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ABSTRACT  

In the past, it has been assumed that measurement and predictive 

invariance are consistent so that if one form of invariance holds the other form 

should also hold. However, some studies have proven that both forms of 

invariance only hold under certain conditions such as factorial invariance and 

invariance in the common factor variances. The present research examined Type I 

errors and the statistical power of a method that detects violations to the factorial 

invariant model in the presence of group differences in regression intercepts, 

under different sample sizes and different number of predictors (one or two). Data 

were simulated under two models: in model A only differences in the factor 

means were allowed, while model B violated invariance. A factorial invariant 

model was fitted to the data. Type I errors were defined as the proportion of 

samples in which the hypothesis of invariance was incorrectly rejected, and 

statistical power was defined as the proportion of samples in which the hypothesis 

of factorial invariance was correctly rejected. In the case of one predictor, the 

results show that the chi-square statistic has low power to detect violations to the 

model. Unexpected and systematic results were obtained regarding the negative 

unique variance in the predictor. It is proposed that negative unique variance in 

the predictor can be used as indication of measurement bias instead of the chi-

square fit statistic with sample sizes of 500 or more. The results of the two 

predictor case show larger power. In both cases Type I errors were as expected. 

The implications of the results and some suggestions for increasing the power of 

the method are provided. 



  ii 

TABLE OF CONTENTS  

          Page  

LIST OF TABLES ...................................................................................................... iv  

LIST OF FIGURES .................................................................................................... vi  

CHAPTER 

1     INTRODUCTION .................................................................................  1  

2     BACKGROUND LITERATURE ........................................................  2  

Measurement Invariance .................................................................... 2 

      The common factor model ........................................................... 5 

Predictive Invariance .......................................................................... 7  

Relationship between measurement invariance  

and predictive invariance .................................................................... 8  

3     RESEARCH GOALS .........................................................................  15  

4     METHOD ............................................................................................  16 

Case 1: One predictor, p=1 ............................................................... 16  

      Data generation ........................................................................... 16 

      Analysis ....................................................................................... 19 

Case 2: two predictors, p=2 .............................................................. 20  

      Data generation ........................................................................... 20 

      Analysis ....................................................................................... 21 

5     RESULTS ............................................................................................  23  

Case 1, p=1 ........................................................................................ 23  

      Type I errors  ............................................................................... 23 



  iii 

CHAPTER             Page  

      Statistical power .......................................................................... 24 

      Unique variance estimates for Z ................................................. 25 

      Origin of the negative Z unique variance: sample estimates ..... 26 

      Constraint in the Z unique variance............................................ 38       

Case 2, p=2 ........................................................................................ 41  

      Type I errors  ............................................................................... 41 

      Statistical power .......................................................................... 42 

      Unique variance estimates for Z1  .............................................. 43 

      Origin of the negative Z unique variance: sample estimates ..... 44 

 

6     DISCUSSION AND CONCLUSIONS ..............................................  60  

REFERENCES  ........................................................................................................  66  



  iv 

LIST OF TABLES 

Table                         Page 

1.  Parameter values for the one predictor case .......................................................  16 

2.  Parameter values for the one predictor case  ......................................................  21 

3.  Percentage of samples with p < .05 when p=1  

  under Model A (Type I errors)  .......................................................................  23 

4.  Percentage of samples with p < .05 when p=1  

  under Model B (Statistical power)  .................................................................  24 

5.  Percentage of samples with Z negative unique  

  variances when p = 1 .......................................................................................  26 

6.  Average estimates of τz when p = 1 .....................................................................  29 

7.  Average estimates of κ2 when p = 1. Population value κ2=.3 ............................. 31 

8.  Average estimates of λy when p = 1. Population value λy=.6   ...........................  32 

9.  Average estimates of Φ when p = 1. Population value Φ=.5  ............................  34 

10. Average estimates of θy when p = 1. Population value θy=.18   .......................  36 

11. Average estimates of θz when p = 1. Population value θz=.21   ...........................  37 

12. Type I errors with Z unique variance constrained  

  to be positive when p=1 ..................................................................................  39 

13. Statistical power with the Z unique variance constrained  

  to be positive when p = 1 ................................................................................  40 

14. Percentage of samples with p < .05 when p=2 

  under Model A (Type I errors) ........................................................................  41 

  



  v 

Table                         Page 

15. Percentage of samples with p < .05 when p=2  

  under Model B when p=2 (Statistical power) .................................................  42 

16. Percentage of negative unique variances for Z1 when p=2 ................................  43 

17. Average estimates of τz1 when p=2 ....................................................................  46 

18. Average estimates of κj when p=2. Population value κj = .3  ............................  48 

19. Average estimates of λy when p=2. Population value λy=.6  .............................  49 

20. Average estimates of λz2 when p=2. Population value λz2=.8   .........................  50 

21. Average estimates of τy when p=2. Population value τy=.3   ................................  51 

22. Average estimates of τz2 when p=2. Population value τz2 =.6  ..........................  53 

23. Average estimate of Φ when p=2. Population value Φ = .5  .............................  54 

24. Average estimate of θy when p=2. Population value θy=.18   ...........................  55 

25. Average estimate of θz2 when p=2. Population value θz2=.3  ............................  56 

26. Average estimate of θz1 when p=2. Population value θz1=.21 ..............................  58 



  vi 

LIST OF FIGURES 

Figure                         Page 

1.  Measurement invariant model with group  

 differences in the regression intercepts  ..........................................................  12 

2.  Chain reaction of the alterations in the sample estimates originated by the 

 differences in the Z latent intercepts when p=1 ..............................................  28 

3.  Chain reaction of the alterations in the sample estimates originated by the 

 differences in the Z latent intercepts when p=2. .............................................  45 



 

1 

Chapter 1 

Introduction 

Important decisions are made from the results of psychological tests, as in 

selecting people for a job, a graduate program, or a scholarship (Muchinsky, 

1993; Sacket, Schmitt, Elligson, & Kabin, 2001). Because of the impact of these 

decisions, it is fundamental that the tests used show no bias against the different 

groups examined. In other words, the tests must be invariant in their psychometric 

functioning across the groups tested. The groups are usually defined in terms of 

demographic variables like gender and ethnic background. In psychological 

testing, two types of invariance have been studied: measurement invariance and 

predictive invariance.  

Millsap (1998) proposed a confirmatory factor analytic model to test 

measurement and predictive invariance when group differences in regression 

intercepts exist. The model assumes full factorial invariance, and invariant 

common factor variances. If the model holds, group differences in regression 

intercepts can be explained in terms of differences in the common factor means. 

This model was tested in cases with one and two predictors with large sample 

sizes using real data.  

The purpose of the present research is to study Type I errors and the 

statistical power for tests of the confirmatory factor analytic model proposed by 

Millsap (1998). Type I error rates and power are examined in simulated data with 

different sample sizes and with one and two predictors. 
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Chapter 2 

Background Literature 

Measurement invariance 

Measuring individuals is a fundamental process when it is of interest to 

know their levels in a variable of interest, such as academic performance, 

personality, or attitudes. The variables of interest are usually latent, unobservable 

constructs that are assumed to cause the observed measures.  

In order to make conclusions about the individuals, the test used must 

function equivalently across the groups studied; otherwise, the results of the tests 

have ambiguous interpretations (Borsboom, 2004). It is said that a test is 

measurement invariant if persons from different populations with identical values 

on the latent variables W of interest, have the same probability of obtaining a 

particular raw score at the item level or at the test level (Drasgow & Kanfer, 1985; 

Mellenbergh, 1989; Millsap, 2007).  

Suppose that X = (Y, Z) is a (p + 1) x 1 vector of observable random 

variables, where Y is a single criterion variable and Z is a set of p predictor 

variables. Further suppose that r latent variables underlie X, such that W is a r x 1 

vector of latent scores with r < p + 1.  A classic and well known example can be 

found in the prediction of job performance. In a common factor model where a 

battery of cognitive tests is used as predictors and a measure of job performance is 

used as a criterion, it is often hypothesized that an underlying common factor, 
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Spearman’s “g”, would predominate (Gottfredson, 1988; Hunter, 1986; Ree, 

Earles & Teachout, 1994).  

We will assume that two populations are being measured on X and that V 

is a variable that defines group membership. Usually the populations are defined 

in terms of demographic variables such as sex and ethnicity.  In the employment 

example described before, differences between Whites and African-Americans in 

the prediction of job performance have been examined by comparing regression 

lines across groups. Measurement invariance means that there are no group 

differences in the relationship of a set of observed variables X to their underlying 

latent variables W. In the research addressing differences between White and 

African-Americans in the prediction of job performance some investigators have 

argued that any group differences observed are due to group differences in “g” 

(Jensen, 1992). 

More formally, the definition of measurement invariance states that the 

relationship between X and W is independent of group membership 

(Mellenbergh, 1989; Millsap 1995, 2007), such that: 

 

Pr(X|W = w, V = v) = Pr(X|W = w)    (1) 

 

The above equation means that two persons with the same value in the 

latent variable W will have the same probability of achieving a particular score on 

X regardless of their group membership. If equation (1) does not hold then 
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measurement bias is said to exist. Under measurement bias two individuals with 

the same value in W will have probabilities of achieving scores on X that depend 

on group membership.  

Different latent variable models have been proposed that describe the 

relationship between W and X, and hence, different approaches to testing 

measurement invariance exist. One of the models most widely used to describe 

the relationship between W and X is the common factor model. In this model X 

fits a common factor model with W being the common factors; factorial 

invariance is a form of measurement invariance in this model (Millsap, 1998).  

Item response theory (IRT) provides another way to describe the 

relationship between W and X. IRT consist of a set of models that relates the 

probability of an item response to an examinee value on a latent variable, through 

a nonlinear monotonic function. Violations of measurement invariance in IRT are 

termed differential functioning in general; differential item functioning (DIF) 

refers to the study of invariance at the item level, and differential test functioning 

(DTF) is the study of measurement invariance at the test level (Stark, 

Chernyshenko, & Drasgow, 2006). In some cases, DIF is used to describe group 

differences in item properties that are evaluated without reference to a specific 

latent variable model (Holland & Wainer, 1993). 

The focus of the present research was in measurement invariance under 

the common factor model.  
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The Common Factor Model 

The most widely used model in studies of measurement invariance is the 

common factor model. In the case in which there is only one factor the model can 

be expressed as: 

 

X i = τi + ΛiWi + ui      (2) 

 

where Λi is a (p + 1) x 1 factor pattern matrix for group i, Wi is a scalar common 

factor score, τi is a (p + 1) x 1 latent intercept vector, ui is the (p + 1) x 1 vector of 

unique factor scores. 

