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ABSTRACT 

Thousands of high-resolution images are generated each day. Segmenting, 

classifying, and analyzing the contents of these images are the key steps in image 

understanding. This thesis focuses on image segmentation and classification and its 

applications in synthetic, texture, natural, biomedical, and industrial images.  

A robust level-set-based multi-region and texture image segmentation approach is 

proposed in this thesis to tackle most of the challenges in the existing multi-region 

segmentation methods, including computational complexity and sensitivity to 

initialization. 

Medical image analysis helps in understanding biological processes and disease 

pathologies. In this thesis, two cell evolution analysis schemes are proposed for cell 

cluster extraction in order to analyze cell migration, cell proliferation, and cell dispersion 

in different cancer cell images. The proposed schemes accurately segment both the cell 

cluster area and the individual cells inside and outside the cell cluster area. The method is 

currently used by different cell biology labs to study the behavior of cancer cells, which 

helps in drug discovery. 

Defects can cause failure to motherboards, processors, and semiconductor units. An 

automatic defect detection and classification methodology is very desirable in many 

industrial applications. This helps in producing consistent results, facilitating the 

processing, speeding up the processing time, and reducing the cost. In this thesis, three 

defect detection and classification schemes are proposed to automatically detect and 

classify different defects related to semiconductor unit images. The first proposed defect 

detection scheme is used to detect and classify the solder balls in the processor sockets as 

either defective (Non-Wet) or non-defective. The method produces a 96% classification 

rate and saves 89% of the time used by the operator. The second proposed defect 

detection scheme is used for detecting and measuring voids inside solder balls of 
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different boards and products. The third proposed defect detection scheme is used to 

detect different defects in the die area of semiconductor unit images such as cracks, 

scratches, foreign materials, fingerprints, and stains. The three proposed defect detection 

schemes give high accuracy and are inexpensive to implement compared to the existing 

high cost state-of-the-art machines. 
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CHAPTER 1: INTRODUCTION 

Analyzing image content has become a vital subject in several applications. 

Computer vision is one of the most important applications based on image content. 

Computer vision is divided into many subfields including but not limited to image 

processing, pattern recognition, graph theory, statistical learning. However, the objectives 

of these areas are as varied as the detection and recognition of objects in images, 

registration of different views of the same scene, tracking of objects through image 

sequences, searching for images by their content and so on. Most of these applications 

require automatic extraction of meaningful information. Thus, the range of computer 

vision applications is very large and methods carried out can be very different, inspired 

from physics, biology, statistics theory, functional analysis, and other disciplines.  

Medical imaging has also become an important application of image analysis by 

helping doctors in the detection and diagnosis of diseases and assisting them during the 

operating phases. Industrial imaging of different units or components is an essential 

process in many fabs for automation and helps in improving the accuracy and product 

quality, in increasing the productivity, and in decreasing the cost. Other applications are 

coming to light with the fast development of communications and entertainment which 

need more and more tools to compress, process, and manipulate multimedia content. The 

large number of images and their very high resolutions make manual analysis obsolete 

and, thus, automatic algorithms need to be developed. 

Among all image processing tools, segmentation is probably one of the most 

important since it is a necessary step in numerous applications. Loosely speaking, it 

consists in partitioning an image into regions of interest. There is no general definition of 

a region of interest since it may depend on the type of image, and on the considered 

application. The way the human brain defines the regions of interest depends on the way 

we look at the problem and this may vary from person to person based on different 
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applications. The regions of interest can be defined as homogeneous regions based on 

given specifications or as regions that fit some prior knowledge. For example, in natural 

images, one will try to mimic the human visual system (HVS) to obtain results equivalent 

to the ones that would be given by a human. Given the numerous varieties of natural 

images, trying to mimic the HVS is in general quite difficult. Image intensity, shape, 

color and texture are probably the most prominent features that can be used to mimic the 

HVS but, when analyzing a scene, in addition to the image content, a human makes use 

of prior knowledge learned from his/her own experience or inherited from the species.  

Another problem is the segmentation of medical images. In this case, the objective is 

not to copy the visual system but to extract real structures/organs from a given modality 

of acquisition. Hence, understanding and modeling the acquisition process is a key step to 

extract information from acquired images. Despite all advances in medical image 

acquisition, many important structures remain hardly visible. All information that can be 

obtained from prior knowledge is of great interest and it has to be used to help the 

segmentation process.  

Image analysis is widely used in several areas. Industrial imaging is one of the hot 

areas in image analysis. Having a reliable defect detection and classification in industrial 

imaging helps in improving the accuracy to obtain reliable and consistent results in 

addition to decreasing the cost and the time consumed using inaccurate manual 

operations.   

1.1. Problem Statement  

A wide range of methods have been proposed to tackle the problems posed by image 

segmentation. They include direct thresholding based on image gray-level [1-6], grouping 

from edge detectors results [7-12], classical clusterings on pixel values (k-means, 

Gaussian mixture models) [13-18], graph-cuts [19-23], Markov random fields [24-29] 

and others [30, 31]. In this thesis, we consider applications related to multi-region and 
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texture image segmentation, cell distribution and tracking for cell migration analysis, and 

defect detection and classification in semiconductor units images. 

One of the important segmentation approaches is a geometric approach that is based 

on front evolution techniques (level-set). For multi-region, texture, and biomedical image 

segmentation, the choice of a geometric approach has been made for several reasons. The 

segmentation problem is by definition a geometric one since geometric structures have to 

be extracted from the 2D image domain. Optimizing with respect to contours or shapes, 

we consider an optimization space that permits a straightforward formulation of 

partitioning problems. Geometric constraints can then be naturally expressed to integrate 

properties of object borders. Simple spatial regularizations can be introduced but more 

complex geometric knowledge can be explored. Most of the level-set image segmentation 

methods in this thesis are derived from Mumford-Shah [32] and Bayesian formulation 

methods [33]. Segmentation based on partial differential equation (PDE) techniques such 

as level-sets, which offer powerful mathematical tools, helps to well represent the 

segmentation problem. Level-set techniques, also known as implicit active contours, have 

been the subject of active research in the last few years. The use of level-set image 

segmentation techniques is being explored in a variety of applications including medical 

image segmentation in two- and three-dimensions [34-42], defect detection in industrial 

applications [43-54], motion analysis [55-60], computer vision [61-67], image denoising 

[68-71], and image inpainting [72-76]. Most of the classical level-set-based segmentation 

methods focus mainly on segmenting two regions. There are few related works on multi-

region segmentation using level-set functions. Some of these methods use 

computationally expensive and complex models to segment multiple regions. In addition, 

some of these models are sensitive to initialization which may produce inaccurate 

segmentation results. This problem is discussed and tackled in detail in Chapter 2 of this 

thesis. 
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Medical image segmentation is one of the most interesting and challenging 

applications today in biomedical image analysis. Medical images may contain many 

details such as intensity variation, texture, noise and other artifacts and this makes the 

segmentation of medical images challenging. So, segmentation of a specific type of 

medical images, using a certain method, may not work well for another type of medical 

image. An application of medical image analysis is the migration and proliferation 

behavior of different types of cancer cell images. The cell images suffer from a lot of 

challenges including heavily populated (high cell density), tiny cells, touching and 

overlapping cells, presence of noise and artifacts in the images, and exhibit very low 

contrast as the intensity values of cell boundaries and background are very close. 

Accurate segmentation of the cell clustering region is an essential process to compute the 

migration and proliferation behavior of the cells. Studying the migration and proliferation 

behavior of cells contributes to the understanding of biological processes and disease 

pathologies such as cancer, angiogenesis, vascular stenosis and arthritis. The cell 

evolution analysis of cancer cell images is discussed in Chapter 3 of this thesis. 

Image-based classification is perhaps one of the most important parts of digital image 

analysis and is used in many real applications. Image-based classification is the process 

of grouping image pixels into categories or classes to produce a thematic representation. 

In most of the classification schemes, segmentation is usually used as the first step to 

extract objects in an image before classifying them. Segmentation is the process of 

extracting different objects in the image without knowing what each object represent, 

while classification is the process of distinguishing between these objects and assigning 

each object to its related class or category. Image classification has a lot of applications 

including but not limited to face identification for human recognition, defect 

classification in industrial applications, distinguishing cancerous and non-cancerous cells 

in biomedical images, remote sensing and satellite image classification, and computer 
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vision. In Chapter 4, we investigate the challenges in detecting and classifying different 

types of defects in semiconductor unit images. Three different types of defect detection 

and classification applications are studied in Chapter 4: (i) non-wet solder joints in 

processor socket, (ii) voids in solder balls and solder joints, and (iii) several defect 

detection and classification in the die area. The existence of non-wet solder joints in PCB 

sockets can cause boards failures and it is necessary to inspect theses sockets to locate 

any possible defective joints. Also voids in solder balls can cause board failures and the 

detection and assessment of voids in solder balls can help in reducing board yield issues 

caused by incorrect scrapping and rework. 2D or advanced x-ray machines are used to 

image solder joints and make solder joints visible to be examined by the operator who 

determines manually if each individual joint is defective or not, which is a very time 

consuming process. Different defect classification challenges are presented in industrial 

images.  Some of these challenges and their solutions are discussed in Chapter 4 of this 

thesis. 

1.2. Contributions 

In Chapter 2, a multi-region and texture image segmentation method based on a 

level-set framework is proposed [77]. The proposed method is less sensitive to 

initializations and exhibits faster convergence as compared to existing multi-region level-

set segmentation schemes. Simulation results using synthetic, texture, medical, and 

natural images are presented to show the robustness of the proposed method in 

segmenting multi-region images with any number of regions and with different 

initializations.  

In Chapter 3, two Cell Evolution Analysis (CEA) schemes are proposed for analyzing 

cancer cell images [78-81]. The Region of Interest (ROI), which consists of cell clusters, 

is segmented based on two different segmentation methods: piecewise-based and texture-

based image segmentation. Cell proliferation and cell dispersion analysis are also 
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discussed in Chapter 3. The developed Cell Evolution Analysis system was tested in two 

different labs from two leading companies in which researchers are working in cell 

migration analysis and drug discovery. The reports [82] from these two companies have 

strong recommendations and show that the developed CEA system produces accurate 

results compared to manual results by expert operators. In addition, it is fully automated, 

which helps in saving time and cost. The proposed method is included in a filed US 

patent [80, 83].   

In Chapter 4, three defect detection and classification methods are proposed. Two 

automated defect detection and classification methods are proposed to automatically 

detect and classify the defects that are related to solder joints or solder balls [50-54]. The 

third proposed method is related to defect detection and classification on the die area of 

the semiconductor unit images. The two defects related to solder joints are: (i).“Non-

Wet” defects which occur in solder joints in processor sockets and can cause 

motherboard failures [50, 51, 54], and (ii).“Void” defects which occur in solder joints and 

solder balls and can cause incorrect scrapping and rework in addition to motherboard 

failures [50, 52, 53]. The two proposed methods are being used at Intel Corporation labs 

for testing semiconductor units that are undergoing assembly. The proposed methods are 

also inexpensive to implement and are based on low cost 2D x-ray machine. The statistics 

of the proposed methods [50-54] show high accuracy compared to the results obtained by 

using state-of-the-art x-ray machines which are 5x to 10x the price of the 2D x-ray 

machine that was used to produce the images for the proposed algorithms.  

The automatic and accurate detection and classification of several defects in the die 

area are important in manufacturing and help in improving the productivity, saving the 

time and cost, and reducing the number of return units. In Chapter 4, a scheme for 

detecting several defects in the die area is proposed. The proposed method successively 

segments the die area with 100% accuracy based on the statistics collected from over than 
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1000 tested images. Crack defect is one of the toughest defects to detect due to the 

challenges related to fading, lighting, and thickness. However, our proposed method 

gives a 99% detection rate for crack defects, which is considered a very high detection 

rate, and is inexpensive to implement compared to some of the state-of-the-art machines 

in the market.  

1.3. Thesis organization  

This thesis is organized as follows. Chapter 2 presents different methods for multi-

region and texture segmentation using a level-set based framework. Chapter 3 presents 

methods for cell evolution analysis for cell cancer images. Chapter 4 presents automated 

defect detection and classification methods in semiconductor unit images. Finally, 

Chapter 5 summarizes the contributions of this thesis and discusses possible future 

research directions.   
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CHAPTER 2: MULTI-REGION LEVEL-SET-BASED SEGMENTATION 

2.1. Introduction     

 Image segmentation is one of the fundamental steps in computer vision and is 

widely used in several image processing applications. The main purpose of image 

segmentation is to partition an input image into a number of meaningful and non-

overlapped regions based on some features that help in distinguishing between different 

image regions. The level-set segmentation framework encompasses powerful 

mathematical tools for capturing and tracking topological changes in images. It yields a 

convenient representation of regions and their boundaries without the need for 

sophisticated data structures. Most of the classical level-set-based segmentation methods 

are mainly applied to segment two regions (object and background). There are relatively 

only few works on multi-region segmentation using level-set functions [84-99]. In [84-

87], hierarchical segmentation schemes were presented in which the input image is 

segmented into multiple regions by using only one level-set function. In these schemes 

[84-87], the input image is initially divided into two subimages by using one level-set 

function. Then, each resulting subimage is checked for further segmentation into two 

subimages using another level-set function. The segmentation process is repeated until all 

regions are segmented. However, there are issues that arise when using hierarchical 

segmentation schemes such as identifying which regions need to be further segmented 

and which regions need to merged, difficulties when dealing with non rectangular/square 

images, and the sensitivity of the segmentation in case of neighboring regions with close 

intensity values. In [93], a multiphase level-set-based segmentation method is proposed 

by modifying the two-phase segmentation model of [100] and by using   level-set 

functions to segment    regions. However, the model of [93] introduces empty regions if 

the number of regions is not a power of 2. In [94], the multi-phase segmentation method 

of [93] was modified by adding an inverse scale information term as in [101] to balance 
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the scale of the features of the images among the phases (regions). The inverse scale 

information can be viewed as a function of change in image intensity where the scale is 

inversely proportional to the image intensity. An inverse scale threshold can be used to 

eliminate some features of the image based on the variation of the image intensity. 

Although the method of [94] performs well in the case of piecewise images, it introduces 

additional incorrectly segmented phases in the case of non piecewise-constant images. In 

addition, this method is sensitive to noise and requires a denoising procedure such as 

Total Variation (TV) before applying the segmentation model of [94]. In [88-92], multi-

region segmentation methods were proposed based on constraints that help in ensuring 

disjoint regions. The constrained conditions in [90-92] are applied to the energy function. 

However, the energy function minimization and the estimation of the parameters in [90-

92] require a high computational complexity and are considered among the main 

difficulties of those methods. Brox and Weickert [88, 89] proposed a multi-region 

segmentation scheme which integrates a constraint in the curve evolution functions to 

ensure a balanced competition between regions. However, the methods of [88, 89] are 

computationally intensive and are sensitive to the initialization of the level-set functions.  

One goal of this work is to develop a level-set-based multi-region segmentation 

method that is more efficient and less sensitive to initialization problems than the existing 

level-set-based multi-region segmentation schemes and that works for any number of 

regions. In this work, the curve evolution constraints that are used in the multi-region 

segmentation method of [88, 89] are improved upon using a scheme based on a modified 

Chan and Vese model [100]. In the proposed multi-region segmentation method, each 

region in the input image is represented by one level-set function. A competition factor is 

used in the proposed method to keep a balance between regions and to make the evolving 

curves move faster without getting stuck at undesired points. A regularization term is 

introduced to impose smoothness and regularity for each region. The proposed multi-



    

 

10 

 

region method was successfully applied to various images with multiple regions, 

including synthetic, medical, texture, and natural images.    

In the following, we will first give a review of the existing multi-region level-set 

based segmentation methods, then we will discuss our proposed multi-region and texture-

based segmentation methods. Finally, results are presented to illustrate the performance 

of the proposed methods. 

2.2. Existing Multi-region Segmentation Methods 

2.2.1. Multi-region level-set-based hierarchical segmentation 

In [100], Chan and Vese proposed a two-phase level-set segmentation model which is 

derived from the Mumford-Shah model [102]. Their model is defined by the following 

energy functional: 

                    
             

                      

 

 

      (2.1) 

where    is the input image with a domain  ,    is the level-set function which is used to 

distinguish between two regions              ,      represents the regularized 

Heaviside function which is equal to 1 when     and 0 otherwise,       is the 

gradient of the Heaviside function       and           represent the mean values of the 

two regions in    corresponding to            , respectively. In (2.1),   is a 

positive parameter that can be adjusted to control the smoothness and the total length of 

the contours (        ). A small value of   is chosen if the interest is to detect many 

small objects, otherwise a high value is chosen for detecting few large objects. The 

energy function (2.1) is minimized using the following associated Euler–Lagrange 

equation [103] to get the curve evolution: 

  

  
               

         
          

  

    
   (2.2a) 
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  (2.2b) 

where               represents the Dirac delta function. In (2.2a),     is the 

divergence operator which is given by                          .              

represents the curvature of  . The evolution of   is controlled by (2.2a) to segment the 

input image    into two regions with two different mean values           (2.2b) defined 

by                , respectively. The evolution function of (2.2a) is used to 

segment two different regions (object and background). However, the method can not be 

used to segment an image that has more than two different regions with different intensity 

values.  

Another methodology that uses the level-set framework to segment more than two 

regions consists of applying hierarchical segmentation using (2.2). In [84-87], 

hierarchical segmentation schemes were presented in which the input image is segmented 

into multiple regions by using only one level-set function. In these schemes [84-87], the 

input image is initially divided into two regions by using one level-set function. Then, 

each resulting region is checked for further segmentation into two new regions using 

another level-set function. The segmentation process is repeated until all regions are 

segmented. An example for segmenting 4 different regions using a hierarchical 

segmentation can be summarized as follows: 

Step 1 – Use one level-set function    to segment the input image    into two regions 

using the following curve evolution function: 

   
  

              
  

    
           

            
       

 

(2.3) 

where   
        

  are the averages of    inside   (     and outside          

respectively. The segmentation results of this step will be represented by two regions, 

  
        

 , which represent the regions inside and outside  , respectively. 
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Step 2 – Check each segmented region   
        

   in the previous step for further 

segmentation. Some authors compare the variance inside each region to check which 

region has different subregions and requires further segmentation, others use different 

methodologies based on mean, variance, or both, to differentiate between neighboring 

regions. 

Step 3 –If there are more regions inside   
        

 , apply the same procedure as in 

Step 1 for both regions   
        

  of the input image    to get the following regions: 

  
     

     
         

  . For this purpose, level-set functions           are assigned 

to regions   
        

 , respectively. The four obtained segmented regions are described as 

follows: 

    
                                       

    
                                           

   
                                          

    
                                              

 

(2.4) 

Step 4 – Follow the same procedure described in Steps 2 and 3 to find all subregions. 

Fig. 2.1. Multi-region image segmentation using level-set-based hierarchical segmentation. 

d). Image with initialization for 

2nd stage. 
f). Final segmentation for 

2nd stage. 

 

  
    

  
     

  
     

  
    

  
    

a). Input image with first 

initialization. 
b). Intermediate segmentation for  

1st stage. 

 

c). Final segmentation for  

1st stage. 

 

 

e). Intermediate segmentation for 

2nd stage. 
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Step 5 – Check the segmented regions for merging to create the final segmentation 

results. 

An example of multi-region level-set-based hierarchical segmentation is given in 

Fig. 2.1 where Fig. 2.1(a) represents the input image with an initialization for the level-

set function  . Figs. 2.1(b) and 2.1(c) represent, respectively, the intermediate and final 

segmentation results using (2.3) for two regions. Fig. 2.1(d) represents the initialization 

of the new level-set function   . Equation (2.3) is used to segment region   
  (     

into two new regions   
         

   as shown in Fig. 2.1(f).  

The hierarchical multi-region level-set-based segmentation method sounds simple 

and easy to follow. However, there are a lot of issues that arise when using hierarchical 

segmentation schemes such as identifying which regions need to be further segmented 

and which regions need to merged, difficulties when dealing with non rectangular/square 

images, sensitivity to the initialization, and the sensitivity of the segmentation in case of 

neighboring regions with close intensity values or similar texture. 

2.2.2. Multiphase level-set framework for image segmentation 

As indicated in Section 2.2.1, Chan and Vese [100] proposed a two-phase 

segmentation model using a level-set representation. In the model of [100], one level-set 

function   is used to separate between two areas as shown in Fig. 2.2(a), where the zero 

level-set function             is used to distinguish between two different regions 

              with two different mean values. For segmenting more than two 

regions, Chan and Vese updated the two-phase segmentation model [100] to work based 

on a multiphase level-set framework [93]. The multiphase level-set-based model [93] 

requires only   level-set functions to segment    regions (phases). For example, 2 level-

set functions are used to segment 4 regions as shown in Fig. 2.2(b), and 3 level-set 

functions are used to segment 8 regions as shown in Fig. 2.2(c).  
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For the purpose of simplification and illustration, let us represent the multiphase 

level-set model for 4 phases by using 2 level-set functions. The energy function 

representing the two level-set functions            is given by [93]: 

                             
           

 

 

     

          
               

 

 

     

          
               

 

 

     

          
                   

 

 

      

           
 

 

 

               
 

 

 

     

(2.5) 

where   is a constant speed,     is the considered image,           represents the two 

level-set functions which are used to define four regions. In (2.5),                     

where                     are constants corresponding to the mean of the image     in the 

regions                        ,              and               

respectively, and given by: 

    
                   
 

 
     

            
 

 
     

              
                        
 

 
     

                
 

 
     

     

    
                      
 

 
    

                
 

 
     

        
                          
 

 
    

                    
 

 
     

  

(2.6) 

The curve evolution functions for the two level-set functions           are obtained by 

Fig. 2.2. Representations of the level-set functions for different phases. 

(a). One level-set function  

(2 classes). 

(b). Two level-set functions  

(4 classes). 
(c). Three level-set functions  

(8 classes). 
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minimizing the energy function of (2.5) with respect to           and are given by: 

   
  

             
   
     

           
          

       

          
          

              

(2.7a) 

   
  

             
   
     

           
          

       

          
          

             

(2.7b) 

Equations (2.7a) and (2.7b) represent the curve evolution for level-set function 

         , respectively. Fig. 2.3 gives an example for multiphase level-set segmentation 

[93] for 4 regions using two level-set functions (2.5). Fig. 2.3(a) displays the original 

synthetic image, which has different objects with different intensities. By following the 

same procedures for multiphase image segmentation as explained above, it will be 

straightforward to segment the given image. Fig. 2.3(b) shows the original image with the 

Fig. 2.3.  Illustration of the multiphase level-set framework for image segmentation using two level-set 

functions to separate between 4 classes. 

(a). Original with different 

objects. 

(b). Initialization of the two level-

set functions. 

(c). Result after 2 iterations. 

(d). Result after 3 iterations. (e). Result after 4 iterations. (f). Final result after 6 iterations. 
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initialization for the two level-set functions          . Figs. 2.3(c)-(e) illustrate the 

segmentation results after two, three, and four iterations, respectively.  Fig. 2.3(f) shows 

the final segmentation result after 6 iterations. The segmentation results of the multiphase 

model of Chan and Vese [93] are sensitive to the initialization and the fact that the 

number of regions is limited to be a power of 2. An example for the initialization problem 

is shown in Fig. 2.4 where it can be seen that the final result is sensitive to the given 

initialization. The initialization problem has been discussed by many authors [84, 104] in 

order to improve the segmentation result; however, the multiphase method of [93] can be 

trapped in  local minima, resulting in incorrect segmentation.  

There are several methods that were proposed for multi-region segmentations [93, 95, 

96, 105] which are based mainly on the idea of the multiphase model of Chan and Vese 

[93]. The multi-phase segmentation methods of [93, 95, 96, 105] were used to segment 

   regions by using   level-set functions. However, these methods are sensitive to the 

selected initialization and are restricted to segment a power of 2 number of regions. If the 

number of regions is not a power-of-two, empty regions are produced in the segmented 

image [98]. For example, a 6-phase image requires 3 level-set functions, which produce 

an 8-phase image even though only a 6-phase image is needed. Another multi-phase 

segmentation method was proposed in [94]. The method of [94] uses an inverse scale 

term as in [101] to balance the features of the image among the phases (regions). In [94], 

Fig. 2.4. Image segmentation using the multiphase level-set framework of Chan and Vese using different 

initialization. 

      (a). Original with initialization.             (b). Segmentation results after 2 iterations.                    (c). Final result after 6 iterations. 
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a pixel-wise decision algorithm is used without using the Euler-Lagrange equation of a 

nonlinear functional. Although the method of [94] performs well in the case of piecewise 

images, it introduces additional incorrectly segmented phases in the case of non 

piecewise-constant images. In addition, this method is sensitive to noisy images and 

requires denoising before segmentation.  

