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ABSTRACT  
   

Fluctuating flow releases on regulated rivers destabilize downstream 

riverbanks, causing unintended, unnatural, and uncontrolled geomorphologic 

changes. These flow releases, usually a result of upstream hydroelectric dam 

operations, create manmade tidal effects that cause significant environmental 

damage; harm fish, vegetation, mammal, and avian habitats; and destroy 

riverbank camping and boating areas.  

This work focuses on rivers regulated by hydroelectric dams and have 

banks formed by sediment processes. For these systems, bank failures can be 

reduced, but not eliminated, by modifying flow release schedules. Unfortunately, 

comprehensive mitigation can only be accomplished with expensive rebuilding 

floods which release trapped sediment back into the river.  

The contribution of this research is to optimize weekly hydroelectric dam 

releases to minimize the cost of annually mitigating downstream bank failures. 

Physical process modeling of dynamic seepage effects is achieved through a new 

analytical unsaturated porewater response model that allows arbitrary periodic 

stage loading by Fourier series. This model is incorporated into a derived bank 

failure risk model that utilizes stochastic parameters identified through a meta-

analysis of more than 150 documented slope failures. The risk model is then 

expanded to the river reach level by a Monte Carlos simulation and nonlinear 

regression of measured attenuation effects. Finally, the comprehensive risk model 

is subjected to a simulated annealing (SA) optimization scheme that accounts for 

physical, environmental, mechanical, operations, and flow constraints.  
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The complete risk model is used to optimize the weekly flow release 

schedule of the Glen Canyon Dam, which regulates flow in the Colorado River 

within the Grand Canyon. A solution was obtained that reduces downstream 

failure risk, allows annual rebuilding floods, and predicts a hydroelectric revenue 

increase of more than 2%. 
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CHAPTER 1.   INTRODUCTION 

Only rivers appear inviolable.  They travel without plan, twisting like tendrils, as 
indirect as idle thoughts.  Bordered by corridors of green, they seem immune 
from encroachment – until you look closer and see a length of river that has 
been “channelized” for the convenience of barges, its bends ironed out like 
wrinkles.  Then you see the sudden widening of a reservoir, the broad end 
blunted by the abrupt slash of a concrete dam, and all arguments of utility lose 
their force.  A river dammed or straightened is a travesty, a violation, an outrage.  
If you want to see people enraged, strangle the rivers they love. 
 

– from The Bird in the Waterfall 
   by Glenn Wolff 

 
There is something deeply satisfying about directing the flow of water. 
 

– David Lynch 
 

Background 

The first large dam in recorded history was built in 2,700 BCE near 

present day Cairo.  It stood 40 feet tall and more than 300 feet wide, carefully 

constructed from ungrouted rock and sand.  The dam, later named Sadd-el-Kafara 

(Dam of the Pagans), was built for the sole purpose of protecting the early 

Egyptians from flooding from the Nile River.   

Historical evidence indicates that the Sadd-el-Kafara construction was an 

ambitious, noble, well planned, and well executed public works project (Mays, 

2010).  Unfortunately, it was also doomed to failure.  Just after the dam had 

reached its design height, but before the floodways had been formed, intense 

storms began.  As the Nile River rose so did the seepage pressures on the dam.  

When the river stage reached its crest, Sadd-el-Kafara collapsed.  The resulting 

catastrophe was so devastating that it would be eight centuries before the 

Egyptians again attempted to construct another large dam. 
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Sadd Al-Kafara is not only the first large scale dam in recorded history but 

also the first dam failure in recorded history.  More than that, it was also the first 

attempt to completely regulate a riparian system (Drower, 1954), and the first 

recorded massive slope failure to occur as a result. 

Dam building technology has much improved since the Sadd Al-Kafara 

disaster, and it is extremely rare (but not unheard of) for a new dam to fail.  River 

regulation technology, however, remains imperfect, and massive slope collapses 

are still common; only now it is the downstream riverbanks that fail, rather than 

the dams themselves.   

The problems are worldwide.  There are currently more than 800,000 

dams in operation, generating enough hydroelectricity to supply nearly one-fifth 

of the world’s energy, but adversely affecting more than half of the world’s large 

water systems as a result (Jacquot, 2009).   These adverse effects include 

ecological damage, environmental changes, and water quality reduction (Goodwin 

et al., 2000).  Moreover, regulating the river through controlled flows can cause 

tremendous geomorphologic effects, often expressed through numerous 

streambank failures.  These failures can cause unchecked lateral bank migration, 

thalweg reorienting and even avulsions, resulting in an unintended, unnatural, and 

uncontrolled restructuring of the entire riparian area. 

The adverse geomorphologic consequences of river regulation have been 

well documented at the Glen Canyon Dam, located on the Colorado River within 

the Grand Canyon.  A number of large downstream bank failures have been 

recorded since dam operations began.   In general, these failures occur at eddy 
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sandbars, which are formed by fine sands transported into eddies adjacent to the 

riverbanks. These sandbars are popular camping areas for hikers, campers, 

boaters, and other visitors to the canyon.  Thus their destruction is not only 

damaging environmentally and aesthetically, but also constitutes a potential risk 

to public safety.  Minimizing the risk of these failures in the Canyon has led to 

significant changes to the hydroelectric dam operations (Budhu and Gobin, 1994).  

These operational changes have reduced sandbar failures at the cost of 

significantly reduced revenue. 

Sandbars are a particular type of riverbank, but unlike riverbanks, 

sandbars can form over just a few hours and are made up almost entirely of sandy 

sediment conveyed by the river.  Sandbars are typically formed in dynamic river 

systems, such as the Grand Canyon, where bank formation occurs from sediment 

deposit, often at angles just below the angle of repose (Budhu, 1993).  Because 

the banks are formed near failure, their stability is particularly sensitive to loading 

conditions, including the river stage fluctuations and the resulting porewater 

pressure and matric suction pressure changes, often rapidly changing as the bank 

approaches failure (Iverson et al., 1997).  Since slope stability prediction 

techniques are strictly dependent on estimating these forces, much of the existing 

theory becomes suspect.  Thus, one of the critical challenges of modeling sandbar 

failures is to identify and apply an appropriate slope stability model. 

Problem Statement 

It is evident that hydroelectric dams are a crucial component of the 

world’s energy grid, yet it is also evident that significant energy loss occurs from 
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failed attempts to regulate dam operations in order to prevent downstream bank 

collapse.  This challenge may be summarized in the following problem statement: 

 

How can hydroelectric dam operations be optimized to minimize the 

cost of successfully mitigating downstream bank failures? 

 

Answering this question requires a firm understanding of the problem 

parameters not only from a general, theory based perspective, but also from a site 

specific perspective. 

Glen Canyon Dam constitutes a nearly ideal application of a theory of 

bank failure from dam operations.  The river stages are closely monitored, the 

slope failures widely documented, and the soil parameters have been repeatedly 

measured.  Moreover, optimizing the Glen Canyon Dam operations would 

constitute an appreciable contribution to the public good, maximizing profit from 

hydroelectric power generation while simultaneously helping to preserve one of 

the world’s greatest natural resources.  For these reasons, the Glen Canyon Dam 

is used throughout the paper to explore site specific problem elements and to test 

the accuracy and applicability of the developed theory. 

Contributions and Organization 

Quantifying slope failure risk 

Adjusting dam operations to mitigate adverse consequences requires a 

model of downstream riverbank reactions to dam flow release schedules.  Some 

models are available in the literature:  Simon et al. (2000), used field recorded 
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porewater pressures to explain several bank failures, applying two-dimensional 

limit equilibrium (2DLE) analysis with an assumed a wedge shaped failure 

surface.  Darby and Thorne (1996) successfully predicted a number of failures 

utilizing a wedge type 2DLE.  Rinaldi et al. (2002) explained several downstream 

riverbank failures utilizing 2DLE (Spencer’s method) applied to an irregular 

failure surface.  Budhu and Gobin investigated a number of sandbar failures on 

the Colorado River in the Grand Canyon, utilizing a number of approaches 

including 2DLE and finite element modeling (1994, 1995a, 1995b). 

A critical limitation of these 2DLE approaches is that they are 

deterministic, whereas slope failure risk appears to be inherently stochastic, as 

evidenced by numerous failure studies (Duncan and Wright, 2005).  Error 

propagation techniques can be used to estimate risk; however, these require 

particular and unverified assumptions of safety distributions and uncertainties that 

can vary widely between analysts.  

This challenge was addressed herein by directly researching documented 

slope failures and their associated analyses.  The resulting database was then 

interpreted statistically to develop a global risk model of slope stability.  This 

research constitutes the first contribution of this dissertation: 

 

Contribution 1:  Determining the inherent statistical distribution of and the key 

parameters influencing slope stability risk by meta-analysis. 

 



6 
 

This work resulted in several publications (Travis et al. 2010b,c), and is 

the subject of Chapters 2 and 3. 

Determining the role of matric suction 

A further complication of slope failure modeling is representing matric 

suction.  Matric suction affects slope stability in several ways, increasing apparent 

cohesion and causing nonlinear and dynamic soil weight distribution because of 

variations in saturation.   These aspects do not appear to have heretofore been 

rigorously considered in terms of slope stability analysis.  Indeed, most slope 

analyses assume fully saturated / dry conditions. 

The fully saturated / dry assumption model does not consider unsaturated 

conditions and in particular does not account for unsaturated flow, matric suction, 

or the dependence of unit soil weight on the degree of saturation.  Instead, unit 

soil weight is typically represented as fully saturated below the phreatic surface 

and as some constant value (the “dry” value) above the phreatic surface.  It is an 

assumption often made in practice (e.g. USACE, 2003; USDA, 1994), and in the 

literature (e.g. Simon et al., 2002; Zhang et al., 2005).   

An alternative approach to the dry / saturated model is to assume a 

constant soil unit weight throughout the subsurface (e.g. Duncan and Wright, 

2005) but this requires either the conservative assumption of saturated unit weight 

or some lesser value, a “moist” unit weight, which must be estimated by the 

engineer.  Truly unsaturated conditions, including the soil suction and moist unit 

weight that vary above the phreatic surface, are typically disregarded for slope 

stability analysis.   



7 
 

Recent efforts to extend the problem of slope stability to include 

unsaturated conditions has considered slope instability from storm water 

infiltration (Iverson, 2000; Cho and Lee, 2002) and bank instability resulting from 

rising porewater pressures (Simon et al., 2000;  Rinaldi et al., 2004).  The results 

of these and other similar studies have led to a general consensus that unsaturated 

conditions, with its associated matric suction, tend to increase slope stability due 

to an increase in apparent cohesion (Jakob and Hungr, 2005).  In practice then, 

disregarding unsaturated soil modeling and matric suction is seen as inherently 

conservative for purposes of slope stability analysis.  However, this perspective, 

even if correct, is purely design based, and does not help to predict the actual 

conditions leading to failure.  Thus, if matric suction is a significant factor, then in 

must be included within a bank stability model as accurately as reasonably 

obtainable.  Quantifying the role of matric suction in slope stability modeling 

constitutes the second contribution of this research. 

 

Contribution 2:  Quantifying both the conservative and nonconservative aspects 

of matric suction for slope stability modeling. 

 

This contribution was achieved by modeling the effects of matric suction 

on infinite slope stability.  The resulting research is described in another 

publication (Travis et al. 2010a), and is the subject of Chapter 4. 
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Seepage effects 

Unlike bank stability and matric suction modeling, wherein the core 

equation assumptions are still debated, seepage modeling is an established 

application of the basic laws of saturated groundwater flow.  Indeed, from the 

well accepted observation of Henry Darcy in 1856 that groundwater flow is 

proportional to hydraulic head (Darcy, 1856), the complete governing equations 

of dynamic seepage flow can be immediately derived (see Mays and Todd, 2005).  

Therefore, while groundwater flow remains a highly active area of research, 

current efforts on the subject are focused on particular applications, analytical 

solutions, or finite difference / element algorithms, rather than further 

examination of the governing equations (e.g. Boutt, 2010; Haitjema et al., 2010; 

Hill et al., 2010; Rojas et al., 2010; Siade et al., 2010; Younes and Ackerer, 2010; 

others). 

The research herein considers the governing flow equations along with the 

model elements developed in Chapters 2 through 4, and combines them to 

develop a finite difference model of bank failures due to seepage forces.  

Derivation and application of this model was presented in conference (Travis and 

Schmeeckle, 2007) and is described in Chapter 5.  Unfortunately, despite its 

success, the model was subsequently found to be too computationally expensive 

to meet the objective of this research.   

It is not clear if the developed finite difference model constitutes a new 

contribution to the literature, since the number of finite element and difference 

models developed for slope stability analysis is immense, and the particular 
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procedures are often closely guarded within third party software.  Capitalizing on 

key findings of the finite difference model, however, led to what is believed to be 

a new contribution to the field: an analytical model of saturated flow in a deep 

streambank, derived by the generalization of the groundwater response equation.  

Utilizing a Fourier series solution to the two dimensional unsteady saturated flow 

differential equations, the derived model allows any form of periodic river stage 

conditions, such as those expected downstream from the hydroelectric dam. The 

derivation and application of this model is the subject of Chapter 6. 

   

Contribution 3:  Deriving an analytical solution to seepage flows within a deep 

riverbank, driven by arbitrary periodic river stage functions. 

 

Riparian scale generalization of 2DLE models 

Dam operations affect entire riparian systems, not just individual banks.  

Responsible risk analysis must take a global, rather than individual, approach to 

the stochastic aspect of failures.  Unfortunately, while three dimensional modeling 

of slope failures has become feasible in recent years, it remains far too 

computationally expensive to apply over even moderately sized downstream 

areas.   Interestingly, it is risk analysis that allows the two dimensional model to 

be generalized to three dimensions.  This is accomplished by applying a Monte 

Carlo simulation.   

A Monte Carlo simulation allows stochastic interpretation of a model by 

repeatedly executing it while randomly varying the input parameters within their 
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respective statistical distributions.  A 2D slope stability model can therefore be 

generalized to a 3D model by allowing the input parameters to vary according to 

their position along the river.  A design of experiments (DOE) approach can even 

be utilized to guide the simulation and statistically analyze the results.  The 

overall algorithm of this approach constitutes the fourth contribution of this 

research: 

 

Contribution 4:  Developing an algorithm to generalize two-dimensional slope 

failure models to larger scales by means of a Monte Carlo simulation. 

 

This method was applied to the Glen Canyon dam by generating more 

than 3,000 separate risk calculations.  The predictions were verified by field 

observations.  A reduced ANOVA model was then utilized to relate downstream 

slope stability risk to key dam operation parameters. 

Simple non-linear equations were then developed to model the 

downstream responses (attenuation) to fluctuating dam operations.  In this way, a 

comprehensive model of bank failure risk was developed for the entirety of the 

Colorado River within the Grand Canyon. 

Optimizing dam operations 

The overarching objective of this research is to optimize dam operations 

given the developed model.  Given the size, environmental impact, public safety 

risk, cost, and potentially high profits from hydroelectric power generation, dams 

have been and remain a critical area of optimization research.  Carriaga and Mays 
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(1995a,b) optimized seasonal dam operations to minimize downstream sediment 

releases.  Dam operations have been optimized for hydropower generation and 

irrigation supply by dynamic programming (Tilmant et al., 2002), for general 

water use by stochastic fuzzy dynamic programming (Abolpour and Javan, 2007), 

and for groundwater control by nonlinear programming (Naveh & Shamir, 2004).  

Optimization efforts have also considered watershed scale effects, with 

optimization schemes developed to minimize location costs of detention 

reservoirs (Mays and Bedient, 1982) and retention reservoirs (Travis and Mays, 

2008).  Nicklow and Mays (2001, 2002) optimized seasonal dam operations for 

entire watershed networks. 

The current solution to mitigating ongoing sandbar bank failures in the 

Grand Canyon is to periodically flood the canyon by releasing high flows through 

the Glen Canyon Dam, flushing built up sediment downstream to rebuild the lost 

sandbars.  These controlled floods are not currently set to a particular schedule.  

Three controlled floods have been conducted, one in 1996, one in 2004, and one 

in 2008.  The controlled flood usually lasts about seven days. 

The controlled flood technique has been successful, not only in rebuilding 

numerous sandbars, but also by providing vital research on sandbar renewal and 

long term stability.  Several key studies on the 1996 controlled flood revealed the 

following: 

1. Of all the sediment that was transported into the canyon during the 

flood, the vast majority went almost exclusively toward rebuilding the 

sandbars. (Hazel et al., 1999) 
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2. Kearsley et al. (1999) estimated that 84 high elevation sandbars had 

been formed by the building flood, but about 44% of these failed over 

the following six months, leaving a total of 262 high elevation 

sandbars of sufficient size to be used a campsites. 

3. The 1996 flood cost approximately 2.5 million dollars, or about 3% of 

the overall 1996 Glen Canyon Dam revenue.  In addition, 

approximately 1.5 million dollars was spent on physical and biological 

research (Harpman, 1999). 

Of particular importance here are the results of Kearsley et al. (1999) 

study.  If taken as representative, the results of the 1996 flood suggest that each 

controlled flood will build about 47 new sandbars, constituting about 20% of the 

total stable sandbars after the flood.  More frequent controlled floods would be 

expected to build more sandbars, assuming sufficient sediment was available for 

transport. 

The general optimization problem is thus to minimize the cost of 

mitigating downstream slope failures throughout an entire river reach by 

controlled flooding, subject to the constraints specific to physical limitations, 

water balance targets, and environmental concerns.  The presentation of the 

optimization problem, the corresponding constraints, and solution algorithm 

together constitute the last new contribution of this research:   

Contribution 5:  Optimization of hydroelectric dam operations to mitigate 

downstream bank failures at minimum cost. 
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Figure 1.  Comprehensive model schematic 
 

The comprehensive model is shown in Figure 1.  After developing the 

bank failure risk, attenuation, and porewater response models, selected parameters 

and gathered data can be routed through the Monte Carlo simulation to obtain and 

reach scale bank failure model.  This model, coupled with selected parameters and 

appropriate constraints, is routed through the optimization model to finally obtain 

the optimal flow schedule.   
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CHAPTER 2.   SLOPE FAILURE LITERATURE 

It is a capital mistake to theorize before one has data.  Insensibly one begins to 
twist facts to suit theories, instead of theories to suit facts. 

  
– Sherlock Holmes, 

   in A Scandal in Bohemia, 
   by Sir Arthur Conan Doyle 

Introduction 

Since the early part of the twentieth century, two dimensional limit 

equilibrium (2DLE) analyses have been the engineering community’s primary 

means of slope stability calculation.  However, the input parameters to 2DLE, 

namely soil strength and anisotropy, slope geometry, porewater pressures, failure 

surface geometry, applicable correction factors, and loading conditions are all 

inherently uncertain, and thus statistical consideration is necessary for an accurate 

model.  Despite the moderate success of the statistical approach and its corollary, 

risk analysis (e.g. Christian et al., 1994; Duncan and Wright, 2005), acceptance by 

the general engineering community has been slow, likely because the applicable 

statistical information is not readily available or reliably estimable. 

Perhaps the greatest challenge with obtaining statistical information on 

slope stability is that the computed safety factor (SF) cannot be directly equated to 

measurable slope characteristics.  From a strictly deterministic standpoint, a slope 

will fail if SF < 1, and be unconditionally stable for SF > 1.  Thus, the SF can be 

verified (deterministically) only for a failed slope where SF = 1.   

It is to be expected, however, that real slope failures will occur at SF 

slightly lower or higher than 1.   From a statistical perspective, then, it is generally 

assumed that the safety form a statistical distribution with a mean value = 1.  The 
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exact parameters of this distribution are unknown; indeed, even the form of the 

distribution itself is not known.  Literature on slope stability risk analysis 

typically assumes a normal (e.g. Christian et al., 1994) or log normal (e.g. Lee & 

Kim, 2000) distribution.  Unfortunately, the reality is that there are an infinite 

number of potential distributions and thus model uncertainty is introduced at the 

most fundamental level. 

Complicating the search for a descriptive SF distribution is that there are 

many choices an analysis must make prior to calculating the SF, each introducing 

uncertainty and/or bias.  Specifically, an analyst must choose a calculation method 

(e.g. infinite slope, simplified Bishop, Spencer’s, etc.), a porewater pressure 

analytical approach (effective versus total stress) and a failure surface model 

(planar, circular, or irregular).  Moreover, the analyst most choose basic modeling 

parameters (e.g. specific failure geometry location, number of slices, etc.).  

Finally, an analyst may choose to apply correction factors for slopes with 

particular soil types and/or loading conditions.  Given these numerous individual 

decisions, it is inevitable that different analysts will calculate different safety 

factors, even if all other model inputs are the same. 

Beyond analyst differences, there are also fundamental uncertainties and 

biases in the 2DLE analysis that arise from its application to a real slope, 

including three dimensional effects, constitutive effects, complicated porewater 

loading, and soil strength distribution.  The uncertainty of the latter is a direct 

consequence of heterogeneity and differences between the actual and sampled 

soils (sample disturbance, strength anisotropy, vane strength bias in clay soils), 
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temporal changes (strain rate, consolidation, creep), slope integrity (cracking), 

and strain softening (peak versus mean versus reduced versus residual strength).   

Finally, there may be fundamental differences between slope type.  The 

2DLE approach is typically applied to both natural slopes (landslides) and 

engineered slopes (cut or fill).  The engineered slopes may be further divided into 

unmonitored field applications, test slopes (monitored slopes brought to failure), 

and experimental slopes (highly monitored slopes brought to failure under tightly 

controlled conditions). 

In response to the need in slope stability risk analysis for statistical 

information and clear answers regarding the effect of different model techniques 

and assumptions, a meta-analysis was conducted on a database of 157 slope 

failures and the corresponding 301 SF calculations.  A meta-analysis, typically 

applied as a statistical analysis of multiple, published analyses, is a well 

established approach to marketing research (Bijmolt and Pieters, 2001), but rarely 

used in civil engineering research (notable exceptions include Horman and 

Kenley, 2005, and Schueler, 2009).  The latter observed disregard is unfortunate, 

since meta-analysis seems eminently applicable to a field where there are often 

many equations competing to describe the same process (e.g. sediment transport, 

unsaturated soil permeability description, hydrology models, etc.)  

The meta-analysis here is divided into two papers.  This paper describes 

the compiled database, reporting the minimum SF for each slope analyzed in each 

reference, and the corresponding slope location, soil description, Atterberg limits, 
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applied correction(s), and slope angle.  In addition, the database also reports the 

following factor information: 

 Analytical method:  infinite slope, simplified Bishop, etc. 

 Slip surface geometry: planar, circular, or irregular 

 Slope type:  test fill, test cut, fill, cut, or landslide 

Some of the specific details of this information may be unfamiliar to the 

reader (indeed, one of the interesting results is that many of the applied correction 

factors and techniques were quite specific to a particular region.)   For detailed 

information on these elements, the reader is referred to Chapter 3. 

Chapter 3 analyzes the potential effect that each of the identified factors 

has on SF calculation.  Based on theory and the literature, predictions are made 

with regard to the effect of each of the recorded factors on SF calculation, and 

specific hypothesis tests are utilized to test these predictions.  The results are used 

to establish an overall statistical description of slope stability. 

Compilation 

 The compiled slope failure database may be found in Table 1.  Since 

many safety factors were often reported in a study, only the minimum justifiable 

safety factor per a given analytical method and porewater stress approach was 

considered here.  The justifiable requirement was introduced because arbitrary 

assumptions were occasionally introduced by analysts for sake of discussion; 

however, these instances were quite rare.  The average slope angles, soil types, 

and Atterberg limits (the liquid limit LL, plastic limit PL, and plasticity index PI) 
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shown in Table 1 were either reported directly by the analysts or estimated from 

the published figures and tables. 

Several abbreviations were used in Table 1:  “OMS” refers to the Ordinary 

Method of Slices, “COE” refers to the Army Corps of Engineers Modified 

Swedish 2DLE method, “Bishop” refers to the Simplified Bishop method; 

“Janbu” refers to Janbu’s 2DLE method, and “irreg” refers to an irregular (e.g. 

non-planar and non-circular) slip surface. 

Analysts are selective and sometimes in error when including SF 

calculations cited from other studies, so only primary references were allowed in 

the database.  The only exception to this policy was when a reference included 

calculations from an earlier work written by them or one of the co-analysts and 

this referenced work could not be obtained by the authors (e.g. a conference 

paper, private industry report, etc.). 

Any available published paper that independently calculated a safety 

factor for a real failed slope based on measured or modeled parameters was 

included in the database. These included peer reviewed articles, conference 

papers, textbooks, and online articles.  The only qualifying paper not included 

within the database was Lade (1993) wherein a safety factor over 2.5 was 

calculated for a failed submarine berm.  This very high SF was rejected as an 

outlier. 

Slope failures from earthquakes were considered a separate issue and not 

included in this database, but the general results appear to be consistent with the 

relevant literature (e.g. Teoman et al. 2004).  Likewise, only slope failures on the 
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planet earth were considered, although the overall database appears to be 

consistent with slope failures on other planets (e.g. Neuffer & Schultz 2006). 

Slope 
Name Reference Slope Type Soil Analytical 

Method 

Pore-
water 
App-
roach 

Fail-
ure 
Sur-
face 

Min 
SF 

Correc-
tion 

Slope 
Angle 
(deg) 

LL 
(%) 

PL 
(%) 

PI 
(%) Notes 

Alani-Paty 

Baum & 
Fleming (1991) 

Landslide 

Weathered 
basalt clasts 
in a clayey 
silt / silty 

clay matrix. 

Janbu Effective Irreg 0.99 residual 

9 97 48 49 1, 2 
Baum & Reid 

(1995) Janbu Effective Irreg 0.82 residual 
friction 

Antoniny 
Wolski et al. 

(1989) Test Fill 

Peat 
underlain by 

weak 
calcareous 

soil 
underlain by 

sand 

Bishop Effective Circle 0.7 

Consol-
idation, 
creep, 

anisotropy 

24 197 107 90 3, 4 
Janbu Total Irreg 0.85 

Ås 
Flaate & 

Preber (1974) Fill 
Fill over silty 

clay 
0   Total Circle 0.8 - 27 42 22 20 5 

Aulieva 

Ferkh & Fell 
(1994) 

Fill 
Fill over dry 
crust over 
silty clay 

Bishop Effective Circle 1.28 
Min. 

foundation 
strength 24 48 25 23 5 

Flaate & 
Preber (1974) Janbu Total Irreg 0.92 - 

Bangkok-
Siracha 
Hwy 1 

Eide & 
Holmberg 

(1972) 

Test Fill 

Uniform 
sand on soft 

Bangkok 
clay 

0   Total Circle 1.5 Cracked fill 27 150 65 85 5 

Bangkok-
Siracha 
Hwy 2 

Test Fill 

Uniform 
sand on soft 

Bangkok 
clay 

0   Total Circle 1.5 Cracked fill 27 150 65 85 5 

Bangkok-
Siracha 
Hwy A 

Test Fill 

Uniform 
sand on soft 

Bangkok 
clay 

0   Total Circle 1.46 Cracked fill 

27 150 5 85 5 Ferkh & Fell 
(1994) Bishop Effective Circle 1.01 

Min. 
foundation 
strength; 

cracked fill. 

Bangkok-
Siracha 
Hwy B 

Eide & 
Holmberg 

(1972) 

Test Fill 

Uniform 
sand on soft 

Bangkok 
clay 

0   Total Circle 1.61 Cracked fill 

27 150 65 85 5 
Ferkh & Fell 

(1994) Bishop Effective Circle 1.36 

Min. 
foundation 
strength; 

cracked fill. 

Bangkok-
Siracha 
Hwy C 

Eide & 
Holmberg 

(1972) 
Test Fill 

Uniform 
sand on soft 

Bangkok 
clay 

0   Total Circle 1.33 Cracked fill 27 150 65 85 5 

Bradwell 
Duncan & 

Wright (2005) Cut London clay 
COE 

Total Circle 
1.8 

- - - - - 
- 

Janbu 1.63 6 
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Slope 
Name Reference Slope Type Soil Analytical 

Method 

Pore-
water 
App-
roach 

Fail-
ure 
Sur-
face 

Min 
SF 

Correc-
tion 

Slope 
Angle 
(deg) 

LL 
(%) 

PL 
(%) 

PI 
(%) Notes 

0   1.76 - 

Breckenri
dge 1963 

Eden & Mitchell 
(1973) Landslide 

Champlain 
Sea 

sensitive 
marine 
clays 

Bishop Effective Circle 1.05 - 24 - - 20 7 

Carsingto
n Dam I 

Chen et al. 
(1992) 

Fill 
Yellow clay 
& dam core 

material. 

Sarma 
Effective 

Irreg 
1.04 Weakened 

strength 

18 - - - 8 

Total 1.1 

Skempton and 
Coats (1985) 

Wedge Effective Irreg 1.02 

Critical 
State; 

Progressive 
failure 

Carsingto
n Dam II 

Fill 

Dark grey 
mudstone 

over yellow 
clay. 

Wedge Effective Irreg 1.35 

Critical 
State; 

Progressive 
failure 

14 79 34 45 3 

Caudalos
a tailings 

dam 

Garga & de la 
Torre (2002) Fill 

Silty sand 
tailings over 
lacustrine 

clay 

Morgenste
rn Price Effective Irreg 0.98 - 11 62 27 35 4, 11 

Chung-
Nam 

Province 

Yoo & Jung 
(2006) Fill 

Complete 
decompose

d granite 
Bishop Effective Circle 0.97 - 44 - - - 4 

Combs 
reservoir Otoko (1987) Fill 

Firm brown 
or yellow-

brown 
sandy silty 

clay. 

Bishop Effective Circle 0.95 - - 36 16 20 - 

Contra 
Costa 
County 

Adib (2000) Fill 
Fat clay with 

sand & 
gravel 

Spencer Effective Irreg 1.07 

 
 

Residual; 
Mesri & 
Abdel 
Gaffar 
(1993) 

 

27 55 21 34 - 

Cubzac 

Pilot et al. 
(1982) 

Test Fill 

Clean 
gravel over 

an 
overconsoli

dated 
clayey silty 
crust over 

organic silty 
clay. 

Bishop Effective 

Circle 

1.24 - 

41 105 40 65 

2 
0   Total 1.44 Vane test 

strength 

Talesnick & 
Baker (1984) Spencer Total Irreg 1.14 Minimum 

strength 4 

Cuyahoga 
AA 

Wu et al. 
(1975) Fill 

Gray clay & 
shale 

fragment fill 
over silty 

clay 

Morgenste
rn Price Effective Irreg 1 High pore 

pressure 27 40 20 20 13 
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Slope 
Name Reference Slope Type Soil Analytical 

Method 

Pore-
water 
App-
roach 

Fail-
ure 
Sur-
face 

Min 
SF 

Correc-
tion 

Slope 
Angle 
(deg) 

LL 
(%) 

PL 
(%) 

PI 
(%) Notes 

Cuyahoga 
BB Fill 

Gray clay & 
shale 

fragment fill 
over silty 

clay 

Morgenste
rn Price Total Irreg 1.04 

Reduced 
preconsolid

ation 
pressure 

27 40 20 20 13 

Daikoku-
cho 

Hanzawa et al. 
(2000) Fill Marine clay 0   Total Circle 0.91 

Strain rate; 
SHANSEP - - - 50 14 

Desert 
View 
Drive 

Day (1996) Fill Fill Janbu Total Circle 1.15 - 30 - - - 2 

Drammen 
River 

Kjærnsli & 
Simons (1962) Fill 

Sandy rock 
over fine & 

medium 
sand over 
silty clay 

Bishop Effective 

Circle 

1.01 

- - 35 18 17 15, 16 
0   Total 0.47 

Durham 
City 

Attewell & 
Farmer (1976) Fill 

Sand-
gravel-silt-
laminated 

clay 

Bishop 

Effective 

Circle 1.08 

residual 8 - - - - 
Infinite Planar 0.957 

Janbu 
Circle 

1.07 

OMS 1.07 

Edmonton 

Ferkh & Fell 
(1994) 

Fill - Bishop Effective Circle 1.54 

Lower 
quartile 

foundation 
strength 

- - - 45 5 

Fair 
Haven Fill Varved silts 

& silty clay 

Bishop Effective Circle 0.96 
Min. 

foundation 
strength 

- - - 17 5 

Haupt and 
Olson (1972) 

0   Total Circle 1 - 11 35 21 14 17 

Falkenstei
n 

Flaate & 
Preber (1974) 

Fill 
Fill over soft 
silty quick 

clay 
0   Total Circle 0.89 - 11 22 14 8 5 

Fore River Azzouz et al. 
(1981) Test Fill 

Fill over 
soft, silty, 
slightly 

organic clay 

Bishop Effective Circle 0.8 SHANSEP - - - 34 12 

Gatineau 
rue Le 
Coteau 

Lefebvre 
(1981) Landslide 

Soft 
Canadian 

clay 
Bishop Effective Circle 0.99 

Water filled 
cracks; 

reconsolida
ted strength 

31 78 28 50 - 

Goodwin 
Creek I 

Simon et al. 
(2000) Landslide 

Brown 
clayey-silt 
over gray, 
blocky silt 

over sand & 
gravel. 

OMS Effective Planar 1 - 51 - - - 18 
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Slope 
Name Reference Slope Type Soil Analytical 

Method 

Pore-
water 
App-
roach 

Fail-
ure 
Sur-
face 

Min 
SF 

Correc-
tion 

Slope 
Angle 
(deg) 

LL 
(%) 

PL 
(%) 

PI 
(%) Notes 

Goodwin 
Creek II 

Landslide 

Brown 
clayey-silt 
over gray, 
blocky silt 

over sand & 
gravel. 

OMS Effective Planar 1 - 51 - - - 18 

Goodwin 
Creek III 

Landslide 

Brown 
clayey-silt 
over gray, 
blocky silt 

over sand & 
gravel. 