If X = (Y, Z), the factor pattern and the latent intercepts can be partitioned 

as: 

zi

yi

i





      
zi

yi

i



       (3) 

 

In this partitioning Λzi is a p x1 vector of factor loadings of the predictors on the 

common factor, λyi is a scalar containing the loading of the criterion on the 

common factor, τzi is a p x 1 latent intercepts of the predictors, and τyi is a scalar 

latent intercept of the criterion.  

Under the factor model, the expected value of Xi given Wi and the 

conditional covariance of Xi, can be expressed as: 

 

E(X|W = w) = τi + Λiw    Cov(X|W = w) = Θi  (4) 
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here Θi  is a diagonal matrix of unique variances for group i. For measurement 

invariance to exist, no differences between the groups should be found in τi, Λi, 

and Θi. Invariance in the three parameters is known as complete factorial 

invariance or strict factorial invariance. Weaker forms of invariance are also 

possible; when invariance only holds for Λ, this condition is called factor pattern 

invariance, metric invariance or weak factorial invariance; scalar or strong 

factorial invariance refers to invariance in Λ and τi (Millsap, 2007; Widaman & 

Reise, 1997).  

The parameters of the distribution of Wi are: 

 

E(Wi) = κi    Var(Wi) = υi     (5) 

 

For measurement invariance to hold, it is not necessary to specify 

invariance in the parameters κi and υi. Under factorial invariance the populations 

of interest can differ in the distributions of W, and these differences are going to 

be reflected in the unconditional structure of Xi:  

 

E(X) = τi + Λiκi (6) 

Cov(X) = ΛiυiΛi` + Θi (7) 
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If measurement invariance holds, the differences found in the observed 

variables X, are due to differences in the common factor W and not due to 

measurement bias. 

 

Predictive invariance 

In contrast to measurement invariance, predictive invariance is concerned 

with group differences in the relationship that holds only among observed 

measures.  Cleary (1968) defined predictive bias as systematic errors in the 

prediction of a criterion for one of the groups studied. If there is predictive bias, 

the use of a single regression equation for describing two groups would lead to 

under-prediction for one group and over-prediction in the other.  

Predictive invariance is more easily studied than measurement invariance 

because no latent variable model is needed. One of the domains in which this 

form of invariance has been of interest is in educational measurement. For 

example, Bridgeman and Lewis (1996) studied gender differences in the 

prediction of grades in college mathematics courses from SAT-M and from high 

school grade point average. In another study, Cleary (1968) studied differences in 

the prediction of college grades between black and white students.  

In the present study focus is given to predictive invariance when the 

relationship among the measured variables is linear. A general definition for 

predictive invariance can be stated as: 
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Pr(Y|Z= z, V=v) = Pr(Y|Z= z) (9) 

 

Where Y is the criterion and Z is a set of predictor variables. If the 

relationship between Y and Z is linear then: 

 

E(Y|Z = z) = B0i + B1iz (10) 

Var(Y|Z = z) = σ
2

i (11) 

 

where σ
2

i is the residual variance in the ith group, B0i is the regression intercept in 

the ith group, and B1i is a p x 1 vector of regression slopes for the ith group. The 

definition of predictive invariance implies that the distribution of Y given Z is 

independent of group membership. Under predictive invariance, two individuals 

from different groups that have the same score in Z will have the same predicted 

score in Y. 

Predictive invariance implies that the parameters B0, B1, and σ
2
 are 

invariant in the linear case. Slope invariance denotes invariance in B1 and 

regression intercept invariance refers to invariance in B0 among the groups.  

 

Relationship between measurement invariance and predictive invariance 

Ideally, tests used for prediction will not only show predictive invariance 

but also measurement invariance. The question about the relationship between 
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both types of invariance emerges. If a test shows one type of invariance would the 

other type of invariance also hold?  

As stated earlier, predictive invariance is more easily studied than 

measurement invariance because the former is only concerned with the 

relationships among observed variables and not with latent variables. So, if both 

types of invariance are related could one only study predictive invariance and still 

make conclusions about measurement invariance? Researchers usually assume 

that if predictive invariance holds the test is free of any bias (Sackett & Wilk, 

1994).  

There have been few attempts to study the conditions under which 

measurement and predictive invariance are consistent. In these studies the 

relationship between measurement invariance and predictive invariance has been 

examined mostly for situations in which X fits a common factor model with one 

latent variable r = 1, and for linear relationships among Y and Z. 

For example, Millsap (1995, 1997) studied the relationship between 

factorial and slope invariance, and showed that the only scenario in which strict 

factorial invariance and slope invariance will both hold is when the groups have 

identical common factor variances. Also, the author examined the relationship 

between pattern and slope invariance and, as in the case of factorial and slope 

invariance, the conditions required for both forms of invariance to hold are 

stringent and often violated.  
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 The relationship among regression intercept invariance and measurement 

invariance has also been studied (Millsap, 1998).  Studies have shown that even 

when measurement invariance holds for a given data set, it is still possible that 

groups differ in their regression intercepts as a consequence of having fallible 

measures (Birnbaum, 1979; Linn, 1984; Millsap, 1998). One interpretation of this 

result is that the regression intercept differences are not representing measurement 

bias, but that they represent actual differences in the trait measured among the 

groups studied (Humphreys, 1986).  

Millsap (1998) gave two theorems under which the regression intercept 

differences are not due to measurement bias. The conditions for these theorems 

are that slope invariance and factorial invariance must hold. Under these 

conditions the only parameter that can differ among the groups is κi, the factor 

mean. The theorems state that κi > κ2 if and only if B01 > B02. These theorems 

imply that under factorial invariance and slope invariance, the direction of the 

regression intercept differences must be the same as the direction in the difference 

in the common factor means. In other words, if measurement invariance holds, the 

group that has the larger factor means in Z and Y must also have the larger 

intercept in the regression for predicting Y.  

One case in which the invariant common factor model will not hold is 

when one group has a larger mean in Z but a different group has the larger mean 

in Y, suggesting that the differences on the groups cannot be explained in terms of 

differences in common factor means. Another case in which the invariant 
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common factor model will not hold is when one group has larger common factor 

means in both Z and Y, and the regression for predicting Y shows that the larger 

intercept corresponds to the group with the larger mean. However, when 

conducting a reverse regression, that is, changing the roles of the predictor and the 

criterion so that now Z is being predicted from Y, the group with the larger 

common factor mean gets the smaller regression intercept (Birnbaum, 1979).  If 

the invariant common factor model holds, the group with the larger means would 

have the larger intercepts in both forward and reverse regressions. 

Millsap (1998) proposed a method for testing the conditions of the 

theorem using confirmatory factor analysis. The model has the requirements: 

1) Factorial invariance, that is, invariance in the latent intercepts, the 

factor loadings, and the unique variances.  

2) Invariance in the common factor variances υ must also hold under 

slope invariance, as established by the duality theorems (Millsap, 

1995; 1997).  

 

As a consequence of these requirements, slope invariance will hold. Slope 

invariance must hold since the study of intercept invariance is only meaningful 

under slope invariance. 

The graphical representations of the models for the one and two predictor 

cases are given in Figure 1. The factor means are shadowed to indicate that those 

are the only parameters that are allowed to differ across the groups in the model. 
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One predictor case 

 

Two predictor case 

 
 

 

Figure 1. Measurement invariant models with group differences in the regression 

intercepts for one and two predictors. In each of the groups the latent variable W 

underlies the predictors Z and the criterion Y; all the parameters are restricted to 

be the same between groups except for the factor means κ.  
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The model also needs identification constraints such as fixing a predictor 

loading to one and fixing the factor mean to zero. The degrees of freedom for this 

model are p (p + 2).  

Some real examples for testing the model using large sample sizes in the 

case of one predictor were provided in the study of Millsap (1998). In the first 

example, data from 12,424 examinees were analyzed. In this example it was 

shown that when measurement invariance holds, the group with the larger means 

in Z and Y also had the larger regression intercept in the forward and reverse 

regression.  

In the second example data from 9,748 examinees were used to illustrate a 

case in which the invariant factor model did not fit the data. An inconsistent 

pattern with the invariant common factor model was found in the factor means; 

the group with the larger mean in Z had the smaller mean in Y. As a consequence, 

the group with the larger regression intercept in the forward regression was 

different from the group with the larger regression intercept in the reverse 

regression. 

The third example with data from 68,766 examinees showed a case in 

which the invariant common factor model failed to fit the data even when the 

observed means were consistent with the model. The group with the larger mean 

in Z also had the larger mean in Y, however, the group with the larger intercept in 

the forward regression had the smaller intercept in the reverse regression.  
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It is important to note that in the examples just described only one 

predictor was studied. When the model did not fit the data there were no 

alternative models that could be tested. If the model failed to fit it was not 

possible to investigate the source of lack of fit because relaxing the invariance 

constraints would lead to identification problems. However, in the case of p = 2, a 

weaker model that relaxes constraints in the latent intercepts could be tested as 

shown in the next example. 

The final example reported by Millsap (1998) was for the case of two 

predictors. The invariant common factor model failed to fit the data from 38,315 

examinees. Having more than one predictor allows the possibility to relax some 

constraints to further examine the source of the violation to invariance. However, 

it should be noted that if the constraint in the invariance of the loadings is relaxed, 

it may lead to violations of slope invariance which complicates the interpretation 

of the intercepts. In this case, the only constraint that can be relaxed is invariance 

in the latent intercepts because it does not affect slope invariance. A model that 

relaxed the constraints of invariant latent intercepts was tested and showed 

adequate fit to the data.  

In all of these examples, large sample sizes were used. The question about 

the power of the model to detect violations of measurement invariance remains in 

cases with small sample sizes. In the case with one predictor, it is expected that 

the low degrees of freedom and small sample sizes will produce loss of power 

(MacCallum, Browne & Sugawara, 1996).  
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Chapter 3 

Research goals 

A model to test factorial invariance in the presence of group differences in 

the regression intercepts was proposed and it was shown to be effective with low 

degrees of freedom and large sample sizes (Millsap, 1998). However, in many 

practical settings only small samples sizes (n=200) are available, and usually there 

is only one predictor of interest or there is only one predictor available.  