2.2.3. Multi-region level-set-based segmentation using constraints  

For multi-region segmentation, there are different level-set-based approaches [90, 91, 

99, 106] that assign one level-set function to each region. Representing each region by 

one level-set function is an easy way for direct access to the segmented regions. The 

energy function of an image with N regions can be represented by: 

                                                  

 

   

 

 

      (2.8) 

where    represents the level-set function which is assigned to region   and    represents 

the probability distribution function inside region   (region corresponding to     ). The 

curve evolution functions of (2.8) are given by: 

   
  

                 
   
     

                          (2.9) 

The        term in (2.9) is always negative and may cause the evolution to shrink 

without segmenting the input image. Neither (2.8) nor (2.9) has a term that creates a 

balanced competition between regions. To address this problem, different constraints can 

be added to either (2.8) or (2.9) to ensure a balance between competing regions in order 

to keep the regions disjoint, non-overlapping, and to guarantee energy minimization. In 

[90, 92], a constraint was added to the energy function of (2.8) by using a Lagrangian 

multiplier as follows: 
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(2.10) 

where   is a Lagrange multiplier. However, the minimization of (2.10) is computationally 

complex. In [91], an artificial coupling force was integrated into (2.10). However, in this 

latter case, the energy formulation of (2.10) depends on several parameters that need to 

be selected and tuned.  In particular, for a fixed-parameter setting, disjoint regions cannot 

be ensured for arbitrary images. Brox and Weickert [88, 89] proposed a multi-region 

segmentation model using a three-step split-and-merge approach. In the first step, they 

use one level-set function to split the regions of an image in a hierarchical way as 

explained in Section 2.2.1. These segmented regions are used to initialize a multi-region 

segmentation stage which is based on the level-set-based minimization scheme of Zhu 

and Yuille [107]. Brox and Weickert [88, 89] add a constraint to the curve evolution 

functions in (2.9) as follows:  

   
  

         
              

                   (2.11) 

where  

                
   
     

                   (2.12) 

The max operation in (2.11) is used to add a competition between regions in the curve 

evolution functions. The term      in (2.11) is used instead of        if there are no 

competing regions in the neighborhood (vacuum regions). In this case, the regions evolve 

with a small constant speed toward the vacuum. In such a situation, the method of [88, 

89] requires a lot of iterations to obtain satisfactory results and it can easily get stuck at 

some points. In addition, this method is sensitive to the selected initialization of the level-

set functions. As an attempt to reduce the sensitivity to initializations, Brox and Weickert 
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apply, as a preprocessing step, a coarse hierarchical segmentation step. Then, the obtained 

coarse segmentation masks were used as initialization masks for    to get the final 

segmentation results using (2.11). However, the coarse segmentation step introduces 

additional computational cost and still leads to slow evolution when the coarse 

segmentation mask results in non-overlapping regions.  

2.3. Proposed Multi-Region and Texture Segmentation Based on Constrained Level-

set Evolution Functions  

The proposed multi-region level-set segmentation scheme is not limited to a single 

image component but can be applied to vector-valued images that consist of several 

components. In particular, the interest here is to provide a level-set-based method that can 

segment both texture and non-texture regions.  

Consider a vector-valued image    consisting of   components   
                The 

proposed energy functional of a vector-valued image    containing   regions is given by: 

                            

 

 

           
        

 
 

   

 

 

          

 

   

 (2.13) 

where    is a vector whose elements consist of  the level-set functions             , 

     represents the mean value inside image   
  when the level-set function    is positive, 

and    is a matrix whose entries consist of the mean values                  

      . The means     can be easily obtained by minimizing the energy function of 

(2.13) using the Euler-Lagrange method [103] and are given by: 

     
   

      
 

 
              

               
 

 

                         (2.14) 

In (2.13),        is a weighting function and                 
 

 
     is used for 

regularization and represents the weighted arc-length of the level-set function   . It was 
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shown by Kimmel [108] that the weighted arc-length gives better regularization where 

       represents an edge indicator function. A popular choice for        is to set 

                   [109], where    represents the gradient of the input image  . In 

the proposed method, the following weighting function        , which is suitable for 

multidimensional spaces, is adopted [110]:   

       
 

        
 (2.15) 

where        is the determinant of a 2D matrix  . The matrix   can be represented in 

terms of the regularized vector-valued image components     
   as follows:  

   

 

 
 
 
     

 

   

       
  

 
    

 

   

      
     

  

   

 

   

     
     

       

 

   

      
  

 
 
 

 
 
 

 (2.16) 

In (2.16),    
         

  are the partial derivatives of   
  in the   and   direction, respectively. 

The weight parameters               are used to ensure the same dynamic range for 

all the entries of    in (2.16). In (2.16),     
   is a regularized version of the         

       image component   
 , which can be obtained by using the non-linear diffusion 

filter of [111] as follows: 

   

  
              

 

 

   

 

                                                  (2.17) 

where          
  

   
 
  represents the diffusivity function which can be obtained as 

follows [112]: 

        
 

 

   

   
 

       
  

       
  (2.18) 

 

where     and     and   is a small positive constant added to the denominator to 

avoid any numerical problems when the gradient gets close to zero. Note that, in (2.17) 
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and (2.18), all channels are coupled by a joint diffusivity; so, an edge in one channel also 

inhibits smoothing in the others.  

The proposed energy functional (2.13) can be seen as an extension to the multi-region 

case of the Chan and Vese functional [100], which is used for two-region segmentation. 

In this work, the curve arc-length term          
 

 
     in [100] is replaced by a 

weighted arc-length                 
 

 
     for better regularization. It was shown in 

[110] that using a weighted arc-length [108] for two-region segmentation gives accurate 

and promising segmentation results compared to the segmentation method of [100]. In 

addition, the proposed multi-region segmentation method makes use of one level-set 

function    per region, which allows direct access to the segmented regions, instead of 

using color theory as in [93, 95, 96, 105]. The color theory based methods do not allow 

easy access and can fail if the number of regions is not a power of 2. The minimization of 

(2.13) with respect to    can be obtained by using the Euler–Lagrange equation [103] as 

follows:  

   
  

           
   
     

       
        

 
 

   

                 

           

(2.19) 

where     is given by 

               
   
     

           
   
     

       
        

 
 

   

  

            

(2.20) 

In (2.20),                represents the curvature of the level-set function    and is 

multiplied by the weighting function       . The second term on the right side of (2.20) 

represents the dot product between                      , which enhances the edges. 

    
      

  
    represents the data fidelity term with respect to the input vector-valued 
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image   . The energy formulation (2.13) and curve evolution (2.19) do not allow a balance 

between competing regions. To ensure a balanced competition, a constraint should be 

applied to the curve evolution process. The proposed constrained curve evolution 

functions are as follows: 

   
  

   
                         (2.21) 

where 

  
                 

                    

          

                       (2.22) 

In (2.22),     is given by (2.20) and   is referred to as a competition factor. The value of 

  can be set to speed up the evolution process and to prevent the evolving curves from 

getting stuck at undesired points. If         , the curve evolution functions (2.21) will 

evolve without segmenting the desired objects because there is no balance between 

regions. If      , the curve evolution functions of (2.22) can easily get stuck at some 

points especially when there is no overlap between evolving curves   . Any value of   

between 0.3 and 0.5 was found to result in good segmentation results with good 

computational performance as compared to existing multi-region segmentation results. 

For values of      , the first term of (2.22) will be dominant in most of the cases and 

will create unbalance between competing regions. In order to avoid the generation of 

small areas (islands), any isolated island with area less than 0.05% of the total area inside 

each level-set function, is removed. This can be easily performed using simple 

morphological operators.  

2.4. Proposed Multi-region Texture Segmentation 

In the case of texture image segmentation, the key is to extract some features which 

can be used to distinguish between different textures in the input image. In [113-117], the 

structure tensor vector was used to represent texture features for a wide range of texture 
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images. In this work, for multi-region texture segmentation, a vector-valued texture 

image   , consisting of four components that represent an augmented structure tensor 

vector, is first computed as follows [113, 115, 117]: 

        
    

                      (2.23) 

where   represents the input grayscale image, and           are the first derivatives of   in 

the   and   directions, respectively. The four components                         

of the feature vector    in (2.23) are regularized (smoothed) to obtain     
               , 

by using a nonlinear diffusion filter for a vector-valued data [111] as given in (2.17).  The 

regularized version     
   is obtained from   

  after using (2.17). The curve evolution 

functions (2.21) and (2.22) are then used to segment the texture regions. In (2.22), 

             are computed as in (2.20), except that   
  is replaced by the regularized 

components     
   as follows: 

               
   
     

           
   
     

         
       

 
 

   

  

           

(2.23) 

where 

     
     

       
 

 
              

               
 

 

                              (2.24) 

2.5. Simulation Results 

The proposed multi-region segmentation method was successfully applied to segment 

a variety of images such as synthetic, natural, medical, and texture images. Results are 

presented in this section to illustrate the performance of the proposed multi-region and 

texture segmentation methods. In the following examples, the competition factor   is 

chosen to be 0.45, unless it is mentioned otherwise. 

Fig. 2.5 shows segmentation results for a synthetic image using the proposed multi-
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region segmentation method. Fig. 2.5(a) represents the input synthetic image with an 

initialization for 6 non-texture regions. The intermediate segmentation results after 4, 9, 

and 14 iterations are shown in Figs. 2.5(b), (c), and (d), respectively. The final 

segmentation result is shown in Fig. 2.5(e) after 49 iterations. It can be seen that the 

proposed method succeeded in segmenting the 6 regions accurately. The competition 

factor   is chosen to be 0.3 in the previous example. Fig. 2.6 shows the segmentation 

results for the same image in Fig. 2.5(a) using the multi-region segmentation method of 

Brox and Weickert [89]. The same initialization was used for comparison between [89] 

and our proposed method. Figs. 2.6 (a)-(e) show the segmentation results using [89] after 

10, 50, 150, 250, and 400 iterations, respectively. It can be clearly seen that the method of 

[89] failed to segment the 6 regions. Moreover, the method of [89] takes a lot of iterations 

and it can easily get stuck at some points. It can be seen from Fig. 2.6 that, in regions 2 

and 3, the curve evolution functions (           evolve very slowly and can easily get 

stuck at some points. The curves get stuck because there is no overlap between the 

evolving functions where there is no competition between regions and, therefore, the 

curves (           evolve very slowly due to the small step size value in (2.11).  

     (a). Initialization.         (b).  4 iterations.             (c).  9 iterations.           (d).  14 iterations.          (e).  49 iterations. 
 

Fig. 2.5.  Multi-region segmentation for an image with 6 regions using the proposed method. 

1 2 

4 3 

6 5 

   (a). 10 iterations.            (b).  50 iterations.        (c).  150 iterations.       (d).  250 iterations.        (e). 400 iterations. 
 

Fig. 2.6.  Multi-region segmentation for an image with 6 regions using [89]. 

1 2 

4 
3 

5 



    

 

25 

 

Fig. 2.7 shows segmentation results for a 5-region texture image. Fig. 2.7(a) shows 

the original image with an initialization using 5 level-set functions. Fig. 2.7(b) shows the 

final segmentation result (after 22 iterations) using the proposed method. For comparison, 

the method of [89] takes 2000 iterations to segment the desired regions in the same input 

image. The method of [89] and the proposed method succeeded in segmenting accurately 

the five different regions of the given texture image. However, the proposed method is 

able to obtain the desired segmented regions in significantly less number of iterations (33 

versus 2000) as compared to the scheme of [89]. Also, it should be noted that each 

iteration of the proposed scheme is less computationally complex than an iteration of the 

scheme of [89]. For each iteration, the method of [89] requires more additions and 

multiplications than the proposed scheme due to the need in [89] to calculate the 

variances of the image regions in addition to the curve evolution functions.   

The following examples are given to show that the proposed method is resilient to 

different initializations of the level-set functions. Figs. 2.8(a) and (c) represent two 

different initializations for a texture image with 5 regions. The final segmentation results 

using the proposed method for the previous initializations are given in Figs. 2.8(b) and 

(d), respectively. The proposed multi-region segmentation method succeeded in 

segmenting the 5 regions of the input image accurately for the different initializations 

(a). Input image with 5 texture regions and an 

initialization using 5 level-set functions. 

(b). Final segmentation result using the 

proposed method after 33 iterations. 

Fig. 2.7. Texture image segmentation using the proposed multi-region segmentation method. 



    

 

26 

 

with significantly less number of iterations as compared to [89]. Segmentation results for 

a texture image with 8 regions using different initializations are also shown in Fig. 2.9. 

The final segmentation results of the proposed method for initializations given in 

Figs. 2.9(a) and (d) are shown in Figs. 2.9(c) and (f), respectively. Although many of the 

 

           (a).Initialization 1.                    (b). After 60 iterations.                             (c).Initialization 2.                       (d). After 25 iterations.  

 

Fig. 2.8. Texture segmentation results using the proposed method with different initializations.  

Fig. 2.9. Texture segmentation with 8 regions using the proposed method with different initializations. 

 

                           (a). Initialization 1.                                      (b). Intermediate segmentation result (8 iterations) for the given 

initialization in (a). 

 

(c). Final segmentation result (39 iterations) for the given 

initialization in (a). 

                           (d). Initialization 2.                                    

(e). Intermediate segmentation result (8 iterations) for the given 

initialization in (d). 

(f). Final segmentation result (33 iterations) for the given 

initialization in (d). 
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regions in the image shown in Fig. 2.9 are similar and are thus hard to segment, the 

proposed method was able to successfully segment the desired 8 regions.  

Fig. 2.10 illustrates the performance of the proposed method in the case of gray-level 

medical (non-texture) images. The test image in this example is a brain image with 3 

regions: white matter, gray matter and background. Fig. 2.10(a) shows the brain image 

with an initialization that is difficult for convergence due to the location and the number 

of initial curves of each evolving function. Fig. 2.10(b) shows the intermediate 

segmentation result using the proposed method after 15 iterations. The final segmentation 

result using the proposed scheme after 80 iterations is shown in Fig. 2.10(c). The 

segmented gray matter, white matter, and the background are shown in Figs. 2.10(d), (e), 

and (f), respectively. 

Fig. 2.10. Brain image segmentation using the proposed method. 

    (a). Input image with initialization. (c) Final segmentation after 80 

iterations. 

(b) Intermediate segmentation after 15 

iterations. 

(d) Segmented gray matter. (f) Segmented background. (e) Segmented white matter. 
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Fig. 2.11 gives an example of texture segmentation using the proposed method for a 

natural image with 2 regions. Figs. 2.11(b), (c), and (d) show the segmentation results at 

2, 5, and 15 iterations, respectively. The segmented background and object are given in 

Figs. 2.11(e) and (f), respectively. Figs. 2.12 and 2.13 show the performance of the 

proposed multi-region segmentation method for two different natural images with 4 

different regions.   

           (a). Initialization.                               (b)  2 iterations.                                   (c). 5 iterations. 

(d). 15 iterations.                           (e). Segmented background.                        (f). Segmented object. 
 

Fig. 2.11. Natural texture image segmentation with 2 regions using the proposed method. 

                    (a). Input image.                  (b). Final segmentation (4 regions).               (c). Segmented region #1. 

         (d). Segmented region #2.                    (e). Segmented region #3.                          (f). Segmented region #4. 
 

Fig. 2.12. Natural image segmentation with 4 different regions using the proposed method. 
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2.6. Summary 

A multi-region segmentation based on constrained level-set evolution functions was 

proposed in this chapter. The proposed method is less sensitive to initializations and 

exhibits faster convergence as compared to existing multi-region level-set segmentation 

schemes. Simulation results using synthetic, texture, medical, and natural images were 

presented to show the robustness of the proposed method in segmenting multi-region 

images with any number of regions and with different types of initializations. 

 

 

 

 

 

  

               (a). Input image.                       (b). Final segmentation (4 regions).                    (c). Segmented region #1. 

      (d). Segmented region #2.                          (e). Segmented region #3.                          (f). Segmented region #4. 
 

Fig. 2.13. Natural image segmentation with 4 regions using the proposed method. 
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CHAPTER 3: CELL EVOLUTION ANALYSIS SCHEME BASED ON LEVEL-

SET FRAMEWORKS 

3.1. Introduction   

Studying the migration, proliferation, and dispersion behavior of cells contributes to 

the understanding of biological processes and disease pathologies such as cancer, 

angiogenesis, vascular stenosis and arthritis. Cell migration analysis underlies 

fundamental features of embryonic development, wound healing, immune cell 

trafficking, and pathological process such as cancer metastasis [118-121]. Techniques 

that assess the biochemical and molecular mechanisms of cell migration afford insight 

into normal biological processes and underpinnings of pathology [122]. 

In this chapter, we will discuss the application of level-set image segmentation in 

biomedical imaging. A Cell Evolution Analysis (CEA) system is presented in this 

chapter. The proposed CEA system consists of 3 components including cell migration 

analysis, cell proliferation analysis, and cell dispersion analysis. The cell migration 

analysis is performed by computing the overall migration rate of the cell cluster (region 

of interest). The Region of Interest (ROI) is first segmented at different time instances, 

and then the overall migration rate is represented by the rate of change of the area of the 

segmented ROI with respect to time. For this purpose, we propose two segmentation 

schemes for extracting the cell cluster area, which is needed for cell migration analysis: 

the first scheme is based on piecewise image segmentation and the second scheme is 

based on texture image segmentation. The cell proliferation analysis is represented by 

counting the individual segmented cells within the ROI at different time points. This can 

be done by applying an automatic thresholding procedure to segment and count the 

individual cells inside the segmented ROI area. The cell dispersion analysis is performed 

for cells that migrate away from the cell cluster region (ROI). This can be implemented 
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by measuring the distances and counting the migrated cells (outside the ROI) in different 

directions from the centroid of the ROI area. 

In the proposed CEA system, two automatic segmentation methods for the cancer cell 

images are proposed. The first segmentation method is used to segment the region of 

interest (ROI) by using level-set-based segmentation techniques to compute the cell 

migration rate at different time points. The second proposed segmentation method is used 

to segment and count the individual cells inside the Region of Interest (ROI) in order to 

compute the cell proliferation at different time instances. The proposed automatic cell 

evolution analysis system was applied to different types of cancer cell images with poor 

contrast and high cell concentrations, even when the cells are overlapping and tiny. 

Furthermore, the proposed texture-based ROI segmentation scheme is robust to noise and 

(a). Original bladder cancer cell image.                               (b). Enhanced version of the image in (a). 
 

Fig. 3.2. Sample image of the cell population in the bladder cancer cell image after 24 hours. 

(a). Original bladder cancer cell image.                             (b). Enhanced version of the image in (a). 
 

Fig. 3.1. Sample image of the cell population in the bladder cancer cell image at initial time point. 

1 

2 

3 
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natural artifacts in the considered cell images. Simulation results are presented in this 

chapter to show the performance of the proposed CEA system for different types of 

cancer cell images such as breast cancer, pancreatic cancer, glioblastoma, melanoma, 

lung cancer, and bladder cancer cells. 

3.2. Existing Problem and Objectives  

The considered cell images consist, each, of three different regions as shown in 

Fig. 3.1. The three regions can be classified as follows: 

1) The cell cluster region: we refer to this cell cluster region as the region-of-interest 

(ROI), where the cells are concentrated (region 1 in Fig. 3.1(b)). 

2) Outer-region: this represents the background region consisting of the area between 

the ROI and the outer-circle (region 2 in Fig. 3.1(b)). 

3) Dark region: this represents the region outside the outer-circle (region 3 in 

Fig. 3.1(b)). This region is optional and might not exist in some images, in which 

case there would be only an ROI and a grayish background area. 

Those cancer cell images were taken at different time instances from the migration assay 

using an imaging device. The main goal is to use an automatic method to determine cell 

migration rates, proliferations, and dispersions from those images. Fig. 3.1(a) shows the 

image of a cell population at the initial time point. For visual clarity, an enhanced version 

of this image is shown in Fig. 3.1(b) for illustration of the cell population (region of 

interest) inside the image. Fig. 3.2(a) shows the image of the same cell population after 

24 hours and its enhanced version is shown in Fig. 3.2(b). From Figs. 3.1 and 3.2, the 

migration of the cells can be clearly seen by looking at the cell cluster regions in the two 

images. The difference in the areas occupied by the cell population at two time points of 

the same image allows us to calculate the overall migration rate of the region of interest 

(ROI). 
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The considered cancer cell images can be acquired by using low cost lab instruments 

(an inverted microscope and digital camera). These instruments are available and widely 

used in labs due to their relative low cost, and the majority of researchers and scientists 

can afford to buy these instruments (approximately $25K for the camera and 

microscope). There are several instruments in the marketplace that were designed to 

acquire high quality images in a high throughput manner such as the IN Cell Analyzer 

1000 (GE Healthcare), the ArrayScan (Cellomics), and the Opera LX (PerkinElmer). The 

cost can be anywhere from $200K and up depending on the extra models/software tools 

that can be added to the system. These instruments are very expensive and many labs 

cannot afford to buy them. In many labs, the cell evolution analysis is done manually or 

by using inaccurate tools to calculate the cell migration rates and for cell counting. In the 

manual process, the cell cluster region is assumed to be close to a circular shape. 

Therefore, the migration rate is calculated by measuring the radii           of the cluster 

regions (ROI) at two different time instances          , respectively. Then, the migration 

rate is represented by the slope between the two time instances, which is given by 

                  This manual procedure is time consuming and tiring, and can 

produce inconsistent and inaccurate results especially if the cluster region has irregular 

shapes or if there are several cell images that need to be processed as is usually the case 

for drug discovery and cancer diagnosis. 

 3.3. Review of the Existing Methods  

Cell segmentation is one of the many challenging tasks in cellular image processing. 

Several methods have been proposed and developed for cell segmentation and tracking 

[93, 123-129]. However, most of the existing methods work for specific cell types and 

under specific constraints. In [123], a gradient-based level-set method is used for cluster 

segmentation of neural stem cells. However, the method of [123] is not robust in the 

presence of noise. Moreover, this method is not fully automated as it requires a prior 
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knowledge of the cell cluster location relative to the initial boundary of the evolving 

level-set function. In [124], a cell tracking scheme is presented, for in vitro phase-contrast 

video microscopy, using a combination of mean-shift processes. However, in [124], the 

user has to select the locations of the cells manually in the first or in the last frame of the 

video sequence. In addition, the original frames need to be pre-processed by performing 

contrast enhancement and illumination correction. In [125], a cell cluster segmentation 

algorithm is presented based on global and local thresholding for In-SITU microscopic 

images. This method requires noise-free images, non-overlapping cells, and a high-

contrast between cells and background. Also, many parameters need to be adjusted to 

compute the local threshold. In [126], the active contour without edges method of [93, 

100] is used for segmenting and tracking the multiple motile epithelial cells during 

wound healing. In [127], a topology-constrained level-set method is presented to prevent 

the merging of touching and partially overlapping cells. Level-set methods were also 

used for cell segmentation and tracking in [128]. In [129], a probabilistic model was 

proposed for the segmentation of hematopoietic stem cells; the proposed model is based 

on identifying the most probable cell locations in the image on the basis of cell brightness 

and morphology. The latter method is sensitive to cell overlap, cell shape, and the used 

threshold. Moreover, the methods of [127-129] require noise-free images with a good 

contrast between the cells and the background.   

In this chapter, a Cell Evolution Analysis (CEA) system is presented for the 

segmentation of the cell cluster region and for the analysis of the overall cell migration 

rate, cell proliferation rate, and cell dispersion rate of different cancer cell images. In the 

following sections of this chapter, more details will be given about the issues related to 

the considered cancer cell images and then, we will discuss how these issues are tackled 

in the proposed automatic cell evolution analysis system.  
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3.4. Cell Evolution Analysis Scheme 

The primary goal of this 

chapter is to develop an 

automated cell evolution analysis 

technique to replace the manual 

assessment process. This will 

significantly decrease the time 

consumed for analyzing the cell 

migration and cell proliferation 

rates as compared to manual or 

semi-manual processing, in 

addition to increasing the accuracy and consistency of the results as well as allowing 

high-throughput imaging and processing. The proposed method is ubiquitous as it can 

work with any imaging equipment (low-end as well as high-end imaging equipment) and 

various image formats, resolution, and qualities.  

A block diagram summarizing the proposed cell evolution analysis system is shown 

in Fig. 3.3. The CEA system consists of three main components: cell migration analysis, 

cell proliferation analysis, and cell dispersion analysis. The proposed scheme proceeds as 

follows:  

 For each cell image at time tn, the ROI and outer-region areas are segmented first 

using a noise resilient segmentation method. 

 Then, the segmented ROI mask is used to compute the area inside the ROI at time 

tn which is then compared to the previously computed and stored ROI area at time 

tn-1 to get the overall cell migration rate at two time points tn-1 and tn.  

 The segmented ROI and the segmented outer-region areas are used to estimate an 

automatic threshold to segment and count the individual cells inside the ROI at 

Fig. 3.3. Block diagram of the proposed CEA system. 
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time tn. The count at time tn is then compared with the previously computed and 

stored number of cells at time tn-1 to calculate the proliferation rate. 

 The individual migrated cells outside the ROI area are segmented and counted. 

The angles and the distances from the centroid of the ROI area are taken into 

consideration to calculate the cell dispersion at time tn.  

An overview of the proposed cell migration analysis, cell proliferation analysis, and cell 

dispersion analysis is given in the subsections below followed by detailed descriptions in 

Sections 3.5 to 3.7.  

