
NVM Challenges in Medical Devices  

by 

Eslam E. Hag 
 
 
 
 

 
A Thesis Presented in Partial Fulfillment  

of the Requirements for the Degree  
Master of Science  

 
 
 
 
 

 
 
 
 
 

Approved December 2010 by the 
Graduate Supervisory Committee: 

 
Michael N. Kozicki, Chair 

Dieter K Schroder 
Michael Goryll 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

ARIZONA STATE UNIVERSITY  

December 2010 



 

  i 

ABSTRACT  
   

Electronic devices are gaining an increasing market share in the 

medical field. Medical devices are becoming more sophisticated, and 

encompassing more applications. Unlike consumer electronics, medical 

devices have far more limitations when it comes to area, power and most 

importantly reliability. The medical devices industry has recently seen the 

advantages of using Flash memory instead of Read Only Memory (ROM) 

for firmware storage, and in some cases to replace Electrically 

Programmable Read Only Memories (EEPROMs) in medical devices for 

frequent data storage. There are direct advantages to using Flash memory 

instead of Read Only Memory, most importantly the fact that firmware can 

be rewritten along the development cycle and in the field. However, Flash 

technology requires high voltage circuitry that makes it harder to integrate 

into low power devices. There have been a lot of advances in Non-Volatile 

Memory (NVM) technologies, and many Flash rivals are starting to gain 

attention. The purpose of this thesis is to evaluate these new technologies 

against Flash to determine the feasibility as well as the advantages of 

each technology. The focus is on embedded memory in a medical device 

micro-controller and application specific integrated circuits (ASIC). A 

behavioral model of a Programmable Metallization Cell (PMC) was used 

to simulate the behavior and determine the advantages of using PMC 

technology versus flash. When compared to flash test data, PMC based 
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embedded memory showed a reduction in power consumption by many 

orders of magnitude. Analysis showed that an approximated 20% device 

longevity increase can be achieved by using embedded PMC technology.
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Chapter 1 

1 Introduction 

The need for high density, low power and low cost memory has 

been growing at an incredible rate in the last three decades. In fact, it is 

the need for smaller, lower power memory that has been one the main 

drivers of pushing manufacturers to further reduce lithography and meet 

Moore’s law when many believed it has reached its physical limitations. 

When Flash memory was invented in the 1980’s, it was seen as a huge 

advance in NVM technology that would enable the area reduction of the 

memory cell to that of a single transistor. Flash has then quickly become 

the most volume produced memory today with vast investments in its 

production and a forecasted revenue of $55.2 billion in 2013 [19].  

While Flash technology offers a good area advantage, especially 

when considering new advances in Flash technology such as multi-bit cell 

Flash, Flash memory is proving to be somewhat incompatible for use in 

ultra low power applications. The charge trapping mechanism (the core 

foundation of the flash memory technology) requires excessive voltage 

and current through each cell. A high end Flash cell in 65nm technology 

requires more than 6V and 100uA for program and erase operations [7]. 

Given the fact that a CMOS transistor in the same technology requires 

less than 1V, the operational voltage level and integration disadvantages 

are obvious. This is even more of a concern in ultra low power systems 
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that operate in the sub-threshold area such as in case of most medical 

devices. 

  Added to the power disadvantage of using Flash memory, such a 

high voltage is generated using high power circuitry such as charge 

pumps. These circuits require relatively large silicon areas and 

capacitances and have both area and reliability concerns. Moreover, the 

high current drained by a Flash mass erase and program operations lie 

among the most power consuming events in a medical device system and 

therefore additional battery monitoring and filter circuitries may be 

required. Moreover, while the Flash read operation is relatively fast 10-100 

ns, Flash write access time is between 1 to 10 us. For very power 

conscious systems such as those of medical devices, the high voltage 

circuitry is allowed to ramp up just before the program operation which in 

turn adds to the Flash write and erase times [7]. 

Like many other ultra low power systems, the medical device 

industry has been struggling to customize Flash technology to meet its 

power specifications. Added to the complexity of that task is the fact that 

most of the medical devices operate in the sub-threshold domain which 

means that a dedicated high voltage circuitry is required for flash. While 

Flash technology has successfully invaded the medical devices arena and 

became the embedded memory of choice for firmware code storage and 

low frequency diagnostic data storage, as well as in some cases replacing 
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conventional high area EEPROM technologies, it is obvious that as the 

feature set of medical devices expands, as well as the growing need for 

faster and smaller devices with ultra low power consumption to 

accommodate a smaller battery without sacrificing longevity, a new type of 

NVM technology is inevitably needed. While many promising NVM 

technologies are being developed, among the most promising 

technologies is the PMC or CBRAM technology. PMC seems to be very fit 

for use in medical devices that operate in the sub-threshold arena. Added 

to the advantages of using PMC is the fact that requires a much simpler 

process that is very compatible with the logic process and requires only 

two additional steps. On the other hand, it is much more complicated to 

embed Flash memory in a logic process.  

This document starts by stating the low power memory challenges 

faced by the medical device industry and other low power device makers. 

This is followed by a top level overview of the most popular new NVM 

technologies in chapter 2 with a brief description of their respective theory 

of operation, applications, as well as the advantages and disadvantages of 

each technology. Chapter 3 covers an in depth analysis of programmable 

metallization cell (PMC) also know as conductive bridge random access 

memory (CBRAM) technology and its modeling in both SPICE and CAD 

tools for evaluation purposes.  
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Chapter 4 provides a brief introduction to pacemakers and their 

function and applications. This is followed by an analysis of the PMC array 

model in chapter 5 developed using the PMC cell model in chapter 3.  

Chapter 6 includes a summary of the results from the analysis the 

important characteristics of the PMC against Flash using the Verilog-A 

model described in chapter 3 and the conclusion  

1.1 Definitions, Acronyms, and Abbreviations: 

ROM -Read only Memory 

RAM -Random Access Memory 

SRAM -Static Random Access Memory 

DRAM -Dynamic Random Access Memory 

FeRAM -Ferromagnetic Random Access Memory 

MRAM -Magneto-resistive Random Access Memory 

PMC -Programmable Metallization Cells also known as 

CBRAM 

CBRAM -Conductive Bridge Random Access Memory 

PRAM -Phase Change Random Access Memory 

MLC -Multi Level Cell 

SLC -Single Level Cell  

PRAM -Phase Change Random Access Memory 

CAD - Computer Aided Design 
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EEPROM -Electrically Erasable Programmable Random Access                

Memory 
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Chapter 2 

2 Memory Overview 

The main objective of this study is to explore new memory 

technologies and how they may or may not be a practical choice for use in 

medical devices. The review of literature for the most popular new NVM 

technology was conducted to pick to most appropriate technology to 

model and simulate. The following is a detailed description for each new 

technology highlighting the most important parameters like power 

consumption, speed, reliability and scalability. At the end of each section a 

brief evaluation is conducted to assess the NVM technology for use in 

medical devices. 

2.1 FLASH 
 

Flash memory is a type of EEPROM, since the floating gate and 

NAND flash invented by Toshiba in 1980 it has quickly become the most 

volume produced type of memory today. NAND flash compact architecture 

made it very suitable for portable date storage.  It has quickly become the 

first choice for application requiring significant data storage. Intel® 

followed Toshiba® by inventing the NOR flash architecture which allowed 

random access allowing NOR flash to become a potential replacement of 

DRAM and SRAM for data and application execution. Even though flash 

has many draw backs, like high voltage circuitry for programming and 
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erasing as well as write and read access times, its durability, scalability 

and size made it a very popular choice for application like external as well 

as internal data storage. Since Flash is non-volatile, erasable, and does 

not require volume manufacturing, it can be used to replace ROM for 

firmware storage in devices. Even though flash is not as fast as SRAM 

and DRAM, it can be used in parallel with a smaller size cache memory to 

execute code in very high speed applications.  

  Structure and theory of Operation: 

 

  

Figure 1. Flash cell structure showing a single transistor structure. This 
figure shows the CMOS transistor with a floating gate flash cell structure 

[16]  
 

The NOR flash gate is analogous to a standard MOSFET Cell with an 

added gate between the gate poly and the substrate. The added gate 
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(floating gate) is surrounded by dielectric to isolate it from both the gate 

poly and the substrate. The structure of the flash cell makes it very 

scalable. This is especially true in case of NAND Flash architecture were 

interconnects are reduced to a minimum. It also makes the flash process 

very compatible with logic processes. The floating gate is capable of 

trapping charge inside permanently unless externally drained which gives 

the flash its non-volatile property. Depending on whether the floating gate 

holds a charge or not, a logic 0 or 1 can be read.  If the FG contains a 

charge, the threshold of the MOSFET is increased (the charged FG forms 

an opposing electric field) and the gate voltage needed to form a 

conductive channel is higher than that of a cell with uncharged FG. When 

applying a small enough voltage on the gate a channel is formed only if 

the FG does not hold charge. If the FG contains trapped electrons, the 

path between the source and the drain remains resistive. To read the flash 

cell, a current is passed between the source and the drain and then 

sensed to determine whether the S-D path is resistive or conductive. In 

general, if the FG does not hold a charge the S-D path is conductive and a 

current is sensed, this generally represents logic 1. If the gate contains a 

charge, no channel is formed, and hence no current is sensed 

representing a logic 0. 
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Figure 2. NOR Flash erase and program. Left diagram shows the erase 
process through tunneling. Right diagram shows voltages on drain and 

gate to trap charge via Hot Electron Injection [16] 
 

   NOR flash is erased (reset to logic 1) by applying a relatively high 

voltage of opposite polarity between the gate and the drain as shown in 

Figure 2. This forces the electrons in the floating gate to drain through 

tunneling. NOR flash can be reprogrammed using the hot electron 

phenomena by applying a high voltage on both the gate and drain. NAND 

flash is erased by tunnel release and is programmed through tunnel 

injection.  
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Figure 3. Flash architecture. Layout For an 8-bit NOR flash (TOP), layout 
For an 8-bit NAND flash (bottom) [16] 

 

Flash technology has been configured in many different ways, the 

most famous architectures are the NAND and NOR flash. NOR flash cells 

are connected in parallel to the bit line allowing cells to be read and 

programmed separately. This architecture resembles the connections of a 

transistors in a CMOS NOR gate and hence their name. When NOR flash 

was initially introduced by Intel®, it was intended to compete with ROM 

thus was configured to allow random access write and read to individual 

cells. The major drawbacks of this architecture were related to both area 

and speed. Individual write access to flash cells require relatively complex 

decode circuitry as well as much more interconnections between cells. 

NOR flash architecture is very fit to replace ROM where not many writes 

occur. 
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NAND flash architecture was introduced to reduce area by getting 

rid of much of the interconnections between flash cells. In NAND flash, 

cells are connected in series preventing them from being read and 

programmed individually. Instead, cells have to be read and programmed 

in series. Write circuitry is a lot faster and simpler than that of a NOR 

flash. Reduced density also results in higher capacity and hence lower 

cost. Because of the series connection and removal of word line contacts, 

NAND flash memory is ideal for use in removable memory. NAND flash is 

used for data storage as a replacement to hard desk as well as external 

memory and memory cards. A major draw back to NAND flash is the 

weakness of its read signal, this result in a more complex sensing circuitry 

and read accuracy concerns. NAND flash is usually accompanied by an 

Error Correction Circuitry (ECC) to improve accuracy. 

