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ABSTRACT

In the past, it has been assumed that measurement and predictive
invariance are consistent so that if one form of invariance holds the other form
should also hold. However, some studies have proven that both forms of
invariance only hold under certain conditions such as factorial invariance and
invariance in the common factor variances. The present research examined Type |
errors and the statistical power of a method that detects violations to the factorial
invariant model in the presence of group differences in regression intercepts,
under different sample sizes and different number of predictors (one or two). Data
were simulated under two models: in model A only differences in the factor
means were allowed, while model B violated invariance. A factorial invariant
model was fitted to the data. Type I errors were defined as the proportion of
samples in which the hypothesis of invariance was incorrectly rejected, and
statistical power was defined as the proportion of samples in which the hypothesis
of factorial invariance was correctly rejected. In the case of one predictor, the
results show that the chi-square statistic has low power to detect violations to the
model. Unexpected and systematic results were obtained regarding the negative
unique variance in the predictor. It is proposed that negative unique variance in
the predictor can be used as indication of measurement bias instead of the chi-
square fit statistic with sample sizes of 500 or more. The results of the two
predictor case show larger power. In both cases Type | errors were as expected.
The implications of the results and some suggestions for increasing the power of

the method are provided.
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Chapter 1
Introduction

Important decisions are made from the results of psychological tests, as in
selecting people for a job, a graduate program, or a scholarship (Muchinsky,

1993; Sacket, Schmitt, Elligson, & Kabin, 2001). Because of the impact of these
decisions, it is fundamental that the tests used show no bias against the different
groups examined. In other words, the tests must be invariant in their psychometric
functioning across the groups tested. The groups are usually defined in terms of
demographic variables like gender and ethnic background. In psychological
testing, two types of invariance have been studied: measurement invariance and
predictive invariance.

Millsap (1998) proposed a confirmatory factor analytic model to test
measurement and predictive invariance when group differences in regression
intercepts exist. The model assumes full factorial invariance, and invariant
common factor variances. If the model holds, group differences in regression
intercepts can be explained in terms of differences in the common factor means.
This model was tested in cases with one and two predictors with large sample
sizes using real data.

The purpose of the present research is to study Type | errors and the
statistical power for tests of the confirmatory factor analytic model proposed by
Millsap (1998). Type | error rates and power are examined in simulated data with

different sample sizes and with one and two predictors.



Chapter 2
Background Literature

Measurement invariance

Measuring individuals is a fundamental process when it is of interest to
know their levels in a variable of interest, such as academic performance,
personality, or attitudes. The variables of interest are usually latent, unobservable
constructs that are assumed to cause the observed measures.

In order to make conclusions about the individuals, the test used must
function equivalently across the groups studied; otherwise, the results of the tests
have ambiguous interpretations (Borsboom, 2004). It is said that a test is
measurement invariant if persons from different populations with identical values
on the latent variables W of interest, have the same probability of obtaining a
particular raw score at the item level or at the test level (Drasgow & Kanfer, 1985;
Mellenbergh, 1989; Millsap, 2007).

Suppose that X = (Y, Z) isa (p + 1) x 1 vector of observable random
variables, where Y is a single criterion variable and Z is a set of p predictor
variables. Further suppose that r latent variables underlie X, suchthat Wisarx 1
vector of latent scores with r <p + 1. A classic and well known example can be
found in the prediction of job performance. In a common factor model where a
battery of cognitive tests is used as predictors and a measure of job performance is

used as a criterion, it is often hypothesized that an underlying common factor,



Spearman’s “g”, would predominate (Gottfredson, 1988; Hunter, 1986; Ree,
Earles & Teachout, 1994).

We will assume that two populations are being measured on X and that V
is a variable that defines group membership. Usually the populations are defined
in terms of demographic variables such as sex and ethnicity. In the employment
example described before, differences between Whites and African-Americans in
the prediction of job performance have been examined by comparing regression
lines across groups. Measurement invariance means that there are no group
differences in the relationship of a set of observed variables X to their underlying
latent variables W. In the research addressing differences between White and
African-Americans in the prediction of job performance some investigators have

[Pt

argued that any group differences observed are due to group differences in “g
(Jensen, 1992).

More formally, the definition of measurement invariance states that the
relationship between X and W is independent of group membership

(Mellenbergh, 1989; Millsap 1995, 2007), such that:

Pr(X|W =w, V =v) = Pr(X|W = w) 1)

The above equation means that two persons with the same value in the

latent variable W will have the same probability of achieving a particular score on

X regardless of their group membership. If equation (1) does not hold then



measurement bias is said to exist. Under measurement bias two individuals with
the same value in W will have probabilities of achieving scores on X that depend
on group membership.

Different latent variable models have been proposed that describe the
relationship between W and X, and hence, different approaches to testing
measurement invariance exist. One of the models most widely used to describe
the relationship between W and X is the common factor model. In this model X
fits a common factor model with W being the common factors; factorial
invariance is a form of measurement invariance in this model (Millsap, 1998).

Item response theory (IRT) provides another way to describe the
relationship between W and X. IRT consist of a set of models that relates the
probability of an item response to an examinee value on a latent variable, through
a nonlinear monotonic function. Violations of measurement invariance in IRT are
termed differential functioning in general; differential item functioning (DIF)
refers to the study of invariance at the item level, and differential test functioning
(DTF) is the study of measurement invariance at the test level (Stark,
Chernyshenko, & Drasgow, 2006). In some cases, DIF is used to describe group
differences in item properties that are evaluated without reference to a specific
latent variable model (Holland & Wainer, 1993).

The focus of the present research was in measurement invariance under

the common factor model.



The Common Factor Model
The most widely used model in studies of measurement invariance is the
common factor model. In the case in which there is only one factor the model can

be expressed as:

Xi=1i+ AW + u; (2)

where Ajis a (p + 1) x 1 factor pattern matrix for group i, Wjis a scalar common
factor score, tiis a (p + 1) x 1 latent intercept vector, u;is the (p + 1) x 1 vector of
unique factor scores.

If X = (Y, Z), the factor pattern and the latent intercepts can be partitioned

as:

(3)

In this partitioning A is a p x1 vector of factor loadings of the predictors on the
common factor, Ay is a scalar containing the loading of the criterion on the
common factor, T, is a p x 1 latent intercepts of the predictors, and 1y; is a scalar
latent intercept of the criterion.

Under the factor model, the expected value of X; given W; and the

conditional covariance of X;, can be expressed as:

EX|W=w) =1 + Aw Cov(X|W =w) = 0, (4)



here ©; is a diagonal matrix of unique variances for group i. For measurement
invariance to exist, no differences between the groups should be found in T, Aj,
and @;. Invariance in the three parameters is known as complete factorial
invariance or strict factorial invariance. Weaker forms of invariance are also
possible; when invariance only holds for A, this condition is called factor pattern
invariance, metric invariance or weak factorial invariance; scalar or strong
factorial invariance refers to invariance in A and t; (Millsap, 2007; Widaman &
Reise, 1997).

The parameters of the distribution of W; are:

E(Wi) = K Var(Wi) = Qi (5)

For measurement invariance to hold, it is not necessary to specify
invariance in the parameters «; and ¢;. Under factorial invariance the populations
of interest can differ in the distributions of W, and these differences are going to

be reflected in the unconditional structure of X;:

E(X) = i + Ak (6)

COV(X) = Ai(piAi‘ + O (7)



If measurement invariance holds, the differences found in the observed
variables X, are due to differences in the common factor W and not due to

measurement bias.

Predictive invariance

In contrast to measurement invariance, predictive invariance is concerned
with group differences in the relationship that holds only among observed
measures. Cleary (1968) defined predictive bias as systematic errors in the
prediction of a criterion for one of the groups studied. If there is predictive bias,
the use of a single regression equation for describing two groups would lead to
under-prediction for one group and over-prediction in the other.

Predictive invariance is more easily studied than measurement invariance
because no latent variable model is needed. One of the domains in which this
form of invariance has been of interest is in educational measurement. For
example, Bridgeman and Lewis (1996) studied gender differences in the
prediction of grades in college mathematics courses from SAT-M and from high
school grade point average. In another study, Cleary (1968) studied differences in
the prediction of college grades between black and white students.

