
vLab: A Cloud based Resource and Service Sharing Platform

for

Computer and Network Security Education

by

Aniruddha Kadne

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved November 2010 by the
Graduate Supervisory Committee:

Dijiang Huang, Chair

Wei-Tek Tsai
Gail-Joon Ahn

ARIZONA STATE UNIVERSITY

December 2010

 i

ABSTRACT

Cloud computing systems fundamentally provide access to large

pools of data and computational resources through a variety of interfaces

similar in spirit to existing grid and HPC resource management and

programming systems. These types of systems offer a new programming

target for scalable application developers and have gained popularity over

the past few years. However, most cloud computing systems in operation

today are proprietary and rely upon infrastructure that is invisible to the

research community, or are not explicitly designed to be instrumented and

modified by systems researchers. In this research, Xen Server

Management API is employed to build a framework for cloud computing

that implements what is commonly referred to as Infrastructure as a

Service (IaaS); systems that give users the ability to run and control entire

virtual machine instances deployed across a variety physical resources.

The goal of this research is to develop a cloud based resource and service

sharing platform for Computer network security education a.k.a Virtual

Lab.

 ii

To My Beloved Family

 iii

ACKNOWLEDGMENTS

I would like to express my gratitude to Dr. Dijiang Huang for giving

me an opportunity to work on this cutting-edge research topic and for

providing me with valuable guidance, encouragement and support. I

remain highly obliged to Dr. We-Tek Tsai and Dr. Gail-Joon Ahn for the

useful ideas and feedback they gave as part of my thesis committee.

It has been a wonderful experience working with all my fellow

researchers in the Secure Networking and Computing (SNAC) Group and

I would like to thank each one of them for helping and making the whole

process of research so much fun. I would like to thank all my friends and

teachers for making it all worthwhile.

 iv

TABLE OF CONTENTS

 Page

LIST OF FIGURES ... ix

CHAPTER

1 INTRODUCTION ... 1

1.1 Background ... 1

1.2 Organization .. 2

2 MOTIVATION AND SCOPE OF THE RESEARCH 4

2.1Survey and Analysis ... 5

2.2 Proposed Solution ... 10

2.2 Technical Merits .. 11

3 SYSTEM ARCHITECTURE ... 13

3.1 Overview .. 13

 3.1.1 Resource Layer ... 14

 3.1.2 Cloud Layer ... 15

 3.1.3 Application Layer ... 15

3.2 Role of Virtualization .. 16

3.2 Example Network Scenario ... 18

3.4 Summary ... 20

 4 SYSTEM COMPOENETS ... 23

4.1 Web-based Portal .. 23

4.2 UserSpace Applet .. 25

4.3 virtualLabPortClient ... 27

 v

CHAPTER Page

4.4 virtualLabPortServer .. 28

4.5 virtualLabPortConfigurationServer 30

 4.5.1Network scripts for VMs ... 30

 4.5.2 Configuration scripts for VMs 31

 4.5.3 IPTABLES rules for VMs 33

5 SYSTEM DESIGN ... 34

5.1 Web server- Database Subsytem 34

5.2 Cloud Subsystem .. 35

5.3 Virtual Lab Administration Subsystem 35

5.4 Putting It All Together .. 36

6 SECURITY ANALYSIS .. 39

6.1 XenServer Security .. 39

6.2 Virtual Lab Setup Security ... 40

6.3 Attacker on Internal Network ... 41

6.4 Attackers on External Network .. 41

7 PERFORMANCE EVALUATION .. 43

7.1 Hardware Plaform .. 43

7.2 Sample Experimental Setups .. 44

 7.2.1 Simple Network Configuration 44

 7.2.2 Firewall Configuration .. 44

 7.2.1 Web-server SSL,Authentication 45

 7.2.1 Intrusion Detection ... 45

 vi

CHAPTER Page

7.3 Performance Analysis ... 45

8 RELATED WORK .. 47

9 FUTURE WORK .. 51

REFERENCES .. 53

APPENDICES .. 56

A. ABOUT XEN SERVER .. 56

B. CODE DESCRIPTION .. 78

 vii

LIST OF FIGURES

Figure Page

1. System Architecture Overview .. 13

2. Example Network Scenario ... 18

3. Virtual Lab Web Portal .. 24

4. Userspace Applet ... 26

5. Configuration Options Provide by Virtual Lab GUI 26

6. virtualLabPortClient-Server Communication 29

7. Code Snippet of Configuration File ... 32

8. System Design .. 34

9. Graphical overview of API classes for managing VMs, Hosts,

Storage and Networking ... 56

10. OSI Model .. 61

11. Simple LAN over Ethernet ... 61

12. Ethernet Frame Structure .. 62

13. Mutiple Ethernet Segments ... 63

14. MAC address learning on Ethernet segment 64

15. Multiple LANs in different collision domains 67

16. Bridged Ethernet Segments .. 68

17. XenServer Internal Network .. 69

18. XenServer External Network ... 70

19. Virtual Switch Inside XenServer .. 70

20. XenServer Internal and External networks together 72

 viii

Figure Page

21. XenServer Virtual Interfaces (VIFs) 72

22. XenServer VLANs ... 73

23. VLAN Trunking .. 74

24. VM Migration ... 75

25. NIC Bonds ... 76

 1

CHAPTER 1

INTRODUCTION

1.1 Background

Cloud computing systems fundamentally provide access to large

pools of data and computational resources through a variety of interfaces

similar in spirit to existing grid and HPC resource management and

programming systems. These types of systems offer a new programming

target for scalable application developers and have gained popularity over

the past few years. However, most cloud computing systems in operation

today are proprietary, rely upon infrastructure that is invisible to the

research community, or are not explicitly designed to be instrumented and

modified by systems researchers. In this research, we employ XenServer

Management API – to build a framework for cloud computing that

implements what is commonly referred to as Infrastructure as a Service

(IaaS); systems that give users the ability to run and control entire virtual

machine instances deployed across a variety physical resources. The

goal of this research is to create a cloud based resource and service

sharing platform for Computer network security education, a.k.a Virtual

Lab.

This project attempts to implement a virtual lab using the concept of

cloud computing and virtualization. The cloud system in this project has

been built using the Citrix Xen Server Management API (hereafter referred

to as just "API"). Xen is a virtual machine hypervisor that allows several

 2

guest operating systems to execute on the same computer hardware

concurrently. The University of Cambridge Computer Laboratory

developed the first versions of Xen. The Xen community develops and

maintains Xen as free software; licensed under the GNU General Public

License (GPLv2).Top level components of this, aggregate resources from

multiple clusters i.e. collections of nodes sharing a LAN segment, possibly

behind a firewall. Each cluster is controlled by a cluster controller for

cluster-level scheduling and network control and a storage control for

EBS-style block-based storage. It deploys its instances i.e. virtual

machines on XEN hypervisors.

The prime objective of this research is to develop a resource and

service sharing platform that provides segregated virtual systems for end

users to build their own networking environments. In addition to this, it also

aims at developing a user-friendly, easy-to-use graphical user interface

that enables users to request for their virtual test environments remotely,

just in similar fashion to accessing an email account over internet

connection. This eliminates the time and location constraint to use this

platform, which contributes towards increased productivity of the end

users. We also plan to collaborate with multiple-university laboratory

environment in future.

1.2 Organization

The rest of the document is organized as follows. Chapter 2

discusses about the motivation and scope of this research. Chapter 3

 3

gives overview of the architecture of the platform. Chapter 4 describes

details of the basic building blocks of the implementation. Chapter 5 briefly

outlines the higher view of the system components and their interaction

with each other. Chapter 6 provides an analysis of the inherent security of

this platform. Chapter 7 conducts performance evaluation of the set up

and hardware devices. Chapter 8 presents the related work done in this

area. Chapter 9 outlines some of the features and enhancements that can

be made to the existing implementation. Interested readers can refer to

the Appendix A for more details about the cloud management software

a.k.a XenServer 5.6 used to build this tool.

 4

CHAPTER 2

MOTIVATION AND SCOPE OF THE RESEARCH

Past few years have experienced tremendous rise and popularity of

technologies like cloud computing and virtualization. Many organizations

have already started implementing these technologies to further reduce

costs through improved resource utilization. In essence, the combination

of cloud computing and virtualization enables users to use applications on

internet just as if they are browsing any other websites.

Computer and network Security (hereafter referred to as CNS) is an

important area for undergraduate computer science and engineering

education and it has been recognized as an area of national interest to

strengthen our cyber infrastructure. To impart highest level of education

facilities to the enrolled students, Arizona state University established a

national Center of Academia Excellence in Information Assurance

Education (CAE/ISE) certified by National Security Agency (NSA) and

Department of Homeland Security (DHS). The most important part of

learning every computer science course is the examination and

experimentation with the technology. Almost every course that is offered in

the field of computer science demands student to perform experiments in

the lab set up to enrich their experience of getting so called 'hands-on'.

This requires access to lab equipment that either most student don't have

or have for very limited amount of time due to being shared with other

classmates in order to keep overall cost of the set up within budget.

 5

CNS offers a fantastic opportunity for strengthening our science,

technology, engineering and mathematics (STEM) areas. It is a well know

fact that United States does not produce enough computer security

experts. One source of the problem is many universities do not have

adequate hands-on experiment test beds that can effectively train

students in computer security. As a result, students tend to lose interest

very quickly since they do not get to actually perform the experiments by

configuring the real devices.

2.1 Survey and Analysis

Our survey and analysis of the requirements suggests that any

university that offers such courses faces three common limitations. These

limitations are discussed in the following literature.

Lack of computer networking equipments and space for various

computer network settings is the most common limitation faced by almost

every university in the United States. For example, Arizona State

University’s CNS laboratory consists of 21 Pentium IV desktops, one 48-

port Cisco Switch and 4 Dell servers. We use desktops to emulate

networking devices, such as routers, gateways and servers by running

open-source software. This approach functions adequately when the

emulated network size is small and the attack and countermeasure

models are simple. For example, if we conduct a packet filter firewall, we

require three computers: one is located in an internal network, one serves

for the packet filter firewall and one serves for the outside server, which

 6

can be shared by multiple project groups. Thus, at the most 10 groups of

students can work on the packet filter firewall project simultaneously.

However, for students to experiment with a firewall system including an

interior/exterior router, DMZ and local network, the current configuration

can support no more than 2 groups of students simultaneously.

Installing additional computers is usually not a viable solution due

to the budget and laboratory space limitation. Instead, virtualization

techniques are being used to run multiple computer images on one

physical computer, thereby increasing the number of available computers.