OMS Effective Planar 1 - 51 - - - 18 

Grand 
Canyon 

172L 

Budhu & Gobin 
(1995a) Landslide 

Fine to 
medium 

sand with a 
small 

amount of 
silt & clay 

COE 

Effective Irreg 

1.72 

Worst case 
pore 

pressure 
26 - - - 

- 

Janbu 1.6 

2 Lowe 
Karafiath 1.7 

Spencer 1.75 

Green 
Creek 
1955 

Eden & Mitchell 
(1973) 

Landslide 

Champlain 
Sea 

sensitive 
marine 
clays 

Bishop Effective Circle 1.05 - 19 - - 20 - 

Green 
Creek 
1971 

Landslide 

Champlain 
Sea 

sensitive 
marine 
clays 

Bishop Effective Circle 0.96 - 25 - - 20 - 

Grohovo Benac et al. 
(2005) 

Landslide 

Clayey silt 
cover over 

Flysch 
bedrock 

Bishop 

Effective 

Circle 1.109 

- 21 - - - - 
Spencer Irreg 1.078 

Hasamiish
i 

Kawamura & 
Ogawa (1997) 

Cut Tertiary 
mudstone 

OMS Effective Circle 1.25 Residual 40 82 48 34 - 

Headrace Lydon & Long 
(2001) Fill 

Sandy 
slightly 

gravelly clay 
COE Effective Circle 1.5 Rapid 

drawdown 27 31 21 10 19 

Hill Hall 

Otoko (1987) 

Fill London clay 

Bishop Effective Circle 1.2 - 

29 59 23 36 - 
Sainak (1999) 

Bishop 
Effective 

Circle 1.16 
- 

Wedge Irreg 1.02 

Hull, 
Leamy 
Creek 

Lefebvre 
(1981) 

Landslide 
Soft 

Canadian 
clay 

Bishop Effective Circle 1.64 

Water filled 
cracks; 

reconsolida
ted strength 

17 78 28 50 - 

Iverson I 

Iverson et al. 
(1997) 

Experiment 

60% poorly 
sorted sand, 

40% fine 
gravel by 

weight 

Janbu Effective Irreg 1.11 - 31 - - - - 

Iverson II Experiment 

60% poorly 
sorted sand, 

40% fine 
gravel by 

weight 

Janbu Effective Irreg 1.28 - 31 - - - - 
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Slope 
Name Reference Slope Type Soil Analytical 

Method 

Pore-
water 
App-
roach 

Fail-
ure 
Sur-
face 

Min 
SF 

Correc-
tion 

Slope 
Angle 
(deg) 

LL 
(%) 

PL 
(%) 

PI 
(%) Notes 

Jackfield Skempton 
(1964) Landslide Weathered, 

fissured clay Bishop Effective Circle 1.11 - 10 44 22 22 - 

James 
Bay 

Duncan & 
Wright (2005) Fill 

Soft & 
sensitive 

clay 

COE 

Total 

Irreg 1.17 

- 3 - - - 20 
Spencer 

Circle 1.45 

Irreg 1.17 

James 
Bay Test 

Dascal & 
Tournier (1975) 

Test Fill 

Lacustrine 
clay 

overlying 
glacial till & 

bedrock 

Bishop 
Total Circle 

1.1 Bjerrum 
(1972); 

time effect 
14 33 19 

14 21, 22 
φ = 0 1.03 

Ferkh & Fell 
(1994) 

Bishop Effective Circle 0.9 
Min. 

foundation 
strength 

20 5 

Jarlsberg 

Ferkh & Fell 
(1994) 

Fill 
Fill over soft 
silty quick 

clay 

Bishop Effective Circle 1.3 
Min. 

foundation 
strength 27 45 20 25 5 

Flaate & 
Preber (1974) 

0   Total Circle 1.1 - 

Juban I 
Zhang et al. 

(2005) 

Fill 
Clay, silt, & 

sand Bishop Total Circle 0.991 - 12 42 20 22 - 

Juban II Fill Clay, silt, & 
sand 

Bishop Total Circle 0.983 - 17 50 21 29 - 

Kameda Hanzawa et al. 
(2000) 

Fill Peat & 
sandy clay 

φ = 0 Total Circle 0.98 
Strain rate; 
recompress

ion. 
- - - - 14  

Kensal 
Green 

Skempton 
(1964) Cut London clay Bishop Effective Circle 0.6 Residual 27 83 30 53 23 

Kettleman 
Hills 

Byrne et al. 
(1992) 

Fill Landfill liner 
system 

Janbu Total Irreg 0.81 Residual 

2 - - - 

2 

Seed et al. 
(1990) Wedge Total Irreg 1.1 Residual 24 

Kewaunee 
A 

Edil & Vallejo 
(1977) 

Landslide Sand over 
silt & clay 

Bishop Effective Circle 1.81 Drained 58 23 17 6 1, 4, 
25 

Kewaunee 
B Landslide 

Sand over 
silt & clay Bishop Effective Circle 1.06 Drained 45 28 21 7 

1, 4, 
25 

Kewaunee 
C Landslide 

Silty sand 
over silt & 

clay 
Bishop Effective Circle 1.02 Undrained 45 19 10 9 

1, 4, 
25 

Khor Al-
Zubair 

Hanzawa et al. 
(2000) Fill 

Highly aged 
clay 

0   Total Circle 0.71 
Strain rate; 
SHANSEP - - - 33 

 
 

14 
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Slope 
Name Reference Slope Type Soil Analytical 

Method 

Pore-
water 
App-
roach 

Fail-
ure 
Sur-
face 

Min 
SF 

Correc-
tion 

Slope 
Angle 
(deg) 

LL 
(%) 

PL 
(%) 

PI 
(%) Notes 

King's 
Lynn 

Ferkh & Fell 
(1994) 

Test Fill 

Weakly 
cementing 
sandstone 

over alluvial 
clayey silts 

& sands 
over fen 
peat over 
soft silty & 

organic 
clays. 

Morgenste
rn Price Effective Irreg 1.04 

Min. 
foundation 
strength 

34 60 30 30 

5 

Wilkes (1972) 

Janbu 

Total Irreg 

1 

Skempton 
& 

Hutchinson 
(1969) 26 

Spencer 1.49 Reduced 
strength 

Koyama 
Kawamura & 

Ogawa (1997) Cut 
Tertiary 

mudstone OMS Effective Circle 0.83 Residual - - - - - 

Lachute 1 

Lefebvre 
(1981) 

Cut 
Soft 

Canadian 
clay 

Bishop Effective Circle 1.23 

Water filled 
cracks; 

reconsolida
ted strength 

23 55 24 32 - 

Lachute 2 Cut 
Soft 

Canadian 
clay 

Bishop Effective Circle 1.11 

Water filled 
cracks; 

reconsolida
ted strength 

25 60 22 39 - 

Lanester 

Bjerrum (1972) 

Test Fill 

Compacted 
sandy 
clayey 

gravel over 
soft, organic 
sandy clay 

& silt. 

Bishop Effective Circle 1.38 
Vane test 
strength 

34 115 45 70 

- 

Ferkh & Fell 
(1994) Bishop Effective Circle 0.97 

Min. 
foundation 
strength; 

cracked fill. 

5 

Pilot (1972) Bishop Total Circle 1.35 Vane test 
strength 

9, 26, 
28 

Pilot et al. 
(1982) 

Bishop Effective 

Circle 

1.13 - 

9 
0   Total 1.27 Vane test 

strength 

Talesnick & 
Baker (1984) Spencer Total Irreg 0.99 - 4 

Linkou 1 

Chen (1988) 

Landslide Gravel 
deposits Bishop Total Circle 0.995 Saturated, 

crack 27 - - - - 

Linkou 2 Landslide Gravel & 
lateritic soil 

Bishop Total Circle 0.953 
Partially 

saturated, 
crack 

27 50 30 20 - 

Lodalen Sevaldson 
(1956) Cut 

Soft marine 
clay with 
thin silt 
layers 

Bishop 
Effective 

Circle 

1 

- 27 34 20 14 1,  29 OMS 0.79 

0   Total 0.93 

Maine Ferkh & Fell 
(1994) Fill - Bishop Effective Circle 1.61 

Lower 
quartile 

foundation 
strength; 

cracked fill. 

- - - 32 5 
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Slope 
Name Reference Slope Type Soil Analytical 

Method 

Pore-
water 
App-
roach 

Fail-
ure 
Sur-
face 

Min 
SF 

Correc-
tion 

Slope 
Angle 
(deg) 

LL 
(%) 

PL 
(%) 

PI 
(%) Notes 

Massa E 
Cozzlle 

Casagli et al. 
(2006) Landslide silty sand Morgenste

rn Price Effective Irreg 0.83 Residual 
strength - - - - 10 

Matagami 

Bjerrum (1972) 

Fill 

Fill over 
plastic 

lacustrine 
clay. 

Bishop Effective Circle 1.53 Vane test 
strength 

- 85 38 47 

- 

Ferkh & Fell 
(1994) Bishop Effective Circle 1.12 

Min. 
foundation 
strength 

5 

Merriespr
uit tailings 

dam 

Fourie et al. 
(2001) Fill 

Tailings 
(fine sand & 

silt) 
Bishop Effective Circle 1.24 

Min. 
strength 
values 

- - - - 30 

Minazuki 
Kawamura & 

Ogawa (1997) Cut 
Tertiary 

mudstone OMS Effective Circle 0.94 Residual 34 75 42 33 - 

Morton 
Road 

Burns (1999) Landslide 
Clays & silts 
over sands 
& gravels 

Bishop Effective Circle 1.24 
Undrained; 

reduced 
strength. 

7 58 21 38 - 

Muar 

Ferkh & Fell 
(1994) 

Test Fill - Bishop Effective Circle 0.8 

Min. 
foundation 
strength; 

cracked fill. 

- - - 50 5 

Narbonne Test Fill 

Gravelly & 
clayey 

compacted 
fill over soft 
clayey silt 
deposit 

Bishop Effective Circle 0.84 

Min. 
foundation 
strength; 

cracked fill. 

39 

- - 32 

5 

Pilot (1972) Bishop Total Circle 0.96 Vane test 
strength 

35 21 

14 
Pilot et al. 

(1982) 

Bishop Effective 

Circle 

1.05 - 

9 
0   Total 0.83 

Vane test 
strength 

Talesnick & 
Baker (1984) Spencer Total Irreg 0.8 - 32 4 

Nawalapiti
ya 

Seneviratne & 
Ilmudeen 

(1994) 
Landslide 

Sandy silty 
clay Bishop Effective Circle 0.97 Undrained 35 - - - 31 

NBR 
Developm

ent 

Dascal et al. 
(1972) Test Fill 

Lacustrine 
clay 

overlying 
glacial till 

Bishop 

Total Circle 

1.2 
Bjerrum 
(1972) 27 70 30 40 - 

0   1.1 

Nesset Flaate & 
Preber (1974) Fill 

Sand & 
gravel over 

silty clay 
0   Total Circle 0.88 - 27 44 22 22 5 

New 
Liskeard 

Azzouz et al. 
(1981) 

Test Fill 

Gravelly 
sand over 
silty clay 

over varved 
clay. 

Bishop Effective Circle 0.94 SHANSEP 

27 

50 16 34 

12 

Bjerrum (1972) Bishop Effective Circle 1.05 
Vane test 
strength 58 25 33 
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Slope 
Name Reference Slope Type Soil Analytical 

Method 

Pore-
water 
App-
roach 

Fail-
ure 
Sur-
face 

Min 
SF 

Correc-
tion 

Slope 
Angle 
(deg) 

LL 
(%) 

PL 
(%) 

PI 
(%) Notes 

Ferkh & Fell 
(1994) 

Bishop Effective Circle 0.83 
Min. 

foundation 
strength 

50 16 34 

5 

Lacasse et al. 
(1977) Bishop 

Effective 

Circle 

1.05 - 

9 
Total 0.99 Bjerrum 

(1972) 

Lo & Stermac 
(1965) OMS 

Effective 
Circle 

1.03 Crack, no 
fill strength, 
0 cohesion. 

26 9, 31 
Total 0.74 

Nice Seed et al. 
(1988) 

Fill Fill over 
clayey silt 

Bishop Effective Circle 1.35 - 18 - - - 32 

Nigoriike Kawamura & 
Ogawa (1997) Cut Tertiary 

mudstone OMS Effective Circle 0.94 Residual 45 - - - - 

Nonburi 
Brand & 

Krasaesin 
(1970) 

Fill 

Compacted 
lateritic fill 

over 
weathered 

clay. 

0   Total Circle 1.2 - 45 - - - 23 

Nong 
Ngoo Hao 

Balasubramani
am et al. 
(1979) 

Test Fill 

Dense sand 
fill over 

weathered 
clay over 

soft 
Bangkok 

clay 

Bishop 
Effective 

Circle 

1.01 

- 27 120 42 78 1, 33 
OMS 

0.73 

Total 0.77 

North 
Ridge 
Dam 

Rivard & Lu 
(1978) 

Fill 

Glacial clay 
fill over 
highly 

plastic clay 

Bishop 

Effective 

Circle 0.96 
Normally 

consolidate
d strength 

13 72 21 51 

34 

Janbu Irreg 1.15 2, 34 

NTU Slip 
3 

Rahardjo et al. 
(2001) Landslide 

Sandy silty 
clay Bishop Effective Circle 1.05 - 29 48 24 24 - 

Oceansid
e Manor 

Arellano & 
Stark (2000) Landslide 

Claystone & 
sandstone Janbu Effective Irreg 0.92 

residual 
and fully 
softened 

9 89 45 57 35 

Orleans Eden & Mitchell 
(1973) Landslide 

Champlain 
Sea 

sensitive 
marine 
clays 

Bishop Effective Circle 0.95 - 35 - - 20 - 

Ottawa 
Test 

Mitchell & 
Williams (1981) 

Landslide Champlain 
Sea clay 

Bishop Effective Circle 0.98 - - 66 25 41 - 

Pacifica 1 
Merifield (1992) 

Fill Artificial 
slope Infinite Total Planar 1.2 - - - - - 10 

Pacifica 2 Fill Artificial 
slope Infinite Total Planar 1.1 - - - - - 10 
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Slope 
Name Reference Slope Type Soil Analytical 

Method 

Pore-
water 
App-
roach 

Fail-
ure 
Sur-
face 

Min 
SF 

Correc-
tion 

Slope 
Angle 
(deg) 

LL 
(%) 

PL 
(%) 

PI 
(%) Notes 

Pacifica 3 Fill Artificial 
slope Infinite Total Planar 1 - - - - - 10 

Pacifica 4 Fill Artificial 
slope Infinite Total Planar 1 - - - - - 10 

Pacifica 5 Fill 
Artificial 

slope Infinite Total Planar 1 - - - - - 10 

Pacifica 6 Fill Artificial 
slope 

Infinite Total Planar 1 - - - - - 10 

Pacifica 7 Fill Artificial 
slope 

Infinite Total Planar 0.9 - - - - - 10 

Pacifica 8 Fill Artificial 
slope Infinite Total Planar 0.7 - - - - - 10 

Pilarcitos 
Dam 

Duncan et al. 
(1990) 

Fill Sandy clay 

COE 

Effective Circle 

0.82 
Rapid 

drawdown 

22 45 23 22 - 

Lowe 
Karafiath 1.05 

Wong et al. 
(1982) 

Bishop 
Total 

Circle 

1.46 

Rapid 
drawdown Effective 

1.15 

COE 0.85 

Lowe 
Karafiath 

1.13 

Morgenste
rn Price 

1.17 

Pornic Pilot (1972) Fill 

Embankme
nt on soft 

blue & 
brown clay 

Bishop Total Circle 1.17 
Vane test 
strength 69 80 35 45 - 

Port 
Washingto

n A 

Edil & Vallejo 
(1977) 

Landslide 

Brown silty 
clay with 
thin fine 

sand layer. 

Bishop Effective Circle 0.6 Drained 31 31 18 13 1, 4, 
25 

Port 
Washingto

n B 
Landslide 

Brown silty 
clay with 
thin fine 

sand layer. 

Bishop Effective Circle 0.6 Drained 30 32 19 13 1, 4, 
25 

Port 
Washingto

n C 
Landslide 

Brown silty 
clay with 
thin fine 

sand layer. 

Bishop Effective Circle 0.97 Drained 45 32 19 13 1, 4, 
25 

Portsmout
h Test 

Azzouz et al. 
(1981) 

Test Fill 

Granular fill 
over soft, 

very 
sensitive 

Marine illitic 
clay 

Bishop Effective Circle 0.91 Bjerrum 
(1972) 

9 - - 16 

12 

Bowders & Lee 
(1990) 

Bishop 

Effective 

Circle 0.994 

- 

4 
COE 

Irreg 

1.196 

Janbu 1.075 2, 4 

Lowe 
Karafiath 1.148 

4 
OMS Circle 0.916 

Spencer Irreg 1.02 
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Slope 
Name Reference Slope Type Soil Analytical 

Method 

Pore-
water 
App-
roach 

Fail-
ure 
Sur-
face 

Min 
SF 

Correc-
tion 

Slope 
Angle 
(deg) 

LL 
(%) 

PL 
(%) 

PI 
(%) Notes 

Ferkh & Fell 
(1994) 

Bishop Effective Circle 0.73 
Min. 

foundation 
strength 

5 

Ladd  (1972) 
Bishop Effective 

Circle 
0.82 

SHANSEP 14 35 20 
0   Total 0.7 

Presterod Ferkh & Fell 
(1994) Fill - Bishop Effective Circle 0.84 

Min. 
foundation 
strength 

- - - 17 5 

Presterφd
bakke 

Flaate & 
Preber (1974) Fill 

Granular fill 
over clayey 

silt 
0   Total Circle 0.83 - 34 36 19 17 5 

Red River Rivard & Lu 
(1978) Fill 

Compacted 
highly 

plastic clay 
over plastic 

clay 

Bishop 

Effective 

Circle 1.27 Normally 
consolidate
d strength 

14 82 26 56 

36 

Janbu Irreg 1.36 2, 36 

Rio de 
Janeiro 

Ferkh & Fell 
(1994) 

Test Fill - 

Bishop Effective Circle 0.85 

Min. 
foundation 
strength; 

cracked fill. 
27 120 60 60 5 

Ramalho-
Ortigão et al 

(1984) 
Bishop 

Total 

Circle 

0.959 Reduced 
strength; 

fully 
fissured 

Effective 0.6 

River 
Thames 

Ferkh & Fell 
(1994) Test Fill - 

Morgenste
rn Price Effective Irreg 1.03 

Min. 
foundation 
strength 

- - - 25 5 

Rockcliffe 
1967 

Eden & Mitchell 
(1973) 

Landslide 

Champlain 
Sea 

sensitive 
marine 
clays 

Bishop Effective Circle 1.02 - 27 - - 20 - 

Rockcliffe 
1969 Landslide 

Champlain 
Sea 

sensitive 
marine 
clays 

Bishop Effective Circle 0.99 - 24 - - 20 - 

Rosemère Lefebvre 
(1981) Cut 

Soft 
Canadian 

clay 
Bishop Effective Circle 1.05 

Water filled 
cracks; 

reconsolida
ted strength 

24 61 28 33 - 

RS-736 1 Bressaani & 
Ridley (1997) Cut 

Sandy silt 
on silty clay 
on swelling 
grey clay. 

Bishop Effective Circle 1.03 Critical 
State - 45 22 23 21 
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Slope 
Name Reference Slope Type Soil Analytical 

Method 

Pore-
water 
App-
roach 

Fail-
ure 
Sur-
face 

Min 
SF 

Correc-
tion 

Slope 
Angle 
(deg) 

LL 
(%) 

PL 
(%) 

PI 
(%) Notes 

RS-736 2 Cut 

Sandy silt 
on silty clay 
on swelling 
grey clay. 

Bishop Effective Circle 1.02 Critical 
State - 45 22 23 21 

Saint 
Aidans 

Hughes & 
Clarke (2001) 

Cut 

Silty clay 
sand & 

gravel over 
mudstone & 

siltstone. 

Janbu Effective Irreg 0.82 

Cracking, 
residual 
shear 

strength 

45 - - - 37 

Saint 
Alban 

Bowders & Lee 
(1990) 

Test Fill 

Uniform 
medium to 

coarse sand 
fill over 

weathered 
clay over 

top soil over 
a soft silty 

marine clay. 

Bishop 

Effective 

Circle 1.021 

- 

37 44 21 23 

4 
COE 

Irreg 

1.156 

Janbu 1.023 2, 4 

Lowe 
Karafiath 1.134 

4 
OMS Circle 0.971 

Spencer Irreg 1.007 

Ferkh & Fell 
(1994) 

Bishop Effective Circle 0.96 

Min. 
foundation 
strength; 

cracked fill. 

5 

La Rochelle et 
al. (1974) Bishop Effective Circle 0.89 

 
Residual 

Undrained 
Strength 

 
9, 38 

Pilot et al. 
(1982) 

Bishop Effective 

Circle 

1.04 CIU triaxial 
test 

0   Total 1.2 Vane test 
strength 

Talesnick & 
Baker (1984) 

Spencer Total Irreg 1.03 - 4 

Saint-
André 

Ferkh & Fell 
(1994) 

Fill 

Fill over 
clay, peaty 

clay, peat, & 
organic 
mud. 

Bishop Effective Circle 1.48 

Min. 
foundation 
strength; 

cracked fill. 
20 102 55 47 

5 

Pilot (1972) Bishop Total Circle 1.38 Vane test 
strength 1, 5 
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Slope 
Name Reference Slope Type Soil Analytical 

Method 

Pore-
water 
App-
roach 

Fail-
ure 
Sur-
face 

Min 
SF 

Correc-
tion 

Slope 
Angle 
(deg) 

LL 
(%) 

PL 
(%) 

PI 
(%) Notes 

Saint-
Hilaire 

Test 34° 
LaFleur et al. 

(1988) 

Test Cut Champlain 
Sea clay 

Bishop Total Circle 1.23 

Min 
strength; 
Bjerrum 
(1973) 

34 62 24 38 1 

Saint-
Hilaire 

Test 45° 
Test Cut Champlain 

Sea clay 
Bishop Total Circle 1.15 

Min 
strength; 
Bjerrum 
(1973) 

45 62 24 38 1 

San 
Francisco 

Bay 

Duncan & 
Wright (2005) Cut 

San 
Francisco 
Bay mud 

Spencer 
Effective 

Irreg 
1.17 

- 41 90 45 45 - 
Total 1.17 

Santiago Stark & Eid 
(1992) 

Landslide Claystone & 
sandstone 

Spencer Effective Irreg 1 Remolded 8 89 44 45 39 

Saskatche
wan 

Bypass 
Otoko (1987) Fill 

Highly 
plastic clay 

fill 
Bishop Effective Circle 1.17 - 23 80 42 38 - 

Saugus Azzouz et al. 
(1981) 

Test Fill 

 
Fill over 
partially 

consolidate
d Boston 
Blue Clay 

 

Bishop Effective Circle 0.82 SHANSEP - - - 21 12 

Scottsdale 

Ferkh & Fell 
(1994) 

Fill - 

Bishop Effective Circle 1.79 
Min. 

foundation 
strength 

34 150 45 105 5 

Parry (1968) Bishop 
Effective 

Circle 
0.93 Critical 

state Total 1.6 

Scrapsgat
e 

Bjerrum (1972) 

Fill 

Dike on 
plastic, 
organic 

clay. 

Bishop Effective Circle 1.52 
Vane test 
strength 

- 150 65 85 

- 

Ferkh & Fell 
(1994) Bishop Effective Circle 1.14 

Median 
foundation 
strength; 

cracked fill. 

5 

Selset 
Ho et al. (1997) 

Cut Boulder clay 

Morgenste
rn Price Effective Irreg 1.02 - 

28 26 13 13 40 
Skempton 

(1964) Bishop Effective Circle 0.69 Residual 

Seven 
Sisters 

Moore (1970) 

Fill 

Medium to 
highly 

plastic clay 
over plastic 

clay 

Bishop Effective Circle 1 - 

22 97 30 67 
- 

Rivard & Lu 
(1978) 

Bishop 
Effective 

Circle 0.97 Normally 
consolidate
d strength Janbu Irreg 1.04 2 

Shellmout
h  

Rivard & 
Kohuska 
(1965) Test Fill 

Well graded 
sand & 
gravel 

mixture over 
alluvial clay 
with dividing 
sand layer 

Bishop Effective Circle 0.88 - 
30 46 16 30 

1, 25, 
41 

Rivard & Lu Bishop Effective Circle 1.08 0 clay 36 
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Slope 
Name Reference Slope Type Soil Analytical 

Method 

Pore-
water 
App-
roach 

Fail-
ure 
Sur-
face 

Min 
SF 

Correc-
tion 

Slope 
Angle 
(deg) 

LL 
(%) 

PL 
(%) 

PI 
(%) Notes 

(1978) 
Janbu Irreg 1.02 

cohesion 
2, 36 

Siburua 
August 12 

Wolfskille & 
Lambe (1967) 

Fill Shaley clay 

Bishop 
Total 

Circle 
0.8 

- 22 45 24 21 28, 42 

Effective 0.97 

Morgenste
rn Price 

Total 
Irreg 

0.96 

Effective 1 

OMS 
Total 

Circle 
0.8 

Effective 0.83 

Siburua 
July 15 Fill Shaley clay 

Bishop 
Total 

Circle 
0.88 

- 22 45 24 21 28, 42 

Effective 1.02 

Morgenste
rn Price 

Total 
Irreg 

1.01 

Effective 1.05 

OMS 

Total 

Circle 

0.88 

Effective 0.88 

Siburua 
October 5 

Otoko (1987) 

Fill Compacted 
shaley clay 

Bishop Effective Circle 
0.99 

- 

22 45 24 21 

- 
0.99 

Wolfskill & 
Lambe (1967) 

Bishop 
Total 

Circle 
1.02 

- 28, 42 

Effective 1.05 

Morgenste
rn Price 

Total 
Irreg 

1.07 

Effective 1.03 

OMS 
Total 

Circle 
1.02 

Effective 0.9 

Sieve 
River 

Rinaldi et al. 
(2004) Landslide 

Silty fine 
sand over 
sand with 
cobbles 
over silty 

sand. 

Morgenste
rn Price Effective Irreg 0.978 - 65 - - - 25 

Skjeggerφ
d 

Ferkh & Fell 
(1994) 

Fill 
Fill over dry 
crust over 

clay 

Morgenste
rn Price Effective Irreg 1.06 

Min. 
foundation 
strength 15 29 18 11 5 

Flaate & 
Preber (1974) 

0   Total Circle 0.73 - 

Snake 
Pass 

Leadbeater 
(1985)  Landslide 

Shale & 
shaley clay OMS Effective Circle 0.94 

Residual 
strength - 82 20 62 9, 25 

South 
Nation 1 

Eden & Mitchell 
(1973) 

Landslide 

Champlain 
Sea 

sensitive 
marine 
clays 

Bishop Effective Circle 1.02 - 29 - - 20 - 
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Slope 
Name Reference Slope Type Soil Analytical 

Method 

Pore-
water 
App-
roach 

Fail-
ure 
Sur-
face 

Min 
SF 

Correc-
tion 

Slope 
Angle 
(deg) 

LL 
(%) 

PL 
(%) 

PI 
(%) Notes 

South 
Nation 2 Landslide 

Champlain 
Sea 

sensitive 
marine 
clays 

Bishop Effective Circle 1.02 - 20 - - 20 - 

South of 
France 

Pilot (1972) Fill 

Slightly 
muddy 

loose sand 
over muddy-
shelly-clay. 

Bishop Total Circle 1.3 Vane test 
strength 

9 65 30 35 - 

Spady 
1997 Burns (1999) Landslide Silty loam Bishop Effective Circle 1.131 - 19 39 27 12 43 

Springfield 
Dam 

Huang & 
Yamasaki 

(1993) 
Fill - 

Bishop Total 
Circle 

0.97 - 
- - - - 42 

Sarma Effective 0.77 Undrained 

St. Léon 

Lefebvre 
(1981) 

Landslide 
Soft 

Canadian 
clay 

Bishop Effective Circle 0.98 

Water filled 
cracks; 

reconsolida
ted strength 

32 53 26 27 - 

St. Vallier 
de 

Bellechas
se 1 

Landslide 
Soft 

Canadian 
clay 

Bishop Effective Circle 1.07 

Water filled 
cracks; 

reconsolida
ted strength 

31 60 23 37 - 

St. Vallier 
de 

Bellechas
se 2 

Landslide 
Soft 

Canadian 
clay 

Bishop Effective Circle 1 

Water filled 
cracks; 

reconsolida
ted strength 

- 58 21 37 - 

Sundaram 
I 

Sundaram & 
Bell (1972) 

Experiment 
Clean dry 
uniform 

quartz sand 

Bishop 

Effective Circle 

1.02 

- 90 - - - - 
Log Spiral 1.01 

OMS 1.09 

0   1.07 

Sundaram 
II Experiment 

Clean dry 
uniform 

quartz sand 

Bishop 

Effective Circle 

1.01 

- 63 - - - - 
Log Spiral 1 

OMS 1.07 

0   1.02 

Sundaram 
III Experiment 

Clean dry 
uniform 

quartz sand 

Bishop 

Effective Circle 

1.02 

- 45 - - - - 
Log Spiral 1 

OMS 1.05 

0   1.04 

Sunnyside 
Hill 

Clark et al. 
(1971) Landslide 

Silts, sands, 
& clays 

Bishop 

Effective 

Circle 0.96 

- 27 - - - - 
Morgenste

rn Price Irreg 0.98 

OMS Circle 0.9 
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Slope 
Name Reference Slope Type Soil Analytical 

Method 

Pore-
water 
App-
roach 

Fail-
ure 
Sur-
face 

Min 
SF 

Correc-
tion 

Slope 
Angle 
(deg) 

LL 
(%) 

PL 
(%) 

PI 
(%) Notes 

Thames Marsland & 
Powell (1977) Test Fill 

Sandy 
gravel fill 
over soft 

silty clay & 
clay-silt 

Bishop Total Circle 0.95 Undrained - - - 37 44 

Tianshenq
iao 

Chen & Shao 
(1988) Landslide 

Road fill 
over 

Quaternary 
alluvium & 
talus over 
Tertiary 
bedrock 

Chen 
Morgenste

rn 
Total Irreg 0.863

1 - 34 - - - - 

Tjernsmyr Flaate & 
Preber (1974) 

Fill 

Granular fill 
over peat 
over soft 
silty clay 

φ = 0 Total Circle 0.87 - 27 26 18 8 5 

Tohari 2 

Tohari et al. 
(2007) 

Experiment River Sand 

Bishop 

Effective Circle 

1.047 

Toe tension 
crack 45 - - - - 

Janbu 1 

OMS 0.999 

Spencer 1.075 

Tohari 3 Experiment River Sand 

Bishop 

Effective Circle 

1.103 

Toe tension 
crack 

45 - - - - 
Janbu 1.08 

OMS 1.082 

Spencer 1.097 

Tohari 4 Experiment Residual 
Granite Soil 

Bishop 

Effective Circle 

0.965 

- 32 - - - - 
Janbu 1.019 

OMS 1.013 

Spencer 0.966 

Ugai Ugai (1988) Experiment Wet Tyoura 
sand OMS Total Circle 0.781 - 49 - - - 45 

Ullensaker 
Kenney & 

Drury (1973) Landslide 
Retrogressi

ve quick 
clay 

Bishop Effective Circle 0.9 - 22 42 25 17 21, 46 

Usuno Kawamura & 
Ogawa (1997) 

Cut Tertiary 
mudstone 

OMS Effective Circle 0.91 Residual 30 - - - - 

Uzzano Casagli et al. 
(2006) 

Landslide 
gravelly, 

clayey, sand 
with silt 

Morgenste
rn Price 

Effective Irreg 0.966 - 24 - - - - 

Waco 
Dam 

Bowders & Lee 
(1990) Fill - 

Bishop 

Effective 

Circle 1.07 

- 27 - - - 

4 
COE 

Irreg 

1.114 

Janbu 1.043 2, 4 

Lowe 
Karafiath 

1.11 

4 
OMS Circle 0.986 

Spencer Irreg 1.03 
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Slope 
Name Reference Slope Type Soil Analytical 

Method 

Pore-
water 
App-
roach 

Fail-
ure 
Sur-
face 

Min 
SF 

Correc-
tion 

Slope 
Angle 
(deg) 

LL 
(%) 

PL 
(%) 

PI 
(%) Notes 

Waghad 
Dam 1907 

Nagarkar et al. 
(1981) 

Fill 

Highly 
plastic 

expansive 
black clay 

Bishop 

Effective Circle 

0.83 

- 26 70 35 35 27, 42 
0   0.72 

Waghad 
Dam 1919 Fill 

Highly 
plastic 

expansive 
black clay 

Bishop 

Effective Circle 

0.99 

- 26 70 35 35 27, 42 
0   0.61 

Waghad 
Dam 1976 

Fill 

Highly 
plastic 

expansive 
black clay 

Bishop 

Effective Circle 

0.99 

- 26 70 35 35 27, 42 
0   0.89 

Walter 
Bouldin 

Dam 

Duncan et al. 
(1990) 

Fill Clay, silt, & 
sand 

COE 

Effective Circle 

0.93 

Rapid 
drawdown 

22 47 30 17 - 

 
Lowe 

Karafiath 
 

1.09 

Wong et al. 
(1982) 

Bishop 
Effective 

Circle 

0.98 

Rapid 
drawdown 

Total 1.27 

COE 

Effective 

0.99 

Lowe 
Karafiath 

 
1.14 

Welland Kwan (1971) Test Cut 

Lacustrine 
clays, clay 
tills, & non-
plastic tills. 

Bishop 
Effective 

Circle 

0.9 

- 90 40 20 20 1 
OMS 

1.07 

Total 1.16 

Yamaska Lefebvre 
(1981) Landslide 

Soft 
Canadian 

clay 
Bishop Effective Circle 1.04 

Water filled 
cracks; 

reconsolida
ted strength 

28 53 26 27 - 

 
Table 1. Slope failure database 

Notes 
 

1. Atterberg limits averaged over slip surface. 
2. Not specified if Janbu SF was corrected or uncorrected. 
3. Reported Atterberg limits are specific to foundation soil only.   
4. Slope angle was approximated from report figure. 
5. Soil strength determined from uncorrected vane testing. 
6. Janbu SF is corrected. 
7. A lower SF was reported but appeared to be back analyzed.   
8. Non-uniform mobilized shear strength calculated by finite element analysis. 
9. Atterberg limits averaged over depth. 
10. Safety factor estimated from figure. 
11. Atterberg limits are specific to clay only.  A pseudo-static seismic analysis was included but not 

reported here. 
12. Bishop’s method indicated indirectly from citation. 
13. Soil strength determined from the simple shear test. 
14. Author reports using OMS but considers only cohesion and thus the  = 0 method was actually 

used. 
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15. Soil strength was determined from a combination of lab and uncorrected vane tests. 
16. PI estimated from figure. 
17. Soil strength back calculated but confirmed by lab analysis. 
18. Soil strength determined by borehole shear testing.  Slope stability analysis is OMS modified for 

planar failure (infinite failure radius). 
19. Rapid drawdown analysis per Duncan et al. (1990). 
20. The force equilibrium method described is equivalent to COE. 
21. Median Atterberg limits reported here. 
22. Author also suggests correcting for progressive failure. 
23. Slope includes a retaining wall. 
24. Failure took place completely within the fill & liner system. 
25. Soil strength was determined by tri-axial testing. 
26. Foundation soil strength determined by vane testing. 
27. Soil strength determined by direct shear test.   
28. Embankment strength determined by unspecified laboratory testing. 
29. Soil strength determined by a combination of both laboratory and vane testing. 
30. Slope angle not reported. 
31. Soil strength determined by consolidated undrained tri-axial tests. 
32. Progressive failure believed to have occurred. 
33. Unjustified φ = 0 results not reported here. 
34. Atterberg limits reported did not include the contribution from a thin sand layer. 
35. Safety factor averaged over 44 cross sections. 
36. The intact soil strength was used in the analysis. 
37. Safety factor reported here from the lower phreatic surface calculations (per author’s 

recommendations). 
38. A wide range of assumptions is explored by the authors.  The minimum SF reported here is the 

lower bound author recommended value. 
39. Soil strength determined from a ring shear test. 
40. Min SF calculated using peak strength values. 
41. A 2nd SF was reported but method used was not clear and so is not included here. 
42. Slope failure occurred completely within the embankment material. 
43. Soil strength determined by unspecified laboratory testing. 
44. Plasticity index is averaged over failure depth. 
45. Small scale slope model. 
46. The safety factor was given as 1 +/-  0.10. 