In the present study focus is given to predictive invariance when the
relationship among the measured variables is linear. A general definition for

predictive invariance can be stated as:



Pr(Y|Z=z, V=v) = Pr(Y|Z= 2) 9

Where Y is the criterion and Z is a set of predictor variables. If the

relationship between Y and Z is linear then:

E(Y|Z = 2) = By; + Byiz (10)

Var(Y|Z = z) = 6% (11)

where 6% is the residual variance in the ith group, By; is the regression intercept in
the ith group, and By; is a p x 1 vector of regression slopes for the ith group. The
definition of predictive invariance implies that the distribution of Y given Z is
independent of group membership. Under predictive invariance, two individuals
from different groups that have the same score in Z will have the same predicted
scorein Y.

Predictive invariance implies that the parameters Bo, By, and o® are

invariant in the linear case. Slope invariance denotes invariance in B; and

regression intercept invariance refers to invariance in Boamong the groups.

Relationship between measurement invariance and predictive invariance

Ideally, tests used for prediction will not only show predictive invariance

but also measurement invariance. The question about the relationship between



both types of invariance emerges. If a test shows one type of invariance would the
other type of invariance also hold?

As stated earlier, predictive invariance is more easily studied than
measurement invariance because the former is only concerned with the
relationships among observed variables and not with latent variables. So, if both
types of invariance are related could one only study predictive invariance and still
make conclusions about measurement invariance? Researchers usually assume
that if predictive invariance holds the test is free of any bias (Sackett & Wilk,
1994).

There have been few attempts to study the conditions under which
measurement and predictive invariance are consistent. In these studies the
relationship between measurement invariance and predictive invariance has been
examined mostly for situations in which X fits a common factor model with one
latent variable r = 1, and for linear relationships among Y and Z.

For example, Millsap (1995, 1997) studied the relationship between
factorial and slope invariance, and showed that the only scenario in which strict
factorial invariance and slope invariance will both hold is when the groups have
identical common factor variances. Also, the author examined the relationship
between pattern and slope invariance and, as in the case of factorial and slope
invariance, the conditions required for both forms of invariance to hold are

stringent and often violated.



The relationship among regression intercept invariance and measurement
invariance has also been studied (Millsap, 1998). Studies have shown that even
when measurement invariance holds for a given data set, it is still possible that
groups differ in their regression intercepts as a consequence of having fallible
measures (Birnbaum, 1979; Linn, 1984; Millsap, 1998). One interpretation of this
result is that the regression intercept differences are not representing measurement
bias, but that they represent actual differences in the trait measured among the
groups studied (Humphreys, 1986).

Millsap (1998) gave two theorems under which the regression intercept
differences are not due to measurement bias. The conditions for these theorems
are that slope invariance and factorial invariance must hold. Under these
conditions the only parameter that can differ among the groups is «;, the factor
mean. The theorems state that k; > «; if and only if Bo; > Bg,. These theorems
imply that under factorial invariance and slope invariance, the direction of the
regression intercept differences must be the same as the direction in the difference
in the common factor means. In other words, if measurement invariance holds, the
group that has the larger factor means in Z and Y must also have the larger
intercept in the regression for predicting Y.

One case in which the invariant common factor model will not hold is
when one group has a larger mean in Z but a different group has the larger mean
in'Y, suggesting that the differences on the groups cannot be explained in terms of

differences in common factor means. Another case in which the invariant
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common factor model will not hold is when one group has larger common factor
means in both Z and Y, and the regression for predicting Y shows that the larger
intercept corresponds to the group with the larger mean. However, when
conducting a reverse regression, that is, changing the roles of the predictor and the
criterion so that now Z is being predicted from Y, the group with the larger
common factor mean gets the smaller regression intercept (Birnbaum, 1979). If
the invariant common factor model holds, the group with the larger means would
have the larger intercepts in both forward and reverse regressions.
Millsap (1998) proposed a method for testing the conditions of the
theorem using confirmatory factor analysis. The model has the requirements:
1) Factorial invariance, that is, invariance in the latent intercepts, the
factor loadings, and the unique variances.
2) Invariance in the common factor variances ¢ must also hold under
slope invariance, as established by the duality theorems (Millsap,

1995; 1997).

As a consequence of these requirements, slope invariance will hold. Slope
invariance must hold since the study of intercept invariance is only meaningful
under slope invariance.

The graphical representations of the models for the one and two predictor
cases are given in Figure 1. The factor means are shadowed to indicate that those

are the only parameters that are allowed to differ across the groups in the model.
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One predictor case

Figure 1. Measurement invariant models with group differences in the regression
intercepts for one and two predictors. In each of the groups the latent variable W
underlies the predictors Z and the criterion Y; all the parameters are restricted to
be the same between groups except for the factor means k.

12



The model also needs identification constraints such as fixing a predictor
loading to one and fixing the factor mean to zero. The degrees of freedom for this
model are p (p + 2).

Some real examples for testing the model using large sample sizes in the
case of one predictor were provided in the study of Millsap (1998). In the first
example, data from 12,424 examinees were analyzed. In this example it was
shown that when measurement invariance holds, the group with the larger means
in Z and Y also had the larger regression intercept in the forward and reverse
regression.

In the second example data from 9,748 examinees were used to illustrate a
case in which the invariant factor model did not fit the data. An inconsistent
pattern with the invariant common factor model was found in the factor means;
the group with the larger mean in Z had the smaller mean in Y. As a consequence,
the group with the larger regression intercept in the forward regression was
different from the group with the larger regression intercept in the reverse
regression.

The third example with data from 68,766 examinees showed a case in
which the invariant common factor model failed to fit the data even when the
observed means were consistent with the model. The group with the larger mean
in Z also had the larger mean in Y, however, the group with the larger intercept in

the forward regression had the smaller intercept in the reverse regression.

13



It is important to note that in the examples just described only one
predictor was studied. When the model did not fit the data there were no
alternative models that could be tested. If the model failed to fit it was not
possible to investigate the source of lack of fit because relaxing the invariance
constraints would lead to identification problems. However, in the case of p =2, a
weaker model that relaxes constraints in the latent intercepts could be tested as
shown in the next example.

The final example reported by Millsap (1998) was for the case of two
predictors. The invariant common factor model failed to fit the data from 38,315
examinees. Having more than one predictor allows the possibility to relax some
constraints to further examine the source of the violation to invariance. However,
it should be noted that if the constraint in the invariance of the loadings is relaxed,
it may lead to violations of slope invariance which complicates the interpretation
of the intercepts. In this case, the only constraint that can be relaxed is invariance
in the latent intercepts because it does not affect slope invariance. A model that
relaxed the constraints of invariant latent intercepts was tested and showed
adequate fit to the data.

In all of these examples, large sample sizes were used. The question about
the power of the model to detect violations of measurement invariance remains in
cases with small sample sizes. In the case with one predictor, it is expected that
the low degrees of freedom and small sample sizes will produce loss of power

(MacCallum, Browne & Sugawara, 1996).
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Chapter 3
Research goals

A model to test factorial invariance in the presence of group differences in
the regression intercepts was proposed and it was shown to be effective with low
degrees of freedom and large sample sizes (Millsap, 1998). However, in many
practical settings only small samples sizes (n=200) are available, and usually there
is only one predictor of interest or there is only one predictor available.

The goal of the present research was to examine Type 1 errors and the
statistical power of tests of fit for the model in cases with only one or two
predictors, and different sample sizes. It was expected that the low degrees of
freedom in the case of one predictor (p = 1) and the small sample sizes produce
low power to detect violations of the invariant factor model. Also, it was expected
that as the sample size or the number of predictors increase, the statistical power

improves (MacCallum, Browne, & Sugawara, 1996).
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Chapter 4
Method

Case 1. One predictor,p=1

Data generation

The data were generated in Mplus version 5.1 using Monte Carlo
simulations with 10,000 replications per condition. Data for two independent
groups, each with one predictor and one criterion, were generated following a
multivariate normal distribution.

Two different models were used to simulate the data. Model A consisted
of an invariant factor model where the only parameter that differed between
groups was the latent mean k. Because measurement invariance holds in these
data sets they were used as the comparison conditions. Under model B, not only
the factor mean k was different between groups but also the latent intercept for
predictor Z, generating violations to measurement invariance. Both models, A and
B, led to group differences in the regression intercepts.

Table 1 shows the values of the parameters shared by models A and B. it
can be observed that the only values different across groups are the factor means.
These parameter values were selected to reflect reliability values usually found in
real data. In the common factor model the reliability of a variable is defined as the
sum of the communality of the variable and the systematic variance specific to the

variable. The communality for the criterion Y is .5, and for the predictor Z is .7.

16



So, the reliability of the variables would be expected to be higher than the

communality values.