The goal of the present research was to examine Type 1 errors and the 

statistical power of tests of fit for the model in cases with only one or two 

predictors, and different sample sizes. It was expected that the low degrees of 

freedom in the case of one predictor (p = 1) and the small sample sizes produce 

low power to detect violations of the invariant factor model. Also, it was expected 

that as the sample size or the number of predictors increase, the statistical power 

improves (MacCallum, Browne, & Sugawara, 1996). 
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Chapter 4 

Method 

Case 1. One predictor, p = 1  

Data generation 

The data were generated in Mplus version 5.1 using Monte Carlo 

simulations with 10,000 replications per condition. Data for two independent 

groups, each with one predictor and one criterion, were generated following a 

multivariate normal distribution.  

Two different models were used to simulate the data. Model A consisted 

of an invariant factor model where the only parameter that differed between 

groups was the latent mean κ. Because measurement invariance holds in these 

data sets they were used as the comparison conditions. Under model B, not only 

the factor mean κ was different between groups but also the latent intercept for 

predictor Z, generating violations to measurement invariance. Both models, A and 

B, led to group differences in the regression intercepts.  

Table 1 shows the values of the parameters shared by models A and B. it 

can be observed that the only values different across groups are the factor means. 

These parameter values were selected to reflect reliability values usually found in 

real data. In the common factor model the reliability of a variable is defined as the 

sum of the communality of the variable and the systematic variance specific to the 

variable. The communality for the criterion Y is .5, and for the predictor Z is .7. 
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So, the reliability of the variables would be expected to be higher than the 

communality values.  

 

Table 1 

Parameter values for the one predictor case 

 

Parameter Group 1 Group 2 

κj 0 .3 

Φ .5 .5 

τy .3 .3 

λz 1 1 

λy .6 .6 

θz .21 .21 

θy .18 .18 

 

 

The variables manipulated in the simulations were the values of τz in 

model A, group difference in τz in model B, and the sample size:  

a) Values of τz in model A. The data generated under model A had no 

group differences in τz. Three τz values were manipulated: .5, 1, and 

1.5.  This manipulation was important to examine if the Z latent 

intercepts were accurately estimated in the samples regardless of the 

population values.  
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b) Values of τz in model B. Under model B the data were generated 

assuming group differences in τz. The value of τz in group 1 was .5 in 

all conditions, while the values in group 2 were .7, 1 or 1.5, creating 

group differences in τz of 2, .5 and 1. Since the standard deviation of Z 

is .84 the difference in the latent intercepts represent a small (.24), 

medium (.6) and large (1.19) effect sizes following Cohen’s d 

criterion.  

The different values of τz created group differences in the mean of Z, 

as calculated from equation 6. In group 1 the values of τz were.5 in all 

conditions under model B, so the mean of Z was always .5. On the 

other hand, the mean of Z in group 2 changed depending of the value 

of τz; the means of Z were 1, 1.3, and 1.8 for τz values of .7, 1, and 1.5 

respectively. Thus, the Z mean differences between groups were .5, .8, 

and 1.3.  

The ratios of the group differences in τz to the group differences in the 

Z means are .4, .625, and .77.  Any values of the latent intercepts that 

maintained these ratios could have been selected.  

c) Sample size. The sample sizes used were 50, 100, 200, 500, 1000, 

5000, and 20,000.  
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Analysis  

An invariant factor model was fitted to the data sets generated under 

model A and under model B using a confirmatory factor analysis. As indicated 

before, under the invariant model the latent intercepts, the factor loadings, and the 

unique variances were constrained to be invariant in the two groups. Additionally, 

the factor variances were constrained to be the same in both groups. Thus, the 

only parameter that was allowed to differ between the groups was the factor 

mean.  

For identification purposes, under group 1 the factor loading of Z was 

fixed to 1 and the factor mean was fixed to 0.  

Fitting a factorial invariant model to the data generated under model A 

allowed examining Type 1 errors. Type 1 errors were determined by the 

percentage of samples in which the chi-square statistic incorrectly rejected the 

hypothesis that the invariant model was the true model. On the other hand, fitting 

a factorial invariant model to the data generated under model B allowed studying 

statistical power. Power was determined as the percentage of samples in which 

chi-square correctly rejected the hypothesis of invariance when in the data the Z 

latent intercepts were not invariant.  
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Case 2: p = 2  

Data generation 

Two independent groups, each with two predictors and one criterion, were 

simulated for case 2 following a multivariate normal distribution. Monte Carlo 

simulations with 10,000 replications were generated in Mplus version 5.1.  

The same models described in the case of p=1 were used. Under model A 

the latent intercepts for Z1 were modeled to be invariant using the values of Z in 

the case of p=1. Under model B the Z1 latent intercepts were manipulated as in Z 

in the case of p=1. The latent intercepts of the second predictor were generated to 

be invariant under models A and B.  

The sample sizes were, as in the case of p=1, 50, 100, 200, 500, 1000, 

5000, and 20000. Thus, a total of 42 conditions were studied in the case of p=2.  

Table 2 shows the values of the parameters in case 2; all the values are 

shared across groups except for the factor means. As in case 1 the values were 

selected to reflect values usually found in practice. The communalities for Z1 and 

Y are the same as in the case of p=1, and the communality for Z2 is .52. 
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Table 2 

Parameter values for the two predictors case 

Parameter Group 1 Group 2 

κj 0 .3 

Φ .5 .5 

τz2 .6 .6 

τy .3 .3 

λz1 1 1 

λz2 .8 .8 

λy .6 .6 

θz1 .21 .21 

θz2 .30 .30 

θy .18 .18 

 

Analysis  

An invariant factor model was fitted to the data sets generated under 

model A and under model B using a confirmatory factor analysis. The latent 

intercepts, the factor loadings, the unique variances, and the factor variances were 

invariant across groups. The only parameter that was allowed to differ between 

the groups was the factor mean.  

For identification purposes under group 1 the factor loading of Z1 was 

fixed to 1 and the factor mean was fixed to 0.  
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Statistical power was studied when fitting the invariant factor model to the 

data generated under model B, and Type I errors were studied when fitting the 

invariant factor model to the data generated under model A. 
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Chapter 4 

Results 

Case 1, p=1 

Type I errors 

Type 1 errors were studied when fitting the invariant factor model to the 

data generated under model A as the percentage of samples in which the chi-

square statistic incorrectly rejected the null hypothesis. The degrees of freedom 

for the model are 3 as calculated by p (p + 2), so the critical value for chi-square 

is 7.81. Type I errors are shown in Table 3. The results indicate that Type I errors 

are approximately what would be desirable at an alpha level of .05.  

 

Table 3 

Percentage of samples with p < .05 when p=1 under Model A (Type I errors) 

N τz = .5  τz. = 1 τz .= 1.5 

50 5.9 5.9 5.8 

100 5.6 5.5 5.8 

200 5 5.2 5.3 

500 5.2 5.2 5.1 

1000 5.3 4.9 5.3 

5000 5 5.1 4.9 

20000 5.4 5.1 5 
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Statistical Power 

Statistical power was examined when fitting an invariant factor model to 

data generated under model B as the percentage of samples in which the chi 

square correctly rejected the null hypothesis. The degrees of freedom for the 

model are 3, and the corresponding critical value of the chi square is 7.81. 

Table 4 shows the statistical power when p=1. The results indicate that the 

model has low power to reject the null hypothesis at any sample size. In 

approximately 95% of the samples the chi-square statistic indicated that the 

invariant factor model fitted the data even though this was not true.  

 

Table 4 

Percentage of samples with p < .05 when p=1 under Model B (Statistical power) 

N τz .5 vs .7 τz .5 vs 1 τz .5 vs 1.5 

50 5.9 5.7 6.3 

100 5.4 5.5 5.3 

200 5 5 5.1 

500 4.9 5.1 5.2 

1000 5 5.3 5 

5000 4.8 4.9 5.3 

20000 4.8 5.3 5.2 

 

  



 

25 

Unique variance estimates for Z 

Unexpected results were obtained regarding the values of the Z unique 

variances.  As can be observed in Table 5, a substantial percentage of negative Z 

unique variances were obtained under models A and B.  However, this proportion 

was larger when the invariant factor model was fitted to the data generated under 

model B than when it was fitted to the data generated under model A.  

Not only the percentage of samples with negative unique variances was 

different between models A and B but also the impact of sample size in each 

model was different. While in model A the percentage of negative Z unique 

variances decreased as sample size increased, in model B it increased.  

It is also interesting to note that in model A the percentage of negative Z 

unique variances did not change as a function of the values in τz. It should be 

recalled that under model A three different values of τz were manipulated: .5, 1 

and 1.5. The percentage of negative unique variances for a specific sample size 

was the same in the three values of τz. For example, when the sample size was of 

100 the percentage of samples with negative Z unique variances was 21% in the 

three values of τz.  

In model B the percentage of negative Z unique variances increased as the 

difference in the latent intercepts increased; when the difference between the 

values of τz was .2, more than 60% of the samples had negative Z unique 

variances; the percentage of negative Z unique variances increased to more than 
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90% when the difference in the Z latent intercepts increased to .5; by the time the 

difference in the latent intercepts was 1 all the Z unique variances were negative.  

 

Table 5 

Percentage of samples with Z negative unique variances when p=1 

N 

Data generated for model A Data generated for model B 

τz .= .5 τz .= 1 τz .= 1.5 τz .5 vs .7 τz .5 vs 1 
τz .5 vs 

1.5 

50 24.7 25.2 25.1 59.4 91.2 99.9 

100 20.8 21.1 20.8 66.2 97.8 100 

200 13.7 14.1 13.5 73.3 99.8 100 

500 4.50 4.40 4.40 83.1 100 100 

1000 0.7 0.7 0.8 91.9 100 100 

5000 0 0 0 99.9 100 100 

20000 0 0 0 100 100 100 

 

Origin of the negative Z unique variance: sample estimates 

In order to explain the large percentage of samples with negative Z unique 

variances under model B, the distribution of the sample estimates was examined. 

It was found that the population differences in the Z latent intercepts caused a 

series of distortions in the sample estimates that led to the negative unique 

variances.  



 

27 

From equation 6 it can be seen that the Z latent intercept has a direct 

impact in the expected value of Z, so the distortions began with the parameter 

estimates that affect the expected values: the latent intercepts, the loadings, and 

the factor mean. The first parameter affected was the Z latent intercept in group 2, 

with sample estimates smaller than the population values. The underestimation of 

the Z latent intercept in group 2 caused the inflation of the factor mean in group 2, 

which in turn caused an underestimation in the Y loading.  