 

Analysis 

Descriptive Statistics 

The meta-analysis database consists of 301 safety factor (SF) calculations 

of 157 different slope failures as reported in 83 publications spanning more than 5 

decades.  One complexity inherent to the database was the tendency for analysts 

to consider more than one slope in a publication or utilize more than one method 

of analysis for a particular slope.  Some publications even included multiple 
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analyses of multiple slopes with multiple methods.  Here, all SF calculations are 

assumed to be independent.  The justification for and implications of this 

assumption may be found in Chapter 3. 

Certain slopes proved quite popular in the literature, particularly the 

Lanester test fill failure (six publications) and the Bradwell cut slope failure (five 

publications).  The overall SF database had a range of 0.47 1.81SF  , a mean 

of 1.05, a median of 1.02, and a standard deviation of 0.22.  The average values 

seem reasonably close to 1, and the standard deviation is consistent with other 

studies of individual slopes, including Mostyn and Small (1987) and Wu et al. 

(1975). 

Distribution Fit 

Historically, SF distributions have been assumed as either normal (e.g. 

Christian et al., 1994) or log normal (e.g. Duncan and Wright, 2005).  These 

assumptions are seen to bookend Box-Cox transformations from λ = 0 (log normal 

distribution) to λ = 1 (normal distribution), where λ is the Box-Cox transformation 

variable.  Therefore, the SF database was investigated by the Box-Cox analysis at 

95% confidence.  The results indicate that the log-normal fit was the most 

applicable ( 0.34 0.63   , recommended value for λ = 0.0).  Other standard 

distributions were also considered (Weibull, gamma, etc.), but none were 

convincingly better.  For this reason, and since the log normal distribution is 

widely known and applied to risk analysis, the log normal distribution was used 

here. 
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For the transformed database, the mean SF was 1.03 (corresponding to a 

log transformed value of 0.0135) and the standard deviation was 0.087.  Figure 2 

shows the normality plot.  While the overall fit is reasonable, strong curvature is 

also evident, suggesting that modeling the database as a simple distribution is not 

sufficient; the contributions from individual slope factors need to also be 

considered.  In response, Chapter 3 explores and models the effects of the 

individual slope factors, largely resolving the curvature seen in Figure 2. 

 

Figure 2. Normality plot of log SF 

Trends 

The potential that the predicted mean SF and SF variability may have 

changed over time was investigated.  Indeed, the objectives of responsible 

engineering science must include improved accuracy and reduced scatter over 

time.  Ideally then, one would hope that the published safety factor predictions for 
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failed slopes would tend to converge to 1 with declining deviation over last the 

five decades. 

Figure 3 shows reported SF values versus reference publication date.  The 

data exhibits considerable scatter.  Little change is seen over time, both in terms 

of mean SF and variance (e.g. no evidence of heteroskedasticity).  These 

observations were initially tested by regressing SF values onto publication date.   

Both raw and log transformed data were considered.  The results were as 

follows:   

 Overall, both the linear and log models were statistically significant 

( 2R 0.02 , F 7.0 , p 0.01 ; 2R 0.03 , F 8.0 , p 0.005 ).   

 Contrary to what would be ideal, SF prediction was not found to 

improve over time.  The linear model indicated that average SF 

increased from 0.98 in 1956 to 1.11 in 2007.  Similarly, the log 

transformed model indicated that mean SF predictions increased from 

0.96 in 1956 to 1.09 in 2007.   

 Variability change over time was investigated by White’s test for 

heteroskedasticity (White, 1980); the results were not significant for 

either the linear or the log model ( 2χ 0.57 , p 0.75 ; 2χ 0.48 , 

p 0.79 ).   

Unfortunately, resulting conclusions from the regression approach are 

potential invalid, since highly significant lack of fit metrics were measured for 

both the linear and log-transformed models ( F 2.7 , p 0.0005 ; F 2.8 , 

p 0.0005 ).  Attempts were made to reduce lack of fit by adding polynomial 



39 
 

terms, but this proved unsuccessful.  Regression analysis was therefore judged 

inconclusive.  

With lack of fit making analysis by regression problematic, analysis by 

subsetting was considered.  Specifically, the database was divided as evenly as 

possible into two sub-databases made up of the 155 SF calculations published 

before 1984 and the 146 published in 1984 and later (see Figure 4).  Mean value 

differences were evaluated with the two-factor T-test and variance differences 

were evaluated with the F-test.   

No significant differences were found between subset mean values for 

either the linear or log transformed data ( T 1.44 , p 0.15 ; T 1.56 , p 0.12 ).  

Likewise, no differences were found between the subset variances of either the 

linear or log transformed data ( F 1.1 , p 0.56 ; F 0.90 , p 0.51 ).  Unlike 

regression, subsetting indicated that neither SF prediction nor variance have 

significantly changed over time. 
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Figure 3. Minimum SF (over all methods) vs. reference publication year 
 

 

Figure 4. Box plot of Log 10 SF values before and after 1984 
 

Legend 

Mean 
Median 
Outlier 
Interquartile range 
Non-outlier limit 
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Analytical Methods 

Thirteen separate methods of stability analysis were reported in the 

database, and their popularity is shown in Figure 5.  The Simplified Bishop’s 

method was the most popular method, accounting for nearly 45% of the database.  

The 0   method and Ordinary Method of Slices (OMS) each made up about 

11% of the total.  These two methods coupled with the wedge method, infinite 

slope, and log spiral make up the direct analytical methods (methods that require 

only one or two equations to be solved).  Direct methods accounted for about 28% 

of the database.  Force equilibrium methods, consisting of Janbu (simplified 

corrected, simplified uncorrected, and complete), Corp of Engineers Modified 

Swedish (COE), and Lowe-Karafiath, made up 14%.  These methods require 

iterative solution for the SF and satisfy force equilibrium only.  The complete 

equilibrium methods by Spencer, Morgenstern-Price, Chen-Morgenstern, and 

Sarma, made up the remaining 14%.  The least used analytical method was Chen-

Morgenstern, which accounted for only one calculation (0.3%). 

 



42 
 

 

Figure 5. Database partitioned by analytical method 

Correction Factors 

Correction factors were used in just over half of the minimum safety 

factors reported (51% of the total number of SF calculations).  Often two or more 

correction factors were applied to a single SF calculation.  Six common correction 

factors were identified that accounted for 97% of the total number of corrections; 

other factors, usually specific to the region where the slope failure occurred, made 

up the remaining 3% (see Figure 6).  The most common correction was reduced 

soil strength, which accounted for about 43% of all the corrections, and included 

residual, critical state, fully softened, and all other reduced strength 

considerations.  Porewater considerations, used to correct for drained, undrained, 

or rapid drawdown conditions, accounted for 20% of the total; the remaining 
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corrections were cracks (19%), vane strength (10%), time effects (3%, included 

consolidation and strain rate), and SHANSEP (3%). 

 

Figure 6. Database partitioned by correction factors 

 

Slope Type 

As seen in Figure 7, 73% of slope failures were engineered slopes as 

opposed to 27% landslides.  Of the engineered slopes, fill slopes were the most 

common (40%).  The remaining slopes were cut (10%), test cut (2%), test fill 

(15%), and experiment (6%).  Note that the cut sub-database was generalized to 

include test cut data in subsequent analyses, since the small number of test cut 

slopes (4 in total) precluded its use in the higher order statistics and hypothesis 

testing. 
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Figure 7. Database partitioned by slope type 

Effective vs. Total Stress 

The vast majority of calculations assumed effective stress conditions (71% 

of the total), indicating that implementing porewater pressures directly into the 

analysis is no longer considered unacceptably difficult, presumably a result of the 

prevalence of computer aided analysis. 

Failure Surface Geometry 

The failure surface geometry was primarily driven by the analytical 

method employed.  The configuration of the database consisted primarily of 

circular failure surfaces (74% of the total) and irregular failure surfaces (22% of 

the total).  Planar failure surfaces (wedge and infinite slope) accounted for the 

remaining calculations (4%).  Because the failure surface typically corresponds 

with analytical method (Bishop’s method requires a circular slip surface, wedge 
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method requires a planar slip surface, etc.) the differences between calculated SF 

values for different slip geometries was not further investigated. 

Implications 

The existing slope failure literature, as reflected in the compiled database 

here, shows considerable diversity across all model factors.  Descriptive analysis 

by Box-Cox indicated that the database was best fit by a constant log normal 

statistical distribution, with a corresponding mean of 1.03 and sd of 0.087.  

Unfortunately, the pronounced curvature of the residuals indicates the presence of 

unmodeled contributing factors.  Thus, SF calculations are inadequately modeled 

by descriptive statistics alone; the effects of the slope parameters must be 

modeled as well.  In response to this need, Chapter 3 extends the meta-analysis 

inferentially, utilizing applied statistical analysis to identify, understand, and 

quantify the particular contributions of each of the slope parameters. 
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CHAPTER 3.   STOCHASTIC ASPECTS OF SLOPE FAILURES 

There are no facts, only interpretations. 
 

– Frederick Nietzsche 
Introduction 

Chapter 2 introduced a database of 157 slope failures and corresponding 

301 safety factor calculations culled from available literature.  This database 

included not only minimum safety factor (SF) calculations for each failure, but 

also tabulated the analysts’ model assumptions, specifically pore water pressure 

approach (effective versus total stress), slip surface geometry (planar, circular, 

and irregular), two dimensional limit equilibrium (2DLE) method, and applied 

correction factor(s), if any.  The SF database was approximated by a log normal 

distribution, but considerable curvature of the residuals indicated significant 

unmodeled slope factors.   The general conclusion was that SF calculation for 

failed slopes is inherently uncertain, and responsible modeling of the data must 

include the contributions of the slope factors. 

Unfortunately, some of these factors are controllable by the analyst and 

some are not.  Analysis method and slip surface geometry assumptions are 

elements that the analyst can control.  Given enough information, the analyst may 

be able to adequately model porewater effects.  The analyst cannot control soil 

heterogeneity, which is likely the most significant complicating factor (Christian 

et al., 1994).  Directly affecting that latter are differences between the actual and 

sampled soils (sample disturbance, strength anisotropy, vane strength bias in clay 

soils), temporal changes (strain rate, consolidation, creep), hydraulic conductivity 
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variation, slope integrity (cracking), and strain softening (peak versus mean 

versus reduced versus residual strength).   

The uncertainty and biases of some of the specific factors involved in SF 

calculation have been investigated in existing literature.  Therefore, the first 

section of this paper utilizes this work to predict how and to what extent these 

factors are expected to influence the SF database.  These predictions are then 

tested against the data by hypothesis testing.  In particular, Analysis of Variance 

(ANOVA) testing is utilized to identify those factors that have significant main 

effects on SF calculation and evaluate possible interaction effects.  Finally, a 

reduced ANOVA model of SF calculations is established, and the resulting 

practical implications for slope stability analysis are explored. 

Expected Uncertainties / Biases 

General 

It is reasonable to assume that uncertainty and bias is introduced to 2DLE 

analysis from the uncertainty and bias of its inputs.  Yet even if the effects of 

these inputs are disregarded, there may be uncertainty and bias that is 

fundamental to the 2DLE approach.  Kim et al. (1999) note that 2DLE does not 

satisfy flow, compatibility, pre-failure constitutive requirements, and (at best) 

satisfies moment and force equilibrium in only a global sense, whereas a rigorous 

solution must meet equilibrium requirements at every point along a potential slip 

surface (see also Krahn, 2003). 

Another fundamental limitation of 2DLE is that actual slopes are three 

dimensional, not two-dimensional.  In response to this limitation, limit 
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equilibrium has been generalized to three dimensions (3DLE).  Three-dimensional 

limit equilibrium (3DLE) is reported by Azzouz et al. (1981) to increase predicted 

SF compared with 2DLE by as much as 30%, a minimum of 7%, and an average 

of 14%.  Ugai (1988) reports an analysis of the Ontake landslide yielded a 3DLE 

SF of 5% to 30% greater than that predicted by 2DLE.  Arellano and Stark (2000) 

reported a 10% increase between 3DLE and 2DLE SF analysis for the Oceanside 

Manor landslide.  However, Byrne et al. (1992) found only a modest increase of 

about 5% for 3DLE over 2DLE when analyzing the Kettleman Hills landfill 

failure, and Sainak (1999; 2004) showed that 3D finite element analysis (3DFEM) 

can actually produce safety factors 30% lower than predicted by 2DLE, 3DLE, 

and 2DFEM.  This finding was supported by Seed et al. (1990) which showed a 

reduction of about 9% for a 3DFEM reanalysis of the Kettleman Hills landfill 

failure.  Despite the possibility that 3D slope stability calculations can produce 

lower SF then 2DLE, the 3D analyses in the literature are usually argued to 

indicate that 2DLE is inherently conservative (e.g. Arellano and Stark, 2000; 

Christian et al. 1994). 

Failure Surface Model 

Christian et al. (1994) point out that there is an inherent non-conservative 

bias inherent to 2DLE methods since the analyst must find the failure surface that 

will produce the lowest SF, and estimates this bias to be 5% of the computed SF.  

For steep slopes, this bias is further compounded by an observed tendency for the 

critical geometry to lie in close proximity to non-convergent geometries for some 

analytical methods (Krahn, 2003).  It is therefore expected that, for a given 
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analytical method, modeling of the slip surface with simple geometry assumptions 

(circle, planar, log spiral) will produce higher SF values then utilizing the more 

versatile irregular slip surface.  However, a number of sources indicate that most 

failures are circular failures (e.g. Flaate and Preber 1974) and there is some 

evidence that even non circular failure surface may actually result from rapid 

progressive circular failures (Burridge 1987). 

Analytical Method 

Beyond general criticisms of 2DLE, the particular analytical methods of 

2DLE have both advocates and detractors.  A brief discussion follows of some of 

the issues specific to particular methods. 

Infinite Slope 

The infinite slope procedure allows a direct solution for SF by assuming 

an infinite failure plane parallel to an assumed perfectly linear slope surface.  

Solution is typically achieved by rotating the Cartesian access to align with the 

slope, with the x’-axis parallel to the slope and the y’-axis perpendicular.  Implied 

by the coordinate transformation, but sometimes neglected in practice and the 

literature, is the requirement that all applied forces are independent of x’ (Iverson 

1990, 1997).  When applied correctly, the infinite slope procedure satisfies both 

force equilibrium and moment equilibrium.   

Wedge 

The wedge method assumes one, two, or three planar failure surface(s) 

and thus collapses to the infinite slope procedure if oriented parallel with the 
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slope.  Otherwise, forces and moments are summed about the failure surface to 

satisfy force and moment equilibrium.  Safety factors are usually obtained directly 

using simple algebra. 

LOGARITHMIC SPIRAL 

The only direct solution 2DLE method that allows a curved failure surface 

and satisfies both force and moment equilibrium is the logarithmic spiral (Duncan 

& Wright, 2005).  The restriction of failure surfaces to a logarithmic spiral 

appears to be its only real limitation.  Although no more difficult to apply by 

computer then some of the higher order methods, it has not been used much for 

analysis of actual slope failures; the present database contains only three 

logarithmic spiral calculations. 

0   (SWEDISH CIRCLE) 

The 0   method assumes that the Coulomb friction angle   is zero.  

Also referred to as the Swedish Circle method, the 0   method has historically 

been a popular total stress analysis procedure, particular for clay slopes where the 

cohesion is typically much greater than the friction angle effect.  The method is 

equivalent to the logarithmic spiral analysis where a zero friction angle is 

assumed (Duncan & Wright, 2005).  Thus, the resulting failure surface is circular, 

which simplifies the calculation, and complete equilibrium is satisfied.  

Unfortunately, the appeal of this simple procedure has led to analysts occasionally 

ignoring significant friction angles, resulting in inaccurate (but conservative) 

safety factors.  For example, the procedure has been applied to fill slopes on clay 

which not only neglects the friction angle of the clay, which can be significant, 
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but also the friction angle of the fill, which is typically much greater than its 

cohesion.  Thus, the 0   method is expected to generate SF values less than the 

actual value for soils with significant friction angles. 

Ordinary Method of Slices (OMS) 

The Ordinary Method of Slices (OMS) satisfies moment equilibrium for a 

circular failure surface  and directly calculates SF by assuming the interslice 

forces are zero.  For an infinite radius, OMS thus collapses to the undivided 

wedge method.  Taylor (1948), Whitman and Moore (1963) both argue that OMS 

is inaccurate.  Duncan & Wright (1980) note that OMS typically underestimates 

SF compared to other methods of slices, particularly for slopes with high pore 

water pressures modeled by effective stress analysis.  The assessment that OMS is 

significantly conservatively biased appears to be so widely held that some slope 

failure analysts automatically conclude OMS is less accurate than other methods, 

even when they have found evidence to the contrary (see Moore, 1970 and 

Sundaram & Bell, 1972).  One complicating factor is that some analysts report SF 

calculations as based on OMS when in actuality they have assumed a zero friction 

angle and thus their method of solution is therefore actually the 0   method 

(e.g. Hanzawa et al., 2000). 

Simplified Bishop 

The Simplified Bishop method (henceforth described as just the Bishop 

method) is a method of slices that assumed the interslice forces are horizontal.  

Bishop’s method satisfies moment equilibrium but satisfies force equilibrium in 



52 
 

the vertical direction only.  Like OMS, a circular slip surface is assumed.  The 

safety factor is computed by iteration.  The Bishop method has been historically 

very popular, particularly because it is relatively simple to apply yet usually 

reported to closely agree with the higher order 2DLE methods. 

The Bishop method, like all the higher order methods, can sometimes 

indicate inappropriate stresses along the slice boundaries and at the slip surface 

toe (Duncan & Wright, 2005).  

Janbu 

Janbu introduced two methods of 2DLE analysis that satisfy force 

equilibrium but not moment equilibrium: the Simplified Janbu and Janbu’s 

Generalized Procedure of Slices (GPS).  (The latter is sometimes referred to as 

Janbu’s Rigorous method.)  The GPS method introduces a line of thrust 

description to model the interslice force.  The Simplified Janbu model is so called 

because it is the GPS model simplified by assuming the interslice forces are 

horizontal. Like all of the force equilibrium methods, an irregular failure surface 

is allowed for both methods and solution must be obtained by iteration.  The 

assumption of horizontal interslice forces used by the Simplified Janbu method 

was justified by Carter (1971) who found that the SF actually varied according to 

the vertical coordinate used to sum moments about a slice and therefore 

concluded that the only consistent vertical coordinate for any force analysis is 

infinity, corresponding to horizontal force equilibrium.  However, Carter’s 

conclusion was contradicted by Boutrup et al. (1979) which found the SF 

calculated in this manner is actually a maximum when the circular slip surface 
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intersects the top of the slope at a steep angle.  They concluded that Janbu is non-

conservative for deep failure surfaces that intersect the ground surface at the top 

of the slope at angles greater than 60 degrees.   

Another persistent issue with Janbu’s Simplified method is that, in 

practice, it is not always reported if the original or corrected Janbu procedure is 

being applied (Duncan & Wright, 2005).  The Janbu correction, as approximated 

by Abramson et al. (2002), raises the estimated SF up to 13%.  Uncorrected 

Simplified Janbu SF calculations are therefore expected to be biased 

conservatively. 

Another challenge of interpreting the database is that analysts did not 

always state the Janbu method used.  Furthermore, it is difficult to identify the 

Janbu method used by cited reference, since there appears to be no standard 

reference for either of Janbu’s methods.  As a result, analysts were found to 

sometimes cite difficult to obtain conference papers, titles in other languages, and 

particular applications of an unspecified Janbu method reported by other authors. 

Fortuitously, identifying the particular Janbu method used is not critical 

for this chapter.  The limitations of the meta-analysis as applied here requires all 

force methods to be grouped as a particular subset, and since both of Janbu’s 

methods are force methods, the specific Janbu method used for the SF analysis is 

not directly relevant.  Therefore, both of Janbu’s methods were designated by 

Janbu’s name only, and reported so in the database, although specific information 

regarding the Janbu method used was sometimes included in the table footnotes 

(see Table 1 in Chapter 2). 
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Lowe & Karafiath 

The Lowe & Karafiath procedure satisfies force equilibrium by assuming 

the interslice forces are included at the average angle formed between the ground 

surface and slip surface.  Duncan & Wright (2005) recommend Lowe & Karafiath 

as the force method that produces the best results.  It is presumed, but not 

typically discussed in the literature, that the issues expressed by Carter (1971) and 

Boutrop et al. (1979) would also be applicable to the Lowe & Karafiath 

procedure. 

Corp of Engineers Modified Swedish (COE) 

The primary limitation of the U.S. Army Corps of Engineer’s Modified 

Swedish (COE) force equilibrium method is an uncertainty as to the procedure’s 

assumption of interslice force inclination, which can be interpreted in several 

different ways.  Unfortunately, force equilibrium safety factors are quite sensitive 

to the assumed force inclination, with differences up to 25% (Duncan & Wright 

2005).  Thus, significant differences would be expected between COE safety 

factors produced by different analysts.  Coupled with the Carter (1971) and 

Boutrop et al. (1979) observations on force equilibrium procedures, some 

inaccuracy of COE would be expected in practice.  It is not clear, however, 

whether this inaccuracy would be conservative, non-conservative, or unbiased. 

Spencer’s Method 

Spencer’s method assumes all interslice forces are inclined at the same 

angle, the value of which is solved by complete equilibrium.  Probably the most 

popular method of slices that satisfies complete equilibrium and allows irregular 
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failure surfaces, in practice Spencer’s method can be difficult to apply due to 

convergence problems.  Indeed, Boutrup et al. (1979) rejected Spencers method 

for their STABL program for this reason. 

Spencer’s method, like all the complete equilibrium methods, is 

computationally intensive, requiring simultaneous solution of the three static 

equilibrium equations for each slice. 

Morgenstern and Price 

The Morgenstern and Price complete equilibrium method extends 

Spencer’s method to allow the interslice resultant force angles to change direction 

between slices, with the inclination function specified by the analyst.  The normal 

force location is also specified by the analyst.  Despite the seemingly arbitrary 

nature of these inputs, the resulting SF calculation seems to be fairly robust to 

different assumptions (Duncan and Wright, 2005). 

Chen and Morgenstern 

The Chen and Morgenstern procedure, which also satisfied complete 

equilibrium, adds another analyst specified function to the Morgenstern and Price 

algorithm to align the interslice forces with the slope.  The result is reported to 

restrict the number of solutions for the SF. 

Sarma’s Method 

Sarma’s complete equilibrium method was developed to calculate directly 

the seismic coefficient given a known SF.  When applied outside of earthquake 

modeling (e.g. the seismic coefficient is zero), Sarma’s method becomes a 
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modification of the Morgenstern and Price procedure where the interslice forces 

are assumed proportional to the shear strength.  For frictional materials, this 

requires the analyst to specify the distribution of normal forces across each slice 

(Duncan & Wright 2005). 

Porewater Pressure 

Porewater pressure introduces forces that can be destabilizing or 

restorative depending on the failure and slope geometry.  The two basic 

approaches for including porewater pressure in the analysis is effective or total 

stress analysis.  For total stress analysis, the porewater pressures are included 

implicitly in the strength parameters.  For effective stress analysis, the porewater 

pressures introduced explicitly as contributing forces in the 2DLE formula.  

Effective stress analysis is generally perceived as more accurate (e.g. Pilot et al. 

1982).  With the advent of the computer, effective stress analysis has become less 

computationally difficult and is now often used in practice. 

Slope Type 

Failed slopes may be divided into five categories depending on available 

information and control over the slope characteristics.  The failed slope with the 

least known information is clearly a landslide, where natural soil conditions are 

often anisotropic and the slope geometry typically nonlinear and three-

dimensional. On the other hand, engineered slopes are better controlled, better 

understood, and typically more accurately described with simple parameters.  In 

order of increasing information and control, the engineered slopes are cut, test cut, 
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fill, test fill, and experiment slopes.  Note that test cut and test fill slopes are full 

scale experiments done in the field, whereas experiment slopes here refer to 

typically smaller scale slopes brought to failure under strict laboratory conditions.   

Greater information and control should reduce uncertainty and raise model 

accuracy, suggesting that the failure of engineered slopes should be more 

predictable than landslides.  But engineered slopes often fail over smaller time 

scales due to consolidation and transient porewater effects not typically as active 

in most landslides.   Given these complications, 2DLE predictions are not 

expected to be equally accurate over all slope types.  In particular, Krahn (2003) 

argued that those methods satisfying complete equilibrium are the most accurate 

for natural slopes, and Ferkh and Fell (1994) observed that cut slopes and 

riverbanks fail at higher SF than other slopes.   

Correction Factors 

To account for the perceived limitations of 2DLE, correction factors are 

usually introduced when safety factors have been found to deviate significantly 

from 1 for a slope at failure.  These correction factors may be specific to slope 

location, soil tests, soil types, anisotropy, etc.  The most popular correction factors 

are:  

 SHANSEP.  Developed by Ladd and Foott (1974) and often referred 

to by its acronym, the Stress History and Normalized Soil 

Engineering Properties (SHANSEP) correction attempts to account 

for sample disturbance and strength anisotropy.  The importance of 

this correction is supported by Wong et al (1982) who estimated that 



58 
 

soil sampling and lab testing uncertainty can result in errors up to 

20% in safety factor calculation at slope failure.   

 Reduced strength.  These correction factors correspond to the fully 

softened, residual, recompressed, or otherwise reduced soil strength 

as opposed to the mean strength indicated by soil testing.   Sometimes 

the peak strength is used corresponding to a correction factor greater 

than 1 (non-conservative). 

 Integrity.  The possibility of cracks is often a judgment call by the 

analyst and may significantly change the computed SF. 

 Strain rate / Consolidation / Creep.  The mismatch between the 

field loading rates, usually occurring over weeks, and lab loading 

rates, usually imposed over minutes, can result in inaccurate test 

estimates of soil strength.  While not typically accounted for (Duncan 

& Wright, 2005), field loading correction factors do exist and are 

sometimes applied (e.g. Wolski et al., 1989; Hanzawa et al., 2000). 

 Anisotropy.  Duncan & Wright (2005) note that anisotropy arises 

from both inherent soil properties and stress configuration within the 

slope.  Corrections for anisotropy have historically been lumped into 

other corrections such as vane strength, etc. 

 Vane strength.  Much work has been contributed to the literature on 

correction factors for vane strength measurements of plastic soils, 

established to account for anisotropy and creep strength loss.  The 

original vane strength correction factor is usually attributed to 
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Bjerrum (1972), later revised by Bjerrum (1973) and Ladd et al. 

(1977).  This correction factor is empirical, typically based on a linear 

regression of minimum safety factor versus plasticity index (PI). 

 Porewater Pressure.  Some analysts choose to apply correction 

factors to account for rapid drawdown and other effects of porewater 

pressure because either a total stress approach is utilized or it is 

argued that the effective stress utilized under predicts the porewater 

effect. 

Analyst Differences 

Different analysts bring their own experience and abilities to slope 

stability analysis, and can reach much different conclusions from the same data 

(Christian, 2004).  These differences can arise from simple modeling decisions, 

such as the number and locations of internal slices, interslice force assumptions, 

slip geometry type and location, and judgment as to when the minimum SF has 

been reached.   

Mostyn and Small (1987) reported on a survey of 20 engineers who solved 

the same slope problems.  They found an average SF standard deviation (sd) of 

0.18ds   between analysis calculations of the same circular failure problem.  For 

non-circular failure surfaces the difference between analysts was greater, with 

0.26ds  .  While it is unknown if these results would be consistent for a larger 

database of analysts, it is likely that analyst differences contribute significantly to 

the inherent statistical nature of SF analysis. 



60 
 

Summary 

Despite the criticisms of specific 2DLE analytical methods, many argue 

that higher order 2DLE methods (force methods, complete methods, and arguably 

Bishop’s method) produce SF values with no significant difference between them 

(e.g. Bjerrum, 1972; Christian et al., 1994).  Consistent with this assumption, 

publications sometimes report the result of a limit equilibrium analysis but leave 

the corresponding 2DLE method unspecified (e.g. Chiasson & Wang, 2007).  

Indeed, Yu et al. (1998) argue that Janbu, Spencer, Morgenstern and Price, and 

any other method satisfying complete equilibrium will produce safety factors 

within 5% of each other, with the caveat that this consistency does not necessarily 

imply overall accuracy of the limit equilibrium approach.   

In terms of the 2DLE approach in general, the position of the engineering 

community at the present time appears to be that 2DLE safety factors are often 

biased conservatively compared to its true value (e.g. Babu and Bjoy, 1999; Singh 

et al., 2008).  One geotechnical argument for this position is that slope stability 

modeling does not always include matric suction in the analysis, the binding 

effect of which would tend to increase calculated SF (although not always; see 

Travis et al. 2010a). 

Database Testing 

The database reports 301 minimum SF calculations for 157 failed slopes.  

Detailed database information may be found in Chapter 2. 



61 
 

SF Method, Slope Type, and Stress Approach Differences 

Limit equilibrium analysis utilizes a number of different factors.  

Statistical hypothesis testing using Analysis of Variance (ANOVA) was used to 

investigate potential differences between and within these factors.  Differences 

between SF values were investigated as a function of analytical method (grouped 

into direct, Bishops, force, and complete methods), stress approach (effective 

versus total), and slope type (fill, test fill, experimental, and cut slope, where the 

cut slope factors included the four “test cut” SF calculations to ensure an adequate 

number of cell values).  An unbalanced model was implemented since the number 

of replicates was not the same in all cells, which is, of course, an inherent (albeit 

unfortunate) characteristic of a meta-analysis. 

An additional complication of the ANOVA analysis was that the number 

of SF calculations varied per slope.  For example, as seen in Table 1 of Chapter 2, 

the Narbonne fill slope failure) had four published SF calculations whereas the 

Sieve River landslide had only one.  Moreover, many studies analyzed more than 

one slope, introducing yet another complication.   

The appropriate interpretation of multiple responses from the same source, 

as seen here, is a typical challenge for meta-analyses in general.  Bijmolt and 

Pieters (2001) investigated a number of reasonable approaches to the problem, 

including simply ignoring the issue (assumes all response are independent), 

introducing weighted factors, selecting single representative values, and 

establishing nested relationships between responses.  They concluded that the best 

method was utilizing a nested model.  Unfortunately, a nested model would be 
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difficult to implement in the present work because there are not only multiple 

analyses of some slopes by different analysts but also multiple slopes analyzed by 

the same analysts, and even overlap between the two (e.g. some slopes analyzed 

by multiple analysts were also included in studies of multiple slopes by a single 

analyst). 

As an alternative to a fully nested approach, Bijmolt and Pieters (2001) 

recommend simply considering all responses as independent, even though this 

approach may introduce unjustified noise.  Therefore, while the present analysis 

proceeds accordingly, it is possible that some of the main effects and interactions 

will be significant even if the analysis indicates otherwise.  For this reason, while 

only probability levels (“significance levels”) below 5% ( p 0.05 ) will be 

referred to a statistically significant, probability levels below 10% 

( 0.05 p 0.10  ) will also be identified and reported as borderline significant.  

Note that the assumption of independent data is consistent with the apparent 

homoskedasticity of the database, as shown in Chapter 2. 

Preliminary analysis indicated that the database contained enough data 

points to generate all main effects and first order interactions.  Unfortunately, the 

overall three factor interaction could not be computed with the number of data-

points available (that is, the available degrees of freedom were not adequate), but 

this limitation may not significant since interactions between three or more factors 

are often negligible from a practical standpoint.  Therefore, per standard practice, 

the overall interaction term was aliased and used as part of the overall model error 

estimate.  A Box-Cox analysis recommended a log (base 10) transform of the 
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response (SF) in order to meet the ANOVA assumptions of residual normality, 

independence, and constant variance, consistent with the overall database analysis 

reported in Chapter 2.  Design Expert version 7.1.6 was used to process the 

ANOVA with the transformed SF values.  The residuals of the transformed model 

were inspected and no obvious violation of the ANOVA assumptions was 

observed, and no evidence of a lack of fit was indicated (p = 0.14). 

Source 
Sum of 
squares 

Degrees 
of 
freedom

Mean 
square F 

p-
value 

Overall Model 0.45 27 0.017 2.44 0.0002
Slope Type 0.015 4 0.00375 0.55 0.6961
Analytical Method 0.086 3 0.029 4.25 0.0059
Porewater Approach 0.020 1 0.020 2.96 0.0864
Slope Type x Analytical 
Method 

0.14 12 0.012 1.72 0.0621

Slope Type x Porewater 
Approach 

0.10 4 0.026 3.86 0.0045

Analytical Method x 
Porewater Approach 

0.005727 3 0.001909 0.28 0.8385

Residual 1.85 273 0.006772   
      
Lack of fit 0.073 7 0.010 1.57 0.1448
Pure Error 1.78 266 0.006675   
Corrected Total 2.29 300    

 
Table 2. ANOVA analysis results 

 
 The ANOVA results (Table 2) indicated that the overall model accurately 

described the data (p < 0.0005).  The only clearly significant main effect was 

analytical method ( p 0.01 ) although the porewater approach was also borderline 

significant ( p 0.09 ).  Slope type was not a significant contributor to the model 

in terms of main effects ( p 0.70 ) but was part of a significant interaction with 

porewater approach ( p 0.005 ) and part of a borderline significant interaction 
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with analytical method ( p 0.06 ).  Analytical method and porewater approach 

did not interact significantly ( p 0.84 ). 

These results are consistent with the prevalent opinion that there are 

differences between safety factor calculation methods and differences between 

total and effective porewater stress analysis.  The lack of evidence for a 

significant slope type effect is somewhat surprising, however, although it does 

appear to play a significant role as an interaction term. 

The foregoing ANOVA analysis is descriptive but complicated by 

insignificant terms.  A better understanding of the underlying factors as well as 

the ability to make confident predictions about future events requires a reduced 

ANOVA model.   ANOVA reduction is accomplished by removing insignificant 

factors and interactions, thus creating a well-defined essential model that 

minimizes risk of overfitting.  The reduction process is also characterized by 

careful consideration of the residual analysis, ensuring that the final model 

conforms to normality assumptions and is therefore appropriate for risk analysis. 

Model reduction was implemented here by a backward algorithm based on 

significance.  This process first eliminated the Slope Type main effect, then the 

Analytical Method versus Porewater Approach interaction, and finally the 

Porewater Approach main effect.  The reduced ANOVA model is shown in Table 

3. 
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Source 
Sum of 
squares 

Degrees 
of 
freedom

Mean 
square F p-value 

Overall Model 0.38 19 0.020 2.90 < 0.0001 
Analytical Method 0.073 3 0.024 3.58 0.0143 
Slope Type x Analytical 
Method 

0.15 12 0.013 1.86 0.0387 

Slope Type x Porewater 
Approach 

0.074 4 0.019 2.72 0.0300 

Residual 1.92 281 0.00683   
      
Lack of fit 0.14 15 0.00956 1.43 0.1316 
Pure Error 1.78 266 0.00668   
Corrected Total 2.29 300    

 
Table 3. Reduced ANOVA Model 

 

The reduced model is non-hierarchical, in the sense that interaction terms 

are included but their corresponding main effect terms are not.  There is some 

controversy in the literature regarding hierarchy in ANOVA and regression 

models.  Peixoto (1987, 1990) argued that an appropriate model requires that the 

results of statistical testing be the same under linear transformations of the data, 

and this can only be achieved if the model includes the main effects of all factors 

included in higher order interactions, even if these main effects are not 

statistically significant.  However, some more recent publications, such as 

Montgomery et al. (2005), argue that this requirement is overly restrictive and 

may result in highly inaccurate predictions as a result of overfitting the data. 