3.4.1. Cell migration analysis 

The cell migration analysis can be achieved by segmenting the region where the cells 

are clustering (ROI), and then by tracking the evolution of the boundary of that region 

over time. The size and the shape of the ROI in one image change with time due to the 

duplication and migration of cells. This is can be clearly seen in Fig. 3.1(b) and 

Fig. 3.2(b) which represent samples of bladder cancer cell images at two different time 

instances: 16 hour and 40 hour, respectively. The difference between the areas occupied 

by the cell population at these two time instances allows us to calculate the overall 

migration rate. Given the two extracted ROI areas,                    , at two time 

instances,             , respectively, the overall cell migration rate is given by 

   
             

       
 (3.1) 

where       is the area inside the ROI at time   . Two methods for ROI segmentation 

are proposed in this chapter. The two proposed ROI segmentation schemes are based on 

level-set segmentation, and include a piecewise-based scheme and a texture-based 

scheme. The texture-based level-set segmentation method is combined with a wavelet-

based structure tensor vector in order to produce improved robustness to noise and other 

artifacts that are present in the lab environment. The proposed methods give a highly 
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accurate boundary representation of the cell clustering region. Further details about each 

proposed ROI segmentation method are discussed later in Section 3.5 and Section 3.6 of 

this chapter.  

3.4.2. Cell proliferation analysis 

Cell proliferation refers to an increase in the number of cells as a result of cell growth 

and cell division over time. The analysis of the cell proliferation is achieved by 

segmenting and counting the individual cells inside the ROI at different time points. By 

comparing the number of cells at different time points, one can compute the number of 

new generated cells due to cell growth and cell division over time. Given the number of 

the individual cells inside the segmented ROI‟s,                   at time            , 

respectively, the overall cell proliferation rate is given by 

   
             

       
 (3.2) 

where       is the number of individual cells inside the ROI at time   . A proposed 

individual cell segmentation method will be presented in Section 3.7 of this chapter. The 

proposed method is derived from the histogram distributions of both the segmented ROI 

and the segmented outer-region. 

3.4.3. Cell dispersion analysis  

Cell dispersion analysis is an important step to study and observe the changes of the 

collective behavior of different cells. Moreover, it helps in measuring tumor cell 

aggressiveness [130]. Cell dispersion occurs as cells migrate in clusters or cells migrate 

individually outside the ROI area. In this work, we measure the dispersion distance 

between the migrated cells outside the ROI and the centroid of the ROI area as well as 

the number of cells in different directions outside the ROI. Studying the migration 

behavior of the dispersed cells helps in determining whether the individual cell migration 
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is uniform or non-uniform. A cell that migrates faster than the rest of the cells is more 

likely to be a cancer cell. 

3.5. Cell Migration Scheme Based on Piecewise ROI Segmentation 

A block diagram of the proposed 

piecewise ROI segmentation scheme 

is shown in Fig. 3.4. The proposed 

scheme proceeds as follows. For 

each image, a cell merging operation 

is first performed to fill the gaps 

between individual cells; this is done 

using a closing operation (dilation then erosion) with a circular structural element. The 

structure element radius is very small (3 or 5) because the gaps between the individual 

cells are not wide. In addition, in the presence of noise, spatial smoothing is performed 

using a simple averaging filter. This is followed by a segmentation method to segment 

the ROI region. We use a level-set-based segmentation technique that uses two level-set 

functions for extracting the ROI together with the outer-circle contour. The resulting 

segmented image can include small regions due to the artifacts in the original image. 

These artifacts can be easily discarded due to their small size relative to the ROI‟s size. 

The overall migration rate of the cells is determined by tracking the evolution of the ROI 

size at different time instances. The size and the shape of the ROI area in one image 

change through time due to the duplication and migration of cells. The cell proliferation 

behavior is analyzed through a cell counting procedure that is applied to the extracted 

ROIs at different time points.  

The considered bladder cancer cell images consist of three regions as described 

earlier and as shown in Fig. 3.1(b). Most of the considered cancer cell images have a lot 

of artifacts and noise, poor contrast, and high cell concentrations. An automatic 

Fig. 3.4. Block diagram of the proposed CEA scheme 

based on piecewise ROI segmentation. 
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segmentation method needs to be devised to distinguish between these three regions. 

Conventional segmentation methods, such as thresholding, watershed, and clustering, do 

not give satisfactory results in segmenting the ROI, due to the presence of artifacts and 

due to the poor contrast in the considered images. The best way to overcome these 

problems is to use a robust segmentation method such as the level-set segmentation 

methods described in Chapter 2 of this thesis.  

Two level-set functions are required to distinguish between the three regions of the 

considered cell images. The level-set method of [100] is, consequently, not applicable 

since it uses one level-set function to differentiate between two different regions: one 

represents the individual cells and one represents the background. Alternatively, when the 

scheme of Chan & Vese [93], with two level-set functions, is applied directly to these 

images, it only succeeds in capturing the contour of the outer circle, but it fails to capture 

the contour of the ROI. This occurs because the considered ROI is not a piecewise 

constant area and there are many gaps between the individual cells inside the ROI region. 

Moreover, the intensity mean values of the ROI and the remaining area inside the outer-

circle are very close to each other in most cases. That‟s why the Chan and Vese model 

fails to segment the ROI. 

 Two level-set based methods are proposed for the piecewise ROI segmentation 

method: the weighted level-set method and the two-step level-set method. Both methods 

give similar segmentation results on the considered cell images. However, the two-step 

level-set segmentation method converges faster than the weighted level-set method. 

3.5.1. Weighted level-set segmentation method 

This method is a modified version of the Chan and Vese method [93] with two level-

set functions as discussed in Chapter 2. In this modified version, the following weighted 

energy function is minimized:  
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(3.3) 

where                          , are constants,     is the considered image,             

          represent the two level-set functions and are used to define four different 

regions. In (3.3),                     are constants corresponding to the mean of the 

image     in the regions            ,            ,             

                 respectively, and are given by 

           
                  
 

 

                
 

 

  

           
                      
 

 

                    
 

 

  

           
                      
 

 

                     
 

 

     

           
                          
 

 

                         
 

 

  

(3.4) 

The curve evolution functions for the two level-set functions           are obtained by 

minimizing the energy function of (3.3) with respect to            and are given by 
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(3.5) 

In (3.3), (3.4), and (3.5),           represent the two level-set functions, which evolve 

based on minimizing the energy function in (3.3) to segment the input image   . The 

method described in [93] represents the multiphase level-set representation and is given 

by (3.3) and (3.5) when setting the weights               to be equal to one, and when 

     . The method of [93] uses equal weight values for each region and, therefore, it 

fails to segment the ROI of the considered cancer cell images even after performing the 

cell merging operation. Instead, the ROI is partitioned into different regions by 

         . This is due to the fact that the ROI has different mean values instead of one 

constant mean value (piecewise constant), even after applying the cell merging operation. 

In addition, the method of [93] can introduce gaps inside the segmented regions when the 

number of regions is not a power of 2. In order to overcome this problem, the proposed 

weighted level-set segmentation method is derived by choosing the proper values of the 

weight parameters               in order to force one level-set function    to evolve 

inside    to capture the ROI area and the other level-set function    to evolve outside    

to capture the outer-circle area. If we choose                       then, it can 

be easily shown that the evolutions of the level-set functions           in (3.5) are given 

by: 
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(3.6) 

In (3.6), when choosing       more weight is given to the region inside          to 

evolve inside         . In this way, after few iterations,    starts to evolve inside 

   to capture the ROI, while    evolves to capture the outer-circle. This method was 

successfully used to segment the ROI region in the considered cancer cell images. In the 

following, several examples are used to illustrate the performance of the weighted level-

set method to segment the region of interest (ROI) of bladder cancer cell images. 

3.5.1.1. Simulation results using the weighted level-set ROI segmentation method 

In this section, the weighted level-set segmentation method, defined by (3.3) to (3.5), 

is used to extract the ROI and the outer-circle areas of the considered bladder cancer cell 

images. In this method, three parameters need to be selected:             . In the 

following examples, we choose                    For the stopping criterion, the 

algorithm stops if the absolute differences between the current and previous values of 

         are less than a certain threshold (0.02 in our implementation). For the 

initialization, we use multiple randomly generated small circles for both          . 

Figs. 3.5(a)-(f) illustrate the results of using the proposed weighted level-set image 

segmentation to segment the ROI and outer-circle areas of the considered bladder cancer 

cell image (Fig. 3.5(a)) at a time point equals to 16 hours. Fig. 3.5(d) illustrates the 

intermediate step, where the level-set function           starts to evolve inside 

          to capture the boundary of the ROI, while    starts to evolve outside 
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  (      to capture the outer-circle boundary. The final segmentation result is shown 

in Fig. 3.5(f), where the proposed method succeeds to extract the boundaries of the ROI 

and the outer circle. The ROI area after 16 hours is approximately         

            for a pixel size of 4.926          . Figs. 3.5(a‟)-(f‟) illustrate the ROI 

segmentation results of the bladder cancer cell image at a time instance equals to 40 

(b). Enhanced version of image at T16. 

 

(c). Initialization of the weighted level-

set segmentation method. 

 

(a). Original image at T16. 

 

(e). Intermediate stage segmentation for 

image at T16. 

 

(f). Final segmentation results for image 

at T16. 

 

(d). Results after the first iteration where 

   evolves inside   . 

(b‟). Enhanced version of image at T40. 

 

(c‟). Initialization of the weighted level-

set segmentation method. 

 

(a‟). Original image at T40. 

 

(e‟). Intermediate stage segmentation for 

image at T40. 

 

(f‟). Final segmentation results for image 

at T40. 

 

(d‟). Results after the first iteration. 

Fig 3.5. ROI segmentation using the proposed weighted level-set method for a bladder cancer cell image at T16 and 

T40. 



    

 

44 

 

hours (after 24 hours from T16). The final segmentation result is shown in Fig. 3.5(f‟) 

with an ROI area equals to                    
 . The computed overall ROI 

migration rate equals to             .  

3.5.2. Two-step level-set segmentation method 

The weighted level-set segmentation method, which is presented in the previous 

section, suffers from initialization and coupling problems, in addition to being relatively 

slow [84]. In this section, the level-set segmentation method of [84] is adopted and 

applied to the considered cancer cell images. This method applies 

          consecutively, rather than simultaneously. This process ensures that 

           are completely decoupled. This method proceeds in two steps as follows:  

Step 1 – Evolve one level-set function    to segment the outer-circle using:  

   
  

               
   
     

         
          

       (3.7) 

where   
        

  are the averages of    inside and outside     respectively. The results of 

this step is the segmentation of the outer-circle region inside   . 

Step 2 – Evolve the level-set function    inside    to segment the ROI using:  

   
  

               
   
     

           
             

        (3.8) 

where   
         

   are the averages of     inside and outside     respectively, when 

      . In (3.8), the values of            affect the evolution rate of     The 

advantages of the two-step level-set method, as compared to the weighted level-set 

method of Section 3.5.1, include a faster speed of convergence, lower computational 

complexity, and lower sensitivity to the initial conditions.  

3.5.2.1. Simulation results of using the two-step ROI segmentation method 

Different types of cancer cell images are used to illustrate the efficiency of the two-

step segmentation method. For each example, we proceed as follows: first, we apply one 

(3.a). Enhanced version of 

image in (3.a) 
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level-set function    to segment the outer-circle using (3.7). This first step takes 4 to 6 

iterations to segment the outer-circle. In the second step, one can use the mask of the 

segmented outer-circle        as an initialization for the second segmentation step 

   
         where   is a small value. Using   

  for initialization, one can segment 

the ROI using (3.8). The second step takes 6 to 10 iterations to segment the ROI. For 

each step, the evolution of the level-set function is stopped when the absolute difference 

between the current and previous level-set function is less than a certain threshold (0.02 

in our implementation). Figs. 3.6(a)-(f) illustrate the process of the proposed two-step 

segmentation method, where Fig. 3.6(d) shows the result of the first step which segments 

the outer-circle using (3.7) and Fig. 3.6(f) shows the final segmentation result using the 

second segmentation step (3.8).  

(b).  Enhanced version of the 
original image. 

 

(c). Initialization of the first 

segmentation step. 

(a). Original bladder cancer cell 

image. 
 

Fig. 3.6. ROI segmentation using the proposed two-step method for a bladder cancer cell image. 

(e). Intermediate stage for the 

second segmentation step. 

(f). Final segmentation results using 

the two-step segmentation method. 

(d). Results after the first 

segmentation step. 
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3.6. Noise-Resilient and Robust Cell Migration using Texture-based ROI 

Segmentation  

In the piecewise level-set segmentation methods, objects can be separated from the 

background based on the different mean values of the object and the background. In some 

cases, these mean values can be very close to each other and, therefore, the piecewise 

segmentation fails to segregate between the object and the background. Moreover, if the 

input cell image has artifacts, such as the ones shown in Fig. 3.7 between the cell culture 

area (ROI) and the outer-circle area, the piecewise method will segment the artifacts as 

part of the ROI area because the artifacts have different mean values that are different 

from the background mean value. Examples of those artifacts include but not limited to 

fingerprints, stains, fiber, and water blubs. One way to overcome the disadvantages of the 

piecewise level-set segmentation is to deal with the cell culture area as a texture region. 

This assumption is based on the observation that the ROI region has a high variance and 

has a texture-like structure, such as grains, sands, and other textures [131], as compared 

to the other present artifacts and non-cell image features. In this section, we present a 

robust, and noise/artifacts-resilient ROI segmentation method. The proposed method 

segments the ROI region based on the texture-like characteristics of the cell cluster 

region, which can be exploited as significant features that help in distinguishing the cell 

area from the background and artifacts. The proposed method combines the ROI texture 

Fig. 3.7. An example of artifacts in cancer cell images. 
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information components with a statistical 

level-set segmentation method. The 

proposed method is shown to be more 

robust to artifacts and noise, and it results 

in a more accurate segmentation of the 

ROI area compared to the existing 

methods. The proposed scheme can be 

applied to different cell cluster images, in 

which the cell cluster has texture-like characteristics, even if the considered images suffer 

from poor contrast, artifacts, and noise. 

A block diagram of the proposed texture-based ROI segmentation scheme is shown 

in Fig. 3.8. The procedure starts by extracting the outer-region area using a piecewise 

level-set segmentation by using one level-set function based on (3.7). Then, the ROI area 

is extracted by using an unsupervised texture-based segmentation procedure. This 

procedure consists of a statistical based level-set method that is applied to the structure 

tensor features in the wavelet domain. The structure tensor vector [33] represents the 

texture features that are used to represent the texture information in the ROI area. The 

employed statistical level-set method is based on a Bayesian formulation as in [113, 132] 

and is able to differentiate between objects and background based not only on their mean 

values but also on their variances. In contrast to the method in [132] which makes use of 

a non-linear diffusion filter [133] for preprocessing the structure tensor data, the proposed 

scheme adopts a wavelet-based approach using a fast à trous filter [134]. Non-linear 

diffusion filtering [133] requires a large number of iterations to get satisfactory results, 

which can be very computationally intensive process especially for large size images 

such as the ones considered in this paper. In addition, the method of [132] augments the 

structure tensor vector by adding to it the original grayscale image data. In our case, only 

Fig. 3.8. Block diagram of the texture-based ROI 

segmentation. 
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the structure tensor is used because it defines well the structure of the ROI region for the 

considered cell images. In fact, it was found that, for the considered application, 

augmenting the structure tensor with the original grayscale image as in [132] not only 

increases the computational requirements without significant improvements but can also 

lead to incorrect segmentation results. The following subsections give more details about 

the proposed texture-based ROI segmentation, which includes outer-circle segmentation, 

structure tensor computation, wavelet-based à trous filtering, and the statistical level-set 

segmentation method.  

3.6.1.  Outer-circle segmentation  

The considered cell images can be initially segmented into two regions: inside and 

outside the outer-circle area. The difference between the mean values inside these two 

regions is significantly large. The outer-circle segmentation can be done by using one 

level-set function    [100]. The level-set function    is used to distinguish between the 

two regions: the area inside the outer-circle        and the area outside the outer-circle 

      . The curve evolution function    which is used to segment the outer-circle area 

is given by:  

   
  

                
   
     

       
         

      (3.9) 

where   represents the input image,   
  and   

  are the averages of   inside and outside   , 

respectively,       represents the delta Dirac function, and                 represents 

the curvature of the level-set function   . The segmented outer-circle is represented by 

the region inside         . The level-set evolution function (3.9) stops when the mean 

squared error between the current and the previous level-set function    
        

   )  is 

less than a certain small threshold (0.02 in our implementation). 
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3.6.2.  Structure tensor vector  

The key idea in texture image segmentation is to extract some feature components 

that would form a good descriptor for the texture regions in the input image. The features 

vector, or descriptor, is used to distinguish between different texture regions inside the 

input image. In [113, 114, 116, 132, 135], the structure tensor vector is used as a feature 

descriptor for a wide range of texture images. In this work, the structure tensor vector is 

used to effectively represent the texture-like structure of the ROI. The structure tensor 

features are computed from the gradient of the image    as follows: 

          
  
  
           

  
     

      
   (3.10) 

where           represent the derivatives of    in the directions of x and y, respectively. 

The structure tensor vector                can be represented using           as 

follows: 

       
    

        (3.11) 

3.6.3.  À Trous Wavelet filtering 

The image components              of the structure tensor vector (3.11) have to be 

regularized first before applying the statistical based level-set segmentation. This 

regularization step is applied to the cell cluster region inside the outer-circle. The 

regularization step is essential to smooth texture regions while preserving the edges 

between different texture regions. This can significantly influence the segmentation 

results. In the proposed scheme, the undecimated wavelet transform is adopted for this 

regularization and is implemented using a fast à trous filtering [134]. The adopted à trous 

wavelet transform has many nice properties including translation-invariance, efficient 

implementation, and high correlation among the wavelet coefficients across scales. 

Moreover, it satisfies the Lipschitz regularity property [136] which can be exploited for 

differentiating between strong edges and noise or weak-edge singularities. Based on the 
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Lipschitz property, noise and weak edges diminish at a much faster rate than stronger 

edges as the scale increases. These properties are exploited in the proposed wavelet-based 

regularization procedure which can smooth variations, including weak edges, texture, and 

noise, while preserving the strong edges.  

The à trous wavelet is implemented using separable filtering with an impulse 

response                            for the row-wise and column-wise 1-D 

filters. Let                              represents the input structure tensor image 

component of the à trous wavelet. The output approximation image at the first level after 

applying a separable convolution is          , and the detail image is given by 

                             . Similarly, one can get                         from 

          for the second level. In general, for any level j (      ), where L is the 

maximum decomposition level,           and            can be expressed as follows:  

               
 

      
 

           
              

                                

(3.12) 

where j represents the decomposition level and i represents the image component in 

                 . Exploiting the shift invariance property and the high correlation 

among the resulting wavelet coefficients at different levels        , for each 

structure tensor image component                 , a new image         can be 

constructed through a point-wise multiscale multiplication as follows: 

             
      

  

    

                             (3.13) 

where      
       is     

       normalized by the norm of the gradient of the original input 

image  . The resulting wavelet-filtered structure tensor vector               consists 

of smooth areas within the same texture classes while the edges are preserved among 

different texture classes.  
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Although the selection of the number of levels L is application and image dependent, 

it is important to have a default value to achieve unsupervised segmentation. A subjective 

evaluation [137] indicated that a good compromise between noise removal and detail 

preservation was obtained using L= 1 for 128 x 128 (or smaller) images, L = 2 for 256 x 

256 images, and L = 3 for 512 x 512 images. Hence, for an image of size      , the 

default value for the number of levels L is given by [137]: 

                                    (3.14) 

For the considered images of size 1100x1300, L equals to 4, and           in (3.13) were 

set to 3 and 4, respectively.  

3.6.4.  Adaptive statistical level-set segmentation  

 The adaptive statistical level-set segmentation method of [132] is adopted to segment 

the cell culture region (ROI) which is represented by the generated wavelet-filtered 

structure tensor images   . One level-set function      is required to segment the ROI 

inside the considered cancer cell images. The level-set function    is evolving inside the 

already-segmented outer-circle area        or the background enclosing the ROI 

region, to capture the ROI. The energy function and the curve evolution equations of the 

proposed texture-based ROI segmentation method are given by  

                                    

 

   

 

 

       
           

           

 

   

           

(3.15) 

and  

   
  

              
   
     

       
      

      

 

   

   (3.16) 

where    is the i
th
 component of the wavelet-filtered structure tensor vector     and 

       is the conditional probability density function of      given a region r (r=1,2), 
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with r = 1 corresponding to the ROI         and r = 2 corresponding to the region 

outside the ROI        .        is approximated using a Gaussian distribution as 

follows: 

                     
      

  
              

 

     
 

 (3.17) 

where            
  in (3.17) represent, respectively, the mean and variance of the wavelet-

filtered structure tensor component         in region          , and are given by 

    
                      
 

 

               
 

 

    

   
  

              
               

 

 

               
 

 

   

     
                          
 

 

                   
 

 

   

     
  

              
                   

 

 

                   
 

 

  

where       is the Heaviside function that is equal to 1 when      and 0 when        

3.6.5. Simulation results for the texture-based ROI segmentation 

The first example is used to compare the performance of the two proposed ROI 

segmentation schemes: piecewise and texture-based segmentation methods. In this 

example, the proposed schemes have been applied on noisy and poor-contrast images of 

34 different bladder cancer cell lines interacting on different matrix substrates. Each cell 

line consists of 60 cancer cell image samples that were taken at two time instances (16 

and 40 hours). The images‟ size is 1100x1300 with a resolution of 4.926     per pixel. 

Fig. 3.9 shows an example for comparing between the proposed piecewise-based [79] and 

texture-based [78] ROI segmentation methods when applied to segment a bladder cancer 

cell image. Fig. 3.9(a) shows the original input image which exhibits low contrast in 

addition to artifacts in the form of large gray spots. For illustration and visual clarity, an 
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enhanced version of Fig. 3.9(a) is shown in Fig. 3.9(b), although the proposed scheme is 

applied directly on the original low-contrast and non-enhanced image. The first 

segmentation step is used to segment the outer-region area (Fig. 3.9(c)) using (3.9) as 

discussed in Sections 3.5 and 3.6.1. The segmented outer-region area is further 

segmented to get the ROI area using a second segmentation step as described in Sections 

3.5 and 3.6. The intermediate and the final segmentation results using the two-step 

piecewise level-set segmentation scheme [79] are shown in Fig. 3.9(d) and Fig. 3.9(e), 

respectively. The wavelet-filtered structure tensor vector is shown in Fig. 3.9(f), which 

represents accurately the texture area inside the segmented outer-region. Figs. 3.9(g) & 

(h) show, respectively, the intermediate and the final segmentation results for the ROI 

area using the proposed textured-based method. Comparing the final ROI segmentation 

results that are obtained using the proposed piecewise [79]  and the texture-based 

segmentation [78] schemes, it is obvious that the piecewise method fails to segment the 

true ROI area due to the present artifacts, while the textured-based method [78] results in 

an accurate segmentation of the ROI area.  

Fig. 3.9. Cell cluster segmentation using the proposed texture-based [78] and piecewise-based methods [79].  

(c). Outer-region 

segmentation. 
(a). Original image. (b). Enhanced version of (a). 

(d). Intermediate stage using 

the proposed piecewise method. 

(e).Segmentation result using the  

proposed piecewise method. 

(g).Intermediate stage using the 

proposed texture-based method. 

(h).Segmentation result using the 

proposed texture-based method.    
    

        
(f). Structure tensor image  
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The second example is given for different types of bladder cancer cell images. 

Fig. 3.10 shows different bladder cancer cell images with poor contrast, and different 

artifacts and noise in the original images. Fig. 3.10 shows the outer-circles and the ROIs 

segmentation results using the proposed texture-based segmentation scheme for different 

types of bladder cancer cell images that were taken at two different time instances 16 and 

40 hours. Figs. 3.11(a1), (a2), (c1) & (c2) represent T98 glioblastoma cancer cell images, 

where the input image has a lot of artifacts such as black spots, fiber, bubbles, and 

distortions. The proposed textured-based ROI segmentation method is used in this 

example resulting in robust and accurate segmentation results. The final segmentation 

results for the outer-regions and ROIs are shown in Figs. 3.11(b1), (b2), (d1) & (d2) for 

the input images given in Figs. 3.11(a1), (a2), (c1) & (c2), respectively. From the results 

shown in Figs. 3.10 & 3.11, it can be concluded that the proposed scheme can segment 

(a1).  CUBIII  (16 h).                    (b1).  CUBIII (40 h).                                (a2). 253J  (16 h).                       (b2).  253J (40h). 

(a3).  HT1197  (16 h).                    (b3). HT1197 (40 h).                        (a4). VMCUB-3 (16 h).                     (b4). VMCUB-3 (40 h). 

        (a5). 575A (16 h).                          (b5). 575A (40 h).                              (a6). HTB-9 (16 h).                    (b6). HTB-9 (40 h). 

Fig. 3.10. Examples of ROI segmentation for different types of bladder cancer cell images using the proposed texture-based  

ROI segmentation. 
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the ROI areas accurately even if the input images represent different cancer cells and 

even if the images are corrupted with noise and artifacts. From the segmented ROIs, the 

cell migration rate for 30 253J-bladder cancer cell images and 30 T98-Glioblastoma 

cancer cell images are shown in Figs. 3.12(a) and (b), respectively.   

3.7. Cell Proliferation and Dispersion Analysis 

Cell counting at each time point helps in cell proliferation analysis. In the considered 

cell images, the cell population inside the ROI is in the range of 1000 to 8000 

cells/image. Due to the large number of images and cells, manual counting of cells by 

humans has proven to be impractical, non-reliable, and exhaustive. Therefore, an 

automatic and reliable counting procedure is essential to have accurate measurement in a 

(a). Migration analysis for 253J Bladder cancer cell  images.           (b). Migration analysis for T98 Glioblastoma cancer cell images. 