Advantages: 

Flash technology enjoys huge wide spread, it is by far the most 

heavily produced memory today. Flash is easily scalable as its structure is 

in essence that of a single transistor. Flash memory is also very durable, 

which gives it an advantage in mobile memory applications. Not only is 

Flash one of the densest memories (only considering the array and not the 

control circuitry), several advancements in the FLASH technology have 

showed a lot of success. A good example of the advances in flash is the 
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2-bit and 3-bit per cell storage flash essentially doubling or tripling the 

flash capacity by having multiple floating gates instead of 1.  

Disadvantages: 

The main disadvantage of Flash memory is the fact that high voltage 

in needed to force charge in and out of the floating gate. In order to 

achieve this high voltage power hungry charge pumps are designed in the 

chip to create high enough voltage. Charge pumps need time to charge 

and hence write access times for the flash are in terms of milliseconds. 

This is orders of magnitude slower than other memories like DRAM 

(Dynamic Random Access Memory), FeRAM (Ferromagnetic Random 

Access Memory), MRAM (Magneto-resistive Random Access Memory) or 

PMC (Programmable Metallization Cells also known as CBRAM). Also 

since flash requires high voltage circuitry the area cost of the first bit 

makes it very impractical for use as a small memory.  

 

 

Medical Devices Considerations: 

NAND flash is currently being used in medical devices replacing ROM. It 

is used to store firmware code as well as record diagnostic data collected 

by the device. Its high density and robust performance made it a good fit 

for use in medical devices. The main advantage of flash is during product 

development where firmware can be updated to add feature or eliminate 
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bugs without the need for a new fracture like in the case of ROM. 

However, embedding flash in a logic chip is an expensive process. 

Moreover, flash has a very high first bit power cost. Since the memory 

used in medical devices is usually small (approx. 256Kbyte) using flash 

result in more power consumption than ROM. 

2.2 ROM  

Mask ROM is one of the oldest types of memory still used today. 

Mask ROM is fabricated with the desired data permanently stored on it. 

Combinational logic is used for address selection. Each address contains 

predefined data that will appear on the output bus when that address is 

selected. ROM is nonvolatile, however, it is also non reprogrammable. 

This makes it unusable for applications that require rewriting data such as 

data collection and hard drives. ROM is used today primarily to store boot 

up code and in some cases to store firmware code that is unlikely to 

change.  

Advantages: 

Since ROM is one time programmable, it does not require any 

programming circuitry. Programming circuits are normally power 

consuming, this makes ROM more power efficient than many types of 

memory like flash. Another advantage of ROM is that it is almost directly 

scalable to any technology. It mainly consists of combinational logic that 
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point to hard coded data. ROM also consumes less area than single bit 

FLASH since it does not require any high voltage analog circuitry.  

Disadvantages: 

ROM reads are generally slow.  In a personal computer, SRAM is 

often used as an intermediate storage (Cache) to fetch code currently in 

use by the Central Processing Unit (CPU). ROM data is fabricated in 

silicon; it requires special radicals that will be used to hardcode the data. 

This makes ROM very specific to a certain application. ROM is only cost 

efficient when used in large scale manufacturing. Depending on the 

number of chips being fabricated, ROM can be the cheapest alternative.  

Medical Devices Considerations: 

ROM is generally used to store Firmware in a final product after R&D 

is completed. ROM can be much cost efficient if sufficient volume is 

produced. However, the fact that ROM is not programmable makes it a 

very expensive choice for use in research and development where 

firmware code needs much iteration to finalize. It also makes ROM not 

suitable to use to store diagnostic needed and hence another form of 

memory (EEPROM or Flash) is still needed alongside ROM. 

2.3 FERAM 

 Ferroelectric random access memory is one of the emerging non 

volatile memories that compete with flash and other NVMs. The FeRAM 

structure is resembles that of a DRAM 1T1C structure (as shown in figure 
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4) but instead of storing charge in a capacitor, FeRAM stores data in a 

ferroelectric layer. Data stored in the ferroelectric layer is permanent and 

is not erased when power is off.  

 

  

Figure 4: FERAM cell structure: the FeRAM cell structure resembles 
that of a 1T1C DRAM with a ferroelectric layer instead of a capacitor [16] 
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Figure 5. PZT crystal structure showing the Ferroelectric layer atom 
movements changing its resistance [12] 

 

Theory of Operation: 

The operation of the FeRAM is very similar to that of the DRAM. In a 

DRAM, cell writing is performed by either draining the dielectric of any 

charge (normally that means a logic “0”) or charging the capacitor 

temporarily (normally a logic “1”). The main advantage is that, unlike the 

capacitor that only holds the charge temporarily, the ferroelectric layer 

does not require constant refresh writes.  

 In a FeRAM cell, the dielectric is replaced by a thin ferroelectric film 

of lead zirconate titanate [Pb(Zr,Ti)O3], commonly referred to as PZT 

shown in Figure 5. The Zr/Ti atoms in the PZT change polarity in an 

electric field to one of two possible polarities depending on the direction of 

the electric field. By charging the plates, the dipoles tent to align 

themselves with the field direction, and become permanently polarized. As 

shown in figure 4.  Polarization is accomplished due to small shifts in the 

atom position within the crystal structure towards the electric field and 

hence redistributing the electric charge in the crystal. Once the 

ferroelectric layer is polarized it retains its state unless an electric field is 

applied. The ferroelectric have two possible polarization state “-Pr” and 

“+Pr”. To program the FeRAM cell, the plates are charged to produce an 
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electric in the two possible directions causing a ferroelectric layer to be 

polarized in the +Pr or –Pr direction.  

 The FeRAM memory technology relies on a characteristic of the 

ferromagnetic layer. When the Ferroelectric layer changes polarity, a brief 

pulse is created on the output as a result of the reorientation of atoms that 

attract the electrons towards the metal. This characteristic is utilized to 

read the memory cell. In reading the FeRAM cell, the cell is programmed 

to a specific polarization (say +Pr), if no pulse is sensed, then the cell held 

a previous polarization of (+Pr) and this is interpreted into a 1 or 0. If a 

pulse is sensed, then the cell held the opposite polarization (-Pr) and data 

is interpreted accordingly. One obvious disadvantage of the FeRAM is that 

this reading technique erases the previous content of the cell (destructive 

read) and hence the cell will need to be reprogrammed after each read 

operation. 

Density: 

      There are two limitations that prevent FeRAM from becoming fully 

scalable. The first is the fact that a minimum amount of charge needs to 

be created during read in order to trigger the sense amplifier with 

reasonable accuracy. Another factor is that the ferroelectric material loses 

their ferromagnetic property when they become very small. Presently, 

FeRAM is manufactured down to 130nm. 

Power Consumption: 
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       FeRAM does not need any refresh writes since the ferroelectric 

material hold its polarization permanently. This gives the FeRAM an 

advantage over dielectric memories like DRAM. Even though significant 

charge is required to charge the plates and polarize the ferroelectric layer, 

unlike Flash memory, FeRAM does not require any high voltage circuitry. 

FeRAM consumes only 27µJ to write 4K bytes to an F-RAM [12].  

Currently, FeRAM has matured to be in production for 512K X 16 and 

requires a voltage between 2.7V and 3.6V for program and erase 

operations.  

Speed and Performance: 

       FeRAM operation is based on polarizing the ferroelectric material and 

displacing its atoms. This happens theoretically in the order of 

nanoseconds. In theory this operation is even faster than charging the 

capacitance in the DRAM to sufficient level to hold data. The fast access 

time makes FeRAM compete with the fastest memories available. 

Moreover, unlike the Flash, FeRAM does not require high voltage that is 

created through a charge pump that takes milliseconds to charge. A 

typical read or write access time is approximately 60ns [11]. 

Write Cycles: 

        Maximum write cycles for FeRAM exceed 1012 which is orders of 

magnitude faster than conventional Flash memories.  

Medical Devices Considerations: 
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       FeRAM is considered very suitable for use in medical devices for 

Flash memory replacement. As detailed in the leading sections it has both 

area, power and performance advantages over Flash memory. Unlike 

Flash, FeRAM does not require extremely high voltage (when compared 

to the logic process). However, the voltage required to program and erase 

FeRAM is still significantly higher that the logic operation voltage. 

Moreover, there has not been a lot of literature on how difficult it is to 

embed FeRAM in logic chips. Another consideration that further 

characterization is required to determine if FeRAM can change its state 

under high magnetic fields (MRI). 

2.4 MRAM 

Theory of Operation: 

        MRAM is unique in the fact that, unlike conventional memory where 

data is stored in the form of an electric charge or current flow, MRAM data 

is stored in magnetic storage elements. These elements consist of two 

ferromagnetic plates. Each plate is capable of holding a magnetic field. To 

store data, one of the plates is set to a particular polarity (acting as a 

permanent magnet); the other plate can be programmed with an external 

magnetic field to one of two possible polarities. To program the MRAM, 

the programmable plate field is set to a similar or opposite polarity as the 

permanent magnet. A thin insulating layer is placed between the two 

plates through which electron can tunnel through from on layer to the 
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other. This phenomenon is called the magnetic tunnel effect. If the 

magnetic fields on the two plates are parallel, electrons are more likely to 

tunnel through the barrier layer hence decreasing the cell resistance. If the 

magnetic fields on the two plates are opposite in polarity, electrons are 

less likely to tunnel through the barrier layer hence increasing the cell 

resistance. To read an MRAM cell, the electrical resistance is measured 

by passing a current from the cell to the ground. Generally, if the two 

plates have the same polarity, the resistance is lower and a logic “1” is 

read. If the polarities of the plates are opposite, the electrical resistance is 

higher and a logic “0” is read.  
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Figure 6: MRAM cell structure showing the programmable cell is placed 
between two write lines at right angles from each other. The anti-

ferromagnet layer is used in “toggle mode” [16] 
 

Several techniques to program the MRAM cell have been 

developed. Conventionally, the programmable cell is placed between two 

write lines at right angles from each other as shown in figure 6. When 

current is passed through the write lines a magnetic field is created. The 

programmable plate picks up that field and its polarity changes 

accordingly. Several disadvantages arise from using this technique, most 

importantly write integrity and power consumption. Significant current 

needs to be passed through the write lines to create a sufficient magnetic 

field. This makes the circuit relatively power hungry. Another disadvantage 

is that this technique limits the scalability and density of the MRAM cell. As 

technology shrinks and cells become close together (at about 180nm) it 

becomes more difficult to create a magnetic field that can target a specific 

cell without affecting neighboring cells. Cells close to the one being 

programmed can also be partially or fully programmed. This is called the 

half select phenomenon. 

To overcome this problem, another approach has been developed to 

program the MRAM cell namely the “toggle mode”. The toggle mode uses 

a multi-step write with a modified multi-step cell. An artificial anti-

ferromagnet is added to the cell whose magnetic orientation rotates back 
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and forth across the surface. This allows the programmable plate to have 

only two stable polarities. Write is performed by passing current to one 

plate and delaying the current on the other, therefore, rotating the field 

until the plate reaches the stable polarity. If the exact field intensity is not 

reached, the plate returns to its previous state and hence preventing the 

half select. A disadvantage to this approach is that it adds a lot of 

complexity to the cell as well as the control circuit. Also while the toggle 

method solves the half select issue, it does not address the large power 

consumption resulting from passing a significant amount of current for 

writes.  