The covariance structure was also affected due to violations of 

measurement invariance. In equation 7 it can be seen that the Y loading affects the 

variance of Y and the covariance of Y and Z. As a consequence of the 

underestimation of the Y loading, the sample estimates of the factor variance and 

the Y unique variance were inflated. Finally, the inflated values of the factor 

variance produced an underestimation of the Z unique variances.  

Figure 2 shows the chain reaction that started with the population 

differences in the Z latent intercepts and ended up with the Z negative unique 

variances. In order to explain in detail the mechanism that led to the Z unique 

variances, the distribution of the sample estimates affected are presented next.  
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Figure 2. Chain reaction of the alterations in the sample estimates began by the 

differences in the Z latent intercepts when p=1.  

 

Z latent intercepts τz . The three population values of the Z latent intercepts 

used to generate the data under model A were: .5, 1 and 1.5 In Table 7 it is shown 

that, when fitting the invariant factor model to model A, the sample estimates of 

the Z latent intercepts were close to the parameter values. It is important to note 

that the estimates of the Z latent intercepts for small sample sizes showed large 

variability as indicated by the large standard errors.  

In contrast, the data under model B were generated to have population 

differences in the Z latent intercepts; in group 2 three different values of the Z 

latent intercepts were studied: .7, 1 and 1.5; in group 1 the value of the Z latent 

intercept was .5 in all conditions. As a consequence of fitting an invariant factor 

model to data simulated under model B, the sample values of the Z latent 

intercepts were forced to be the same. Table 6 shows that the sample estimates of 

τz underestimated in group 2

κ inflated values in group 2

λy underestimated 

υ inflated values θy inflated values

θz  underestimated
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the Z latent intercept in all conditions under model B are .5, which corresponds to 

the true population value of τz  in group 1.  

 

Table 6 

Average estimates of τz when p=1 

Values of τz 

Sample Size  

50 100 200 500 1000 5000 20000 

Model 

A 

.5 
.491 

(.116) 

.497 

(.083) 

.5 

(.06) 

.5 

(.038) 

.5 

(.027) 

.5 

(.012) 

.5 

(.006) 

1 
.992 

(.115) 

.997 

(.084) 

1.01 

(.06) 

.999 

(.038) 

.999 

(.027) 

1 

(.012) 

1 

(.006) 

1.5 
1.49 

(.117) 

1.5 

(.084) 

1.5 

(.06) 

1.5 

(.038) 

1.5 

(.027) 

1.5 

(.012) 

1.5 

(.006) 

Model 

B 

.5 vs .7 
.493 

(.117) 

.497 

(.083) 

.501 

(.061) 

.501 

(.037) 

.5 

(.027) 

.5 

(.012) 

.5 

(.006) 

.5 vs 1 
.493 

(.116) 

.497 

(.083) 

.5 

(.06) 

.501 

(.038) 

.5 

(.027) 

.5 

(.012) 

.5 

(.006) 

.5 vs 

1.5 

.492 

(.116) 

.5 

(.083) 

.499 

(.06) 

.5 

(.038) 

.5 

(.027) 

.5 

(.012) 

.5 

(.006) 

 

Note. Standard errors are in parenthesis. 

 

In order to understand these results it should be considered that the Z 

latent intercept along with the Z loading and the factor mean directly affect the 

group means of Z, as can be seen from equation 6. For identification purposes the 

factor mean was fixed to zero and the Z loading was fixed to one in the first 

group. As a consequence, the only parameter left to estimate that affects the mean 

of Z in group 1 was the Z latent intercept. Since the factor mean was fixed to the 
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population value of zero, the sample value of the Z latent intercept in group 1 was 

the true population value of .5.  

Under factorial invariance the Z latent intercept must be the same in both 

groups, so the second group got the value of .5, which underestimates the true 

population value.  

 

Factor mean κ2.  As stated before, to identify the model in the CFA the 

factor mean was fixed to zero in the first group and it was freely estimated on the 

second group. The sample estimates of the factor mean are shown in Table 7. 

Under model A, the values of κ2 correspond to .3, which is the true 

population value of the factor mean in group 2. It is important to note the high 

variability of estimated values in small sample sizes; as the sample size increased 

the estimated values were more accurately measured as indicated by the decrease 

in the standard errors.  Under model B, the estimated values of the factor mean 

increased as the population difference in the Z latent intercepts increased. For 

example, it can be observed in Table 7 that the sample estimate of the factor mean 

was 5 times larger than the value of the true population mean when the difference 

in the Z latent intercepts was 1.  
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Table 7 

Average estimates of κ2 when p=1. Population value κ2=.3  

Values of τz 

Sample Size  

50 100 200 500 1000 5000 20000 

Model 

A 

.5 
.318 

(.158) 

.305 

(.116) 

.301 

(.085) 

.3 

(.053) 

.3 

(.037) 

.3 

(.017) 

.3 

(.008) 

1 
.317 

(.157) 

.305 

(.116) 

.301 

(.084) 

.301 

(.053) 

.301 

(.038) 

.3 

(.017) 

.3 

(.008) 

1.5 
.319 

(.16) 

.305 

(.117) 

.3 

(.084) 

.3 

(.054) 

.3 

(.038) 

.3 

(.017) 

.3 

(.008) 

Model 

B 

.5 vs .7 
.513 

(.161) 

.505 

(.118) 

.499 

(.085) 

.499 

(.054) 

.5 

(.037) 

.5 

(.017) 

.5 

(.008) 

.5 vs 1 
.815 

(.162) 

.805 

(.117) 

.799 

(.084) 

.799 

(.053) 

.8 

(.038) 

.8 

(.017) 

.8 

(.008) 

.5 vs 

1.5 

1.314 

(.162) 

1.301 

(.118) 

1.301 

(.084) 

1.3 

(.053) 

1.3 

(.037) 

1.3 

(.017) 

1.3 

(.008) 

 

Note. Standard errors are in parenthesis.  

 

The increase in the estimates of the factor mean under model B can be 

explained as a consequence of the underestimation of the Z latent intercept in 

group 2. It should be recalled that under model B the mean of Z was bigger in 

group 2 than in group 1 in all conditions due to population differences in the Z 

latent intercepts and the factor mean. However, because of invariance constraints 

the Z latent intercept was fixed to be equal in both groups, underestimating the 

true population value in group 2. The Z loading was also fixed to be the same in 

both groups. As a consequence, the only parameter that could reflect the 



 

32 

population differences in means was the factor mean. To compensate for the 

underestimation of the sample estimates of the Z latent intercept in group 2 the 

sample values of the factor mean were larger than the true population values.  

 

Y loading λy. The sample estimates of the Y loading are shown in Table 8. 

It can be observed that as the sample size increased the values of the Y loading got 

closer to the population value of .6 and the standard errors became smaller when 

the data was generated under model A.  

 

Table 8 

Average estimates of λy when p=1. Population value λy=.6  

Values of τz 

Sample Size  

50 100 200 500 1000 5000 20000 

Model 

A 

.5 
.765 

(.726) 

.667 

(.446) 

.622 

(.223) 

.607 

(.114) 

.604 

(.078) 

.601 

(.034) 

.6 

(.017) 

1 
.768 

(.738) 

.666 

(.458) 

.621 

(.21) 

.605 

(.114) 

.603 

(.076) 

.601 

(.034) 

.6 

(.017) 

1.5 
.763 

(.717) 

.668 

(.431) 

.623 

(.234) 

.606 

(.114) 

.603 

(.078) 

.601 

(.034) 

.6 

(.017) 

Model 

B 

.5 vs .7 
.394 

(.207) 

.364 

(.142) 

.358 

(.101) 

.359 

(.063) 

.36 

(.044) 

.36 

(.02) 

.36 

(.01) 

.5 vs 1 
.238 

(.113) 

.228 

(.087) 

.222 

(.065) 

.224 

(.041) 

.224 

(.029) 

.225 

(.013) 

.225 

(.006) 

.5 vs 

1.5 

.147 

(.071) 

.139 

(.056) 

.138 

(.041) 

.138 

(.026) 

.138 

(.019) 

.138 

(.008) 

.139 

(.004) 

 

Note. Standard errors are in parenthesis.  
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In contrast, the sample estimates of the Y loading under model B were 

different from the population values, and this difference became larger as the 

population difference in the Z latent intercepts increased.  

To explain the small values of the Y loading it should be noticed that the 

expected values of Y are determined by the Y loading, the Y latent intercept, and 

the factor mean as shown in equation 6. Since the Y loading and the Y latent 

intercept are the same in the two populations, the population differences in the 

expected values of Y are due only to the factor means. However, as explained in 

the previous section, the sample estimate of the factor mean in group 2 was 

inflated because of the population differences in the Z latent intercepts. To 

compensate for the large estimated values of the factor mean, the sample estimate 

of the Y loading decreased as the population difference in the Z latent intercepts 

increased.  

 

Factor variance Φ. The factor variance is a parameter that directly affects 

the covariance structure as shown in equation 7. Table 9 shows the sample 

estimates for the factor variances. For the data simulated under model A the 

sample estimates of the factor variance got closer to the population value of .5 as 

the sample size increased.  

Under model B the sample estimates of the factor variance were larger 

than the population value; as the population differences in the Z latent intercepts 

increased, the estimate of the factor variance also increased. As the sample size 
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increased, the factor variance decreased, however, the sample estimates remained 

larger than the population value. 

 

Table 9 

Average estimates of Φ when p=1. Population value Φ=.5 

Values of τz 

Sample Size  

50 100 200 500 1000 5000 20000 

Model 

A 

.5 
.707 

(1.16) 

.621 

(.749) 

.547 

(.34) 

.511 

(.108) 

.505 

(.07) 

.501 

(.03) 

.5 

(.015) 

1 
.705 

(1.197) 

.614 

(.689) 

.547 

(.353) 

.514 

(.158) 

.505 

(.069) 

.501 

(.03) 

.501 

(.015) 

1.5 
.724 

(1.31) 

.618 

(.79) 

.544 

(.347) 

.512 

(.108) 

.505 

(.07) 

.501 

(.03) 

.5 

(.015) 

Model 

B 

.5 vs 

.7 

1.225 

(1.98) 

1.094 

(1.355) 

.944 

(.65) 

.865 

(.19) 

.846 

(.117) 

.836 

(.049) 

.834 

(.024) 

.5 vs 

1 

2.002 

(3.01) 

1.747 

(2.011) 

1.545 

(.97) 

1.389 

(.323) 

1.359 

(.194) 

1.337 

(.082) 

1.334 

(.04) 

.5 vs 

1.5 

3.21 

(4.282) 

2.953 

(3.328) 

2.473 

(1.446) 

2.253 

(.527) 

2.209 

(.332) 

2.177 

(.14) 

2.168 

(.069) 

 

Note. Standard errors are in parenthesis.  