 The effect of expanding the reduced model to achieve hierarchy was 

investigated for the reduced model presented here.  However, when the Slope 

Type and Porewater Approach main effects were included, no difference in the 
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overall analysis conclusions was found, and only a minimal benefit to the model 

was achieved (adj-R2 changed from 0.11 to 0.12).  Unfortunately, adding these 

main effects appeared to compromise the normality assumptions, resulting in less 

well behaved residuals and model sensitivity to a particular data point 

( leverage 1 ).  For these reasons, and in order to maximize the predictive 

accuracy and model parsimony, Slope Type and Porewater Approach were not 

included as main effects. 

The reduced ANOVA model overall fit to the data is quite significant 

( p 0.0001 ).  Furthermore, unlike the overall analysis, each factor in the reduced 

model is of similar significance ( 0.01 p 0.05  ), indicating that no one factor 

dominates.   Adequate precision, a measure of signal to noise ratio, was 6.85, 

indicates that the model is appropriate for prediction.  The model R2 values, 

however, are quite small, with 2R 0.16 , 2adj-R 0.11 , and 2pred-R 0.04 .  

These low regression values, even by slope stability standards, suggest that the 

usual deterministic design methods are wholly inadequate; risk analysis must be 

utilized for responsible design.   

Risk analysis based on the ANOVA model requires that the residuals of 

the model be normally distributed.  The model is consistent with this requirement, 

as shown by the normal probability plot in Figure 8.  The residuals align 

adequately with the normal probability line, their curvature much reduced from 

the initial distribution fit shown in Chapter 2. The residual analysis also included 

residuals versus run order and residuals versus predicted values; like the normal 
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probability plot, these analyses did not show significant violations.  Influence 

testing did not indicate any significant outliers. 

 

Figure 8.  Normal probability plot for the reduced ANOVA model. 
 

The reduced ANOVA model analytical approach main effects are shown 

in Figure 9.  The direct, Bishop, and complete analytical methods all have least 

significant difference (LSD) bars, a measure of confidence, that overlap SF = 1. 

The force method calculations, however, are well above SF = 1, evidence that 

force methods are, on average, significantly non-conservative.  
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Figure 9.  Main Effects Plot:  Analytical Method 
 

As shown in Figure 10, Slope Type and Porewater Approach are strongly 

interactive.  While effective stress analysis is fairly consistent near SF = 1 across 

all slope types, total stress analysis varies considerably for different slope types.  

It has been theorized that cut slopes and riverbanks fail at a higher SF than 

engineered slopes (e.g. Ferkh and Fell, 1994), but Figure 10 suggests that this the 

relationship is more complex, with effective stress analysis predicting a high SF 

for landslide failures but a low SF for cut failures, and the opposite trend for total 

stress analysis.  
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Figure 10.  Interaction Effects Plot:  Slope Type versus Porewater Approach 
 

Perplexing as well is the strongly correlated nature of the total and 

effective stress interaction.  For each slope type, the predicted SF calculations are 

more or less reflected about the line defined by SF 1.03 , with effective stress 

greater than total stress SF calculations for landslide, fill, and experiment slopes, 

and total stress greater than effective stress SF calculations for cut and test fill 

slopes.  The explanation for this interaction is not obvious, but may be related to 

slip geometry differences.  The cut and test fill slope failures tended to be deep 

and circular, passing through the piezometric surface and several different soil 

strata, whereas the landslide, fill, and experimental failures tended to be relatively 

shallow by comparison.  A future paper will further consider this relationship. 



70 
 

 

Figure 11.  Interaction Effects Plot:  Slope Type versus Analytical Method 
 

Figure 11 shows the interaction effects between Slope Type and 

Analytical Method.  This relationship appears quite complicated, but much of the 

interaction is within error bar range and therefore somewhat inconclusive.  The 

exception is specific to the landslide slope type, where the Force method is seen 

to have LSD bars well above 1, and also above the LSD bars of all the other 

analytical methods. 

SF Deviations from 1 

Overall, the ANOVA model predicted a least squares SF mean of 1.03, or 

slightly higher than SF 1  as would be expected.  This is inconsistent with the 

prevailing engineering opinion that 2DLE safety factors are conservative, and 

thus one would suspect that, on average, the minimum safety factors would be 

significantly less than 1.    The SF database was tested against the expected value 
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of SF 1  with the database partitioned by analytical method (the only main effect 

contributor found in the ANOVA model.)  Independent one-sample t-tests were 

used for hypothesis testing of the log (base 10) transformed SF values.  The 

results are shown in Table 4. 

 Method 
Statistic Direct Bishop Force Complete 

Median 1.00 1.02 1.08 1.03 
Mean 0.98 1.04 1.10 1.05 

sd (of log SF) 0.093 0.087 0.089 0.064 
n 83 134 43 41 
T 0.93 2.11 3.19 2.08 
p 0.357 0.036 0.003 0.044 

 

Table 4.  T-Test results of SF database (based on log SF) 
 

Based on the t-tests of the log SF values, all methods except Direct 

deviated significantly from SF 1 .   The Bishop method and the complete method 

both had mean SF values near 1.04, an effect that was significant at p 0.05 .  

The force method SF values were quite a bit higher, with a mean of 1.10, 

significant at p 0.005 .  The direct method SF mean was 0.98 ( p 0.357 ).   

Assuming a normal distribution for the SF (e.g. not transforming the values) 

increased the significance of the difference with SF 1  for all methods except 

Direct (where it actually decreased), and thus did not change any of the 

hypothesis test conclusions. 

Plasticity Index 

Although the vane strength correction factor has been in existence for 

more than three decades, only 24% (10 out of 43) of the SF calculations that were 

based on vane strength were corrected based on Bjerrum (1972), Bjerrum (1973), 
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or any other vane strength correction factor formulas.  Also, the SF calculated 

with uncorrected vane strength averaged 1.03 whereas the corresponding 

corrected SF averaged 1.12, a difference rather the opposite of what would be 

expected. 

SF = (0.0068)PI + 0.8931

R2 = 0.6126

SF = (0.0044)PI + 0.8679
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Figure 12.  Slope minimum safety factors versus Plasticity Index (PI). 
 

Despite the seeming lack of success regarding the vane strength 

corrections, the general principle of correction by regression is supported by 

Figure 12, which shows both the corrected and uncorrected safety factors versus 

plasticity index (PI) for the vane strength based data (only studies published after 

Bjerrum’s 1972 paper were considered).  The corrected values are seen to be 

closely oriented about its regressed line (R2 = 0.61) whereas the uncorrected 

values exhibit wide scatter (R2 = 0.16).  Surprisingly, the regressed lines onto the 

corrected and uncorrected SF are nearly coincident.  While the implications of 
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this relationship are not clear, the results inarguably indicate that the vane strength 

correction alone does not account for SF deviation. 

Soils without Clay 

The bulk of the literature on failed slopes is specific to clay soils; indeed, 

almost 90% of the slopes in the current database had soils with significant 

amounts of clay.  The calculated SF (averaged across methods and analysts) for 

the seventeen slope failures in the database that did not have appreciable clay are 

shown in Figure 13.  A wide range of SF is seen with an average of 1.03 (based 

on log transformed SF), consistent with the overall results. 

 

Figure 13.  Failed slopes in soils without significant clay. 
 

Discussion 

Analytical Method 

The ANOVA testing and one-factor t-tests indicate that direct methods of 

solution averaged closer to the expected value of SF = 1 then alternative methods 

for calculating SF for unstable slopes.  In particular, SF calculation based on the 
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force method appears to have a non-conservative bias, whereas the average 

deviation from 1 for the SF calculations from Bishop’s method and complete 

methods of analysis, while statistically significant, tended to be more moderate.  

Considerable scatter was evident across all methods. 

A number of factors likely contribute to these observed differences 

between methods, including the following: 

1. All higher order analytical methods were developed to account for 

interslice forces.  The direct methods, however, are all independent of 

the interslice forces except OMS, which assumes the interslice forces 

equal zero.  This assumption of zero interslice forces is obviously 

inaccurate for slopes with a SF significantly greater than one, but may 

approximate reality as a slope nears failure and the porewater 

pressure within the slope significantly changes (Moore 1970).  

Porewater pressure can rapidly increase at failure of a saturated slope, 

possibly leading to liquefaction of the soil and thus complete loss of 

the interslice forces, as noted by Iverson (1997).  Of course, in the 

same study, Iverson also found that at failure in unsaturated soils, the 

porewater pressure dropped and soil dilation occurred, and thus one 

might expect the corresponding interslice forces to increase.  Thus, 

the only sure conclusion is that, regardless of the saturated condition 

of the soil, the interslice forces change rapidly near failure and are not 

likely to be modeled correctly by any limit equilibrium method that 
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utilizes interslice force modeling but fails to account for force 

changes near failure. 

2. The direct methods have few applicability limits and produce a single 

solution, whereas higher order methods have associated applicability 

limitations and multiple solutions, the interpretation of which may 

require the analyst to apply engineering judgment and/or physical 

reasoning.  For example, the difficulties inherent to determining 

correct versus incorrect potential solutions are the primary reason that 

Spencer’s method was excluded from the software developed by 

Boutrup et al. (1979). 

3. One of the advantages of higher order methods is the ability to model 

irregular, and thus arbitrary, failure surfaces, which would seem to 

allow better modeling of failure and a lower predicted SF.  However, 

unless the analyst already has an idea of the potential critical failure 

surface geometry, it may take many trials to find the critical failure 

surface.  Moreover, the higher order methods are computationally 

intensive, requiring numerous iterations to achieve a solution to even 

a single failure surface.  Time and analyst patience are therefore 

unintended constraints against achieving the critical failure geometry 

in a higher order model.  Thus, it may be that determining the critical 

slip surface is more important for accurate SF calculation then 

typically assumed in practice. 
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4. The apparent accuracy of the direct methods may actually result from 

inherent compensating errors, perhaps from highly simplified failure 

geometries, which would tend to increase calculated SF, balanced by 

the inadequate representation of the interslice forces, which may 

decrease the calculated SF.  

Whatever the reason, the direct methods do appear to predict SF near 1 for 

failed slopes more successfully than other methods.  However, it should not be 

presumed that this result would also apply to stable slopes.  Indeed, as discussed 

earlier, at high SF values soil response to porewater pressures would be less 

pronounced and the interslice forces therefore more likely to be consistent with 

the assumptions of the higher order methods. 

Correction Factors 

Historically, high SF values for failed slopes have been attributed to the 

complicating presence of clay; however, it appears that calculated SF values 

above 1 also occur on average for slopes with soils without significant clay.  

Moreover, while the vane strength correction factors applied in the database did, 

indeed, reduce calculated minimum SF, these corrected SF values were still 

significantly above 1.  Thus, while the database supports the ongoing use of SF 

reducing correction factors, it appears that the  correction factors as currently 

applied are not sufficient, by themselves, to reduce SF calculations to the 

expected value of SF = 1.  The database also does not support the use of 

correction factors that raise SF, such as those sometimes introduced to account for 

three-dimensional effects or vane strength at low PI values. 
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Risk Analysis 

Risk analysis as applied to stability analysis requires two critical 

components.  The first is an accurate deterministic model that produces a mean SF 

prediction of 1.0 for real slope failures.  The second is an accurate statistical 

model to that can be used to produce probabilities of failure. 

With regard to the first requirement, the database analysis indicates that 

direct methods of solution are more successful than other methods for predicting 

an average SF close to 1 for slope failures.  However, while Bishop’s method and 

the complete methods of solution were found to significantly deviate from 1 from 

a statistical standpoint, the actual extent of this deviation is small enough that it is 

probably not relevant from a practical standpoint.  Force methods of solution, 

however, must be applied with caution, since there is evidence of significant non-

conservative bias to calculated SF.   

As for the second requirement, both a Box-Cox analysis and subsequent 

residual analysis indicates that a lognormal statistical distribution provides an 

adequate fit.   

In terms of the general implications for risk analysis, it is noted that a log 

(base 10) transform of all of the data results in a mean of log 1.03 and standard 

deviation of 0.087.  Ignoring the effects of the analytical approach, method, or 

slope type, the SF corresponding to a 99% chance of safety would therefore be the 

antilog of the total of log 1.03 plus about 2.3 standard deviations, or about 1.65.  

This is close to several values calculated by Christian et al. (1994), who utilized a 

direct error analysis approach (propagation of error) and assumed a normal 
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distribution for SF (as opposed to a log normal distribution).  The consistency of 

the solutions from these two quite different approaches suggests that if 

comparable values for mean and standard deviation are used, SF risk analysis may 

be robust with regard to assumed distribution. 

Beyond allowing statistical observations and factor reduction, the reduced 

ANOVA model may be used to predict SF failure values as a function of slope 

type, analytical method, and porewater approach.  In order to discern trends and 

identify extreme predictions, several charts were generated from the reduced 

ANOVA model: Figure 14 corresponds to the total stress porewater approach, and 

Figure 15 to the effective stress porewater approach.  Table 5 tabulates the 

predicted mean SF. 
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Figure 14. ANOVA predictive model for average failure SF (total stress 
porewater approach) 

 
The prediction charts show that the total stress analysis tends to predict 

failure at higher SF values than the effective stress approach.  The maximum 

values of both porewater approaches were similar, however, and specific to the 

force analytical method, with the total stress approach predicting failure at 

SF 1.23  for cut slopes and the effective stress method predicting failure at 

SF 1.27  for landslides.  The minimums were less consistent, with the total stress 

approach showing a minimum SF of 0.91 for fill slopes analyzed by the direct 

analytical method, whereas the effective stress approach showed a minimum SF 
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also of 0.91 for cut slopes analyzed by Bishop’s method.   The direct method 

predicted failure closer to SF = 1 (across all slope types) better than the other 

methods, although Bishop’s method prediction accuracy was also close to SF 1 .  

The variability was comparable between effective and total stress methods in 

general.  Averaged over all slope types, the direct method was the least variable 

method for the effective stress approach but the most variable for the total stress 

approach.  The force method was the most variable prediction method for the 

effective stress approach.  The complete method was the least variable prediction 

method for the total stress approach. 

 

Figure 15. ANOVA model for average failure SF (effective stress porewater 
approach) 
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  Slope Type 
  Landslide Cut Fill Test Fill Experiment 

A
n

al
ys

is
 

Complete 
Eff.: 1.07 Eff.: 0.91 Eff.: 1.06 Eff.: 1.00 Eff.: 1.14 
Total: 0.96 Total: 1.09 Total: 1.05 Total: 1.07 Total: 1.01 

Force 
Eff.: 1.27 Eff.: 1.03 Eff.: 1.06 Eff.: 1.04 Eff.: 1.15 
Total: 1.15 Total: 1.23 Total: 1.05 Total: 1.11 Total: 1.02 

Bishop 
Eff.: 1.03 Eff.: 0.91 Eff.: 1.13 Eff.: 0.95 Eff.: 1.07 
Total: 0.93 Total: 1.09 Total: 1.12 Total: 1.01 Total: 0.95 

Direct 
Eff.: 1.00 Eff.: 0.93 Eff.: 0.92 Eff.: 1.02 Eff.: 1.04 
Total: 0.91 Total: 1.12 Total: 0.91 Total: 1.09 Total: 0.92 

 

Table 5.  Mean failure SF ANOVA model predictions  
 

For design, it is possible to extend the reduced ANOVA model to predict 

the SF values corresponding to a given risk of failure.  While any desired risk of 

safety can considered with the model as given, Table 6 lists the minimum 

predicted SF needed for a 1% failure risk.  Note that the wide range of predicted 

values justifies the need to account for the contributing SF factors.  The total and 

effective stress analyses show little deviation, both averaging to a predicted 

SF 1.75 .  In general, the force methods predict the highest SF values, averaging 

across all slope types SF values of 1.89 and 1.88 for the effective and total stress 

approaches respectively.  The largest single predicted value is SF 2.16  for 

landslides analyzed by the force method and the effective stress approach.  At the 

low end, fill slopes analyzed by direct methods and the total stress approach 

predicts SF 1.50 .  Direct methods using the effective or total stress approach 

have the lowest average values of any method, with predicted SF values of 1.65 

and 1.66 respectively.  Direct method prediction utilizing the effective stress 

approach also shows the least variability across all slope types, whereas complete 
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methods show the least variability across all slope types for the total stress 

approach.  

  Slope Type 

  Landslide Cut Fill Test Fill Experiment 

A
na

ly
si

s 

Complete 
Effective: 1.80 Effective: 1.59 Effective: 1.75 Effective: 1.68 Effective: 1.99 

Total: 1.62 Total: 1.89 Total: 1.73 Total: 1.79 Total: 1.73 

Force 
Effective: 2.16 Effective: 1.82 Effective: 1.77 Effective: 1.73 Effective: 1.97 

Total: 1.94 Total: 2.12 Total: 1.75 Total: 1.86 Total: 1.74 

Bishop 
Effective: 1.70 Effective: 1.53 Effective: 1.86 Effective: 1.56 Effective: 1.82 

Total: 1.56 Total: 1.85 Total: 1.85 Total: 1.69 Total: 1.61 

Direct 
Effective: 1.71 Effective: 1.57 Effective: 1.52 Effective: 1.71 Effective: 1.74 

Total: 1.54 Total: 1.89 Total: 1.50 Total: 1.81 Total: 1.56 

 

Table 6.  1% failure risk SF ANOVA model predictions  
 

Conclusions 

The database compiled here, while broad in terms of time and geography, 

tells only half of the story.  Many slopes with low safety factors do not fail, and a 

full statistical consideration of SF should consider a random selection of these 

stable slopes as well.  Nonetheless, the following conclusions may be made from 

the failure data considered here: 

1. Different limit equilibrium algorithms produce different safety 

factors.  For failed slopes, the direct methods of SF calculation appear to be the 

most successful at predicting SF 1  as expected.  Bishop’s method and the 

complete methods of solution appeared to have a slight (but statistically 

significant) non-conservative bias, but the magnitude of this bias is so small it is 

likely undetectable in field applications.  Force methods, however, demonstrated a 

level of bias that may have a significant, non-conservative effect on SF 
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calculation. It is not known, however, if the bias and uncertainty shown by the 

failure database can be generalized to stable slopes. 

2. Clay content complicates SF analysis.  The database indicated that 

correction factors for vane strength were not adequate to reduce predicted SF 

values to average at SF 1  as expected.  The relationship between plasticity index 

and safety factor appears to be more complicated than historically assumed.  That 

said, there was no evidence that soils without clay were different from soils with 

clay with regard to SF uncertainty or bias. 

3. The database overall was best described by a log linear distribution 

with a mean value of 1.03 and a standard deviation (of the log transformed 

values) of 0.087.  A 1% failure risk for SF of about 1.65 was calculated from the 

overall database.  Moreover, the reduced ANOVA model can be applied in a 

general way to risk analysis, providing predictions for a given failure risk as a 

function of analytical method, slope type, and porewater stress approach.  

Regardless of interpretation, the results of the meta-analysis of these 301 

slope failure calculations shows that while slope stability analysis is unavoidably 

uncertain it is also well described by statistical modeling.  This chapter considered 

a global approach to understand and model this underlying stochastic formation, 

and while this is useful, it cannot take the place of site specific risk analysis by 

error propagation, which directly accounts for project specific observations, such 

as soil heterogeneity and porewater pressure uncertainty.  The primary benefits of 

this chapter is that it is applicable both at the site level where it can be used as a 
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check on the slope specific risk analysis, and at the regulatory level to guide 

responsible and informed policy decisions on slope stability issues in general.   
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CHAPTER 4.   MATRIC SUCTION EFFECTS 

In time and with water, everything changes. 
 

– Leonardo da Vinci 
 

Introduction 

In this chapter, the role of matric analysis in slope stability is investigated 

for infinite slopes, defined by a slip surface assumed to be parallel to the slope 

surface.  While infinite slopes do not describe curvilinear slope failures, it is 

reasonable to assume that the general conclusions of the analysis herein are 

applicable to all slope failure geometries. 

Perhaps the simplest of all slope stability analysis methods, infinite slope 

stability analysis satisfies complete static equilibrium while requiring only a 

minimum number of assumptions.  Appropriate for shallow failures in slopes with 

cohesive soils (Duncan & Wright, 2005), it is extensively used in practice, 

sometimes as the primary analytical method; often as the first method for 

comparison with more sophisticated procedures. 

All forces within an infinite slope can vary only in the direction 

perpendicular to the slope surface (Iverson, 1997).  Accordingly, a typical 

assumption regarding groundwater in infinite slopes is that the water table lies 

parallel to the surface at a known depth.  Iverson (1990) extended this approach to 

consider any arbitrary porewater pressure distribution satisfying the infinite slope 

assumption constraints, but limited his analysis to fully saturated / dry conditions. 

The objective of this chapter is thus to derive a mathematical model for an 

infinite slope subjected to unsaturated flow above a phreatic surface.  This 
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objective is achieved by first establishing rigorous equations for the porewater 

pressure / matric suction and the degree of saturation profiles.  The degree of 

saturation profile is then used to establish the soil unit weight variation and 

overburden stress profile consistent with degree of saturation.  The derived matric 

suction and overburden stress profiles are then incorporated into the infinite slope 

stability equations.  A published case study is used to compare the matric suction 

model safety factor with the traditional approach assuming dry / saturated soil 

conditions.  The results will determine if unsaturated flow significantly influences 

safety factor calculations in infinite slopes, and if this influence is, in fact, 

inherently conservative.  

Matric Suction Profile 

General Formulation 

Consider a failure of an infinite slope with angle   (see Figure 16).  The 

depth perpendicular to the surface is measured by y.  The soil has a dry unit 

weight d , and a saturated unit weight s . The phreatic surface is at a depth   

measured perpendicularly to the slope.  The unit weight of water is  w , the pore 

air pressure is ua(y), the porewater pressure is uw(y), and, when unsaturated 

conditions prevail, the matric suction is ( ) ( ) ( )a wy u y u y   .  
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Figure 16.  Infinite Unsaturated Slope 
 

The porewater pressure for y    is simply 

 1 cos ,      w w

y
u y     

 
 


  (1) 

If y   , matric suction occurs.  Assuming that the unsaturated hydraulic 

conductivity is always greater than 0, Fredlund and Rahardjo (1993) showed that 

the matric suction is related to y, for equilibrium conditions, by 

 1 cos ,     w

y
y      

 
 


 (2) 

When the matric suction exceeds the air entry value of the soil ψb, 

however, two phase flow may occur and Equation (2) is no longer valid.  As 

shown in Figure 16, this corresponds to the capillary rise (as measured 

perpendicularly to the slope), denoted by 

yb, where 

 
cos

b
b

w

y


 
  (3) 
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It is useful to introduce a depth to the capillary fringe, denoted b , where 

b by   .  For depths less than b , the matric suction may increase, decrease, or 

remain constant.  The distribution is sensitive to climate conditions, soil type, and 

history.  Variation at different depths and locations is likely.  Darcy’s law 

extended to include the steady state one-dimensional unsaturated conditions is 

   0w
w

dhd
k

dy dy


 
 

 
 (4) 

where kw(ψ) is the unsaturated hydraulic conductivity and hw the hydraulic head.  

Recognizing / cosw w wh u y   , and expanding Equation (4) results in 

   1
cos 0w

w
w

dud
k

dy dy
 


  

   
  

 (5) 

Integrating and assuming a constant water flux qw, defined negative for 

infiltration and positive for evaporation, Equation (5) may be written as 

    cosw
w w w w w

du
k q k

dy
       (6) 

For air, Fick’s law describes the flow as 

   0a
a

dud
k

dy dy


 
 

 
 (7) 
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where ka(ψ) is the permeability of air.  An alternative approach to air flow relies 

on the Air Permeability Index (API), but has been shown to be equivalent to the 

Fick’s law approach (Travis and Mobasher, 2010).   

Integrating and introducing a constant air flux qa, Equation (7) may be 

expressed as 

   a
a a

du
k q

dy
   (8) 

The unsaturated water hydraulic conductivity kw equals the saturated 

conductivity ks, at saturated conditions, and is asymptotic to zero as matric suction 

becomes infinite.  Conversely, the unsaturated air conductivity ka is zero for 

saturated conditions, and asymptotic to a constant value for completely 

unsaturated conditions. 

Given the nonzero range of kw, it is valid to multiply Equation (6) by 

   /a wk k   and subtract it from Equation (8) to achieve a differential equation 

in terms of ψ only, 

    
   cosa

a a w w w a
w

kd
k q q k

dy k

    


    (9) 

Equation (9) is valid from the ground surface at 0y  to the air entry depth 

b .  At by   , however, b  , ( )w b sk k  , ( ) 0a bk   , and thus 0aq .   
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Equation (8) becomes 

     0a
a

du
k

dy
   (10) 

Equation (10) implies that ua must be a constant.  The boundary condition 

at the surface indicates that ua must match atmospheric pressure.  Defining 

pressures as gauge (as opposed to absolute), ua is thus shown to be 0. 

Eliminating qa and ka from Equation (9) results in 

 
 

1 cos
cos

w
w

w

qd

dy k

  
 

 
    

 
 (11) 

The integral solution to (11) is 

 
   

1

1 cos
cos

b

w
w b

w

q
d y

k





  
 


 
    

 
   (12) 

Note that all the variables of the integral term are known if qw is known. 

For solution it is useful to rewrite the integral solution in terms of the non-

dimensional variables /w w sQ q k , / b   , ( ) ( ) /w sK k k  , / bL y  , 

/b b bL y  , and / bY y y .  The non-dimensional matric suction profile becomes 

 
 

1

1

1 ,      
cos

w
b b

Q
d L Y Y L

K 

  
       

  (13) 
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Equation (13) defines the matric suction profile for depths less than the air 

entry depth  bY L .  The matric suction function for bY L  is given by 

Equation (2).   Expressed in terms of the non-dimensional variables it is simply 

 ,      bL Y Y L     (14) 

Unsaturated Hydraulic Conductivity 

For nonzero values of Qw, one formula for K that allows a closed form 

solution to Equation (13) is Philip (1986): 

    1eK     (15) 

where the constant α is a soil specific parameter.  Of course, there are many 

equations that relate permeability with matric suction, and while only the Philip 

(1986) equation is considered here, other relationships can be used in the 

subsequent analysis, albeit typically at the cost of obtaining closed-form solutions. 

Assuming this form of the hydraulic conductivity, Equation (13) may be 

written as 

 
 11 1 e

cos

b
w

d
L Y

Q 








 


  (16) 

The closed form solution to Equation (16) follows the same procedure that 

Lu and Griffiths (2004) applied in their paper for matric suction beneath a  
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horizontal surface, resulting in 

    1
1 ln 1 ,

cos cos
bL Yw w

b

Q Q
Y e Y L

  
           

 (17) 

Indeed, for 0  Equation (17) is close in form to the Lu and Griffiths 

(2004) solution with the important difference that the solution is not bounded in 

terms of maximum evaporation.   

The corresponding permeability as a function of depth is 

    
1

1 ,
cos cos

bL Yw w
b

Q Q
K Y e Y L

 


         

 (18) 

The limits on Qw are clear from Equation (18).  The argument must be 

greater than 1 in order for the unsaturated permeability not to exceed the saturated 

permeability.  Thus, while positive values of Qw (evaporation) are not bounded, 

infiltration, (negative Qw) is bounded, requiring / cos 1wQ    . 

Figure 17 shows an example of the matric suction profile. 
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Figure 17. Matric suction profiles with Lb = 10 and α = 0.5 
 

Degree of Saturation 

Matric suction is often modeled as a function between Ψ and the 

normalized (effective) volumetric water content  , defined 

 r

s r

w w

w w


 


 (19) 

where w is the volumetric water content, ws is the water content at saturation, and 

wr is the residual water content.  One particular empirical equation relating Ψ and  
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Θ is the McKee and Bumb (1984) Boltzmann equation 

 , 1e       (20) 

where the constants η and β are specific soil properties.  McKee and Bumb also 

introduced a modified form of this equation that improved fit near saturated 

conditions, that is, in the region 0 1    (McKee and Bumb, 1987), but this 

modified equation was subsequently found to be numerically unstable (Sillers and 

Fredlund 2001).  The present analysis reduces the error near saturated conditions 

by restricting the range of applicability to 1  .  Full saturation is thus assumed 

for matric suctions less than the air entry value, and the appropriate boundary 

condition is 1   at 1  , and thus   .  That is, 

  1e    (21) 

While this is a valid application of the Boltzmann equation (Fredlund and 

Xing, 1994), it should be noted that even at zero suction, unsaturated conditions 

are still possible (Zhou and Yu, 2005), (from occluded air, for example), so this 

approach may not be valid for all soils. 

A further test of the validity of the assumed unsaturated equations is the 

implication of the relationship between Θ and K.  Leong and Rahardjo (1997) 

showed that most published empirical and theoretical approaches relating Θ and K 

tend to converge to 

 K    (22) 
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where the constant δ tends to range 2 52   as determined experimentally, 

with many values greater than 4.  There exist a number of theoretical predictions 

for δ as well, including δ = 2 (Yuster, 1951), δ = 3 (Irmay, 1954), δ = 3.5 

(Averjanov, 1950) and δ = 4 (Corey, 1954).  Sometimes δ is assumed to be 1 

which, while unrealistic, linearizes the model and allows more sophisticated 

applications (e.g. Srivastava and Yeh 1991). 

The assumed unsaturated Equations (15) and (21)  imply that 

 /K     (23) 

which is consistent with Leong and Rahardjo (1997) only if /   .  

Expressing β as /   then, Equation (21) becomes 

  1 /e    (24) 

Substituting the matric suction profile Equation (17) into Equation (24) 

allows expression of the normalized saturation as a function of depth, 

  
1/

1
cos cos

bL Yw wQ Q
e




 


         

 (25) 

Figure 18 shows the saturation profile for the example used in Figure 17, 

assuming 4  .  It is clear that the saturation profiles will tend to show greater 

non-linearity than the matric suction profiles. 
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Figure 18.  Normalized saturation profiles with Lb = 10, α = 0.5, and δ = 4 
 

Overburden Stress 

Given Θ, the total overburden stress can be calculated which is consistent 

with the degree of saturation profile, assuming a known dry unit weight that 

remains unchanged (i.e. neglecting any volume change of the soil).  The unit 

weight matric  as a function of Θ is given by 

  matric d s d        (26) 

The overburden stress  n  is given by integrating the unit weight over y   
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(utilizing, for mathematical formality, the dummy variable *y ): 

  * *

0

y

n matric y dy    (27) 

In terms of the non-dimensional depth Y, the overburden stress is 

determined by substituting Equation (25) into Equation (27).  Introducing the 

dimensionless specific gravities / , /    d d w s s wS S , and the non-

dimensional overburden stress  /matric n w bP y  , the overburden equations are 

 

   

     

* *

0

* *

0

,

( )

,
b

Y

d s d b

matric L

d b s d s b b

S Y S S Y dY Y L

P Y

S L S S Y dY S Y L Y L


   

 
      





 (28) 

where Y  is the dummy variable for Y.  Unfortunately, ( )Y  is highly nonlinear 

and integration is rather complicated.  Integrating over the permeability K, 

however, reduces the complexity of the integral and allows exact solutions to be 

obtained.  Thus, in order to obtain an exact solutions, the integral function Φ(K,δ) 

is introduced, where 

 
 1 /
*

*
*0

( , )
1

K K
K dK

Q K

 






 
  (29) 

in which / coswQ Q   and *K is a dummy variable of K.  The saturation  
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integral is therefore 

     * * 0

0

1
( ) , ,

Y

Y dY K Y K 

       (30) 

where K0 is the permeability at 0Y  :  
1

0 1 bLK Q e Q
 


     .  Equation (28) 

becomes 

 
 

   

0

0

( ( ), ) ( , ) ,
( )

(1, ) ( , ) ,

s d
d b

matric
s d

d b s b b

S S
S Y K Y K Y L

P Y
S S

S L K S Y L Y L

 


 


            


 (31) 

By the method of partial fractions (Smith 1953), Φ(K,δ) is insured closed-

form solutions for any rational value of δ.  The following closed-form solutions 

are for the theoretical values cited earlier: 

  1
( ,1) ln 1K Q K

Q 


    (32) 

 

 

 

1

1

2
tan , 0

( , 2)
2

tanh , 0

Q K Q
Q

K

Q K Q
Q

 


 






 
  
  
 

 (33) 

 

 

2 233
1
2 2 233

3

1 1 2 3
63 3

1 2
ln1 1( ,3)

3 tan

Q K Q K

Q K Q KK
Q

Q K

 

 







   
  
       
       

 (34) 
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 

 

 

4
11 4

2
4

4
1 4

4
1 4

4 4

1 4
ln tan 1 42 1 4 , 0

tan 1 4( , 4)

11
2 tan ln , 0

1

Q K Q K
Q K

Q K Q K Q
Q

Q KK

Q K
Q K Q

Q Q K

 


  





 

 







    
          
         


    
            

(35) 

For fractional values of δ and for δ > 4, the complexity of the closed form 

solution may become prohibitively expensive.  For example, if 3.5  , a 

relatively low and simple value corresponding to the Averjanov (1950) model, the 

closed form solution requires 10 separate terms involving K, and many 

trigonometric functions.   

A practical, alternate method of solution is to consider an infinite series 

approximation.  For values of 1Q K  , the denominator of Equation (29) may be 

expressed as a geometric series, resulting in 

    1 /
* *

00

( , ) 1 , 1
K

i ii

i

K Q K dK Q K 
 


 



     (36) 

The solution to Equation (36) may therefore be obtained by term by term 

integration; the result is 

 
   

 

1 /1

1

1
( , ) , 1

1 /

i ii

i

Q K
K Q K

i

 



 

 




   

   (37) 
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Unfortunately, for 1Q K  , the series solution shown in Equation (37) 

will not converge.   However, solution may still be obtained by expressing the 

original integral in the form 

 
   1/ 1 / 11 / 1

**
1 1

* *0 1/

( , ) , 1
1 1

Q K

Q

Q KK
K dK dK Q K

Q K Q K





  



 


  

    
    (38) 

Since the variable term in both denominators of Equation (38) is less than 

1, geometric expansions may be used for both integrals.  Following the same steps 

used to derive Equation (37), albeit with a bit more manipulation, the solution to 

Equation (38) is 

 
   

 
  
 

21 /11/
1/

2 2 2
0 0

2 11
( , ) , 1

1 1 / 1

ii ii

i i

Q KQ
K Q Q K

i i

 
 

 

 
    

    


 

 
    

    
  (39) 

The second infinite series in Equation (39) conveniently converges to the 

closed form function    / 1 / sin /       (Oldham et al., 2008).  Thus, 

Equation (39) may be written as 

    
   

 

1 /11/

0

1
, , 1

sin / 1 /

i ii

i

Q KQ
K Q K

i

 
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

   

   




   

   (40) 

For large δ (i.e. 1  ) both limit equations converge to relatively simple 

formulas: 

  
 
 

1/

1/ 1 1

ln 1 , 1
, 1

ln 1 , 1

K Q K Q K
K

Q Q K Q K


 


  




   

     
  

  (41) 
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Figures 4.4 through 4.7 show Φ(K,δ) for 1010 1K    and 1 2Q   .  