This approach, however, continues to have two limitations. First, we utilize

ASU’s surplus computers to set up their CNS-IL, which is a cost-effective

way for handling computing resources because most institutions regularly

replace their old computers. Moreover, these surplus computers usually

do not have powerful CPUs and adequate memory, thus putting limits on

the number of running images. For example, in the CNS-IL, each

computer has a 512MB memory, 40G hard drive, and 2.16GHz Pentium

IV processor. In Spring 2006, however, based on student use and testing,

it was found that the host computers were too slow to support more than

two running images for most experiments. A second problem associated

with use of additional computers is that the physical network barrier

restricts the use of virtualization techniques, thus making the network

setup inflexible. If we configure virtual machines (VMs) on the same

physical computer, they can be interconnected through internal virtual

 7

networks, e.g., VMware [2] and Xen [3] virtualization techniques, which

can provide multiple internal host-only networks to emulate physically

separate networks. However, if VMs are running on different host

systems, the inter-connections among these VMs must go through a

physical network switch. Thus, to separate the traffic between them from

other VMs connected through the same physical switch, virtual LANs must

be established in the switch, which makes it inflexible to reconfigure the

networks. Moreover, the separation of each host system also creates a

starvation situation, in which some computers can be overloaded by

running many VMs while some are under-utilized at the same time.

Thus, a cost-effective and flexible virtualization solution is required,

i.e., multiple virtual machines need to be created and managed via a

cluster of physical machines, where the workload is uniformly shared

among different physical systems in order to circumvent the starvation

problem. This in turn avoids the situation where VMs are mapped to

dedicate physical hosts statically. We call this virtualization capability as

‘clustered’ or ‘networked’ virtualization.

The next major limitation to set up such labs is the Inability to

simultaneously support projects for different IA courses. Various courses

offered to enhance the knowledge about network security; information

assurance, data and computer system security, computer and network

forensics etc involve more than 300 students in a given semester. Since,

at least two of such courses will be offered during a single semester,

 8

scheduling student access to such labs becomes a challenging issue

since students involved is large but number of computers and laboratory

space is limited. This issue is further compounded by the high security

requirements of CNS-IL because the laboratory should be physically

segregated as security attacks are experimented and such attacks cannot

be propagated to the other systems in the public domain.

Another serious problem of current CNS-ILs is that IA courses

usually require different computer and network configurations. Setting up

separate laboratories for different IA classes will be able to reduce the

network and system reconfigurations. we present the following three

desired features for establishing a CNS-IL. (a) A CNS-IL should be

accessed remotely to avoid the access schedule problem. To enable the

remote access to the CNS-IL, traffic initiated from CNS-IL to the public

domain must be disabled. This will prevent bad or testing traffic from

entering the public network; (b) A CNS-IL should be able to share its idle

computing and network resources with other CNS-IL users. This requires

establishing an Alliance for students to be able to utilize the resources

belonging to different CNS-ILs across boundaries of institutions. This will

enable maximum utilization of well established CNS-IL resources; and (c)

A standard procedure is needed to request/establish/destroy a test

environment, which will require building a repository for indexing available

security testing environments in different CNS-ILs.

 9

Lack of an infrastructure to manage and utilize existing computer

and network security experiments is the third critical limitation of setting up

such CNS labs. Computer and network security is a rapidly developing

area with numerous security defense and attack experiments and tools

being proposed on a daily basis. Most security training requires that

students perform hands-on exercises and experiments to truly appreciate

the materials covered. Furthermore, institutions usually focus on a broad

range of IA areas based on instructor expertise and existing lab resources.

Often instructors have their own syllabus and project experiments that

focus on different aspects of CNS. While adopting other institution’s CNS

course materials and corresponding projects will ease the preparation of

the course and enrich CNS education, the adoption process is inherently

limited by the existing infrastructure, such as courseware setup, software

deployments, and laboratory facilities. In addition, many universities also

do not have student laboratories to practice CNS. Thus, it is desirable to

establish an educational resource that includes a well-defined CNS

infrastructure equipped with case studies, instructional materials, and test

banks to enable other institutions to share and contribute related

resources. This project proposes to develop a new CNS-IL infrastructure

using the latest computing technology, i.e., Cloud computing to maximize

the utilization of computer network resources and to create an educational

database of attacks and defenses.

 10

2.2 Proposed Solution

Taking into consideration the above mentioned limitations, we

propose a new Computer network security laboratory platform that has

following capabilities. The CNS-IL lab is designed to be virtualized in a

clustered computing environment controlled by Cloud computing to fully

utilize the computing and storage. The cloud will provide dynamic

resource allocation to ensure effective system utilization through carefully

monitoring of resource workload and available physical resources, and

providing managed solutions on a continual basis. The most important

aspect of this research is to develop a platform that students can access

remotely without time and location constraints. Registered instructors will

use, share and contribute the course materials and laboratory experiments

in a collaborative manner. Registered student can set up their security

testing environment by utilizing resources provided by the Cloud. The

Cloud provides a segregated virtual environment for each participant, with

the experiment confined to a virtual system, thus not affecting any system

outside of the cloud as well as other virtual systems within the cloud.

To realize these capabilities we have identified three critical design

facets to be included in our architecture. Firstly, and as discussed earlier

in this document, our system was designed keeping Cloud at its core.. We

are using cutting-edge Cloud computing software to monitor and provide

virtual resources dynamically via a cluster of physical resources including

computers, routers, gateways and firewalls. The Cloud system controls

 11

networks, CPU memory and hard drives and provides segregated

partitions so that each partition will not and cannot interfere with each

other. The system will also confine any security attacks with the

segregated partition only, preventing cyber attacks spilling over to public

systems or networks. The second critical features that needs to be

incorporated in the system is the ability to provide remote access to the

registered users. Since the resources will provide security testing

experimentation, it makes sense to provide access and benefits only to

the registered users. Ability to publish and share the materials including

lecture notes, test databases and blogs is regarded as an equally

important feature during the development of this project. The cloud allows

instructors and students to publish and share the material. The proposed

cloud will host material publication contributed by all parties; however the

materials will be evaluated by a committee to ensure relevancy,

correctness and proper presentation.

2.3 Technical Merits

 We attempt to establish a virtual Computer and network Security

that incorporates a set of hands-on course projects into computer science

and engineering undergraduate education. The proposed laboratory

design can hugely reduce the learning curve of students. Our proposed

research is characterized by following intellectual merits:

� It provides a virtual computer network environment with complete

control of network nodes from the physical layer to the application

 12

layer, which can greatly reduce network establishment overhead

and provide desired level of fidelity for network security

experiments.

� It can adopt clustering techniques to make efficient use of

distributed computing resources thereby emulating the real

computer networking experiments, in the best possible realistic

manner, to test complicated network and attack scenarios.

� It inherently provides Infrastructure-as-a-Service (IaaS) that allows

users to interface easily with others’ implementations and share

development results.

� A rich set of experiment files and related course materials will be

shared following the Web 2.0 principles through this project, which

allows instructors to easily adopt new laboratory developments in

security-based curricula with little learning and preparation

overhead.

� This architecture is designed as a cost-effective solution using

open-source software. It adopts clustering technologies that utilizes

surplus college computing resources. Thus, it can be easily set up

in colleges with limited budget and laboratory space.

� It provides an educational platform that allows researchers and

students to experiment and learn a variety of modern technologies

such as Cloud computing, wireless applications etc.

 13

CHAPTER 3

SYSTEM ARCHITECTURE

In this section we discuss about the system architecture of virtual

lab platform. It briefly discusses about the underlying Cloud platform,

physical network setup, how virtualization fits on top it and ultimately the

resource and service sharing it offers.

3.1 Overall Architecture

Figure 1. System Architecture Overview

As shown in the figure, the overall architecture of the system can

be divided in three distinct sub layers viz. Resources layer at the heart of

the system, providing bear resources in the form of CPUs, Memory,

Network links, Storage repositories etc. Then there is a Cloud layer as an

 14

intermediate layer, with full control over the Resources Layer and finally

the Application layer, residing on top of Cloud to provide the services. It

works exactly like any stacked architecture would work, with every layer

providing some services to the top layer while using services provided by

the layer below it. Users usually talk to the application layer, while Cloud

layer and the Resource Layer typically are transparent to the users.

Let’s discuss about each of the three layers in brief:

3.1.1 Resources Layer

This layer is a collection of physical devices that include powerful

computer nodes, Gigabit network switches and Terabyte storage spaces

for shared file system. Through hypervisor, the physical resources are

clustered as a single logical device with aggregated computing and

resources capabilities. Multiple computing nodes are network bootable.

Usually all the resources are mapped to a master computer (appointed by

the administrator, either randomly or based on some powerful

configurationally advantageous capability) which then becomes the

identity of the one large logical resource. This scheme is typically called

the pooling of the resources, where the pool-master is responsible for

sharing the CPUs, RAMs and other computing resources of all other

computing nodes in the pool in a transparent fashion. Once booted, the

computers access their files on the master using the NFS. The images for

the VMs are provided through NFS and are mounted as network block

 15

devices. All the experiment traffic is restricted in the experiment network.

The cloud management traffic is transmitted through the control network.

3.1.2 Cloud Layer

This layer hosts the Cloud control software, and is used to combine

all resources including computers, network and software together to

provide a virtual machine with application customized platform, which

make users think that they are using a single customized machine. And

this layer can reallocate users’ request and balance load of servers that

make the servers more efficient.

Typically Cloud layers can be categorized based on the type of

services they offer viz. Application-as-a Service (AaaS), Platform-as-a-

Service (PaaS) and Infrastructure-as-a-Service (IaaS). As described

earlier, our Cloud layer provides the IaaS.

In essence, the cloud layer is formed using Resource virtualization,

Storage Virtualization and Workspace Virtualization. When all of them

combined together, they provide the needed service virtualization.

3.1.3 Application Layer

This is the top-most layer of the system which is actually visible to

the users. It seamlessly runs on top of the Resources layer and Cloud

layer to relay the services offered by them to the actual users of the

system. In this layer users can establish their own environments for

experiments. Students will need to use the application template, workflow

and VMs that the system provides. They can easily revise the application

template and workflow to personalize it. The key advantage offered by this

 16

layer is integration of virtualization technology in cloud computing and

Web 2.0 principles where sharing is at the core. Through cloud computing,

we can maximally utilize the computing resources through virtualization

techniques; using Web 2.0, we can improve the effectiveness of education

by sharing and collaboration.

3.2 Role Of Virtualization

As shown in the Figure 2, hardware virtualization is built on top of

the bare-hardware resources present in the Resources Layer. This virtual

toolbox includes a number of virtual machines (VMs) that can be

configured as workstations, servers, routers and networking devices. We

identified that Citrix XenServer 5.6 allows us to achieve this with minimum

effort and maximum flexibility. XenServer cluster is used to establish the

fundamental physical platform for computing resource sharing. VMs run

on the cluster to emulate various devices. VMs are interconnected using a

mesh of virtual networks inside a node in the cluster and using virtual

LANs across various nodes of the cluster. We discuss about this in greater

details in Section. On top of this, in application layer, we use Web 2.0

principles to develop a web-based user interface and a web-based

management interface, through which users can remotely access the

system platform and perform their projects, just like sitting in front of the

physical devices. Underlying are the networking and computing resource

monitoring and management tools for dynamic resource allocation.

