% Find covariance matrix 
for i = 1:n 
    for j = 1:n 
        if i == j 
            Cov(i,j) = Me(i); 
        else 
            Cov(i,j) = thetafix; 
        end 
    end 
end 
  
lamda001 = 1/(lamda/(2-lamda)); 
thetafix_N = thetafix*ones(n,1); 
  
% Calculate the control limits for each shift matrix 
for s = 1:countshift 
    shift = shiftmatrix(s,:)';           
    cyc_cnt = 1; 
 
    % To satisfy the steady-state condition, each cycle will loop for at least 200       
    % periods. If fail before reaching 200 loops, we re-do simulation. If not fail  
    % after 200 loops pass, the simulation continues until fail or reach lp_max 
    while (cyc_cnt<=cycle) 
       Me_shift = Me; 
       theta_tmp = Me_shift - thetafix_N; 
       z = zeros(n,1); 
       lp_cnt = 1; 
       while ( lp_cnt < lp_max ) 
           % Generate Xi and Yi 
            Xi0 = poissrnd([thetafix;theta_tmp]); 
            for i=1:n 
                Yi(i) = Xi0(i+1) + Xi0(1); 
            end 
  
            % Calculate T-square based on asymptotic assumption 

z = (lamda*(Xi-Me)) + ((1-lamda)* z); 
invCov = inv(Cov); 
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            Covarinv = lamda001*invCov; 
            T1square = z' * Covarinv * z; 
             

 
% Check if the T-square is in or out of control  

            if (T1square > H)  
               if (lp_cnt<shift_position) 
                  lp_cnt = 1; 
                  z = zeros(n,1); 
                  Me_shift = Me; 
                  theta_tmp = Me_shift - thetafix_N; 
               else 
                  break; 
               end     
            else 
               if (lp_cnt==shift_position) 

      %Change in the mean vector after the shift period 
                  Me_shift = Me + shift; 
                  theta_tmp = Me_shift - thetafix_N; 
                  %Change in the variance-covaraince matrix after the shift period 
                  for i = 1:n 
                      for j = 1:n 
                          if i == j 
                              Cov(i,j) = Me_shift(i); 
                          else 
                          end 
                      end 
                  end                   
               end 
               lp_cnt = lp_cnt + 1; 
            end 
        end 
        countall(cyc_cnt) = lp_cnt - shift_position - 1; 
        cyc_cnt = cyc_cnt+1; 
    end 
    countall_s(s,:) = countall(:); 
  
    % Create the result file 
    str = strcat('Total_ARL','M=',num2str(M),'thetafix=',num2str(thetafix),'H=',   
    num2str(H),'VAR=',num2str(n),'S=',num2str(s),'Lamda=',num2str(lamda), 
    'Poi=',num2str(shift_position),'.dat'); 
    filename = [dir,str]; 
    fid1 = fopen(filename,'w'); 
    % Print the average run length from all cycles and run length of each cycle 
    fprintf(fid1,'\n%12s','ARL'); 
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    MeanARL = mean(countall_s(s,:)); 
    fprintf(fid1,' %12.3f',MeanARL); 
    fprintf(fid1,'\n%12s','Loop'); 
    fprintf(fid1,' %10s%2d','No,s=',s); 
    fprintf(fid1,'\n'); 
    for cyc_cnt = 1:cycle; 
        fprintf(fid1,'%12d',cyc_cnt); 
        fprintf(fid1,' %12d',countall_s(s,cyc_cnt)); 
        fprintf(fid1,'\n'); 
    end 
    fclose(fid1);  
end  
  