Table 1

Parameter values for the one predictor case

Parameter Group 1 Group 2

Kj 0 3

) 5 5
Ty 3 3
Az 1 1

Ay 6 6
0, 21 21
0y 18 18

The variables manipulated in the simulations were the values of 7, in
model A, group difference in 1, in model B, and the sample size:
a) Values of 1,in model A. The data generated under model A had no
group differences in t,. Three t, values were manipulated: .5, 1, and
1.5. This manipulation was important to examine if the Z latent
intercepts were accurately estimated in the samples regardless of the
population values.

17



b) Values of 7, in model B. Under model B the data were generated

assuming group differences in t,, The value of 1, in group 1 was .5 in
all conditions, while the values in group 2 were .7, 1 or 1.5, creating
group differences in 1, 0f 2, .5 and 1. Since the standard deviation of Z
is .84 the difference in the latent intercepts represent a small (.24),
medium (.6) and large (1.19) effect sizes following Cohen’s d
criterion.

The different values of t, created group differences in the mean of Z,
as calculated from equation 6. In group 1 the values of T, were.5 in all
conditions under model B, so the mean of Z was always .5. On the
other hand, the mean of Z in group 2 changed depending of the value
of 1,; the means of Z were 1, 1.3, and 1.8 for 1, values of .7, 1, and 1.5
respectively. Thus, the Z mean differences between groups were .5, .8,
and 1.3.

The ratios of the group differences in 1, to the group differences in the
Z means are .4, .625, and .77. Any values of the latent intercepts that
maintained these ratios could have been selected.

Sample size. The sample sizes used were 50, 100, 200, 500, 1000,

5000, and 20,000.

18



Analysis

An invariant factor model was fitted to the data sets generated under
model A and under model B using a confirmatory factor analysis. As indicated
before, under the invariant model the latent intercepts, the factor loadings, and the
unique variances were constrained to be invariant in the two groups. Additionally,
the factor variances were constrained to be the same in both groups. Thus, the
only parameter that was allowed to differ between the groups was the factor
mean.

For identification purposes, under group 1 the factor loading of Z was
fixed to 1 and the factor mean was fixed to 0.

Fitting a factorial invariant model to the data generated under model A
allowed examining Type 1 errors. Type 1 errors were determined by the
percentage of samples in which the chi-square statistic incorrectly rejected the
hypothesis that the invariant model was the true model. On the other hand, fitting
a factorial invariant model to the data generated under model B allowed studying
statistical power. Power was determined as the percentage of samples in which
chi-square correctly rejected the hypothesis of invariance when in the data the Z

latent intercepts were not invariant.
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Case2:p=2
Data generation

Two independent groups, each with two predictors and one criterion, were
simulated for case 2 following a multivariate normal distribution. Monte Carlo
simulations with 10,000 replications were generated in Mplus version 5.1.

The same models described in the case of p=1 were used. Under model A
the latent intercepts for Z; were modeled to be invariant using the values of Z in
the case of p=1. Under model B the Z; latent intercepts were manipulated as in Z
in the case of p=1. The latent intercepts of the second predictor were generated to
be invariant under models A and B.

The sample sizes were, as in the case of p=1, 50, 100, 200, 500, 1000,
5000, and 20000. Thus, a total of 42 conditions were studied in the case of p=2.

Table 2 shows the values of the parameters in case 2; all the values are
shared across groups except for the factor means. As in case 1 the values were
selected to reflect values usually found in practice. The communalities for Z; and

Y are the same as in the case of p=1, and the communality for Z; is .52.
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Table 2

Parameter values for the two predictors case

Parameter Group 1 Group 2
Kj 0 3
() 5 5
T22 6 .6
Ty 3 3
A1 1 1
Az 8 .8
Ay 6 6
021 21 21
022 .30 .30
0y 18 18

Analysis

An invariant factor model was fitted to the data sets generated under

model A and under model B using a confirmatory factor analysis. The latent

intercepts, the factor loadings, the unique variances, and the factor variances were

invariant across groups. The only parameter that was allowed to differ between

the groups was the factor mean.

For identification purposes under group 1 the factor loading of Z; was

fixed to 1 and the factor mean was fixed to 0.

21



Statistical power was studied when fitting the invariant factor model to the
data generated under model B, and Type | errors were studied when fitting the

invariant factor model to the data generated under model A.
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Chapter 4
Results

Case 1, p=1
Type | errors

Type 1 errors were studied when fitting the invariant factor model to the
data generated under model A as the percentage of samples in which the chi-
square statistic incorrectly rejected the null hypothesis. The degrees of freedom
for the model are 3 as calculated by p (p + 2), so the critical value for chi-square
is 7.81. Type I errors are shown in Table 3. The results indicate that Type | errors

are approximately what would be desirable at an alpha level of .05.

Table 3

Percentage of samples with p < .05 when p=1 under Model A (Type | errors)

N ;=5 1, =1 ,=15
50 5.9 5.9 5.8
100 5.6 55 5.8
200 5 5.2 53
500 5.2 5.2 5.1
1000 5.3 4.9 5.3
5000 5 5.1 4.9
20000 54 5.1 5

23



Statistical Power

Statistical power was examined when fitting an invariant factor model to
data generated under model B as the percentage of samples in which the chi
square correctly rejected the null hypothesis. The degrees of freedom for the
model are 3, and the corresponding critical value of the chi square is 7.81.

Table 4 shows the statistical power when p=1. The results indicate that the
model has low power to reject the null hypothesis at any sample size. In
approximately 95% of the samples the chi-square statistic indicated that the

invariant factor model fitted the data even though this was not true.

Table 4

Percentage of samples with p < .05 when p=1 under Model B (Statistical power)

N 1, 5Vvs.7 ,5Vvs 1 1,5vs15
50 5.9 5.7 6.3
100 5.4 5.5 5.3
200 5 5 5.1
500 4.9 5.1 5.2

1000 5 5.3 5
5000 4.8 4.9 5.3
20000 4.8 5.3 5.2
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Unique variance estimates for Z

Unexpected results were obtained regarding the values of the Z unique
variances. As can be observed in Table 5, a substantial percentage of negative Z
unique variances were obtained under models A and B. However, this proportion
was larger when the invariant factor model was fitted to the data generated under
model B than when it was fitted to the data generated under model A.

Not only the percentage of samples with negative unique variances was
different between models A and B but also the impact of sample size in each
model was different. While in model A the percentage of negative Z unique
variances decreased as sample size increased, in model B it increased.

It is also interesting to note that in model A the percentage of negative Z
unique variances did not change as a function of the values in ;. It should be
recalled that under model A three different values of T, were manipulated: .5, 1
and 1.5. The percentage of negative unique variances for a specific sample size
was the same in the three values of t,. For example, when the sample size was of
100 the percentage of samples with negative Z unique variances was 21% in the
three values of 1,.

In model B the percentage of negative Z unique variances increased as the
difference in the latent intercepts increased; when the difference between the
values of T, was .2, more than 60% of the samples had negative Z unique

variances; the percentage of negative Z unique variances increased to more than
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90% when the difference in the Z latent intercepts increased to .5; by the time the

difference in the latent intercepts was 1 all the Z unique variances were negative.

Table 5

Percentage of samples with Z negative unigque variances when p=1

Data generated for model A Data generated for model B
" =5 1,=1 1=15 15vs.7 1,5vsl TZfSVS
50 24.7 25.2 25.1 59.4 91.2 99.9
100 20.8 21.1 20.8 66.2 97.8 100
200 13.7 14.1 13.5 73.3 99.8 100
500 4.50 4.40 4.40 83.1 100 100
1000 0.7 0.7 0.8 91.9 100 100
5000 0 0 0 99.9 100 100
20000 0 0 0 100 100 100

Origin of the negative Z unigue variance: sample estimates

In order to explain the large percentage of samples with negative Z unique
variances under model B, the distribution of the sample estimates was examined.
It was found that the population differences in the Z latent intercepts caused a
series of distortions in the sample estimates that led to the negative unique

variances.
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From equation 6 it can be seen that the Z latent intercept has a direct
impact in the expected value of Z, so the distortions began with the parameter
estimates that affect the expected values: the latent intercepts, the loadings, and
the factor mean. The first parameter affected was the Z latent intercept in group 2,
with sample estimates smaller than the population values. The underestimation of
the Z latent intercept in group 2 caused the inflation of the factor mean in group 2,
which in turn caused an underestimation in the Y loading.