Both the exact solutions and the 1   approximations are shown.  The closed-

form solutions were used for 1 4  ; the series solutions were used for higher δ 

with a required convergence of 0.1%.  The large δ approximations appear to fit 

the solutions quite well for 4  , and particularly well for Qθ near 0 (Figure 22).  

For practical purposes, it appears that the closed-form solutions for 4   and the 

large δ approximations for 4  are sufficiently accurate for most applications. 

 

Figure 19. Φ(K,δ) function for Qθ = -1. 
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Figure 20. Φ(K,δ) function for Qθ = 0 (Large δ approximations not visible 
because they lie within exact solution line thickness). 
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Figure 21. Φ(K,δ) function for Qθ = 1. 
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Figure 22. Φ(K,δ) function for Qθ = 2. 
 

Of practical interest is the average unit soil weight ( )matric Y over depth Y, 

given by 

  1( ) ( ) ( )matric matric d s dY Y P Y Y         (42) 

where ( )Y  is the average saturation above depth Y, given explicitly by 

         * * 0

0

1 1
, ,

Y

Y Y dY K Y K
Y Y

 


         (43) 

Figures 4.8 through 4.12 show ( )Y  for different values of Qθ given 

10bL   and 0.5  . 
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Figure 23. Average saturation over depth Y for Lb = 10, α = 0.5, and Qθ = -
0.95. 

 

Figure 24. Average saturation at depth Y for Lb = 10, α = 0.5, and Qθ = -0.70. 
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Figure 25. Average saturation at depth Y for Lb = 10, α = 0.5, and Qθ = 0. 

 

Figure 26. Average saturation at depth Y for Lb = 10, α = 0.5, and Qθ = 10. 
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Figure 27. Average saturation at depth Y for Lb = 10, α = 0.5, and Qθ = 50. 
 

The average saturation is seen in the examples to be quite sensitive to δ, 

monotonically increasing with δ by as much as 50% for 2 10  .  The curves 

themselves tend to be nearly linear near the ground surface but with exhibit strong 

curvature near the phreatic surface.  The dry / saturated unit weight model is thus 

seen to be difficult to implement with any degree of accuracy, since the correct 

choice of an average saturation level above the phreatic surface is not obvious.  

Moreover, nonlinear variation with depth suggests that even extrapolation of near 

ground saturation measurements to significant depths would result in significant 

errors.  
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Shallow Water Tables 

For shallow water tables where the matric suction at the ground surface 

(Ψ0) is less than 1, or if 0wQ  , then the saturation remains complete throughout 

the subsurface ( 1  ), Equation (2) is sufficient to describe the matric suction 

profile, and the overburden pressure may therefore directly computed from 

Equation (28) to be 

 0( ) ,      1 or 0matric s wP Y S Y Q     (44) 

Dry/Saturated Model 

If matric suction is ignored, and dry / saturated conditions are assumed, 

the corresponding overburden stress Pdry/sat(Y) is simply 

 
 /

, for 
( )

, for 
d

dry sat
d s

S Y Y L
P Y

S L S Y L Y L

    
 (45) 

Slope Stability 

Overburden Stress 

The extended Mohr-Columb equation for unsaturated slopes is (Fredlund 

and Rahardjo, 1993) 

 ' tan ' tan b
nc        (46) 
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where τ is the shear stress on the failure plane, 'c  the effective cohesion,  n  the 

total normal stress on the failure plane, '  the effective angle of friction, and 

tan b  the rate of change of shear strength with regard to matric suction. 

From Equation (46), the general equation for the factor of safety Fmatric for 

infinite slopes is easily determined to be 

 
 ' ( ) cos tan ' ( ) tan ( )

( )
( )sin

b
matric

matric
matric

c y y y y
F y

y y

    

 

 
  (47) 

Note that φb in Equation (47) is shown as a function of y because it is 

directly related to ψ which is, in turn, a function of y.  The average unit weight 

matric  is given by Equation (42).   

Matric Suction Angle 

While  b  has been found to be nearly constant for some soils (Fredlund 

and Rahardjo, 1993),  b  is a nonlinear function of Ψ in general.  Recent work by 

Houston et al. (2009) has shown that a good fit to field data may be achieved with 

a hyperbolic  

relation between  b and Ψ according to 

 
 

1
( ) '

1
b

a b 

   
  

  
 (48) 
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where a  and b  are soil specific constants.  Thus, since Ψ has been shown to be 

a factor of Y,  b is a factor of Y as well.  Note that at high suction or at 0a  , 

Equation (48) converges to a constant  b , with 

 
1

,      1
' b

b  
 


  (49) 

Matric Suction Factor of Safety 

Substituting into Equation (47) the developed functions for the average 

unit weight and matric suction angle, and defining the non-dimensional cohesion 

' '/ bC c  , the following non-dimensional functions for the matric suction safety 

factor are developed, 

 

 

 

' ( ) tan ' ( ) tan ( )
,

( ) tan
( )

' tan ' tan '
,

( ) tan tan

b
matric

b
matric

matric

b
matric

C P Y Y Y
Y L

P Y
F Y

C L Y
Y L

P Y

 


 
 

  
 
 

   


 (50) 

Note that all functions in Equation (50) are exact functions of Y.  It is 

believed that this is the first time an exact safety factor function has been 

established with fully realized matric suction model.  Moreover, for integer values 

of 5  , the safety factor formula is closed form. 
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Shallow Water Tables 

For 0wQ  , or for shallow failures with high water tables where 0 1  , 

then the infinite slope assumption is quite defensible and the overburden stress is 

described by Equation (44).  The matric suction safety factor becomes simply 

 
 

0

' 1 tan '
( ) ,      1 or 0

tan
s

matric w
s

C L S Y
F Y Q

S Y




         (51) 

Dry / Saturated Factor of Safety 

If dry/saturated conditions are assumed, the infinite slope safety factor 

equations are well known to be  

 

 
  

 
/

' tan '

tan tan
( )

1' tan '
,

tantan

d

dry sat
d s

d sd s

C
Y L

S Y
F Y

S L S Y LC
Y L

S L S Y LS L S Y L


 




  
      
     

(52) 

Case Study Analysis 

Rahardjo et al. (2001) studied matric suction effects on a number of 

translational and rotational failures following rainfall in February 1995 at the 

Nanyang Technological University (NTU) campus in Jurong, Western Singapore.  

Their report included detailed information on the soil parameters of the area and 

developed an unsaturated groundwater model specific to a particular rotational 

failure, referred to as Slip Number 3.  Within 20 meters of and concurrent with 

this rotational failure was a translational failure, referred to as Slip Number 4, 

which is used to verify the slope stability model developed here. 
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Slip Number 4 occurred near the top of a 45° embankment.  The slip 

surface had a width of 7.8 m, a length of approximately 7 m, and a depth of 1 m, 

coinciding with the interface between the top layer of sandy clay and a lower 

layer of hard sandy silt.  Assuming applicability of the Rahardjo et al. (2001) 

groundwater model, the phreatic surface depth changed over the storm from 5 m 

to less than 1 m (as measured perpendicularly from the slope at the center of the 

failed surface).  The failed soil had a saturated unit weight of 19.6 kN/m3 and was 

inferred to have a dry unit weight of 16.1 kN/m3 and a saturated water content of 

35.5%.  Strength testing of the sandy clay found ' 26    and ' 2 kPac  .  The 

AEV was estimated at 10 kPa from the soil-water characteristic curve (SWCC).  

The corresponding α value was estimated to be 0.2 by a best fit to between the 

SWCC and Equation (24) (R2 = 0.99).  Both β and wr were estimated to be 0.06 

and 13% based on a best fit to the reported permeability function curve (R2 = 

0.99).   The bφ value was estimated at 0.08 using Equation (49) and the reported 

φb value of 13°.  The aφ parameter was estimated at 0.9 from Houston et al. 

(2009) for a similar soil.  The unit weight of water was assumed to be 9.8 kN/m3 

and the specific gravity of soil solids (Gs) was assumed to be 2.6.  A best match to 

the reported matric suction profile before the storm indicated that qw was 

approximately -0.07 mm/day.  These parameters are summarized in Table 7. 
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Reported Values Inferred Values 

Property Value Units Property Value Units 

θ 44 degrees γd 16.1 kN/m3 

γs 19.6 kN/m3 α 0.2  

’ 26 degrees β 0.06  

'c  2 kPa δ 3.3  

ks 0.1 mm/day b 0.08  

Assumed Values ψb 10 kPa 

a 0.9  qw -0.07 mm/day 

Gs 2.6  wr 13 % 

γw 9.8 kN/m3 ws 35.5 % 

 

Table 7.  Parameters for NTU Failure Number 4 
 

Given these parameters, yb is 1.42 m.  Due to antecedent moisture, matric 

suction measurements at ground level were estimated by Rahardjo et al. (2001) to 

be constant and just over the measured air entry value for the sandy clay at the 

onset of the storm.  Thus, even before the storm the soil was nearly saturated 

throughout the subsurface.  Over the course of the storm, their matric suction 

model indicated very little change to the matric suction at the failure depth, 

consistent with Zhang et al. (2004). 

Since only the phreatic surface depth changed over the course of the storm 

in the region of the failure, the developed steady state model was applied as a 

quasi-unsteady model, consistent with similar approaches in the literature 

including Iverson et al. (1997), Budhu and Gobin (1995a), and Kim et al. (1999).  

Both the dry / saturated safety factor and matric suction safety factors were 



114 
 

computed as functions of the phreatic surface as it changed over the course of the 

storm, as shown in Figure 28.  The dry / saturated safety factor calculation was 

done assuming the soil specific unit weight above the phreatic surface was equal 

to the soil dry unit weight.   

 

Figure 28.  NTU slip number 4 safety factor versus phreatic surface depth 
 

The results show that the dry / saturated model predicts failure 

( / 0.68dry satF  ) even before the storm occurred (e.g., when 5 m ), because it 

does not account for the matric suction stabilizing effect, whereas the matric 

suction model predicts safety factors well above 1 at the beginning of the storm, 

indicating a stable slope.  As shown in Figure 13, however, Fmatric decreases over 

the course of the storm, predicting eminent failure when the phreatic surface rose 
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to 2.2 m .  The Fdry/sat model, however, is constant until  = 1 m, at which 

point it does begin to decrease, but at a lesser rate than Fmatric. 

One potential criticism of the foregoing interpretation of Figure 28 is that 

safety factors below 1 are meaningless, presuming failure occurred at F = 1.  

However, research in recent years have shown that predicted safety factors below 

1 are necessary for landslide dynamics (e.g. Iverson et al., 1997) and risk analysis 

(e.g. Duncan and Wright 2005).  Thus, while both models predict a high 

probability of failure here, the matric suction model clearly predicts a higher risk 

of failure and greater dynamic landslide energy than the dry / saturated model 

near the end of the storm event.  Moreover, only the matric suction model predicts 

stability prior to the storm event.   

Discussion 

The safety factor predicted by the infinite slope matric suction model is 

sensitive to phreatic surface depth.  Spatially, the matric suction model tends to 

predict safety factors higher than the dry/saturated model for depths near the 

ground surface, but predicts lower safety factors than the dry/saturated approach 

when failure depths approach the phreatic surface.  This finding contradicts the 

commonly held belief that disregarding matric suction is inherently conservative.  

It can be explained, however, by noting that for a cohesive soil, the increased unit 

weight from the loss of matric suction (increase in moisture content) decreases the 

safety factor.  This is usually offset by the net gain in strength from matric 

suction, but as the depth nears the phreatic surface, matric suction approaches 

zero while the additional unsaturated water weight, unaccounted for in the 
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dry/saturated model, reaches a maximum.  Specifically, if the specific gravity of 

the soil above the phreatic surface is assumed by the dry / saturated model to be 

Sd, then at Y L : 

    
0

( ) ( ') '
bL

matric d b s d s bP L S L S S Y dY S L L       (53) 

 
 

' tan '
( )

tan tanmatric
matric

C
F L

P L


 

   (54) 

 /

' tan '
( )

tan tandry sat
d

C
F L

S L


 

   (55) 

The difference between the unsaturated and dry/saturated safety factors is 

 /

1 1 '
( ) ( )

( ) tandry sat matric
d

C
F L F L

S L P L 
 

   
 

 (56) 

Equation (56) shows that the unsaturated safety factor will always be less 

than the dry / saturated safety factor at the phreatic surface, since the actual 

overburden stress will be greater than the assumed dry / saturated overburden 

stress.  This is because there is a significant difference between dry unit weight 

and actual average moist (wet) unit weight, particularly for low soil suction 

conditions.  For a failure with a shallow water table, or if 0wQ  , the overburden 

stress is described by Equation (44), and therefore Equation (56) becomes 

    / max

1 1 '
,      1 or 0

sindry sat matric w
d s

C
F L F L Q

S S L 
 

      
 

 (57) 
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In terms of the original variables, the safety factor error becomes 

 
  max

1 1 2 '
,       or 0

sin 2 b w
d s w

c
F q

S S
 

 
 

     
  

 (58) 

Equation (58) shows that the error introduced by using a dry/saturated 

model for infinite slope analysis with shallow water tables becomes 

asymptotically large for both mild and steep slopes.  The error is also seen to be 

inversely proportional to water table depth, becoming infinite as water depth nears 

the surface. 

To illustrate the functional form of Equation (58), Figure 29 shows the 

error for cohesive optimally compacted soils with characteristics shown in Table 

8 (per U.S. Dept. of the Navy, 1982; wopt = optimal water content.)  The depth to 

the phreatic surface was assumed to be 10 m .  The resulting safety factor 

errors are seen to be quite high.  Furthermore, only the saturated cohesion values 

were used here; if the higher unsaturated cohesion values had been used instead 

the resulting errors would be even more significant.  Interestingly, the errors scale 

directly with increasing clay content and plasticity, consistent with the plasticity 

correction factors developed by Bjerrum (1973) to explain overestimates of safety 

factor calculations that continues today (see Travis et al., 2010a). 
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Optimally compacted soil properties 
(US Dept Navy, 1982) 

Calculated 
Properties 

(Assumes 90% 
saturation at w) 

Soil 
Type 

Description 
Average 
ρd (kg/m3)

Average 
wopt (%) 

Cohesion 
(kPa) 

Sd Ss 

SM 
Silty sands, poorly 

graded sand silt mix 
1924 13.5 51 1.93 2.63 

SC 
Clayey sands, poorly 
grades sand clay mix 

1883 15.0 75 1.88 2.63 

ML 
Inorganic silts and 

clayey silts 
1760 18.0 68 1.76 2.62 

CL 
Inorganic clay of 
low to medium 

plasticity 
1760 18.0 88 1.76 2.62 

MH 
Inorganic clayey 
silts, elastic silts 

1351 32.0 72 1.35 2.60 

CH 
Inorganic clays of 

high plasticity 
1474 27.5 105 1.48 2.60 

 
Table 8.  Compacted soil properties (per U.S. Dept of the Navy, 1982) and 

corresponding Ss and Sd calculations. 
 
 

 

Figure 29.  Non-conservative dry / saturated model safety factor error for 
compacted soils (10 m depth to phreatic surface) 
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As previously mentioned, one approach to overcome the non-conservative 

nature of the dry/saturated model is to simply assume soil is everywhere fully 

saturated (e.g. use only Ss and not Sd).  Indeed, if this is done, the dry / saturated 

safety factors are equal to the matric suction model at the phreatic surface and 

there is no error.  However, the fully saturated assumption is inherently inaccurate 

and creates an artificial disconnect between the groundwater model and the soil.  

Moreover, for soils with low δ values full saturation throughout the subsurface 

cannot be justified. 

Implications 

The results of this chapter indicate the importance of including matric 

suction in bank stability models.  Matric suction decreases are accompanied by 

increased soil unit weight due to increased moisture content, which in turn 

reduces the factor of safety for slip surfaces near the phreatic surface.  For 

shallow water tables, this effect increases as slope angles become less than or 

greater than 45°.   In particular, matric suction must be considered in order to 

determine appropriate and consistent soil unit weights.  It appears that matric 

suction is an integral and necessary aspect of slope stability that must be 

accounted for in order to obtain accurate predictions. 

 



120 
 

CHAPTER 5.   BANK FAILURE MODELING BY FINITE ELEMENTS 

Many a hillside do the torrents furrow deeply, and down to the dark sea they 
rush headlong from the mountains with a mighty roar, and the tilled fields of 
men are wasted. 

– Homer  
 

Introduction 

This chapter develops an appropriate model for analyzing dynamic 

sandbar response to arbitrary river stage changes.  The objectives of a 

comprehensive sandbar model are established which makes the case for the 

necessity of unsaturated flow analysis within the sandbar.  A two-dimensional 

slope stability model is developed with specific consideration given to matric 

suction, weight density, and interslice forces.  The model is compared to 

published steady state analyses and temporal predictions are made for an example 

sandbar. 

Of course, two dimensional modeling of bank stability is complicated, 

particularly because rivers, like all natural features, ignore Cartesian coordinates 

and well defined boundary conditions.  Their sandbars exist in continual contact 

with their environment; respond immediately to eddy and stage fluctuations, 

releasing and gaining sediment, all without regard for convenient control volume 

definitions and simplifying assumptions. 

The dynamic dependence of the sandbars upon the other factors of their 

environment therefore prevents the application of normal “conservative” 

assumptions in an analytical or computational slope stability model, since a 

conservative approach to analyzing sandbar response is not self evident.  Failure 

of an upstream sandbar may actually be beneficial to the river as a whole if it 



121 
 

helps to replace sediment lost to critical downstream habitat locations.  Moreover, 

it is not enough to calculate an appropriate long term factor of safety for a given 

sandbar, as the effect of sandbar release on downstream sediment accumulation 

may be positive or negative:  a lost sandbar may accumulate downstream under 

low flow conditions, but may be lost completely to the river system during high 

flow conditions.  The factor of safety for sandbars must therefore be calculated as 

accurately as possible, without the benefit of conservative assumptions. 

Field studies have shown that matric suction has been shown to 

substantially delay or even prevent slope failure since matric suction increases 

shear strength along a failure surface (Iverson 2000).  For this reason, it is usually 

seen as conservative to neglect unsaturated flow in slope stability analyses 

(Duncan and Wright 2005).  But while matric suction may increase the shear 

strength of the sandbar it also related to the weight of the material.  The weight of 

moist sand can be twice that of dry sand without being offset by the buoyancy 

effects incurred by saturation.  As shown in Chapter 4, the common assumption 

that unsaturated sand has a dry weight is inaccurate, particularly if the unsaturated 

sand has been recently saturated and its pore water distribution index is low and / 

or its air entry value is high. 

Moreover, even when neglecting soil suction is conservative for 

calculating the safety factor, it is conservative from a sediment transport 

standpoint only for slopes where failure is not expected.  If failure is expected (the 

safety factor is near 1) then neglecting soil suction may result in a false predicted 

failure surface, with the actual failure occurring later with more pronounced 
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effects.  Indeed, under drawdown conditions the critical failure surface can 

change abruptly from surface to deep failure (Baker et al 2005).  Predicting the 

time to failure is thus seen to be a critical objective of a sandbar model. 

Besides increasing shear strength and soil saturation, matric suction also 

affects the interstitial forces critical to analysis of slope stability by the method of 

slices.  The various methods utilizing the method of slices differ primarily in 

terms of their consideration of these forces.  For example, the Ordinary Method of 

Slices (OMS) assumes the interslice force is zero; Spencer’s Method assumes all 

interslice forces have the same inclination but different magnitudes; the 

Morgenstern and Price method assumes normal and shear interslice forces related 

by a specifically bounded but arbitrary function.   

Generally speaking, interslice forces are deemed appropriate only if they 

can be resolved into an equivalent line of thrust that passes through all of the 

slices.  This check on the force validity may not be appropriate for slopes with 

significant matric suction, however.  Consider an arbitrary slice per Figure 30, 

where ψ indicates an average suction on the slice, u an average porewater 

pressure, Z the interslice force, S the shear force on the slice, and N the normal 

force on the slice.  For the slice shown, resolving forces into an equivalent line of 

thrust would neglect the internal moment in the slice caused by a pore pressure 

gradient near the base and a matric suction gradient above the phreatic surface.  

The situation is analogous to reinforcement analysis of slopes, where it is usually 

recommended to separate the reinforcement forces from the interslice forces since 
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failing to do so may lead to numerical difficulties and unrealistic force 

considerations (Duncan & Wright 2005). 

 

Figure 30.  Slice with soil, porewater pressure, and matric suction. 
 

Finally, if failure occurs the true critical slope must be known in order to 

calculate the mass lost to the sandbar.  Significant suction will tend to bind the 

soil mass together, and likely result in a higher mass released then a failure 

without suction.  Thus, to meet the objective of accurate volume loss prediction, 

matric suction must be included. 

Three objectives have been specified:  accurate calculation of minimum 

factors of safety, time to failure, and failure mass.  The following sections 

describe the full two-dimensional unsaturated sandbar model developed to meet 

these objectives.   

Slope Stability Analysis 

The ordinary method of slices (OMS) was utilized for 2DLE analysis.  

This method was chosen over other methods for the sandbar slope stability 

modeling because: 
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a) Studies into riverbank failures indicate that failure surfaces are planar 

(Simon et al. 2000) or rotational (Budhu & Gobin, 1994), but not 

typically infinite slope.  Moreover, rotational failures are seen to 

encompass planar failures since a rotational failure with a large 

enough radius collapses to planar failure. 

b) Of the simple methods recommended for the present study from 

Chapter 2 only OMS provides an explicit equation for safety factor of 

an arbitrary rotational failure surface. 

c) There is some evidence that even irregular surface failures are caused 

from progressive circular failures (Burridge 1987). 

d) Negative stresses within slices are poorly handled by all slice 

procedures except OMS (Duncan & Wright 2005). 

e) Infinite stresses can occur in all slice methods at the toe of the slope 

except OMS (Duncan & Wright 2005). 

f) Liquefaction often occurs with slip surfaces near failure (Iverson 

1997) and is often used to determine failure in similar studies (e.g., 

Budhu & Gobin 1996).  Since most sandbars will exhibit safety 

factors near failure it is likely that the soil forces (equal to the 

interslice force for the effective stress analysis developed here) will 

be near 0, consistent with the OMS assumption.   

g) The OMS is the only method of slices that allows direct computation 

of F.  Thus, the OMS is many orders of magnitude faster than other 
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methods, allowing more dependable methods of locating the 

minimum F and more calculations of F over a given timeframe. 

Slip surface location was accomplished by grid search for slip surface 

center, and golden sector for radius (Mays and Tung, 2002).  Other methods were 

considered, but found to be too computationally expensive.  The developed 

technique was rapid and successful. 

Flow Analysis 

 

Figure 31.  Partially submerged slope. 
 

The flow analysis is conducted considering a sandbar of length l and 

height d adjacent to a water surface varying over time with elevation y(t), per 

Figure 31.  The sandbar is initially triangular to a width w, and thus has a slope A 

= d / w and an initial ground surface given by 

 
 
 

,

,

g x Ax x w

g x d x w

 

 
 (59) 

Introducing an assumption of zero pore air pressure, then the matric 

suction of unsaturated flow is simply the negative of the hydraulic head minus the 

elevation, h – z .  Thus, flow within all areas of the sandbar can be modeled by  

d
w

d( )y t

( )g x
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one two dimensional continuity equation: 

  2 ,w
x z w

h h
k k g m h z h

x x z z t
                      

 (60) 

where ρw is the density of water, g the acceleration due to gravity, x, and z are the 

respective horizontal and vertical Cartesian coordinates, t is time, kx(h,z) and 

kz(h,z) are the respective horizontal and vertical unsaturated hydraulic 

conductivities, and  2 ,wm h z  is the coefficient of water volume change as defined 

by Fredlund and Rahardjo (1993).    For saturated conditions,  2 ,w
wgm h z  

equals ss0, the specific storage. 

The boundary conditions require establishing three different flow regions 

along the sandbar surface, noted here as I, II and III.  Region I refers simply to 

that region of the sandbar surface below the depth of the adjacent water:  g(x,t) < 

y(t).  In region I, the sandbar surface head must equal y(t).  Region II refers to any 

region of the sandbar surface not within region I and where there is positive flow 

out of the sandbar.  Region II requires the head at the surface to be equal to its 

elevation.  Region III refers to any region of the sandbar surface not in either II 

or III.  This region is subject to the no-flow requirement. 

Mathematically, Region I is defined by those points p(x, g, t) such that 

   : : g y tI p  (61) 
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Defining ω(x,g,t) as the angle of g(x,t) with the horizontal, flow out from 

the sandbar where g(x,t) > y(t) (Region II) will occur only if hydraulic head is 

increasing into the sandbar: 

 
     , , , , , ,

tan 0
h x g x t t h x g x t t

x z

 

 
 

 (62) 

Letting ζ(x,g,t) be defined by the left side of (62), Region II is therefore 

defined as 

       : : , & , , 0g x t y t x g t II p  (63) 

Region III is thus formally defined as: 

  : : , III p p I p II  (64) 

With the regions established, the boundary conditions may be written: 

 

   
   
 

:

: ,

: 0

h y t

h g x t



 

 

 

p I p

p II p

p III p

 (65) 

The no-slip boundary conditions along the base and rear wall are simply 

 
 ,0,

0
h x t

z





 (66) 

 
 , ,

0
h l z t

x





 (67) 
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The initial condition is defined by an initial head h0(x,t): 

    0, ,0 ,h x z h x z  (68) 

To generalize the analysis, the non-dimensional lengths X = x/w, Z = z/d, 

G = g/d, Y = y/d, L = l/w, and H = h/d are introduced.  Time is non-

dimensionalized using any convenient reference time, such as down-ramp or up-

ramp loading time.  This reference time is denoted tr and the corresponding non-

dimensional time is denoted T = t/tr.  The sandbar surface point p(x,g,t) is denoted 

P(X,G,T).   

The non-dimensional sandbar surface slope angle is defined as Ω where 

tan Ω = tanω / Wd and Wd = w / d.  The ζ function may be written in terms of the 

non-dimensional parameters as 

 
     , , , , , ,

tan
H X G X T T H X G X T T

X Z


 
  

 
 (69) 

The region members in terms of the non-dimensional parameters are 

   : : G Y TI P  (70) 

       : : , & , , 0G X T Y T X G T II P  (71) 

  : : , III P P I P II  (72) 

The continuity and boundary conditions may be written in terms of these  
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non-dimensional parameters as 

 
2

x r z r
s

k t d k tH H H
s d

X w X Z d Z T

                
 (73) 

This equation may be simplified by defining the following non-

dimensional parameters: 

            ,
, ; , , / ; , ,x r

x z z r s s
d

k x z t
K X Z K X Z k x z t d S X Z s x z d

wW
    (74) 

Thus, the governing equation may be written 

 x z s

H H H
K K S

X X Z Z T

                  
 (75) 

The boundary and initial conditions become 

 

   
   
 

:

: ,

: 0

H Y t

H G x t



 

 

 

P I p

P II p

P III p

 (76) 

 
 ,0,

0
H X T

Z





 (77) 

 
 , ,

0
H L Z T

X





 (78) 

    0, ,0 ,H X Z H X Z  (79) 
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Initially, the ground surface is given by: 

   , 1; 1, 1G X X X G X X     

Note that with these parameters defined, the solution is established for a 

non-dimensionalized slope of 45 degrees, regardless of the actual sandbar slope.  

This allows the profile to be easily generated and interpreted. 

A finite difference grid was established for solution utilizing central 

differences for both the spatial and temporal derivatives.  The temporal average 

for H is defined as 

  1
2 t tH H H    (80) 

The governing equation becomes 

 
2 2

2 2
x z

x z s

K KH H H H H
K K S

X X X Z Z Z T

     
   

      
 (81) 

This equation is solved utilizing a central difference scheme and the 

following functions: 

     1
2x x x x x x x xQ K K H H K H H           (82) 

     1
2z z z z z z z zQ K K H H K H H           (83) 

Here the subscripts ±x and ±z refer to adjacent cell values.  That is, +x 

indicates one cell to the right (positive x direction), -z indicates one cell down 
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(negative z direction) and so forth.  The time subscript, –t, indicate the previous 

time step. 

With the aforementioned functions defined, the governing partial 

differential equation may be written 

 
2 2 2 2

2 2
2 2

x t x sz z
s

Q H K SQ K
S H

X Z T X Z T
             

 (84) 

Expanding H  in Equation (84), the following implicit function for H+t is 

derived: 

 
2 2 2 2

2 2 2 2

4

2
x z s t

t t
x z s

Z TQ X TQ X Z S H
H H

Z TK X TK X Z S


 

       
 

       
 (85) 

Thus, a grid of implicit functions is established and may be solved by any 

number of algorithms, including Newton-Raphson, etc. 

The boundary condition for III in finite element form is established in 

towards the sandbar.  In terms of the finite element analysis, the boundary 

condition requires determining the type of adjacent cells.  Only those in the 

sandbar in considered.  Any other type, namely a river cell, another boundary cell, 

or an open air cell, are ignored.   

This procedure is quantified by introducing delta functions δ±x and δ±z.  

These functions evaluate the adjacent cells and return either 1 if part of the 

sandbar, or 0 if not.  With these functions defined, the boundary condition for the  
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sandbar boundary is 

 
   

   
tan

tan
x x x x z z z z

x x z z

H H X H H Z
H

X Z

   
   

       

   

    


    
 (86) 

Unsaturated functions for the hydraulic conductivity are established per 

Brooks and Corey (1964).  Unlike the hydraulic head, the hydraulic conductivity 

function was allowed to lag, as doing so vastly improved convergence speed with 

no discernible decrease in accuracy.  The hydraulic conductivity is 

  
2 3

2 3

1, 0

1 2 3 , 0

,

T

BC T T
b T

sat b b

b
T b

T

H Z

K H Z H Z
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H Z H
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





 
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







 


                 
      


 

    

 (87) 

where Ksat the non-dimensional saturated hydraulic conductivity.  Likewise, the 

non-dimensional specific storage function was 

  

0

2 3

, 0

1

, 0

, , 0

,

s T

BC BCT T
s BC T s b T

b b b b

b
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S H Z

A BH Z H Z
S H Z S H H Z

H H H H

H
H Z H

H H Z






 
 









 


             
   


      

(88) 
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where 

 2
03 4BC b sA H S      (89) 

 2
02 3BC b sB H S      (90) 

Example Application 

A recent study by Baker et al (2005) investigated the stability of partially 

submerged cohesionless 14° slope.  Their study assumed steady state conditions 

and a variety of adjacent water levels.  Using Spencer’s method for the slope 

analysis, they found the safety factor decreased from 2.91 for water levels at the 

slope crest to a minimum of 2.48 for water levels about halfway up the slope, and 

increased to about 2.73 for water levels at the slope toe.  The specific soil and 

slope parameters for the Baker et al (2005) study are shown in Table 9, along with 

the additional assumed parameters needed for the unsteady analysis.  Note the 

high value of λ used to replicate the Baker et al. (2005) assumption of strictly wet 

/ dry soil conditions. 

From Baker et al (2005) Additional assumed parameters 
Parameter Value Parameter Value 
Slope angle 14° Permeability 0.0001 ft/sec 
Slope height 16.4 ft Specific storativity 0.03 1/ft 

Saturated specific gravity 1.8 λ 999 
Unsaturated specific gravity 1.54 δ 3.0 

Soil porosity 0.35 (ua – uw)b 6.24 psf 
 

Table 9. Example Parameters 
 

The Baker et al (2005) study was investigated using the developed model 

for a range of drawdown rates.  The minimum safety factor was evaluated at 20 
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different drawdown elevations by exhaustive enumeration; more than 10,000 

different slip surfaces at each elevation were evaluated.  The time steps were 

chosen as the fraction of the downramp time tr / 600 for drawdown times up to 

100 hours; tr / 6000 was used for the 500 hour drawdown run, where numerical 

stability became an issue.  Execution time was usually under 1 hour, 

approximately, on a standard laptop computer.  The results are shown in Figure 

32, where the water level Y has been normalized by the slope height D. 

 

Figure 32.  Safety factors versus Y / D for various drawdown rates (points 
are from Baker et al., 2005) 

 
The safety factors were calculated both considering and not considering 

the matric suction ψ.  Only the 500 hour run generated a perceptible difference 

between the two computed safety factors and so is the only drawdown rate shown 

with both safety factors.  Thus, even though the simulation required an 

unsaturated analysis in order to correctly meet the boundary conditions of the 
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problem, matric suction itself did not play a significant role, or was at least offset 

by the increased unsaturated soil weight.  This would not likely be the case for a 

finer material, initial unsaturated / saturated conditions (e.g. an initial phreatic 

surface midway through the slope), and materials with a lower pore size 

distribution index (deposited sand, for example). 

The match of the steady state run to the Baker et al (2005) study was 

within 1% for Y/D = 0.0, 1.0, and the midrange.  A maximum difference of about 

10% occurred for Y/D = 0.9.  The reason for this mismatch is unknown, but may 

be related to the unreported depth below the slope used by the Baker et al study; 

in the present study, the critical failure surface dropped close to the base limit of 

the grid at several points. 

Comparing the steady state result with the other drawdown rates, the 

safety factor is seen to drop significantly as drawdown rate increases.  Complete 

drawdown over 50 hours reduces the minimum safety factor to about half of the 

steady state value; failure occurs during the 24 hours drawdown rate at Y/D = 

0.65, or about 16 hours into the drawdown.  The safety factors for the 16 hour run 

drop even lower, and the 10 hour drawdown rate shows safety factors below 1.0 

for 80% of the drawdown, the majority of which drop to nearly 0. 



136 
 

 

Figure 33.  Non-dimensional 0.4 unit pressure contours for the 100 hour 
drawdown 

 
The pressure contour graphs explain the safety factor changes.  Figure 33 

shows the non-dimensionalized pressure contours for the 100 hour drawdown; 

Figure 34 shows the 10 hour drawdown.    The pressure contours are at 0.4 

intervals.  The 100 hour drawdown shows a minimum value of -0.02 (matric 

suction) at the slope crest, whereas the 10 hour drawdown exhibits a minimum of 

about 0.04 at the slope crest.  The contours are seen to be, in general, higher for 

the 10-hour run, with high gradients perpendicular to the slope.  Failure likely 

results from high pressures near the toe reducing normal stress along the failure 

surface under the toe, thereby reducing the shear strength without reducing the 

overturning moment. 
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Figure 34.  Non-dimensional 0.4 unit pressure contours for the 10 hour 
drawdown 
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CHAPTER 6.   BANK STABILITY RESPONSE TO PERIODIC STAGES 

     “I’ve got a sort of idea,” said Pooh at last, “but I don’t suppose it’s a very 
good one.” 
     “I don’t suppose it is either,” said Eeyore. 
 

– from The House at Pooh Corner 
   by A. A. Milne 

 
Introduction 

Specific to slope stability risk of sandbars downstream of dams, the 

following conclusions may be made from the work presented in the previous 

chapters: 

1. For slopes near failure conditions, the slope stability factors of safety 

must be interpreted statistically (Chapter 2). 

2. Of the typical limit equilibrium approaches to slope stability, the direct 

methods appear to be well behaved for slopes near failure, with the 

safety factors adhering to a log normal distribution with a mean of 

about 1.0 (as expected) and a standard deviation of approximately 0.08 

(Chapter 3). 