 

Fig. 3.12. Cell migration rates for 30 cancer cell images (bladder and Glioblastoma cancer cells) at two different time points. 

(a1). Original image.  (b1). ROI segmentation 

of (a1). 
(c1).Original image. (d1).  ROI segmentation 

of (c1). 

Fig. 3.11. Examples of ROI segmentation for T98 Glioblastoma cancer cell images using the proposed textured-based ROI 

segmentation. 

(a2). Original image.  (b2). ROI segmentation 

of (a2). 
(c2).Original image. (d2).  ROI segmentation 

of (c2). 
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very short time. Several automatic or semi-automatic methods have been proposed to 

segment the boundaries of the cells in order to count the number of cells. In [138], an 

à trous wavelet transform is used to detect spots in the presence of noise. The method in 

[138] works under certain assumptions such as a smooth background, a good contrast 

between cells and background, and disconnected cells. In [139], a comparison is 

presented for seven thresholding methods for breast tumor cell segmentation, and it was 

found that Otsu‟s method performed best. Otsu‟s method, however, does not give 

satisfactory results if the image contrast is low. Most of the existing methods fail to 

segment or count the cells if they are connected. In [127], the images have a high contrast 

between the cells and background, and cell populations are in the range of 350 to 750 

cells/image, which is significantly lower than the cell density in the cell images 

considered in this work. 

3.7.1. Proposed individual cell counting and segmentation method 

The main challenges with the considered cancer cell images include the following: 

heavily populated (high cell density), tiny cells, touching and overlapping cells, presence 

of noise in the images, and very low contrast as the intensity values of cell boundaries 

and background are very close. From Fig. 3.13(b), it can be noticed that the cells and 

background intensities are very close and, therefore, it is hard to find a threshold to 

distinguish between the background and individual cells. The best way to overcome this 

                (a). Original bladder cancer  cell image.                         (b). Zoomed in portion in (a) showing individual cells. 

 

Fig. 3.13. Intensities of the individual cells and background are very close in values. 
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problem is to segment the individual cells based on their centroid (nucleus) since, as it 

can be seen from Fig. 3.13(b), the centroid of the cell has a lower intensity than the cell 

boundary (halo). Consequently, our strategy is to count the centroids of the cells instead 

of counting based on the cell boundary [124]; in this way, one can also separate 

connecting and overlapping cells by their nuclei as long as the nuclei are separated.  

The proposed individual cell segmentation and counting procedure can be 

summarized as follows:  

 From the segmentation masks of the ROI and the outer-circle, we can extract the 

background region, which represents the region between the ROI and the outer-

circle. The ROI and the background masks are shown in Figs. 3.14(b) & 3.14(c), 

respectively.  

bg bgt     

μbg=159.58 

δbg=8.8 

μROI=161.69 
δROI=12.36 

 

Fig. 3.14.  Segmentation masks and histograms for the ROI and background of a bladder cancer cell image. 

  (d). Histogram of the background (dashed) and the ROI 

(solid). 
(c). Extracted background. 

(a).  Segmentation results. (b). Extracted ROI. 
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 The histogram, mean, and standard deviation of the ROI region and the background 

region are computed as shown in Fig. 3.14(d).  

 From the means and standard deviations of both the background and the ROI, a 

threshold is computed and used to classify the ROI into significant (cells‟ centroids) 

and non-significant regions (Fig. 3.14(f)) 

 The resulting connected significant regions are counted using a labeling procedure.  

The histogram distributions of the background (dashed curve) and ROI (solid curve) are 

shown in Fig. 3.14(f). It can be seen that the background and the ROI are close in mean 

values (                           . However, the background has a small 

standard deviation           as compared to the standard deviation of the ROI 

            . The increase of the variance inside the ROI, is due to the large 

population of cells and the intensity variations between the centroid and the surface of 

each cell. The non-significant regions inside the ROI have similar intensity values to 

those in the background region. The background region has a relatively low variance due 

to less concentration of cell clustering inside this region. An accurate threshold can be 

computed based on the mean and the standard deviation of the background to segment the 

cells‟ nuclei (significant ROI regions) from the non-significant ROI background-like 

regions. The classification threshold is computed as          , where             

represent the mean and standard deviation of the background, respectively. A pixel in the 

ROI is classified as significant (as belonging to a cell‟s centroid) if its intensity is less 

than the threshold t; otherwise, it is classified as non-significant. A labeling process is 

then applied to count the obtained cell centroids.  

Fig. 3.15 gives an example of individual cell segmentation using the proposed cell 

segmentation and counting method. In Fig. 3.15, the total number of individual cells 

inside the ROI using the proposed method is around 7400 cells. To test the accuracy of 
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the proposed counting method, several subjects were asked to manually count the cells in 

selected ROI sub-images with different cell concentrations; the average count was then 

computed for each considered ROI sub-image and compared to the count obtained using 

the proposed counting scheme. It was found that the proposed counting method achieves 

an accuracy of 96% on average. In some cases, when the individual cells‟ centroids 

overlap, it will be very hard to separate them either manually or using the proposed 

method. In that case, the method will count the cells with overlapping centroids  as one 

cell.  

In the following two examples, the proposed texture-based ROI segmentation scheme 

is applied to two different bladder cancer cell images using two different initializations 

followed by individual cell segmentation. Fig. 3.16(a) shows the original image with an 

initialization for the outer-circle segmentation step. The outer-circle segmentation result 

is shown in Fig. 3.16(b), where the image size is reduced to fit only the outer-circle mask, 

which helps in speeding up the process in the second ROI segmentation step. Fig. 3.16(c) 

shows the regularized texture tensor image    
    

        . The initialization for the 

second ROI segmentation step is shown in Fig. 3.16(d), and an intermediate segmentation 

result is shown in Fig. 3.16(e). The final segmentation masks, the extracted ROI, and the 

extracted background are shown in Figs. 3.16(f), (g), and (h), respectively. Fig. 3.16(i) 

shows the histogram distribution of the extracted ROI and the extracted background. 

Fig.  3.15.  Process for individual cell segmentation and counting for the bladder cancer cell image shown in 

Fig. 3.14(a). 

(a). Extracted ROI area. (b). Individual cell 

segmentation inside ROI. 

(c).Enlarged part inside the ROI 

highlighting region in(a). 

(d). Enlarged part inside the 

ROI highlighting region in(b). 
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Fig. 3.16(k) illustrates the individual cell segmentation results for a zoomed area inside 

the ROI that is shown in Fig. 3.16(j). Figs. 3.17(a)-(k) illustrate the same process as in the 

previous example but for a different image and different initialization.  

3.7.2. Cell dispersion analysis  

Cell dispersion analysis is applied to the cells in the background area (the region 

outside the cell cluster region and inside the outer-circle). First, the individual cells in the 

background area are segmented by using the same procedure that is used to segment the 

individual cells inside the ROI area. Then, the following two approaches are used to 

perform the cell dispersion analysis:  

 Number of cells versus distances from the ROI's centroid: this can be represented 

by a curve, where values on the horizontal axis represent quantized distances bins 

(a). Image with initialization for      (b). Outer-circle segmentation      (c). Tensor vector image      (d). Initialization for the ROI  

the outer-circle segmentation step.                          result.                                    
    

        .                   segmentation step. 

 

(e). Intermediate state for the       (f). Final segmentation results         (g). Extracted ROI area.         (h). Extracted background. 

            ROI segmentation.                for outer-circle and ROI. 

  

Fig. 3.16. Example 1: Texture-based ROI segmentation followed by individual cell segmentation for a cancer 

cell image. 

                 (i). Histogram of the ROI (solid)                                        (j). Zoomed part inside the                     (k). Individual cell  

                          and background (dashed).                                                 extracted ROI area.                  segmentation for Fig. (j).                               
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representing, each, a distance range from the ROI‟s boundary, and where the 

vertical axis represents the total number of cells within a distance bin from the 

ROI‟s centroid. 

 Number of cells in a certain direction: in this case, the region outside the ROI is 

divided into   sectors, with respect to the ROI‟s centroid, with an angle equal to 

     for each sector. 

The combination of those two approaches will give information about the cell dispersion 

in terms of number of cells in a certain direction and within a certain distance from the 

Fig.  3.17. Example 2: Texture-based ROI segmentation followed by individual cell segmentation for a cancer 

cell image. 

 (a). Image with initialization for        (b). Outer-circle segmentation          (c). Tensor vector image      (d). Initialization for the ROI  

the outer-circle segmentation step.                          result.                                    
    

        .                            Segmentation step. 

 (e). Intermediate state for the       (f). Final segmentation results         (g). Extracted ROI area.                (h). Extracted background. 

            ROI segmentation.                for outer-circle and ROI. 

                 (i). Histogram of the ROI (solid)                                              (j). Zoomed part inside the            (k). Individual cell  

                          and background (dashed).                                                 extracted ROI area.                  segmentation for Figure (j).                               
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ROI‟s boundary. The dispersed cell distribution helps in studying the regular/irregular 

migration of the dispersed cells. 

An example of the proposed cell dispersion analysis is shown in Fig. 3.18. An 

enhanced version of the input image is shown in Fig. 3.18(a), the ROI and the outer-circle 

segmentations are shown in Fig. 3.18(b), and the segmentation of the dispersed cells 

outside the ROI is shown in Fig. 3.18(c). An enlarged portion of the image given in 

Fig. 3.18(c) is shown in Fig. 3.18(d). The numbers of dispersed cells with respect to 

different directions are shown in Fig. 3.18(e), where the area around the centroid of the 

ROI is divided into 16 sections with equal angles (22.5
o
), then the dispersed cells are 

segmented and counted in each section in the region between the ROI boundary and the 

outer-circle. From Fig. 3.18(e), it can be seen that the dispersed cells are concentrated 

around angle 270
o
. From the dispersed cell distribution with respect to angles, one can 

classify the migration of the dispersed cells as regular or irregular migration. The cell 

Fig. 3.18. Cell dispersion analysis. 

(a). Enhanced version of the input image.        (b). ROI and outer-circle segmentation.         (c). Dispersed cells outside the ROI area.  
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(d). Enlarged area of the image in (c). (e). Dispersed cells outside the ROI area in different directions. 
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dispersion analysis for 30 bladder cancer cell images at a time point equal to 16 hours is 

shown in Fig. 3.19. In each image sample, the total number of dispersed cells outside the 

ROI is computed.  

3.8. Simulation Results 

Motility rates of human cancer cells were assessed [140] in vitro using a radial 

monolayer migration assay [141]. Epithelial cancer cells, including breast cancer 

(MDA436) and pancreatic cancer (PANC-1), and neural crest-derived cell lines, 

including Glioblastoma multiforme and melanoma (UACC903), were evaluated for 

changes in migration rates. Different treatments were used for the aforementioned cancer 

cells to study the effect of each treatment on the migration rate after 24 hours. The 

treatments [140, 141] that were used in the experiment (NT, Luci, c-mys siRNA 5, and c-

mys siRNA 7) are used for each cancer cell line. Digital images of populations of cells in 

the radial dispersion assay [142] were captured at 0 and 24 hrs post seeding. Images were 

analyzed by eye (through expert operators) for the radius of a putative circle drawn 

around the cell culture region. The manual results were compared with the results 

obtained from the proposed automated method as given in Table 3.1 and Fig. 3.20. In this 

Fig. 3.19. Cell dispersion for 30 bladder cancer cell images after 16 hours. 
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case, the migration results are expressed in        instead of       . This was done by 

fitting the area of the segmented ROI        into a circle with an area        and, then, 

the circle radius is calculated as            to track the migration rate in        

From the results in Table 3.1 and Fig. 3.20, it can be concluded that the proposed 

automated method gives high correlation with the manual data. In addition, the proposed 

method results in a significantly lower standard deviation as compared to the manual 

calculation when an initial calibration step is performed using one sample image before 

batch processing [140]. The cell migration analysis using the proposed method takes 

milliseconds to process one image. On the other hand, it takes several minutes to analyze 

the migration of cells in one image manually by the operator. It can be seen from 

Fig. 3.20 that some treatments (drugs) decrease the migration of cancer cells while other 

treatments promote an increase in the migration rate of the cancer cells. This experiment 

helps to understand the effect of different treatments on the migration of cancer cells, 

which plays an important role in drug discovery.  

 

1 Table 3.1: Comparison between manual and proposed method. 

Cell line Treatment 
Manual 

Proposed Cell Migration 

Analysis 

Avg Std Avg Std 

MDA436 Migration 

NT 11.0119 1.7057 11.0 0.5 

Luci 11.8686 1.2249 11.4 0.6 

c-myc siRNA 5 13.1773 1.1579 14.8 0.4 

c-myc siRNA 7 16.5640 2.2161 16.2 0.6 

Panc-1 Migration 

NT 7.8941 0.5817 8.0 0.5 

Luci 8.3805 0.6253 8.1 0.6 

c-myc siRNA 5 16.0099 1.3433 14.8 0.6 

c-myc siRNA 7 19.8481 1.7441 15.9 0.5 

UACC903 Migration 

NT 8.8465 1.2108 10.2 0.5 

Luci 9.0727 1.0798 10.5 0.4 

c-myc siRNA 5 13.2923 1.2609 15.2 0.5 

c-myc siRNA 7 15.1186 1.6637 15.0 0.5 
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(b). Pancreatic cancer (panc-1). 
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(a). Breast cancer (MDA436). 
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(c). Glioblastoma and melanoma cancer (UACC903). 
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Fig. 3.20. Cell migration analysis (um/hr) using manual versus proposed method for 

different cancer cell images with different treatments. 
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3.9. Summary  

An automatic cell evolution analysis (CEA) system was presented in this chapter. 

The proposed CEA system includes components for cell migration, cell proliferation and 

cell dispersion analysis. The proposed texture-based ROI segmentation method is robust 

to noise and natural artifacts in the considered cancer cell images. Moreover, it gives 

accurate ROI segmentation. Cell proliferation analysis is achieved by segmenting and 

counting the individual cells inside the ROI using a proposed threshold based on the 

histogram analysis of the background and ROI areas. The cell proliferation analysis step 

is able to segment and count the individual cells inside the ROI even if the cells are 

touching, noisy, or overlapping partially by their boundaries. Cell dispersion analysis is 

achieved by segmenting and counting the migrating individual cells outside the ROI 

region in different directions, or at different distances from the ROI boundary. The 

proposed scheme was successfully applied on different types of cancer cell images. The 

proposed scheme was able to get accurate results even if the input images suffer from 

poor contrast, cell overlap, and are corrupted with artifacts and noise.  
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CHAPTER 4: AUTOMATED DEFECT DETECTION AND CLASSIFICATION IN 

SEMICONDUCTOR UNIT IMAGES 

4.1. Introduction 

The assembly test process has many steps where defects can be created. The manual 

handling of parts in carriers and trays causes some of these defects. Other defects are 

caused by machine faults or, in some cases, a less than optimally clean environment. 

These defects can result in value being added to an already “dead” unit or in the worst 

case, a customer return of a unit that does not meet specifications. Assembly and test 

manufacturing has many critical steps which must be conducted within a short period of 

time. Defects can occur at any time during the process. The defect detection and 

classification system must be capable of operating while carriers or trays are in motion 

during the process so as not to interrupt critical process steps. Catching defects close to 

their occurrence enables performance of timely root cause analysis to get to the source of 

a problem and reduces the potential for a large excursion instead of only a few defective 

units. Manual inspection efforts are missing visual defects that are causing field failures 

and/or are an aesthetic issue. Operators take time to get trained in the recognition of these 

defects. An operator gets tired after a very short period of time performing the detailed 

final visual inspection and, as a result, it is difficult to maintain alertness and also 

operators who are motivated to perform this work.  

Automatic defect detection and classification is an essential step in the industry to 

locate and isolate defective parts in an early stage during the inspection process before 

sending products to customers. Therefore, this not only results in customers‟ satisfaction 

and reduces the product return, but also helps to improve the productivities and 

reliabilities of the products. Studying the defect detection and classification helps also to 

know what the most frequent defects in a certain product are and, therefore, enables 

engineers in knowing how to reduce the occurrence of those defects.  
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Three automated defect detection and classification methods are proposed and will be 

discussed in this chapter. Two different applications to automatically detect and classify 

the defects that are related to solder joints or solder balls are considered including: 

(i)“Non-Wet” defect which occurs in the solder joints in processor sockets and can cause 

motherboard failures; and (ii)“Void” defect which occurs in the solder joints and solder 

balls and can cause incorrect scrapping and rework. The third proposed method is used 

for defect detection and classification on the die area of the semiconductor unit. Some of 

the defects related to the die area include scratches, cracks, foreign materials (FM), and 

stains. The proposed methods [50-54] give high accuracy and are inexpensive to 

implement compared to the results obtained by state-of-the-art x-ray machines.  

This chapter is organized as follows. An automated non-wet defect detection method 

is presented in Section 4.2 for solder joints of processor sockets. Void detection in solder 

balls is presented in Section 4.3. In Section 4.4, a proposed scheme for the detection and 

classification of defects in the die area of the semiconductor units is presented. 

4.2. Automated Non-Wet Defect Detection in Solder Joints 

Non-wet solder joints in processor sockets are causing mother board failures. These 

board failures can escape to customers resulting in returns and dissatisfaction. The 

current process to identify these non-wets is to use a 2D or advanced x-ray tool with 

multi-dimension capability to image the solder joints of processor sockets. The images 

are then examined by an operator who determines if each individual joint is defective or 

non-defective. There can be an average of 150 images for an operator to examine for each 

socket. Each image contains more than 30 joints. These factors make the inspection 

process time consuming and the output variable depending on the skill and alertness of 

the operator. This section presents an automatic defect detection and classification system 

to differentiate between defective (non-wet) and non-defective solder joints. The main 

components of the proposed system consist of region of interest (ROI) segmentation, 
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feature extraction, reference-free 

classification, and automatic 

mapping. The ROI segmentation 

process is a noise-resilient 

segmentation method for the joint 

area. The centroids of the segmented 

joints (ROIs) are used as feature 

parameters to detect the suspect 

joints. The proposed reference-free 

classification can detect defective joints in the considered images with high accuracy 

without the need for training data or reference images. An automatic mapping procedure 

which maps the positions of all joints to a known Master Ball Grid Array file is used to 

get the precise label and location of the suspect joint for display to the operator and 

collection of non-wet statistics. The accuracy of the proposed system was determined to 

be 95.8% based on the examination of 56 sockets (76,496 joints). The false alarm rate is 

1.1%. In comparison, the detection rates of currently available advanced x-ray tools with 

multi-dimension capability are in the range of 43% to 75%. The proposed method 

reduces the operator effort to examine individual images by 89.6% by presenting only 

images with suspect joints for inspection. When non-wet joints are missed, the presented 

system has been shown to identify the neighboring joints. This fact provides the operator 

with the capability to make 100% detection of all non-wets when utilizing a user interface 

that highlights the suspect joint area. The system works with a 2D x-ray imaging device, 

which saves cost over more expensive advanced x-ray tools with multi-dimension 

capability. The proposed scheme is relatively inexpensive to implement, easy to set up 

and can work with a variety of 2D x-ray tools. 

Fig. 4.1: Examples of defective solder joints (non-wet). 

Fig. 4.2: Examples of non-defective solder joints. 
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4.2.1. Problem statement  

A non-wet solder joint is the joint where the solder has not fully flowed to make solid 

contact between the unit and the board thus leaving a potentially weak or totally open 

signal path. Non-wet solder joints are difficult to detect using manual inspection alone. 

One current solution to this problem involves the set up and programming of a 2D x-ray 

machine to image the processor sockets of the board. The images of the sockets are taken 

at oblique angles to make the non-wet joints visible to the operator. The operator must 

then look through a large set of 100 to 200 images in order to identify all the non-wet 

joints in a socket. Each image can contain between 10 and 45 solder joints. This is a very 

time consuming and error-prone process due to the limited number of gray scale levels in 

the acquired images and the repetitive nature of the images. Examples of defective (non-

wet) and non-defective solder joints are shown in Fig. 4.1 and Fig. 4.2, respectively. The 

non-wet is seen as the shadow underneath the solder joint as shown in Fig. 4.1. The 

operators have difficulty identifying the non-wet joints accurately, with repeatability, and 

in a timely manner, with so many images per socket and multiple sockets on a board to be 

examined. The constant checking of homogenous images is fatiguing and can result not 

only in missed detections but also in ergonomic issues. The current manual process takes 

more than 35 minutes from the start of imaging to the completion of an inspection of a 

single socket. A means of automatically detecting suspect joints and classifying the 

defects on those units is needed to mitigate these issues. This can significantly decrease 

the number of images that need to be manually checked and can thus allow the engineer 

to more quickly and easily isolate process issues. 

Our investigation of other relevant work showed that the proposed system 

components are novel and unique and have not been proposed previously in the literature. 

None of the existing methods of non-wet detection are using the techniques we are 

proposing in this chapter. There are many existing efforts [143-162] that deal with 
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different issues in solder joints such as getting better image quality using x-ray machines, 

cause of damage and defects in Ball grid array (BGA), failure analysis of BGA packages, 

assembly quality, physical properties of solder balls and defect detection in different 

types of solder joints (different applications). Relevant work that deals with defect 

detection in solder joints was presented in [143-150]. In [143], different images of solder 

joints were taken in slices of a Ball Grid Array (pad, ball, package slices) to be used for 

the classification process. The method requires manual calibration and calculation of 

parameters at the beginning of the experiment before detecting defects in the Ball Grid 

Array (BGA) images. Some of these parameters are ball diameters at different slices, 

centroids at ball and pad slices, distances between pad, ball and package slices. These 

parameters are compared between different slices to detect defective joints. The method 

used in [143] is a reference-based method since it requires knowledge of the diameters of 

the non-defective joints in different slices in addition to specific setups and calibrations. 

In [144-146], the authors proposed a scheme for defect detection in BGA. The images 

were taken by using a computed tomography scanner where the resulting imaged joints 

have non-defective joints of regular shape and size. The tomography scanner is very time 

consuming to use and as such cannot be inserted into a manufacturing process without 

severely impacting the inspection times. In [2-4], the shape of a non-defective solder joint 

is assumed to closely correspond to a circle. The solder joint area, which is called Region 

of Interest (ROI), is segmented by using a fixed threshold value equal to 54 to get a 

binary image. After the ROI segmentation, a roundness factor (compactness) [10] is used 

for classification which is based on the assumption that the non-defective joint has a 

circular shape. If the shape of the considered joint deviates significantly from a circle, the 

joint is classified as defective. One drawback of the method of [2-4] is that it is not robust 

to illumination changes, which occur in practice due to the lighting variation during the 

image acquisition process. In [147], a scheme is proposed for defect detection in BGA. 
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The scheme of [5] is similar to the scheme of [144-146], except that the threshold value, 

which is used to convert the grayscale image to a binary image, can be automatically 

determined based on the mean and variance of the considered image. Then, a coarseness 

factor is used to classify each segmented joint as a defective or non-defective joint. The 

coarseness factor is based on the ratio between the areas of the solder joint and the circle 

containing the solder joint. The coarseness factor in [147] is similar to the compactness 

factor in [144-146] in that they are both based on the assumption that a non-defective 

joint has a circular shape. If the defective joint in [144-147] has a shape very close to a 

circle, the method will not be able to detect the defective joint. If non-defective joints 

have slightly irregular shapes, they will be classified as defective using the methods in 

[144-147]. The imaging process can often introduce changes due to lighting and 

positioning of the unit undergoing inspection so it is more desirable to have a method that 

does not depend on the specific shape of the joints. In [148-150], a scheme is proposed 

for defect classification in solder joints by using a neural network for training and 

classification. The method makes use of a neural network for training different types of 

defects in solder joints by using a training set of images that represent different types of 

defects. During the training process, feature parameters are extracted first from the shape 

and/or histogram of the joints. A circular shape is also used here to model non-defective 

joints and a non-circular shape is used to model defective joints. In this latter case, a 

library of defective and non-defective joints is generated by an expert operator. The 

generated library and a lookup table that is formed during the training process are then 

used to classify the solder joints into 3 categories: normal, insufficient, and excessive 

soldering. The correct classification rate of this method depends heavily on the generated 

library and on the accuracy of the training process. The generation of the library and 

training data is time consuming. The processing associated with using the library to 

detect the defective joints is intensive and could result in the method not being usable in 
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real time depending on the implementation. It should be noted that none of the existing 

techniques [1-8] deal with non-wet solder joints, but rather these methods are concerned 

with other types of defects and they cannot be applied to the detection of non-wet joints, 

which is the focus of this section.   

There are some state-of-the-art x-ray machines that have embedded algorithms that 

detect defects in solder joints, for example, advanced x-ray tools with multi-dimension 

capability used on many factory floors. However, the advanced capability x-ray machines 

with embedded algorithms typically produce a 43% to 75% detection rate with an 

operator in the loop locating the non-wet joints. The advanced capability x-ray machines 

require manual tuning during the setup and, in addition, are 5 to 10 times the cost of the 

2D x-ray machine. In this work, the interest is to detect the defective solder joints 

automatically from images that are taken by using a low cost 2D x-ray imaging tool that 

provides images in a timely manner during the manufacturing process. The x-ray tool 

makes the non-wet joints visible to the human eye if the images are taken at oblique 

angles. The non-wet shows up as a shadow extending below the body of the joint as 

shown in Fig. 4.1. For comparison, Fig. 4.2 shows examples of non-defective joints. 