 

The inflation in the estimates of the factor variance under model B can be 

explained as a consequence of the underestimation of the Y loading. The 

covariance between Y and Z is determined by the Y loading, the Z loading, and the 

factor variance. The Y loading was underestimated as explained before, and since 

the Z loading was fixed to one in both groups the only parameter that could 
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compensate for the small values of the Y loading was the factor variance. As a 

consequence, the sample estimates of the factor variance increased as the 

population differences in the Z latent intercepts increased.  

 

Y unique variance θy. The estimated values of θy are shown in Table 10. 

For the data generated under model A the values of the Y unique variance got 

closer to the population value of .18, and the standard errors became smaller as 

the sample size increased. In contrast, for the data generated under model B the 

values of the Y unique variance became farther away from the population value as 

the population differences in the Z latent intercepts increased.  

The large values of the Y unique variance are due to the underestimation 

of the Y loading. From equation 7 it can be shown that the parameters that 

determine the variance of Y are the squared of the Y loading, the factor variance, 

and the Y unique variance. The estimated values of the Y loading became even 

smaller after being squared, so the inflation of the factor variance was not enough 

to compensate for the underestimation of the Y loading. To compensate for the 

small values of the squared Y loading, the estimates of the Y unique variance were 

also inflated.  
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Table 10 

Average estimates of θy when p=1. Population value θy=.18  

Values of τz 

Sample Size  

50 100 200 500 1000 5000 20000 

Model 

A 

.5 
.128 

(.219) 

.158 

(.136) 

.172 

(.069) 

.177 

(.036) 

.179 

(.025) 

.18 

(.011) 

.18 

(.005) 

1 
.127 

(.221) 

.159 

(.14) 

.173 

(.066) 

.178 

(.036) 

.179 

(.024) 

.18 

(.011) 

.18 

(.005) 

1.5 
.128 

(.216) 

.158 

(.13) 

.172 

(.073) 

.178 

(.036) 

.179 

(.025) 

.18 

(.011) 

.18 

(.005) 

Model 

B 

.5 vs .7 
.238 

(.073) 

.248 

(.05) 

.251 

(.036) 

.252 

(.023) 

.252 

(.016) 

.252 

(.007) 

.252 

(.004) 

.5 vs 1 
.283 

(.054) 

.289 

(.04) 

.292 

(.029) 

.292 

(.018) 

.292 

(.013) 

.292 

(.006) 

.292 

(.003) 

.5 vs 

1.5 

.310 

(.05) 

.315 

(.036) 

.317 

(.026) 

.318 

(.016) 

.318 

(.012) 

.316 

(.005) 

.318 

(.003) 

 

Note. Standard errors are in parenthesis.  

 

Z unique variances.  In Table 11 it can be observed that no matter if the 

data were generated under model A or B, on average all the Z unique variances 

were negative for a sample size of 50. However, under model A as the sample 

size increased the mean of the Z unique variances rapidly increased; with sample 

sizes of 100 it became positive, and with a sample size of 500 the estimates were 

very close to the population value of .21.  

Under model B the mean of the Z unique variances became more negative 

as the population difference in the Z latent intercepts increased. Although the Z 
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unique variances increased with sample size, the mean remained negative in all 

conditions under model B. 

 

Table 11 

Average estimates of θz when p=1. Population value θz=.21  

Values of τz 

Sample Size  

50 100 200 500 1000 5000 20000 

Model 

A 

.5 
-.013 

(1.157) 

.082 

(.747) 

.16 

(.338) 

.198 

(.106) 

.204 

(.069) 

.209 

(.029) 

.21 

(.015) 

1 
-.011 

(1.193) 

.088 

(.685) 

.16 

(.352) 

.195 

(.146) 

.204 

(.067) 

.209 

(.029) 

.21 

(.015) 

1.5 
-.029 

(1.308) 

.084 

(.787) 

.163 

(.345) 

.196 

(.105) 

.204 

(.069) 

.209 

(.029) 

.21 

(.015) 

Model 

B 

.5 vs 

.7 

-.529 

(1.974) 

-.391 

(1.35) 

-.239 

(.648) 

-.156 

(.187) 

-.137 

(.113) 

-.126 

(.047) 

-.124 

(.024) 

.5 vs 

1 

-1.306 

(3.004) 

-1.045 

(2.006) 

-.837 

(.964) 

-.68 

(.318) 

-.649 

(.191) 

-.627 

(.08) 

-.624 

(.039) 

.5 vs 

1.5 

-2.514 

(4.274) 

-2.25 

(3.322) 

-1.766 

(1.442) 

-1.544 

(.521) 

-1.5 

(.329) 

-1.467 

(.138) 

-1.458 

(.068) 

 

Note. Standard errors are in parenthesis.  

 

The explanation of the negative values of the Z unique variance under 

model B is concerned with the inflation in the estimates of the factor variance. It 

should be noted that the variance of Z is determined by the squared Z loading, the 

factor variance and the Z unique variance. Since the Z loading is fixed to one in 

both groups, the only parameter that can compensate for the inflation in the factor 
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variance was the Z unique variance, so its estimated values became smaller than 

the population values. 

The negative values in the Z unique variances under model A are due to 

sampling error. In Tables 7, 8, and 9 it can be observed that at small sample sizes 

the sample estimates have large standard errors. As a consequence of the high 

variability in the estimates, in some samples the values were far from the true 

population value, originating the chain reaction explained for model B. For 

example, Table 9 shows that at small sample sizes the standard errors of the factor 

variance are large, thus, in some samples the values of the factor variance are 

noticeably inflated, which produced the underestimation of the Z unique variance. 

 

Constraint in Z unique variance 

The results from the one predictor case suggest that the low statistical 

power of the model is related to the negative unique variance of Z. To investigate 

this relationship, a set of simulations using the same population parameters as in 

the previous simulations were run with the difference that the Z unique variance 

was constrained to be a positive value. 

The results for the Type I errors are shown in Table 12. It can be observed 

that at small sample sizes the Type I errors are slightly higher than expected, but 

as the sample size increase the Type I errors became closer to 5%. It should also 

be noted that the Type I errors are very similar to the ones reported when the 

unique variance was not constrained (Table 3).  
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Table 12 

Type I errors with Z unique variance constrained to be positive when p=1 

N τz = .5  τz. = 1 τz .= 1.5 

50 6.6 6.5 6.9 

100 5.8 5.9 5.8 

200 5.6 5.5 5.2 

500 5.2 5.1 4.9 

1000 5 4.8 5 

5000 4.9 4.8 4.7 

20000 4.8 4.9 4.8 

 

Regarding statistical power, Table 13 indicates that when the Z unique 

variances are positive the chi-square fit statistic can detect violations to the 

measurement invariant model. The power is high when the differences in the 

latent intercepts are large (.5 vs 1.5): with only a sample size of 100 the power is 

.97. However, when the difference in latent intercepts is only .2 it is necessary to 

have a sample size of 5,000 to have statistical power of .8. 
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Table 13 

Statistical power with Z unique variance constrained to be positive when p=1 

N τz .5 vs .7 τz .5 vs 1 τz .5 vs 1.5 

50 10.4 30.1 76.9 

100 11.4 46.7 97.1 

200 12.8 75.6 100 

500 17.7 98.9 100 

1000 25 100 100 

5000 79.8 100 100 

20000 100 100 100 

 

From these results it is possible to say that the lack of power in the 

previous simulations and the negative Z unique variances are closely related. 

When the unique variance is not constrained, it adopts negative values making the 

model fit the data; in contrast, when the unique variance is forced to be positive 

the model no longer fits the data and the chi square fit statistic is able to detect it. 

In other words, the lack of fit of the model can be detected with the chi-square fit 

statistic or by the presence of Z negative unique variances. However, it is 

important to note that if the negative unique variance is used as a way to detect 

violations to the measurement invariant model, it provides higher power than the 

chi square fit statistic. When comparing Table 5 and Table 13 it can be observed 
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that higher power can be achieved when using negative unique variances as 

indicators of violations to factorial invariance.  

 

Case 2, p=2 

Type I errors 

Table 14 shows that the results of Type I errors in the case of p=2 closely 

match the results obtained in the case of p=1. In about 5% of the samples the chi-

square incorrectly rejected the hypothesis of factorial invariance. In other words, 

the Type I errors are what would be expected at an alpha level of .05.  

 

Table 14 

Percentage of samples with p < .05 when p=2 under Model A (Type I errors) 

N τz = .5  τz. = 1 τz .= 1.5 

50 6.4 6.4 6.6 

100 5.4 5.3 5.0 

200 5.6 5.3 5.0 

500 4.9 5.3 5.0 

1000 4.8 5.2 5.1 

5000 5.2 5.1 5.1 

20000 5.3 5.1 5.1 
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Statistical Power 

The percentage of samples in each condition that correctly rejected the 

hypothesis of factorial invariance is shown in Table 15. The results indicate that, 

in contrast to the case of p=1, the model has enough power to detect violations of 

factorial invariance. It can be observed that as the population differences in the Z1 

latent intercepts increased and the sample size increased the power also increased. 

When the difference in the Z1 latent intercepts between the two populations was .2 

the sample size needed to have power of .80 was 500. When the population 

differences in the Z1 latent intercepts increased to .5 a sample size of 100 was 

enough to have power of .90; and a sample size of only 50 was enough to achieve 

a power of .90 when the population differences in the Z1 latent intercept was 1.  

 

Table 15 

Percentage of samples with p < .05 when p=2 under Model B (Statistical power) 

N τz .5 vs .7 τz .5 vs 1 τz .5 vs 1.5 

50 14.4 56.1 89.7 

100 23.3 89.9 99.8 

200 44.4 99.8 100 

500 89.3 100 100 

1000 99.8 100 100 

5000 100 100 100 

20000 100 100 100 

 



 

43 

Unique variance estimates for Z1 

As shown in Table 16, negative Z1 unique variances were also observed in 

the case of two predictors, but in a smaller proportion than in the case of one 

predictor.  

As in the case of p=1, a larger percent of Z1 negative unique variances was 

obtained under model B than under model A. Actually, the percentage of samples 

with negative Z1 unique variances was nearly zero under model A even in small 

sample sizes. 