3. Matric suction must be included as a component of the analysis.  Not 

only does it increase effective cohesion, it must also be considered for 

realistic calculation of the unit soil weights (Chapter 4). 

4. Finite element analysis indicates that pore water pressures in sandbars 

can be effectively modeled by Richard’s equation, and initial failure 

can be reasonably predicted for well established boundary conditions. 

(Chapter 5) 
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It is evident that a complete model of sandbar failures must include the 

stability effects of the adjacent river stage, the internal porewater pressure and 

matric suction dynamic conditions (both dependent on water stage history), and 

must synthesize these elements into stochastic predictions. 

Unfortunately, the stochastic nature of slope failures requires statistical 

interpretation of a large number of simulations in order to understand slope 

response to river stage fluctuations.  Indeed, the next chapter will show that a 

Monte Carlo simulation at sufficient power requires many thousands of these 

calculations.  At the speed of the developed finite element model, a thousand 

simulations would take approximately 750 hours.   

There are further challenges as well, specific to periodic, tidal type, 

loading conditions.  For periodic flows the finite element approach is problematic, 

since both porewater pressure and matric suction distributions have been found to 

be dependent on their history, and it is not clear what constitutes reasonable initial 

conditions of periodic river stage fluctuations.  One approach to resolving the 

initial condition problem is to run the finite element model through sufficient 

cycles that risk response also becomes periodic.  The alternative approach is to 

iteratively adjust the initial conditions until they are in agreement with those at the 

end of the period.  Either method would be expected to significantly increase 

computing time. 

These issues were resolved by taking a new approach.  As described 

herein, the finite element model is replaced with an analytical solution.  This 
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solution, which is apparently new to the field, implements the general results of 

the previous chapters and allows arbitrary periodic stage functions.    

Riverbank Porewater Response 

A formal solution of the general problem of modeling the porewater 

response to n periodic adjacent water stages was obtained by partitioning the 

slope into saturated and unsaturated regions, as shown in Figure 35.  The 

saturated region is presented first. 

 

Figure 35.  Riverbank Model 

Saturated Region 

The saturated region in the riverbank is described by the two-dimensional 

Richards equation for saturated flow (Fredlund and Rahardjo, 1993): 

 
2 2

2 2
s s s sd h d h s dh

dx dy k dt
   (91) 

where hs(x,y,t) (m) is the hydraulic head in the saturated region, with x (m) the 

horizontal coordinate, y (m) the vertical coordinate, and t (sec) denoting time.  

The origin is located at the interface of the sandbar with the river base.  The two 
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soil properties are ss (m
-1), the specific storage, and ks (m/sec), the saturated 

hydraulic conductivity, both assumed constant.  The slope, modeled with width w 

(m), height b (m), and angle θ, is assumed to be homogeneous.   The adjacent 

river stage is denoted z(t) (m).  The initial condition for the solution to (91) is 

assumed to correspond to a constant head h0 throughout the saturated region.  

That is, 

   0, ,0sh x y h  (92) 

The four boundary conditions for hs are  

    0, ,sh y t z t  (93) 

  , ,sh y t h     (94) 

  , tan , 0sh x x t   (95) 

   0, ,sh x t h     (96) 

The far field boundary condition is expressed here in terms of an assumed 

but unknown constant head h0 which satisfies the initial condition.  The implied 

assumption is that the soil is assumed to extend infinitely homogeneous in both 

the –y and +x directions.  This seems a reasonable assumption for large slopes, 

such as those of interest along the Colorado River in the Grand Canyon, but may 

be less accurate for small slopes underlain by impermeable material.  It is 

consistent with the half-space approximation of the Grand Canyon sandbars 

applied by Carpenter et al. (1995). 

Equation (91) is simplified by introducing the composite variable u, where 

 / tanu x y    (97) 
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resulting in 

 
2 2

2

sins s s

s

d h s dh

du k dt


  (98) 

with the initial and spatial boundary conditions for hs(u,t) reformulated as  

   0,0sh u h  (99) 

    0,sh t z t  (100) 

   0, ,sh y t h     (101) 

If z(t) is sinusoidal with period p (sec), the solution to (98) may be expressed 

        0, exp sin coss n n n n n n nh u t h u S t u C t u             (102) 

where Sn, and Cn are constants with length units in meters, n is an arbitrary 

integer, and ηn  

(sec-1) and εn (m
-1) are  

 
2

n

n

p

   (103) 

 
2

sin s
n

s

s n

k p

   (104) 

For arbitrary, periodic loading, a solution may be obtained by expanding 

(102) as a Fourier series, in the form 

        0
1

, exp sin coss n n n n n n n
n

h u t h u S t u C t u    




         (105) 
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In terms of the original variables, Equation (105) is 

 

     

   

0
1

1

, , sin / tan exp / tan

cos / tan exp / tan

s n n n n
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n n n n
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h x y t h S t x y x y

C t x y x y

    

    









           

          




(106) 

Equation (106) is a general solution, and valid for the groundwater 

response within any slope experiencing periodic adjacent stage loading.  In 

particular, for sinusoidal z(t) and θ = 90º, Equation (106) becomes one 

dimensional and collapses to the well known solution for tidal driven groundwater 

fluctuations (Furbish, 1997).   Expansions of the tidal solution by Fourier series 

are reported by Nielsen (1990) for sloping beaches, wherein he utilized 

perturbation to derive similar equations to Equation (106) but expressed in terms 

of x only. 

Of course, hs is valid only when s bh y   , where ψb is the pressure head 

at the air entry value (a negative value). When this condition is violated (e.g. 

s bh y   ), flow is governed by the unsaturated head, the analysis of which is 

considered next.  

Unsaturated Region 

The unsaturated hydraulic head hu (m) must satisfy Richard’s equation for 

unsaturated flow, presented here in the form developed by Fredlund and  
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Rahardjo, 1993): 

 2
wu u u

u u

dh dh dhd d
k k m

dx dx dy dy dt


      
   

 (107) 

where 2
wm  (m2 / N) is the coefficient of water volume change with respect to a 

change in matric suction, γ (N/m3) is the specific weight of water, and ku (m/sec) 

is the unsaturated hydraulic conductivity.  Note that both ku and 2
wm  are functions 

of hu, and collapse to the saturated constants ks and ss / γ at 100% saturation.   

Following Budhu and Gobin (1995b), it is assumed that ku scales to ks 

approximately as 1000u sk k  (Bateh and Khoshgoftaar, 1979).  Similarly, 

Fredlund and Rahardjo (2003) reports a value of 2 100w
sm s   for a soil with 

properties akin to the one considered here.  Thus, an order of magnitude 

approximation to Equation (107) is 

  
2 2

5
2 2

10 u u s u

s

d h d h s dh

dx dy k dt
  

  
 

 (108) 

For comparable ss and ks values, the left hand side of Equation (108) is 

much less than the right hand side, resulting in the simplification 

 0s u

s

s dh

k dt
  (109) 

the solution of which is simply 

 uh a bx cy    (110) 

where a, b, and c are constants. 

Initially hu must equal h0 everywhere in the unsaturated zone.  Thus, in 

accordance with Equation (110), hu would still equal h0 when the piezometric 
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surface rises.  However, in areas where the piezometric surface drops below the 

initial value, the scaling difference between the unsaturated and saturated 

hydraulic conductivities suggest that the air entry pressure head (ψb) is 

maintained.  That is, 

 
 
 

0 0

0

,

,

b

u

b b

h y h
h

y y h



 

   
  

 (111) 

Note that Equation (111) is a solution in the form required by Equation 

(110). 

Saturated Flow for Arbitrary Fluctuating River Stages 

By Taylor’s series, z(t) can be expressed to any desired precision as a 

piecewise polynomial (order K) with J segments in the form 

     2
1 ,, , ... ...k Kk K

j j j o j j j j jz t t t z z t z t z t z t         where j corresponds to the j’th 

segment for z(t).  The corresponding Fourier coefficients are given by 

 , , , ,
1 0 1 0

;
J K J K

n j k n n j k n
j k j k
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where Sj,k,n and Cj,k,n are  
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In the example application, specific to sandbars downstream of the Glen 

Canyon dam, the z(t) function may be established by considering both the linear 

water release functions described earlier and the stage relations established by 

Hazel et al. (2006).  In terms of the piecewise notation introduced for z(t), linear 

flow release functions may be designated ,o j jq q t , where the constants are 

functions of the flow variables as defined earlier and have the values shown in 

Table 10. 

j ,o jq  jq t  tj 

1 lowq  0 1
2 p  

2 2low upq q t  upq   1
2 lowt p  

3 peakq  0  2 /peak low upt q q q   

4 4peak downq q t  downq  3 peakt t  

5 lowq  0  1
2 lowp t  

6 lowq  0 1
2 p  

 

Table 10.  Glen Canyon Dam Release Parameters. 
 

For a one day period, as will be henceforth assumed, e.g.  1 day 86, 400 secp  . 

Hazel et al. (2006) reports stage relationships for sandbars at various 

locations downstream of the Glen Canyon Dam.  Catalogued by river mile (RM),  
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the relationships are given as 

   2
1 2z q q q    (117) 

where ς1 [m / (m3/sec)] and ς2 [m / (m3/sec)2] are regression constants at a 

particular distance downstream.  From Equation (117) and the flow parameters in 

Table 10, the z(t) coefficients are therefore 

 2
, 1 , 2 ,o j o j o jz q q    (118) 

  1 2 ,2j o j jz q q     (119) 

 2
2j jz q   (120) 

Overburden Pressure 

The overburden pressure, denoted P, is given by 

    soilP y g y   (121) 

where soil  (kN/m3) is the average unit weight of the soil from the ground 

elevation g (m) to elevation y.  Of course, accurate values of soil  require the 

actual unit weight of the soil at elevation y, denoted γsoil (kN/m3), which is, in 

turn, a function of the saturation S, porosity n, the dry unit weight of the soil γdry 

(kN/m3) and the unit weight of water γwater (kN/m3), in the form 

 soil dry waterSn     (122) 

From Equation (122), soil  is  given by 

 
g

soil dry water

y

n
S dy

g y
   

   (123) 
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The saturation is a function of matric suction head ψ (m).  Many 

constitutive relationships have been developed to describe this relationship.  If the 

Brooks and Corey (1964) function is assumed, then 

   1 /r r bS S S
     (124) 

where Sr is the residual saturation, ψb (m) is the pressure head at the air entry 

value, and λ is a soil constant.   

Given Equation (124), Equation (123) may be written 
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r
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dy
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    


 
   (125) 

where the residual unit weight γres (kN/m3) is 

 res dry r waterS n     (126) 

From Equation (111), and noting that uh y   , the matric suction head 

as a function of y is 
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 

 (127) 

Implementing Equation (127) requires calculating yb (m), the elevation at 

which b  .  This formula for yb is the implicit equation 

  , ,s b b bh x y t y    (128) 

An approximate solution to Equation (128) is obtained by expanding hs 

around  y z t : 

      , , , , s
s b s b b b

dh
h x y t h x z t y z y

dy
      (129) 
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Usually the capillary rise is assumed to be a simple vertical projection 

from the piezometric surface, suggesting that the derivative term in Equation 

(129) is small.  Moreover, assuming a fairly rapid response near the slope surface, 

the expected difference between yb and z is also small.  An approximate solution 

for yb is therefore 

   , ,b s by h x z t    (130) 

Equation (130) can also be used as the first guess for yb and Equation 

(128) then used iteratively to determine yb.  For most applications, however, the 

approximate solution should be sufficient. 

For purposes of determining saturation, it is useful to define an elevation 

ysat (m), above which the soil becomes unsaturated.  Equation (127) requires 

that 0b by h   , so ysat is given by 

  0max ,sat b by y h    (131) 

Therefore, if saty y g  , Equation (125) may be expressed 
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1 sat
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y g
r b

soil res water

y y
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dy dy

g y h y
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   
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   (132) 

with solution res dry r waterS n     

 
1

1sat sat b
soil sat res water

sat b

y y g y

g y g y g y y g


   


                
 (133) 

where γsat is the saturated soil weight, ( sat res watern    ), and κ (m) is defined 

by    1 / 1r bS n     . 
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If saty y g  , the soil is completely within the unsaturated zone.  

Following the same procedure outlined above, the solution for soil  is 

 
1 1

b b
soil res water

sat b sat bg y y y y g

 
   
 

     
               

 (134) 

Of course, if satg y , then the soil is completely saturated above y, and 

the average soil weight is simply 

 soil sat   (135) 

Conclusions 

The primary advantage of the model developed here is the ability to model 

the porewater response to tidal type stage loading without stepping through 

incremental time steps from an assumed initial condition, as required by a finite 

element analysis.  That said, there are other advantages to the model as well.  

These are: 

1. The inherent fluctuations of river stages are directly modeled, 

eliminating the need to assume potentially inaccurate initial conditions 

2. The average piezometric surface can be directly obtained from the 

constant term in Equation (106). 

3. The analytical solution bypasses convergence problems often 

associated with finite element models of matric suction. 

With the porewater model complete, global risk analysis of a river system 

becomes achievable.  A particular approach is presented in the next chapter. 
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CHAPTER 7.   RIPARIAN SCALE BANK FAILURE RISK 

Waves can romp through the earth and sparks fly off to join stars and if you are 
quiet and listen very carefully you can hear voices in the water. 
 

– from The Bird in the Waterfall 
   by Glenn Wolff 

 
Introduction 

At the riparian scale, periodic stages at a particular sandbar location 

become functions of the upstream discharge waves.  Thus, generalizing porewater 

response requires a twofold wave model: a discharge wave model must be derived 

and then coupled with the groundwater wave model that forms in response. 

When this is achieved, a full risk model becomes possible by linking the 

riparian scale groundwater model with a slope stability model and associated 

stochastic parameters.  Here, a Monte Carlo simulation is used to accomplish this 

generalization, with a simulated experiment applied to account for the inherent 

uncertainties of the input parameters.  Model effectiveness and factor significance 

are analyzed by Analysis of Variance (ANOVA) hypothesis testing.  A reduced 

ANOVA model is developed to relate slope failure risk with fluctuating stages.  

Finally, wave attenuation is accounted for by nonlinear regression, thus 

completing the river reach slope stability model. 

Consistent with the earlier work, the ordinary method of slices (OMS) was 

utilized for the slope stability analysis.  River stage loading is developed from the 

USACE (2003) equation, modified to include matric suction effects per Fredlund  
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and Rahardjo (1993).  The resulting OMS safety factor (SF) equation is  
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

 (136) 

 
where Δl (m) is the length of the slice at the slip surface, χ is the angle of the slice 

at the slip surface, W (N) is the weight of the overburden soil, F (N) is the 

resultant force of the water pressure (perpendicular to the slope), up (Pa) is the 

fluid pressure (positive for saturated conditions, negative for unsaturated 

conditions), and b  is the matric suction friction angle function.  The remaining 

variables are as defined in Chapter 6. 

In general, the matric suction function b  changes from   at saturated 

conditions to a function of ψ at unsaturated conditions.  Indeed, Houston et al. 

(2009) found that a good fit of b to field data may be achieved with a hyperbolic 

relation, with an initial value equal to   for matric suction values less than the air 

entry value.   

However, when only limited data is available, b  is typically assumed to 

be constant (Fredlund and Rahardjo, 1993).  Thus, since the no information is 

currently available for b  for the Colorado River sandbars, and matric suction 

values are not likely to significantly exceed the air entry value, b  was assumed to 

equal   for the verification process of the present work by simulation of the Glen 

Canyon Dam system.  This assumption is consistent with similar slope stability 

studies (e.g. Cho and Lee, 2002).  Of course, if better estimates of b  become 

available, the model can be easily reevaluated. 
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The soil weight W is obtained from the average soil weight equations 

(132) through (135).  The expressions for F and up are easily obtained from the 

previously defined variables, and are 

 
  / cos ,
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 (137) 
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 (138) 

Verification:  Sandbar 172L 

The stability risk model was verified by using data from the failure of 

sandbar 172L on the Colorado River.  This sandbar failed on June 18, 1991 

following high oscillating flow (Cluer, 1992).  Figure 36 shows a sketch of the 

sandbar (following Fig. 4 in Budhu and Gobin, 1995b).   

 

Figure 36.  Sketch of Sandbar 172L 
 

Three soil zones were identified in the sandbar and designated Zones I 

through III.  The soil parameters, , including γsat, ks, effective soil cohesion (c’, 

kPa) and effective friction angle (φ’), in Zones I and II were determined by field 
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and laboratory testing.  Zone I was categorized as an inactive zone, consisting of 

fine to medium sand ( 317.2 kN/msat  , ' 2 kPac  , ' 32   , 

42.3 10  m/secsk   .)  Zone II, the active zone where the failure occurred, 

consisted of transient sediments of very fine and medium sand ( 316.0 kN/msat  , 

' 4 kPac  , ' 30   , 44.2 10  m/secsk   .)  Zone III was much less permeable, 

consisting of rock, Redwall and Muav limestone talus slope.   

The lowest and highest stages during the day the failure occurred are also 

shown in Figure 36, seen to correspond to flows of 150 m3/sec and 836 m3/sec. 

Budhu and Gobin (1995b) analyzed the slope failure using Biot’s (1945) 

stress-pore pressure theory.  Unfortunately, this analysis predicted only a shallow 

failure in Zone II.  Subsequent analyses with four limit equilibrium methods 

(Spencer’s, Janbu, Modified Swedish, and Lowe and Karafiath) all also predicted 

shallow slope failures, but failed to predict failure near the observed slip surface, 

where the lowest calculated safety factor was 1.70 (using Lowe and Karafiath 

method).  These limit equilibrium analyses assumed instantaneous drawdown, 

with the adjacent water stage lowered to 150 m3/sec but the slope still completely 

saturated and the pore water pressures maximized at a constant hydraulic head 

corresponding to the maximum river stage. Given the poor performance of the 

models, the authors theorized that a fault already existed along the slip surface 

(within Zone II), and thus had an effective cohesion of zero.  When their model 

was executed with this assumption, failure at the fault was, indeed, predicted. 

The method developed here was used to consider three aspects of the  
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sandbar response of 172L:   

1. The observed stability of the transient elements of Zone II during the 

fluctuating flows; 

2. The failure on June 18 at the observed slip surface within Zone II; 

3. The original (hypothesized) failure through Zone I that created the 

fault between Zone I and II.  Ideally, failure should be predicted and 

the failure surface should approximate the observed fault geometry.  

Execution of the model required the assumption of several parameters not 

tested on Sandbar 172L.  These values, and the justification for their applicability 

here, are as follows: 

1. The pore size distribution index (λ) was assumed to be 4.0, consistent 

with a similar soil reported by Fredlund and Rahardjo (1993). 

2. The specific storativity (ss) was implemented as 0.0005 m-1, 

corresponding to the value reported by Sabol and Springer (2006) in 

their model of a different sandbar along the Colorado River. 

3. The air entry pressure head value (ψb) was assumed to be 0.5 m, 

corresponding to a air entry pressure of 5 kPa reported by Fredlund 

and Rahardjo, (1993) for a similar soil. 

4. The residual saturation (Sr) was assumed to be 15%, also reported by 

Fredlund and Rahardjo, 1993) for a similar soil. 

5. The void ratio (e) was valued at 0.80, an average of the minimum 

laboratory, maximum laboratory, and field tested respective values of 

0.52, 0.95, and 0.85 as reported by Budhu and Gobin (1994). 
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The flow parameters, estimated from the figures included in Budhu and 

Gobin (1995a), were:  100downq   (m3/sec)/hr, 100upq  (m3/sec)/hr, 

3835 m /secpeakq  , and 10 hrpeakt  .  The low flow values were different at the 

beginning from that at the end of the 24 hour period on June 18, initially at 

3190 m /secbaseq   and ending at 3150 m /secbaseq  .  The corresponding stages at 

the sandbar were modeled using the Hazel et al. (2006) reported coefficients at the 

sandbar of 3
1 6.1 10z    m / (m3/sec) and 3

2 1.4 10z     m / (m3/sec)2. 

The stage relationship was modeled by the Fourier series, utilizing 100 

sine and cosine coefficients.  The match between the Fourier model and the 

inferred stage relationship is shown in Figure 37.  The fit is seen to be nearly 

perfect. 
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Figure 37.  Reported and Fourier Approximated Models of Stage vs. Time 
Relationship at Sandbar 172L on June 18, 1991. 

 
With the model parameters established, the three cases were evaluated.  

The resulting minimum safety factors (SF) versus time relationships are shown in 

Figure 38. 
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Figure 38.  Sandbar 172L Safety Factor calculations for Three Different 
Simulations. 

 
Figure 38 indicates that failure was not probable within Zone II for the 

June 18th conditions (minimum SF = 1.20), but was probable assuming the 

interface reduced cohesion to 2 kPa, this being the minimum of the Zone I and 

Zone II cohesions (minimum SF = 0.98).  Thus, unlike previous efforts, failure is 

indicated by the present model with an arguably more realistic assumption of 

cohesion at the slip surface then given in the previous study by Budhu and Gobin 

(1995b), where the cohesion was assumed to be zero.   

Most significantly, perhaps, is the likelihood that the original failure of the 

sandbar (when it consisted of Zone I material only) took place under similar 

loading conditions, as suggested by a minimum safety factor near 1 (SF = 1.03). 

Indeed, Figure 39 shows the slip surface corresponding to the minimum SF 
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calculated for the Zone I / II fault.  Reasonable agreement is also seen between the 

failure surface and the observed fault geometry, particularly with regard to the 

endpoints.  Of course, the observed fault was not curvilinear at its base, but it is 

probable that if the slip surface did occur as predicted, the failure block would 

have leveled the base surface as it progressed. 

 

Figure 39.  Sandbar 172L Slip Surface and Zone I / II Fault for the Inferred 
Initial Failure. 

 
Note that the porewater pressures in Figure 39 were quite high, suggested 

a high probability of liquefaction, more evidence of failure. 

The high porewater pressures at the bank surface are consistent with rapid 

drawdown, which describes the bank stability reaction to rapidly decreasing 

stages.  Analysis by effective stress directly accounts for porewater pressure 

changes but does not usually account for changes to the effective shear strength 

due to undrained conditions.  Analyses assuming total stress conditions have been 
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developed to account for undrained shear strength effects.  Unfortunately, these 

analyses are somewhat complex, can only be applied with the Lowe and Karifiath 

and USACE 2DLE stability calculation methods, require soil parameters that may 

not be available or easily obtained, and requires three separate safety factor 

estimates (Duncan and Wright, 2005). 

For soils with hydraulic conductivities greater than 10-6 m/day, such as 

those considered here, an effective stress analysis is appropriate and drained shear 

strengths can be used (Duncan and Wright, 2005).  Moreover, it must be noted 

that soil dilatancy and associated shear strength effects are indirectly included 

through the empirically based bank stability risk model.  However, the analysis 

procedure here may not be appropriate for soils with smaller hydraulic 

conductivities; caution is warranted under those circumstances. 

Colorado River Simulated Experiment 

Independent Variables 

Although the model developed here allows any periodic stage function, it 

is useful to consider the simple flow release schemes typically utilized for 

hydroelectric dam operations.  Five factors describing the water release 

procedures utilized by dam operations are recognized here.  These factors are 

typically bounded by regulations.  Their description, and, as an example, the 

regulations specific to the Glen Canyon Dam, are as follows: 

1. Minimum release flow rate qbase (m
3 / sec).  This is minimum amount 

of flow required to be released.  For the Glen Canyon Dam, current 
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regulations (USDI 1996) require nighttime (midnight to 7 a.m.) flow to 

be greater than 142 m3 / sec and 227 m3 / sec during the daytime. 

2. The maximum allowable flowrate change over the previous 24 hours, 

denoted here Δq (m3 / sec). Current regulations are somewhat 

complicated regarding this value, resulting in regulations on Δq that 

can vary daily, weekly, and even monthly, but the highest allowable 

change is 227 m3/sec and the ultimate maximum peak flow is strictly 

less than 566 m3/sec . 

3. Peak hold time tpeak (hr).  This is the amount of time flow is 

maintained at the maximum daily flow.   

4. Down-ramp rate downq  (m3 / sec-hr).  This is the rate at which the peak 

flow is reduced.  Also regulated, it is not allowed to exceed 42.5 m3 / 

sec-hr (USDI 1996). 

5. Up-ramp rate upq  (m3 / sec-hr).  The rate at which the flow-rate is 

increased.  Current regulations (USDI 1996) require this rate to be less 

than 71 m3 / sec-hr. 

Not included in the five factors shown above is the hold time tbase (hr) at 

qbase.  However, since these parameters are specific to daily operations, tbase is 

seen to be a function of the other five variables in the form 

    24 hr 1/ 1/base peak down upt t q q q       (139) 

In addition, it is important to determine if there is a difference in the 

response of the high elevation sandbars versus the low elevation sandbars.  Noting 

that sandbars are built at a crest elevation close to the adjacent stage, the height of 
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the sandbars are denoted here as qbuild (m
3 / sec).  This constitutes the sixth 

independent variable. 

Previous investigations are conflicting regarding the relative impact that 

these variables have on downstream sandbar stability.  Darby and Thorne (1995) 

noted a number of slope failures that had occurred during different stages of 

rainfall hydrographs, for example.  This variability is likely a result of the 

inherently stochastic nature of the actual slope failures, most likely reflecting the 

inherent variability of the specific slope characteristics, such as soil strength, unit 

weights, and groundwater parameters.   

Experimental Procedure 

A simulated experiment was used in order to 

1. quantify the effects of uncertainty inherent to slope failure predictions 

along the Colorado River; 

2. rigorously investigate the effect of the Glen Canyon flow release 

regulations on downstream slope stability; 

3. predict and compare the failure risks of low versus high sandbars; 

4. develop a reduced model that may be used for prediction purposes; 

The simulated experiment was developed by Monte Carlo simulation.  A 

2-level factorial experiment (2LFE) was used for analysis of the results.  The 

2LFE approach varies multiple factors with each run, utilizing well established 

scientific methods designed to track both main effects and interactions within a 

rigorous statistical framework.   
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While the 2LFE approach is well established in other disciplines such as 

industrial engineering, it is less familiar for the present application, where the 

“one factor at a time” (OFAT) approach often considered for slope stability 

research along the Colorado River.  Indeed, OFAT was assumed to be the ideal 

experimental approach by USDI (1996) in their report on the Glen Canyon Dam.  

The benefits of the OFAT approach are debatable, however.  The OFAT approach 

does not account for interactions of the factors, and requires many more 

experimental runs then necessary to obtain statistically powerful data.  By 

comparison with 2LFE, OFAT is inaccurate, inefficient, and insufficient.  For 

further discussion of the benefits of 2LFE over OFAT the reader is referred to 

Mongomery (2009).  

For the six independent variables that define the Glen Canyon Dam 

release guidelines, a complete 2LFE requires 64 separate factors.  In order to 

determine the number of replicates required, statistical power was estimated 

assuming a probability of failure ( Prfailure ) standard deviation of about 30%, based 

on some preliminary runs of the model.  A signal for Prfailure  of 5% was 

established as the minimum effect of interest.  Given these two requirements, 50 

replicates for each of the 64 main factors and interactions were selected, 

corresponding to 3,200 total replicates.  The corresponding statistical power was 

99.7%. 

This rather high number of replications would require a number of 

simulations several orders of magnitude higher than those typically reported by 

publications in this field.  Indeed, usually only a handful of unsteady slope 
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stability simulations are reported in most publications.  This low number is a 

result of the long computing times required to solve the porewater pressure finite 

difference equations.  Moreover, for the periodic conditions considered here 

specific to daily dam operations, the simulation would need to proceed through a 

number of periods until the porewater pressure response has become accordingly 

periodic. Given the results of the previous work, a reasonable estimate of the 

computing time required per simulation would be on the order of several hours at 

a minimum.  However, even if the computing time per simulation could be 

reduced to 1 hour, 3,200 hours would be necessary to complete the data set, 

constituting an amount of time probably unobtainable with the resources and 

timeframe available. 

Fortunately, the time constraints on the porewater analysis were greatly 

reduced by the series solution found for the porewater response (Chapter 6).  This 

solution allowed calculated porewater pressures at a given time directly, 

foregoing the need for a finite difference analysis, and reduced computation time 

to about 30 seconds per simulation, an improvement likely more than 2 orders of 

magnitude.   

Stochastic Parameters 

The final challenge before the Monte Carlo simulation could be executed 

was to determine the applicable statistical distributions of the relevant 

characteristics.  Specifically, the variation of the saturated hydraulic conductivity 

(ks) , specific storage (ss), dry soil weight (γdry), void ratio (e), stage relationships 

(z1, z2) , porewater distribution coefficient (λ), air entry pressure head (ψb), 
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effective soil cohesion (c’), effective soil friction angle (φ’), residual saturation 

(Sr), and slope angles (θ) needed be modeled as either known constants or 

appropriately formed statistical distributions. 

The following sources were consulted in order to make reasonable 

inferences about the parameters:  Anderson and Woessner (1992), Budhu and 

Gobin (1994, 1995a, 1995b), Beus et al. (1993), Fredlund and Rahardjo, 1993), 

Sabol and Springer (2006), Webb et al. (1999).  When deemed appropriate, 4-

sigma or 6-sigma approximations were used (see Duncan and Wright, 2005).  A 

great deal of variation for these values was found between authors, between 

different publications of the same authors, and sometimes even between reported 

values within the same report.  These inconsistencies further validate the present 

use of stochastic methods for analysis. 
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Property Assumed 
Distribution 

Mean Std. 
Dev. 

Comments 

φ’ (º) Normal 30 0.7 Does not include a value of 26 º reported by Gobin 
and Gobin (1994), which appears to be a 
typographical error. 

c’ (kPa) Lognormal 
(natural log) 

0.5 0.3 Accounts for all reported values, including a 
reported measurement of 4 kPa reported by Budhu 
and Gobin (1995b) that may be anomalous (Beus et 
al, 1993 reports an average cohesion of 1 kPa) 

ks (m/sec) Lognormal 
(natural log) 

-8.5 0.2   

ss (m
-1) Lognormal 

(natural log) 
-8 0.3 This distribution based on a 6-sigma assumption on 

the range of values for sand reported by Anderson 
and Woessner (1992). 

θ (º) Normal 26 1.0   
e (%) Normal 80 7  
γdry 

(N/m3) 
Normal 14.5 0.2  

λ Constant 4.0 No information available on this variable specific to 
the Colorado River.  The value used here is per 
Fredlund and Rahardjo (1993). 

ψb (m) Constant 1.5 No information available on this variable specific to 
the Colorado River.  This value is from a similar 
soil reported by Fredlund and Rahardjo (1993). 

 

Table 11. Assumed mean values, standard deviations, and statistical 
distributions for the Colorado River sandbar properties. 

 
The assumed distribution characteristics are shown in Table 11.  Not 

included are the statistics for the z1 and z2 parameters, which were found to be 

negatively correlated.  This is to be expected, however, since as z1 increased, one 

would expect z2 to naturally decrease in order to meet the fairly constant average 

depth typical of the river. 

The z1 versus z2 correlation was modeled with linear regression.  The 

result is shown in Figure 40.  The overall regression fit was significant (R2 = 0.82; 

R2-adj = 0.81; F = 200.0, p < 0.0005) as were the individual factors (constant: T = 

4.62, p < 0.0005; slope: T = -14.14, p < 0.0005).  The residuals conformed well to 
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the normal distribution. The regression equation was z2 = 0.83 – 0.39 z1.  The 

standard error (SE) for the constant was 0.2, and the SE for the slope factor was 

0.03.  The best distribution found that described z1 independently was log-normal, 

with mean 1.8 and standard deviation 0.25. Thus, the stochastic model z1 and z2 

was assumed in the following form: 

  1
1 exp ,1.8,0.25norm randz e     (140) 

 

    1 1
2 1,0.83,0.2 ,0.39,0.03norm rand norm randz e e z        (141) 

 

where  1 , ,norm rande u s  refers to the inverse normal distribution, with w  the 

mean, s the standard deviation, and erand a randomly generated uniform value 

between 0 and 1. 

 

Figure 40.  Colorado River Stage Coefficients Regression with 95% 
Confidence Bands. 
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Matric Suction and Associated Unit Weight Changes 

Model execution would be simplified by ignoring matric suction effects.  

Chapter 3 demonstrated the importance of including matric suction effects in 

infinite slope stability models, but these effects may not be significant for 

curvilinear failure surfaces such as those considered here.  

The significance of matric suction (and the associated soil unit weight 

changes) in the risk model was therefore investigated for a typical Grand Canyon 

sandbar (see Table 12).  Bank stability was evaluated both with matric suction 

effects included (with λ = 4 and ψb = 1.5 m); and for simplified conditions, 

wherein matric effects were ignored.  Only steady state flow conditions were 

considered.   

Figure 41 shows the resulting risk prediction as a function of sandbar 

height (in terms of building flow) when the river discharge is 100 m3/sec.  It is 

seen that for small sandbars, the actual risk is higher than the risk computed 

ignoring matric effects.  This is likely a consequence of the increased soil weight 

above the piezometric surface associated with the matric suction.   

For high sandbars, however, the risk prediction is reversed:  actual risk is 

slightly lower than risk computed ignoring matric suction and the associated soil 

unit weight changes.  Thus, it appears that the binding effects of matric suction 

that stabilize the upper portion of the slope prevail over the destabilizing soil 

weight. 
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Property Value Property Value 
φ’ (º) 30 e (%) 82 

c’ (kPa) 4 γdry (N/m3) 12 
ks (m/sec) 10-4 Sr 0.15 

ss (m
-1) 10-4 z1 9 

θ (º) 33 z2 -2 
 

Table 12. Typical Grand Canyon sandbar properties. 
 

 

Figure 41.  Failure risk as a function of matric suction and associated soil 
unit weight changes for a typical Grand Canyon sandbar (river discharge = 

100 m3/sec). 
 

For higher flows, however, the effect of the matric suction and the 

associated soil unit weight changes become more significant.  Figure 42 shows 

bank stability risk for the sandbar at a 500 m3/sec river stage flow.  It is seen that 



170 
 

for smaller sandbars, ignoring the matric suction and associated soil unit weight 

changes results in a risk underprediction of more than 10%.  For larger sandbars, 

the binding effect of matric suction above the water table reduces this error, 

although it still remains greater than 6%.  Thus, ignoring matric suction and the 

associated soil unit weight changes can result in significantly non-conservative 

risk predictions. 

 

Figure 42.  Failure risk as a function of matric suction and associated soil 
unit weight changes for a typical Grand Canyon sandbar (river discharge = 

500 m3/sec). 
 

Model Execution 

 As noted earlier, Excel was used to run the simulation.  Since Excel’s 

random number generator has been criticized as poorly performing (see 
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McCullough and Wilson, 2005), Minitab was used to generate all random 

numbers used in the simulation. 

A number of preliminary runs were used to evaluate and validate the 

simulation.  Without exception, the minimum safety factor always occurred at the 

end of the down ramping stage, a finding consistent with other investigations of 

the Colorado River sandbars (e.g. Budhu and Gobin, 1998a, 1998b).  For the 

Monte Carlo simulation, then, all minimum safety factors were evaluated at the 

end of the down ramping stage. 