Taking images with an angle perpendicular to the processor socket will not show the non-

wet joints because the x-ray is looking directly at the joints and, thus, the non-wets are 

not distinguishable from the good joints. The images are taken while the x-ray collector 

was set at 46
o
 degrees and the socket was rotated at 4 different oblique angles: 45°, 135°, 

225°, and 315° as shown in Figs. 4.3 and 4.4. These angles were experimentally 

determined by the engineer to be suitable angles to see the defect areas clearly. However, 

taking images at oblique angles does not keep the consistency of the size and shape of the 

imaged solder joints but introduces shape and size variations across images as well as 

within a single image.  
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None of the above methods [143-150] are suitable for our considered x-ray images 

with oblique angles, because, in our case, the imaged joints do not have consistent shapes 

and the shapes of the joints vary as a function of their position within the image and the 

camera angle (circle, egg-shaped, ellipse, and other shapes). Thus, the circular shape 

assumption for non-defective joints is not valid in our case. Moreover, the solder joint 

images captured at oblique angles present other challenges including inconsistency in 

size, lighting variation, image blurring, overlapping between neighboring joints and the 

repetitive pattern of the joints. The images are also corrupted with noise during the image 

capturing process. Using existing classification methods for the considered images will 

produce a high false positive rate and would require a large training data set to create a 

library that represents all possibilities of the existing defects. Moreover, it is time 

consuming to create the library and perform the training. Since none of the existing 

Stage rotated at 45o                  Stage rotated at 135o                     Stage rotated at 225o                Stage rotated at 315o 

Fig. 4.4. Rotation motion of the x-ray stage in the X-Y plane during inspection. 

 

 

Fig. 4.3.  Image acquisition using 2D x-ray machine. 

(a) Motherboard with different sockets 

 
(b) Image acquisition using 2D X-ray machine with oblique view. 
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methods [143-150] can deal with the aforementioned issues in the considered images, it is 

desirable to develop a robust method to automatically detect suspect joints that are 

imaged at oblique angles using a 2D x-ray tool. In the following subsections, an 

automatic defect identification and classification scheme is presented for solder joints in 

processor sockets. The proposed defect detection scheme is reference-free in the sense 

that it does not make use of known training data or reference images to identify defective 

joints in processor sockets. The primary goal of this work is the identification of suspect 

joints in processor sockets during the manufacturing process, before they leave the 

factory and result in returns. Another goal is to assist engineers with rapid, new 

technology development through early identification of non-wet issues occurring during 

the manufacturing process. This work accomplishes this critical early assistance by 

enabling a thorough identification of non-wet joints thus allowing the engineer to identify 

process issues quickly and correct them.  

The following subsections are used to show the procedures of the proposed method 

for non-wet detection. Section 4.2.2 presents the multi-view x-ray imaging set-up, 

Section 4.2.3 presents the proposed automatic defect detection and classification scheme, 

Section 4.2.4 presents an automatic joint mapping procedure to uniquely label the 

detected defective joints, and the experimental results are presented in Section 4.2.5 in 

order to illustrate the performance of the proposed system.  

4.2.2. Multi-View x-ray imaging set-up 

As shown in Fig. 4.3, the image capture process begins with the operator placing the 

board to be inspected onto a stage with a fixture that holds the board inside the 2D x-ray 

machine. The fixture is a circular stage with a square hole in the middle with a clamp that 

permits various sizes of boards to be mounted securely in the fixture. The board is placed 

on the stage with the component side down in order to avoid contact between the x-ray 

source and the board components and, thus, possible damage to the components. The 
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collector can be moved to focus the collection as needed. The operator selects the image 

capture program to be run based on the socket to be inspected. The operator enters 

parameters manually into the machine to provide the serial number of the board and the 

socket being inspected. The 2D x-ray machine executes the program and automatically 

places each image taken in a file folder with the name entered by the operator. The x-ray 

collector is set at a 46
o
 degree angle as shown in Fig. 4.3 and the x-ray stage moves 

through four angles for inspection as shown in Fig. 4.4. The stage is rotated in this way to 

allow the x-ray to “look through” the sockets at multiples of 45 degrees to maximize the 

detection of non-wet joints. Once the stage has been positioned at the desired angle for 

inspection, the board is moved horizontally and vertically to allow images to be taken for 

the entire socket perimeter. An example of two different sockets in one board is shown in 

Figs. 4.3 and 4.4. Fig. 4.5 gives an example of x-ray images which were taken at different 

angles. The images in Fig. 4.5 show the same socket corner but at four different angles: 

45°, 135°, 225°, and 315°. Using 4 angles means that each joint has a chance to be shown 

at least 4 times and maybe more due to the overlap between the images during the 

scanning process. One might not be able to see the defect in a joint in all four views, 

because this depends on the location of the defect. The non-wet joints are highlighted by 

using dotted circles in Fig. 4.5, where the non-wet joints can be seen clearly as a shadow 

underneath the joints at the angles of 225°(Fig. 4.5(c)) and 315° (Fig. 4.5(d)). One can 

notice the difference between the non-wet joints and the good joints if one visually 

          (a)  At 45o.                               (b)   At 135o.                            (c) At 225o.                                (d) At 315o. 
 

Fig. 4.5. Sample images obtained at different oblique angles using the x-ray machine. Dotted circles are used 

to highlight non-wet joints. 
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inspects the images very thoroughly. However, the repetitive pattern of the joints makes 

it hard for the operator to quickly notice the non-wet joints. As indicated previously, one 

main goal of this work is to develop an automated detection method that can assist the 

operator by significantly reducing the number of images to be inspected to a small subset 

of images that contain suspect joints.  

4.2.3. Proposed automatic defect classification scheme for solder joints  

This section describes the proposed automatic defect detection scheme for solder 

joint inspection. The main idea behind the proposed method is to segment the area of the 

solder joint, which we refer to as the Region of Interest (ROI), and extract some features 

that are crucial for detecting the suspect joints. One property of the imaged solder joints 

in processor sockets is that they are aligned in parallel horizontal lines and parallel 

vertical lines when the images are captured at a 90
o
 angle relative to the board (top view). 

However, as stated before, top-view images do not provide a good detection capability 

for non-wets as these become hard to distinguish from the non-defective joints. Taking 

images with oblique angles helps in distinguishing non-wet joints from the good ones. 

However, in this latter case, the joints are no longer aligned on vertical and horizontal 

lines. The solder joints are still aligned in straight lines; however, these lines are not 

necessarily parallel. Also, the imaged joints exhibit variations in shape and size within 

the same image and across images due to perspective effects when imaging at oblique 

angles.  

The proposed system consists of novel components including: 1) a novel adaptive 

ROI segmentation that is resilient to noise and illumination changes in order to extract the 

non-wet joints and in which the segmentation threshold that minimizes the segmentation 

error is found through statistical modeling using a mixture of Gaussian distributions; 2) a 

novel no-reference classification component in which each extracted solder joint area is 

classified as defective or non-defective using a novel model-based procedure that exploits 
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the fact that the centroids of the solder 

joints should be aligned in two 

directions; for this purpose, a novel 

mathematical model-based procedure 

was devised to extract the centroids of 

the segmented joint areas and to find 

the directions that best fit the 

extracted centroids (directional 

clusters) despite the challenges due to imaging at oblique angles and the fact that the 

joints are no longer aligned on parallel lines due to perspective distortions; for this 

purpose, angular deviations are computed locally for each joint‟s centroid and are first 

used in determining the directional cluster to which each joint belongs; the computed 

local angular deviations are then used in classifying the considered joint into defective 

(when the deviation with respect to other centroids in the considered directional cluster, is 

significant) and non-defective (when the deviation is insignificant); 3) the third 

component is an automatic optional mapping procedure which finally maps the positions 

of all joints to a known master ball grid array.  

A block diagram of the proposed non-reference scheme is shown in Fig. 4.6. First, 

the input image is pre-processed in order to reduce the artifacts that are introduced by the 

x-ray machine during the image capture process. Most notably, the image contains salt 

and pepper noise in the form of black and white dots. The pre-processing step consists of 

applying a simple and fast 3x3 median filter [10, 163] which can effectively remove this 

type of noise without significantly blurring the edges in the image. The joints in the 

image are then segmented using a proposed adaptive histogram-based thresholding 

procedure that is robust to illumination variations within the image. This is followed by 

the computation of the centroids of the segmented joints and by checking the alignment 

Fig. 4.6. Block diagram of the proposed automatic defect 

classification scheme for non-wet joints in processor 

socket. 

Angle Deviation at 
each joint centroid

ROI
Segmentation

Check joint centroid 
alignment across the image

Calculate the joint centroid of 
each segmented ball

Angle’s deviation>T Suspect joint Non-suspect joint

Preprocessing Step

Input Image
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of those joints' centroids in order to detect 

suspect joints. Details about the ROI 

segmentation, joint centroids computation, 

joint centroids alignment, and the centroid-

based classification of the joints, are given 

below. 

4.2.3.1.  ROI segmentation 

The purpose of this step is to find an 

accurate method to segment the solder joint 

area. The captured solder joint images do not 

exhibit uniform lighting and, thus, using a 

fixed threshold for solder joint segmentation fails to properly segment the desired joints. 

In this work, an automatic thresholding method which is based on histogram analysis is 

used to segment the solder joints. Fig. 4.7(a) shows an example of the 154 histogram 

curves from 154 images of one processor socket. The curves are all similar in gray level 

distribution. Taking the average of the 154 histograms produces a single histogram which 

contains two distinct (cluster) regions represented by two distinct peaks as shown in 

Fig. 4.7(b). The two resulting regions correspond to the background and the solder joint 

regions, respectively. The solder joint area has lower gray level values (left part of the 

histogram in Fig. 4.7(b)) as compared to the background area (right part of the histogram 

in Fig. 4.7(b)). The two cluster regions that can be seen in the histogram of Fig. 4.7(b) 

can be represented by a mixture of two Gaussian distributions with two different means 

and variance parameters. In order to segment the two regions, an automatic threshold 

should be selected adaptively for each image midway between the mean values of the two 

Gaussian distribution functions. In order to compute the segmentation threshold for each 

image, the means of the Gaussian distributions need to be estimated first. For this 

Fig. 4.7. Thresholding using histogram analysis. 
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 (b) Average of the 154 histogram distributions in (a). 
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(a) 154 histogram distribution curves for 154 images. 
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purpose, we adopt an iterative procedure to calculate, adaptively for each image, the 

mean values which are then used to compute the segmentation threshold. The steps of the 

procedure for computing the mean values of the two Gaussian distributions and the 

segmentation threshold for each image can be summarized as follows:  

- Step 1: Compute the probability    from the histogram distribution of the input image 

    , where    denotes the 8-bit image intensity, as:  

   
    

        
   

                        (4.1) 

- Step 2: At the     iteration, the updated mean values of the two Gaussian functions, 

  
           

    , are given by 
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where    denotes the threshold at the current     iteration. For     , the initial 

threshold    is selected to be the mean of the input image.  

- Step 3: The new updated threshold is obtained from the mean values   
          

    as  

  
    

  
      

   

 
 (4.3) 

Steps 2 and 3 of the above process are repeated until the threshold value   
    is no 

longer changing. This procedure converges in 4 to 6 iterations on average. Fig. 4.8(b) 

shows an example of the segmentation mask that is obtained by applying the adaptive 

histogram-based thresholding algorithm to the image shown in Fig. 4.8(a) in order to 

segment the ROIs (solder joint areas). From Fig. 4.8(b), it can be seen that there are 

unnecessary regions that need to be removed such as small areas of background and 

incomplete joints that correspond to joints near the image borders. Another issue that can 

be observed from Fig. 4.8(b) is the fact that some ROIs (white areas in Fig. 4.8(b)) touch 

and overlap. This overlap may result in the erroneous merging of separate ROIs and, 
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consequently, in the misclassification of the considered solder joints. Following the 

proposed adaptive histogram-based thresholding operation (Fig. 4.8(b)), a more accurate 

segmentation that can distinguish between separate solder joints is achieved by using the 

erosion and dilation mathematical morphology operations. The erosion operation is first 

performed followed by dilation using a circular structuring element [10, 164, 165]. 

Similarly, the undesired regions, including the incomplete joints near the image borders 

and small regions in the background can also be easily removed by using morphological 

operations. The small regions are removed by using the image opening operation (erosion 

followed by dilation) which is used to remove white areas with small sizes. The joints 

that are touching the image borders are removed if any pixel‟s location inside the 

segmented joint is lying on the border. Fig. 4.8(c) shows the final resulting segmentation 

mask which is used to get the desired segmented ROI area and which is obtained by 

applying the aforementioned mathematical morphology operations to the mask shown in 

Fig. 4.8(b). Fig. 4.8(d) shows the result of applying the mask of Fig. 4.8(c) to the original 

image in Fig. 4.8(a). It can be seen that the image is segmented into two regions, the 

solder joint areas (ROI) and the background area. In Fig. 4.8(d), the closed white 

contours are used to show the segmented joint areas. Each individual solder joint is then 

extracted by using an image labeling procedure [165]. The labeling procedure is applied 

to the binary segmentation mask image (Fig. 4.8(c)) which consists of 0's in the 

background region and 1's in the isolated white regions (corresponding to the segmented 

(a) Original image.            (b) Segmentation using histogram.      (c) Final segmentation mask.       (d) Segmentation results. 
 

Fig. 4.8.   ROI segmentation of candidate solder joints. 
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solder joints). Each white region, consisting of 4 or more connected pixels, is uniquely 

labeled by assigning a label number to all pixels in the considered region. The label 

number is increased by 1 and the process is repeated when a new white region is 

detected. The result of the labeling process is an image that contains   label numbers, 

from 1 to  , where   represents the total number of segmented joints. Each individual 

joint can then be extracted and identified by its label number. For example, joint    with 

label   can be extracted from an image        which contains integer numbers 

representing the labels for the segmented joints as follows:  

                           (4.4) 

where         represent the pixels' locations inside image   and   represents the label 

number of each segmented region            . 

4.2.3.2.  Joint centroid computation and alignment 

A novel aspect introduced as part of this work is the use of the centroids of the 

segmented joints as feature parameters that can be used for checking the degree of 

alignment between the solder joints despite the perspective effects and the non-parallel 

lines introduced by the multi-view imaging system at oblique angles. The centroid 

locations   
         

   for a joint    in the labeled image         which contains the label 

numbers of the segmented joints, are given by  

  
                                (4.5) 

Fig. 4.9. Centroids and directional clustering: classification of centroids into different groups based on 

alignment along two directions. 

(a). Centroids Extraction. (b). Checking neighbor joints to 

get cluster lines. 

(c). Candidate neighbor 

joints. 

(d) Centroids clustering in 

desired directions. 
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Fig. 4.9(a) shows the extracted centroids („+‟ symbol) of the segmented joints of 

Fig. 4.8(d). In order to cluster the centroids into directional clusters by grouping together 

centroids that lie on or close to a straight line, we make use of the fact that, in the 

considered setup, the images are captured at known oblique angles. In our case, the 

angles are 45°, 135°, 225°, 315° (Fig. 4.4), which are multiples of 45°, and which 

correspond to two main directional clusters at angles 45° and -45°. This fact is exploited 

in developing an efficient clustering scheme in which the search range for the alignment 

is limited to finding two directions    and    around    and -   , respectively, where 

             
      and                

       (in our 

implementation,       ). The search for    and    is performed by computing the 

angles between the considered joint and its surrounding neighbors as shown in 

Fig. 4.9(b). This would result in determining the two neighboring joints (out of the 

surrounding neighbors) with angles in the acceptable range, the one whose angle is 

closest to     corresponding to    and the one whose angle is closest to      

corresponding to     This process needs to be repeated at each joint in order to eliminate 

outlier neighboring joints. Fig. 4.9(c) shows the result of the search algorithm in locating 

the surrounding joints that lie in the desired directions. Following the same procedure 

locally at each joint, one can determine the groups (clusters) of joint centroids that lie on 

or near the same line as shown in Fig. 4.9(d). We refer to these clusters as directional 

clusters.    

4.2.3.3.  Centroid-based classification of good and suspect joints  

A robust classification method is needed to classify each individual centroid in each 

directional cluster into suspect (non-wet) or good joints. This classification is performed 

by checking the degree of alignment of each joint's centroid with respect to joints in the 
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same directional cluster. The proposed reference-free classification procedure can be 

described as follows. Assume that an image has   directional clusters of joints and that 

each cluster           , contains     number of joints               . Let 

  
         

   be the         coordinates of the centroid of joint    . As illustrated in 

Fig. 4.10(a), for each joint                 the degree of alignment is obtained by first 

calculating the angles      of that joint relative to the other joints 

                          in the same directional cluster   as follows:  

        
  
   

     
   

   
     

   
                    (4.6) 

The angle deviation    at joint   is then computed in directional cluster   using the 

standard deviation of the angles        as follows:  

    
 

    
        

 

    
      

  

          

 

   

          

 (4.7) 

A deviation threshold    is used to classify each joint   in line cluster   into good or 

suspect joint. The classifier output can be expressed as:  

                   
                           
                        

  (4.8) 

From (4.8), it can be seen that the classifier output depends on the deviation threshold 

value   . If    is smaller than the optimum value, the number of suspect joints would 

increase and consequently the false positive rate would increase, which in turn would 

increase the inspection time. If the deviation threshold    is higher than the optimum 

value, the number of false positive joints would decrease; however, in this latter case, 

many non-wet joints would not be detected. A conservative deviation threshold which 

produces a low false positive rate and which results in a relatively high detection rate of 

non-wet joints was determined experimentally and based upon statistical analysis. In the 
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experiment, a set of images which include defective (non-wet) and non-defective joints 

were used to calculate the angle deviation value for each joint in the given set of images 

as described in (4.6) and (4.7). The distribution of the angle deviation values obtained for 

defective and non-defective joints is close to a mixture of two Gaussian distributions. By 

analyzing the statistical distributions of the angle deviation values of defective (non-wet) 

versus non-defective joints, a threshold value that minimizes the false negative rate 

(missed detections) while constraining the false positive rate to be less than 1.5%, was 

determined to be 2. The process of calculating the optimum deviation threshold that 

minimizes the probability of classification error can also be obtained using a maximum-

likelihood based optimization procedure. Let   
  be a Gaussian probability distribution 

with mean   
  and standard deviation   

 , corresponding to the probability distribution of 

the defective joints. Similarly, let   
  be a Gaussian probability distribution with mean   

  

and standard deviation   
 , corresponding to the probability distribution of the non-

defective joints. The ML-based optimum deviation threshold is given by [10]:  

    
          

  
  (4.9) 

where      
      

          
   

     
   

               
    

     
    

     
    

         
    

   
   

    

Fig. 4.10. Detecting suspect joints using the proposed reference-free classification method. 

(b) Defective joints (w and z above) have relatively large 

deviation compared to the non-defective joints. 
(a) Angle deviation at each joint's centroid. 

There is no suspect joint

There is a suspect joint
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Since each joint belongs to two directional clusters, the degree of alignment for each joint 

is checked twice as described above, once for each cluster. This allows each joint to be 

checked twice for defect, which helps in increasing the detection rate of non-wet joints 

because, in some cases, the non-wet joints cannot be detected in one direction as they 

may be aligned in that direction with other joints, but can be detected due to 

misalignment in the second direction. This is illustrated in Fig. 4.10(b) which shows the 

output of the classifier for a sample image when the deviation threshold    equals 2. In 

this case, the classifier detects two suspect joints,    and   in Fig. 4.10(b), which 

correspond to non-wet joints with maximum deviation angles 3.17° and 3.57°, 

respectively. From Fig. 4.10(b), it can be seen that non-wet joint    is aligned with the 

good joints in the     direction           , but is misaligned relative to the good joints 

in the    direction            . In other cases, a non-wet joint can be detected as a 

suspect joint in both the           directions as it can be seen for joint   in Fig. 4.10(b). 

Figs. 4.11(a1) to (d1) show examples of detecting non-wet joints in different boards using 

the proposed scheme. The detected non-wet joints are marked with a spot in their centers. 

Figs. 4.11(a2) to (d2) show, respectively, an enlarged view of the non-wet joints detected 

w z 

Fig. 4.11. Examples of non-wet solder joints detection using the proposed algorithm. 

                    (a1)                                                (b1)                                                    (c1)                                               (d1) 

(a2)  Non-wet in (a1).                      (b2) Non-wet in (b1).                      (c2) Non-wet in (c1).                      (d2) Non-wet in (d1). 
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in Figs. 4.11(a1) to (d1). Despite the fact that some of the non-wet joints are hard to 

notice by the human eye, such as for example the non-wet joints shown in Figs. 4.11(c1) 

and (d1), the proposed algorithm is capable of detecting these non-wet joints accurately. 

4.2.4.  Automatic joint mapping 

Due to the fact that a joint can appear at least in 4 different images, each one 

corresponding to a different view that is taken at a different angle, the same non-wet joint 

can be detected several times. It follows that it is difficult to know whether a detected 

non-wet joint has been detected before or whether the detected joint corresponds to a new 

detection. To know if the joint has been detected before or not, the operator has to have a 

map which provides a unique label to the same joint in each of the views. The operator 

has to look at 150 images with approximately 30 joints each and locate each defective 

joint manually using a feature of the 2D x-ray that allows a map display through a series 

of several zooming steps. Getting the corresponding labels manually for the defective 

joints out of 4500 repeated joints in each socket is time consuming and tedious work for 

the operator and, in addition, it can produce inaccurate results if the joint is not pin 

pointed accurately. It is therefore crucial to have an automatic joint mapping algorithm 

which would not only save time but can also produce accurate results.  

The main concern in automatic mapping is to get some data such as images of a 

reference socket that was already mapped to the master ball grid array of the considered 

Fig. 4.13. Automatic mapping scheme. 
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Fig. 4.12. Extracting joints' centroids in 

reference image. 



    

 

88 

 

unit, and a lookup table. The images are taken in a specific sequence. Two types of 

sockets are considered in the examples shown in this method: U86 and U87. Each socket 

has 1366 unique joints and each joint has a unique label which consists of letters that 

represent rows, and numbers that represent columns in the master BGA file of each 

processor socket, i.e., AB5, B5, Y17, AW43....etc. Fig. 4.12 shows an example of joint 

mapping. There are some challenges to get an accurate automatic mapping directly from 

the images of the reference socket (referred to as reference images) such as lighting 

variation, incomplete joints in reference images, and misalignment between the test and 

the reference images. Fig. 4.13 presents the block diagram of the proposed automatic 

joint mapping. The look-up table is used to save the information obtained from the 

reference images such as image sequence number, joint label and XY coordinates of each 

joint's centroid. The process of generating the look-up table consists of first obtaining the 

centroid of each joint in each reference image as shown in Fig. 4.12, then saving the 

reference image sequence number, joint's label, and the XY coordinates of a joint's 

centroid in a table. An output from a computer-aided-design software socket design file 

containing the label and specific coordinates for each joint can be used and combined 

with the sequence of reference images in order to map the joints‟ labels to their XY 

coordinates in the reference images. The generated lookup table can be used later as a 

reference to get the automatic mapping of each joint of the same socket in different 

boards. Using the saved look-up table, the automatic mapping is performed by comparing 

the XY coordinates of the joints' centroids in the test image to the XY coordinates of the 

same image sequence number, which are saved in the look-up table. The test image has to 

be aligned with respect to the reference image first before checking the look-up table. 

More details about the image alignment and automatic mapping will be discussed in the 

following subsections.  
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4.2.4.1.  Automatic image alignment and mapping 

Each socket has around 150 images obtained by using the x-ray machine. The x-ray 

machine is programmed to start scanning from the same position of the socket each time. 

This means that the image sequence numbers from 1 to 150 correspond to the same 

reference image sequence numbers for the same socket type. However, this 

correspondence is not exact as typically there are shifts between the test and reference 

images due to placement inaccuracies of the board relative to the x-ray stage. 

Unfortunately, these shifts produce misalignments between the test and reference images 

as shown in Fig. 4.14. To get an accurate joint mapping, the locations of the 

corresponding joints' centroids in the reference and test images should be aligned, 

otherwise the automatic mapping would produce inaccurate results. In general, there are 

different types of distortions between the reference and test images which can be 

summarized as translation, rotation, affine, and projective distortion [166, 167]. 

In the considered set-up, the distortions between the test and reference images during 

the image capture are translational only. Therefore, an alignment procedure based on the 

cross-correlation coefficient was found to work well for the considered application. The 

cross-correlation coefficient based alignment procedure consists of first shifting the test 

image by            relative to the reference image and then computing the cross-

correlation coefficient          for the considered shift. The shift         that results 

in the maximum cross-correlation coefficient is the one utilized to align the images. The 

cross-correlation coefficient          between test image   and reference image    is 

given by   

         
                                              

                  
 

                               
 

   

  (4.10) 

where                and          are the mean values of images          

    and       , respectively. In (4.10),         represent the index of each pixel inside 
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the image,           represent the shift parameters in the         directions, 

respectively. The output cross-correlation coefficient          is a function of the shift 

parameters            The final computed shifts between the test and reference images 

are the values of           that correspond to the highest cross-correlation coefficient in 

(4.10). Figs. 4.15(a) and (b) show test and reference images, respectively. Fig. 4.15(c) 

shows the test and reference images superimposed above each other in order to illustrate 

the misalignment between them. This misalignment results in a poor cross-correlation 

factor               . Fig. 4.15(d) shows the two superimposed images after 

correcting for the misalignment by using the proposed alignment algorithm. For this 

example, the alignment shifts, which maximize the cross correlation coefficient, were 

found to be -5 and -47 in the directions of        , respectively. After aligning the test 

image relative to the reference image, the automatic mapping is achieved by comparing 

the XY coordinates of the joints' centroids in the aligned test image to those saved in the 

look-up table for the same image sequence number. This can be done by using an 

appropriate distance function to get the label of the closest reference joint.  