Among the most recent techniques still under refinement is the Spin 

Torque Transfer (STT). In this technique, spin aligned or polarized 

electrons are passed through the magnetic layer to directly torque the 

programmable ferromagnetic plates. When the polarized electrons pass 

through the un-programmed magnetic layer they change their spin. This 

re-polarization result in a continuous torque in the magnetic layer until it 

reverses its polarity. While this technique is very promising to solve the 

half select problem, it is only applicable to smaller technologies where 

lower current is needed for programming. 

Density: 

Even though MRAM has a very similar structure to that of one of the 

densest memories (the DRAM 1T1C structure), write integrity becomes an 
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issue at smaller technologies due to the half select problem when nearby 

cells get unintentionally partially programmed. Toggle mode writes provide 

some protection from the half select and allow MRAM to scale to smaller 

technologies (90 nm). As STT is refined scientists speculate that MRAM 

will be fully scalable. 

 

 

Power Consumption: 

While the MRAM cell requires relatively more current to write than 

other conventional memories like DRAM, it does retain data even when 

the power is off and hence does not require any refresh writes. It also 

does not require any high voltage circuitry for programming which gives it 

an advantage over FLASH that requires high voltage for high voltage 

writes. Even though conventional MRAM requires a lot more power for 

writes than reads, STT promises great power saving that will make the 

MRAM write power consumption close to the read power consumption. 

Speed and Performance: 

One of the main advantages of MRAM is that is surpasses pretty 

much all other memories except SRAM in write/erase time. MRAM 

operations are based on measuring voltages and not charges which result 

in less settling time.  Researchers demonstrated access times as low as 

1ns. When compared to flash, MRAM writes are hundreds if not 
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thousands of times faster that the flash programming time. Current sample 

chips offer a 35ns read/write time [13]. 

Even though SRAM has a slightly faster access time than SRAM is 

typically consists of a six transistor (6T) structure which makes it a much 

less dense and thus more expensive choice.  

 

 

Medical Devices Considerations: 

 MRAM technology dependence on a magnetic field for program and 

erase operations makes it a poor choice for use in medical devices. In 

addition to the MRAM data integrity issues mentioned above, its sensitivity 

to intense magnetic fields makes raises concerns on medical device 

performance under an MRI. Also the high current use to generate the 

magnetic fields results in higher power consumption affecting device 

longevity. 

2.5 PRAM 

PRAM is one of several non-volatile memory technologies that have 

emerged as possible flash alternatives. Even though the technology has 

be around since the 60’s, material quality and power consumption issues 

have just recently been improved enough to revive serious interest in this 

type of memory. 

Theory of Operation: 
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PRAM makes use of the unique behavior of Chalcogenide glass 

which can be switched between two states (crystalline and amorphous) 

with the application of heat. The two states have very different electrical 

resistance. The amorphous state has a very high resistance and is 

conventionally used to represent a logic “0” while the crystalline state has 

a much lower resistance and is used to represent a logic “1”. The most 

popular chalcogenide used is an alloy of germanium, antimony and 

tellurium (GeSbTe). This alloy changes its state from a crystalline to 

amorphous state when high temperature is applied (> 600 C). To transition 

back to a crystalline state, the alloy is heated to above its crystallization 

point but bellow its melting point .Recently, literature has been published 

that proves that two other intermediate states between amorphous and 

crystalline can be detected. This allows double bit storage in a PRAM cell. 
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Figure 7: A cross section of two PRAM memory CELLS (One cell is in low 
resistance crystalline state, the other in high resistance amorphous state) 

[16] 
 

 

Density: 

The main concern in area arises from the fact that very high current 

(>105 A/cm2) is needed to be passed through the active volume to change 

the chalcogenide phase. This requires a relatively large drive transistor 

that results in an area disadvantage. PRAM program and erase are 

destructive processes, i.e. they slowly degrade the PRAM cell. However, it 

has been shown that a PRAM cell can sustain 108 writes which is much 

more than FLASH. Moreover, current has to target each cell 
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independently, with the reduction in active area size cells tent to degrade 

faster.  

Power Consumption: 

PRAM cells require high voltage (> 12 V) to provide enough bias to 

drive sufficient current into the active area. This results in a power 

disadvantage. Also, as technology shrinks, this enormous current 

inevitably leaks into neighboring cells resulting in an increased power 

penalty. More importantly, since heat energy (through passing very high 

current in a small area) is used to program and erase PRAM cells very 

close attention is needed to ensure proper isolation of PRAM cells. The 

heat energy wasted in the process of program and erase is lost resulting 

in more electrical power consumed. 

 

Speed and Performance: 

While slower than DRAM, studies showed that PRAM can achieve 

switching times as low as 5ns. This is orders of magnitude faster than 

FLASH. 

Disadvantages: 

Power consumption is a concern with PRAM. Most emerging NVM 

technologies do not require any high voltage circuitry and use currents in 

the order of a few nano-Amps. Another major disadvantage of PRAM is its 

temperature dependence that requires significant changes to the 
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fabrication process. PRAM has to be programmed on board after solder 

as the high temperature solder process can change the PRAM cell phase. 

Medical Devices Considerations: 

The high voltage required to generate very high current density 

greatly increases PRAM power consumption. In addition, both reliability 

and temperature isolation concerns arise from the PRAM dependence on 

heat for program and erase functions.  Like Flash, high voltage circuitry is 

needed to produce the high current intensity. High current operation 

means that it will be very difficult to embed PRAM into a digital chip.  

 

 

 

2.6 PMC (CBRAM)  

 
Recently with the great advances in the semiconductor industry and 

the continuing enhancement in processes that are capable of producing 

minimum dimensions in the sub 20nm range. It has become clear that 

memories that rely on charge storage (Flash, DRAM …etc) will have a 

hard time keeping up its data retention or state detection reliability with the 

continuously shrinking technologies. This is due to the fact the a minimum 

amount of charge need to be stored or trapped to result in a significant 

change in the cell resistance or threshold voltage to be reliably detected. 
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As recorded in the International Technology Roadmap for Semiconductors 

(ITRS) semiconductor memories that rely on charge storage may reach its 

scalability limits in the few years to come[10].  

Among the most promising alternative NVM technologies is the 

CBRAM (conductive bridge memory) or PMC (Programmable Metallization 

cells). Like PRAM, PMC memory is a type of RRAM (Resistive Random 

Access memory) that rely on data storage via changing the resistance of a 

material rather than charge storage. PMC memory show the potential of 

overthrowing Flash and becoming tomorrow’s ultimate memory. Studies 

on PMC show excellent scalability, speed, data retention, endurance, as 

well as power efficiency [3]. More importantly, it is very cost efficient as its 

fabrication requires few back end of Line (BEOL) flow steps which makes 

it compatible with most fabrication processes currently in place. The PMC 

technology utilizes the electrochemical formation and dissolution of 

conductive bridges or pathways made of highly conducive metals such as 

silver or copper through thin film solid electrolytes. These electrolytes 

have very high permeability to allow for high metal ion mobility through the 

electrolyte. They are typically chalcogenide (compounds containing 

element form the periodic column headed by oxygen with glass like 

properties). Conductive metal atoms such as silver or copper are then 

dissolved into the electrolyte. A thin film of the metal doped electrolyte is 

placed between an inert electrode and a silver or copper (depending on 
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the doping metal) to form the oxidizable electrode. Under normal 

conditions, the electrolyte exhibits a very high resistance due to the high 

resistivity of the electrolyte. By applying a bias voltage in the order of a 

few hundred mV ions form the metal electrode will be reduced at the inert 

cathode. Close by ions in the electrolyte will move to fill in for the reduced 

ion until eventually an ion moves from the metal anode into the electrolyte 

as shown in figure 8. Charge neutrality is maintained through the reduction 

of ions at the cathode and new ion moving into the electrolyte. The electro 

deposition process continues until a nano wire resulting form the 

accumulation of the conductive metal atoms on the cathode is formed 

between the electrode and the cathode. The formation of this conductive 

bridge results in the reduction of the device resistance by many orders of 

magnitude (approximately 100 kOhms) [1].  

The resistance reduction is very considerable once the conductive 

bridge is formed, however, if the bias voltage needed to sustain the 

electro-deposition process is removed before then, the electro-deposit 

process ceases leaving the structure with a still high resistance. Once the 

conductive bridge is formed the current through the device surges to the 

current limit value set by the current limiter and the voltage across the 

device decreases to the threshold of the electro deposition causing the 

process to stop [1]. It is also worth mentioning that the threshold voltage 
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required to maintain the electro-deposition process is lower that the 

threshold voltage required to initiate the write process. 

Resetting the device back to its high resistance state is done by reverse 

biasing the electrodes causing the electro deposition process to be 

reversed. In this process, the inert electrode along with the 

electrodeposited metal is made to be more positive than the oxidizable 

electrode. This will cause the deposited metal to dissolve in the electrolyte 

in the form of ions. The ions are the move to the low density atom area in 

the metal electrode where the ions were dissolved in the programming 

process. Once the conductive bridge is dissolved the process self 

terminates.  

Theory of Operation: 

 

 
Figure 8. PMC program operation; Ion are reduced on the inert electrode 

forming a nano-wire (bridge) reducing the resistance of the PMC [17] 
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In essence , the PMC technology relies on the electrochemically 

changing the resistance of ion conducting material through the formation 

and dissolution of metallic pathways in the ion conducting material (e.g. 

Ge-Se electrolytes ) sandwiched between an oxidizing electrode and inert 

electrode [6 ]. 

The programmable metallization cell is essentially an alloy of conductive 

metal atoms (e.g. Ag or Cu) dissolved in an ion conducting electrolyte 

placed between two electrodes. When a bias of a few mV is applied for a 

few nano-seconds [3] to the electrodes, a conductive pathway of metal is 

formed by oxidizing metal ions from the oxidizable electrode (e.g. Ag) that 

migrate through the electrolyte and are reduced on the inert electrode. 

This process continues until a nano-wire if formed between the two 

electrodes. This reduces the resistance between the electrodes by many 

orders of magnitude. The state of the PMC can be easily detected by 

simply sensing the resistance between the electrodes. No sophisticated 

sense circuitry is needed as the difference in resistance is lower by many 

orders of magnitude between the ON and OFF states. 

Density: 

Programmable Metallization Cells have a great advantage over 

other emerging memory technologies when it comes to area and 

scalability. Even though this memory technology is still in the 

characterization stage, robust functionality has been demonstrated for cell 
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with diameter of 20nm [14]. Theoretically feature size is projected to be 

shrinkable to 5-10 nm [10]. Literature showed that Vth and the ON 

resistance do not get vary much by reducing the cell size while the OFF 

resistance decreases as expected (figure 9). The difference between the 

ON and OFF resistance increases making the PMC allowing the PMC to 

be fully scalable.  