 

Table 16 

Percentage of negative unique variances for Z1 when p=2 

N 

Data generated for model A Data generated for model B 

τz .= .5 τz .= 1 τz .= 1.5 τz .5 vs .7 τz .5 vs 1 
τz .5 vs 

1.5 

50 0.90 1.0 0.8 3.2 32.7 96.2 

100 0.10 0.02 0.1 0.5 26.3 99.7 

200 0 0 0 0 17.8 100 

500 0 0 0 0 6.9 100 

1000 0 0 0 0 1.9 100 

5000 0 0 0 0 0 100 

20000 0 0 0 0 0 100 

 



 

44 

Another similarity with the case of p=1 is that in model B the percentage 

of negative unique variances in Z1 increased as the difference in the latent 

intercepts increased. However, the effect of sample size was not the same in all 

conditions in model B. When the population difference in the Z1 latent intercept 

was 1 the percentage of negative Z1 unique variances increased as the sample size 

increased, thus, replicating the results of the case of p=1. But when the population 

differences in the Z1 latent intercepts were .2 and .5, the percentage of negative 

unique variances decreased with sample size. In fact, when the difference in the 

Z1 latent intercepts was .2, all the samples had positive Z1 unique variances at a 

sample size of 200; when the difference in the latent intercepts was .5, most of the 

samples had positive Z1 unique variances by a sample size of 1000.  

 

Origin of the negative Z1 unique variance: sample estimates 

In order to explain the large percentage of samples with negative Z1 

unique variances under model B, the distribution of the sample estimates was 

examined. As in the case of p=1, a chain reaction that started with the population 

differences in the Z1 latent intercepts produced a series of distortions in the 

sample estimates that led to the Z1 negative unique variances.  

The difference in the Z1 latent intercepts first affected the sample estimates 

related to the expected values: the Z1 latent intercept in group 2 was 

underestimated, causing inflated values of the factor mean in group 2, which in 

turn caused an underestimation in the Y loading. Because of the underestimation 
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in the Y loading, the Y unique variance and the factor variance were inflated, 

producing the underestimation of the Z1 unique variances. Figure 3 shows the 

chain reaction for the case of p=2. 

 

 

Figure 3. Chain reaction of the alterations in the sample estimates originated by 

the differences in the Z latent intercepts when p=2.  

 

In order to explain in detail the mechanism that led to the Z1 unique 

variances, the sample estimates affected are presented next.  

 

Z latent intercepts τz1. In the case of p=2 the latent intercepts in Z1 were 

manipulated to have three different values under model A: .5, 1 and 1.5. In Table 

17 it is shown that the estimated values of the Z1 latent intercepts under model A 

closely match the population values.  

Under model B the groups were generated to have differences in the Z1 

latent intercepts. When fitting the invariant factor model to model B, the Z1 latent 

τz underestimated in group 2

κ inflated values in group 2

Underestimation: λy τy λz2 τz2

υ inflated values θy inflated values 

θz2 inflated values

θz1 underestimated
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intercepts were forced to be the same in both groups. As a result, the sample 

estimates of the Z1 latent intercepts were close to the population value of group 1, 

as shown in Table 17.  

 

Table 17  

Average estimates of τz1 for each condition when p=2. 

Values of τz1 

Sample Size  

50 100 200 500 1000 5000 20000 

Model 

A 

.5 
.497 

(.115) 

.501 

(.082) 

.5 

(.058) 

.5 

(.037) 

.5 

(.026) 

.5 

(.012) 

.5 

(.006) 

1 
1 

(.116) 

1 

(.082) 

1 

(.057) 

1 

(.037) 

1 

(.026) 

1 

(.012) 

1 

(.006) 

1.5 
1.5 

(.116) 

1.5 

(.082) 

1.5 

(.057) 

1.501 

(.037) 

1.5 

(.026) 

1.5 

(.012) 

1.5 

(.006) 

Model 

B 

.5 vs .7 
.533 

(.123) 

.533 

(.087) 

.533 

(.061) 

.534 

(.039) 

.534 

(.028) 

.534 

(.012) 

.534 

(.006) 

.5 vs 1 
.53 

(.144) 

.528 

(.103) 

.525 

(.072) 

.524 

(.045) 

.523 

(.032) 

.523 

(.015) 

.523 

(.007) 

.5 vs 

1.5 

.47 

(.135) 

.461 

(.084) 

.46 

(.058) 

.46 

(.036) 

.46 

(.026) 

.460 

(.011) 

.46 

(.006) 

 

Note. Standard errors are in parenthesis.  

 

The fact that the sample estimates of the Z1 latent intercepts in group 2 

were the parameter values of group 1, has the same explanation given in the case 

of p=1. In order to identify the model in the CFA, the factor mean was fixed to 

zero and the Z1 loading was fixed to one in the first group, so the only parameter 

that was free to estimate in group 1 that affects the expected value of Z1 was the 
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Z1 latent intercept. Since the factor mean was fixed to the population value of 

zero, the sample estimate of the Z1 latent intercept in group 1 was the population 

value of .5. The value of the latent intercept of Z1 in group 2 was the same as in 

group 1 because of invariance constraints. 

 

Factor mean κ2.  As in the case of p=1 the factor mean was fixed to zero 

in group 1 for identification purposes, and was freely estimated in group 2. The 

sample estimates of the factor mean in group 2 are shown in Table 18. 

The results closely resembled the findings of the case of p=1. The sample 

estimates of the factor mean in group 2 under model A correspond to the 

population value of .3. In contrast, the sample estimates under model B increased 

as the population differences in the Z1 latent intercepts increased; when the 

population differences in the Z1 latent intercepts were 1, the factor mean reached 

values of 1.34, which is approximately 4 times larger than the population value.  

The inflated values of the factor mean of group 2 under model B can be 

explained as a consequence of the underestimation of the Z1 latent intercept in 

group 2. Under model B, the Z1 means were different in each group due to the 

differences in the Z1 latent intercepts and in the factor means. However, because 

the Z1 latent intercepts were constrained to be the same in both groups the Z1 mean 

differences had to be attributed to the factors means. In other words, the factor 

means increased to compensate for the underestimation of the Z1 latent intercept 

in group 2. 
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Table 18 

Average estimates of κj when p=2. Population value κj = .3 

Values of τz 

Sample Size  

50 100 200 500 1000 5000 20000 

Model 

A 

.5 
.302 

(.159) 

.299 

(.112) 

.299 

(.079) 

.301 

(.05) 

.3 

(.035) 

.3 

(.016) 

.3 

(.008) 

1 
.302 

(.161) 

.299 

(.112) 

.3 

(.079) 

.3 

(.05) 

.3 

(.035) 

.3 

(.016) 

.3 

(.008) 

1.5 
.303 

(.161) 

.301 

(.112) 

.3 

(.079) 

.3 

(.05) 

.3 

(.035) 

.3 

(.016) 

.3 

(.008) 

Model 

B 

.5 vs .7 
.435 

(.178) 

.434 

(.125) 

.434 

(.089) 

.433 

(.057) 

.432 

(.04) 

.432 

(.018) 

.432 

(.009) 

.5 vs 1 
.738 

(.232) 

.744 

(.167) 

.749 

(.118) 

.753 

(.074) 

.754 

(.053) 

.754 

(.024) 

.754 

(.012) 

.5 vs 

1.5 

1.36 

(.211) 

1.377 

(.117) 

1.379 

(.078) 

1.38 

(.049) 

1.38 

(.035) 

1.379 

(.015) 

1.379 

(.008) 

 

Note. Standard errors are in parenthesis. 

 

Y loading λy. In Table 19 it can be observed that the sample estimates of 

the Y loading matched the population value of .6 under model A. But, under 

model B the sample estimates decreased as the population differences in the Z1 

latent intercepts increased. It is important to note that the underestimation of the Y 

loading was not as large as in the case of p=1.  

From equation 6 it can be shown that the population differences in the 

expected values of Y are due only to group differences in the factor means 
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because there are no differences in the Y latent intercepts or Y loadings. However, 

under model B the sample value of the factor mean in group 2 is inflated as a 

consequence of the underestimation of the Z1 latent intercept in group 2. To 

compensate for the large values in the factor mean in group 2, the sample 

estimates of the Y loading decreased. 

 

Table 19  

Average estimates of λy when p=2. Population value λy=.6 

Values of τz 

Sample Size  

50 100 200 500 1000 5000 20000 

Model 

A 

.5 
.604 

(.101) 

.601 

(.069) 

.601 

(.048) 

.601 

(.031) 

.6 

(.021) 

.6 

(.01) 

.6 

(.005) 

1 
.604 

(.102) 

.603 

(.069) 

.601 

(.048) 

.601 

(.031) 

.6 

(.021) 

.6 

(.01) 

.6 

(.005) 

1.5 
.605 

(.102) 

.603 

(.069) 

.602 

(.049) 

.601 

(.03) 

.6 

(.021) 

.6 

(.01) 

.6 

(.005) 

Model 

B 

.5 vs .7 
.559 

(.103) 

.556 

(.07) 

.555 

(.049) 

.556 

(.031) 

.555 

(.022) 

.555 

(.01) 

.555 

(.005) 

.5 vs 1 
.438 

(.121) 

.433 

(.084) 

.432 

(.06) 

.431 

(.038) 

.430 

(.027) 

.43 

(.012) 

.43 

(.006) 

.5 vs 

1.5 

.23 

(.089) 

.225 

(.049) 

.225 

(.032) 

.225 

(.021) 

.225 

(.014) 

.226 

(.007) 

.226 

(.003) 

 

Note. Standard errors are in parenthesis.  

 

Z2 loading λz2. Table 20 shows that while under model A the sample 

estimates of the Z2 loading were the population value, the values were 
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underestimated under model B. The sample estimates of the Z2 loading in model B 

decreased as the population difference in the Z1 latent intercepts increased.  