The covariance structure was also affected due to violations of
measurement invariance. In equation 7 it can be seen that the Y loading affects the
variance of Y and the covariance of Y and Z. As a consequence of the
underestimation of the Y loading, the sample estimates of the factor variance and
the Y unique variance were inflated. Finally, the inflated values of the factor
variance produced an underestimation of the Z unique variances.

Figure 2 shows the chain reaction that started with the population
differences in the Z latent intercepts and ended up with the Z negative unique
variances. In order to explain in detail the mechanism that led to the Z unique

variances, the distribution of the sample estimates affected are presented next.
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T, underestimated in group 2
K inflated values in group 2

Ay underestimated

¢ inflated values 0, inflated values

0, underestimated

Figure 2. Chain reaction of the alterations in the sample estimates began by the
differences in the Z latent intercepts when p=1.

Z latent intercepts t, . The three population values of the Z latent intercepts
used to generate the data under model A were: .5, 1 and 1.5 In Table 7 it is shown
that, when fitting the invariant factor model to model A, the sample estimates of
the Z latent intercepts were close to the parameter values. It is important to note
that the estimates of the Z latent intercepts for small sample sizes showed large
variability as indicated by the large standard errors.

In contrast, the data under model B were generated to have population
differences in the Z latent intercepts; in group 2 three different values of the Z
latent intercepts were studied: .7, 1 and 1.5; in group 1 the value of the Z latent
intercept was .5 in all conditions. As a consequence of fitting an invariant factor
model to data simulated under model B, the sample values of the Z latent

intercepts were forced to be the same. Table 6 shows that the sample estimates of
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the Z latent intercept in all conditions under model B are .5, which corresponds to

the true population value of t, in group 1.

Table 6

Average estimates of T, when p=1

Sample Size
Values of 1,
50 100 200 500 1000 5000 20000
491 497 5 5 5 5 5
5 (.116) (.083) (.06) (.038) (.027) (.012) (.006)
Model 992 997 1.00  .999  .999 1 1
A 1 (115) (.084) (.06) (.038) (.027) (.012) (.006)
1.49 15 1.5 1.5 1.5 1.5 1.5
L5 (117) (084) (06) (038) (027) (012) (.006)
493 497 501 501 5 5 5
SVs.7T (117) (.083) (.061) (.037) (.027) (.012) (.006)
Model 493 497 5 501 5 5 5
B ovsl (116) (.083) (.06) (.038) (.027) (.012) (.006)
5vs 492 5 499 5 5 5 5
15  (116) (.083) (.06) (.038) (.027) (.012) (.006)

Note. Standard errors are in parenthesis.

In order to understand these results it should be considered that the Z

latent intercept along with the Z loading and the factor mean directly affect the

group means of Z, as can be seen from equation 6. For identification purposes the

factor mean was fixed to zero and the Z loading was fixed to one in the first

group. As a consequence, the only parameter left to estimate that affects the mean

of Z in group 1 was the Z latent intercept. Since the factor mean was fixed to the
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population value of zero, the sample value of the Z latent intercept in group 1 was
the true population value of .5.

Under factorial invariance the Z latent intercept must be the same in both
groups, so the second group got the value of .5, which underestimates the true

population value.

Factor mean k,. As stated before, to identify the model in the CFA the
factor mean was fixed to zero in the first group and it was freely estimated on the
second group. The sample estimates of the factor mean are shown in Table 7.

Under model A, the values of k, correspond to .3, which is the true
population value of the factor mean in group 2. It is important to note the high
variability of estimated values in small sample sizes; as the sample size increased
the estimated values were more accurately measured as indicated by the decrease
in the standard errors. Under model B, the estimated values of the factor mean
increased as the population difference in the Z latent intercepts increased. For
example, it can be observed in Table 7 that the sample estimate of the factor mean
was 5 times larger than the value of the true population mean when the difference

in the Z latent intercepts was 1.
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Table 7

Average estimates of k, when p=1. Population value k,=.3

Sample Size
Values of 1,

50 100 200 500 1000 5000 20000

5 318 .305 301 3 3 3 3
' (.158) (.116) (.085) (.053) (.037) (.017) (.008)

Model 1 317 .305 301 301 301 3 3
A (.157) (.116) (.084) (.053) (.038) (.017) (.008)

15 319 305 3 3 3 3 3
' (.16)  (.117) (.084) (.054) (.038) (.017) (.008)

5vs 7 513 505 499 499 5 5 5
' © (.161) (.118) (.085) (.054) (.037) (.017) (.008)

Model 5 vs 1 815 .805 799 799 .8 .8 .8
B ' (.162) (.117) (.084) (.053) (.038) (.017) (.008)

5vs 1.314 1301 1.301 1.3 1.3 1.3 1.3
1.5 (.162) (.118) (.084) (.053) (.037) (.017) (.008)

Note. Standard errors are in parenthesis.

The increase in the estimates of the factor mean under model B can be

explained as a consequence of the underestimation of the Z latent intercept in

group 2. It should be recalled that under model B the mean of Z was bigger in

group 2 than in group 1 in all conditions due to population differences in the Z

latent intercepts and the factor mean. However, because of invariance constraints

the Z latent intercept was fixed to be equal in both groups, underestimating the

true population value in group 2. The Z loading was also fixed to be the same in

both groups. As a consequence, the only parameter that could reflect the
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population differences in means was the factor mean. To compensate for the
underestimation of the sample estimates of the Z latent intercept in group 2 the

sample values of the factor mean were larger than the true population values.

Y loading Ay. The sample estimates of the Y loading are shown in Table 8.
It can be observed that as the sample size increased the values of the Y loading got
closer to the population value of .6 and the standard errors became smaller when

the data was generated under model A.

Table 8

Average estimates of Ay when p=1. Population value A,=.6

Sample Size
Values of 1,

50 100 200 500 1000 5000 20000

765 .667 .622 .607 .604 .601 6

S (726) (446) (223) (114) (078) (034) (.017)
Model , 768 666 .62l 605 603 601 .6
A (738) (458) (21) (114) (076) (034) (.017)
s 763 668 623 606 603 6Ol .6
S (717) (431) (234) (114) (078) (034) (.017)
ey 394 364 358 350 36 36 36
SVST o o07)  (142) (101) (063) (044) (02)  (O1)
Model . .. 238 228 222 224 224 225 225
B (113) (087) (065) (041) (.029) (013) (006)

5vs .47 139 138 138 138 .138  .139
15  (071) (056) (041) (.026) (.019) (.008) (.004)

Note. Standard errors are in parenthesis.
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In contrast, the sample estimates of the Y loading under model B were
different from the population values, and this difference became larger as the
population difference in the Z latent intercepts increased.

To explain the small values of the Y loading it should be noticed that the
expected values of Y are determined by the Y loading, the Y latent intercept, and
the factor mean as shown in equation 6. Since the Y loading and the Y latent
intercept are the same in the two populations, the population differences in the
expected values of Y are due only to the factor means. However, as explained in
the previous section, the sample estimate of the factor mean in group 2 was
inflated because of the population differences in the Z latent intercepts. To
compensate for the large estimated values of the factor mean, the sample estimate
of the Y loading decreased as the population difference in the Z latent intercepts

increased.

Factor variance ®. The factor variance is a parameter that directly affects
the covariance structure as shown in equation 7. Table 9 shows the sample
estimates for the factor variances. For the data simulated under model A the
sample estimates of the factor variance got closer to the population value of .5 as
the sample size increased.

Under model B the sample estimates of the factor variance were larger
than the population value; as the population differences in the Z latent intercepts

increased, the estimate of the factor variance also increased. As the sample size
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increased, the factor variance decreased, however, the sample estimates remained

larger than the population value.

Table 9

Average estimates of ® when p=1. Population value ®=.5

Sample Size
Values of 1,

50 100 200 500 1000 5000 20000

707 621 047 511 .505 501 5

S (116) (749) (34) (108) (O07) (03) (.015)

Model 705 614 547 514 505 501 501

A (1.197) (.689) (.353) (.158) (.069) (.03) (.015)
L5 24 618 544 512 505 501 5

(131)  (79) (347) (108) (07) (03) (015)

5vs 1225 1094 944 865 846  .836  .834
7 (1.98) (1.355) (65) (19) (117) (.049) (.024)

Model 5vs 2002 1.747 1545 1389 1.359 1.337 1.334
B 1 (3.01) (2.011) (.97) (.323) (.194) (.082) (.04

5vs 321 2953 2473 2253 2209 2177 2.168
15 (4282) (3.328) (L.446) (527) (.332) (14) (.069)

Note. Standard errors are in parenthesis.