 17

The proposed system provides inhabitation for many virtual

components implemented at system level i.e. servers, clients, gateways,

routers and firewalls are built on independent VMs with the full capability

of an operating system. Internal networks are created by mapping the

interface of a VM to appropriate virtual switch and thereby to the physical

interfaces. Both virtual components (workstations, servers, routers,

firewalls etc) can be requested by user through our specially designed

Graphical User Interface (GUI), which allows users to create virtually

every possible network topology that exists in present day world.. The

proposed approach also provides an option of creating topology templates

for mass usage like that for class projects, in which case, an instructor can

pre-configure the network topology and create a template for it. This

template can then be used by the entire class to perform some fairly

complicated network security experiments. In other case, users can create

their own network topologies on a user-space provided on the GUI. In this

way students of the class can quickly set up the testing environment by

applying for the lease of the corresponding VMs and VNs. Since all VMs

are initiated from an NFS repository over the network and they are run

through our established clusters, multiple VMs can run directly within the

same cluster and thus we can ease network configurations and reduce the

scenario set up time. We discuss about the capability, working and

features of this GUI in Section.

 18

3.3 Example Network Scenario

Let us discuss an example network scenario which a user is trying

to lay on the proposed virtual lab platform. Here a user wants to establish

a security testing environment. Suppose the user requests the cloud to

establish a network to test a denial of service(DoS) attack based on

flooding of requests. To make the attack successful, the user needs to

deploy Network Mapping to search available hosts; and then he may need

to perform PortScanning to search vulnerable open TCP ports on the

found hosts. To tests the robustness of the given network system to this

attack, the user also needs to evaluate the packet filter firewall installed in

gateway. In this experiment, the user requests an experiment scenario

including at least two networks – one external network and one internal

network that are separated by a gateway. The host is located in internal

network and the attacker is located in the external network. The requested

applications are packet builder, Nmap, ping, traceroute on the user’s

computer, and iptables on the gateway.

Figure 2. Example scenario

Figure 3 demonstrates the steps followed to request the desired network

scenario from the proposed virtual lab platform.

 19

1) The user remotely accesses to the Cloud and sends an experiment

request, i.e., a service description for the requested experiment scenario,

to the Cloud service broker running in the administration server.

2) The Cloud service broker checks the system repository managed by the

scenario server on available memory, VNs, and CPU time in the cluster,

and decides if the user’s request can be satisfied.

3) Based on the requested resources, available VMs stored in NFS VM

repository are registered in the system repository.

4) The requested applications are also registered in the system repository.

If the invoke VM does not contain the requested applications, the user can

install them through the NFS service repository after the experiment

environment being established.

5) The system repository returns the experiment scenario profile to the

Cloud service broker.

6) The Cloud service broker needs to decide if the requested services

should be composed according to the user’s role.

7) The experiment scenario composer running in the scenario server

initiates the requested VMs and VNs. Once the experiment scenario is

established, it reports to the Cloud service broker.

8) The Cloud service broker returns the “service complete” to the user.

9) Finally, the user starts the security experiment on the established

system.

 20

This testing network can be easily established by getting resource

service from the system repository and service repository to allow VMs,

VNs, and applications to be composed together, and then create a multi-

hop networking scenario for the computer and network security test. After

the experimentation, the user publishes the experiment scenario profile to

allow others to reuse it if it has not been published before. Our proposed

solution is flexible in that the user can specify options when requesting the

service from the Cloud. For example, if the user specifies the software

development option to “true”, no applications will be allocated to the VM,

and the user needs to develop the corresponding attacks or

countermeasures instead of using available applications. Also the user

can reserve VMs for his use only.

3.4 Summary

The proposed virtual lab platform is essentially a form of distributed

computing that allows the users the ability to take advantage of vast

network of computing resources through the Web to complete their

projects. If, for example, a user wants to set up a client server

communication over a multiple hop network with the client located behind

a fire walled gateway, she can initiate n network devices i.e. a web-server,

multiple routers, served as intermediate hops, a gateway hosting firewall

and the client behind it. This experimental environment can be provided by

the cloud based on available VM and network resources. Additionally, the

cloud computing technology allows user to know ahead in time, how much

 21

computing capability is available based on some system wide statistics

maintained in the cloud management controller. In addition to this, the

user can also configure a VM that exists within the cloud to meet the

particulars of the jobs they are trying to accomplish. Plus, user can also go

to different clouds and recreate the system needed to get the jobs done,

making computational power of a commodity.

The broader impacts of this research will be realized across several

aspects. This project will impact students at the undergraduate level via

related courses in software engineering, computer networking and

security, and distributed computing. Since this is an instructional

laboratory improvement plan, its research components will also involve

various issues surrounding network protocol monitoring and diagnosis,

which can then be extended to our ongoing capstone projects and attract

more undergraduate students to network security, software service

architecture, distributed and Cloud computing. Our proposed laboratory

improvements address two of the Arizona’s most critical pipelines issues

expressed by Professor Jim Middleton, associate senior vice provost for

STEM education at ASU. According to Middleton one bottleneck for STEM

entry is the low enrollment in science and math subjects at the high school

level and attrition of STEM majors at the undergraduate level [66]. Our

project will motivate students to think about future careers in computer

science and engineering areas, increase an awareness of computer and

network security technologies, and improve the quality of CNS education.

 22

We must note that the proposed Cloud-based CNS-IL is not just restricted

in the area of CNS. It can be utilized broadly in all science and

engineering areas. Our initial motivation of this project is to utilize the most

advanced Cloud computing technologies to assist traditional classroom

learning and hence stimulate students’ interests in the STEM areas.

Eventually, we expect the CNS-IL will set up a laboratory model for all

CNS-related education that incorporates hands-on projects with in-

classroom theory learning.

 23

CHAPTER 4

SYSTEM COMPOENETS

This section mainly focuses on discussion about the

implementation details of the proposed Virtual Lab platform.

The implementation of this thesis takes advantage of the features

offered by variety of the programming languages, as appropriate. It

involves development of number of modules in programming languages

like ASP.NET framework C-sharp, Java, AWT, MS-SQL server, Socket

programming APIs in Java, bash scripting and networking

tools/configuration. The major part of the effort towards this thesis was

devoted in developing following fundamental modules:

� Web-based portal

� UserspaceApplet

� virtualLabPortClient

� virtualLabPortServer

� virtualLabconfigurationServer

� AdminScripts

Putting it all together, Virtual Lab platform is built around 2000 LOC

in various programming languages stated above.

Let’s start discussing about these modules on one-by-one basis.

4.1 Web-based portal

This is what user sees once he connects to the virtual lab platform

remotely using a web-browser that has access to a moderate speed

 24

internet connection. Figure 4 shows user view of this web page which

presents the information about this project on its home page.

Figure 3. Web Portal

This portal provides various options like user account management,

web-based video tutorials, publications and related document downloads

etc in addition to the critical user space that allows user to create her

network topology and requests resources from the cloud in most user-

friendly and comfortable manner. We will discuss about the user space in

 25

greater detail in next section. Apart from this, this portal is just as similar to

any other web site on the internet and thus we terminate our discussion

about this module here. Keen users are requested to explore various

options provided by this portal by actually visiting the web-page.

4.2 UserspaceApplet

This section primarily describes the features of user space

interface, leaving the implementation details to subsequent sections to be

discussed. The prime objective of this module is to provide users with a

platform independent, user-friendly, transparent graphical interface which

lets them create variety of multi-hop, multi-purpose network topologies

and run the experimentation without the constraints of time and location.

This interface allows users to access the network elements in pretty much

a similar fashion as to access an email account over a moderate speed

internet connection and a simple web browser. To access these terminals

remotely, the client machine needs to have SSH client software installed.

Figure 1 depicts an example that imitates a real world scenario where a 2-

op network is created to join two different departments of an organization,

residing on different floors of a fictitious corporate office. In this interface,

user has the facility to draw links between any two nodes, create nodes of

types desktop, switch or a router. Each type of node is identified by a

distinct color to enhance the comprehension of the network graph. In

running on the node, hard drive of the node and the primary memory

 26

addition to the type, there is a provision to select the operating system

Figure 4. Graphical User Interface of Virtual Lab

Figure 5. Configuration Options Provide by Virtual Lab GUI

a.k.a. RAM of the selected node (Refer Figure 2). Every physical

networking switch has 4 ports by default and you can not select other

parameters like operating system, hdd, ram for it. In addition to this, user

can also configure the network interfaces added in the node using similar

 27

configuration window, where she can select an interface to assign a static

IP address or a dynamic IP address obtained from a DHCP server running

in the local network of the node. Once user creates her desire network,

she clicks submit button which, after running a validation control for valid

hostname strings, IP addresses and connection links, relays the user’s

request to the Virtual Lab infrastructure management.

This module is entirely developed in AWT APIs in Java

programming language that takes the advantages of object-oriented

programming features to its fullest. At its heart, it uses a data structure

that maintains all the details about the graph being created on the screen

by the user. It dynamically adds and removes the edges and nodes from

the userSpace by sensing the mouse events performed by the user in

userSpace. It also has the functionality to translate the pictorial view of the

network topology created by the user into a unique data format that can be

conveyed to the cloud controller, to actually request the resources from it.

4.3 virtualLabPortClient

This is a simple administrative component in the cloud

management network, that communicates with the virtualLabPortServer

(shown as Port server in Figure 5), on user’s behalf, to get required

number of port numbers from it. We postpone the discussion about the

role played by these port numbers to a later section. This section

describes the procedure to access the virtual machines (VMs) for the

 28

user’s network topology once they are ready to be used. The workflow is

better understood with the help of figure 5.

This module has been implemented using simple Socket

programming API’s in Java to create a TCP connection with the

virtualLabServer. Once the connection is established, it talks to the server

to receive appropriate number of unused or released ports from the pool

of available ports. On successful reception of the port numbers, it closes

the connection and relays the output to the user-session where it is tagged

to the corresponding virtual machine in the firewall.

4.4 virtualLabPortServer

 This is a fairly complex server program that is designed based on

the principles of classic multi-threaded web-server. Its major role is to

maintain a data structure that hosts a pool of port numbers, used to tag

each VM of the user’s network (Explained later in details). It needs to

ensure that it provides a synchronized access for this data structure to all

the threads which simultaneously try to request/release the ports number

from/to the pool. The server creates a separate thread for each incoming

request and continues to listen on the designated port for more requests.

In this way, it is able to cater more than one requests at the same time,

with the help of independently running, dedicated threads. This improves

the performance of this module to greater extent. As shown in Figure 5,

there might be another threads running in the network which try to access

 29

Figure 6. Virtual Lab Port server-Client Communication

the pool data structure at the same time as that of thread in the

discussion. Thus, the pool data structure has to be protected by some

means to prevent the race conditions.

 This module is completely developed in Java programming

language and the Socket APIs provided by it. It creates a data structure

that maintains a stack of released ports so as to make an efficient use of

the ports released by the other users during past sessions. The

synchronized access to this data structure is achieved using code

synchronization techniques offered by the Java programming language.