 

Figure 9. Scalability of CBRAM switching parameters from 5µm to 40nm at 
room temperature, with the contact area A of the tungsten plug [14] 

 

Power Consumption: 

PMC memory operation consumes ultra low power which makes it 

very suitable for use in medical devices. PMC memory write current are as 

low as 1nA (1nA -1 mA) [6]. A few hundred mV are applied for both 

program and erase for only a few tens of nano seconds (as low as 20ns)   

[10]. Moreover, simple sensing circuitry can be used to detect the state of 
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the PMC due to the great difference in resistance between the OFF and 

ON states. 

Data Retention and Reliability: 

Data storage through the displacement of ions in PMC has proven 

very reliable. PMC show great durability. Even after 10 years the 

difference between the ON and OFF states are still extremely wide (10-2) 

[6], [9] and [14].  Figure 10 shows robust data retention for more that 10 

years at 50 and 70 degree Celsius. Studies have shown that PMC 

technology operate at a wide temperature range. Figure 11 shows that the 

dependence of PMC critical parameter on temperature. The threshold 

voltages and ON resistance do not vary significantly by varying 

temperature. The OFF resistance slightly decreases with temperature but 

stays orders of magnitude large that the ON resistance.  
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Figure 10. CBRAM data retention measured at elevated temperatures (via 
diameter 850nm) [14] 

 

Figure 11. CBRAM switching parameter at different operating 
temperatures (viadiameter 380nm) [14] 

 
Write Cycles: 

It has been demonstrated that PMC withstand more that 1010 

switching cycles which is orders of magnitude more than that FLASH 

maximum write cycles. It has been demonstrated that write currents as 

low as 1nA are sufficient to write PMC [6]. By carefully controlling the write 

current the prospect of multi bit storage by performing partial writes where 

the ions in the electrolyte are oxidized to form only a partial nano-wire. 

Discrete resistance states can be formed by varying the programming 

current which affects the shape of the nano-wire. 2n states are required to 

store n bits. Literature shows PMC is capable of producing at least 4 
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discrete states by varying the programming current as shown in figure 12 

and 13. 

Speed and Performance: 

Access time of less that 40ns have already been demonstrated [7]. 

This is many orders of magnitude lower than FLASH access times. ITRS 

projects PMC cycle times to be reduces to 20ns [ITRS 2009]. While this 

extremely fast speed in not an essential characteristic for memories used 

in medical devices, it is easy to see that great power consumption 

advantage this access time will produce and the impact on product 

longevity. 

Future Enhancements: 

PMCs show unique switching characteristics that could be used to 

expand the PMC to store multi bit data in a single cell.  In PMC 

programming current (Iprog) passing through the device is a major factor 

in determining the shape of the nano-wire bridge formed and hence the 

final low resistance of the device. This process can be used to create 

multi-level capability (MLC). Figure 12 demonstrates the final ON 

resistance vs. the programming current. It is noted that even at the higher 

ON resistance (approximately 106 Ohms) is still at least an order of 

magnitude lower than the OFF resistance as shown in figure 13.  
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Figure 12. Dependence of the ON-state resistance on the programming 
current for cbram devices (via diameter 380nm) at room temperature [14] 

 

 

Figure 13. CBRAM multi-level capability, programming currents for ON-
levels 1: 0.5µA, 2: 2µA, and 3: 20µA, respectively (via diameter 100nm) 

[14] 
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Disadvantages: 

Since a PMC element needs only a few hundred mV to write and 

erase. Close attention need to be paid to the sensing voltage. The sensing 

voltage need to be closely controlled and significantly lower than the 

already low program and erase voltages. While this is beneficial for lower 

power consumption this type of memory requires a very controlled voltage 

source for reads [9]. 

Medical Devices Considerations: 

        Programmable metallization cells memory technology is ideal for use 

in medical devices. It requires very low voltage for program and erase 

operations resulting in power consumption that is orders of magnitude less 

that flash. It also does not require any high voltage circuitry resulting in a 

very low first bit cost. It is very easily integrated into the logic process with 

only two additional steps required to embed PMC in digital chips. It also 

showed very robust performance and can withstand many write and erase 

cycle and very long time periods. It also shows great potential for 

scalability and multi-bit storage which is something FeRAM does not offer.  
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2.7 NVM Critical Parameters Comparison: 

 
Even though the CBRAM technology is in the early stages of 

development when compared to more mature new NVM technologies like 

FeRAM or MRAM, CBRAM is projected to have a superior overall 

performance when compared to other new memory technologies. The 

International Technology Roadmap for Semiconductors (ITRS), an 

independent research organization projects CBRAM to have superior 

feature size, overall are, data retention as well as write, erase and read 

time. The table below compares CBRAM side to side with other memories. 

The table demonstrates superior projected performance for CBRAM in 

each critical parameter. Date was obtained from the 2009 ITRS report. 
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Chapter 3 

3 Embedded PMC Modeling in Verilog A  
 

In chapter 2 a thorough study on available non-volatile memory 

technologies suggested that PMC technology is the most suitable for use 

in medical devices as a potential replacement for Flash memory followed 

by FeRAM technology. Currently several medical devices used in study 

uses 256Kbyte of embedded flash memory along with a 16Kbyte SRAM 

chip. The goal is to simulate the power, area and reliability advantage of 

using PMC to replace  embedded Flash memory. An easy , low cost to 

simulate the use of the PMC is to build a behavioral model that is then 

used to build a virtual PMC memory array that can be then simulated and 

compared against Flash. The model will be used to simulate the 

replacement of Flash with PMC in the microcontroller in the Medtronic 

Adams Pacemaker Family. The results from these simulations should 

provide an idea about the power saving when compare to the current 

embedded Flash memory. We shall use the electrical characteristics of 

Ag-Ge-Se PMC elements while choosing the right size driver transistor. 
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3.1 HDL Behavioral Modeling of Analog subsystems in Mixed signal 
chips: 

 

Today’s mixed signal IC’s are becoming more complicated carry 

more features than ever before. While the digital portion of mixed signal 

system is adequately simulated and verified using HDLs, it is much more 

difficult and more time consuming to simulate analog blocks using 

simulation engines like SPICE or SPECTRE. While using these simulation 

engines is necessary to verify analog blocks, it has proven to be extremely 

inefficient to be used as the main instrument to verify analog digital 

interaction as well as other system level simulations. In a moderate size 

ASIC these each simulation may take days.  

Conventionally, analog blocks were simulated in isolation of the rest 

of the system and then integrated into the system and the analog digital 

interface was sometimes verified visually. This method while might have 

been adequate for smaller system is very preliminary and normally rely on 

the designer’s thoroughness. It also does not verify the active interface of 

timing. Moreover, with today’s large systems, it can be impractical to use 

visual inspection.   

 With the rising cost of new technology mask costs and the increased 

complexity of mixed signal design , it has been evident that a new 

verification method is needed that can verify the block level integrations 
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and interface and also do that in a manner that does not impact the time to 

market of the IC.  

Using analog block behavioral modeling HDL in verifying system 

level interactions has proven to be a practical way of verifying system and 

block level interactions without the time overhead of simulating the whole 

system in gate level. Behavioral modeling allow for a flexible level of 

extraction where the designer can define  the behavior of an analog block 

at a top level or at a level very close to the actual circuit.  Depending on 

the level of abstraction running mixed signal simulations using behavioral 

models is a lot faster that running the actual gate level simulation.  

Moreover, depending on how the system is portioned the designer has the 

flexibility of running actual analog blocks and behavioral models for others 

depending on his simulation targets. Most mixed signal simulations engine 

(like Cadence AMS simulator) and other allow the flexibility of running 

blocks in different languages at once (RTL, Verilog A/ AMS, Spectre, gate 

level etc.)   

Another benefit it that behavioral modeling allows system designers 

to compare different system options in initial planning stages without 

having to go through the design cycle. Using general information about 

analog blocks, system engineers can construct a behavioral model for a 

specific block or IP and simulate their system with it to compare its 

performance. A clear example of this application is using behavioral 
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models for embedded memories. By knowing the most critical memory 

characteristics normally available in the public domain and without the 

need to develop the actual memory, one can the study the system 

behavioral when using different memory types and compare critical 

parameters such as speed and power consumptions. 

This paper presents the use of a Verilog A behavioral model to mimic 

the behavior of PMC (CBRAM) and compare it to an existing system the 

uses EEPROM. 

3.2 PMC Cell Physical Model:  
 

The Verilog A model used to represent the PMC single bit cell was 

derived from the Spice model presented in [8]. The SPICE model used in 

this study was developed by Nad Gilbert and presented in [8].  The spice 

model in figure 14 representing the PMC single bit cell presented in [8] 

can be divided into four sections. Physical parasitic, threshold 

comparators, Write dynamics and Erase dynamics. The Verilog A model 

will ignore the physical parasitics except for the cathode and anode 

parasitic capacitors that are represented in the slew defined for the current 

to ramp up.  
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Figure 14. PMC SPICE MODEL representing the PMC single bit cell [8] 

 

In both the Spice and Verilog A models the PMC write and erase 

dynamics are represented by the CAG and a voltage dependent current 

source acts as a voltage controlled resistance, these elements emulate 

the oxidation and reduction of Ag in the electrolyte hence representing the 

write and read process. 
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Figure 15. PMC parasitics equivalent circuit [8] 
 

Figure 15 shows the equivalent circuitry of a PMC device. 

Capacitance CA represents the anode parasitic capacitance and CC 

represents the parasitic capacitances of the cathode to the substrate. RA 

and RC represent the electrodes contact resistances.  Capacitance CED 

represents the capacitance of the dielectric around the electrolyte 

material. Capacitance CG in series with the voltage controlled voltage 

source model the variable capacitance of the PMC device. The 

capacitance CG decreases when the cell is written and increases when 

the cell is erased.  

In the Spice model a write process is represented by increasing the 

charge stored in the capacitor CAG hence increasing the current GON 

effectively decreasing the resistance between the anode and the cathode. 

In the erase process electrons are pulled off the capacitors which 

decreases the reference voltage in the GON and its output current, hence 



    

 48 

decreasing the over all resistance of between the anode and the cathode. 

The current output of GON is controlled by: 

 

IGon  = V an;ac  x  Y con + (V an;ca /Roff)                                        eqn. 1 ref [8] 

Or  

Ron = Roff / (Roff + Y con + 1)                                                     eqn. 2 ref [8] 

-Ycon is numerically equivalent to node voltage CON which is designed to never go below 

0V. 

 

 

Figure 16. Comparators and thresholds for PMC switching dynamics [8] 
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      In the spice model, voltage comparators (shown in Figure 16) are used 

to monitor the voltage across the electrolyte and trigger a write or an 

erase. The voltage difference between nodes AN and CA is measured by 

E1 and then compared to a number of references. SPICE E-Elements and 

reference voltages are used to initiate and stop write and erase processes 

in the spice model. E-Elements EC1, EC2, and EC3 and their 

corresponding reference voltages RF1, RF2 and RF3 are used to trigger 

the three write modes. E-elements EC4, EC5, EC6 and their 

corresponding reference voltages RF4, RF5, and RF6 are used to trigger 

the erase processes. EC7 and RF7 are used to trigger a write when the 

electro-deposition process on the cathode has already started also known 

as a “second write”. A second write requires less threshold voltage than 

when the oxidation-reduction process needs to be initiated. E-element 

EC8 and reference RF8 are used detect the device resistance and stop 

the erase cycle when the resistance of the device has returned to the off 

value. EC9 and EC10 along with references RF9 and RF10 are used to 

switch between erase voltage and current modes where current is needed 

to initiate the electro-deposition process by breaking the link and voltage 

completes the process.  