The inflation in the estimates of the factor variance under model B can be
explained as a consequence of the underestimation of the Y loading. The
covariance between Y and Z is determined by the Y loading, the Z loading, and the
factor variance. The Y loading was underestimated as explained before, and since

the Z loading was fixed to one in both groups the only parameter that could
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compensate for the small values of the Y loading was the factor variance. As a
consequence, the sample estimates of the factor variance increased as the

population differences in the Z latent intercepts increased.

Y unique variance 0y. The estimated values of 6y are shown in Table 10.
For the data generated under model A the values of the Y unique variance got
closer to the population value of .18, and the standard errors became smaller as
the sample size increased. In contrast, for the data generated under model B the
values of the Y unique variance became farther away from the population value as
the population differences in the Z latent intercepts increased.

The large values of the Y unique variance are due to the underestimation
of the Y loading. From equation 7 it can be shown that the parameters that
determine the variance of Y are the squared of the Y loading, the factor variance,
and the Y unique variance. The estimated values of the Y loading became even
smaller after being squared, so the inflation of the factor variance was not enough
to compensate for the underestimation of the Y loading. To compensate for the
small values of the squared Y loading, the estimates of the Y unique variance were

also inflated.
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Table 10

Average estimates of 6y when p=1. Population value 6,=.18

Sample Size
Values of 1,

50 100 200 500 1000 5000 20000

5 128 158 172 177 179 18 18
' (219) (.136) (.069) (.036) (.025) (.011) (.005)

Model 1 127 159 173 178 179 18 18
A (221) (.14) (.066) (.036) (.024) (.011) (.005)

15 128 158 A72 178 179 .18 .18
' (216) (13) (.073) (.036) (.025) (.011) (.005)

5vs 7 238 248 251 252 252 252 .252
' ©(073) (05) (.036) (.023) (.016) (.007) (.004)

Model 5 vs 1 283 .289 292 292 292 292 292
B ' (.054)  (.04) (.029) (.018) (.013) (.006) (.003)

5 Vs 310 315 317 318 .318 316 .318
1.5 (.05)  (.036) (.026) (.016) (.012) (.005) (.003)

Note. Standard errors are in parenthesis.

Z unique variances. In Table 11 it can be observed that no matter if the

data were generated under model A or B, on average all the Z unique variances

were negative for a sample size of 50. However, under model A as the sample

size increased the mean of the Z unique variances rapidly increased; with sample

sizes of 100 it became positive, and with a sample size of 500 the estimates were

very close to the population value of .21.

Under model B the mean of the Z unique variances became more negative

as the population difference in the Z latent intercepts increased. Although the Z
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unique variances increased with sample size, the mean remained negative in all

conditions under model B.

Table 11

Average estimates of 6, when p=1. Population value 6,=.21

Sample Size
Values of 1,

50 100 200 500 1000 5000 20000

5 -.013 .082 .16 198 204 .209 21
' (1.157) (.747) (.338) (.106) (.069) (.029) (.015)

Model 1 -.011 .088 .16 195 204 .209 21
A (1.193) (.685) (.352) (.146) (.067) (.029) (.015)

15 -.029 .084 163 196 204 .209 21
' (1.308) (.787) (.345) (.105) (.069) (.029) (.015)
5 Vs -.529 -391  -239 -156 -137 -126 -.124
T (1.974) (1.35) (.648) (.187) (.113) (.047) (.024)
Model 5vs -1.306 -1.045 -.837 -.68 -649 -627 -.624
B 1 (3.004) (2.006) (.964) (.318) (.191) (.08) (.039)
Svs -2514 -2.25 -1.766 -1544 -15 -1.467 -1.458
15  (4.274) (3.322) (1.442) (.521) (.329) (.138) (.068)

Note. Standard errors are in parenthesis.

The explanation of the negative values of the Z unique variance under

model B is concerned with the inflation in the estimates of the factor variance. It

should be noted that the variance of Z is determined by the squared Z loading, the

factor variance and the Z unique variance. Since the Z loading is fixed to one in

both groups, the only parameter that can compensate for the inflation in the factor
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variance was the Z unique variance, so its estimated values became smaller than
the population values.

The negative values in the Z unique variances under model A are due to
sampling error. In Tables 7, 8, and 9 it can be observed that at small sample sizes
the sample estimates have large standard errors. As a consequence of the high
variability in the estimates, in some samples the values were far from the true
population value, originating the chain reaction explained for model B. For
example, Table 9 shows that at small sample sizes the standard errors of the factor
variance are large, thus, in some samples the values of the factor variance are

noticeably inflated, which produced the underestimation of the Z unique variance.

Constraint in Z unique variance

The results from the one predictor case suggest that the low statistical
power of the model is related to the negative unique variance of Z. To investigate
this relationship, a set of simulations using the same population parameters as in
the previous simulations were run with the difference that the Z unique variance
was constrained to be a positive value.

The results for the Type | errors are shown in Table 12. It can be observed
that at small sample sizes the Type | errors are slightly higher than expected, but
as the sample size increase the Type | errors became closer to 5%. It should also
be noted that the Type | errors are very similar to the ones reported when the

unique variance was not constrained (Table 3).
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Table 12

Type | errors with Z unique variance constrained to be positive when p=1

N ,=5 7, =1 1,=15
50 6.6 6.5 6.9
100 5.8 59 5.8
200 5.6 55 5.2
500 5.2 5.1 4.9
1000 5 4.8 5
5000 4.9 4.8 4.7
20000 4.8 4.9 4.8

Regarding statistical power, Table 13 indicates that when the Z unique
variances are positive the chi-square fit statistic can detect violations to the
measurement invariant model. The power is high when the differences in the
latent intercepts are large (.5 vs 1.5): with only a sample size of 100 the power is
.97. However, when the difference in latent intercepts is only .2 it is necessary to

have a sample size of 5,000 to have statistical power of .8.
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Table 13

Statistical power with Z unique variance constrained to be positive when p=1

N T, 5Vs.7 ,5Vvs 1 1, 5Vvs 15
50 10.4 30.1 76.9
100 11.4 46.7 97.1
200 12.8 75.6 100
500 17.7 98.9 100

1000 25 100 100
5000 79.8 100 100
20000 100 100 100

From these results it is possible to say that the lack of power in the
previous simulations and the negative Z unique variances are closely related.
When the unique variance is not constrained, it adopts negative values making the
model fit the data; in contrast, when the unique variance is forced to be positive
the model no longer fits the data and the chi square fit statistic is able to detect it.
In other words, the lack of fit of the model can be detected with the chi-square fit
statistic or by the presence of Z negative unique variances. However, it is
important to note that if the negative unique variance is used as a way to detect
violations to the measurement invariant model, it provides higher power than the

chi square fit statistic. When comparing Table 5 and Table 13 it can be observed
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that higher power can be achieved when using negative unigque variances as

indicators of violations to factorial invariance.

Case 2, p=2
Type | errors

Table 14 shows that the results of Type I errors in the case of p=2 closely
match the results obtained in the case of p=1. In about 5% of the samples the chi-
square incorrectly rejected the hypothesis of factorial invariance. In other words,

the Type I errors are what would be expected at an alpha level of .05.

Table 14

Percentage of samples with p < .05 when p=2 under Model A (Type I errors)

N ;=5 1, =1 ;,=15
50 6.4 6.4 6.6
100 54 53 5.0
200 5.6 53 5.0
500 4.9 5.3 5.0
1000 4.8 5.2 5.1
5000 5.2 5.1 5.1
20000 5.3 5.1 5.1
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Statistical Power

The percentage of samples in each condition that correctly rejected the
hypothesis of factorial invariance is shown in Table 15. The results indicate that,
in contrast to the case of p=1, the model has enough power to detect violations of
factorial invariance. It can be observed that as the population differences in the Z;
latent intercepts increased and the sample size increased the power also increased.
When the difference in the Z; latent intercepts between the two populations was .2
the sample size needed to have power of .80 was 500. When the population
differences in the Z; latent intercepts increased to .5 a sample size of 100 was
enough to have power of .90; and a sample size of only 50 was enough to achieve

a power of .90 when the population differences in the Z; latent intercept was 1.

Table 15

Percentage of samples with p < .05 when p=2 under Model B (Statistical power)

N T, 5Vs.7 ,0Vs1 1,5vs1l5
50 14.4 56.1 89.7
100 23.3 89.9 99.8
200 44.4 99.8 100
500 89.3 100 100

1000 99.8 100 100
5000 100 100 100
20000 100 100 100
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Unique variance estimates for Z;

As shown in Table 16, negative Z; unigue variances were also observed in
the case of two predictors, but in a smaller proportion than in the case of one
predictor.