     (a) Test image 1.                            (b) Reference image 1.                      (c) Test image 2.                         (d) Reference image 2. 
 

Fig. 4.14. Misalignment between test and reference images. 
 

      (a) Test image.                           (b) Reference image.                         (c) Before alignment                          (d) After alignment  

                                                                                                                                    .                                          . 
 

Fig. 4.15. Image alignment between test and reference images. 
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Table 4.1 shows the results of running the 

proposed automatic mapping algorithm on a 

series of images at different oblique angles from 

a single socket. Since several images of the same 

socket are taken from different angles, the same 

joint can appear in several images (views). In this case, the number of non-wet joints 

which were detected by the algorithm, and confirmed by the operator, is 15 non-unique 

joints; however, the actual non-wets are 5 unique joints as given in Table 4.1, which 

shows that the same non-wet joint can be detected more than once (due to the fact that it 

appears in several views).  Therefore, without the proposed automated non-wet detection 

and mapping system, an operator would have to examine manually the same defective 

joint in several views. The proposed automatic defect detection algorithm can locate the 

non-wet (defective) joints in all the views and determine which ones correspond to the 

same joint. Thus, with an operator is in-loop, once the operator confirms that a joint is 

defective, that joint is not shown again to the operator in subsequent images, saving thus 

significant time. Without the proposed system, the operator would have to detect and 

confirm 15 non-wet joints, although 10 of these are redundant and only 5 non-wet joints 

are unique. At least 2/3 of the operator‟s time can be saved since the proposed system is 

able to present to the operator only the 5 non-wet unique joints.  

Fig. 4.16 shows different images in which the AU43 non-wet joint was detected more 

than once. The AU43 non-wet joint can be clearly noticed in the images shown in 

Figs. 4.16(a), (b) and (c), while it cannot be seen clearly in the image of Fig. 4.16(d). 

However, the algorithm was successful in detecting it as a suspect joint in all 4 images 

because the AU43 joint‟s centroid exhibits a significant deviation relative to the centroids 

of the good joints that belong to the same cluster.  

2 Table 4.1: Non-wet detection using the 

proposed algorithm with automatic mapping. 
 

Detected 

non-wet joint 

Number of 

Detections per joint 

AY36 1 

M2 2 

R2 2 

AU43 4 

B5 6 
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4.2.5. Performance results and statistics with ground truth data 

Ground truth data clearly identifying the non-wet joints is required to verify the 

accuracy of the proposed algorithm with automatic mapping. Dye and pull validation was 

used to get ground truth data. Dye and pull testing consists of immersing the board with 

the unit attached in a red dye. The dye will penetrate the socket and leave a residue to 

enable an inspection of the goodness of the joint. The unit is then physically pulled off of 

the board. The non-wet joints show up as an abnormal separation point between the board 

and the unit and are noted by the solder residue remaining on the unit. Each unit is 

inspected by an operator to validate the separation point to physically confirm the 

presence of a non-wet joint.  Dye and pull validation was run for 56 sockets. Each socket 

has 1366 unique joints, which gives a total number of joints equals to 76,496 joints in the 

56 sockets. The number of non-wet joints that were detected by the dye and pull was 47 

as given in Table 4.2. Table 4.2 gives the results of the 47 non-wet solder joints in 56 

sockets after investigating each joint in each processor socket using the dye and pull 

ground truth method and the proposed method. Each non-wet solder joint in Table 4.2 

was represented by its board number, processor socket number, and unique joint‟s label. 

The total number of non-wet joints that were detected by the proposed algorithm and that 

matched the dye and pull results are 45 out of 47 non-wet joints. This gives a detection 

rate equal to 95.8% (45/47). The algorithm detected a total of 911 suspect joints of which 

866 were false positives. Given the total number of unique joints in 56 sockets, which is 

Suspect Unit : SN
3
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No. 17 Suspect Unit : SN

3
31  Imag

 
No. 95 Suspect Unit : SN

3
31  Imag

 
No. 135Suspect Unit : SN

3
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No. 96

AU43 

AU43 

AU43 

AU43 

                (a) At 450 .                                  (b) At 1350.                                       (c) At 2250.                                    (d) At 3150. 
 

Fig.  4.16.   Results of the proposed algorithm with automatic mapping showing different-view images in which the same non-

wet joint (AU43) was detected more than once. The detected non-wet joint is marked with a spot in its center. 
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76496 joints, the resulting false 

positive rate is 1.1% (866/76496). 

The average number of suspect joints 

per socket is 16 joints (911/56). 

Assuming 1 suspect joint per image, 

this requires an average of 16 images 

to be inspected instead of 150 images 

in a single socket, which reduces the 

operator‟s manual inspection time by 

approximately 89.6%. For the 2 

missed non-wet joints (A14 and K1), 

the algorithm detects neighboring 

joints as given in Table 3.2 and as 

shown in Fig. 4.17, which gives a 

detection rate of 100% with an 

operator in the loop. The reason that 

the detection of neighboring joints 

can give a detection rate of 100% 

with the operator in the loop is that a 

user interface that specifically points 

out the suspect joints to the operator 

enables the focus of the attention to a 

specific area. That area will always 

contain the non-wet if one is present.  

The reasons why these two joints were miss-detected are because the deviation 

threshold was determined using (4.9) as described in Section 4.2.3.3 in order to minimize 

3 Table 4.2: Non-wet joints obtained from the dye and pull 

test and the proposed algorithm. 
 

Board 

No. 
Socket 

No. 

Dye and 

pull Results 

Algorithm 

Results 
Comment 

1 U86 E1 E1 Match 

1 U86 A40 A40 Match 

1  U86 G42 G42 Match 

2 U87 C3 C3 Match 

3 U86 AV41 AV41 Match 

3 U86 AW37 AW37 Match 

3 U86 B33 B33 Match 

3 U87 C5 C5 Match 

3  U87 D4 D4 Match 

4 U87 C2 C2 Match 

5 U87 AW14 AW14 Match 

6 U87 AW38 AW38 Match 

6 U86 C5 C5 Match 

7  U86 A14 A15 & B14 Miss 

7 U86 B5 B5 Match 

7 U87 AT41 AT41 Match 

7 U87 C5 C5 Match 

8 U86 BA13 BA13 Match 

8 U87 D3 D3 Match 

8 U87 E2 E2 Match 

9 U86 AY26 AY26 Match 

9 U87 AW23 AW23 Match 

10 U86 C3 C3 Match 

11 U86 C39 C39 Match 

11 U87 G2 G2 Match 

12 U87 AY36 AY36 Match 

13 U87 K1 K1 Match 

14 U86 AY41 AY41 Match 

14 U86 N2 N2 Match 

14 U86 P2 P2 Match 

14 U87 D2 D2 Match 

15 U87 AU40 AU40 Match 

15 U87 AL42 AL42 Match 

15 U87 AW39 AW39 Match 

15 U87 C5 C5 Match 

16 U87 AM42 AM42 Match 

16 U87 AL42 AL42 Match 

16 U87 AY17 AY17 Match 

17 U87 AW22 AW22 Match 

18 U86 C30 C30 Match 

19 U86 AY14 AY14 Match 

20 U86 B37 B37 Match 

20 U87 B5 B5 Match 

21 U87 F1 F1 Match 

21 U87 K1 L1 Miss 

22 U86 AY13 AY13 Match 

22 U87 L2 L2 Match 
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the classification error in a statistical sense (i.e., minimize the probability that a joint is 

being classified as non-defective given that it is defective). Even when the threshold is 

determined experimentally, this is done through a statistical analysis of the data. From 

statistics and probability theory, there will be some joints which would appear to belong 

to the non-defective class even though they are indeed defective based on the 

distributions of the angular standard deviations for the defective and non-defective class, 

which cross each other. Currently, the accuracy of the system is significantly high 

(95.8%). In addition, as indicated previously, the system can detect the neighboring joints 

of a missed defective joint raising the accuracy to 100% with an operator in the loop. 

A comparison between the results of the proposed algorithm with one of the up-to-

date advanced capability x-ray machines with an embedded non-wet algorithm was run 

for the same sample sockets. The data shows a non-wet detection rate in the range of 43% 

to 75% for the advanced capability x-ray machines. The proposed algorithm gives a 

95.8% detection rate of the non-wet joints, which is 21% to 53% more accurate than the 

results of the advanced capability x-ray machines. If the above statistics are calculated for 

non-unique joints, the actual number of the joints that are investigated by the algorithm 

for suspects are approximately 252,000 non-unique joints due to the repetitive imaging of 
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Fig. 4.17. Examples showing the detection of the neighbor joints to the missed non-wet joints (A14) in 

different images using the proposed algorithm. 
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the same joints at different oblique angles. The total number of detected suspects is 1281 

non-unique joints and the total number of actual non-wets is 159 non-unique joints, 

which gives a false positive rate of 0.45%. 

The algorithms have been implemented using the Intel® Integrated Performance 

Primitives and Intel® Math Kernel Library. The code was then embedded in a C++ 

program. The code is multi-threaded and performance optimized using Intel® Threading 

Building Blocks and Intel® Parallel Studio. The overall performance of the proposed 

method is fast and the inspection process is very efficient due to the fact that the instant 

that the 2D x-ray image is available, it is processed and, if suspect joints are found, the 

image is immediately made available to the operator. This enables the inspection to be 

completed at the same time or very close to the time that the x-ray itself has finished 

imaging the socket. 

4.2.6. Summary of non-wet detection 

An automatic defect detection algorithm was presented in the previous section to 

accurately locate the non-wet joints in processor sockets. The algorithm is capable of 

locating the non-wet joints in socket images that were taken at different oblique angles. 

The conducted performance evaluation and resulting statistics show that the proposed 

algorithm provides a detection rate of 95.8%. This is 21% to 53% better than commonly 

used state-of-the-art inspection machines. The proposed algorithm has the potential of 

resulting in a detection rate of 100% with an operator in the loop due to the identification 

of neighboring joints to the missed defective ones. Moreover, the proposed scheme 

reduces the false positive rate, false negative rate, and the inspection time, and requires 

only a relatively inexpensive 2D x-ray imaging device, which makes it cost effective and 

manufacturing friendly. Moreover, the algorithm has been implemented into an 

application which is currently being used in technology development at Intel Corporation. 

Future directions in our research include investigating the applicability of the proposed 



    

 

96 

 

algorithm to multiple processor sockets and ball grid arrays. In addition, an improved 

automatic mapping method, without using images of a reference socket, is being 

developed. Other future work include considering new features beside the angular 

deviations of the joints‟ centroids, and characterizing other types of defects in solder 

joints. 

4.3. Robust Automated Void Detection in Solder Balls and Joints  

Accuracy in solder balls and joint void detection is very important. If voids are 

incorrectly identified, board yield will be affected by incorrect scrapping and rework. 

Voids are difficult to detect using manual inspection alone. One current solution to make 

voids visible involves the use of a 2D x-ray system to image the boards. Some existing x-

ray inspection systems have void detection algorithms that require the use of intensive, 

time consuming, fine tuning operations. These algorithms typically use two different 

global thresholds to segment the balls or joints and the voids using operator trial and 

error. However, using global thresholding over the entire image is invalidated due to 

varying image brightness. Existing methods also eliminate balls or joints that are partially 

occluded by other components due to difficulties in segmentation. The results are that 

many voids that can be easily observed by the human eye are missed by the existing 

automated methods.    

In this section, a robust, accurate, and automatic void detection algorithm is 

proposed. The method is applicable to either pre-SMT (Surface Mount Technology) 

solder balls or post-SMT solder joints. For simplicity, the term balls will be used 

throughout the document. The proposed method is able to detect voids with different 

sizes inside the solder balls, including the ones that are occluded by board components 

and under different brightness conditions. The proposed method consists of segmenting 

individual balls, extracting occluded balls, and segmenting voids inside the solder balls. 

The segmentation of the individual balls is achieved by using the proposed histogram and 
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morphological based segmentation method. A voting procedure is used to segment the 

occluded balls where the pixels inside the occluded area are checked to obtain candidate 

pixels representing the occluded joint‟s or ball‟s centroids. An independent edge 

detection procedure is used to get candidate voids inside individual balls. Mathematical 

morphology operations are used to locate all possible valid voids and remove non-void 

areas. The proposed algorithm was applied to 3 different Intel products. The results of the 

proposed method were compared to the results obtained by an automated algorithm in an 

existing state-of-the-art 2D x-ray inspection system, the results obtained by trained 

operators from 2D x-ray images, and the results obtained by trained operators from 3D 

CT scan images. The results (pre-SMT solder balls) show that the proposed method is 

capable of successfully locating all possible visible voids inside the solder ball even the 

ones that were missed by using other methods as well as those that are hard to see by the 

human eye. The results also show a high correlation with ground-truth data obtained from 

3D CT scan and experienced operators. The algorithm is fully automated, benefits the 

manufacturing process by reducing operator effort, and provides a cost effective solution 

to improve output quality. The results were presented and published in [52, 53].  

4.3.1. Problem statement  

Voids are one of the major defects in solder balls and are defined as cavities formed 

inside the solder joint due to the amount of out-gassing flux that gets entrapped in the 

solder joint during reflow.  Some causes of voids are trapped flux that has not had enough 

time to be released from the solder paste, and contaminants on improperly cleaned circuit 

boards. Voids in solder balls are also caused by the reduction or metallic oxides by the 

soldering fluxes [168]. Voids appear as a lighter area inside the solder balls and joints on 

a 2D x-ray image and are typically found randomly throughout the package [169]. 

Previous studies show that the existence of voids decreases the solder joint‟s life [170]. In 

[171], the authors concluded that smaller voids grow much more slowly than the bigger 
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voids. The extensive use of solder balls and joints on printed circuit boards (PCB) 

necessitates reliable, void detection in the balls and joints to prevent infant mortality 

failures. The Institute for Printed Circuits (IPC) and the Joint Electron Device 

Engineering Council (JEDEC) have developed standards for inspecting assemblies of 

electronic products. IPCA610D specifies a 25% or less cumulative voiding percentage in 

post-SMT solder joints. JEDEC void inspection criteria are based on the size of the void 

and the cumulative percentage of voiding in an individual ball. The new JEDEC 

guideline for void inspection criteria was recently issued by the JC14-1 committee and 

specifies a 15% or less cumulative voiding percentage in a solder joint. 

A solder ball has a spherical shape as shown in Fig. 4.18(a). Voids are distributed 

randomly inside the solder ball as shown in Fig. 4.18(b) which gives a cross-sectional 

view inside the spherical solder ball. The 2D top view of the spherical solder ball is 

shown in Fig. 4.18(c). Voids are hard to locate inside solder balls and joints using manual 

inspection tools. 2D x-ray machines are used to make the voids inside the solder balls and 

joints visible to the operator as shown in Fig. 4.19. The output of the x-ray machine is 

shown in Figs. 4.19(a)-(d) which represent the 2D images of different products. 

Figs. 4.19(e)-(h) show zoomed-in images for balls that are highlighted in Figs. 4.19(a)-

(d), respectively. The images in Figs. 4.19(e)-(h) are enhanced for visual clarity to show 

all possible voids inside the highlighted solder balls in Figs. 4.19(a)-(d). One of the 

 (a). 3D image of solder ball.    (b). Cross-section in 3D image that shows voids inside solder ball. (c). Voids distribution in 2D image. 
 

Fig. 4.18.  Solder ball shape in 3D and the distribution of voids in both 3D and 2D images. 
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methods used to locate voids inside solder balls is to use existing image enhancement 

software to examine the x-ray images manually after changing the image brightness and 

contrast. The operator must then detect and measure each observed void manually. A 

skilled operator takes around 4 minutes to locate and measure one void inside a solder 

ball which makes the manual process very tedious and time consuming. The process is 

also highly variable due to the difference in training, skill and other human characteristics 

of operators.  

The necessity of getting a robust and reliable automated void detection algorithm is 

important. Before discussing the existing void detection methods, let us address the main 

challenges that are observed in the acquired 2D x-ray images. These challenges can be 

summarized as follows: (i).poor image contrast at some balls, which makes the voids 

difficult to detect by the human eye; (ii).interference of other components in the unit such 

as void-like artifacts, die bonds, vias (plated through holes), via reflection, and 

overshadowing capacitors; (iii).irregular shapes (non-circular) caused by the fact that 

there can be overlapped voids present in the 2D images that do not conform to the 

predominant circular void shape; (iv).missing or overlapped voids not visible in the 2D x-

(a)                                    (b)                                                                    (c)                                               (d) 

       (e). Ball‟s voids in (a).                        (f). Ball‟s voids in (b).                     (g). Ball‟s voids in (c).               (h). Ball‟s voids in (d). 
 

Fig. 4.19. Example of 2D x-ray images that show voids inside solder balls in different product lines. 
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 Void Void 
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ray images compared to the details obtained from the 3D CT scan images. Fig. 4.20 

shows some examples of the aforementioned challenges in the 2D x-ray images. Most of 

the existing void detection systems do not provide solutions to tackle these issues, which 

results in missed and false called voids and, thus, inaccurate detection. 

Using a 2D x-ray machine is much faster and less expensive to measure each ball as 

compared to a 3D or multi-dimensional x-ray machine, but at a loss of some accuracy as 

mentioned above. Some existing 2D x-ray machines have embedded inspection systems 

that include void detection algorithms. However, the existing void detection algorithms 

that are used in 2D x-ray machines require intensive preprocessing steps and manual fine 

tuning. An example of the steps of image acquisition and void detection in a 2D x-ray 

machine with an embedded void detection algorithm, follows:  

- The first step is to set up the 2D x-ray machine to make sure that there is a visible gray 

scale difference between the solder balls, background and voids. The operator manually 

uses different gray scale levels for solder ball, background and voids depending on the 

intensity of the void level. The setting of the gray scale level is achieved by changing 

the current and the voltage of the x-ray beam. 

- The second step is to set up the void detection software. A typical software setup 

includes defining the expected solder ball size and additional inspection features. Some 

of these features can include segmentation threshold values such as the threshold used 

to identify the gray scale difference between a solder ball and background area, and the 

 (a). Poor image contrast.           (b) Overshadowing capacitor.    (c) First Level Interconnect interference.       (d) Via interference. 
 

Fig. 4.20.  Examples of some Challenges in the 2D x-ray images. 

Via 

Voids 
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threshold used to identify the difference between voids and solder ball. Threshold 

values are determined by the operator by trial and error. After using the selected 

threshold to segment the solder ball from the background, some feature parameters 

such as predefined size (area) of a solder ball are used to decide which one of the 

segmented regions should be processed and which one should be ignored. A global 

thresholding method cannot be optimized to provide sufficient adjustment to capture all 

voids with the lighting variations typically encountered in an x-ray image. In addition, 

this method is unable to segment the balls that are occluded by overshadowing 

components. 

- The third step involves detecting the voids in the considered set of images using the 

software with the selected threshold values and inspection features.  

An example of void detection using the above system is shown in Fig. 4.21. The results 

shown in Fig. 4.21 show that the 2D x-ray machine with an embedded void detection 

algorithm misses voids, detects many false voids, and fails to process balls that are 

Fig.4.21. Results using 2D x-ray machine with an embedded void detection algorithm. 

Missed voids 

Missed voids 

Ignored 

occluded balls 

False voids 

Missed voids 

(a).Contrast-enhanced input image 1 

with voids. 

(b).Output of embedded 

algorithm in 2D x-ray machine. 

(c). Voids inside 

highlighted ball in (a). 

(d). Missed voids inside 

highlighted ball in (b). 

(e).Contrast-enhanced input 

image 2 with voids. 

(f). Output of embedded 

algorithm in 2D x-ray machine. 

(g). Voids inside 

highlighted  ball in (e). 

(h). False voids inside 

highlighted ball in (f). 
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occluded by overshadowing capacitors. 

The system is also troubled by vias 

under the balls and classifies the vias as 

voids. In addition, this system requires 

a lot of manual operations and 

parameters tuning for each new product 

line.   

The following subsections are used to describe the procedures of the proposed 

method for void detection in solder balls. Section 4.3.2 presents the steps of the proposed 

void detection algorithm. Performance results and comparison with existing methods are 

presented in Section 4.3.3. Section 4.3.4 gives an improved proposed method to detect 

voids in the presence of via and via reflection. Simulation results for the proposed 

improved void detection method are presented in Section 4.3.5. A summary is provided 

in Section 4.3.6. 

4.3.2. Automated void detection method 

The main goal of this work is to provide a reliable, highly accurate, and fully 

automated scheme for void detection in 2D x-ray images. The proposed algorithm is 

designed to be robust to the challenges that are present when dealing with 2D x-ray 

images as discussed in Section 4.3.1. In this section, we present more details about the 

proposed void detection algorithm which is capable of detecting voids with different sizes 

inside the solder balls and under different brightness conditions. 

Fig. 4.22 shows the block diagram of the proposed automated void detection method. 

The block diagram summarizes the steps of the proposed method including solder ball 

segmentation, the extraction of solder balls that are occluded by overshadowing 

capacitors, the extraction of candidate regions inside each segmented solder ball, the 

selection of feature parameters, and the classification of the candidate regions inside the 

Segmented individual balls 

Fig 4.22. Block diagram of the proposed method for 

void detection inside solder balls. 

Input 2D X-ray 

Image 

 Localization and extraction 

of occluded solder balls. 

Segmentation of non-homogenous regions inside 

each individual solder ball area. 

Feature extraction and classification of each 

segmented region into void or non-void region. 

Void percentage (ratio of void area to ball area) 

computation inside each individual ball. 

Un-occluded solder ball 

segmentation 
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solder ball in order to exclude all non-void regions. Fig. 4.23 illustrates the steps of the 

proposed method. More details about the individual solder ball segmentation and the 

candidate void detection and classification are given in the following subsections.  

4.3.2.1.  Individual solder ball segmentation  

Due to the fact that the 2D x-ray images suffer from inconsistent lighting, in order to 

segment the solder ball area, it is important to use an adaptive threshold value which is 

based on the image intensity distribution instead of using a fixed threshold value. In the 

proposed method, an automatic thresholding value based on the image histogram analysis 

is applied to the original image to segment the solder balls. Fig. 4.23(b) shows the 

histogram of the 2D x-ray image shown in Fig. 4.23(a) where the histogram contains two 

main cluster regions represented by two distinct peaks: the solder ball and background 

regions. In order to segment the solder balls regions (ROIs) from the background region, 

the segmentation threshold is determined automatically based on the distribution 

(histogram) of the considered image. From the distribution of the input image, the mean 

of the image is computed and is used as the initial segmentation threshold value. The 

distribution range is then divided into two parts, also referred to as clusters, 

Fig. 4.23.  Steps of the proposed void detection method. 

(a). Input image. (b). Histogram distribution. (c) Segmentation using 

thresholding. 
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balls removal. 
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corresponding to pixel values below and above the current threshold, respectively. The 

threshold value is efficiently refined by computing the cluster means directly from the 

input image distribution without the need to segment the image. The updated threshold 

estimate is set to be the average of the two cluster means. This refinement step is repeated 

until the two cluster mean values no longer change, resulting in the final threshold 

estimate. This procedure converges in an average of 4 to 6 iterations. Fig. 4.23(c) shows 

the results after applying the above adaptive segmentation threshold computation 

procedure. Incomplete balls that are touching the image border are excluded from further 

void location processing. The removal of those incomplete balls is achieved by 

comparing each incomplete ball‟s area (  ) with respect to the area of the individual 

complete ball (  ), where    is taken as the median area of the segmented ROI areas 

inside the input image. Fig. 4.23(d) shows the results of excluding incomplete balls that 

are touching the image border and have an incomplete ball area less than 0.7 of the 

individual complete ball area (  ).  

Existing methods such as embedded algorithms in x-ray machines are unable to 

process balls that are occluded by overshadowing components, even though some of 

these balls may have high void percentages. In the proposed method, a voting procedure 

is devised to extract the occluded balls by locating their centroids. This can be achieved 

by exploiting the fact that the solder balls are aligned along different directions, including 

             as shown in the input image in Fig. 4.23(a). The extraction of the 

occluded balls‟ centroids using the proposed voting procedure is done as follows: 

(i). locate the occluded regions as the segmented regions whose area is greater than 1.2 of 

the individual ball‟s area   ; (ii). calculate the centroids of the individual complete balls 

outside the occluded regions; (iii). calculate the directional angles between each pixel 

inside the occluded region and the centroids of the individual balls outside the occluded 



    

 

105 

 

region; (iv). keep only those pixels that match at least two angles in the directions of 

             inside the occluded region; the results of this step produce isolated 

regions consisting of clusters of connected pixels; (v). calculate the centroid of each 

region using an image labeling procedure [165]; (vi). extract each occluded ball by 

drawing a circle centered at that extracted centroid with a radius        , where    

is the previously determined complete solder ball area; (vii). remove any false centroids 

by checking the distance between neighboring balls‟ centroids (remove if distance is less 

than 1.2 of the individual ball‟s diameter). The result of the proposed scheme after 

locating the occluded balls is shown in Fig. 4.23(e) which shows the final segmentation 

mask. Using the final segmentation mask, one can easily extract each individual complete 

ball from the original input image including the balls occluded by overshadowing 

capacitors as shown in Fig. 4.23(f).  