 As mentioned earlier, the server creates a dedicated thread for

each incoming request on the designated port and then it becomes the

responsibility of this thread to serve the request of the client on behalf of

 30

virtualLabPortServer. Once the request is served, depending upon its type

(request or release), the thread dies automatically.

4.5 virtualLabconfigurationServer

This is by far the most important module of the Virtual lab platform.

It performs variety of functions such as creating network scripts for the

user virtual machines (VMs), contacting port server, preparing firewall

rules etc. This acts as a starting-point of the automated activities carried

out to prepare the user VMs to be accessed remotely in a secure fashion.

This module is implemented as a Java program wrapped inside a

shell script residing on the dedicated machine in the Virtual lab network

(shown as Administration Server in Figure 5). Its primary responsibility is

to collect the information regarding user’s network topology, its

configuration details like host name strings, static IP addresses assigned

to the interfaces of virtual machines, routing rules to be introduced in

intermediate routers and the dynamic firewall rules that need to be

embedded in the firewall of the Virtual Lab platform.

The functionality implemented in this module can be roughly

divided in three major tasks as follows:

4.5.1 Preparation of Network Scripts for the Virtual Machines

In this sub section, the module works upon the input parameters it

receives from the wrapper shell script, containing the configuration details

for all the virtual machines contained in the user’s network topology. It

typically involves parsing of the input parameters, to search for the

 31

network configuration details. Once the module identifies such details, it

simply creates interface file contents for each user virtual machine.

4.5.2 Preparation of Configuration Scripts for the Virtual Machines

The network scripts prepared in the above step have to be copied

to the appropriate user Virtual Machines and the networking daemon has

to be restarted for it to take the effect. This sub section of the server takes

care of generating such a script called ConfigScript residing in the home

directory of the user on Administration Server. There will be one common

ConfigScript, for all the user virtual machines, that holds all the

configuration commands to be executed on a specific user virtual

machine, in order to prepare it to be accessed remotely and at the same

time connecting it to the other user virtual machines in the fashion

specified by the user request. For example, if a user-VM happens to

perform the role of an intermediate router, then it is required to enable the

forwarding functionality in the kernel of that VM. An example code snippet

of one such ConfigScript is given below. It copies network script generated

for two user -VMs to their respective locations and then restarts their

network daemon. At the end of the file are some dynamic firewall rules

that are responsible for facilitating remote access to these virtual

machines over a secure SSH connection. We talk about iptables rules in

the following section in details.

 32

#!/bin/bash

#********* Configuration steps for 10.211.19.186 *********

scp -o StrictHostKeyChecking=no

/etc/virtualLabConfigDir/akadne/10.211.19.186_interfaces

10.211.19.186:/etc/network/interfaces

ssh -o StrictHostKeyChecking=no root@10.211.19.186

/etc/init.d/networking restart

 #********* Configuration steps for 10.211.19.187 *********

 scp -o StrictHostKeyChecking=no

/etc/virtualLabConfigDir/akadne/10.211.19.187_interfaces

10.211.19.187:/etc/network/interfaces

ssh -o StrictHostKeyChecking=no root@10.211.19.187

/etc/init.d/networking restart

#********* Firewall Rules *********

iptables -t nat -A PREROUTING -i eth0 -p tcp --dport 9002 -d

149.169.226.16 -j DNAT --to-destination 10.211.19.186

iptables -A FORWARD -i eth0 -p tcp --dport 9002 -d 10.211.19.186 -j

ACCEPT

iptables -t nat -A PREROUTING -i eth0 -p tcp --dport 9003 -d

149.169.226.16 -j DNAT --to-destination 10.211.19.187

iptables -A FORWARD -i eth0 -p tcp --dport 9003 -d 10.211.19.187 -j

ACCEPT

Figure 7. Code Snippet of configScript

 33

4.5.3 Preparation of iptables rules for the Virtual Machines

This sub section of the virtualLabConfigurationServer is responsible for

generating dynamic iptables rules that play vital role in making user virtual

machines available over internet in a secure fashion. It basically involves

two steps:

1) Contact the port server and get required number of unused/ released

port number. Once obtained, these port numbers are mapped to the

administrative IP address (explained later) of each Virtual machine in a

random fashion. This port-number IP address mapping is then handed

over to the subsection of the program that actually prepares the iptables

firewall rules, explained in step 2.

2) Once the port-number IP address mapping is ready, it is used to

generate the dynamic iptables rules and are appended at the end of the

ConfigScript, as visible in the code snippet shown above.

Combining it all, the Wrapper shell script calls the

virtualLabConfiguarationServer that in turn generates the network files,

generates the configuration commands for each of the virtual machine,

contacts the virtualLabPortServer to get port numbers, maps them to the

administrative IP addresses of each virtual machine and finally generates

iptables rules. Thus, when the server thread terminates, it generates

number of network files one per each user VM and one common

ConfigScript for the user network.

 34

CHAPTER 5

SYSTEM DESIGN

This chapter essentially continues our discussion from the previous

chapter. It mainly focuses on the automated configuration steps followed

once the user clicks on the submit button on the graphical user interface

(userSpace) for the Virtual Lab. The physical setup for the Virtual Lab

infrastructure management (refer Figure 3) can be logically modeled into

three sub systems viz. Web-server – Database subsystem, Cloud

Subsystem and Virtual Lab Administrating subsystem.

 Figure 8. Virtual Lab System Design

Following subsections briefly describe the roles played by these

subsystems, before we describe how they interact with each other to fetch

the resources requested by the user in efficient manner.

5.1 Web-Server – Database Subsystem

 This subsystem is primarily responsible for presenting a user space

in the web page rendered to the user browser. Once user submits her

 35

topology, appropriate data values are stored in the database to keep

record of user-run networks, to enable their use in future. During a normal

request processing, the web-server communicates with the database

multiple times at various stages to record relevant information regarding

resources fetched from cloud subsystem. Web-server and MS-SQL

database in Figure 1 form this subsystem.

5.2 Cloud Subsystem

This subsystem is at the core of the entire Virtual Lab management

infrastructure. It seamlessly caters the requirements of multiple users at

the same time. It is built on top of XenServer 5.6 open source cloud

management software provided by Citrix systems. It provides multiple

features of managing resource pool, network configuration, virtual

instance execution, interfacing network storage with the cloud etc. Once a

cloud (of resources) formed, it transparently interacts with other

subsystems in model to provide resources from the cloud. The pool

master, cloud network and the NFS from Figure 1 form this subsystem.

5.3 Virtual Lab Administrating Subsystem

 It is responsible for connecting created virtual instances so as to

implant the user’s network topology, by configuring network scripts,

routing rules, host parameters etc. In addition to this it is also responsible

for embedding appropriate firewall rules in the gateway of the

infrastructure so as to pass selected traffic from the firewall to provide

access to the individual nodes of the network. Gateway/Administration

 36

server, Port server and DHCP server in figure 3 are the integral

components of this subsystem.

5.4 Putting It All Together

 This section describes four major steps followed between the

submission of the request from the user and return of the appropriate

resources connected in the required fashion, so as to mimic the requested

network topology. It can be best explained with the help of Figure 3 and

brief description of each step as follows:

Step 1: User contacts the web-server, via the fire walled gateway, on

standard port 80, creates intended network graph (one similar to shown in

Figure 1) and submits her request. The applet, running at the client-side

from the Virtual Lab web-page, estimates this request and forwards it to

the web-server. Java applet helps in creating an extremely quick

responding user-canvas to create complicated topologies.

Step 2: This step can fundamentally be divided in following sub-steps. In

step 2.1, web-server relays the evaluation of user’s request to the cloud

management node a.k.a pool master. Pool master is responsible for

estimating the availability of the resources in the cloud. Based on its

estimation, it identifies physical nodes to run user’s virtual instances. It

then reserves these resources against user’s session and assigns unique

handles to them. One this is done, pool master returns these handles

(step 2.2) to the web-server, which in turn stores it in the database to be

used later in the session.

 37

Step 3: This step is responsible for configuring user’s resources and

creating administrative entries to provide a secure access to the individual

virtual machines in the cloud. It is fundamentally divided into four sub-

steps. In step 3.1, web-server acts a client of Administration server,

submitting a request to configure the cloud access controls on user’s

behalf. This request primarily provides information about the user account,

internal IP addresses (meant for administrative purposes only) and static

configuration details, if any, provided by user for every virtual node in his

network. This step can be further sub-divided into sub-sub steps from 31.1

through 3.1.4 as follows. In step 3.1.1, the administration server contacts a

port server, to get pairs of free ports for secure remote access to the

individual virtual machines, one each for SSH console and VNC console.

The port server creates a pool of available port numbers, which shrinks or

grows as multiple users request or relinquish the cloud resources

simultaneously. In step 3.1.2, the administrative scripts running on

administrative server generate configuration scripts for every individual

virtual machine in user’s request. This primarily includes networking

configuration, hostname strings, routing table entries etc, as per user

specified configuration and port numbers obtained in step 3.1.1 Next step,

3.1.3, uses scripts generated in previous step to actually configure the

virtual machines in the cloud, over administrative network. Note that, this

network is reserved for administrative and access traffic and it does not

allow any other messages to pass, with the help of strict firewall rules. In

 38

step 3.1.4, appropriate firewall ports are opened to allow SSH and VNC

traffic to individual virtual machines. Firewall maintains sessions to keep

track of mapping between incoming and outgoing traffic. Step 3.2 returns

the port numbers obtained in step 3.1.1 to the web-server. User is now

almost ready to get access to her network topology in the Virtual Lab

infrastructure.

Step 4. This step stores the appropriate information about the session in

database and renders the virtual machine (node in user’s network

topology) - port number mapping on the response web page. Now user

can securely access the network using Public IP and port numbers using

SSH client software or VNC client software, as required.

 39

CHAPTER 6

SECURITY ANALYSIS

In this section, we first describe the inherent features of XenServer

edition [] that allows us to maintain some basic level of security. In the

subsequent sections, we discuss about the extra care taken to protect the

system from inside attackers.

6.1 XenServer Security

The XAPI tool-stack itself is written in a high-level, statically type-

safe language known as Objective Caml (or OCaml). This guarantees that

it is free from low-level memory corruption issues such as buffer overflows

or integer overflows, making it much more robust against malicious

attacks over the administration network. The SSL layer uses the popular

stunnel package to provide industry-standard SSLv3 encryption. VM live

relocation involves transferring the memory image of the VM while it is still

running. Since a high performance transfer will minimize the performance

impact on the running VM, and live relocation is only supported between

machines on a local network, this transfer occurs in plain-text over port 80.

Bear in mind that if you do configure XenMotion across WAN links that

you will need to use IP-level security (e.g. IPsec) to encrypt the memory

image.

It is possible to not bind an IP address to the administration network

interface, which will mean that none of the administration functions will

work from outside of the local console on the XenServer host. Be aware

 40

that in this configuration you will not be able to create resource pools,

import/export VMs, or otherwise take advantage of features such as e-mail

alerting.