 

Table 20  

Average estimates of λz2 when p=2. Population value λz2=.8  

Values of τz 

Sample Size  

50 100 200 500 1000 5000 20000 

Model 

A 

.5 
.806 

(.134) 

.801 

(.091) 

.801 

(.063) 

.801 

(.04) 

.8 

(.028) 

.8 

(.013) 

.8 

(.006) 

1 
.805 

(.136) 

.803 

(.092) 

.802 

(.064) 

.8 

(.04) 

.8 

(.028) 

.8 

(.013) 

.8 

(.006) 

1.5 
.81 

(.132) 

.803 

(.09) 

.803 

(.065) 

.8 

(.04) 

.8 

(.028) 

.8 

(.013) 

.8 

(.006) 

Model 

B 

.5 vs .7 
.744 

(.134) 

.741 

(.092) 

.74 

(.065) 

.74 

(.041) 

.74 

(.029) 

.740 

(.013) 

.74 

(.006) 

.5 vs 1 
.583 

(.159) 

.578 

(.111) 

.576 

(.08) 

.574 

(.05) 

.573 

(.035) 

.573 

(.016) 

.573 

(.008) 

.5 vs 

1.5 

.309 

(.118) 

.302 

(.065) 

.3 

(.042) 

.302 

(.027) 

.302 

(.019) 

.302 

(.008) 

.302 

(.004) 

 

Note. Standard errors are in parenthesis.  

 

The underestimation of the Z2 loading in model B has the same 

explanation given above for the underestimation of the Y loading. Equation 6 

shows that the population differences in the expected values of Z2 are only due to 

differences in the factor means since there are no population differences in the Z2 

loading and in the Z2 latent intercepts. However, the sample estimates of the factor 
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mean of group 2 were inflated under model B; to compensate for the large values 

of the factor mean the values of the Z2 latent intercepts were underestimated.  

 

Y latent intercept τy. In Table 21 it can be observed that under model A the 

estimates of the Y latent intercept were .3, which corresponds to the population 

value. In contrast, under model B the estimates became slightly lower than .3 as 

the difference in the Z1 latent intercepts increased.  

 

Table 21  

Average estimates of τy when p=2. Population value τy=.3  

Values of τz 

Sample Size  

50 100 200 500 1000 5000 20000 

Model 

A 

.5 
.299 

(.077) 

.302 

(.055) 

.3 

(.038) 

.3 

(.024) 

.3 

(.017) 

.3 

(.008) 

.3 

(.004) 

1 
.3 

(.077) 

.301 

(.055) 

.3 

(.038) 

.3 

(.025) 

.3 

(.017) 

.3 

(.008) 

.3 

(.004) 

1.5 
.3 

(.078) 

.3 

(.054) 

.3 

(.038) 

.3 

(.024) 

.3 

(.017) 

.3 

(.008) 

.3 

(.004) 

Model 

B 

.5 vs .7 
.273 

(.076) 

.271 

(.054) 

.27 

(.038) 

.27 

(.024) 

.27 

(.017) 

.27 

(.008) 

.27 

(.004) 

.5 vs 1 
.238 

(.075) 

.233 

(.052) 

.23 

(.036) 

.229 

(.023) 

.228 

(.016) 

.228 

(.007) 

.228 

(.004) 

.5 vs 

1.5 

.237 

(.079) 

.235 

(.056) 

.235 

(.039) 

.235 

(.025) 

.235 

(.017) 

.235 

(.008) 

.234 

(.004) 

 

Note. Standard errors are in parenthesis.  
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From equation 6 it can be observed that the Y latent intercept along with 

the Y loading and the factor mean affects the expected values of Y. In model B, to 

compensate for the large values in the factor mean in group 2 there was a slight 

decrease in the sample estimates of Y latent intercept. 

 

Z2 latent intercept τz2. The sample estimates of the Z2 latent intercept are 

shown in Table 22. For the data simulated under model A the mean of the sample 

estimates was the population value of .6. Under model B, as the population 

differences in the Z1 latent intercept increased, the sample estimates of the Z2 

latent intercept decreased to .5. 

The same explanation provided for the decrease in the estimated values of 

the Y latent intercept applies for the decrease in the Z2 latent intercept.  In equation 

6 it can be observed that along with the Z2 loading, another way to compensate for 

the large value of the factor mean is through the Z2 latent intercept. The decrease 

in the sample estimates of the Z2 latent intercept is a consequence of the inflated 

values of the factor mean of group 2 under model B.  
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Table 22  

Average estimates of τz2 when p=2. Population value τz2 =.6 

Values of τz 

Sample Size  

50 100 200 500 1000 5000 20000 

Model 

A 

.5 
.598 

(.101) 

.602 

(.072) 

.6 

(.051) 

.6 

(.032) 

.6 

(.023) 

.6 

(.01) 

.6 

(.005) 

1 
.6 

(.102) 

.601 

(.072) 

.6 

(.051) 

.6 

(.032) 

.6 

(.023) 

.6 

(.01) 

.6 

(.005) 

1.5 
.6 

(.102) 

.6 

(.072) 

.6 

(.051) 

.6 

(.032) 

.6 

(.023) 

.6 

(.01) 

.6 

(.005)  

Model 

B 

.5 vs .7 
.562 

(.1) 

.562 

(.07) 

.56 

(.05) 

.56 

(.032) 

.56 

(.022) 

.56 

(.01) 

.56 

(.005) 

.5 vs 1 
.516 

(.098) 

.512 

(.069) 

.507 

(.048) 

.505 

(.03) 

.505 

(.021) 

.504 

(.009) 

.504 

(.005) 

.5 vs 

1.5 

.515 

(.103) 

.512 

(.073) 

.513 

(.051) 

.512 

(.032) 

.511 

(.023) 

.512 

(.01) 

.512 

(.005) 

 

Note. Standard errors are in parenthesis.  

 

Factor variance Φ. Table 23 shows the sample estimates of the factor 

variances. Under model A the sample estimates of the factor variance were .5 

which corresponds to the population value. However, under model B the sample 

estimates of the factor variance increased as the population difference in the Z1 

latent intercepts increased.   

As in the case of p=1, the large values of the factor variance under model 

B are explained as a consequence of the underestimation of the Y loading. The 

covariance between the criterion and the predictors is determined by the loadings 
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of the criterion, the loadings of the predictors, and the factor variance. As 

explained before, the Z1 loading was fixed to 1 in both groups for identification 

purposes, and the Y and Z2 loadings were underestimated; in order to compensate 

for the underestimation of the loadings, the estimates of the factor variance were 

inflated. 

 

Table 23  

Average estimates of Φ when p=2. Population value Φ = .5 

Values of τz 

Sample Size  

50 100 200 500 1000 5000 20000 

Model 

A 

.5 
.497 

(.115) 

.499 

(.082) 

.499 

(.057) 

.5 

(.036) 

.501 

(.025) 

.5 

(.011) 

.5 

(.006) 

1 
.495 

(.116) 

.497 

(.081) 

.499 

(.057) 

.5 

(.036) 

.5 

(.026) 

.5 

(.012) 

.5 

(.006) 

1.5 
.494 

(.115) 

.5 

(.081) 

.5 

(.058) 

.5 

(.036) 

.5 

(.025) 

.5 

(.012) 

.5 

(.006) 

Model 

B 

.5 vs 

.7 

.535 

(.122) 

.536 

(.083) 

.538 

(.058) 

.538 

(.037) 

.538 

(.026) 

.539 

(.011) 

.539 

(.006) 

.5 vs 1 
.658 

(.167) 

.651 

(.104) 

.649 

(.071) 

.649 

(.044) 

.648 

(.031) 

.648 

(.014) 

.648 

(.007) 

.5 vs 

1.5 

1.115 

(.528) 

1.063 

(.209) 

1.05 

(.134) 

1.041 

(.081) 

1.039 

(.056) 

1.036 

(.025) 

1.036 

(.012) 

 

Note. Standard errors are in parenthesis.  

 

Y unique variance θy. As shown in Table 24, the sample estimates of the Y 

unique variance under model A were .18, which corresponds to the parameter 
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value. In contrast, under model B as the difference in the Z1 latent intercept 

increased the Y unique variance got slightly larger reaching values of .29. 

Equation 7 shows that the variance of Y is determined by the squared of 

the Y loading, the factor variance, and the Y unique variance. Under model B, the 

sample estimates of the factor variance and the Y unique variance increased to 

compensate for small values of the Y loading. 

 

Table 24  

Average estimates of θy when p=2. Population value θy=.18  

Values of τz 

Sample Size  

50 100 200 500 1000 5000 20000 

Model 

A 

.5 
.176 

(.035) 

.178 

(.025) 

.179 

(.017) 

.18 

(.011) 

.18 

(.008) 

.18 

(.003) 

.18 

(.002) 

1 
.176 

(.035) 

.178 

(.024) 

.179 

(.017) 

.18 

(.011) 

.18 

(.008) 

.18 

(.003) 

.18 

(.002) 

1.5 
.176 

(.035) 

.178 

(.025) 

.179 

(.017) 

.18 

(.011) 

.18 

(.008) 

.18 

(.004) 

.18 

(.002) 

Model 

B 

.5 vs .7 
.184 

(.036) 

.186 

(.026) 

.187 

(.018) 

.187 

(.011) 

.187 

(.008) 

.188 

(.004) 

.188 

(.002) 

.5 vs 1 
.215 

(.046) 

.219 

(.033) 

.220 

(.024) 

.221 

(.015) 

.222 

(.011) 

.222 

(.005) 

.222 

(.002) 

.5 vs 

1.5 

.282 

(.047) 

.288 

(.032) 

.29 

(.022) 

.291 

(.014) 

.291 

(.01) 

.291 

(.004) 

.291 

(.002) 

 

Note. Standard errors are in parenthesis.  

 

Z2 unique variance θz2. In Table 25 the sample estimates of the unique 

variances of Z2 are shown. It can be observed that under model A the estimates 
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were equal to the population value of .3. However, under model B the estimates 

became larger as the difference in the Z1 latent intercepts increased; the estimated 

values of the Z2 unique variance increased up to .5. 

 

Table 25  

Average estimates of θz2 when p=2. Population value θz2=.3 

Values of τz 

Sample Size  

50 100 200 500 1000 5000 20000 

Model 

A 

.5 
.293 

(.06) 

.297 

(.042) 

.3 

(.03) 

.299 

(.019) 

.3 

(.013) 

.3 

(.006) 

.3 

(.003) 

1 
.293 

(.06) 

.296 

(.042) 

.3 

(.03) 

.3 

(.019) 

.3 

(.013) 

.3 

(.006) 

.3 

(.003) 

1.5 
.293 

(.06) 

.3 

(.042) 

.3 

(.03) 

.3 

(.02) 

.3 

(.013) 

.3 

(.006) 

.3 

(.003) 

Model 

B 

.5 vs 

.7 

.307 

(.063) 

.311 

(.044) 

.312 

(.031) 

.313 

(.02) 

.314 

(.014) 

.314 

(.006) 

.314 

(.003) 

.5 vs 1 
.363 

(.079) 

.369 

(.057) 

.372 

(.042) 

.374 

(.026) 

.375 

(.019) 

.375 

(.008) 

.375 

(.004) 

.5 vs 

1.5 

.481 

(.081) 

.491 

(.053) 

.494 

(.033) 

.496 

(.024) 

.496 

(.016) 

.496 

(.008) 

.496 

(.004) 

 

Note. Standard errors are in parenthesis.  