Results and Discussion 

Execution of the randomized experiment took approximately 27 hours.  

The variables describing the slip geometry at the minimum safety factors were 

always within the established model limits, indicating that a local minimum value 

had always been reached.  All minimum SF values were converted to failure risk 

assuming a log normal distribution with a mean of log10 = 0.002 and a standard 

deviation of 0.034, consistent with the results of Chapter 3 for a landslide type 

failure with effective stress analysis and the OMS stability approach 
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Figure 43.  Normal Probability Plot (Full Model). 
 

The ANOVA analysis was conducted in Design Expert with risk response 

as the dependent variable.  The arcsine square root transformation, applicable to 

response variables bounded by 0 and 1, was utilized.  Initially, all 32 possible 

factors were included for analysis.  The overall model was found to be highly 

significant (p < 0.0001), where p is the probability that the observed trends are 

due to noise only.  Overall measures of the model indicated an adequate, if highly 

variable, fit (adequate precision =f 12.5, R2 = 0.12, adj-R2 = 0.11, pred-R2 = 0.09.)  

As shown in Figure 43, the residuals were nearly normally distributed with 

slightly heavy tails, a deviation that is probably not serious, particularly given that 

ANOVA testing is usually robust with regard to small violations of normality 

(Lindman, 1974).  The specific results are shown in  

Table 13.   
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Source 

Sum of 
Squares 

Degrees of 
Freedom

Mean 
Square

Fisher-
F Value

Prob > 
Fisher F 

Model 32.64 63 0.5181 6.97 < 0.0001 
A-Downramp 0.3112 1 0.3112 4.19 0.0408 

B-Upramp 1.4083 1 1.4083 18.94 < 0.0001 
C-Baseflow 7.5369 1 7.5369 101.38 < 0.0001 

D-Flow Change 4.8236 1 4.8236 64.88 < 0.0001 
E-Peak hold time 5.9194 1 5.9194 79.62 < 0.0001 
F-Building Flow 5.4928 1 5.4928 73.88 < 0.0001 

AB 0.0109 1 0.0109 0.15 0.7021 
AC 0.0027 1 0.0027 0.04 0.8491 
AD 0.0137 1 0.0137 0.18 0.6673 
AE 0.2209 1 0.2209 2.97 0.0848 
AF 0.0613 1 0.0613 0.82 0.3640 
BC 0.0002 1 0.0002 0.00 0.9589 
BD 0.0623 1 0.0623 0.84 0.3601 
BE 0.0072 1 0.0072 0.10 0.7559 
BF 0.0554 1 0.0554 0.74 0.3882 
CD 0.0119 1 0.0119 0.16 0.6890 
CE 0.0074 1 0.0074 0.10 0.7532 
CF 0.0082 1 0.0082 0.11 0.7400 
DE 3.2560 1 3.2560 43.80 < 0.0001 
DF 0.1010 1 0.1010 1.36 0.2438 
EF 0.1770 1 0.1770 2.38 0.1229 

ABC 0.0041 1 0.0041 0.05 0.8149 
ABD 0.0241 1 0.0241 0.32 0.5695 
ABE 0.0175 1 0.0175 0.24 0.6273 
ABF 0.0386 1 0.0386 0.52 0.4714 
ACD 0.1437 1 0.1437 1.93 0.1645 
ACE 0.0012 1 0.0012 0.02 0.9006 
ACF 0.0772 1 0.0772 1.04 0.3084 
ADE 0.0121 1 0.0121 0.16 0.6866 
ADF 0.0761 1 0.0761 1.02 0.3117 
AEF 0.0020 1 0.0020 0.03 0.8708 
BCD 0.0030 1 0.0030 0.04 0.8399 
BCE 0.1184 1 0.1184 1.59 0.2071 
BCF 0.3065 1 0.3065 4.12 0.0424 
BDE 0.0283 1 0.0283 0.38 0.5374 
BDF 0.0351 1 0.0351 0.47 0.4922 
BEF 0.0353 1 0.0353 0.48 0.4907 
CDE 0.0154 1 0.0154 0.21 0.6491 
CDF 0.0101 1 0.0101 0.14 0.7128 
CEF 0.4229 1 0.4229 5.69 0.0171 
DEF 0.1686 1 0.1686 2.27 0.1322 

ABCD 0.0611 1 0.0611 0.82 0.3646 
ABCE 0.0163 1 0.0163 0.22 0.6399 
ABCF 0.0078 1 0.0078 0.10 0.7467 
ABDE 0.4185 1 0.4185 5.63 0.0177 
ABDF 0.0008 1 0.0008 0.01 0.9193 
ABEF 0.0303 1 0.0303 0.41 0.5235 
ACDE 0.1574 1 0.1574 2.12 0.1457 
ACDF 0.0292 1 0.0292 0.39 0.5308 
ACEF 0.0404 1 0.0404 0.54 0.4611 
ADEF 0.0023 1 0.0023 0.03 0.8597 
BCDE 0.0787 1 0.0787 1.06 0.3036 
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Source 

Sum of 
Squares 

Degrees of 
Freedom

Mean 
Square

Fisher-
F Value

Prob > 
Fisher F 

BCDF 0.1431 1 0.1431 1.93 0.1654 
BCEF 0.0042 1 0.0042 0.06 0.8118 
BDEF 0.0039 1 0.0039 0.05 0.8182 
CDEF 0.0435 1 0.0435 0.58 0.4446 

ABCDE 0.0313 1 0.0313 0.42 0.5164 
ABCDF 0.0118 1 0.0118 0.16 0.6906 
ABCEF 0.0066 1 0.0066 0.09 0.7651 
ABDEF 0.2059 1 0.2059 2.77 0.0962 
ACDEF 0.1557 1 0.1557 2.09 0.1479 
BCDEF 0.0106 1 0.0106 0.14 0.7053 

ABCDEF 0.1498 1 0.1498 2.02 0.1558 
Pure Error 233.14 3136 0.0743   

Corrected Total 265.78 3199    
 

Table 13.  ANOVA Results (Full Model). 
 

The factor analysis indicates that all main effects are highly significant 

contributors to failure risk (p < 0.05).  Four interaction terms were significant (p < 

0.05) and two others borderline significant (p < 0.10).  

With the primary contributors identified, the ANOVA model was reduced 

to maximize predictive ability by reducing the potential for overfitting.  Only 

factors corresponding to p < 0.10 were included in the reduced model, with the 

exception of those required to meet hierarchy (see Peixoto, 1987, 1990.)  The 

probability limit is consistent with typical design of engineering experiments 

guidelines (Montgomery 2009.)  Table 14 shows the results.  The reduced model 

normal probability plot was essentially the same as the overall probability plot.  

The model fit metrics were as follows: adequate precision = 14.7, R2 = 0.12, adj-

R2 = 0.11, and pred-R2 = 0.10.   The increase in pred-R2 and the consistency of 

the values across all regression coefficients provide evidence that the reduced 

model is a better predictive tool than the overall model. The rather low value of 

the regression coefficients are consistent with field research (see Travis et al., 

2010b and 2010c) and reflect the highly variable nature of the sandbar slope 
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stability.  The lack of fit probability (p = 0.88) for the reduced model indicates a 

well behaved model with no evidence of a lack of fit.  The residual analysis was 

consistent with the overall ANOVA model results, indicating adequate adherence 

to the ANOVA assumptions. 
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Source 

Sum of 
Squares 

Degrees 
of 

Freedo
m

Mean 
Square 

Fisher-F 
Value 

Prob > 
Fisher F 

Model 
31.302444

08 37 
0.84601200

2 
11.40884

07 < 0.0001 
  A-Downramp 0.3112 1 0.3112 4.20 0.0406 

  B-Upramp 1.4083 1 1.4083 18.99 < 0.0001 
  C-Baseflow 7.5369 1 7.5369 101.64 < 0.0001 

  D-Flow Change 4.8236 1 4.8236 65.05 < 0.0001 
  E-Peak hold time 5.9194 1 5.9194 79.83 < 0.0001 

  F-Building Flow 5.4928 1 5.4928 74.07 < 0.0001 
  AB 0.0109 1 0.0109 0.15 0.7017 
  AD 0.0137 1 0.0137 0.19 0.6669 
  AE 0.2209 1 0.2209 2.98 0.0844 
  AF 0.0613 1 0.0613 0.83 0.3634 
  BC 0.0002 1 0.0002 0.00 0.9588 
  BD 0.0623 1 0.0623 0.84 0.3595 
  BE 0.0072 1 0.0072 0.10 0.7556 
  BF 0.0554 1 0.0554 0.75 0.3876 
  CE 0.0074 1 0.0074 0.10 0.7529 
  CF 0.0082 1 0.0082 0.11 0.7397 
  DE 3.2560 1 3.2560 43.91 < 0.0001 
  DF 0.1010 1 0.1010 1.36 0.2432 
  EF 0.1770 1 0.1770 2.39 0.1224 

  ABD 0.0241 1 0.0241 0.32 0.5690 
  ABE 0.0175 1 0.0175 0.24 0.6269 
  ABF 0.0386 1 0.0386 0.52 0.4708 
  ADE 0.0121 1 0.0121 0.16 0.6863 
  ADF 0.0761 1 0.0761 1.03 0.3110 
  AEF 0.0020 1 0.0020 0.03 0.8707 
  BCF 0.3065 1 0.3065 4.13 0.0421 
  BDE 0.0283 1 0.0283 0.38 0.5368 
  BDF 0.0351 1 0.0351 0.47 0.4916 
  BEF 0.0353 1 0.0353 0.48 0.4901 
  CEF 0.4229 1 0.4229 5.70 0.0170 
  DEF 0.1686 1 0.1686 2.27 0.1317 

  ABDE 0.4185 1 0.4185 5.64 0.0176 
  ABDF 0.0008 1 0.0008 0.01 0.9192 
  ABEF 0.0303 1 0.0303 0.41 0.5230 
  ADEF 0.0023 1 0.0023 0.03 0.8595 
  BDEF 0.0039 1 0.0039 0.05 0.8179 

  ABDEF 0.2059 1 0.2059 2.78 0.0958 
Residual 234.4752 3162 0.0742   

Lack of Fit 1.3352 26 0.0514 0.69 0.8766 
Pure Error 233.1400 3136 0.0743   

Corrected Total 265.7776 3199    
 

Table 14.  ANOVA Results (Reduced Model). 
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The reduced ANOVA model may be expressed in equation form as follows: 

 
1 3 4 4

3 3 4 6

6 4 7

2

1.23 10 1.39 10 1.58 10 2.23 10
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  (142) 
 

Plots of each significant main effect in the model (evaluated at the mean 

values of the other factors) are shown in Figure 44 through Figure 49.  The two 

significant two factor interaction terms are shown in Figure 50 and Figure 51.  

The higher interaction terms become difficult to visualize and are not graphed 

here. 
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Figure 44. Reduced model A: Downramp (m3/sec/hr) main effect 
 

As shown in Figure 44 and Figure 45, one surprising result of the 

experiment is the downramp and upramp main effects.  Current standards at the 

Glen Canyon Dam restrict the ramping rates in the interest of reducing risk of 

downstream slope failures.  The model indicates, however, that increasing both 

upramp and downramp rates actually slightly reduce failure risk.  This is likely a 

result of the two conflicting contributions of the rate:  On the one hand, slow 

ramping rates provide time for the porewater pressures to equilibrate, thereby 

reducing instability caused from excessive porewater pressure.  But slow ramping 

also increases the average stage height, raising the overall piezometric surface 

within the sandbar.  The results indicate that it is the second factor that 

predominates.  That is, the dissipation of excess porewater pressure over the 

relatively short time frame is not sufficient to compensate for the increased 

overall pressure within the sandbar.  As will be shown later, however, it turns out 
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that the downramping rate adversely affects other flow aspects, resulting in a 

reverse effect as the released flow wave propagates downstream. 

 

Figure 45.  Reduced model B: Upramp (m3/sec/hr) main effect 
 

As seen in Figure 46, higher baseflows significantly increase slope failure 

risk, raising risk by approximately 10% when the base rate is increased from 100 

to 300 m3/sec.  This is probably due to higher baseflows in turn causing higher 

pore pressures within the sandbar, as well as increasing adjacent water levels 

closer to the midpoint of the sandbar, a condition found to increase failure risk for 

cohesionless slopes (see Baker, 2005).  This finding suggests that requiring a 

minimum baseflow (currently a requirement at Glen Canyon Dam) actually 

increases risk, rather than decreasing it.  
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Figure 46.  Reduced model C: Baseflow (m3/sec) main effect 
 

 

 

Figure 47.  Reduced model D: Flow Change (m3/sec) main effect 
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The implication of the downramp and baseflow effects is that it is the 

average groundwater level within the sandbars that drives failure potential.  Thus, 

reducing the amount of time and extent of high flows would be expected to 

decrease failure risk.  This observation is consistent with empirical observations 

such as those reported in Goodwin et al. (2000).   As seen in Figure 47 and Figure 

48, the flow rate change and peak hold times provided further support for this 

hypothesis. 

 

Figure 48.  Reduced model E: Peak hold time (hr) main effect 
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Figure 49.  Reduced model F: Building flow (m3/sec) main effect 
 

Figure 49 shows that larger sandbars are at greater risk for failure than 

smaller sandbars.  This effect is both statistically and numerically significant, with 

the smaller sandbars likely to experience failure 34% of the time versus a 42% 

risk of failure for the larger sandbars. 

A prediction of 42% failure risk for large sandbars is consistent with field 

data.  Kearley et al. (1994) reported that 33% of campsites had failed between 

1965 and 1973.  A naturally occurring flood rebuilt the sandbars in 1983, but by 

1994, the overall number of sandbars had decreased by 48% (Kearsley et al., 

1994).   Kearsley et al. (1999) inventoried the rebuilt high elevation sandbars 

following the 1996 controlled flood and found that 44% of these failed after six 

months.  The average of these three field reports is 42%, the same as predicted. 
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Figure 50.  Reduced model A: Downramp (m3/sec/hr) by E: Peak hold time 
(hr) interaction 

 
 

As seen in Figure 50 and Figure 51, the interactions between peak hold 

time and the downramp rate and flow change are further indicators of the driving 

failure potential of high average piezometric surfaces.  Specifically, a high 

downramping rate significantly lowers risk potential when the piezometric surface 

is getting dangerously high (from long peak hold times).  Similarly, a large flow 

change also disproportionately increases risk for long peak hold times. 



184 
 

 

Figure 51.  Reduced model D: Flow Change (m3/sec/hr) by E: Peak hold time 
(hr) interaction 

 

Attenuation effects 

The flow release schedule at Glen Canyon Dam results in deep waves 

through the Colorado River.  Flow attenuation and tributary inflows affect these 

waves, and thus all of the release parameters at the dam become only the initial 

condition for dynamically changing wave characteristics.  With the overall aim to 

mitigate sandbar failures over an entire reach, these aspects must be considered. 

Modeling unsteady conditions is non-trivial for any size river, and 

constitutes a large scale effort for the Colorado River.  Building on numerous 

measurements reported in Griffin and Wiele (1996), Wiele and Smith (1996) 

developed a finite element model that successfully predicted flows within 

reasonable limits.  Unfortunately, both computational and research constraints 
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prohibit integrating this model into the present effort, although this is suggested as 

a future application. 

A simpler model was developed by direct consideration the latest USGS 

data (1/10 to 5/10) and the raw data reported in Griffin and Wiele (1996).  The 

USGS data at three different gages were used.  Their numbers and designations 

are:  Gage 09380000 (Lees Ferry), 09402500 (Grand Canyon), and 09404200 

(Diamond Creek).  These gages are located at river kilometer stations (RK) 0 km, 

142 km, and 362 km respectively.  24 km, 166 km, and 386 km downstream of 

the dam, respectively.  Note that because the standard river stationing on the 

Colorado defines Lees Ferry as zero, which is 24 km downstream of the dam, the 

actual distances downstream from the Glen Canyon Dam are 24 km, 166 km, and 

386 km respectively.  The reach of interest was chosen to start at the Glen Canyon 

Dam and extend all the way to Diamond Creek. 

The Lees Ferry gage data was correlated with the Grand Canyon gage data 

(Figure 52), and the Grand Canyon gage data was correlated with the Diamond 

Creek data (Figure 53).  The best correlation was chosen by successively 

calculating the R2 regression factor between datasets for 150 increasing 15 minute 

intervals.  As shown in Figure 54, the best correlation between the Lees Ferry 

gage and the Grand Canyon gage corresponded to an offset of 1,125 minutes (18 

hours, 45 minutes).  Likewise, the best correlation between the Grand Canyon 

gage and the Diamond Creek gage, shown in Figure corresponded to an offset of 

1,500 minutes, or 25 hours. 
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Figure 52.  Correlation between upstream flow at Lees Ferry to downstream 
flow at the Grand Canyon gages (m3/sec). 

 

 
Figure 53.  Correlation between upstream flow at the Grand Canyon gage to 

downstream flow at the Diamond Creek gage (m3/sec)  
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Figure 54.  Regression coefficient versus lag time:  Lees Ferry gage to Grand 
Canyon gage 

 
 

 

Figure 55.  Regression coefficient versus lag time:  Grand Canyon gage to 
Diamond Creek gage 
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Several important observations are evident from the correlations:  1. The 

correlations are significant, with R2 values of 0.87 and 0.94, yet the highly 

curvilinear nature of the data is indicative of varying wave celebrities, and so this 

correlation must be considered only approximate; 2. As expected, attenuation is 

evident from the slope value of 0.77 and 0.92 for the upstream and downstream 

correlations.  2.  On average a tributary inflow of 103 m3/sec is expected within 

the upstream area of the reach and an average inflow of 53 m3/sec within the 

downstream reach. 

With the correlations established, the hydrographs themselves may be 

compared.  Figure 56 and Figure 57 show the respective upstream and 

downstream reach hydrographs aligned by applying the estimated lag times (the 

dates shown correspond to the upstream hydrograph).  Note the 24 hour and 7 day 

periodic stage fluctuations. 
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Figure 56.  Hydrographs at Lees Ferry (upstream gage location) and at 
Grand Canyon (downstream gage location, offset by the computed lag time) 

 

 

Figure 57.  Hydrographs at Grand Canyon (upstream gage location) and at 
Diamond Creek (downstream gage location, offset by the computed lag time 
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It is evident from the hydrographs that: a) The general form of the 

outflows from the dam are preserved; b) The peak flows are nearly perfectly 

preserved throughout the reach; c) The minimum flow rises significantly 

throughout the reach, suggesting that the tributary inflows primarily affect the 

wave troughs; d) The upramp rates are essentially preserved; e) The downramp 

rates decrease slightly over the reach; and b) The peak flow hold times decrease 

over the reach.  

These results are somewhat surprising.  It was expected that both the peak 

and base flows would decrease downstream, and the tributary inflows would be 

minimal contributors.  Here, the data is taken at face value, but there is a 

possibility that some of the gage differences might be due to mechanical problems 

or calibration.  Later research will further investigate the observed gage 

differences. 

A more detailed analysis was conducted using the reported data in Griffin 

and Wiele (1996).  This data was particularly useful because it included the actual 

release parameters of the dam releases.  Multiple, nonlinear regression was 

utilized to fit this data, using the USGS fits to define the outer limits.  The 

regression terms were arranged so that the dam outflows were always returned at 

river kilometer -24 (e.g. RK = -24), as this corresponds to the dam location in the 

standard stationing system for the Colorado River, which locates the zero station 

at Lees Ferry. 
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The maximum change in flow as a function of river station (ΔqRK) was 

found to be related to the dam operation parameters by the equation 

      0.4
max 0, 1 0.00085 24 / 386RK up down Kq q q R q         (143) 

 

The fit between the measured and predicted ΔqRK is shown in Figure 58.  The fit is 

good with a corresponding R2 value of 0.96. 

 

Figure 58.  Agreement between predicted and measured maximum river 
kilometer flow changes (m3/sec) 

 

The relationship between the local downramp rate ,RK downq  and the 

operations parameters is more complex, but good agreement (R2 = 0.87) was 

found by regressing downstream downramp changes to the other terms in the 

form (see Figure). 

   , minmax /10, 0.136 ln 1 24 /RK down down down down K downq q q q R q q          (144) 
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Note that the minimum value of , /10RK downq  is somewhat arbitrary.  It was 

set to insure positive nonzero values of the downramp, but was never needed in 

the subsequent modeling. 

 

 

Figure 59.  Agreement between predicted and measured maximum river 
kilometer downramping rates (m3/sec/hr) 

 

The regression equations developed from the USGS data suggest a strong 

relationship between qRK,min and the river station RK.  A linear fit between the two 

was found to be improved by a polynomial term of the downramp.  The resulting 

equation was  

  2
,min min1 (0.0003 0.02 0.2) 24 / 386RK down down Kq q q R q         (145) 

 

The fit between predicted and measured is shown in Figure 60.  The fit is 

seen to be quite good, with a corresponding R2 of 0.95. 



193 
 

 

Figure 60.  Agreement between predicted and measured maximum river 
kilometer minimum flows (m3/sec) 

 

The local peak hold time, tRK,peak was found to be adequate predicted by 

the following formula: 

 
2

,

24 24
1.5 1

386 386
K K

RK peak peak

R R
t t

           
     

 (146) 

 
The fit between measured and predicted values is shown in Figure 61.  

The corresponding R2 value is 0.85. 
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Figure 61.  Agreement between predicted and measured maximum river 
kilometer peak hold time values (hr) 

 

The last variable to be considered was the local upramp, ,RK uprampq .  

Despite numerous attempts to correlate the local upramp to dam operation 

parameters by linear and nonlinear methods, no significant correlations could be 

made without introducing so many terms that the risk of overfitting became 

unacceptable.  Thus, the best equation for ,RK uprampq  was found to be simply 

 ,RK up upq q   (147) 

 

Equation (147) has the dubious distinction of being the simplest equation 

in this research. 

The attenuation processes have a profound effect on estimated risk.  

Figure 62 shows the downramp effects on risk for 9 hrpeakt  , 
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31050 m /secbuildq  , 371 m /sec/hrupq  , 3227 m /secbaseq  , and 

3227 m /secq  .  It is seen that for low downramp rates, the risk throughout the 

canyon remains nearly constant; whereas for high downramp rates, risk increases 

throughout the canyon, with bank failures almost assured when downramp rates 

near 200 m3/sec/hr.  This is consistent with the observed tendency for bank 

failures to increase downstream of Glen Canyon Dam (Dexter and Cluer, 1999).  

(It must be noted, however, that the attenuation effects of the downramp rates 

over 100 m3/sec/hr are extrapolated from existing data, and therefore must be 

treated cautiously.) 

 

Figure 62.  Bank failure risk throughout the Grand Canyon as a function of 
dam release downramp rates (m3/sec/hr). 

 

The model was further verified utilizing the Dexter and Cluer (1999) 

measurements of total sandbar area changes for a number of dynamic sandbars 

within the Grand Canyon.  Interpreting their reported percentage changes as 

roughly equivalent to failure risk (e.g., a 20% area loss equates to a 20% failure 
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risk) allowed their measurements to be directly compared with the developed risk 

model.   

 

Figure 63.  Measured and predicted slope failure risks per river kilometer 
 
 

Figure 63 shows the results assuming the interim values noted above and a 

downramp rate of 43 m3/sec/hr.  The following observations may be made: 

1. The running average of the data intersects the predicted bank risk curve in 

a number of places; 

2. The theoretical risk curve captures the generally decreasing, convex nature 

of the data, but is less pronounced. 

3. The reach averaged failure risks are the same (rounded to the nearest 

percent).  Both the estimated and the measured overall risk are 41%.  

 
With a riparian scale model developed, optimization of dam operations 

finally becomes possible.  As will be seen, the underlying non-linearity of this 

model has a key role in determining the optimal flow research strategy. 
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CHAPTER 8.   OPTIMIZING DAM OPERATIONS 

     [Numerical] optimization…can be likened to a kangaroo searching for the 
top of Mount Everest… 
     In simulated annealing, the kangaroo is drunk and hops around randomly for 
a long time.  However, she gradually sobers up and the more sober she is, the 
more likely she is to hop up hill. 
 

– from “Neural Network Implementation in SAS Software” 
in Proc. 19th Annual SAS Users Group Int. Conf. (1994) 

   by Warren S. Sarle 
 

Introduction 

Utilizing the general bank stability model developed in the previous 

chapters, the general optimization problem is seen to be minimizing the cost of 

mitigating downstream slope failures, subject to the constraints specific to 

physical limitations, water balance targets, environmental concerns, and others.  

The objective of this chapter is to develop an algorithm to achieve this 

optimization. 

Harpman (1999) reports that Glen Canyon Dam operations are currently 

being optimized by a peak shaving algorithm.  However, with the introduction of 

the new nonlinear constraint specific to mitigating downstream failure risk, 

simpler methods such as peak shaving or simplex are not sufficient. 

Moreover, segmentation of the solution space can also prevent 

optimization by nonlinear methods, such as steepest gradient.  For example, 

Brooke et al. (1996) reported convergence problems for a nonlinear model of 

hydropower system operations.  These segmentation issues appear to complicate 

the present effort as well.   

For example, an early attempt was made to optimize weekly dam 

operations for the Glen Canyon (the specific optimization parameters and 
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constraints will be described later in this chapter).  Figure 64 shows the returned 

“optimal” solutions that minimize operations costs, generated by applying 

steepest gradient technique for different initial conditions generated by a single 

seed value.  As seen in the graph, even the local optima were chaotic, and the 

global minimum (about 17%) was achieved only for two particular seed values.  

Simply put, there is not an obvious initial condition guaranteed to lie within the 

concave region of the global minimum. 

 

Figure 64.  “Optimal” solutions vs. seed values found by gradient technique 
 

With the failure of the standard techniques to achieve dependable results 

for even the preliminary model, meta-heuristic methods of optimization were 

considered.  Meta-heuristics refers to methods that attempt to optimize a problem 

by iteratively improving candidate solutions based on a predetermined success 

score.  Because this approach is so general, meta-heuristic solvers are simple to 

apply and easy to adjust for new constraints.  The major drawback to the method 

is that global optimality is not assured (Teegavarapu and Simonovic, 2002). 
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Given the robust nature of meta-heuristics, the complexities of water 

systems in general, and the growing need to optimize water resources, it is not 

surprising that a number of meta-heuristic techniques have been developed for 

water resource applications. Popular meta-heuristic optimization methods include 

simulated annealing (Kirkpatrick et al.,1983); genetic algorithms (Goldberg, 

1989); swarm intelligence (Beni and Wang,1989; and random search 

(Zhigljavsky, 1991), which includes ant colony, swarm, bees, and other swarm 

algorithms. 

Simulated annealing (SA), the first published of the well known meta-

heuristic optimization techniques, has been shown to be a successful method for 

optimizing non-linear systems with complex boundary conditions. SA has been 

applied for to optimize many areas of water resource engineering.  Recent 

applications of SA have focused on water distribution networks (Cunha and 

Sousa, 1999; Cunha and Sousa, 2001;  Geem, 2009); groundwater management 

(Dougherty and Marryott, 1991; Marryott et al., 1993); irrigation (Georgiou et al., 

2006; Kuo et al., 2001); reservoir systems (Teegavarapu and Simonovic, 2002; 

Vasan and Raju, 2009); rainfall measurements (Pardo-Iguzquiza,1998);  waste 

water systems (Zeferino et al., 2009, 2010); and storm water management 

(Avellaneda et al., 2009).  For a detailed explanation of SA and heuristic methods 

in general, see Tialbi (2009). 

Simulated annealing optimizes by analogy with physical annealing, a 

metallurgical process wherein a material is repeatedly heated and cooled.  The 

success of annealing comes from heating exciting the energy states of the atoms 
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within the material, which allows them to settle in different positions resulting in 

a reduction of the overall material internal energy.  The lower internal energy 

results in a material with greater ductility, fewer defects, and other desirable 

qualities.  For the details of physical annealing, see Verhoeven (1975).  

Once the objective function of the optimization goal has been defined, and 

the factors to be optimized have been established (the state), SA can be 

implemented by defining virtual annealing factors, starting with assigning a 

“temperature” to each state.  The temperature gradually cools according to an 

annealing schedule, defined by a temperature function, usually denoted temp.  

Thus, temp returns temperatures that decrease with each iteration, but as in 

metallurgical annealing, these temperatures are always greater than zero.   

The simulated annealing process begins with the selection of an initial 

suboptimal solution, denoted the initial state.   A new state (the candidate state) is 

generated from the previous state by the neighbor function, this being a defined 

random process.  State desirability is measured by a project specific energy 

function, defined in such a way that lower energies correspond to more optimal 

solutions. 

In order to avoid local minima that are suboptimal over the entire search 

space, a project specific move probability function is established to randomly 

change the current neighborhood to other locations.  A move to this new state is 

described as a transition, and the transition criteria are defined by an acceptance 

probability function (Praccept,).  This Praccept function is in turn a function of the 
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temperature function (temp).  Like temp, Praccept returns values that decrease with 

each iteration, but are always greater than zero.   

Theoretically, the simulated annealing algorithm is a global optimization 

technique, but only if an infinite number of iterations are allowed.  Unfortunately, 

infinite iteration tends to require too much computing time, and so the algorithm 

must be halted through defined stopping criteria.  These criteria are often (but not 

always) specific to comparing transition energies and stopping the algorithm once 

a given change threshold is reached or when the allotted number of iterations or 

computing time is exhausted. 

Thus, while global optimization is not assured, the algorithm’s 

comprehensive treatment of the search space by through the Praccept and neighbor 

functions, limited only by the analyst defined stopping criteria, improves 

confidence that the returned state at least approaches the global optimum. 

Problem constraints may be applied through one of two methods.  The 

first and most desirable method is to limit search space through the neighbor 

function to only those states that meet the constraint requirements.  Unfortunately, 

most problems that utilize simulated annealing are of sufficient complexity that 

this method is not feasible.  The alternative method is to apply a penalty to the 

energy function, the magnitude of which can be selected accordingly. 

The general structure of the SA algorithm is shown by pseudocode in 

Figure 65. 
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In summary, once the problem state variable has been defined, and 

objective function clearly presented, simulated annealing can be utilized for 

optimization, provided the following parameters and function are established: 

 Constraints 

 Initial state 

 Search space 

 Stopping criteria 

 neighbor (neighbor state generation function) 

 energy (state desirability function) 

 temp (temperature function) 

 Praccept (acceptance probability function) 

 rand (random number generator with range from 0 to 1) 

 
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Figure 65.  General simulated annealing algorithm in pseudo-code 
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The following sections describe the mathematical definitions of these 

parameters and functions specific to the present research. 

State Variable Definition 

The state of the optimization process refers to the current values of the 

independent variables.  Here, the state can be defined in terms of the general 

linear definition of the outflow function q(t).  A linear flow release regime is 

assumed for q(t), in keeping with typical dam operations.  If need be, however, 

the linear flow release model is easily expanded to consider more complicated 

flow operations.  Utilizing the notation introduced in Chapter 6, the linear flow 

assumption may be expressed 

   0,j j jq t q q t                                        (148) 

where each timestep denoted with the integer subscript j.  For a flow release 

schedule with J discrete timesteps, the state variable S is therefore a 2 J  vector 

in the form 

 

1 1

2 2

1 1J J

J J

q q

q q

q q

q q
 

 
  
 
  
  

S    (149) 

 

where the “o” subscript is now eliminated for brevity. 

At Glen Canyon Dam, it is policy that flows can be changed only once per 

hour, and the ramping rate is inferred from the flow change from one hour to the 

next.  That is, the change from the flow at time j (q,j) to a higher flow at time j+1 
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(q0j+1), must take place over one hour, or  , 1 1/1up j j j j jq q q hour q q       

where the units of the upramp are therefore in m3/sec/hr, as previously defined.  In 

general, then 

  , 1max 0,down j j jq q q     (150) 

 

  , 1max 0,up j j jq q q    (151) 

and thus 

    1sgn max ,j j j down upq q q q q     (152) 

 

which is the unfortunately clumsy mathematical way to simply state that j upq q   

if flow is increasing, and j downq q    if flow is decreasing. 

Equation (152) allows the state variable to be reduced to 

 

1

2

1J

J

q

q

q

q


 
 
 
 
 
 
  

S   (153) 

or simply 

 j js q                                                    (154) 

 

The remainder of the chapter expressing flow processes in terms of qj, and 

optimization processes in terms of sj, which should cause no difficulty if the 

equivalence noted in Equation (154) is always recalled.  

The remaining task is to define the number timesteps J and the value of 

each timestep designated by j, henceforth denoted Δtj (hr).  Typically, discrete 

timesteps of 1 hour are considered over one week’s time, and thus j would span 
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from 0 (hour 1) to 167 (168 hours in one week).  Of course, smaller timeframes, 

such as one day, could be considered, as could long timeframes, say one month or 

even an entire year.  The corresponding Δt vector is 

 

1

2

1J

J

t

t

t

t


 
  
 
  
  

Δt   (155) 

 

The total volume release over time Δtj is therefore jV  (m3) where 

  3600j j jV t S   (156) 

 

and the total volume over all J is: 

  
1

3600
J

J j j
j

V t s


   (157) 

 

Defining the state variable with one hour timesteps is inefficient for Glen 

Canyon Dam.   Algorithm efficiency can be improved by allowing the timesteps 

to vary in length.  Like most hydroelectric dams, revenue at Glen Canyon dam 

depends on demand.  As will be discussed further in the section on the energy 

function (page 219), for every day except Sunday, onpeak hours of operation (7 

am to midnight) have revenue rates at values nearly 40% higher than offpeak 

hours (midnight to 7 am) (Sunday has only offpeak rates).  Also changing over 

the course of the day is the minimum allowable flow rate, which changes from a 

low value between 7 pm to 7 am to a higher value from 7 am to 7 pm.  Because 

the revenue rates vary cyclically over each week, the state variable was defined 
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for one week’s time, with each day divided into three time segments:  midnight to 

7 am, 7 am to 7 pm, and 7 pm to midnight.  Thus, for Glen Canyon Dam, J = 21.  

With the computing power available, however, 21 state variables were too 

many for the optimal solution to converge within a reasonable time period.  

Therefore, the state vector was simplified by symmetry, thus assuming the same 

flow schedules on Mondays and Saturdays, Tuesdays and Fridays, and 

Wednesday and Thursdays.  This effectively reduced the number of state variable 

terms to 12.   

 

Objective Function  

A number of objective functions could be defined for the present research.  

Dam operations could be optimized to minimize downstream bank failure risk or 

to maximize revenue.  Here it is recognized that downstream bank failures have 

an associated cost due to the necessity of rebuilding them with repeated controlled 

floods, and that this cost can therefore be directly related to the downstream 

failure risk calculation.  Moreover, policy restrictions on dam operations in order 

to minimize failure risk also incur a cost due to lost hydroelectric power revenue. 

Thus, the objective function can be specified in terms of associated costs.  

Mathematically, the objective function is 

 min risk floodC C C   (158) 

 

where C($) is the annual cost resulting from Crisk($), the annual cost of 

minimizing downstream bank failure risk; and Cflood($), the annualized cost of 

implementing periodic building flows to rebuild failed banks. 
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Generally speaking, daily dam operations minimize downstream bank 

failure risk by limiting the flow release parameters on any particular day.  As 

noted earlier, these flow release parameters are qmin (m
3/sec) and qmax (m

3/sec) 

(minimum and maximum allowable daily flowrate), 3
,max (m /sec/hr)downq  and 

3
,max  (m /sec/hr)upq  (maximum allowable daily downramp and upramp rates), and 

24maxq  (m3/sec) (maximum allowable flow change over the past 24 hours). 