Resource pools are assigned a pool master which controls all the

other hosts. All communication between resource pools is done over SSL,

and hosts authenticate themselves to each other using a randomly

generated symmetric key that is created at the time of pool creation.

A common way to isolate this administration traffic is to use

Ethernet VLANs to segregate it from other nonadministration traffic. You

can configure your routers to tag all traffic from the administration NICs

with an administration VLAN tag. This VLAN can also be used for other

appliance control traffic in your server farm, such as Citrix Provisioning

Server or Citrix NetScaler. Note that remote clients such as XenCenter will

need to connect to the administration network VLAN.

6.2 Virtual Lab Setup security

The system design of the Virtual Lab platform bolsters the security

features provided by isolating the entire system from outside world by

introducing a powerful firewall in between the outside word and the system

entry-point. Although it sounds similar to the conventional approach

followed to protect the systems, we make extensive use of iptables rules

to develop a so called “White-List” of resources to be allowed to access. In

addition to this, this “White-List” is continuously updated as different users

 41

connect to or disconnect from the Virtual Lab platform. In what follows this,

we describe about this two-fold security one-by-one.

6.2.1 Protection from intruders, attackers on internal network

This is specifically achieved by isolating the cloud-infrastructure

from physical connections to any of the service ports that are connected

either to the internet or to the internal routing system of the building in

which the cloud-setup is situated. This alleviates the possibility of some

positively motivated hacker-cum-students who try their skills on various

internal machines just for fun. We want to avoid any such funny or serious

incident. Both of our LAN segments viz. Virtual Lab Management Network

and Cloud Traffic Network are formed using two physically separate

switches, protected in a monitored server cabin. No one can get physical

access to these switches except administrators of the system and thus

protected from any form of physical intrusions.

6.2.2 Protection from intruders, attackers on the external network

Once the user VMs are ready to be accessed, the user needs to

connect to the firewall of the system to access them. This places a

restriction of passing the “White-list” maintained at the firewall to be able

to access the user VMs. This can be best explained using the code

snippet shown in section. If you observe the firewall rules section of the

code snippet of ConfigFile here, you can quickly conclude that only ports

that are specifically opened in the firewall of the gateway machine could

be passed through, which eventually, deliver the traffic through it, to the

appropriate user VM, after translating the port address to the

 42

administrative IP address of the corresponding VM. If an intruder from

outside tries to randomly connect to any port, it is more likely to be

rejected by the strong firewall system. In the event of that port to be

assigned to some other valid user, the intruder still need to guess the user

credential assigned to the VM, to actually get access to the VM. This can

be further improved by maintaining an additional module at the Gateway

machine to authenticate users, with the help of Kerberos server, creating

mappings between user and port numbers as services. This can be

regarded as one of the future tasks for this project. It is very easy to install

an intrusion detection system on the Linux-based gateway machine to

track attack like port-scanning, and take protective actions.

Complimentary to the addition of dynamic rules to the gateway

firewall (to maintain the “White-List”) we also remove the respective port

entries from the firewall, once user logs-off from the system. This provides

a fool-proof approach to protect the system by dynamically opening-

closing only those ports which are being used for valid users.

Additionally, since users are required to access the VMs over an

SSH connection, it also benefits from all the security features provided by

the communication over secures SSH connection.

 43

CHAPTER 7

PERFORMANCE EVALUATION

7.1 Hardware Platform

An ideal cloud platform should be built on top of a single powerful

multi-processor server. Such cloud has infinite number of processors,

infinite storage space and infinite memory to play with. The prime

advantage of this approach is that present day commercial virtual machine

softwares for such unified platforms provide efficient management and

utilization of underlying resources. But this is just a fairy-tale as it is

practically infeasible to have anything in infinite abundance. Thus,

practically we have to form a collection of such resources and combine

them together to form a logical platform that exhibits impression of such

abundance of resources. We generally term it as Pool Of Resources.

For our virtual lab set up, which is still in its preliminary stages of

developments and enhancements, we preferred using number of powerful

multi-core servers available in the market. In addition to this, we use a

number of single-core dedicated machines that serve their role in the

automatic configuration management of the virtual resources. In what

follows, we discuss about the hardware platform set up of virtual lab in

details:

Our current hardware platform consists of three Dell PowerEdge

R410 rack-servers connected together by a switched gigabit network.

Every server runs its own copy of Citrix XenServer 5.6. Every rack-server

 44

has 16 2.40 GHz processors, 32 GB of memory, 2 TB of storage space

and 6 gigabit network interfaces. The other components of the set-up are

as follows:

One PC-based NFS server: This server provides storage for all

virtual machine disk images.

One PC-based gateway host: This server provides access control

for the system through its firewall that is managed dynamically.

One PC-based configuration server: This server is dedicated for the

automation of users’ virtual machines’ configuration. It also hosts the port

server daemon, described in chapter 4.

7.2 Sample Experimental Set-ups

Here we discuss few sample experimental setups that students can

perform using virtual lab tool.

7.2.1 Simple Network Configuration

In this experiment, students simply get access a number of virtual

machine in which they try their hands on simple network configuration stuff

like setting IP addresses, netmasks, default gateways, routing table

entries etc. This is a pretty simple experimental set up and serves as an

introductory session for novices.

7.2.2 Firewall Configuration

This experimental set up needs access to at least three virtual

machines, in which one VM serves as a firewall / gateway machine, one

behind the firewall and another outside firewall. In this set up, students

need to write firewall chains to allow the machine behind firewall to access

 45

the machine outside it, without revealing its identity. This is a fun project

and students usually enjoy configuring various protocols such as http, ftp,

ssh etc through firewall.

7.2.3 Web Server- SSL, Authentication

This set up requires students to enable SSL service on a web

server, generate public/private key pairs, create certificate requests etc. It

typically involves access to more than 2-3 virtual machines.

7.2.4 Intrusion Detection

This experiment requires students to install an opensource intrusion

detection too called snort on one of the virtual machines. It then requires

students to perform a number of attacks on the vm that has this tool and

by properly configuring the snort rules, detect them.

7.3 Performance Analysis

We choose the experimental set up Firewall Configuration to

perform a performance evaluation of our hardware platform. In ASU, a

network security class is typically attended by 45 students per semester.

As described earlier, the firewall configuration set up requires three virtual

machines per student. Thus, in peak hours i.e. hours near deadline of the

assignment, every student will try to run his set-up on the cloud and thus

we will need to support 45 X 3 = 135 or even more virtual images

simultaneously. Every virtual image would typically consist of 128 MB of

memory, 8-20 GB of Hard Drive, at least 1 CPU and multiple network

interfaces.

 46

We ran 60 virtual images on the cloud and set some traffic among

them across virtual interfaces embedded inside them. This traffic is carried

over the cloud network shown in figure. The result were very exciting as

we can see in figure that , running 60 virtual machines, all on one of the

three rack-servers uses up only 7% of its total computing power. In

addition to this, it uses around 27% of its total available memory and puts

almost negligible strain on the high-speed, gigabit physical network

interface card that hosts the virtual LANs for all these virtual machines.

From the obtained results, we extrapolate that we can run at least 240

virtual machines of above stated configuration simultaneously on a single

rack server in the virtual lab infrastructure. Thus, on three servers we can

run 240 X 3 = 720 virtual machines simultaneously for a class of 45

students, which allocates around 16 virtual machines for every student.

None of the experimental set up in any of the information assurance and

network security classes offered at graduate level will need these many

virtual machines for a student to perform his experimentation. Thus, this

set up is well self sufficient to cater the needs of any information

assurance and network security classes offered in the field of Computer

and Network Security Education.

 47

CHAPTER 8

RELATED WORK

This section attempts to briefly describe and appreciate the work

done by various authors across different universities and research

laboratories from the USA. We observed that <names> from Stony Brook

University attempted to develop a similar infrastructure using VMWare

virtualization technology.

 [18] proposes an approach that uses datalink layer virtualization in

addition to the virtualization of hosts involved in security experiements. It

is implemented by rewriting every network packet created within a security

experiment in such a way as to isolate these packets from the underlying

network infrastructure. As a result, malicious packets can not escape

outside the experimentation network, and therefore have no opportunities

to exploit vulnerabilities in servers, firewalls or routers within production

environments. Remote access can be provided by creating a

communication tunnel from an experimenter’s workstation to the

experimentation network.

 This approach primarily focuses on the implantation of network

virtualization that can be used to provide security in much the same way

as host virtualization. In the same spirits a VMM mediates all the accesses

made by a guest OS to host hardware, this approach relies on a packet

rewriter deployed on the host machine that mediates all accesses to the

physical network made by a guest VM. This approach believes that since

 48

VMM is a much simpler piece of software that provides a much narrower

interface to guest OS as compared to the complexity of an application-to-

OS interface, it is believed to provide an adequate level of security for

experiments involving malware. In the same manner, it rewrites every

packet that goes out of the guest VM and thus can be relied upon to

ensure isolation of the virtual networks from the underlying physical

network.

 In this, the researchers propose to encapsulate the guest VM’s

network packets in a manner that they will no longer be interpreted by the

underlying network fabric. In particular, consider a datalink layer packet p

from a host A to another host B, where A and B are part of a security

experiment. In V-NetLab, both A and B will be implemented as guests on

host machines Ah and Bh respectively. The packet p is intercepted by a

packet rewriter (implemented using a kernel module) on host Ah, which

generates a new data link layer packet p′ with the source address of Ah,

destination address Bh, and a protocol identifier ETH P VNETLAB that is

unused in the (physical) test bed. The payload of p′ is the entire packet p.

On Bh, the kernel hands packets with the protocol identifier of ETH P

VNETLAB to our packet rewriter, which inverts the above transformation

and hands p to the guest B. Due to the fact that p′ looks like any other

datalink layer packet from Ah to Bh, it is highly unlikely to compromise any

components on the physical test bed that operate at these data link layer.

Moreover, since the protocol identifier of ETH P VNETLAB is unknown to

 49

these components, they are unlikely to inspect or process its payload. As

a result, components on the physical network are highly unlikely to be

compromised (or affected in any way) by network traffic generated as part

of security experiments. Additionally, the entire payload of p′ can be

encrypted in order to ensure that its contents remain confidential, or to

ensure that the resulting payload looks essentially random (i.e.,

uncorrelated with the original packet contents) and hence cannot

predictably be used to exploit vulnerabilities on these devices/services.

 According to [18], the advantage of virtualization at the data link

layer is that it permits the use of any layer-3 protocol within the security

experiments, including IP,ICMP,ARP etc. In addition to this, since the

packets transmitted by guest OSes remain encapsulated on the physical

network, it is possible for different virtual networks to use overlapping IP

addresses without interfereing with each other.