 

The increase in the Z2 unique variance has the same explanation as the 

increase on the Y unique variance. The variance of Z2 is determined by the Z2 

loading squared, the factor variance, and the Z2 unique variance. As previously 

explained, the estimates of the Z2 loading under model B are smaller than the 
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population values; to compensate for this underestimation, the estimates of the 

factor variance and the Z2 unique variance increased.  

 

Z1 unique variances.  As observed in Table 26, under model A the sample 

estimates of the Z1 unique variances were the population value of .21. In contrast, 

under model B the sample estimates decreased as the population difference in the 

Z1 latent intercept increased, reaching negative values when the difference 

between populations in the Z1 latent intercepts was 1. 

The parameters involved in the calculation of the Z1 variance are the Z1 

loading, the factor variance and the Z1 unique variance. It is important to note that 

the Z1 loading is fixed to one in both groups, so it cannot shrink to compensate for 

the inflation of the factor variance. As a consequence, the only parameter that 

could compensate for the large values of the factor variance was the Z1 unique 

variance. The estimates of the Z1 unique variance decreased to the point of getting 

negative values.  

It is important to note that standard errors of the estimates of Z1 unique 

variance decreased as the sample sizes increased. In the conditions in which the 

population differences in the Z1 latent intercept were .2 and .5, the average of the 

Z1 unique variance across samples was positive but with high variability in small 

sample sizes, and as a consequence some samples had negative Z1 unique 

variances. As the sample size increased, the variability of the estimated values 

across samples decreased so all the samples had positive values in the Z1 unique 
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variance. This explains the results in Table 14 showing that the percentage of 

samples with negative values decreased as the sample size increased for these 

conditions in model B.  

 

Table 26  

Average estimates of θz1 when p=2. Population value θz1=.21  

Values of τz 

Sample Size  

50 100 200 500 1000 5000 20000 

Model 

A 

.5 
.199 

(.075) 

.205 

(.051) 

.208 

(.036) 

.209 

(.022) 

.209 

(.016) 

.21 

(.007) 

.21 

(.004) 

1 
.206 

(.076) 

.206 

(.051) 

.208 

(.036) 

.209 

(.023) 

.21 

(.016) 

.21 

(.007) 

.21 

(.004) 

1.5 
.201 

(.075) 

.206 

(.051) 

.208 

(.036) 

.209 

(.023) 

.21 

(.016) 

.21 

(.007) 

.21 

(.004) 

Model 

B 

.5 vs 

.7 

.175 

(.093) 

.181 

(.061) 

.184 

(.042) 

.186 

(.027) 

.187 

(.019) 

.187 

(.008) 

.187 

(.004) 

.5 vs 1 
.056 

(.069) 

.069 

(.118) 

.075 

(.084) 

.078 

(.052) 

.079 

(.037) 

.08 

(.016) 

.08 

(.008) 

.5 vs 

1.5 

-.464 

(.546) 

-.412 

(.214) 

-.397 

(.135) 

-.386 

(.082) 

-.382 

(.056) 

-.38 

(.025) 

-.379 

(.013) 

 

Note. Standard errors are in parenthesis.  

 

When the difference in the Z1 latent intercepts was 1, the estimated values 

of the Z1 unique variance were negative with high variability in small sample 

sizes, thus some samples had a positive estimate. However, as the sample size 

increased, there was less variability in the estimates and as a consequence all the 
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values were negative. This explains that the percentage of samples with Z1 

negative unique variances increased as the sample size increased when the 

difference in the Z1 latent intercepts was 1, as shown in Table 16. 
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Chapter 5 

Discussion and Conclusions 

Given the importance of measurement and predictive invariance in 

psychological testing, some studies have been conducted to examine the 

relationship between them (Millsap, 1995, 1997, 1998). The present research 

focuses on the relationship between both forms of invariance in the presence of 

group differences in the regression intercepts.  

The common interpretation of group differences in regression intercepts is 

that they represent differences in the population and do not represent 

measurement bias (Humphreys, 1986; Linn, 1984). This interpretation is 

supported by the fact that group differences in the regression intercepts can exist 

under factorial invariance as shown by Birnbaum (1979). However, Millsap 

(1998) showed that this interpretation is true only under some restricted 

conditions, and proposed a method to test them. The method consists of fitting a 

factorial invariant model with invariant factor variances to the data; if the model 

fits the data then there is no evidence that the differences between groups are 

reflecting measurement bias, and the regression intercept differences can be 

explained as a consequence of having fallible measures in the predictor and 

criterion, or as true population differences. In this case, the traditional 

interpretation of the regression intercepts would be supported. However, if the 

model fails to fit then, the differences between groups are due to measurement 

bias.  
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Since it cannot be assumed that group differences in the regression 

intercepts are only reflecting population differences, and that the conditions for 

this statement to hold have to be tested, it is important to determine the power to 

detect violations to the model. The purpose of the present research was to study 

Type I errors and the statistical power of the method proposed by Millsap (1998) 

under different sample sizes when 1 or 2 predictors are available.  

The results indicate that while Type I errors are within appropriate values 

when p=1 and p=2, the statistical power of the model in the one predictor case 

was almost non-existent regardless of the sample size. An interesting result when 

fitting an invariant model to data created with group differences in the case of p=1 

was the presence of a large percentage of negative unique variances in the 

predictor that increased with sample size.  

Based on the results of this research, it is proposed that with sample sizes 

of at least 500 the negative unique variances in the predictor can be used as an 

indication of violations to the invariant model with a power larger than .8 and 

Type I errors of .05. This proposal is supported by the fact that when the unique 

variance of the predictor is constrained to be a positive value, the power of the 

chi-square fit statistic increases but it requires higher sample sizes to detect 

violations to the invariant model than when using the negative unique variances as 

indicators of bias. As a consequence, the negative unique variances are considered 

a better way to detect violations to the invariant model.   
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In order to explain the negative unique variances the distribution of all the 

sample estimates were examined. It was found that the differences in the latent 

intercepts started a chain reaction that affected the parameters in the mean and the 

covariance structures, eventually leading to the negative unique variances in the 

predictor. 

In the two predictor case the statistical power of the model was highly 

improved. With a sample size of 100 the power to detect violations to the 

invariant model is .9 when the difference in the latent intercepts is .5. The 

negative unique variance estimate in the predictor in this case is not as good an 

indicator of measurement bias as the chi-square statistic test. For example, with a 

difference of .2 in the latent intercepts and a sample size of 100 the negative 

unique variance indicate violations to the model in only 5% of the samples while 

the chi-square detect them in 89% of the samples. 

The examples reported in Millsap (1998) are consistent with the findings 

of the present research. In both of the examples with one predictor in which the 

factorial invariant model was rejected, the model failed to achieve convergence 

after 1000 iterations and negative unique variances were obtained for the 

predictor. As expected from the results of the present research, with the large 

sample sizes used these examples, 9748 and 68,766 individuals, the negative 

unique variances are a good indicator of the violations to the factorial invariant 

model. Also, when the reverse regression was conducted in these examples, that 

is, when the roles of the criterion and the predictor were reversed, an inconsistent 
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pattern was found: the group with the higher intercept in the forward regression 

did not have the higher intercept in the reverse regression, indicating violations to 

the factorial invariant model. These examples show that researchers have to be 

aware of different indications of violations to invariance, and not focus 

exclusively in the chi-square fit statistic. 

It is important to note the limitations of the present study. The first 

limitation is that the data were simulated under a normal distribution. The 

behavior of the model with data that are not normal is still to be studied. A second 

limitation is that the data were simulated with equal sample sizes in both groups. 

Since it is often the case that the groups studied have different sample sizes, 

future research could study its impact in the Type I errors and power of the 

model; if having groups with different sample sizes changes the results of the 

present study it would be important to determine how large the difference in the 

sample sizes between the groups must be to start detecting changes in the results 

reported in the present study.  

One more limitation is that only a specific set of parameters values were 

studied. The parameters values were picked to reflect values usually found in 

literature, however, it would be worthwhile to study values that reflect other set of 

communalities or reliabilities in the predictors and criterion.  

An area of future research will deal with better ways of detecting 

violations to measurement bias in the presence of differences in the regression 

intercepts when there is only one predictor of interest and with sample sizes 
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smaller than 500. Before such a method is found, the statistical power of the 

model can be improved by increasing either the sample size or the number of 

predictors. If the availability of individuals is limited, for example by the number 

of employees in a company, it is still possible to increase the number of 

predictors. Millsap (1998) explained that if the predictor is a multi-item 

summative scale it is possible to disaggregate the tests into parcels of items, and 

to use the score of each parcel as a different indicator. The model would then be 

tested at the parcel level but conclusions can be drawn to the overall test. If the 

test shows violations to the invariant model, these violations will show up at the 

parcel level. In the same sense, if the model holds at the parcel level then the 

model must also hold at the test level. However, it should be noted that if 

measurement bias is found at the parcels level, it can be argued that the bias can 

be canceled out if the whole test is analyzed. In this case, finding evidence of 

violations to measurement invariance at the parcels level would lead to the wrong 

conclusion that the whole test is biased, so special caution is advised when 

conducting the test at the parcels level. The advantage of having more than one 

predictor is that it is possible to detect the size and the source of measurement 

bias. With only one predictor it is not possible to free parameters to identify the 

source of the bias because the model would not be identified.  

 

The results of the present study show that researchers have to be aware of 

the importance of testing for measurement invariance before assuming that 
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differences in regression intercepts are due to population differences. To ensure 

that no measurement bias is present both the chi-square statistic and the unique 

variances have to be examined. If negative unique variances are detected or if the 

chi square statistic indicates that the factorial invariant model is rejected, 

measurement bias is present in the data. The bias could be due to differences in 

the latent intercepts, unique variances, or factor loadings; if the differences are in 

the factor loadings then violations to the invariant regression slopes will be 

present. On the other hand, if the model fits the data it can be concluded that there 

is no evidence of measurement bias. The difference in the regression intercepts 

can be interpreted as latent mean differences, or as a consequence of having 

fallible measures for the criterion and predictors. 
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