4.3.2.2. Candidate void detection   

Locating voids inside each segmented solder ball requires a robust classification 

procedure to detect actual voids and remove non-void regions. There are many challenges 

when it comes to automatically detecting actual voids and excluding non-void regions 

inside solder balls such as: lighting variation, die balls and via interference. It is thus 

important to process each individual ball independently to locate voids. This is needed in 

order to tackle the lighting variation and die ball interference issues. In the proposed 

scheme, each ball is extracted and treated independently by using an image labeling 

procedure [165]. To locate the contours of all possible regions inside the segmented 

solder ball for further processing, an edge detection procedure [7-12] is applied to the 

segmented solder ball. In our implementation, a simple Laplacian of Gaussian (LoG) 

edge detection method was found to produce accurate results [11, 12, 172]. The LoG 

edge detection is a combination of two filters‟ kernels: a Gaussian filter and a Laplacian 
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filter. The Gaussian filter is used to reduce the high frequency components and the noise 

effect in order to obtain a regularized image before using the Laplacian filter. The 

Laplacian filter is applied to the regularized image in order to locate the edges by using 

the second derivative of the regularized image. Since the convolution operation is 

associative, one can convolve the Gaussian filter kernel with the Laplacian filter kernel 

first, and then convolve this combined filter with the input image to speed up the 

calculations. The edge detection can however result in some open contours. Closing open 

contours is a necessary process to extract each segmented region. The procedure for 

closing open contours is performed by first labeling each open contour, and then 

checking whether there are neighboring open contours, within few pixels, that can be 

connected together to form an enclosed region. This step is repeated to close each open 

contour inside each segmented solder ball. Each region inside a closed contour is then 

extracted by filling the region inside each closed contour by inverting the image to have 

1‟s inside the closed contour and 0‟s on the contour boundaries, followed by a labeling 

procedure [165]. Fig. 4.23(h) shows the results of edge detection and candidate region 

extraction for the ball shown in Fig. 4.23(g).  

4.3.2.3. Feature extraction   

Each extracted candidate void region inside the solder ball should be classified as a 

void or non-void region. However, some artifacts (such as vias and die bonds) have void-

like properties. Therefore, the devised classification method should be robust to such 

artifacts in order to detect actual voids and exclude suspect voids. For this purpose, the 

proposed automated classification method makes use of feature parameters that well 

describe the actual voids and are robust to artifacts such as vias and other interferences in 

the segmented ball. The employed features exploit the following properties of the void 

region: (i). voids are brighter compared to surrounding area (some vias are brighter as 

shown in Fig. 4.23(g)); (ii). voids have shapes close to a circular shape (can have 
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irregular shape if the 2D image has overlapped voids). Consequently, the proposed 

feature parameters that are used for classification consist of an adaptive and automated 

classification threshold which is adaptively determined based on the brightness of each 

region and its surrounding contour, and which can be used to remove non-void regions, 

and of a  compactness factor [10] which can be used to exclude regions with irregular 

shapes. The compactness factor of a considered segmented region is computed as 

       
        , where   

         represent, respectively, the perimeter and the area of 

the considered region.  If the region has a shape close to a circular shape, its compactness 

factor is close to “1”, otherwise the region has a non-circular shape.  

4.3.2.4. Void classification   

The proposed classification consists of  3 main stages: (i). the first stage is used to 

keep all candidate regions with void-like characteristics by using the aforementioned 

adaptive classification  threshold and a large compactness factor filter; (ii). the second 

stage is used to refine the results of the first stage and eliminate more non-void regions 

(false calls) by using adaptive dilation to obtain a regulated shape followed by a smaller 

compactness factor filter (dilation removes small gaps inside the void that cause small 

shape irregularities); (iii). the third stage is used to remove vias while keeping all possible 

voids by using two feature parameters that are based on the area and the principal axis 

ratio of the segmented region. Fig. 4.23(h) shows all detected void and non-void regions 

inside the solder ball of Fig. 4.23(g) before applying the proposed classification 

procedure, while Fig. 4.23(i) shows the resulting detected voids inside the solder ball of 

Fig. 4.23(g) after using the proposed classification method.  

4.3.3. Simulation results 

The proposed method was applied to different Intel product lines: A, B, and C. Each 

one of these product lines has different challenges, in addition to die bond interference 

and inconsistent lighting, such as: (i). product line A has limited via interference, and has 
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a low void density per ball, (ii). product line B has limited via interference, and has a high 

void density per ball, and (iii). product line C has more via interference and medium void 

density per ball. The results of the proposed algorithm were compared to the results 

obtained from the existing latest 2D x-ray void detection algorithms that are provided as 

part of the x-ray imaging machine, the results obtained from 2D x-ray images by a trained 

operator, and the results obtained from 3D CT scan x-ray images which represents 

ground truth data. 

4.3.3.1. Comparison with the data obtained from 2D x-ray embedded algorithm 

The existing void detection algorithm in the 2D x-ray machine was applied to the 

three Intel products lines: A, B, and C. The performance of the algorithm shows 

satisfactory results in product line A, unsatisfactory results in product line B and 

produces a complete failure for product line C. Fig. 4.24 shows an example that 

illustrates the performance results of product line B for both the proposed method and the 

existing embedded algorithm that is provided with the 2D x-ray machine. From 

Fig. 4.24(b), it can be clearly seen that the existing embedded void detection algorithm 

produces false voids, misses a lot of voids, and does not process balls occluded by 

overshadowing components. In comparison, Fig. 4.24(c) shows that the proposed method 

outperforms the existing embedded void detection algorithm of the 2D x-ray machine and 

Fig. 4.24. Comparison between existing void detection algorithm in 2D x-ray machine and proposed void 

detection algorithm in product line B. 

Image # 76
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(a).Input image with enhanced contrast for 

void visibility.    
(b).Void detection results using existing 

algorithm in the 2D x-ray machine. 

 

       (c).Void detection results using the 

proposed algorithm. 
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is able to detect voids in the occluded balls in addition to the ones in the non-occluded 

balls. 

4.3.3.2. Comparison with the data obtained from 2D X-ray images by trained operator 

Voids in many random balls in product lines A and B, were measured manually by 

trained operators. The operator takes 4 minutes to locate and measure one void in the 

ball. The operator locates and measures the void percentage by manually changing the 2D 

x-ray image intensity and contrast using an image processing program and then manually 

using a mouse to determine the extent of a void. The actual void percentage is the ratio of 

void area to the solder ball area. However the operator measures the void percentage by 

                   
 
, where                is the solder ball diameter and     is the 

average of void width (    and void height (    as illustrated in Fig. 4.25(a). The 

operator method is accurate if the void has a circular shape, but it is not accurate if the 

void has an irregular shape such as the one shown in Fig. 4.25(b). In this latter case, the 

operator method produces an error equal to 2.7% of the actual void percentage value. The 

data obtained by the trained operators was compared to the data obtained by the proposed 

algorithm. The proposed method results in a correlation squared value with the operator 

data of 96% and 93% for product lines A and B, respectively, with no significant bias. It 

D1

D2

26

39

       (a). Void percentage calculation.                       (b). Inaccurate void percentage. 
 

Fig. 4.25. Manual void percentage calculation.  
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should be noted that a correlation squared value greater than or equal to 75% with no 

significant bias corresponds to well correlated data.  

4.3.3.3. Comparison with data obtained from 3D CT scan by trained operator 

Using 2D x-ray images does not give information regarding the void‟s depth within 

the ball. Furthermore, the use of the 2D images will produce inaccuracies in the case of 

overlapping voids. Using a 3D CT scan allows the operator to have 2D images at 

different layers (depths) of the solder ball, which helps to see the isolated voids clearly 

without the interference of vias and die balls. Fig. 4.26(a) shows the 2D x-ray image 

where 4 visible voids around the via are present, while Figs. 4.26(b) and (c) show the 3D 

CT scan images at the solder ball‟s tip and package interface, respectively. Figs. 4.26(b) 

and (c) show 8 different voids which are seen as 4 voids in the 2D x-ray image due to the 

via interference which occludes a portion of those voids. The trained operators measure 

the visible voids in the 3D CT scan images using a manual calculation which produces 
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Cum Void 3D 

              (a).  Product A. 

Cum Void 3D 

        (b). Product B. 

Cum Void 3D 

(c). Product C. 

Fig. 4.27.  Cumulative voiding comparison between proposed algorithm and manual 3D CT scan data. 

Fig. 4.26. 2D x-ray images versus 3D CT scan images. 

(a).2D x-ray image for solder ball. (b). Image obtained from 3D CT scan 

for solder ball‟s tip. 

(c). Image obtained from 3D CT scan 

for package interface. 
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less error in this case due to the fact that the voids do not overlap and have circular 

shapes. Voids in many random balls in product lines A, B, and C were measured 

manually by the trained operators. The data obtained by the trained operator from the 3D 

CT scan images is used as ground truth and is used for comparison with data obtained 

from the proposed algorithm when it is applied to the 2D x-ray images. The proposed 

method results in a correlation squared with the ground truth data of 97%, 91%, and 77% 

for product lines A, B, and C, respectively, with no significant bias as shown in 

Figs. 4.27(a), (b), and (c), respectively. It should be noted that, for product line C, balls 

with voids occurring on top of vias were excluded from the statistics.  

The mismatch between results obtained from 2D x-ray images and the results 

obtained from 3D CT scan images is due to the missing information in the 2D x-ray 

images as compared to the 3D CT scan images, especially if there are overlaps or via 

interference in the image. These are the limitations of processing 2D x-ray images. The 

following examples show the limitations of the proposed method when applied to 2D x-

Fig. 4.28. Comparison between the results obtained by the proposed method from 2D x-ray images and the results obtained by 

trained operators from the 3D CT scan images. 
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Fig. 4.29. Limitations of processing the 2D x-ray images. 
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ray images. Fig. 4.28(a) shows the 2D x-ray image where 4 voids can be seen clearly. 

Figs. 4.28(b) and (c) show the images from the 3D CT scan images at the solder ball‟s tip 

and package interface, respectively. Figs. 4.28(b) and (c) show 5 different voids where 2 

voids at different depths overlap and are seen as one void in the 2D x-ray image. The 

result of the proposed method is shown in Fig. 4.28(d). It can be seen that the proposed 

algorithm detects all visible voids in the input 2D x-ray image of Fig. 4.28(a). The 

proposed method gives a total void percentage equal to 13.89% versus 16.02% from the 

3D CT scan ground truth data. The error between the two different methods is 2.34%, 

which is due to the overlapped voids and the human tolerance error of the operator. The 

proposed method detects the voids that are visible inside the 2D x-ray images and it 

cannot detect the overlapped void due to the limitations of the 2D x-ray image. Another 

example is given in Fig. 4.29 which illustrates the limitation of the 2D x-ray images when 

the voids lie on top of the via, which makes it hard to segregate the voids from the via 

due to the similarities of the gray level values in both the voids and the vias.  

Fig. 4.30 shows the comparison between the results obtained by the proposed 

algorithm and trained operators. Many trained operators were asked to calculate the void 
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percentage for the largest void in an image manually for some random solder balls in 

product line C. The operators‟ results are compared with each other and show a 7% 

inconsistency. The result of two experienced engineers were averaged and given in 

Fig. 4.30 as “CNTRL”. The result from the proposed algorithm (“Auto” in Fig. 4.30) 

compares well to the experienced engineer (“CNTRL” in Fig. 4.30). The proposed 

algorithm not only saves time, but also produces consistent results when compared to 

operators‟ results.  

4.3.4. Void detection in the presence of vias and other artifacts in solder balls 

The presence of vias on substrates poses a large problem to manual or automated 

void detection. The void is often obscured either partially or totally by the via. Some of 

the new challenges in the void detection are shown in Fig. 4.31. If a solder ball is located 

near the edge of an image and happens to be positioned over a via, the parallax effect will 

spread and blur the via image and create additional difficulty in the detection of the via 

and any voids that are over or touching the via area as shown in Fig. 4.31(c). Reflections 

are often present inside the vias. The reflections can be caused by metal plating or other 

reflective effects. The reflections can easily be mistaken for voids because of their 

brightness and size. The reflections also often overlap with the voids themselves making 

the separation of the via and the via reflection a challenge for an expert operator or 

Fig. 4.31. More challenges related to 2D x-ray images. 

(a). Void obscured by via. (b). Via reflection and faded void. (c). Parallax effect. 
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machine. Based on our previous work [52, 53], we discovered that the challenge posed by 

the presence of vias in an image is the largest barrier to accurately detecting voids over a 

wide variety of product types. Phantom voids are often caused by the existence of traces 

(lines in the background area as shown in Fig. 4.31(c)) or other light-appearing areas in 

the background of the substrate. These phantom voids distort the total voiding percentage 

for an individual solder ball.  

The new improved method consists of new components in addition to the 

components mentioned in the previous section. The new components include via 

extraction, separation between voids and via reflection, and feature extraction and 

classification of each candidate region in order to filter out all non-void areas. 

Fig. 4.32(a) shows a solder ball which has voids with some of the aforementioned issues 

such as: via, via reflection, inconsistent background lighting, and weak edges between the 

voids and background. An enhanced version of the input solder ball image shown in 

Fig. 4.32(a), is shown in Fig. 4.32(b) for illustration purposes. Voids and via reflections 

can be seen clearly in Fig. 4.32(b). Figs. 4.32(c) and (d) show the edge detection, using 

the LoG filter (Section 4.3.2.2), and the detected closed and filled contours inside the 

solder ball, respectively. The following subsections give details about the 

methodologies that are proposed to extract the via regions and to detect the voids in 

the presence of vias and via reflections.  

4.3.4.1. Via extraction 

An adaptive thresholding procedure that is based on the gray level distribution inside 

the solder joint is used to locate the via. The mean value         and the standard 

deviation        of the gray level inside the solder ball are first calculated. Voids look 

brighter than the surrounded region with slightly higher gray level values than the mean 

inside the considered solder ball, while vias are darker than the neighbor area with a gray 
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level value much lower than the solder ball mean intensity. The presence of the vias 

increases the standard deviation value inside the solder joint. If the standard deviation 

       is relatively large (e.g.,         in our implementation), this implies the possible 

presence of a via in the considered solder ball. Consequently, a threshold value      

           is used to detect candidate via regions that have a mean value less than      

for further processing. The resultant regions are labeled to distinguish between each 

region. The gray level value, area, and compactness factor of each detected region, 

represent the main feature parameters that are used in the proposed method to determine 

which of the detected regions is a via. The largest area, minimum gray level, and a 

compactness factor greater than 1.5 are used to extract the via from the remaining 

Fig. 4.32. Procedures that show the steps of the proposed method for robust void detection. 

(a). Original solder ball. (b). Enhanced version of (a) 

shows voids and via reflection. 

(c). Edge detection with 

closing open contours. 

(d). Extracting regions 

inside closed contours. 

Via reflection 

Voids 
  Via 
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regions. The compactness factor is used to differentiate between regular and irregular 

shapes. As indicated before, the compactness factor is close to 1 for a circular shape and 

greater than 1 for non-circular shapes. Fig. 4.32(e) shows the extraction of the via that is 

present in the image shown in Fig. 4.32(a) using the above procedure.  

4.3.4.2.  Void detection in the presence of via and via reflection 

In order to locate actual voids and eliminate false candidate voids, the proposed void 

detection system makes use of feature parameters to filter out phantom voids, via 

reflections, and undesired artifacts that are present in the solder balls. 

First, feature parameters including the compactness factor and a local threshold 

parameter that is obtained using adaptive gray level thresholding, are used to filter out 

phantom voids. These feature parameters are calculated and applied to each extracted 

candidate void region after the edge detection process. The desired value of the 

compactness factor for void regions is chosen to be relatively large ( 2 in our 

implementation) in order not to avoid eliminating voids that overlap with other voids, or 

with via reflections, or with phantom voids. The adaptive gray level threshold value for 

each candidate void region inside the solder ball, is calculated independently (non-global 

thresholding). The threshold value is calculated based on the gray level distribution inside 

and outside each candidate void region. Consequently, the resulting threshold value is 

adaptive based on the location of the extracted regions with respect to the via. Three 

different cases of adaptive thresholding are considered: (1). when suspect voids are 

outside the via, (2). when suspect voids touch or overlap with the via, and (3). when 

suspect voids are located inside of the via. For each suspect void outside the via, the 

threshold value is taken to be the mean value of the area within two pixels outside the 

suspect void contour. For voids that touch or overlap with the via, the threshold value is 

calculated based on a fraction of the mean of the  pixels that are located within two pixels 

in the vicinity outside of the void‟s contour and that are not touching the via. For voids 
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inside the via, the threshold value is calculated based on a fraction of the gray level mean 

value of pixels located in the vicinity outside of the void‟s contour. In the two latter 

cases, the threshold value is taken to be a fraction of the mean (0.9) rather than the mean 

value of neighboring pixels due to the fact that the voids are relatively dimmer when they 

are located inside a via or when they overlap with a via. Any candidate void region that 

has a mean value less than the adaptive threshold value is filtered out. Then, the 

compactness factor is used to filter out more phantom voids and keep the regions that are 

more likely to be voids. Fig. 4.32(f) shows the output result that is obtained after filtering 

out false candidate void regions based on adaptive thresholding and the compactness 

factor. For comparison, Fig. 4.32(d) shows the input image before filtering is applied to 

the extracted regions.  From Figs. 4.32(d) and 4.32(f), it can be clearly seen that the 

employed filtering based on the compactness factor and adaptive thresholding was able to 

successfully decrease the phantom voids and keep the candidate regions that are more 

likely to be voids. However, as indicated above, a relatively relaxed value was chosen for 

the compactness factor in order not to filter out actual overlapping voids. Consequently, 

as illustrated in Fig. 4.32(f), there are still some phantom voids after this initial filtering 

operation. Another issue is the overlap between voids and via reflections, which can 

produce phantom voids due to the similarities between the via reflection and the actual 

voids, as illustrated in Fig. 4.32(d).  

In order to separate between via reflections and voids, the original input image is 

smoothed using an 11x11 Gaussian lowpass filter with a standard deviation value of 1.5. 

The resulting Gaussian filtered image contains peaks in regions that correspond to actual 

voids, where the gray level gradually increases from the void boundaries to the void 

center. The output of the Gaussian filter, for the input solder ball shown in Fig. 4.32(a), is 

shown in Fig. 4.32(g). From Fig. 4.32(g), it can be observed that regions with brighter 

areas in the input image result in a higher intensity value in the Gaussian filter‟s output. 
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A void region results in a high intensity value after Gaussian filtering, while a via 

reflection region results in a relatively small intensity value compared to the void region. 

In addition, a via reflection region exhibits an irregular shape compared to a void region. 

A thresholding procedure is used to binarize the output of the Gaussian filter in order to 

extract the brighter regions. Based on experimental observations, it was found that a 

threshold value     0.4* max(intensity in Gaussian filter output), is able to  separate 

between voids and via reflections as shown in Fig. 4.32(h). However, the segmentation 

output using the threshold value     results in void regions with smaller areas than the 

actual void areas. A procedure that helps in growing the extracted small areas gradually 

without changing the number of regions in the image is used to get areas closer to the 

actual void areas. This is done by gradually decreasing the threshold value of     while 

ensuring that the number of regions is not changing. For this purpose, the threshold value 

    is decreased gradually, up to a minimum value equal to 0.3* max (intensity in 

Gaussian filter output), as long as the resulting number of detected void regions is kept 

unchanged after thresholding with    . Then, candidate void regions that have a 

compactness factor with a value greater than  1.75, or a principle axis ratio less than 0.35 

are filtered out to eliminate via reflections and to reduce further phantom voids. While 

performing the detection using the Gaussian filtered image helps in eliminating phantom 

voids due to via reflection, some void regions, with relatively low intensities, can be 

missed. In order to detect these missed void regions, a combination of the Gaussian 

filtered image, the edge detection image, and the input image is used with more 

constrained feature parameters. The binarized output of the Gaussian filter (Fig. 4.32(h)) 

is, first, combined with the region extraction image (Fig. 4.32(d)) by multiplying the two 

images pixel by pixel. The resulting product image represents a mask that has 1‟s for 

overlapping non-zero areas between the two images (binarized Gaussian filter and region 
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extraction images) and 0‟s elsewhere. The resulting mask represents the locations of 

candidate void regions and void-like artifacts, and is applied to the input image to extract 

these candidate regions. In order to classify the extracted candidate regions into void or 

phantom void regions, feature parameters including mean value and adaptive 

thresholding, compactness factor, and principal axes ratio are used as before but with 

more constrained values (threshold for adaptive threshold increased by 20%, 

compactness factor decreased to 1.4, and principle axes ratio decreased to 0.3).  The 

resulting detected voids are shown in Fig. 4.32(i) where two voids and one phantom void 

were detected. 

 In order to remove further any detected phantom voids that were not eliminated by the 

previous operations due to similarities with the actual voids, a circularity constraint is 

imposed and is quantified using the compactness factor and the principle axis ratio. At 

this point, a compactness factor that is greater than 1.15 is used to filter out phantom 

voids while allowing voids with close-to-circular shapes in addition to partial or 

incomplete voids to be kept. The principle axis helps to filter out elongated shapes. Any 

shape that has a principle axis ratio less than 0.3 is filtered out. The resulting output 

image using these constraints on the feature parameters is shown in Fig. 4.32(j). From 

Fig. 4.32(j), it can be clearly seen that additional phantom voids were successfully 

eliminated as compared to Fig. 4.32(i). Finally, a procedure is used to check if any partial 

or incomplete voids are touching the via. In this latter case, the diameter of the partial 

void is estimated and a circle is drawn at the center point of the longest axis of the 

detected void. Fig. 4.32(k) shows an example for reconstructing a complete void from a 

partial void using the proposed procedure. Fig. 4.32(l) shows the final void detection 

result using the input image given in Fig. 4.32(a). 

If any partial voids are separated by the via as shown in Fig. 4.33, a circle that includes 

both partial voids around the via, is drawn with a center equal to the centroid of a box 
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that includes the two voids and with a diameter equal to the longest distance between 

points in both partial voids. Fig. 4.33 illustrates the robustness of the proposed algorithm 

in its ability to accurately detect the obscured voids and to decrease phantom voids.  

4.3.5. Simulation results for improved void detection method 

The proposed method has been extensively tested on a wide variety of products. Each 

product has a different average void percentage ranging from a low void percentage to a 

high void percentage. Some of the tested products have issues related to via and other do 

not have vias-related issues. The proposed method was applied to all tested products 

without special tuning or tweaking for each product. This makes the proposed method 

robust and adaptive to the variations and to the different issues that are present in each 

product. Different x-ray tools were used to test the repeatability and reproducibility of 

each product in order to validate the robustness of the proposed method. A golden set of 

images from different products were used to show the performance of the proposed 

method in different x-ray tools. The matching results range from a correlation squared of 

76% on Tool 1 to 86% on Tool 2 as given in Figs. 4.34(a) and (b), respectively, when 

compared with averaged measurements from experienced operators. The slope of the 

method and the manual average measurements are statistically equal to 1. The bias 

between the measurements is statistically equal to 0. These results show that the method 

performs well across tools. The repeatability and reproducibility of the results from the 

proposed method have also been proven. Figs. 4.35(a) and (b) show the repeatability 

(a). Original solder ball. (b). Enhanced version of image in (a). (c). Output results after 1st 

stage filtering. 

(d). Solder ball with 

voids equal to 7%. 
Fig. 4.33. Reconstruction of voids obscured by via. 
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results for the same product taken with two different x-ray tools. The proposed method 

gives a standard deviation of void percentage equal to 0.5% in Tool 1 and 0.4 % in 

Tool 2. The differences between the results that are obtained when using Tools 1 and 2, 

are due to the differences in power, current, parameters setting, x-ray filament age, and 

other extra factors that contribute to the lighting.  

4.3.6.  Summary of void detection 

A robust automatic void detection scheme was presented in order to allow automated 

inspection and automated manufacturing quality assessment. The proposed method is 

fully automated and can benefit the manufacturing process by reducing operator effort 
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(b). Matching results from Tool 2. 
 

Fig. 4.34. Comparison between the proposed method’s void percentage result and result obtained by 

experienced operators for two different x-ray tools. 

(a). Matching results from Tool 1. 



    

 

122 

 

and process variability. The algorithm works for all products without specific tuning. The 

method has been implemented in a standalone PC that is configured to retrieve images 

automatically from a 2D x-ray system, thus reducing the time to run the method to the 

time the x-ray takes to produce the images. The proposed method can enable compliance 

to IPCA610D for cumulative voiding of 25% or less in post SMT solder joints and the 

new JEDEC guideline JC-14-1 for cumulative voiding in a sample of solder ball 

measurements not to exceed 15%.   

 

(b). Tool 2 with void standard deviation of 0.4%. 
 