Planetlab [21] is a distributed laboratory that provides convenient

management tools to startup and / or control a large collection of hosts

that run identical software. Emulab [22] is another similar approach that

provides light-weight virtualization, based on FreeBSD Jails, but this

approach does not provide the degree of flexibility needed for our

approach, where computers running different OSes may need to be

hosted on the same physical machine. An alternative mode supported in

Emulab is one where physical nodes on the testbed can be dedicated to

run a custom OS image. his approach provides the desired degree of

 50

flexibility to support security course assignements, but does not allow

sharing of underlying hardware across multiple OSes.

VNET [19] and VIOLIN [20] have some similarity with the approach

presented in [18]. VNET approach is based on tunneling Ethernet packets

over TCP/IP whereas VIOLIN uses an application-level virtual network

architecture built on top of an overlay infrastructure such as a Planetlab. It

uses UDP tunneling in the Internet domain to emulate the physical layer in

the VIOLIN domain.

Our work tries to advantage of the knowledge base created by the

above mentioned research in addition to the cutting-edge technological

advancements, to lay out a solid, efficient platform to offer the resources

from the cloud. Readers are encouraged to contact the author, should

they have more interests in knowing about the implementation and

configuration set-up of this platform, outside the context of this document.

 51

CHAPTER 9

FUTURE WORK

Research presented in this document attempts to develop a proof-

of-concept of a cloud platform that allows users to remotely access

resources fetched from the cloud. Thus, it presents vast scope of

improvisation and enhancement to the presented implementation, to make

it more robust, efficient, user-friendly and importantly more secure. We

identify following tasks that can be taken up by interested researchers to

contribute towards the development of this amazing project.

A stronger authentication system can coupled with the existing

platform to make it more robust against fake users. The best option for this

should be a Kerberos server running in between the User and the

platform, authenticating and authorizing users for services. The firewall

port numbers uniquely tagged to a particular user at any given time, could

be regarded as the services available to that user and thus other users

trying to access the services (ports) can be denied the access at the

authentication layer itself. In this way, even when a malicious user gets

access to the VM credentials that belongs to other user, he will not be able

to actually access the VM. Present authentication system does not take

care of this type of attack.

Present implementation of the portal does not provide option to

save their network topologies for future use. This can be incorporated in

the portal by developing appropriate object serialization techniques and

 52

reverse. In addition to this, there exist numbers of enhancement features

like ability to edit a pre configured network, replicate an existing network,

creation of generic network topology templates etc that can add versatility

to this portal.

Presently, we propose this platform to be used by the students

enrolled at Arizona State University alone. However, we plan to

collaborate with number of other schools across the United States to

incorporate data centers formed at respective schools to set up a

distributed cloud platform, which provides remote access to

students/users across number of schools, on free or pay-as-you-go basis.

 53

REFERENCES

[1] United State Codes, Chapter 100 Cyber Security Research and
Development,
http://law2.house.gov/download/pls/15C100.txt.

[2] S. Warren, "Understanding VMware common networking terminology,"
TechRepublic, December 26th, 2008,
http://blogs.techrepublic.com.com/virtualization-coach/?p=156.

[3] Xen networking, http://wiki.xensource.com/xenwiki/XenNetworking

[4] ASU information assurance center core courses,
http://ia.asu.edu/courses.php.

[5] Security.itworld.com, "Security Tip: Build a Virtual Security Lab on a
Shoestring," February 1, 2007, http://www.itworld.com/nlssecurity070206.

[6] Examples of Information Assurance Laboratories (a survey).
(1) ASU IA Lab

http://snac.eas.asu.edu/IA-lab/
(2) Syracuse University SEED

http://www.cis.syr.edu/~wedu/seed/index.html
(3) Stony Brook (SUNYSB) V-Lab

http://seclab.cs.sunysb.edu/seclab/rprobsdesc__vnet.html
(4) Iowa State (IASTATE) University Xen World

http://home.eng.iastate.edu/~hawklan/xw-assignments.html
(5) University of Houston-Clear Lake, Houston, TX

2004, http://portal.acm.org/citation.cfm?id=1040231.1040274
2006, http://portal.acm.org/citation.cfm?id=1127428

(6) Rochester Institute of Technology (RIT) NSSA Labs
http://www.nssa.rit.edu/?q=node/49

(7) University of Illinois at Urbana-Champaign (UIUC) Security Lab
2008, http://www.cs.uiuc.edu/class/sp08/cs498sh/slides/lab-

overview.pdf
(8) University of New Mexico (UNM) IA Lab

http://ia.mgt.unm.edu/labintro.asp,
http://portal.acm.org/citation.cfm?id=1121341.1121375
(9) Idaho University VRAD Lab

http://www2.cs.uidaho.edu/~cs481-
 54/documents/VRAD%20Lab_Operational_Spec_v10.doc
(10) Texas A&M University, College Station

2001, http://portal.acm.org/citation.cfm?id=366413.364533
(11) Georgia Tech Information Security Center (GT-ISC)

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01593876

 54

(12) National Defense University (NDU)
http://www.ndu.edu/irmc/ia/labs.html

(13) UMBC
http://www.cisa.umbc.edu/papers/ShermanWestpoint2004.pdf

(14) Binghamton University
http://cait.binghamton.edu/cait/files/publ/Volynkin.TridentCom.v.1.2
http://portal.acm.org/citation.cfm?id=10–29533.1029539

(15) University of Wisconsin-Eau Claire, Eau Claire, WI
http://portal.acm.org/citation.cfm?id=1028174.971438

(16) Wofford College
2002,http://portal.acm.org/citation.cfm?id=771355

(17) University of Toledo, Elyria, OH
2005,http://portal.acm.org/citation.cfm?id=1047124.1047386

(18) Kennesaw State University, Kennesaw GA
2004, http://portal.acm.org/citation.cfm?id=1059527

(19) Towson University, Towson, MD
2006, http://portal.acm.org/citation.cfm?id=1121346

(20) NYU, Polytech, http://isis.poly.edu/
 http://isis.poly.edu/~vlab/vlab_paper.pdf
(21) Purdue University

http://www.cerias.purdue.edu/site/securitylab
(22) Carnegie Mellon University

https://www.vte.cert.org/vteweb/default.aspx
(23) Brooklyn Polytechnic University

http://isis.poly.edu/
(24) Universitaet Trier, Germany

http://subs.emis.de/LNI/Proceedings/Proceedings56/GI-
Proceedings.56-5.pdf

(25) University of Milan, Italy
http://www.elab.usilu.net/FOSLET06/proceedings/01_damiani.pdf

(26) United States Academy at West Point
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1232395

[7] W. contributors, "Cloud computing,"

http://en.wikipedia.org/w/index.php?title=Cloud_computing&oldid=2
89085377, 10 May 2009.

[8] W. contributors, "Web 2.0,
 "http://en.wikipedia.org/w/index.php?title=Web_2.0&oldid=2894400
96,

[9] WikipediA, http://www.wikipedia.org/.

[10] MSN Encarta, http://encarta.msn.com/.

 55

[11] VMware vCenter, http://www.vmware.com/products/vi/vc/.

[12] Xen, http://www.xen.org/.

[13] The Globus Alliance, http://www.globus.org/.

[14] Nimbus, http://workspace.globus.org/.

[15] W. contributors, "Infrastructure as a service,"

http://en.wikipedia.org/w/index.php?title=Infrastructure_as_a_servic
e&oldid=288138404, 5 May 2009 21:38 UTC.

[16] W. contributors, "Platform as a service,"

http://en.wikipedia.org/w/index.php?title=Platform_as_a_service&ol
did=289483771

[17] W. contributors, "Software as a service,"

http://en.wikipedia.org/w/index.php?title=Software_as_a_service&ol
did=290061266, 15 May 2009 09:28 UTC.

[18] V-NetLab: A Cost-Effective Platform to SupportCourse Projects in
Computer Securit,Kumar Krishna, Weiqing Sun, Pratik Rana, Tianning Li
and R. Sekar, Department of Computer Science, Stony Brook University.

[19] A. I. Sundaraj and P. A. Dinda, \Towards virtual networks for virtual
machine grid computing," in USENIX-VM '04: 3rd Virtual Machine
Research and Technology Symposium, pp. 177-190, 2004.

[20] X. Jiang and D. Xu, \Violin: Virtual internetworking on overlay
infrastructure," in International Symposium on Parallel and Distributed
Processing and Applications (ISPA) 2004, 2004.

[21] "Planetlab." http://www.planet-lab.org/

[22] Emulab." http://www.emulab.net/.

[23] ASU information assurance instructional laboratory,
 http://snac.eas.asu.edu/ial

[24] Xen_Networking_in_Linux Documentation

[25] XenServer Software Development Kit Guide 5.5.0 Update 2

 56

APPENDIX A

ABOUT XEN SERVER

 57

This appendix briefly describes the features and capabilities of

XenServer 5.6, the Cloud layer of the Virual Lab platform shown in Figure

2. We refer to [24],[25] hugely to summarize about the features provided

by Citrix XenServer 5.6. Interested readers are directed to [25] for more

details. Readers, interested in understanding only the workflow and

analysis of this research, can very well skip this Appendix.

A.1 Object Model Overview

Figure 9. Graphical overview of API classes for managing VMs, Hosts,

Storage and Networking

This section gives a high-level overview of the object model of the API. A

more detailed description of the parameters and methods of each class

outlined here can be found in the XenServer API Reference document.

 58

We start by giving a brief outline of some of the core classes that make up

the API.

A.1.1 VM

A VM object represents a particular virtual machine instance on a

XenServer Host or Resource Pool. Example methods include start,

suspend, pool_migrate; example parameters include power_state,

XenServer Software Development Kit Guide Overview of the XenServer

API 8 memory_static_max, and name_label. (In the previous section we

saw how the VM class is used to represent both templates and regular

VMs).

A.1.2 Host

A host object represents a physical host in a XenServer pool.

Example methods include reboot and shutdown. Example parameters

include software_version, hostname, and [IP] address.

A.1.3 VDI

A VDI object represents a Virtual Disk Image. Virtual Disk Images

can be attached to VMs, in which case a block device appears inside the

VM through which the bits encapsulated by the Virtual Disk Image can be

read and written. Example methods of the VDI class include "resize" and

"clone". Example fields include "virtual_size" and "sharable". (When we

called VM.provision on the VM template in our previous example, some

VDI objects were automatically created to represent the newly created

disks, and attached to the VM object.) SR An SR (Storage Repository)

aggregates a collection of VDIs and encapsulates the properties of

 59

physical storage on which the VDIs' bits reside. Example parameters

include type (which determines the storage-specific driver a XenServer

installation uses to read/write the SR's VDIs) and physical_utilisation;

example methods include scan (which invokes the storage-specific driver

to acquire a list of the VDIs contained with the SR and the properties of

these VDIs) and create (which initializes a block of physical storage so it is

ready to store VDIs).

Network

A network object represents a layer-2 network that exists in the

environment in which the XenServer Host instance lives. Since XenServer

does not manage networks directly this is a lightweight class that serves

merely to model physical and virtual network topology. VM and Host

objects that are attached to a particular Network object (by virtue of VIF

and PIF instances -- see below) can send network packets to each other.