The E-elements and their corresponding references initiate the write or 

erase processes. The variance in the cell resistance is achieve by 
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increasing and decreasing the current flow on COV and hence increasing 

or decreasing the current though the device and varying its resistance.  

It is important to note that the write mechanism is drive by both the current 

through the cell and the voltage across the anodes. The current is an 

important factor as is contributes to the amount of Ag atoms in the 

electrolyte forming the conductive bridge. Both current and voltage are 

used to determine the device resistance in the Spice model.  

The three write mechanism are triggered by E-elements and modeled 

as voltage controlled current sources GW1, GWV, and GW2. The write is 

initiated when the voltage across the cell is large enough to initiate the 

electro-deposition process. This is determined by EC3 and RF3 in 

figure16. Once this write mechanism is triggered element EWV multiplies 

the voltage across the cell by a gain determined experimentally by curve 

fitting and converts it to current from GWV that is then integrated over time 

resulting in a voltage across CAG. As a result the voltage controlled 

voltage source CON creates current form across the device. After the 

electro-deposition process starts and current starts flowing across the 

device, the current contribution is modeled by GW1. The comparator EC1 

and reference RF1 in figure 16 are used to determine that the voltage 

threshold have been developed across the device. The current flowing 

through the device is measured and converted to voltage by HW1 

modeling the current contribution factor. The voltage across HW1 is then 
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converted to current by GW1. The current is integrated across CAG.  After 

the electro-deposition process starts a lower voltage is required to keep it 

going that that to initiate it. Given that enough voltage is provided to keep 

the electro-deposition process going (determined by EC2 and RF2 in 

figure16), the current across the device is measured and converted to 

voltage by the current controlled voltage source HW2. The voltage 

controlled current source GW2 then converts this voltage back to current 

after multiplying it by a gain and integrates it over time across CAG. 

Depending on the voltage across the cell and whether or not the electro-

deposition process has started, one or all three modes can take effect at 

the same time.  

 

Figure 17. Dynamic write section of SMM for PMC. The sections include, 
FROM top to bottom, the first threshold current controlled, voltage 

controlled, and secondary threshold current controlled write operations [8]. 
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The erase circuitry shown in figure18 also depends on both the 

current and the voltage across the device but in the reverse direction. 

Comparators EC9 and EC10 control the transition between voltage and 

current modes. The voltage controlled current sources E1, E2, and E3 

convert the erase voltage across the device to current provided the 

minimum erase threshold voltage is available. The current is in the 

opposite direction compared to the write current controlled voltage 

sources. E-element EBE in Fig.10 and E3 in figure18 ensure the voltage 

at node CON does not go below zero. The fast erase is process is 

modeled by comparator EC6 in figure 16. When a large negative potential 

is provided across the device EC10 initiates the voltage mode. GE1 

converts the voltage form E1, E2, and E3 to a current that pulls the charge 

off CAG reducing the voltage at CON and increasing the device 

resistance. HE2 converts the current across the device to voltage the then 

passes through ES6 that only allows positive voltage. Depending on the 

voltage on CON ES5 works as switch that turns on or off the voltage 

mode. The voltage is then finally turned to current by GE2. The created 

current pulls the charge off CAG further increasing the device resistance. 
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Figure 18. Dynamic erase section of SMM for PMC. The sections include 
thevoltage and current controlled erases froM top to bottom, ref [8]. 

 

PMC Physical Model simulation results ref [8]: 
 

The SMM model discussed in section 6.1 simulated very closely to 

the lab results for a 0.5 µm diameter Ag33Ge20Se47 PMC cell. Results in 

figures19 and 20 were obtained by applying a voltage sweep from -0.5 to 

0.5 volts with the current being limited to 10 µA.  

 

 

 



    

 54 

 

Figure 19. Results of curve fitting simulation data with experimental IV 
datafrom 4155. The device diameter was 0.5 µm. The current limit was 10 

µA, ref [8]. 
 

Figure 19 shows that under forward bias the current remains very low 

the electrochemical deposition threshold of 200mV is reached , then the 

PMC device resistance is significantly lowered (as shown in figure20)  and 

the current then ramps up until it reaches the voltage limit of 10µA. In a 

negative sweep on an ON PMC device shows the current remaining at the 

current limit of 10uA down to about 80mV since the PMC device has 

already been written before the device becomes ohmic. The constant 

current is achieved by lowering the voltage across the device. Once the 

erase threshold is reached at the resistance starts to increase and current 

is lowered by the erase mechanism describe earlier.  
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Figure 20. Results of curve fitting simulation data with experimental RV 
data. The device diameter was 0.5 µm. The current limit was 10 µA, ref 

[8]. 

3.3 PMC Cell Hardware Description Language (HDL) Model:  
 

The PMC HDL model follows the same concept the SMM model 

employs. In fact, the HDL describes the same exact circuit. The main 

advantage of the HDL model is that is provides the designer with a very 

fast way to simulate large arrays of PMC memory in a reasonable time 

frame to acquire top level information regarding the feasibility and benefits 

of using this type memory in a system.  The PMC model used in this study 

was developed by Nad Gilbert.  

To represent the voltage component of the write process, the voltage 

across the intrinsic device is multiplied by a gain GWV. The defined gain 

was determined by curve fitting. This converts the voltage across the 
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device to a current, given by GWV. The current is integrated over time as 

a voltage on the large capacitor CAG. 

VTH1 is the minimum voltage across the PMC device that can initiate 

the Ag reduction at the cathode and then its oxidation at the anode 

creating a conductive bridge.  In the SMM as well the HDL model no 

charge is forced on CON until this threshold is reached. The amount of 

current pumped to CAG is controlled by integration gain value GIW1 that 

is obtained by experimental results. In the Verilog A model the gain is 

used to directly reduce the control voltage VCON and hence, resulting in 

the reduction in the overall resistance of the PMC element. 

VTH2 is the minimum voltage across the PMC that will support 

continuing of the reduction/oxidation process that will lead to forming the 

conductive bridge.   In the Spice model, the amount of current pumped to 

CAG is controlled by integration gain value GIW2. In the Verilog A model 

the gain is used to directly reduce the control voltage VCON. 

If an excessive voltage of over 0.9 volts WVOV a high gain of GWOV is 

added to the above mentioned gains. The total of the integration of the 

above gains over the time that their respective threshold is met result in 

the amount of the charge stored in CAG in the Spice model. 

 

The verilog A model directly represent CON as a voltage controlled 

resistance governed by.  
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RCON = (ROFF-RPMCS)/ (ROFF*RPMCS); 

 

The voltage across RCON is modified by 

  V (CON) = idt(V(VWRa,VERa)*1, RCON, RST); 

 

Write Thresholds: 

To represent the voltage component of the write process the voltage 

across the intrinsic device is multiplied by a gain GWV, which is 

determined by curve fitting, and then converts it into a current, given by 

GWV. The current is integrated over time as a voltage on the large 

capacitor CAG. 

VTH1 is the minimum voltage across the PMC device that can initiate the 

Ag reduction at the cathode and then its oxidation at the anode creating a 

conductive bridge.  In the Spice model no charge is forced on CON until 

this threshold is reached. The amount of current pumped to CAG is 

controlled by integration gain value GIW1 that is obtained by experimental 

results. In the Verilog A model the gain is used to directly reduce the 

control voltage VCON and hence, resulting in the reduction in the overall 

resistance of the PMC element. 

VTH2 is the minimum voltage across the PMC that will support continuing 

of the reduction/oxidation process that will lead to forming the conductive 

bridge.   In the Spice model, the amount of current pumped to CAG is 
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controlled by integration gain value GIW2. In the Verilog A model the gain 

is used to directly reduce the control voltage VCON. 

If an excessive voltage of over 0.9 volts WVOV a high gain of GWOV is 

added to the above mentioned gains.  

     The total of the integration of the above gains over the time that 

their respective threshold is met result in the amount of the charge stored 

in CAG in the Spice model.In the verilog model the resulting current and 

voltage gains are used to vary the control voltage  

VWR = WI1*GIW1*abs(IPMC) + WI2*GIW2*abs(IPMC) + WV* GWV*abs(VPMC) 

+ WOV*GWOV*abs(VPMC); 

VER = EI*GIE*abs(IPMC) + EV*GVE*abs(VPMC) + EOV*GEO V*abs(VPMC); 

  //Control Voltage 

  V(CON) <+ idt(V(VWRa,VERa)*1, RCON, RST); 

 

Erase Thresholds: 

A similar approach is used to represent the erase cycle with the 

resulting gain in current converted to voltage that will eventually reduce 

the control voltage VCON.   

 

 

3.4 PMC cell level test bench: 
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 After the Verilog-A model for the programmable metallization cell 

was completed and imported to the Cadence Spectre ® simulation tool. A 

symbol was created that encloses the Verilog-A model as shown in figure 

21. A pulse voltage generator is uses to generate the program and erase 

pulses. Since the resistance of the PMC is decreased to a low resistance 

when programmed, a way to limit the current flowing through the device is 

needed to prevent very high current to flow when the device transitions 

between ON and OFF states. An easy way to create a current limiter was 

to construct another Verilog-A model for a current limiter.  

3.4.1 Current limiter Verilog-A model: 
 
        A current limiter was added in series with the power source to limit 

the current flowing through the device during the transition between high 

and low resistance states. The model essentially represents a variable 

resistance that increases its resistance if the current limit is reached. To 

allow for maximum flexibility of the model and to study the effects of the 

limiting the current on the behavior of the PMC device, the maximum 

current limit it left to be programmable in the model.  
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Figure 21. PMC test bench 

3.5 PMC Test Bench Simulation results: 
 
    The main objective of this project is to prove the feasibility, reliability 

and the power advantage of using PMC memory technology to replace 

Flash in medical devices. To do so, a series of simulations were 

performed to prove the performance of the Verilog models and then to 

pick the best parameter that provide a reliable memory performance with 

the minimum power consumption. Moreover, the following simulation 

provides an insight on the effect of the critical parameter built into the 

PMC and current limiter model and their effects on the memory 

performance.  
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3.5.1 PMC and Current Limiter Basic Functional Simulation: 
 
      To prove the operation of the PMC and current limiter model a basic 

simulation was performed to generate program and erase pulses that are 

a lot higher than the program and erase threshold voltages. A stimulus 

square voltage pulse of +-400mv with rise and fall time of 0.3us and a 2us 

period was used to program and erase the PMC model as shown in figure 

22.  

 

                 Figure 22. waveform showing input stimulus to the pmc cell 
 

The stimulus voltage source is connected in series with a current 

limiter to limit the current flowing through the PMC element at low 

resistance. The current limiter is connected in series with the PMC anode 

as shown in figure 21. The current limit is programmable in the limiter 

Verilog-A model. In this case the current was limited to 40uA. This limit will 

ensure the PMC model is supplied with enough voltage to set is to a low 

resistance value. Figure 23 shows the output of the current limiter.  
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Figure 23. Waveform showing input voltage (top) and current (bottom) to 
the PMC cell 

 

     Figure 23 shows the input current to the PMC anode, the initial positive 

spike in current shown on the waveform is due to the simulation timing 

resolution in capturing the response of the current limiter voltage limit.  