As in the case of p=1, a larger percent of Z; negative unique variances was
obtained under model B than under model A. Actually, the percentage of samples
with negative Z; unique variances was nearly zero under model A even in small

sample sizes.

Table 16

Percentage of negative unique variances for Z; when p=2

Data generated for model A Data generated for model B
" =5 1=1 1=15 1,5vs7 t5vsl 12-1?5"5
50 0.90 1.0 0.8 3.2 32.7 96.2
100 0.10 0.02 0.1 0.5 26.3 99.7
200 0 0 0 0 17.8 100
500 0 0 0 0 6.9 100
1000 0 0 0 0 1.9 100
5000 0 0 0 0 0 100
20000 0 0 0 0 0 100
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Another similarity with the case of p=1 is that in model B the percentage
of negative unique variances in Z; increased as the difference in the latent
intercepts increased. However, the effect of sample size was not the same in all
conditions in model B. When the population difference in the Z; latent intercept
was 1 the percentage of negative Z; unique variances increased as the sample size
increased, thus, replicating the results of the case of p=1. But when the population
differences in the Z; latent intercepts were .2 and 5, the percentage of negative
unique variances decreased with sample size. In fact, when the difference in the
Z; latent intercepts was .2, all the samples had positive Z; unique variances at a
sample size of 200; when the difference in the latent intercepts was .5, most of the

samples had positive Z; unique variances by a sample size of 1000.

Origin of the negative Z; unique variance: sample estimates

In order to explain the large percentage of samples with negative Z;
unique variances under model B, the distribution of the sample estimates was
examined. As in the case of p=1, a chain reaction that started with the population
differences in the Z; latent intercepts produced a series of distortions in the
sample estimates that led to the Z; negative unique variances.

The difference in the Z; latent intercepts first affected the sample estimates
related to the expected values: the Z; latent intercept in group 2 was
underestimated, causing inflated values of the factor mean in group 2, which in

turn caused an underestimation in the Y loading. Because of the underestimation
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in the Y loading, the Y unique variance and the factor variance were inflated,
producing the underestimation of the Z; unique variances. Figure 3 shows the

chain reaction for the case of p=2.

T, underestimated in group 2

K inflated values in group 2

Underestimation: A, 7, A, T,
¢ inflated values 0, inflated values
l 0,, inflated values

0,, underestimated

Figure 3. Chain reaction of the alterations in the sample estimates originated by
the differences in the Z latent intercepts when p=2.
In order to explain in detail the mechanism that led to the Z; unique

variances, the sample estimates affected are presented next.

Z latent intercepts t,;. In the case of p=2 the latent intercepts in Z; were
manipulated to have three different values under model A: .5, 1 and 1.5. In Table
17 it is shown that the estimated values of the Z; latent intercepts under model A
closely match the population values.

Under model B the groups were generated to have differences in the Z;

latent intercepts. When fitting the invariant factor model to model B, the Z; latent
45



intercepts were forced to be the same in both groups. As a result, the sample

estimates of the Z; latent intercepts were close to the population value of group 1,

as shown in Table 17.

Table 17

Average estimates of 1,1 for each condition when p=2.

Sample Size
Values of 11
50 100 200 500 1000 5000 20000
497 501 5 5 5 5 5
5 (.115) (.082) (.058) (.037) (.026) (.012) (.006)
Model 1 1 1 1 1 1 1
A 1 (116) (.082) (.057) (.037) (.026) (.012) (.006)
15 15 15 1501 15 1.5 1.5
L5 (116) (082) (057) (037) (026) (012) (.006)
533 533 533 534 534 534 534
SVs.7T  (123) (.087) (.061) (.039) (.028) (.012) (.006)
Model 53 528 525 524 523 523 523
B oVvsl (144) (103) (.072) (.045) (.032) (.015) (.007)
5vs A7 461 .46 46 46 460 46
15  (.135) (.084) (.058) (.036) (.026) (.011) (.006)

Note. Standard errors are in parenthesis.

The fact that the sample estimates of the Z; latent intercepts in group 2

were the parameter values of group 1, has the same explanation given in the case

of p=1. In order to identify the model in the CFA, the factor mean was fixed to

zero and the Z; loading was fixed to one in the first group, so the only parameter

that was free to estimate in group 1 that affects the expected value of Z; was the
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Z, latent intercept. Since the factor mean was fixed to the population value of
zero, the sample estimate of the Z; latent intercept in group 1 was the population
value of .5. The value of the latent intercept of Z; in group 2 was the same as in

group 1 because of invariance constraints.

Factor mean k,. As in the case of p=1 the factor mean was fixed to zero
in group 1 for identification purposes, and was freely estimated in group 2. The
sample estimates of the factor mean in group 2 are shown in Table 18.

The results closely resembled the findings of the case of p=1. The sample
estimates of the factor mean in group 2 under model A correspond to the
population value of .3. In contrast, the sample estimates under model B increased
as the population differences in the Z; latent intercepts increased; when the
population differences in the Z; latent intercepts were 1, the factor mean reached
values of 1.34, which is approximately 4 times larger than the population value.

The inflated values of the factor mean of group 2 under model B can be
explained as a consequence of the underestimation of the Z; latent intercept in
group 2. Under model B, the Z; means were different in each group due to the
differences in the Z; latent intercepts and in the factor means. However, because
the Z; latent intercepts were constrained to be the same in both groups the Z; mean
differences had to be attributed to the factors means. In other words, the factor
means increased to compensate for the underestimation of the Z; latent intercept

in group 2.
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Table 18

Average estimates of k; when p=2. Population value kj = .3

Sample Size
Values of 1,

50 100 200 500 1000 5000 20000

302 299 299 301 3 3 3
5 (159) (112) (079) (.05) (.035) (.016) (.008)

Model 302 299 .3 3 3 3 3
A 1 (161) (112) (079) (.05) (.035) (.016) (.008)

303 .301 3 3 3 3 3

15  (161) (112) (079) (05 (035) (016) (.008)

435 434 434 433 432 432 432
SVvs.7  (178) (.125) (.089) (.057) (.04) (.018) (.009)

738 (44 749 753 54 54 (54

Model 51 (232) (167) (118) (074) (053) (024) (012)

5ys 136 1377 1379 138 138 1379 1379
15  (211) (117) (078) (.049) (035) (.015) (.008)

Note. Standard errors are in parenthesis.

Y loading Ay. In Table 19 it can be observed that the sample estimates of
the Y loading matched the population value of .6 under model A. But, under
model B the sample estimates decreased as the population differences in the Z;
latent intercepts increased. It is important to note that the underestimation of the Y
loading was not as large as in the case of p=1.

From equation 6 it can be shown that the population differences in the
expected values of Y are due only to group differences in the factor means
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because there are no differences in the Y latent intercepts or Y loadings. However,
under model B the sample value of the factor mean in group 2 is inflated as a
consequence of the underestimation of the Z; latent intercept in group 2. To
compensate for the large values in the factor mean in group 2, the sample

estimates of the Y loading decreased.

Table 19

Average estimates of Ay when p=2. Population value A,=.6

Sample Size
Values of 1,

50 100 200 500 1000 5000 20000

604 601 601  .601 6 6 6
5 (101) (069) (048) (031) (.021) (.01) (.005)
Model 604 603 .601  .601 6 6 6
A 1 (102) (069) (.048) (031) (021) (01) (.005)
605 603  .602  .601 6 6 6

15  (102) (069) (049) (03) (021) (01) (.005)

559 556 555 556  .555  .555  .555
SVs.7 (103) (.07) (.049) (.031) (.022) (.01) (.005)

Model 438 433 432 431 430 43 43
B ovsl (121) (.084) (.06) (.038) (.027) (.012) (.006)

sys 23 225 225 225 225 226 .226
15 (089) (049) (032) (021) (014) (.007) (.003)

Note. Standard errors are in parenthesis.

Z, loading A,,. Table 20 shows that while under model A the sample

estimates of the Z, loading were the population value, the values were
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underestimated under model B. The sample estimates of the Z, loading in model B

decreased as the population difference in the Z; latent intercepts increased.