At this point, readers who are finding this enumeration of classes rather

terse may wish to skip to the code walk-throughs of the next chapter: there

are plenty of useful applications that can be written using only a subset of

the classes already described! For those who wish to continue this

description of classes in the abstract, read on. On top of the classes listed

above, there are 4 more that act as connectors, specifying relationships

between VMs and Hosts, and Storage and Networks. The first 2 of these

classes that we will consider, VBD and VIF, determine how VMs are

attached to virtual disks and network objects respectively:

 60

A.1.4 VBD

A VBD (Virtual Block Device) object represents an attachment

between a VM and a VDI. When a VM is booted its VBD objects are

queried to determine which disk images (i.e. VDIs) should be attached.

Example methods of the VBD class include "plug" (which hot plugs a disk

device into a running VM, making the specified VDI accessible therein)

and "unplug" (which hot unplugs a disk device from a running guest);

example fields include "device" (which determines the device name inside

the guest under which the specified VDI will be made accessible).

A.1.5 VIF

A VIF (Virtual network InterFace) object represents an attachment

between a VM and a Network object. When a VM is booted its VIF objects

are queried to determine which network devices should be created.

Example methods XenServer Software Development Kit Guide Overview

of the XenServer API 9 of the VIF class include "plug" (which hot plugs a

network device into a running VM) and "unplug" (which hot unplugs a

network device from a running guest). The second set of "connector

classes" that we will consider determine how Hosts are attached to

Networks and Storage.

A.1.6 PIF

A PIF (Physical InterFace) object represents an attachment

between a Host and a Network object. If a host is connected to a Network

(via a PIF) then packets from the specified host can be

transmitted/received by the corresponding host. Example fields of the PIF

 61

class include "device" (which specifies the device name to which the PIF

corresponds -- e.g. eth0) and "MAC" (which specifies the MAC address of

the underlying NIC that a PIF represents). Note that PIFs abstract both

physical interfaces and VLANs (the latter distinguished by the existence of

a positive integer in the "VLAN" field). PBD A PBD (Physical Block Device)

object represents an attachment between a Host and a SR (Storage

Repository) object. Fields include "currently-attached" (which specifies

whether the chunk of storage represented by the specified SR object) is

currently available to the host; and "device_config" (which specifies

storage-driver specific parameters that determines how the low-level

storage devices are configured on the specified host -- e.g. in the case of

an SR rendered on an NFS filer, device_config may specify the host-name

of the filer and the path on the filer in which the SR files live.)

A.2 XenServer Networking

 It’s important to understand that XenServer networking operates at

Layer 2 of the OSI.

Figure 10. OSI Model

This means it‟s independent of any L3 addressing, such as IP. As we'll

see, XenServer acts as an L2 virtual switch.

 62

Simple Ethernet Segment

In this simple Ethernet segment, how do nodes A and C talk to each

other?

Figure 11. Simple LAN over Ethernet

Ethernet defines a frame (not a packet) which is the carrier of the data

payload from the upper layers.

Figure 12. Ethernet Frame Structure

This frame is placed on the wire by layer 1 of node A, and is picked up

by node C. If we looked at layer 2 of node C, we would see the same

frame that node A transmitted. So:

• Each Network Interface Card or NIC for each node has a unique

address, usually burnt in at the factory. This is known as the Media

 63

Access Control address, or simply the MAC address.

• When preparing a frame for transmission the destination MAC

address must be known. Getting the target address to layer 2 is

taken care of by layer 3, for example ARP when using IP

addressing.

• Each frame has a source and destination address. The frame is

seen by all nodes on the segment, but discarded by all but the

NIC that has this destination address.

• In our example, node C knows who sent the frame, because of the

built-in source MAC address.

Ethernet Segments

Several Ethernet segments can be joined together with a device

known as a hub. A hub is also known as a repeater hub, because it

repeats any frame it receives on one port out of all its other ports. This in

effect turns the connected segments, into one big segment. This has

scalability problems due to the way frames are transmitted.

Collisions

Nodes A & B can place a frame on the network at any time, in

hopes that the circuit is not busy. If the circuit is busy, perhaps

because both nodes are trying to transmit at the same time, then

both nodes will back off and retry after a random period of time. As

the number of nodes increase, though, the chance of two frames

from two different nodes colliding becomes a significant limiting

 64

performance factor for the segment.

Figure 13. Multiple Ethernet Segments

Collision Domains

Similar to a hub, a switch, which is sometimes called a switched-

hub, connects multiple segments. The difference is that it learns which

port, on the switch, a MAC address belongs to by looking at each frame's

source MAC address. When it needs to send a frame to that MAC

address in the future, it doesn't repeat the frame on all ports, it sends it to

the port down which the frame belongs. For the duration of transmitting

the frame, this effectively creates a segment between the two ports – the

source and destination – so that the two segments can talk at wire-speed.

This keeps the collisions confined to each segment.

Addressing

 65

Even though node A addresses node C by its MAC address, this

still leaves the problem of how A knows the MAC address of C in the first

place.

Figure 14. MAC address learning on Ethernet segment

Layer 3 of the 7-layer OSI defines a network addressing scheme, most

commonly the Internet Protocol (IPv4). Here both nodes A and C have

been given unique IP addresses. Although not obvious here, we haven't

just replaced one addressing scheme with another. IP can route packets

from one node in one Ethernet segment to another node in another

segment across the world.

As previously stated: an Ethernet frame has a destination address,

and only the NIC with that address will accept the frame. There is one of

two exceptions to this rule, and it’s called a broadcast frame. A broadcast

frame is one whose destination MAC address has all the bits set, and

every NIC on the segment will process the frame.

 66

There is a Layer 3 to Layer 2 mapping protocol called the Address

Resolution Protocol (ARP) that takes advantage of broadcast frames. ARP

is used to translate L3 addresses like an IP address into an L2 address

like a MAC address. In the above example network, node A has an IP

address of 192.0.0.1, and node C has an address of 192.0.0.3. With

TCP/IP, node A would want to communicate with node C by IP address

and not MAC address, but Layer 2 still needs to address that payload to

node C by MAC address. In this case, node A at Layer 3 uses ARP to

map node C's IP address to a MAC address, so that L3 can tell L2 how to

address the frame. But first how does ARP know the MAC address of

node C? At first it doesn’t, so ARP sends out an ARP request – a

broadcast frame – with a payload of the IP address for node C. All nodes

in the segment will process the ARP request, but only one will send an

ARP response if they have that IP address – which in this case should

only be node C. The ARP response will contain the MAC address. But this

would be inefficient if we had to preempt every real frame a wanted to

send to C with a broadcast. For this reason, each node in the segment will

keep a map of IP address to MAC address translations that ARP will look

at first. This is known as the “ARP cache” or “ARP tables”. In both a

Windows and Unix shell, you can interrogate that machine's ARP cache

with the “arp –a” command.

Routing

 67

A router connects networks at layer 3, usually IP. The router – or

gateway – also has an IP address. In fact a router is a device that can

have several IP addresses, and his job is to route packets from one

TCP/IP network to another. Each interface – or port – on the router will

have a MAC address.

Usually, at a minimum, each node on a network has two IP

addresses it knows about: its own address and the address of the router

(usually called the default gateway). Users usually use TCP/IP addresses

that are passed down from L7, for example when browsing web sites.

In this example, if node NA wants to send a TCP/IP packet to node

PB, what needs to happen? With routing, node NA will know if the

destination IP address is contained on his subnet, or not. In this case it's

not, so node NA at L3 knows he needs to send his TCP/IP packet through

the router to get to node PB. In this case, though, the destination MAC

address in the Ethernet frame will actually contain the address of the port

on the router to which network N is connected. Node NA discovers the

MAC address for that router port by using ARP in the usual way – the

Figure 15. Multiple LANs in different collision domains

 68

ARP request will actually contain the IP address of that router port to

which network N is connected.

The router will take that IP addressed packet and place it on the

appropriate port for the destination IP address. In this example the port on

the router that is attached to network P will now have to use ARP in the

usual way to find the MAC address of node PB.

This is a very simple example, and it can get a lot more

complicated by adding switches and more routers. These basics are the

same in all cases, though.

Bridging

A bridge, in the case of XenServer networking, is the same as a

switch, except its implemented in software on the XenServer host. The

bridging software XenServer uses is the standard Linux implementation,

with no special code from Citrix. There is therefore plenty of

documentation available online.

Figure 16. Bridged Ethernet Segments

 69

XenServer Internal Network

This is a simple picture of how XenServer networking works. Each

virtual machine has a virtual NIC, which is connected to a virtual network,

which is controlled by the XenServer host: Domain zero. The network

shown acts just like a physical Ethernet segment, and works at layer 2 of

the OSI – there is no TCP/IP configuration needed here. Just like a real

network, the way the network is utilized is completely up to the way the

virtual machines are configured.

Figure 17. XenServer Internal Network

If they need to communicate using TCP/IP then the individual OSes

on those VMs need to be setup, just like with real machines on a network.

Configuration doesn't just apply to TCP/IP. The virtual machines will

almost certainly need services such as DNS and DHCP. The above

picture depicts, what is known in XenServer, as an Internal Network: It has

no connection to the outside world.

The only difference between a XenServer Internal Network, and a

XenServer External Network is that we can connect the virtual Ethernet to

 70

a real NIC. This means that the virtual machines can now take advantage

of real services provided by other servers outside of the XenServer host.

In the Unix world, the NICs, real or virtual, are called interfaces.

XenServer calls a real interface a Physical Interface or PIF and each

virtual interface in a virtual machine is a VIF.

Figure 18. XenServer External Network

In the OS running on a VM, the VIF looks and operates like a locally

installed PIF. In Windows, the device driver name may be different,

depending on if the paravirtualized tools have been installed or not.

In reality, XenServer networking is accomplished by connecting the VIFs

and optionally 1-PIF to a virtual switch or bridge. If you remember, a

switch learns the MAC addresses of the nodes connected to each of its

ports, thereby reducing the amount of traffic on its other ports. It’s the

same with a bridge.

 71

Figure 19. Virtual Switch Inside XenServer

In the real world a switch is used to reduce the number of collision

domains on attached segments. In XenServer networking, a bridge is

used to connect virtual machines together not networks. It’s also used to

connect those virtual machines to the outside world.

You can create several internal networks, but (in the following

network) the only way to route between network Q and network R, is to

have a machine that has 2 VIFs, one in each network. Each VIF can

belong to only one network, but a virtual machine can have many VIFs. A

virtual machine on internal network Q can gain access to the external

network R, by routing through one of the virtual machines that has one VIF

on each network. Internal networks N and P will not be able to

communicate with each other, or the PIF.

So how does this transpire in reality?

Each virtual machine has a unique ID, and in the above example

the Windows VM has an ID of 1, and the Linux VM has an ID of 2.

 72

The virtual machines, assuming that the PV Tools have been installed, will

see an Ethernet NIC in terms of their own environment. This mean that the

Windows VM will see the “Citrix XenServer PV Ethernet Adapter” in the

device manager and the Linux VM will see “eth0”.