Therefore, Crisk is calculated by the lost revenue if operations had been 

optimized without imposing the above limitations.  That is, 

 risk ideal actualC R R   (159) 

 

where Rideal($) is the maximum yearly revenue that could be generated without 

addressing bank failure risk reduction, and Ractual ($) is the actual yearly revenue. 

As shown in Chapter 7, bank failure risk can be minimized, but not 

eliminated.  Controlled floods are required to rebuild sandbars.  These floods are 

costly, because they require additional outflow through spillways and intakes 

beyond the capacity of the turbines.  It is useful to relate the cost of the building 

floods, Cflood, with sandbar rebuild target in the form 

 $/%flood rebuildC c I  (160) 

 

where c$/% ($ / %) is the cost to rebuild 1 percent of the overall sandbars, and 

Irebuild is the targeted rebuild percentage.  For example, the 1996 controlled flood 

at Glen Canyon Dam rebuilt approximately 20%rebuildI   of the sandbars.  

Harpman (1999) predicts that building floods will average approximately $2 
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million dollars (in 1996 dollars).  Thus, a reasonable estimate for c$/% in 1996 

dollars is about $100 thousand dollars per percentage rebuild.   

Note that it is assumed here and henceforth that the rebuild target can be 

met with the flooding budget given by Equation (160).  For targets larger than 

20%, this would probably require more frequent and longer building floods.  

Modeling these processes and developing these floods is an important and 

complex process but beyond the scope of this work. 

The revenue over time J may be estimated by 

     
21

1
12

1

52 3600annual j j j j
j

R s s t r


    

or simply 

    
21

1
1

93600annual j j j j
j

R s s t r


    (161) 

where the rj ($ / m3) vector is the conversion rate from flow volume to revenue 

over time segment j.   

The objective function in the form of the above defined variables is 

    
21

1 $/%
1

min 93600ideal j j j j rebuild
j

C R s s t r c I


      (162) 

 
Other costs include repair, maintenance, and personnel.  Harpman (1999) 

reports that these costs are small compared to the costs already included, and so 

are not applied here, although they are easily included for other applications. 

Finally, it is useful to note that a non-dimensional form of the net revenue 

*
netR  may be defined as 

 

  *
$/% Pr /failurenet annual idealR R c R   (163) 



209 
 

Constraints 

The numerous constraints on flow scheduling at Glen Canyon Dam are a 

result of a wide range of contributing factors, including mechanical, hydrological, 

human, hydraulic, maintenance, safety, and others.  The details and mathematical 

definition of these constraints are described in the following sub-sections. 

Mechanical 

Generally speaking, hydroelectric turbines have flow limitations and other 

mechanical limits that may be expressed in general form as 

 min, max,mech j mechq q q   (164) 

 
At Glen Canyon Dam, however, Harpman (1999) reports this is not a 

governing constraint for daily operations and is not considered further here.  Of 

course, other applications of the algorithm developed here can include these 

constraints without undue difficulty. 

Hydrological 

Dam releases are ultimately governed by rainfall and snowmelt, and 

mature dams must eventually release all of the flows conveyed to it (e.g. “run of 

the river”).  The general form of this hydrological constraint is 

 ,j i target
time period

V V  (165) 

 

where ,i targetV  (m3) refers to a specific volume to be released over the particular 

time period.  The subscript i has been included to differentiate requirements, since 

multiple, even overlapping, hydrological constraints can apply. 
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When real time targets are established, the volume targets can change very 

quickly, and control theory applies.  While proper treatment of this subject is 

beyond the scope of the present application, it can be included in the general 

algorithm presented here without undue difficulty. 

The general Glen Canyon Dam policy is to meet annual demands through 

predetermined monthly outflow targets (Harpman, 1999).  Considering an average 

month, then this constraint is 

 21 / 52annualV V  (166) 

 
In practice, however, since volume is directly related to profit, the 

optimization process will converge to Equation (166) naturally in order to 

maximum profit, as long as the following inequality is met: 

 21 / 52annualV V  (167) 

 
 
Equation (167) was utilized as the volume constraint here. 

Conveyance 

Conveyance over spillways is affected by frictional loss and cavitation 

potential. Unfortunately, the use of dam spillways is an essential part of a real-

time control scheme, and must be used for controlled floods in particular.   This 

can be a particular problem for older dams, because surface roughness increases 

over time (Williams and Hazen, 1933).  Indeed, Glen Canyon Dam suffered 

nearly catastrophic cavitation damage in 1983 (Frizell, 1985).  Since then, 

methods of predicting and preventing cavitation in older dams have improved 

(Lee and Hoopes, 1996), as has roughness modeling, with newer methods 

gradually replacing older methods (Travis and Mays, 2007). 
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Generally speaking, cavitation occurs when velocities become excessive 

along the emergency spillways.  The corresponding constraint is 

 j cavq q  (168) 

 

where qcav refers to the estimated flowrate at which cavitation is expected.  

After the 1983 damage, the Glen Canyon Dam hydroelectric components 

have been updated to prevent further cavitation damage.  At present, other 

operation thresholds prevail over cavitation prevention constraints (Frizell, 1985).  

Vortex Formation 

Vortices reduce flow efficiency, introduce occluded air, can clog the 

intake, and constitute a genuine risk to public safety (Rindels & Gulliver, 1983).  

Preventing vortices can constrain flowrates.  Travis and Mays (2010) have 

developed general risk guidelines.  

The vortex constraint depends on a chosen risk of vortex formation rvortex.  

The vortex constraint then takes the form 

    min, , max, ,vortex i vortex j vortex i vortexq r q q r   (169) 

 
where qmin,vortex,i and qmax,vortex,i are the low and high thresholds for the flow rates, 

beyond which the risk of vortex formation exceeds rvortex.  The subscript i is 

included because there are often disparate flowrate regions that are relatively safe 

from vortex formation.  

 While once a critical aspect of Glen Canyon operations, vortex problems 

have since been eliminated by improvements at the intakes, and vortex formation 

no longer limits operations (Vermeyan, 1999). 
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Operations 

Operational limitations may be a result of available staff, use of automated 

equipment, maintenance, or others.  Some dams are monitored 24 hours a day and 

operate year round while others may only operate during certain seasons.  

Automated equipment is becoming more popular, and brings with it specific 

limitations as a result of its particular design.  These limitations can affect all 

aspects of the operations schedule.   

In general form, most operational constraints can be defined by 

 , , ,down j down oper jq q   (170) 

 
 , , ,up j up oper jq q   (171) 

 
 min, , max, ,oper j j oper jq q q   (172) 

 
Note that Equation (170) is specific to a positive definition of the 

allowable downramp rates, consistent with how policy is usually stated (e.g., a 

downramping maximum rate of 71 m3/sec/hr is specified, rather than -71 

m3/sec/hr).  

Other, less common, operational constraints can also be adopted here as 

well (maximum peak or minimum flow hold times, etc.)  At Glen Canyon Dam, 

the only operational constraint is the policy that flowrates can be changed only 

once per hour.  For example, an increase of the daily flow to the evening flow on 

Sunday, q2 to q3, must take place over one hour, or 

 ,2 3 2 3 2/1upq q q hour q q      where the units of the upramp are in m3/sec/hr,  
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as previously defined.  The ramping rates may therefore be defined by 

  , 1max 0,down j j jq q q     (173) 

 

  , 1max 0,up j j jq q q    (174) 

 

Of course, if j = 21, then j+1 actually refers to j = 1.  That is, the next time 

period after Saturday from 7 p.m. to 12 a.m is simply Sunday from 12 a.m. to 7 

a.m.  This could be expressed through multiple versions of the constraints, but this 

is cumbersome and not necessary from a pragmatic standpoint where the periodic 

nature of the weekly times is rather obvious.  It is henceforth assumed that this 

incremental structure is understood. 

Given the flexible nature of the state variable, it is possible to have two 

consecutively larger or smaller flows in the same day. When this occurs, it is not 

obvious which downramp or upramp value to use in the risk calculation.  The 

research in previous chapters indicates that risk is maximized when upramping is 

minimized and downramping is maximized (the latter a result of the attenuation 

processes).  Therefore, the risk equation used the daily minimum upramp and 

daily maximum downramps for the calculation (conservative).   

Environmental 

Supporting existing downstream and upstream habitats can lead to a 

number of constraints, including minimum and maximum allowable flows and 

flow changes on different days, weeks, months, and even seasons.  Utilizing an 

“env” subscript to denote that the constraints are environmentally based, the  
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general form of the constraints are 

 , , ,down j down env jq q   (175) 

 
 , , ,up j up env jq q   (176) 

 
 min, , max, ,env j j env jq q q   (177) 

 
Environmental concerns can also result in more complicated operations 

constraints.  For example, it is not uncommon for flowrates and ramping rates to 

be constrained by recent history.  Because of the wide variety of forms these 

constraints can take, a general formulation of the constraint limits is not possible, 

although the following discussion of the Glen Canyon Dam operations provides 

an example of one such constraint.   

The environmental constraints at Glen Canyon Dam are shown in Table 15. 
 
 

Min. Flow (m3/s) Max Flow (m3/s) Max 24 hr Flow Fluctuation (m3/s-day) 

227 (7am – 7pm) 566 142 – 227 (varies per month) 

142 (7pm – 7am) 

 
Table 15.  Current Glen Canyon Dam environmental constraints. 

 

The minimum and maximum flow constraints shown in Table 15 are 

consistent with Equation (177) and may be expressed    

 min, , max,env j j envq q q   (178) 

 
 min, , max,env j j envq q q   (179) 

 

The fluctuation constraint is more complicated.  Letting the subscript m 

denote the particular month, the maximum 24 hour fluctuation is designated 
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24max,mq  and the average requirement per month is defined 24maxq .  The 

fluctuation constraint at Glen Canyon Dam is therefore 

 

    1 2 1 2 24maxmax , , min , ,j j j j j jq q q q q q q       (180) 

Geomorphologic 

Geomorphologic constraints attempt to control sediment transport, limit 

bank migration, and, as focused on here, minimize bank failure risk.  At most 

dams and at Glen Canyon Dam in particular, these constraints are implemented as 

limitations on downramping and upramping in the general form 

 , , ,down j down geo jq q   (181) 

 
 , , ,up j up geo jq q   (182) 

 

From Equations (173) and (174), these constraints may be written 
 

  1 , ,max 0, j j down geo jq q q    (183) 

 

  1 , ,max 0, j j up geo jq q q    (184) 

 

Noting that if the maximum value of the parenthetical values is zero, the 

geomorphologic constraints are automatically met leads to a simpler form of 

Equations (183) and (184): 

  , , 1, , , ,down geo j j d j d up geo jq q q q      (185) 

 
As noted earlier, a critical geomorphologic constraint is mitigating 

sediment loss and slope failures.  This constraint is 

  Pr failurerebuildI  S  (186) 
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where the bar over Prfailure indicates that it is an average over both the river reach 

of concern and the operations timeframe considered.   Equation (186) assumes 

that the percent rebuild would be equivalent to expected sandbar loss when many 

sandbars are considered over long periods of time.   

Non-negative 

Typical for optimization studies, all parameters have been defined in such 

a way that realistic values must be greater than zero.   

Overall 

Overall, the general form of the linear operations constraints require 

 
 , ,maxdown j downq q   (187) 

 , ,maxup j upq q   (188) 

 min, max,j j jq q q   (189) 

where 

  ,max , , , , , ,min , ,down down oper j down env j down geo jq q q q     (190) 

  ,max , , , , , ,min , ,up up oper j up env j up geo jq q q q     (191) 

  min, min, min, , min, , min, ,max , , ,j mech env j oper j vortex iq q q q q  (192) 

  max, max, max, , max, , max, ,min , , , ,j mech cav env j oper j vortex iq q q q q q  (193) 

  , , 1 , ,i j i j i j i target
time period

q t t V    (194) 
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The particular constraints that govern current Glen Canyon operations are 

 , 1 ,down geo j j up geoq q q q      (195) 

 
 min, , max,env j j envq q q   (196) 

 21 / 52annualV V  (197) 

 

    1 2 1 2 24maxmax , , min , ,j j j j j jq q q q q q q       (198) 

 
  Pr failurerebuildI  S  (199) 

 
Of course, all parameters must also be non-negative. 

The goal of the optimization here was to evaluate the potential advantages 

of eliminating the geomorphology constraints, and so Equation (195), included 

here for completeness, was not further considered except for comparison of the 

final results. 

 
Initial state 

The initial state was chosen rather arbitrarily as qj = 450 m3/sec, an 

average value that initially satisfied all constraints.  The failure risk from this 

value is 48% and the non-dimensional net revenue was * 83%netR  . 

Search Space 

The initial search space is defined by Equation (196).  As the simulation 

proceeds, this search space is gradually limited according to the current iteration.  

This process is best described by the neighbor function (see below). 
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Stopping Criteria 

Figure 66 shows the results of a preliminary optimization run with 

100,000 iterations.  The moves are seen to be logarithmically related to the 

iteration number and were still increasing near iteration 100,000.  Execution time 

was still quite reasonable for this run (approximately 4 minutes), and so stopping 

criteria for the major effort were set to 10,000,000 iterations. 

 

Figure 66.  Preliminary SA results showing net revenue vs. iteration number 
 

Neighbor function 

The neighbor function returns the next tested state given the current state 

and search space.  Numerous methods can be used for the neighbor function.  

Here, a simple linear approach was taken, wherein each new state was generated  
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randomly within a progressively smaller search space.  This process is shown in  
 
Equation (200) 
 

 
  
  

min max 2 1

max max 2 1

1 / rand (), rand () 1

1 / rand (), rand () 1

opt opt

test

opt opt

s s s k k
s

s s s k k

     
   

 (200) 

 

where the subscript on the rand() function is used to indicate that they are 

separately generated random numbers. 

 
Energy function 

The energy function was equated to the cost function with the addition of 

the two penalty terms: CΔq and VC , corresponding to the maximum 24 hour 

change constraint and the target outflow constraint respectively. 

The first constraint was enforced by a penalty function in the form 

     1 2 1 2 24maxmax , , min , ,q j j j j j j q penaltyC q q q q q q q C          (201) 

 

where Φ is the stepwise function (returns 1 for arguments  0, otherwise returns 

0) and  max ,q penalty risk floodC C C  .   

The neighbor function is also restricted by constraint  (197).  Again, the 

penalty function may be imposed to meet this constraint, in the form 

 VC  21 / 52annual VV V C   penalty  (202) 

 

where VC  max ,penalty risk floodC C  
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Designating e as the energy return variable, the energy function is therefore  

 $/% Pr failure q Ve c C C   ideal actualR R   (203) 

 
Temperature function 

The temp function, which is assigned to variable τ (non-dimensional) in 

the present work, is analogous to the role of temperature in annealing, is an 

arbitrary function of iteration step.  The only restriction is that 0 1   and that it 

decline towards zero as the simulation progresses.  Here, the temp function was 

implemented utilizing the selected maximum number of iterations (kmax)  in the 

form 

 max1 /k k    (204) 

Probability acceptance function 

The Praccept function generates a probability that, if greater than a 

randomly generated number between 0 and 1, indicates that a new, non-local state 

(stest with corresponding energy etest) will be tested in the next iteration step.  

Here, the Praccept function was implemented in standard form as 

    Pr min 1,exp /accept teste e     (205) 

Rand Function 

Excel’s random number generator, rand(), was utilized for the rand 

function.  While Excel’s random number generator has been criticized as poorly 

performing (McCullough and Wilson, 2005), the nature of simulated annealing 
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and the inherent uncertainties of the process did not warrant application of a more 

sophisticated method. 

Input 

The constraint values for the optimization run are shown in Table 16.  

Note that the inherent uncertainty of the variables did not warrant precision 

greater than about 2 significant digits, and so all variables were adjusted 

accordingly.  Average 1996 values were used for the monthly target volume 

(1179 million m3, rounded to 1,200 million m3) and the corresponding maximum 

allowable flow change was Δqmax = 227 m3/sec (rounded to 230 m3/sec).  In 

keeping with the interim criteria, the minimum allowable daily and nightly flows 

were assumed to be 140 m3/sec and 230 m3/sec respectively.  The maximum flow 

assumed to be 570 m3/sec.  An average sandbar building flow of 1050 m3/sec was 

assumed. 

Harpman (1999) reported an average on-peak energy conversion rate of 

about $20 per megawatt-hr, equivalent to about $0.60 per m3 flow.  Offpeak rates 

averaged about $5 dollars less, so the off-peak energy conversion rate was 

assumed to be $15 per megawatt-hr.   

The ideal monthly revenue would be generated if the entire monthly 

outflow was released during peak hours, or about $7.2 million per month.  

Harpman (1999) further reported that interim criteria have resulted in a revenue 

decrease of 6.5% over pre-interim revenue.  Assuming the pre-interim revenue 

was near ideal, and assuming one $2 million building flood every four years, the 

present monthly revenue is estimated at about $6.2 million. 
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Table 16 summarizes the input values. 

 

Variable Value 
Building flood success rate: 20% 

Building flood unit cost: $2 million 
Maximum allowed 24 hour flow change: 230 m3/sec 

On peak pricing: $20 / MW-hr 
Off peak pricing: $15 / MW-hr

Building flow: 1050 m3/sec 
Monthly target outflow: 1,200 million m3  

Daily minimum allowable flow: 140 m3/sec 
Nightly minimum allowable flow: 230 m3/sec 

Maximum allowable flow: 570 m3/sec 
Ideal monthly revenue: $7.20 million 

Current average monthly revenue: $6.20 million 
Iterations: 10 million 

 
Table 16.  Glen Canyon Dam optimization parameters 

Execution 

The SA model took just over 6 hours to execute 10 million iterations.  

Fifteen successively better state vectors were calculated.  The relationship 

between iteration and non-dimensional revenue is shown in Figure 67. 

 

 
Figure 67.  Non-dimensional revenue versus iteration 
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Results 

The resulting optimized schedule is shown in Figure 68.  There are several 

aspects of the optimal returned schedule that are non-intuitive (at least to the 

author): 

1. Neither the maximum allowable flow (570 m3/sec) or the minimum 

allowable flows (140 m3/sec and 230 m3/sec ) were scheduled for any day. 

2. The peak flow was not maintained over all of the peak hours, and instead 

slightly lowered from 7 p.m. to midnight. 

3. Sunday’s schedule was reversed from normal.  That is, the daily flow was 

scheduled as lower than the nightly flow. 

4.  The Tuesday and Friday peak flows were lower than the Wednesday and 

Thursday peak flows. 

 
 

Figure 68.  Optimal weekly operations schedule 
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The centralization of the optimal schedule within the flow constraints 

suggests the significance of the nonlinear aspects of the problem.  In this sense, 

the results here are consistent with previous work in this field that has found 

linear methods ineffective (Brooke et al., 1996). 

Table 17 compares the estimated consequences of the optimized schedule 

versus the present conditions under the interim criteria. 

 

Factor Current Operations Optimized Operations 

Average Bank Failure Risk 41% 42% 

Percent rebuilt failed sandbars 20% 100% 

Annualized building flood budget $0.5 million $4.2 million 

Estimated Net Annual Revenue $74.4 million $76.0 million 

 
Table 17.  Optimized Glen Canyon Dam operations. 

 

The optimized schedule predicts annual revenues of $76.0 million dollars, 

with annual building floods of sufficient extent to rebuild 100% of the lost 

sandbars.  Using the 1996 revenue as representative, the predicted revenue under 

interim criteria is $74.4 million (Harpman, 1999) with 20% building flows every 

four years.  Thus, the proposed annual budget for building flows is more than five 

times the current budget ($4.2 million versus $0.5 million).  Average bank failure 

risk for the optimized schedule is essentially the same as the current risk (41% 

versus 42%).   
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Thus, optimizing operations not only mitigates long term sandbar loss and 

sustains current bank failure risk conditions, it also increases expected revenue by 

just over 2%. 
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CHAPTER 9.   CONCLUSIONS 

Begin thus from the first act, and proceed; and, in conclusion, at the ill which 
thou hast done, be troubled, and rejoice for the good. 

– Pythagoras 
 

Problem Statement 

The success of the research described here must be measured against the 

overarching problem statement defined in Chapter 1: 

 

 How can hydroelectric dam operations be optimized to minimize the 

cost of successfully mitigating downstream bank failures?” 

 

Answering this problem statement required significant research into slope 

failure methodology, seepage modeling and matric suction effects, groundwater 

wave response modeling, generalization of local failure analyses to riparian 

scales, and optimization by simulated annealing.  Thus, the overall conclusions of 

this research must be built from the conclusions of each of these subsections.  For 

this reason, the remainder of this chapter summarizes and develops conclusions 

for each of the researched areas and then synthesizes these into both general 

conclusions.  The chapter ends with suggestions for future research and a final 

assessment of the success of this research in a closing statement. 

Quantifying slope failure risk 

The existing slope failure literature, as reflected in the compiled database 

in Chapter 2, shows considerable diversity across all model factors.  Interestingly, 

the easiest modeling choices were not the most popular: the simplified Bishop 
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2DLE method was used more often than infinite slope or OMS, circular slip 

surfaces were analyzed more often than planar surfaces, the effective stress 

approach was applied more often than total stress, and correction factors were 

applied more often than not.   

Despite the indisputable work ethic of the analysts, little improvement in 

SF calculation is evident: the basic distribution of SF appears to have been 

essentially constant since the first 2DLE analyses appeared in the literature more 

than five decades ago.  Indeed, analysis by Box-Cox indicated that the database 

was best fit by a constant log normal statistical distribution, with a corresponding 

mean of 1.03 and sd of 0.087.  Unfortunately, while this fit may be useful for 

some applications, caution is advised since the pronounced curvature of the 

residuals indicates the presence of unmodeled contributing factors. 

Thus, it appears that SF calculations are inadequately modeled by 

descriptive statistics alone; the effects of the slope parameters must be modeled as 

well.   

In response to this need, Chapter 3 extended the meta-analysis 

inferentially, utilizing applied statistical analysis to identify, understand, and 

quantify the particular contributions of each of the slope parameters.  This 

analysis revealed the following: 

1. Different limit equilibrium algorithms produce different safety factors.  

For failed slopes, the direct methods of SF calculation appear to be the 

most successful at predicting SF 1  as expected.  Bishop’s method and 

the complete methods of solution appeared to have a slight (but 
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statistically significant) non-conservative bias, but the magnitude of this 

bias is so small it is likely undetectable in field applications.  Force 

methods, however, demonstrated a level of bias that may have a 

significant, non-conservative effect on SF calculation. It is not known, 

however, if the bias and uncertainty shown by the failure database can be 

generalized to stable slopes. 

2. Clay content complicates SF analysis.  The database indicated that 

correction factors for vane strength were not adequate to reduce predicted 

SF values to average at SF 1  as expected.  The relationship between 

plasticity index and safety factor appears to be more complicated than 

historically assumed.  That said, there was no evidence that soils without 

clay were different from soils with clay with regard to SF uncertainty or 

bias. 

3. The database overall was well described by a log linear distribution with a 

mean value of 1.03 and a standard deviation (of the log transformed 

values) of 0.087.  A 1% failure risk for SF of about 1.65 was calculated 

from the overall database.  A reduced ANOVA model was developed, 

allowing predictions for a given failure risk as a function of analytical 

method, slope type, and porewater stress approach.   

So while a site specific risk analysis by error propagation is always 

preferable, since doing so directly accounts for project specific observations such 

as soil heterogeneity and porewater pressure uncertainty, the reduced ANOVA 

model allows a global consideration of slope failure risk in general.  It therefore 
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constitutes an adequate resolution of the first task, quantifying slope failure risk, 

and provided a solid stochastic foundation upon which to build the physical 

models of seepage pressures and matric suction, described next. 

Determining the role of matric suction 

Chapter 4 directly and quantitatively evaluated the role of matric suction 

in bank stability by developing analytical solutions for safety factor calculations 

of infinite slopes under flux conditions.  These solutions utilized published and 

well established constitutive equations to form steady state closed form equations 

integrating matric suction, degree of saturation, and overburden stress profiles for 

typical values of δ, the constant exponent historically used to relate permeability 

to relative saturation.  An infinite series solution for overburden stress was 

provided for soils with δ values different than standard.  The infinite series 

solution was shown to collapse to a simple form for large values of δ that 

achieved a reasonable numerical fit for δ > 4.  

It was found that matric suction significantly increases the factor of safety 

when compared with a dry / saturated model.  This safety factor increase was 

shown to be consistent with a field study of an existing stable slope, indicating 

stability under dry weather conditions whereas the dry / saturated model strongly 

predicted slope failure under the same conditions. 

However, matric suction decreases are accompanied by increased soil unit 

weight due to increased moisture content, which in turn reduces the factor of 

safety for slip surfaces near the phreatic surface.  For shallow water tables, the 
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model found that this effect increases when slope angles are significantly less than 

or greater than 45°.    

Thus, infinite slope models that ignore matric suction effects require (for 

consistency) the engineer to make invalid assumptions about soil saturation that 

inevitably lead to inaccurate safety factor predictions.  Moreover, a case study that 

verified this approach also showed that accounting for unsaturated soil conditions 

and matric suction effects in slope stability can result in safety factor predictions 

that are actually less than those produced by traditional methods.  In particular, 

matric suction must be considered in order to determine appropriate and 

consistent soil unit weights.  It appears that matric suction is an integral and 

necessary aspect of slope stability that must be accounted for in order to obtain 

accurate predictions.  This result led to an investigation in Chapter 7 that 

demonstrated that the non-conservative effects of ignoring matric suction effects 

becomes even more pronounced for curved failure surfaces.  Simply put, matric 

suction effects are a critical component of accurate slope failure prediction. 

Seepage effects 

Chapter 5 developed a finite difference model of bank failures due to 

seepage forces by coupling governing flow equations to the model elements 

developed in Chapters 2 through 4.  This model validated the general approach, 

confirmed the importance of including matric suction effects, and demonstrated 

the significance of unsteady flow processes on bank stability. 

The finite difference model was too slow for comprehensive treatment of 

an entire river reach, and so an analytical solution was developed instead.  
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Drawing on the key findings of the finite difference investigation, the analytical 

model describes saturated flow in a deep streambank and can be interpreted as a 

generalization of the groundwater tidal response equation.  This generalization 

allows periodic river waves to be considered by means of Fourier series.  

The primary advantage of the analytical solution is that the porewater 

distribution can be modeled for any time without stepping through incremental 

time steps from an assumed initial condition, as required by a finite element 

analysis.  That said, there are other advantages to the model as well.  These are: 

1. The inherent fluctuations of river stages are directly modeled, allowing 

steady state periodic modeling and bypassing the need to assume 

potentially inaccurate initial conditions 

2. The average piezometric surface can be directly obtained from the 

constant term in Equation (106). 

3. The analytical solution bypasses convergence problems often 

associated with finite element models of matric suction. 

With the porewater model complete, global risk analysis of a river system 

can be achieved by repeatedly executing the porewater model along the river 

banks at sufficiently small spacing to achieve the desired precision.  Alternatively, 

if the statistical distributions of the contributing bank factors are known in the 

reach, a general model of bank stability can be derived using Monte Carlos 

simulation. 
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Riparian scale translation 

The analytical solution allowed the bank stability model to be executed at 

sufficient speed to perform a large scale Monte Carlo simulation.  Utilizing design 

of experiments (DOE) approach, a simulation of the Colorado River was executed 

and analyzed using ANOVA hypothesis testing.   

The effects of restricting flows and flow ramping were found to be subtle; 

even extreme values of the release parameters typically corresponded to risk 

changes of less than 10%.  However, attenuation processes can greatly change the 

downstream flow characteristics and hence magnify the effects of flow release 

decisions.  Indeed, utilizing relatively simple non-linear equations to model the 

wave progression, the analysis predicts a 50% failure risk large sandbars 

( 31274 m /secbuildq  ) operating under current regulations when 

342 m /sec/hrdownq  ,  371 m /sec/hrupq  , 3300 m /secbaseq  , 3266 m /secq  , 

and 12 hrpeakt  .  At the low end, a 31% failure risk was predicted for large 

sandbars when 343 m /sec/hrdownq  ,  3300 m /sec/hrupq  , 3100 m /secbaseq  , 

3100 m /secq  , and 0 hrpeakt  .  The predictions were verified by field 

observations.  A reduced ANOVA model was then utilized to relate downstream 

slope stability risk to key dam operation parameters.  In this way, a 

comprehensive model of bank failure risk was developed for the entirety of the 

Colorado River within the Grand Canyon. 
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Optimizing dam operations 

From the comprehensive reach level bank stability model, an optimal flow 

release schedule was generated by applied simulated annealing.  This solution met 

the numerous non-linear constraints and, while there is no guarantee that the 

solution is global, it was found to be 2% more cost effective than current 

operations while providing five times as much budget for the critical beach 

building floods. 

Synthesis 

In order to solve the problem statement, a number of fairly disparate 

challenges had to be met, ranging from statistical to analytical to algorithmic.  

Despite these task differences, however, their results are linked by three common 

conclusions: 

1.  Stochastic understanding is critical.  This research found numerous 

instances where accounting for uncertainty was essential; not only within 

the bank stability analyses but also within the driving machinery of the 

simulated annealing optimization algorithm.  These uncertainties can be 

counter-intuitive and must be measured from actual data.  Perspective is 

essential:  A single bank stability calculation may account for parameter 

variations within the bank, but translating this calculation to reach scale 

requires that one not only account for further variations of these 

parameters but also recognize that new uncertainties have been introduced 

as a result. 
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2. Large scale problems may be driven by small scale factors.  Past 

research on the Grand Canyon riverbank stability was usually divided into 

empirical models based on large scale measurements (number of banks, 

frequency of failures, etc.) or small scale models assumed applicable to 

entire region.  Neither of these approaches is optimal.  Like the failure in 

the literature to relate bank stability to river kilometer, large scale 

measurements often represent the end product of multiple processes and 

may therefore show little correlation to large scale parameters.  On the 

other hand, careless generalization of small scale processes to describe 

large scale effects, such as assuming a single representative bank can 

represent an entire riparian region, amounts to unconstrained 

extrapolation.  Translation between scales needs to be modeled as well. 

3. Water complicates physical processes.  Water was one of the key 

components and one of the key compounding factors at nearly every level 

of the physical analysis in this research.  The stability database meta-

analysis showed that analyses that porewater effects are significantly 

correlated with slope types and this relationship affects stability analysis in 

ways that are difficult to interpret.  Matric suction, another water effect, 

simultaneously increases soil weight, which decreases the bank safety 

factor, and increases effective cohesion, which increases the safety factor; 

only a properly conducted unsaturated analysis can reveal the net effect.  

For bank slopes, water drives the physical processes in three ways: 1) 

periodic increases and decreases in water stage significantly affect slope 
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stability due to applied lateral pressures; 2) seepage from these stages 

creates a groundwater wave that progresses away from the bank and 

significantly alters bank stability risk; and 3) porewater within the bank 

rises through the soil to cause matric suction. 

Suggestions for future research 

Unregulated rivers 

The groundwater wave response function can be used to model any 

periodic stage changes.  Thus, naturally occurring stage hydrographs can be easily 

modeled.  This allows risk assessment of river reaches under natural conditions. 

This application can be extended to design storms, wherein the bank 

stability risk response due to a theoretical, design hydrograph can be modeled.  

Moreover, the equations themselves are computationally efficient enough to allow 

the development of a design storm specific to a given return period.  For example, 

the worst case risk response to storms of varying duration can be used to govern 

bank stabilization efforts. 

Other dam applications 

The optimization strategies developed in this research can be used at the 

planning stage of new hydroelectric dam designs.  For example, the type, size, 

and number of turbines can be selected based on cost maximization while 

dynamically preserving the downstream river reach.  It can also be included in a 

watershed level plan where multiple potential dam sites are being assessed. 
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At the other end of the spectrum, the methods described herein can be 

used to guide improvement plans for existing dams.  Moreover, since the 

procedure optimizes expected return on hydroelectric dams, it is a useful 

assessment tool for the viability of improving existing dams rather than 

decommissioning them in order to preserve the downstream river resources. 

 There are many dams that are purely flood control and not hydroelectric.  

This research can be used to guide operations for these dams as well.  That is, 

outflow regulation can be simply optimized to mitigate adverse downstream 

riverbank responses without cost considerations. 

Scale independence 

The physical process modeling developed here is scale independent, and 

thus can be used for small scale modeling of any size waterway, from rivulets to 

small tributaries.  It can also be applied to large scales, wherein historical, 

catastrophic floods in engineering or geological timescales. 

Regional Sediment Management Plans (RSM) 

The United States Army Corps of Engineers (USACE) has developed a 

Regional Sediment Management methodology for large scale sediment control.  

Multiple control strategies are considered in these plans, from controlled flooding 

from existing dams to bank stabilization by differed grading practices to periodic 

dredging scheduling.  The research here can be used as one of the modeling tools 

for these plans. 
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Often the goal of RSM plans is to remove excessive downstream 

sediment.   For these applications, the research developed herein can be used to 

maximize downstream bank failures, releasing sediment from these areas as part 

of the sediment removal process.  The optimization algorithm can then be revised 

to minimize cost of this operation. 

Couple with Infinite Slope Model 

Because the application of this research was driven by the circular failures 

in the Grand Canyon, the infinite slope stability model was used only for purposes 

of evaluating the significance of matric suction.  For other applications where 

infinite slope type failures appear to govern bank stability risk, the infinite slope 

model can be coupled with the groundwater response model and optimization 

algorithm.  The result would be a very fast calculation scheme that would allow 

high resolution riparian scale assessment. 

Couple with other objectives 

The general approach in this research is flexible enough to include other 

dam operations objectives, such as downstream sediment control or optimizing 

real-time response.  These objectives can be incorporated by means of additional 

constraints and / or expanded physical models. 

The model can also be expanded to consider other geomorphologic 

mechanisms, such as surface wave effects, scour from eddies, bed scour, etc. 
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  Field Investigations 

The physical model developed here can guide field investigations.  The 

direct application of the inherent uncertainty of measured bank parameters should 

encourage multiple measurements at various locations through the reach in order 

to maximize model accuracy.  Likewise, the importance of matric suction as 

discovered herein will hopefully encourage field investigation and laboratory 

measurements of the governing parameters.  The model also makes specific 

predictions about areas of high bank failure risk, and these areas can be targeted 

for detailed assessment and / or monitoring.   

Closure 

This research developed many new techniques in order to meet the overall 

objective, and these techniques were validated as much as possible through 

comparison with field measurements and experimental findings.  In this sense, the 

overarching problem statement has been successfully addressed.  That is, specific 

techniques have been developed that should optimize hydroelectric dam 

operations in order to minimize the cost of mitigating bank failures. 

Like the scientific method, the cornerstone of engineering science is 

reproducibility.  Beyond applied science, however, an engineering model must be 

transferable to other, similar applications.  Thus, the true assessment of the 

research developed here depends wholly on the results of future applications.   

The driving motivation behind the research is to benefit both our natural 

resources and society as a whole.  Thus, it is hoped that the success found here 

will be first of many.  
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