Table 20

Average estimates of A, when p=2. Population value A,,=.8

Sample Size
Values of 1,

50 100 200 500 1000 5000 20000

806  .801 .801  .801 8 8 8
S (134) (.091) (.063) (.04) (.028) (.013) (.006)
805 803  .802 8 8 8 8

Model
A 1 (136) (.092) (.064) (.04) (.028) (.013) (.006)
81 803  .803 8 8 8 8
15  (132) (09) (065) (.04) (.028) (.013) (.006)
744 741 74 74 74 740 74
SVs.7T  (134) (.092) (.065) (.041) (.029) (.013) (.006)
Model 583 578 576 574 573 573 573

g Bvsl (159) (111) (08) (05) (.035) (.016) (.008)

5y 309 302 .3 302 302 302 .302
15 (118) (065) (042) (027) (019) (.008) (.004)

Note. Standard errors are in parenthesis.

The underestimation of the Z, loading in model B has the same
explanation given above for the underestimation of the Y loading. Equation 6
shows that the population differences in the expected values of Z, are only due to
differences in the factor means since there are no population differences in the Z,

loading and in the Z; latent intercepts. However, the sample estimates of the factor
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mean of group 2 were inflated under model B; to compensate for the large values

of the factor mean the values of the Z; latent intercepts were underestimated.

Y latent intercept 1. In Table 21 it can be observed that under model A the
estimates of the Y latent intercept were .3, which corresponds to the population
value. In contrast, under model B the estimates became slightly lower than .3 as

the difference in the Z; latent intercepts increased.

Table 21

Average estimates of T, When p=2. Population value t,=.3

Sample Size
Values of 1,

50 100 200 500 1000 5000 20000

299 302 3 3 3 3 3
5 (077) (.055) (.038) (.024) (.017) (.008) (.004)
Model 3 .301 .3 3 .3 .3 3
A 1 (077) (055) (.038) (.025) (017) (.008) (.004)
3 3 3 3 3 3 3
L5 (078) (054) (038) (024) (017) (.008) (.004)
273 211 21 27 27 21 27

5vs.7 (076) (054) (038) (024) (017) (008) (.004)

238 233 23 229 228 228 228

Model = 5.1 (075) (052) (036) (023) (016) (007) (004)

5ys 237 235 235 235 235 235 234
15  (079) (056) (039) (025) (017) (.008) (.004)

Note. Standard errors are in parenthesis.
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From equation 6 it can be observed that the Y latent intercept along with
the Y loading and the factor mean affects the expected values of Y. In model B, to
compensate for the large values in the factor mean in group 2 there was a slight

decrease in the sample estimates of Y latent intercept.

Z, latent intercept t,,. The sample estimates of the Z, latent intercept are
shown in Table 22. For the data simulated under model A the mean of the sample
estimates was the population value of .6. Under model B, as the population
differences in the Z; latent intercept increased, the sample estimates of the Z,
latent intercept decreased to .5.

The same explanation provided for the decrease in the estimated values of
the Y latent intercept applies for the decrease in the Z; latent intercept. In equation
6 it can be observed that along with the Z, loading, another way to compensate for
the large value of the factor mean is through the Z; latent intercept. The decrease
in the sample estimates of the Z; latent intercept is a consequence of the inflated

values of the factor mean of group 2 under model B.
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Table 22

Average estimates of 1,2 When p=2. Population value 15, =.6

Sample Size
Values of 1,
50 100 200 500 1000 5000 20000
598  .602 6 6 6 6 6
5 (101) (.072) (.051) (.032) (.023) (.01) (.005)
A 1 (102) (.072) (.051) (.032) (.023) (.01) (.005)
6 6 6 6 6 6 6
L5 (102) (072) (051) (032) (023) (01) (.005)
562 562 .56 56 56 56 56
Svs.7 (1)  (07) (05 (032) (.022) (.01) (.005)
Model 516 512 507 505 505  .504 504
g 5vsl (098) (069) (048) (03) (021) (.009) (.005)
5ys 515 512 513 512 511 512 512
15  (103) (073) (051) (032) (023) (01) (.005)

Note. Standard errors are in parenthesis.

Factor variance ®. Table 23 shows the sample estimates of the factor

variances. Under model A the sample estimates of the factor variance were .5

which corresponds to the population value. However, under model B the sample

estimates of the factor variance increased as the population difference in the Z;

latent intercepts increased.

As in the case of p=1, the large values of the factor variance under model

B are explained as a consequence of the underestimation of the Y loading. The

covariance between the criterion and the predictors is determined by the loadings
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of the criterion, the loadings of the predictors, and the factor variance. As
explained before, the Z; loading was fixed to 1 in both groups for identification
purposes, and the Y and Z; loadings were underestimated; in order to compensate
for the underestimation of the loadings, the estimates of the factor variance were

inflated.

Table 23

Average estimates of ® when p=2. Population value ® =.5

Sample Size
Values of 1,

50 100 200 500 1000 5000 20000

497 499 499 5 501 5 5
5 (115) (082) (057) (.036) (025) (.011) (.006)
Model 495 497 499 5 5 5 5
A 1 (116) (081) (057) (.036) (026) (.012) (.006)
494 5 5 5 5 5 5

15  (115) (081) (058) (036) (025) (012) (.006)

535 .536 .538 .538 .538 539 .539

SV (122) (083) (058) (037) (026) (011) (006)

Model 658 651  .649 649 648 648  .648
g 5vsl (167) (104) (071) (044) (031) (.014) (.007)

sys L1115 1063 105 1041 1039 1036 1.036
15  (528) (209) (.134) (081) (.056) (.025) (.012)

Note. Standard errors are in parenthesis.

Y unique variance 6y. As shown in Table 24, the sample estimates of the Y

unique variance under model A were .18, which corresponds to the parameter
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value. In contrast, under model B as the difference in the Z; latent intercept
increased the Y unique variance got slightly larger reaching values of .29.
Equation 7 shows that the variance of Y is determined by the squared of
the Y loading, the factor variance, and the Y unique variance. Under model B, the
sample estimates of the factor variance and the Y unique variance increased to

compensate for small values of the Y loading.

Table 24

Average estimates of 6y when p=2. Population value 6,=.18

Sample Size
Values of 1,

50 100 200 500 1000 5000 20000

176 178 179 .18 18 18 18
(035) (.025) (.017) (.011) (.008) (.003) (.002)

Model 176 178 179 .18 18 18 18
A 1 (035) (.024) (.017) (011) (.008) (.003) (.002)

176 178 179 .18 18 18 18

15 (035 (.025) (.017) (.011) (.008) (.004) (.602)

184 186 .187  .187  .187  .188  .188
SVs.7  (036) (.026) (.018) (.011) (.008) (.004) (.002)

215 219 220 221 222 222 222

Model 5.1 (o46) (033) (024) (015 (O011) (005) (002)

sys 282 288 29 201 291 291 291
15 (047) (032) (022) (014) (01) (.004) (.002)

Note. Standard errors are in parenthesis.

Z, unique variance 6. In Table 25 the sample estimates of the unique

variances of Z, are shown. It can be observed that under model A the estimates
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were equal to the population value of .3. However, under model B the estimates

became larger as the difference in the Z; latent intercepts increased; the estimated

values of the Z, unique variance increased up to .5.

Table 25

Average estimates of 6,; when p=2. Population value 6,,=.3

Sample Size
Values of 1,
50 100 200 500 1000 5000 20000
293 297 3 299 3 3 3
D (06) (.042) (.03) (.019) (.013) (.006) (.003)
Model 293  .296 3 3 3 3 3
A 1 (06) (.042) (.03) (.019) (.013) (.006) (.003)
293 3 3 3 3 3 3
15 (06) (.042) (.03) (.02) (.013) (.006) (.003)
5ys 307 311 312 313 314 314 314
7 (.063) (.044) (.031) (.02) (.014) (.006) (.003)
Model 363 369 372 374 375 375 375
g Svsl (079) (057) (042) (026) (019) (008) (.004)
5ys 481 491 494 496 496 496 .49
15  (.081) (.053) (.033) (.024) (.016) (.008) (.004)

Note. Standard errors are in parenthesis.

The increase in the Z, unique variance has the same explanation as the

increase on the Y unique variance. The variance of Z, is determined by the Z,

loading squared, the factor variance, and the Z, unique variance. As previously

explained, the estimates of the Z, loading under model B are smaller than the
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population values; to compensate for this underestimation, the estimates of the

factor variance and the Z, unique variance increased.

Z; unique variances. As observed in Table 26, under model A the sample
estimates of the Z; unique variances were the population value of .21. In contrast,
under model B the sample estimates decreased as the population difference in the
Z; latent intercept increased, reaching negative values when the difference
between populations in the Z; latent intercepts was 1.