On the host-side, what is actually the other side of the virtual Ethernet

cable joining these VMs to the bridge; the Ethernet interfaces that

XenServer sees will have a naming convention. Each interface on VM1 –

or guest1 – will begin with V-I-F-1-dot, followed by a sequence number

Figure 20. XenServer Internal and External networks together

that represents the interface number on that VM. So in this case, the first

adapter on VM1 will have an interface name of VIF1.0 inside the

XenServer host. Whatever frames are transmitted by VM1 on his virtual

NIC, will be received by VIF1.0. Any frames transmitted by VIF1.0 will be

received by the VM1 virtual NIC. The real NIC on the XenServer host will

be “eth0” and will be plugged into the bridge as well. Virtually speaking,

this would not be from his RJ-45 interface, but from his bus interface. The

 73

Figure 21. XenServer Virtual Interfaces (VIFs)

RJ-45 interface is a real interface used to connect the XenServer host to

the outside world. In this setup, the bridge is also seen as an interface. If

it's joining members of an external network together, its name will begin

with “xenbr”, the “br” meaning bridge. If it's joining members of an internal

network together, its name will being with “xapi”.

XenServer Networking: VLANs

Figure 22. XenServer VLANs

In the case of creating a VLAN, every distinct VLAN will get its own

bridge. Also, the (pseudo) PIF will have a dot separated name to include

 74

the vlan tag number and, when on the real network, the bridge name will

start with “xapi”. Apart from that, everything else will be the same as

normal external network. It's not possible to create an internal VLAN

network.

In this example there are 8 virtual machines as guests on a single

XenServer host. Also on this host are 3 VLANs, with tags 5, 65 and 4000.

There are also a couple of machines that have a regular non-vlan

(untagged) external network, so their bridge is wired directly to the PIF.

The interfaces (eth0.5, eth0.65, eth0.400, etc) for the VLANs are actually

Figure 23. VLAN Trunking

created in Linux as virtual interfaces. These interfaces simply tag each

frame with the appropriate VLAN number before they are moved on to the

PIF.

All frames emanating from a guest VLAN will leave the PIF, and

hence will be seen by the outside world, as tagged. This means when

 75

having multiple VLAN guest networks, a frame may be tagged differently

depending on the source VLAN. For this reason, you are required to

(eventually) connect the PIF of the XenServer to a VLAN trunk port that

supports 802.1Q encapsulation, when VLANs are in-play. When using

VLANs the XenServer Host handles all interpretation of the VLAN tags.

Any frames sent to guests that are part of a VLAN will, even so, remain

untagged.

XenMotion

During a migration of a VM from one host to another, any memory

pages that change on the source host are copied to the destination host.

This process is repeated until the number of pages to copy is minimal, and

the VM can be started on the destination host.

Figure 24. VM Migration

But in this example setup, the external real switch device is expecting the

MAC address of the VM to be on one port, while it's actually just migrated

to another port. In this case, the last step of the migration is for the

 76

destination host to update any external devices with a gratuitous ARP

packet. A “garp”, is nothing more than a regular ARP request, but with the

MAC and IP address already filled-in. This serves as an update to any

external devices‟ arp cache, and there would be no response.

NIC “Teaming” or “Bonding”

NIC bonds can improve XenServer Host resiliency by using two

physical NICs as if they were one. If one NIC within the bond fails the

host's network traffic will automatically be routed over the second NIC. In

XenServer 4.1, NIC bonds work in an active/passive mode, with only one

physical NIC ever in use.

Figure 25. NIC Bonds

This virtual interface (in the above case Bond0) will then look like a regular

PIF to any XenServer External Network.

• XenServer NIC bonds completely subsume the underlying physical

devices (PIFs). In order to activate a bond the

 77

underlying PIFs must not be in use, either as the management interface

for the host or by running VMs with VIFs attached to the networks

associated with the PIFs.

• XenServer NIC bonds are represented by additional PIFs. The

bond PIF can then be connected to a XenServer network to allow VM

traffic and host management functions to occur over the bonded NIC.

• The bond interface itself can be made to have its own MAC

address; otherwise it inherits the MAC address of the first listed PIF when

created.

 78

APPENDIX B

CODE DESCRIPTION

 79

B.1 Functions in Summary.aspx.cs

public void prepareSQL(out String sqlVertex,out String sqlInterfaces,out

String sqlNetworks)

This method is mainly responsible for converting the user topology created

on the canvas of the applet into appropriate database queries. It does so

by parsing out the string input fetched from the user session variable

"graph", which contains the string form of the user topology. The function

parses this string and segrgates tits contents into three distinct types of

SQL queries viz. sqlVertex, sqlInterfaces and sqlNetworks. These queries

contain configuration information about the nodes, interfaces and the

nertworks created by the user on the canvans of applet.

 protected void acceptButton_Click(object sender, EventArgs e)

 This is the method called on the click of Accept button of Summary.aspx

page. It is mainily responsible for calling a number of functions to actaully

lay out the

 user defined topology on cloud platform. It distinctly performs following

functions:

 1. Call prepareSQL() to parse the user graph and prepare SQL queries.

 2. Call XenConnection() to securely connect to the cloud infrastructure

and reserve a session on behalf of the user.

 3. Call dbConnection() to securely connect to the MS-SQL database and

reserve a session on behalf of the user.

 80

 4. Execute queries prepapred in Step 1 on the database to store the user

topology information in the database against its unique session id

obtained in Step 2.This allows to make use of this information later in the

session.

 5. If Step 4 succeeds, it then contacts the cloud infrastructure to actually

initiate the process of reserving the resources on behalf of the user,

against the unique session id obtained in Step 2.

 6. Once the resources are successfully reserved in the cloud infrastructre,

it then configures the VMs (for user defined static IP addresses, Hostname

strings, routing rules etc) by calling connectSSH().

 7. If step 6 succeeds, it then simply redirects the control to the next page,

which displays VM-Ports mapping.

 protected Session xenConnection()

 This is a simple method which creates a dedicated connection to the

cloud infrastructure on behalf of the user and returns its handle to the

called program.

 protected SqlConnection dbConnection()

This is another simple method which connects to the MS-SQL database

on behalf of the user and returns its handle to the called program.

protected bool addNetworksInfo(SqlConnection conn, String sqlNetworks,

String userSession)

This method executes an SQL-query that enters the information about

networks/VLANs to be created on behalf of user. It receives this query as

 81

an input parameter, along with the XenServer connection and database

connection obtained in Step 1,2,3 respectively of method

acceptButton_Click().

 protected bool addVertexInfo(SqlConnection conn, String sqlVertex,

String userSession)

This method executes an SQL-query that enters the information about the

VMs to be created on behalf of the user. It receives this query as an input

parameter, along with the XenServer connection and database connection

obtained in Step 1,2,3 respectively of method acceptButton_Click().

 protected bool addInterfacesInfo(SqlConnection conn, String

sqlInterfaces, String userSession)

 This method executes an SQL-query that enters the information about the

configurations of interfaces attached to various VMs of the user topology.

It includes details like static IP addresses, LANs to which theses interfaces

etc.

It receives this query as an input parameter, along with the XenServer

connection and database connection obtained in Step 1,2,3 respectively of

method acceptButton_Click().

protected bool createNetworks(SqlConnection conn,out String

updateQuery, XenAPI.Session userSession)

This method actually interacts with the cloud infrastructure using

XenServer connection obtained in Step 2 of acceptButton_Click(), to

 82

reserve the resources like XenServer network handles. Once it does it

successfully, it returns true else false.

protected bool attachVLANs(SqlConnection conn, XenAPI.Session

userSession)

This method calls a stored procedure in the MS-Sql database to attach

already created, free, unused VLANs to every network handles created for

the user topology.This activity is done at the database itself and the

opaque references related to VLANs are updated in the networksInfo

table.

protected bool createVertices(SqlConnection conn,out String

updateQuery, XenAPI.Session userSession)

This method interacts with the cloud infrastructure and to reserve VMs on

behalf of the user. While doing this, it takes care of all the parameters set

by the user, like operating system, RAM,HDD etc about a VM. After

successful creation of a VM, it saves its handle in the database against

user's session to be used in the future.

protected bool configureInterfaces(SqlConnection conn,out String

updateQuery, XenAPI.Session userSession)

This method interacts with the cloud infrastructure and reserves VIFs on

bahalf of the user. Every VIF has to be attached to a corresponding VLAN

on one side and appropriate VM on the other side. By this time, these

entries have already been updated in the interfacesInfo table. Thus, it

becomes very easy to use these handles and create a VIF using

 83

XenServer API call. After successful creation of these VIFs, this method

updates their handles in the database and returns true else false.

 protected bool updateIP(SqlConnection conn, out String updateIPQuery,

XenAPI.Session userSession)

 The prime responsibility of this method is just to query the XenServer

internal database and get the IP addresses of the VMs set to run from

createVertices().

These IP addresses then become adminsitrative IPs for these VMs, used

for configuration of VMs.

protected bool connectSSH(SqlConnection conn, out String

updatePortsQuery, XenAPI.Session userSession)

This method is responsible for initiation of configuring the VMs created by

now and set running. By configuration I mean, it is responsible for setting

static IP addresses to all the VIFs of any given VM, their hostname strings,

routing rules of the routers in the network topology excite does this by

executing a shell script, which receives the username and interfaces'

details string as input parameters. At the end of the execution of this shell

script, all the VMs are configured appropriately and VM-to-port mappings

are returned. Next part of this method then parses this mapping string and

updates the ports number against corresponding VM handles in the

database.

B.2 Functions in virtualLabPortServer.java

 84

This piece of code creates a daemon caller virtualLabPortServer that

listens on port 8888 for requests to fetch ports. On reception of such

requests, it creates a thread and dedicates that thread to the incoming

request and continues to listen on the port 888 for more requests

B.3 Functions in virtualLabPortServerThread.java

This piece of code is mainly responsible for analyzing the user’s requests

(whether it is to get ports or free ports) and then access the synchronized

data structure that contains pool of unused, freed ports. In response, it

returns these numbers to the user in the form of a concatenated string of

the form port_n,port_n+1,port_n+2.

B.4 Functions in virtualLabPortClient.java

This is a wrapper class that does the job of creating a TCP connection to

the virtualLabPortServer and requesting for the resources.

public String exec(String action, String param)

This method receives the type of request and parameter in the for an

integer number corresponding to the type. If it is a get request the param

is equal to the number of port numbers to be requested and if it a free

request, the param contains a string of port numbers to be returned to the

pool.

B.5 Functions in getConfig.java

This piece of code does the job of generating configuration script for user

network topology. Basically such script contains ip address configuration

commands, commands that add routing table entries, hostname setting

 85

commands etc. In addition to this, it contacts the virtualLabPortServer by

creating an instance of virtualLabPortClient and obtains required number

of port numbers. It then maps these port numbers to the user VMs on

random basis and returns this mapping to the caller program.