 

Figure 24. Waveform showing PMC cell resistance switching between 
OFF (high resistance state) and ON (low resistance state)  
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       This initial simulation proves the basic erase and program operations 

of the PMC. It also shows that the current limiter successfully limits the 

current to the value programmed in the current limiter Verilog-A model.  

3.5.2 Program Threshold (Vth ON) Simulation: 
 
      The programming threshold voltage (described as VTH1 in the PMC 

model Appendix A) is the minimum voltage needed to start the electro-

deposition process and hence to build the conducting nano-wire through 

the high resistance electrolyte. For the model to behave accurately the 

PMC resistance in the OFF state should remain the same even when a 

programming pulse in generated if the voltage on the PMC anode is less 

than Vth ON. To minimize the programming power consumption the 

programming pulse voltage should be very close to (but more than) VTH1. 

This way, adequate switching in achieved with minimum voltage. Another 

factor affecting the programming pulse power is the duration or period of 

the pulse. The minimum duration needed to program the device is defined 

in the model as integration terms as shown in the appendix. Medical 

devices currently run the digital at relatively low speeds (less that 1MHz) 

hence a program pulse period of a 1us minimum is adequate for use in 

medical device. A simulation was performed to prove that the modeled 

PMC is only programmed when the voltage on the anode is greater than 

VTH1. When the program voltage pulse was set to 240 mV (less that the 
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threshold voltage of 250mV) the PMC resistance did not switch to the low 

resistance stage as shown in figure 26. When the programming voltage 

was ramped up to just above the threshold voltage 255mV the PMC 

resistance showed proper switching as shown in figure 26.This models 

that fact that a minimum voltage is required to initiate the electro-

deposition process. It is worth mentioning that the model would allow the 

PMC programming voltage to be decrease below VTH1 (250mV) once the 

electro-deposition process starts (one the voltage on the PMC reaches 

VTH1 for a the minimum time unit) as long as the programming voltage 

does not fall below the minimum voltage required to sustain the oxidation-

reduction process (VTH2 in the model. However, it is deemed impractical 

and more complicated to use a programming pulse that varies between 

VTH1 and VTH2 and hence programming pulses above VTH1 was only 

simulate.  
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Figure 25. Waveform showing programming voltage (top) 240mV and the 
current through the PMC cell limited to 50uA (middle). The cell resistance 
(bottom) did not switch to the low resistance (ON) state as the minimum 

voltage of 250mV was not provided.  
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Figure 26. Waveform showing programming voltage (top) 255mV and the 
current through the PMC cell limited to 50uA (middle). The cell resistance 
(bottom) showed proper switching to the low resistance (ON) state as the 
programming voltage was above the minimum voltage required to initiate 

the electro-deposition process 
 
 
 

 

Effect of modifying the Write threshold Voltage (VTH1):  

      The Verilog A model can be modified to simulate variability in the 

PMC important parameters and its dependence on factors like heat, 

PMC contact area, time, number of writes and programming currents. 

The model described in this paper allows for varying critical variables 

by simply changing their value in the model. This can be very useful 

when expanding the model to simulate second order effect or to fine 
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tune the model to match the behavior of PMC cells with different 

dimensions or under different conditions.  

As shown in section 2.6 the write threshold voltage is independent of 

factors like contact area and number of cycle. However, write threshold 

voltage (VTH1) may vary significantly with factors like temperature. 

Figure 27 and 28 show the response of the model with VTH ON 

programmed to 250mV. Figure 29 show that the PMC can be 

programmed successfully using a programming voltage of 251mV 

slightly above the threshold voltage. Figure 30 shows that the PMC not 

being able to be programmed using a programming voltage of 240mV 

which is below the minimum voltage required to program the PMC.  

 

Figure 27. waveform showing waveform showing programming voltage 
(top) at 251mV and the current through the PMC cell limited to 400uA 

(middle). The cell resistance (bottom) showed proper switching to the Low 
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resistance (ON) state as the programming voltage is above the PMC 
model threshold of 250mV 

 

Figure 28. Waveform showing waveform showing programming voltage 
(top) at 240mV and the current through the PMC cell limited to 400uA 

(middle). The cell resistance (bottom) showed NO switching to the Low 
resistance (ON) state as the programming voltage is below the PMC 

model threshold of 250mV 
 

     The same simulation was repeated after modifying the model to 

reflect a 260mV required programming voltage. Figure 29 shows the 

PMC programmed successfully using a 261mV pulse while figure 30 

shows that a programming pulse with amplitude 255mV was not 

sufficient to program the PMC.  
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Figure 29. waveform showing waveform showing programming voltage 
(top) at 261mV and the current through the PMC cell limited to 400uA 

(middle). The cell resistance (bottom) showed proper switching to the Low 
resistance (ON) state as the programming voltage is above the PMC 

model threshold of 260mV 
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Figure 30. Waveform showing waveform showing programming voltage 
(top) at 255mV and the current through the PMC cell limited to 400uA 

(middle). The cell resistance (bottom) showed NO switching to the Low 
resistance (ON) state as the programming voltage is below the PMC 

model threshold of 260mV 
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3.5.3 Erase Threshold (Vth Erase) Simulation: 
 

Much like in the case of programming voltage threshold, a minimum 

voltage is needed to start the electro-deposition process required to 

dissolve the conductive bridge and explained in section 2.6. To insure the 

models accuracy, the programmed PMC model resistance should not be 

increased (erase) if the erase voltage in less than the threshold defined in 

the model. With the erase voltage set to 90mV (below the 100mV required 

to start the erase process), the PMC resistance did not switch back to the 

high resistance stage as shown in figure 31 

 

Figure 31. Waveform showing erase voltage (top) set to -90mV and the 
current through the PMC cell limited to 50uA (middle). The cell resistance 
(bottom) did not switch to the High resistance (OFF) state as the minimum 

voltage of -90mV was not provided.  
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When the erase voltage was increased to -150mV the PMC 

resistance switch to the high resistance state (OFF) state as shown in 

figure 32 

 

Figure 32. Waveform showing erase voltage (top) at -150mV and the 
current through the PMC cell limited to 50uA (middle). The cell resistance 
(bottom) showed proper switching to the High resistance (OFF) state as 

the erase voltage was set below the minimum voltage required to dissolve 
the conductive bridge  

 

Effect of modifying the Erase threshold Voltage (VE): 

    Erase threshold voltage can also vary with temperature and hence the 

value for the VE parameter in the model can be modified to match the 

performance at a give temperature. Figure 33 and 34 show the results of a 

PMC model with the -150mV erase threshold. Figure 33 show successful 
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transition to the high resistance state with the erase voltage pulse at   -

151mV. Figure 34 shows no transition when the magnitude of the erase 

pulse was -140mV.  

 

Figure 33. Waveform showing waveform showing erase voltage (top) at (-
151mV) and the current through the PMC cell limited to 650uA (middle). 

The cell resistance (bottom) showed proper switching to the high 
resistance (OFF) state as the programming voltage is below the PMC 

model threshold of -150mV 
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Figure 34. waveform showing waveform showing erase voltage (top) at (-
140mV) and the current through the PMC cell limited to 650uA 

(middle).The cell resistance (bottom) showed NO switching to the high 
resistance (OFF) state as the erase voltage is above the PMC model 

threshold of -150mV 
 

Figure 35 and 36 show the results of a PMC model with the -100mV 

erase threshold. Figure 33 show successful transition to the high 

resistance state with the erase voltage pulse at -101mV. Figure 34 shows 

no transition when the magnitude of the erase pulse was -99mV. 
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Figure 35. Waveform showing waveform showing erase voltage (top) at (-
101mV) and the current through the PMC cell limited to 650uA (middle). 

The cell resistance (bottom) showed proper switching to the high 
resistance (OFF) state as the programming voltage is below the PMC 

model threshold of -100mV 
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Figure 36. Waveform showing waveform showing erase voltage (top) at (-
99mV) and the current through the PMC cell limited to 650uA (middle).The 
cell resistance (bottom) showed NO switching to the high resistance (OFF) 
state as the erase voltage is above the PMC model threshold of -100mV 

3.5.4 OFF Resistance (ROFF) Simulation: 
 
      Another important parameter is the PMC OFF resistance. ROFF varies 

significantly with the change in temperature and the PMC via diameter. 

ROFF is reduced with the increase in temperature and the increase in via 

diameter [14]. To model the performance of PMC memory under different 

temperature conditions, the PMC model is required to allow for 

programming different value for the PMC maximum resistance or ROFF.  

It is also worth mentioning that a significant difference between ON and 

OFF resistance is needed for accurately detecting the PMC state without 
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the need for very sensitive current detection circuitry and hence very 

accurate modeling of ROFF is needed.  Moreover, the total power 

consumption of the PMC memory array in dependent on the PMC 

resistance in both the OFF and ON states. To maximize the power benefit 

a very high OFF resistance in needed and hence going to a smaller 

diameter PMC cell benefits the total power consumption for the array. 

Several simulations were performed to prove that ROFF can be accurately 

represented in the Verilog-A model. Figure 38 show the results of a 

simulation of ROFF after it has been modified to 10E9 Ohm form 10E11 

Ohm. The figure shows that the maximum resistance reached by the PMC 

is not 10E9. Figure37 shows the PMC resistance with ROFF remaining 

unchanged at 10E11.  
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Figure 37. Waveform showing waveform showing the PMC off resistance 
with the model to reflecting a 10E11 OFF resistance 

 

Figure 38: waveform showing waveform showing the PMC off resistance 
after modifying the model to reflect a 10E9 Ohm off resistance form a 

10E11 

 
Chapter 4 

4 Pace Maker / Defibrillator SRAM Chip Use Model 

Pacemakers are implantable medical devices that are prescribed 

for people whose hearts are beating too slowly or too fast or irregular. A 

pacemaker stimulates the heart muscle with precisely-timed discharges of 

electricity that cause the heart to beat in a manner quite similar to a 

naturally occurring heart rhythm. The pace maker consists of a pulse 

generator and with a battery that provides the timed electrical pulses and 

a pacing lead that is essentially an insolated wire carrying the electrical 

pulses to the heart. Newer pace makers also include monitoring circuitry 
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for vital biological functions such as pressure, temperature as well as 

position sensing using a 3D accelerometer. This information is stored in 

flash, EEPROM or SRAM and later communicated to a communication 

device that controls the programming and retrieving of data from the 

pacemaker referred to as the programmer. Much like a small computer, 

the programmer is used by the physician to externally adjust the 

pacemaker to meet the patient’s needs; such a process is performed 

through telemetry using radio frequency waves.  