The parameters involved in the calculation of the Z; variance are the Z;
loading, the factor variance and the Z; unique variance. It is important to note that
the Z; loading is fixed to one in both groups, so it cannot shrink to compensate for
the inflation of the factor variance. As a consequence, the only parameter that
could compensate for the large values of the factor variance was the Z; unique
variance. The estimates of the Z; unique variance decreased to the point of getting
negative values.

It is important to note that standard errors of the estimates of Z; unique
variance decreased as the sample sizes increased. In the conditions in which the
population differences in the Z; latent intercept were .2 and .5, the average of the
Z; unique variance across samples was positive but with high variability in small
sample sizes, and as a consequence some samples had negative Z; unique
variances. As the sample size increased, the variability of the estimated values

across samples decreased so all the samples had positive values in the Z; unique
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variance. This explains the results in Table 14 showing that the percentage of

samples with negative values decreased as the sample size increased for these

conditions in model B.

Table 26

Average estimates of 6,1 when p=2. Population value 6,,=.21

Sample Size
Values of 1,

50 100 200 500 1000 5000 20000

199 205 208 209  .209 21 21
(.075) (.051) (.036) (.022) (.016) (.007) (.004)

Model 206 206  .208  .209 21 21 21
A 1 (.076) (.051) (.036) (.023) (.016) (.007) (.004)

201 206  .208  .209 21 21 21
15 (075) (.051) (.036) (.023) (.016) (.007) (.004)

5ys 175 181 184 186  .187  .187  .187
7 (.093) (.061) (.042) (.027) (.019) (.008)  (.004)

Model 056  .069 .075 .078  .079 .08 .08
g Svsl (069) (118) (084) (052) (037) (016) (.008)
5ys 464 -412  -397 -386 -382 -38  -379
15  (546) (.214) (.135) (.082) (.056) (.025) (.013)

Note. Standard errors are in parenthesis.

When the difference in the Z; latent intercepts was 1, the estimated values

of the Z; unique variance were negative with high variability in small sample

sizes, thus some samples had a positive estimate. However, as the sample size

increased, there was less variability in the estimates and as a consequence all the
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values were negative. This explains that the percentage of samples with Z;
negative unique variances increased as the sample size increased when the

difference in the Z; latent intercepts was 1, as shown in Table 16.
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Chapter 5
Discussion and Conclusions

Given the importance of measurement and predictive invariance in
psychological testing, some studies have been conducted to examine the
relationship between them (Millsap, 1995, 1997, 1998). The present research
focuses on the relationship between both forms of invariance in the presence of
group differences in the regression intercepts.

The common interpretation of group differences in regression intercepts is
that they represent differences in the population and do not represent
measurement bias (Humphreys, 1986; Linn, 1984). This interpretation is
supported by the fact that group differences in the regression intercepts can exist
under factorial invariance as shown by Birnbaum (1979). However, Millsap
(1998) showed that this interpretation is true only under some restricted
conditions, and proposed a method to test them. The method consists of fitting a
factorial invariant model with invariant factor variances to the data; if the model
fits the data then there is no evidence that the differences between groups are
reflecting measurement bias, and the regression intercept differences can be
explained as a consequence of having fallible measures in the predictor and
criterion, or as true population differences. In this case, the traditional
interpretation of the regression intercepts would be supported. However, if the
model fails to fit then, the differences between groups are due to measurement

bias.
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Since it cannot be assumed that group differences in the regression
intercepts are only reflecting population differences, and that the conditions for
this statement to hold have to be tested, it is important to determine the power to
detect violations to the model. The purpose of the present research was to study
Type | errors and the statistical power of the method proposed by Millsap (1998)
under different sample sizes when 1 or 2 predictors are available.

The results indicate that while Type | errors are within appropriate values
when p=1 and p=2, the statistical power of the model in the one predictor case
was almost non-existent regardless of the sample size. An interesting result when
fitting an invariant model to data created with group differences in the case of p=1
was the presence of a large percentage of negative unique variances in the
predictor that increased with sample size.

Based on the results of this research, it is proposed that with sample sizes
of at least 500 the negative unique variances in the predictor can be used as an
indication of violations to the invariant model with a power larger than .8 and
Type | errors of .05. This proposal is supported by the fact that when the unique
variance of the predictor is constrained to be a positive value, the power of the
chi-square fit statistic increases but it requires higher sample sizes to detect
violations to the invariant model than when using the negative unique variances as
indicators of bias. As a consequence, the negative unique variances are considered

a better way to detect violations to the invariant model.
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In order to explain the negative unique variances the distribution of all the
sample estimates were examined. It was found that the differences in the latent
intercepts started a chain reaction that affected the parameters in the mean and the
covariance structures, eventually leading to the negative unique variances in the
predictor.

In the two predictor case the statistical power of the model was highly
improved. With a sample size of 100 the power to detect violations to the
invariant model is .9 when the difference in the latent intercepts is .5. The
negative unique variance estimate in the predictor in this case is not as good an
indicator of measurement bias as the chi-square statistic test. For example, with a
difference of .2 in the latent intercepts and a sample size of 100 the negative
unique variance indicate violations to the model in only 5% of the samples while
the chi-square detect them in 89% of the samples.

The examples reported in Millsap (1998) are consistent with the findings
of the present research. In both of the examples with one predictor in which the
factorial invariant model was rejected, the model failed to achieve convergence
after 1000 iterations and negative unique variances were obtained for the
predictor. As expected from the results of the present research, with the large
sample sizes used these examples, 9748 and 68,766 individuals, the negative
unique variances are a good indicator of the violations to the factorial invariant
model. Also, when the reverse regression was conducted in these examples, that

is, when the roles of the criterion and the predictor were reversed, an inconsistent
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pattern was found: the group with the higher intercept in the forward regression
did not have the higher intercept in the reverse regression, indicating violations to
the factorial invariant model. These examples show that researchers have to be
aware of different indications of violations to invariance, and not focus
exclusively in the chi-square fit statistic.

It is important to note the limitations of the present study. The first
limitation is that the data were simulated under a normal distribution. The
behavior of the model with data that are not normal is still to be studied. A second
limitation is that the data were simulated with equal sample sizes in both groups.
Since it is often the case that the groups studied have different sample sizes,
future research could study its impact in the Type | errors and power of the
model; if having groups with different sample sizes changes the results of the
present study it would be important to determine how large the difference in the
sample sizes between the groups must be to start detecting changes in the results
reported in the present study.

One more limitation is that only a specific set of parameters values were
studied. The parameters values were picked to reflect values usually found in
literature, however, it would be worthwhile to study values that reflect other set of
communalities or reliabilities in the predictors and criterion.

An area of future research will deal with better ways of detecting
violations to measurement bias in the presence of differences in the regression

intercepts when there is only one predictor of interest and with sample sizes
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smaller than 500. Before such a method is found, the statistical power of the
model can be improved by increasing either the sample size or the number of
predictors. If the availability of individuals is limited, for example by the number
of employees in a company, it is still possible to increase the number of
predictors. Millsap (1998) explained that if the predictor is a multi-item
summative scale it is possible to disaggregate the tests into parcels of items, and
to use the score of each parcel as a different indicator. The model would then be
tested at the parcel level but conclusions can be drawn to the overall test. If the
test shows violations to the invariant model, these violations will show up at the
parcel level. In the same sense, if the model holds at the parcel level then the
model must also hold at the test level. However, it should be noted that if
measurement bias is found at the parcels level, it can be argued that the bias can
be canceled out if the whole test is analyzed. In this case, finding evidence of
violations to measurement invariance at the parcels level would lead to the wrong
conclusion that the whole test is biased, so special caution is advised when
conducting the test at the parcels level. The advantage of having more than one
predictor is that it is possible to detect the size and the source of measurement
bias. With only one predictor it is not possible to free parameters to identify the

source of the bias because the model would not be identified.

The results of the present study show that researchers have to be aware of

the importance of testing for measurement invariance before assuming that
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differences in regression intercepts are due to population differences. To ensure
that no measurement bias is present both the chi-square statistic and the unique
variances have to be examined. If negative unique variances are detected or if the
chi square statistic indicates that the factorial invariant model is rejected,
measurement bias is present in the data. The bias could be due to differences in
the latent intercepts, unique variances, or factor loadings; if the differences are in
the factor loadings then violations to the invariant regression slopes will be
present. On the other hand, if the model fits the data it can be concluded that there
is no evidence of measurement bias. The difference in the regression intercepts
can be interpreted as latent mean differences, or as a consequence of having

fallible measures for the criterion and predictors.
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