Implanting the pacemaker requires two steps, initially the leads are 

inserted into the heat via guiding them through a main vein, and then the 

pacemaker is connected and placed under the skin in the upper chest 

area near the collar bone. Since inserting the device requires a surgery, 

pacemakers are designed to last 6-10 years without replacement 

depending on the stimulus pulse characteristics and the amount and data 

the device is set to collect and broadcast.  Device longevity is an 

extremely important factor for a medical device, hence, a lot of time is 

spent in trying to design the most power efficient circuitry for a given 

function. However, approximately 20% of the device power is used up in 

memory reads and writes. Another very important factor is the size of the 

device. Medical pace makers can be bulky and if they are not thin enough 

a bump in the chest where the device is implanted can appear from the 
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outside. Newer pacemakers have up to 6 EEPROM chips in the system 

consuming a big percentage of the device area.  

 

 

Figure 39: Showing a typical implanted pace maker (right) and a 
Medtronic® programmer (left) [17] 

 Flash was introduced recently to medical devices that conventionally 

used ROM as their main form of memory for Firmware and diagnostic data 

was typically stored in SRAM. The main drive of using flash was a twofold. 

First and more important, as the medical devices became more 

complicated, the firmware required to control them also became more 

complicated resulting in more risk in firmware errors. Prior to flash, an 

error in firmware always meant an ex-plant and implanting of new device 

with new ROM. This is drastic event for the patient and an extremely 

expensive process. Using flash or other NVM technologies would allow for 
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programming in field for firmware updates. The second main drive for 

NVM was the size factor. As more and more diagnostics were performed 

by the pacemaker and more data becoming required to store, area 

extensive SRAM chips became less appealing.  

It is reasonable to assume 500,000 8bit memory accesses per day 

for a pacemaker running diagnostics. Although this number may vary 

greatly depending on the pacemaker setting it is reasonable average to go 

by. For these conditions a pacemaker using a 0.13um TSMC 32Mbit 

SRAM will consume approximately 800 nA of total current drain. For a 

FLASH with TSMC 0.25 um process chip with a 32Mbit word and 512 byte 

sector size the 500,000 access will equate to 125,000 write and 975 erase 

cycle reflecting a daily current drain average of 3uA from a 3.2V battery 

which equates to 9.6 micro-watts of power consumption. 
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Chapter 5 

5 PMC Memory Array Model 
 

To simulate the behavior and power consumption of a PMC memory 

array, an 8bitx1 array was constructed. The PMC model described in 

chapter 3 was connected into array architecture. 

5.1 PMC Array Model Design: 
 

 In this architecture each PMC is connected to a bit line through an 

ideal switch. A Verilog-A model of an ideal switch was used in the array 

model. When a defined voltage is reached (e.g. 1.4 V) the switch will have 

a zero resistance. When voltage on the switch is less that the defined 

voltage, the switch will have infinite resistance. The ideal switch is 

controlled by a word line allowing current trough the current limiter model 

to the PMC when its corresponding word is being accessed. Each word 

line is selected by raising the word line voltage to the ideal switch voltage 

(in this case 1.4V).  Figure 40 shows the 8x1bit array. A one byte 

implementation is an adequate demonstration for this implementation for 

simulation purposes. However, a larger memory array is constructed by 

adding word lines, switches, and PMCs in the same construct.  
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Figure 40. Showing an 8bit x1 PMC memory array  

 

Figure 41. Showing a single PMC cell in the array connected to voltage 
source through a current limiter and an ideal switch model 

 

Other than the selection switches and word lines, the read and write 

operation is identical to that described in chapter 3 where a voltage source 

is used to provide the program/erase pulse is connected in series with a 

current limiter to limit the current. The current limiter described in 

Appendix B is a variable resistance that increases in resistance when the 

current exceed the programmable limit in the model resulting in 
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attenuating the current to the maximum current (IMAX) parameter in the 

current limiter model. When the current is less that IMAX the current 

limiter will have a low resistance of 1Ohm. This configuration assumes 

that no additional bits are required for error correction code (ECC). If 

additional ECC bits are needed the model can easily be modified by 

appending each row of bits with the ECC bits each connected to a bit line 

and supply. This PMC architecture provides a simple, yet efficient way to 

connect programmable metallization cells using a minimum number of 

current limiters and with minimized connections.  

5.2 PMC Array Model Simulation Results: 
 

A critical parameter in the array performance is the word selection 

mechanism. In the array model, each byte is selected using a word line 

that is connected to a voltage source through a switch model. Once the 

voltage exceeds a predetermined voltage that is plugged in the switch 

model, the switch resistance decreases to zero allowing the program and 

erase of PMC cells through the bit lines that is connected in series to a 

current limiter and the pulse generator.  To insure proper word selection 

the simulation was performed to demonstrate the word selection 

operation.  The switch model was programmed to open when the voltage 

across the switch (the word line voltage) exceeds 1V. This assumes that 

the word line will be supplied from the digital regulated voltage of 1.4V. A 
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guard band of 400mV was added to allow the switch to operate with 

battery at end of life or when noises exist on the word line.  

The word line voltage range was assumed to be 1.05V to 1.4V. Both 

maximum and minimum voltage was simulated by setting the word line 

voltage source to 1.05V and 1.4V respectively then applying a program 

and erase pulses on bit lines while measuring the change in the PMC cell 

resistance on each bit line. The PMC resistance was named BIT0 – BIT7 

resistance depending on which bit line it is connected to. Figure 42 and 43 

show the PMC cell resistance for all bits when the word line is set to 1.4V 

and 1.05V respectively. The word line voltage was plotted on the top 

section. The program and erase voltage which is identical for all 8 bit lines 

was printed on the middle plot section while the PMC resistance for all 8 

bits in the last section. All 8 bits showed identical performance and 

adequate program and erase. To ensure the robustness of the bit 

selection mechanism a simulation was generated with the word line 

voltage below the 1V minimum, namely 990mV while applying the same 

program and erase stimulus on bit lines. With the word line voltage below 

the 1V limit, the PMC resistance for all 8 bits remained unchanged as 

shown in figure 44.    
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Figure 42. Showing word line voltage (top) set to 1.4v, program/erase 
pulse for all 8 bit lines combined (middle), and the PMC change in PMC 
resistance for all 8 bits (bottom) bit line resistances can be programmed 

when word line resistance is above the 1v threshold for the switches.   

 
 

Figure 43. Showing word line voltage (top) set to 1.4v, program/erase 
pulse for all 8 bit lines combined (middle), and the PMC change in PMC 
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resistance for all 8 bits (bottom). Bit line resistances can be programmed 
when word line resistance is above the 1v threshold for the switches.  

  
 

 
 

Figure 44. Showing word line voltage (top) set to 1.4v, program/erase 
pulse for all 8 bit lines combined (middle), and the PMC change in PMC 
resistance for all 8 bits (bottom). Bit line resistance remains unchanged 

when word line resistance is below the 1v threshold for the switches  

5.3 Program/Erase Voltage and current limit Selection: 

       Write and erase threshold voltages, ON and OFF resistances as well 

as gain terms are all intrinsic characteristic of the device. Actual data from 

literature were used to optimize these parameters for a PMC of certain via 

diameter under nominal conditions. It has already been demonstrated that 

the model can be modified or fine tuned if the PMC physical area or 

operating conditions change or to embed a guard band for the PMC 

performance.  
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         The main objective of this project is to minimize the power 

consumed by the NVM memory in a medical device and hence careful 

analysis was performed to choose the best setting for the current limit as 

well as the program and erase pulse duration and magnitude. 

         It makes practical sense to fix the pulse duration for both program 

and erase to the minimum clock cycle of the device. Since medical 

devices do not operate their digital at a much slower speed when 

compared to other industries such as cell phones of personal computers, 

a 1MHz clock is good estimate of the maximum operation speed for 

medical devices. Given that current devices operate at 100 KHz, this 

estimate factors in advances in algorithms for the next decade. With that 

in mind a program and erase cycle was set to 2 us.  

      After determining the pulse duration, the model can be used to 

determine the minimum current limit at which the PMC is programmed and 

erased successfully. This will he define the minimum current consumed by 

each cell. From the model, a minimum voltage of 0.25V is required to start 

the program operation while a -100mV is needed to initiate the erase 

process. Given the minimum voltages a 0.26V was selected as a starting 

point for the program pulse while -110mV was chosen for the erase pulse 

to be the starting point of the supply setting. Even though the supply can 

provide theses pulses for the program and erase, the current limiter 

defines the actual voltage on the PMC anode. As a starting point the 
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current limiter was set to 150uA and the output was logged in figure 45. 

The figure shows the word line selection voltage at 1.4V to allow the 

program and erase of the PMC. The second graph shows the program 

and erase pulse with 260mV program voltage and 110mV erase voltage. 

The PMC current input is shown on the third plot which is also the current 

limiter output. The plot shows the current limiter limiting the input current 

to the PMC to 50uA. With the current limit changed to 100uA the same 

behavior was observed as shown in figure 46. Since the current limiter is 

basically a variable resistance that changes resistance to attenuate the 

current when is exceeds the current limit, it reduces the actual resistance 

on the PMC anode by (current limiter resistance X current through current 

limiter). Figure 45 shows that the resulting voltage on the PMC anode is 

not enough to cause it to switch resistance from high to low and hence 

stronger erase voltage is needed. The erase voltage was increase to -

260mV to match the program voltage. Even though a lower setting would 

have been sufficient, making the program and erase pulses the same 

magnitude but opposite in bias direction simplifies the program and erase 

circuitry. Figure 47 shows the word line select bit at 1.4V in the first plot as 

well as the modified program and erase in the second plot. The third plot 

shows the PMC current showing the first erase and program cycle 

successfully executed with the current limited to100uA. The fourth plot 

show sufficient voltage is exerted on the PMC anode for program and 



    

 90 

erase. The last plot shows the change in PMC resistance, notice that due 

to the current limit, weak programming is noticed in subsequent with the 

ON resistance being approximately 40KOhm.  The program and erase 

parameters of 260mV and -260mV respectively with a current limit of 

100uA was chosen as an adequate setting to model the power consumed 

by the PMC device.  
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Figure 45. Showing word line voltage (top) set to 1.4v, program/erase 
pulse for bit0 (middle), and the PMC change in PMC resistance for bit0 

(bottom). PMC input current limited to 50ua.Current limit setting resulting 
in insufficient voltage on the PMC anode 
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Figure 46. Showing word line voltage (top) set to 1.4v, program/erase 
pulse for bit0 (middle), and the PMC change in PMC resistance for bit0 

(bottom). PMC input current limited to 100ua.current limit setting resulting 
in insufficient voltage on the PMC anode 
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Figure 47. Showing word line voltage (top) set to 1.4v, program/erase 
pulse for bit0 (middle), and the PMC change in PMC resistance for bit0 
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(bottom). PMC input current limited to 100ua. Stronger erase resulted in 
adequate switching  

5.4 Current limit effect on ON resistance: 
 
        The next simulation was designed to study the effect of limiting the 

current on the PMC ON resistance. Studying the effect of current limiting 

on the switching resistance is needed to determine the sensing circuitry 

needed to detect the state of the PMC as it is a function of the difference 

between the ON and OFF resistances. Simulating the effect of current 

limiting can also be used to study the feasibility of multi-bit storage as 

explained in detail in section 2.6.  

     Holding the WL voltage at 1.4V to allow the program and erase pulse 

to the PMC and maintaining the program and erase pulses at 260mV and 

-260mV respectively as shown in the second plot of figure 48 and 49. For 

the first simulation the current limit was set to 100uA as shown in figure 

48. The resulting ON resistance was measured to be 2.3Kohm for the fist 

program and approximately 38KOhm for subsequent program cycles as 

shown in figure 48 in the last plot. When the current limit was increased to 

400uA as shown in figure 49 the resulting ON resistance was close to 700 

Ohms much lower than that in the first simulation.  
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Figure 48. Showing word line voltage (top) set to 1.4v, program/erase 
pulse for bit0 (middle), and the PMC change in PMC resistance for bit0 
(bottom). PMC input current limited to 100ua. Resulting RON is in the 

38kohm range  
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Figure 49. Showing word line voltage (top) set to 1.4v, program/erase 

pulse for bit0 (middle), and the PMC change in PMC resistance for bit0 
(bottom). PMC input current limited to 400ua. Resulting RON is 

approximately 700 ohms 
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5.5 PMC Array Model Data Analysis: 
 

The above described model was used to simulate average power 

consumption for write and erase. The program and erase parameters of 

260mV and -260mV respectively with a current limit of 100uA was chosen 

as an adequate setting to model the power consumed by the PMC device. 

Simulations showed an average power consumption of 4.16 uWatts in 

back to back write and erase cycles. Using the usage assumption in 

chapter 5 of 500,000 accesses which in case of PMC memory can equate 

to 250,000 writes and 250,000 erases for a small array memory, and using 

the modeled erase and write cycle duration of 1 ns for write and 1ns for 

erase, a simple calculation shows the active daily use of the PMC array to 

be 5.7 X 10-6
 %. This corresponds to an average daily power consumption 

of 4.16 uWatts X 5.7 X 10-6 which equates to 2.4 x 10-11 Watts.  When 

compared to flash, the PMC array consumes (2.4 x 10-11) / (9.6 X10-6) or 

0.00025 %. 
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Chapter 6 

6 Conclusion 

The medical devices industry have expanded greatly in the past 

decade to address many diseases that were hard to control using 

conventional therapies especially in the fields of neurological, 

diabetes, pain management and heart rhythm diseases. Electronic 

devices have proven very effective in modulating and correcting 

neurological function to address electro-physiological disorders. A 

major concern on the use of medical devices is the limited longevity of 

the device due to battery lifetime. Since medical devices require a 

surgery to be implanted, a lot of resources and investments are 

focused in ways to increase battery longevity. One way to achieve this 

goal is minimize the power consumption of electronic circuits, in 

specific memory circuit. 

Medical devices are now equipped with diagnostic sensors that can 

record parameters such as pressure, temperature, heart rate, posture 

etc. and store in electronic memory to detect disorder symptoms and 

alter its therapy accordingly or store the data for the physicians to 

review. This activity results in about 15% of the total power consumed 

by the device. The large percentage of power consumption and the 

major advance in memory technologies made looking for a new non-

volatile memory an obvious way to increase device longevity. Given 
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the current lifetime of a medical device of little less than 8 years, 

reducing the 15% memory power consumption to a minimum saves 

the patient from the need to replace the medical device for another 

year of more.  

This goal of this study was find an alternative technology to replace 

the current single bit Flash technology NVM in medical devices that 

can reduce help reduce the device power consumption and size while 

maintaining the same reliability measures as Flash. The research 

provided a thorough summary of all new non-volatile memory 

technologies that were deemed as possible candidates for use in a 

medical device. After careful review of the literature on each 

technology, the conductive bridge memory technology (CBRAM/PMC) 

has proven to be among the leading and most reliable memory 

technologies that are suitable for use in medical devices followed 

closely by FeRAM. PMC has an advantage over flash and other 

charge storage memory technologies as they are very compatible with 

sub-threshold operating devices. Moreover, PMC technology 

surpasses flash in, area, read/write access time, date retention and 

power. Medical devices operate in a narrow temperature range which 

mitigates any concerns about PMC operation at high temperatures.  

After selecting the memory technology a Verilog-A behavioral 

model was used to simulate the memory operation and to construct a 
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design for the memory array to prove the feasibility of use in a medical 

device and to demonstrate the technology performance.  

Simulation data showed PMC memory power consumption that is 

orders of magnitude lower that power numbers obtained by testing 

existing chips with embedded Flash. Data obtained from the memory 

array simulations showed that using PMC memory technology would 

reduce the 15% total device power used by flash memory to less that 

1% resulting in an increase of more than a year in medical device 

longevity. A review on literature on PMC technology and Flash 

memory showed an area advantage of using PMC memory due to its 

high scalability and the elimination of high voltage circuitry. It also 

showed that PMC memory exceed or match all reliability, data-

retention, temperature requirement for use in medical devices.  
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PMC VERILOG A MODEL  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Disclaimer: the following Code for the PMC Verilog-A model was 
programmed by Nad Gilbert. 
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Verilog A model: 
 
// VerilogA for latest_pmc_8_2009, PMC_MEMORY_CELL,  veriloga 
 
`include "constants.vams" 
`include "disciplines.vams" 
 
 
module PMC_MEMORY_CELL (ANODE, CATHODE, CON, VWRa, VERa); 
  inout ANODE, CATHODE, CON, VWRa, VERa; 
   
  electrical ANODE, CATHODE; 
   
  electrical CON, VWRa, VERa; 
 
//Write Threshold Parameters   
  parameter real VTH1  = 0.25;   // 
  parameter real RW1ON = 100k;   // 
  parameter real VTH2  = 0.125; 
  parameter real RW2ON = 1e6; 
  parameter real WVOV  = 0.9; 
 
//Erase Threshold Parameters 
  parameter real VE    = -0.1; 
  parameter real EVOV  = -0.6; 
  parameter real REON  = 200k; 
 
//Resistance IC and Final 
  parameter real ROFF  = 1e11;  // resistance of th e PMC memory 
element in the off stage 
  parameter real RPMCS = 1e11;  // resistance of th e PMC memory 
element in the off stage 
  parameter real RMIN  = 100;    
 
//Capacitance Values 
  parameter real CED   = 1e-15; 
  parameter real CPMCS = 1e-14; 
 
//Integration gain values 
  parameter real GIW1  = 1e6; 
  parameter real GIW2  = 1; 
  parameter real GWV   = 5e3; 
  parameter real GWOV  = 1e6; 
  parameter real GIE   = 1e7; 
  parameter real GVE   = 8e3; 
  parameter real GEOV  = 3e4; 
   
//Output Slew Limiting Essentially the AN and CA Ca pacitance  
  parameter real SLP   = 1e9; 
  parameter real SLN   = -1e9; 
   
  real RPMC, CPMC, VPMC, IPMC, VWR, VER, RCON; 
  integer WI1, WI2, WV, WOV, EI, EV, EOV, RST; 
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  analog 
  begin 
  @(initial_step) 
   begin 
     CPMC = CPMCS; 
     RCON = (ROFF-RPMCS)/(ROFF*RPMCS); 
     WI1 = 0; 
     WI2 = 0; 
     WV  = 0; 
     WOV = 0; 
     EI  = 0; 
     EV  = 0; 
     EOV = 0; 
     RST = 0; 
   end 
   
  RCON = (ROFF-RPMCS)/(ROFF*RPMCS); 
   
  VPMC = V(ANODE, CATHODE); 
  IPMC = I(ANODE, CATHODE); 
//Programming Conditions 
    if ((VPMC > VTH2) && (RPMC > RMIN) && (RPMC < R W2ON)) WI2 = 
1; 
    else WI2 = 0; 
    if ((VPMC > VTH1) && (RPMC > RMIN) && (RPMC < R W1ON)) WI1 = 
1; 
    else WI1 = 0; 
    if ((VPMC > VTH1) && (RPMC > RMIN)) WV = 1; 
    else WV = 0; 
    if ((VPMC > WVOV) && (RPMC > RMIN)) WOV = 1; 
    else WOV = 0; 
    if ((VPMC < VE) && (RPMC < ROFF)) EV = 1; 
    else EV = 0; 
    if ((VPMC < VE) && (RPMC < REON) ) EI = 1; 
    else EI = 0; 
    if ((VPMC < EVOV) && (RPMC < ROFF)) EOV = 1; 
    else EOV = 0; 
//Force Control Voltage to zero volts in erase cond itions 
    if ((V(CON) < 0) && (VPMC < VE)) begin 
    RST = 1; 
    RCON = 0; 
    end 
    else RST = 0; 
 
  //Set integration values for Control Voltage 
  VWR = WI1*GIW1*abs(IPMC) + WI2*GIW2*abs(IPMC) + 
WV*GWV*abs(VPMC) + WOV*GWOV*abs(VPMC); 
  VER = EI*GIE*abs(IPMC) + EV*GVE*abs(VPMC) + EOV*G EOV*abs(VPMC); 
   // VWR = WI1*GIW1 + WI2*GIW2 + WV*GWV + WOV*GWOV ; 
   // VER = EI*GIE + EV*GVE + EOV*GEOV; 
  V(VWRa) <+ slew(VWR,1e12,1e12);  
  V(VERa) <+ slew(VER,1e12,1e12); 
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  //Control Voltage 
  V(CON) <+ idt(V(VWRa,VERa)*1, RCON, RST); 
  RPMC = ROFF/(ROFF*V(CON)+1);  
  I(ANODE, CATHODE) <+ slew(V(ANODE, CATHODE)/RPMC, SLP,SLN); 
   
  end 
 
endmodule 
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CURRENT LIMITER AND SWITCH VERILOG A MODELS 
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Current Limiter Model: 
 
// VerilogA for latest_pmc_8_2009, currentlim, veri loga 
 
`include "constants.vams" 
`include "disciplines.vams" 
 
module currentlim (in1 , out1 ); 
  
 inout in1 , out1 ; 
 electrical in1 , out1 ; 
    
   
//maximum current parameter  
parameter real IMAX = 50u ; 
 
 // parameter real Rlim = 1 ; 
   
   
real VLIM , ILIM , RLIM ; 
 analog 
   begin  
  
@(initial_step )  
RLIM =  1 ; 
 
 I(in1, out1 ) <+ V(in1, out1 )/RLIM   ; 
 
  if ( I(in1, out1 ) > IMAX )   
  
     begin  
     RLIM = V(in1, out1 )/ IMAX  ; 
     end  
  
   
  else if (I(in1, out1) < -IMAX)  
   begin  
      RLIM = V(in1, out1)/IMAX ; 
      end 
   
  else 
   
   begin  
 
    RLIM = 1; 
    I(in1,out1) <+ V(in1, out1) ; 
  end 
   
 
   
 end  
 
endmodule 
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                      Ideal Switch Verilog A model:  
 
// VerilogA for latest_pmc_8_2009, switch, veriloga  
 
`include "constants.vams" 
`include "disciplines.vams" 
 
module switch (in, out , pc, nc ) ; 
 inout in , out ;  
 input pc , nc ; 
 electrical in , out ;  
 electrical pc , nc ;  
 parameter real control_Vth = 1 ; 
  
  
 analog begin  
 if ( V(pc,nc) >= control_Vth )  
  
  V (in, out ) <+ 0 ;  
   
  else  
   
  I(in , out) <+ 1E-8  ;  
  end 
   
endmodul
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