Fig. 4.35. Repeatability results of the proposed method for one of the tested product 

captured by two different x-ray tools. 

 

(a). Tool 1 with void standard deviation of 0.5%. 
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4.4. Defect Detection and Classification in the Die Area of Semiconductor Units 

This section deals with the detection and classification of defects in the die area of 

semiconductor units. Fig. 4.36 shows the adapted image acquisition system for imaging 

the semiconductor units. The image acquisition consists of (i). a line scan camera which 

takes images while the units carrier is moving; (ii). a tray which carries several 

semiconductor units; (iii). light strips to focus the light on the region that need to be 

scanned; (iv). a moving carrier that has a speed matching the speed of the line scan 

camera; and (v). a station controller to help in checking and communicating between 

these devices. An example of a unit image is shown in Fig. 4.37. 

The main goal in these images is to extract the regions of interest, then detect and 

classify defects inside each one of these regions of interest. The regions of interest (ROIs) 

Substrate region 

Epoxy region 

Die region 

Defects 

Fig. 4.37. Unit image with different region of 

interests. 

Fig. 4.36. Image acquisition using line scan 

camera. 

Line scan 
Camera

Light strips

Carrier

Tray with 
units

(a) Cracks.  (b) Scratches.  (c)Foreign materials.        (d) Stain.                       (e) Fingerprint.                (f) Suction cup. 

 

Fig. 4.38. Samples of defects in the die area of the semiconductor units. 
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in the considered example are: die region, epoxy region, and substrate region, which are 

shown in Fig. 4.37. These regions of interest exhibit different types of defects including: 

crack, scratch, foreign material, stains, fingerprints, suction cup, and other defects as 

shown in Fig. 4.38. Most of the defects usually occur in the die region; therefore, our 

main goal in this section is to automatically detect and classify defects inside the die area 

(ROI) of each unit image.  

Related work on defect detection in semiconductor units includes the work performed 

at Oakridge National Lab (ORNL) as described in [173-179]. The related work at ORNL 

makes use of feature parameters to represent defects by using a specified known mask. 

The employed wafer level feature parameters are not directly applicable to the considered 

semiconductor units (SU) images. In some of the ORNL published schemes, defects are 

detected by taking the difference between the reference (non-defective) image and a 

defect image. This latter approach would not work for the considered SU images as there 

is no valid reference image that can be directly used due to the following issues:  

- Light variation: In most SU images, the light distribution is not uniform. Moreover, 

the light reflection in epoxy, during scanning, is not the same in all cases, which 

makes the images quality not consistent. 

- Misalignment of the SU images. 

- The epoxy area varies from one image to another, which can result in the detection 

of false defects if a subtraction procedure is used to segment defects. 

- The die areas vary from unit to another due to noise, size, misalignment, and other 

factors.  

Other related work on defect classification includes paper surface defect classification in 

the paper manufacturing process [180-183], a visual inspection system for assessing 

printing quality [184], raw textile defects [185, 186], fabric defect classification [187, 

188], integrated circuits and wafer pattern defects [189-196], wood defect classification 
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[197-202], and steel/metal defect classification [203-211]. The above methods consider 

different applications and are not suited nor optimized for the considered problem of 

automatically detecting and classifying SU defects using the considered SU images. 

Fig. 4.39 shows the proposed scheme for defect detection and classification in unit 

images. The proposed scheme consists of different steps: preprocessing, ROI 

segmentation, defect detection, feature extraction, and defect classification. The 

classification step can be used to classify each defect using either a reference-free method 

or a reference-based method, as described later. Details about the steps of the proposed 

scheme are provided in the following subsections. 

4.4.1. Preprocessing step 

The considered images pose various challenges such as different lighting conditions, 

noise and artifacts, misalignment, and faded defects. These challenges have to be solved 

before applying any detection or classification procedures. A preprocessing step is used 

to eliminate some of these challenges.  

Due to the image capturing process using a line scan camera, unit images exhibit 

light variations due the non-uniform light distribution from the light strips that are 

attached to the camera system as shown in Fig. 4.36. The lighting variation in the 

Fig. 4.39.  Block diagram of the proposed automatic defect classification scheme in unit images. 
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produced images is considered as one of the main challenges in the semiconductor unit 

images. An example of inconsistent light variation is shown in Fig. 4.40(a) where the 

image exhibits light variations in addition to an invisible defect. Solving this problem is 

an important issue before proceeding to the next steps. The problem can be handled by 

using a smooth and non-linear mapping function to normalize the input gray level image 

to be between 0 to 255. There are many different ways that can be used to improve the 

lighting issue such as using normalization (linear mapping), log function, or tanh 

function. The log function puts more weight on dark regions and less weight on bright 

regions in the image. The tanh function puts less weight on dark regions and more weight 

on bright regions as shown in Fig. 4.40(b). A nonlinear light enhanced function was 

derived by combining both tanh and log functions with different weight to get better light 

enhancement. A weight with a value equal to 0.3 is used for the log function, while a 

weight with a value equal to 0.7 is used for the tanh function. Those weight values were 

selected based on an experiment that was conducted on several images that were scanned 
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(a)  Original input image.                     (b) Nonlinear mapping function.                    (c) Enhanced image. 

Fig. 4.40.  Light enhancement using nonlinear mapping. 

(a) Fiducial marks of misaligned image.              (b) First alignment process.                     (c) Final alignment result. 
 

Fig. 4.41. Image alignment using fiducial marks. 
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under the same settings of the line scan camera. Fig. 4.40(c) shows the enhanced image 

using the proposed non-linear mapping function.  

During the scanning of the semiconductor units (SUs) using a high resolution camera, 

the units can be rotated or placed in any orientation. Automatic image alignment is 

needed to align the scanned images of the semi-conductor units that are being 

manufactured. This alignment step is necessary to locate the region of interests and to 

facilitate efficient defect detection and classification. One of our proposed approaches is 

to use a two-step alignment strategy.  In this proposed approach, first, the fiducial marks 

in the considered scanned image need to be automatically located, segmented, and 

identified. As shown in Fig. 4.41(a), there are different combinations of fiducial marks 

located in the four corners of the considered scanned image: two small circles, one large 

circle, and one triangle fiducial marks. In the first alignment step, the considered image is 

rotated by an angle   {0
o
 , 90

 o
, 180

 o
, or 270

o
} so that the triangular fiducial mark is 

located near the bottom right. The triangular fiducial mark is identified by comparing the 

compactness factor value of each segmented fiducial mark. The second alignment step 

ensures that the two small circular fiducial marks are aligned on the same horizontal line. 

This can be performed by computing the angle from the horizontal axis of the line 

between the centroids of the two small circular fiducial marks and then rotating the image 

by this angle. The rotation angle in the second alignment is less than 1 degree in most 

cases due to the limited deviation of the imaged tray on the moving carrier (Fig. 4.36). 

Fig. 4.41(c) shows the final alignment result using the proposed method.  

4.4.2. ROI segmentation 

The main goal is to automatically detect and identify the defects that are located in 

the regions of interest in the considered semiconductor images. For this purpose, these 

region of interests (ROIs) need to be automatically detected and segmented for further 

analysis. Fig. 4.42(b) shows the histogram of the input image shown in Fig. 4.42(a). The 
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histogram shows 3 main clustering regions: (i) the first clustering region exhibits a low 

gray level value which represents the die area, (ii) the second clustering region exhibits a 

medium gray level value which represents the epoxy and substrate regions, (iii) the third 

clustering region exhibits a high gray level value which represents the bright regions in 

the image such as defects, epoxy reflection, and capacitor components. The region 

between the second and third clustering regions represents defects with different gray 

level values. 

The die area is usually contaminated with most of the defects in the considered 

semiconductor units; therefore, our focus in this section is to segregate the die area and 

use it as our main region of interest. The die area corresponds to be first clustering region 

from the histogram analysis shown in Fig. 4.42(b). An adaptive threshold that lies 

between the first and second cluster regions need to be estimated in order to segment the 

die region. To calculate the adaptive threshold, the mean value of each cluster region has 

to be calculated first. This can be achieved by using one of the clustering approaches [13-

18] to locate the centroids of each cluster, and then calculate the mean value of each 

cluster, which corresponds to the peak of each clustering region in the histogram. In our 

case, the k-means algorithm [18] is used to estimate the cluster centroids of the three 

regions in the considered images. Three initial randomly selected centroids are used in 

the k-means algorithm to locate the actual centroids. The obtained estimated centroids 

from k-means are used to locate the nearby peaks in the histogram. The segmentation 
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(a)Input image with highlighted die area.              (b) Image histogram.                                  (c) Segmented die area. 

Fig. 4.42. ROI segmentation using histogram analysis. 
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threshold is then computed to be midway between the first two histogram peaks and is 

used to segment the die area. Segmentation using the proposed adaptive thresholding 

scheme produces an image with regions that have gray level values less than the 

estimated threshold value. This can produce undesired artifacts inside and outside the die 

area due to non-die areas with low gray level values. However, these artifacts can be 

easily eliminated due to their small sizes with respect to the die area size. Mathematical 

morphology operations [164, 165] such as dilation, erosion, opening, and closing can be 

used to successfully eliminate undesired artifacts. Fig. 4.42(c) shows the final ROI 

segmentation results for the die area in the SU image shown in Fig. 4.42(a). The proposed 

algorithm was tested on more than 1000 images that were taken using 8K and 12K line 

scan cameras under varied lighting conditions, and was found to yield 100% accurate 

ROI segmentation. 

4.4.3. Defect detection  

In the proposed defect detection method, once the die area (ROI) is segmented, an 

edge detection method is first performed to locate the contours of the defects inside the 

ROI. Edge detection helps in locating the pixels where the gray level difference between 

neighboring pixels is significant. The output of the edge detection process highlights the 

regions inside the ROI with significant gray level differences, and each region is 

represented by its edge contour. The Laplacian of Gaussian (LoG) edge detection method 

followed by contour closing, as described in Section 4.3.2.2, is used here to locate the 

edges of defects.  

Fig. 4.43(a) shows a portion, inside the die area, which represents a crack defect with 

faded areas in the middle. Applying the edge detection procedure using the LoG to the 

image shown in Fig. 4.43(a) produces an image with edges as shown in Fig. 4.43(b). The 

resulting image has many open contours and these open contours have to be closed first 

in order to extract the regions for classification. Fig. 4.43(c) shows the results after 
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applying the contour closing procedure. Each region is extracted easily by using the 

extracted closed contour, which is shown in Fig. 4.43(d).  Closing the open contours is a 

very essential step for the detection and classification of defects, especially crack. 

Fig. 4.44 gives some examples of defect detection using the proposed method.  

4.4.4. Feature extraction 

In order to classify each defect, we need to represent each defect with unique 

signatures. These signatures are unique features that are used to well define each defect. 

Representing each defect with its significant feature parameters results in a concise 

representation of the defect using a vector with few parameters. Feature parameters 

should have characteristics that make them rotation-invariant, shift-invariant, and scale-

invariant. In this section, we will give few examples of feature parameters that can be 

(a) Input image with crack (faded gray level). 

 

(b) Edge detection results using the Laplacian of Gaussian (LoG) filter. 

(c)  

 (c)  Closing contours by applying labeling to each artifact and connecting to end points having the same label. 

(d)  

(a)  

 

(d) Region extraction from the closed contours. 

Fig. 4.43. Edge detection and contour closing applied to a portion inside the die area. 

 

 

Fig. 4.44. Defect detection using the proposed method. 
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used in describing different defects in the considered SU. In the considered SU images, 

we extracted several shape-based and histogram-based feature parameters for each defect. 

The combination of shape-based and histogram-based features is important to have a 

better representation of defects. Some defects have similar gray level values (histogram-

based) but they have different shapes and vice versa.  

Fig. 4.45 shows some examples of feature extraction using shape-based parameters 

[212-214]. The principal axes ratio is the ratio of the shape‟s minor axis to the shape‟s 

major axis as shown in Fig. 4.45(a). The major axis of a shape is its longest diameter, a 

line that runs through the centre of the shape and its ends being at the widest points of the 

shape. The minor axis is perpendicular to the major axis and is an axis of symmetry. The 

principal axes ratio is used in distinguishing between different shapes based on the 

elongation. The compactness factor is computed as        
        , where 

  
        represent, respectively, the perimeter and the area of the considered shape. If the 

region has a shape close to a circular shape, its compactness factor is close to “1”. The 

variance in Fig. 4.45(c) is the squared standard deviation between the considered shape 

and a regular circle shape with a center located at the shape centroid and with an area 

equal to the shape area. The calculation of the elliptic variance in Fig. 4.45(d) is similar 

to the calculation of the variance in Fig. 4.45(c), except that an elliptical shape is used 

instead of a circular shape. 

The aforementioned feature parameters are important to distinguish between different 

(a). Principal axes.                     (b). Compactness.                       (c). Variance.                          (d). Elliptic Variance. 
 

Fig. 4.45. Shape-based feature extraction. 
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defects based on shape analysis. Other features such as curvature, eccentricity, 

elongation, template matching, and other shape descriptors can be added to the shape-

based feature extraction. Histogram-based feature extraction can be represented by mean 

value, entropy, dispersion, dynamic range, bending energy, kurtosis, and many other 

feature parameters [173-179, 215, 216].  

Feature parameters have different numerical values and units. It is highly 

recommended to normalize the feature parameters to have the same dynamic range, i.e, [0 

1]. Normalization is a very critical step in order to have a balanced representation of each 

defect during the classification process. In our case, we normalize each feature parameter 

to have the same dynamic range between 0 and 1. The area of a detected defect can be 

normalized to be between 0 and 1 by using the die area, and the gray level mean value 

can be normalized by using the maximum gray level value in the image (e.g., 255 for an 

8-bit image).  

4.4.5. Defect classification 

The extracted feature parameters are used to identify the type of the defects by 

assigning each defect to a known class. There are two approaches to get an automatic 

classification: refrence-based method and refrence-free method. In the reference-based 

classification method, we use information from stored or trained data for the 

classification. The performance of this method is heavily dependent on the database 

library that is used for training and classification with different forms of defects. In the 

reference-free classification method, we don‟t need to have a library of defects. The 

classification is based on locating some key signatures (features) that are sufficient to 

classify the defects. The following subsections describe the proposed reference-based and 

reference-free classification methods. 
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4.4.5.1.  Reference-based classification 

The reference-based method requires a library of defects that can be used for 

classification as discussed above. Feature parameters are used to build the database of all 

desired defects. The library should be constructed and updated so that all types of 

detected defects can be verified and classified correctly. Moreover, the library structure 

should be represented by feature vectors, where each vector is represented by feature 

parameters for different defects with different forms. The library is generated during the 

training process as shown in Fig. 4.39. In the training process, an operator looks at each 

detected defect and classifies it manually to build the library of defects. It is highly 

recommended to have more samples of each defect during the training (learning process) 

in order to have accurate classification. During the classification process, the feature 

vector of the considered defect is compared to each feature vector in the stored library of 

defects by computing a distance between the two feature vectors. The considered defect 

is classified as the stored defect that results in the minimum distance.  

4.4.5.2. Reference-free classification 

The reference-based method of Section 4.4.5.1 has many disadvantages including the 

facts that it is time consuming, and that it requires creating a library of defects, which in 

turn requires training and storage. The result of the reference-based classification method 

is heavily dependent on the library of defects which requires a large training data set that 

covers all possible defects. These issues can be eliminated by using a reference-free 

classification method. 

The main challenge in the reference-free classification method is to find significant 

feature parameters (descriptors) that well define each defect in order to have an accurate 

classification. There are three main defects that occur frequently in the die area of the 

SUs: cracks, foreign materials (FM), and scratches. Examples of cracks, scratches, and 

FM defects are shown in Fig. 4.38 (a), (b), and (c), respectively. Each one of these 
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defects has significant feature parameters that qualify it for reference-free classification. 

For example, the crack defect has significant feature parameters based on the fact that it 

goes form one edge to another edge of the die, and is very thin compared to other defects. 

The foreign material defect has some unique properties including having uniformly 

distributed gray levels, a brighter mean intensity compared to other defects, and a close-

to-circular shape. The scratch defect has a bright gray level in the center and the intensity 

gradually fades by moving away from the center to the edges of the scratch. In addition, 

the scratch defect has an elongated shape compared to FM. These three main defects are 

well defined by some feature parameters and can be classified using a reference-free 

method. 

4.4.6. Simulation results 

The existence of a crack on a semiconductor unit results in the failure of the unit. 

Thus, it is very important to check for cracks on the units before sending these to 

customers. A crack is one of the toughest defects to detect in the die area because it is 

very thin and it requires a high resolution camera to see it clearly. In addition, a crack 

does not have a consistent brightness and it exhibits fading in some sections, which 

makes it very hard to locate. On the other hand, as indicated previously, a crack has 

                                               (b). Edge detection output with possible cracks. 

 

Fig. 4.46. Procedure for crack detection.  
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unique and nice properties such as linearity due to the crystal structure of the die (can be 

horizontal or vertical), and the fact that it goes from one side of the die to the other side. 

Few assumptions were made to detect the cracks such as alignment in the horizontal or 

vertical direction, and having a length greater than or equal to 30% of the width or the 

height of the die. The 30% assumption is used due to the fact that, using the imaging set-

up as described at the beginning of Section 4.4, a crack has many fading regions, which 

makes it hard to locate the whole crack. Fig. 4.46(a) shows the die area with a faded 

crack. After extracting all the defects in the die area, we check each horizontal and 

vertical line in the binary image to locate the ones that are greater than or equal to 30% of 

the width and/or the height of the die area. By checking the thickness and the length of 

the detected defect, one can identify the crack as shown in Fig. 4.46(b). Fig. 4.46(c) 

shows the die area with the identified crack in addition to other detected defects. 

Some statistics were collected to show the performance of the crack classification. 

The reference-free classification method was tested on 261 images with cracks. From the 

obtained statistics, there were 3 misses out of 261, which gives a 99% classification rate. 

The 3 misses were due to the fading and low visibility of the cracks. Fig. 4.47 shows 

different examples of crack detection. The image shown in Fig. 4.47(a) has 3 horizontal 

cracks and one faded vertical crack. The image in Fig. 4.47(b) shows the die area with 

one horizontal crack and 1 vertical crack (barely visible). The result of the proposed 

reference-free classification method for the images in Figs. 4.47 (a) and (b) are shown in 

Figs. 4.47(c) and (d), respectively. The proposed method was able to successfully classify 

all the possible cracks in the given images as shown in Figs. 4.47(c) and (d). The images 

in Fig. 4.47 correspond to enhanced versions of the original images for illustration 

purposes; however, the algorithm is applied directly on the original images without any 

enhancement.  
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In this section, we proposed a scheme for automatic defect detection in the die area of 

semiconductor units. The proposed detection scheme can be combined with a reference-

based or reference-free classification method. Performance results of the proposed 

method were presented for crack detection and classification, and show a high correct 

classification rate for cracks. The proposed method can be easily extended to classify 

other defects. 

(a) . Die area with 3 horizontal cracks and 1 faded 

vertical crack. 

(b).  Die area with 1 horizontal crack and 1faded vertical 

crack. 

(c) . Results of the proposed refrence-free classification 

method detecting all possible cracks in (a). 

(d). Results of the proposed refrence-free classification 

method detecting all possible cracks in (b). 

 

Fig. 4.47. Examples showing the performance of the proposed refrence-free classification method in 

classifying cracks inside the die area of semiconductor units. 
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4.5. Summary 

A robust and automatic defect detection methodology is very desirable in many 

industrial applications. This helps significantly in reducing the cost, decreasing time 

consumed during manual investigation, improving the quality, and producing more 

reliable and accurate results. In this chapter, three automated defect detection and 

classification methods were proposed for three different applications to automatically 

detect and classify defects in semiconductor unit images. The first proposed scheme is for 

segmenting and classifying each solder ball of the processor sockets as defective (Non-

Wet) or non-defective. The method gives a 96% detection rate and saves 89% of the 

operator time. The second proposed scheme is used for detecting voids inside solder balls 

in different boards. The method produces a high correlation rate and matching with the 

ground truth data. The third proposed scheme is used to detect different defects in the die 

area of the semiconductor unit images such as cracks, scratches, foreign materials, 

fingerprints, and stains. The proposed three methods, which were discussed in this 

chapter, result in a higher accuracy compared to the results obtained by using the existing 

high cost state-of-the-art machines, and are inexpensive to implement.  
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CHAPTER 5: CONCLUSION 

This research work contributes to image segmentation, analysis, and classification 

and their applications in natural, texture, biomedical, and industrial images. Issues related 

to level-set, multi-region and texture image segmentation, cell evolution analysis in 

biomedical images, and defects detection and classification in semiconductor unit images 

were investigated in this thesis.  This chapter summarizes the major contributions of this 

work and discusses the possible future extensions.  

5.1. Contributions 

This work proposed robust and noise resilient approaches that resulted in a 

significantly improved multi-region and texture image segmentation and classification, 

and their applications in biomedical and industrial images. The main contributions of the 

presented work can be summarized as follows: 

 Multi-region and texture image segmentation: 

A noise resilient multi-region and texture image segmentation based on a level-set 

framework with constraints was proposed. The proposed method is less sensitive to 

initializations and exhibits faster convergence as compared to existing multi-region 

level-set segmentation schemes. Simulation results using synthetic, texture, medical, 

and natural images were presented to show the robustness of the proposed method in 

segmenting multi-region images with any number of regions and under different 

initializations. 

 Cell Evolution Analysis: 

Two Cell Evolution Analysis schemes were proposed for cancer cell images. Cell 

migration analysis was performed by tracking the cell cluster region at different time 

points. The cell cluster region is segmented based on two different proposed 

segmentation schemes: i) Piecewise image segmentation: weighted level-set and two 

step segmentation methods; and ii)Texture image segmentation using tensor vector and 
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Bayesian formulation with a fast à trous wavelet filter for preprocessed texture images. 

Both of the proposed schemes were successfully tested on different cancer cell images 

with low contrast, cell overlap, and noise. The second scheme is more accurate than the 

first scheme, especially when the cell image contains different artifacts and noise. Cell 

proliferation and dispersion analysis was performed by using our proposed individual 

cell segmentation and counting schemes. The proposed individual cell segmentation is 

devised based on the distribution of gray level values of the background and the gray 

level distribution analysis inside individual cells. An adaptive and robust segmentation 

threshold was calculated based on gray level distributions to extract individual cells‟ 

centroids for counting.  

The developed Cell Evolution Analysis system was tested in two different labs from 

two leading companies that conduct work in cell migration analysis and drug 

discovery. The reports [82] from these two companies have strong recommendations 

and show that the developed CEA system produces accurate results compared to 

manual results by expert operators. In addition, it is fully automated, which helps in 

saving time and cost. The proposed method is included in a filed US patent [80, 83].   

 Non-Wet defect detection and classification in processor sockets:  

Non-Wet defects occur in solder joints in processor sockets and can cause motherboard 

failures. In the proposed non-wet detection method, an automatic defect detection 

algorithm was presented to accurately locate the non-wet solder joints in processor 

sockets. The conducted performance evaluation and resulting statistics show that the 

proposed algorithm provides a detection rate of 95.8%. This is 21% to 53% better 

performance than commonly used state-of-the-art inspection machines. The proposed 

algorithm has the potential of resulting in a detection rate of 100% with an operator in 

the loop due to the identification of joints that are adjacent to the missed defective ones. 

Moreover, the proposed scheme reduces the false positive rate, false negative rate, and 
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the inspection time and requires only a relatively inexpensive 2D x-ray imaging device, 

which makes it cost effective and manufacturing friendly. 

 Voids detection and classification in solder joints and solder balls:  

Void defects occur in solder joints and solder balls and can cause incorrect scrapping 

and rework in addition to board failures. In the proposed void detection method, a 

scheme was presented in order to allow automated inspection and automated 

manufacturing quality assessment. The proposed method is resilient to noise, via, via-

reflection, artifacts, and different challenges on solder joints. Moreover, the method is 

fully automated and can benefit the manufacturing process by reducing operators‟ 

effort and process variability. The proposed method shows high performance in terms 

of detection rate compared to the results obtained from the ground truth data from a 3D 

CT scan. 

 Automatic defects detection and classification in the die area 

For the automatic defect detection and classification in semiconductor units, we 

proposed a scheme for the detection of defects in the die area. The die area was 

segmented based on an adaptive and noise resilient proposed segmentation method. 

The proposed die area segmentation is robust to lighting, alignment, noise, and 

artifacts. The defects inside the die area were detected using a modified edge detection 

and contour closing scheme. The proposed defect detection scheme in the die area can 

be designed based on reference-based or reference-free classification methods. 

Simulation results show that the proposed method gives a high classification rate of 

99% for detecting crack defects.  

5.2. Future Work 

The image segmentation and classification area has a lot of interesting applications. 

The work presented in this thesis can be extended and optimized for different 

applications. Future possible directions of the presented work include the following: 
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 Multi-region and texture image segmentation: 

Possible improvements to the proposed multi-region and texture segmentation method 

include detecting the number of regions automatically to improve the performance of 

the method, and developing an automatic initialization for different regions in order to 

significantly decrease the sensitivity to random initialization. 

 Cell Evolution Analysis: 

Future possible work in this area includes individual 2D cell tracking, 3D cell tracking, 

differentiation between live and dead cells, and designing mathematical prediction 

models of migration analysis. 

 Non-Wet defect detection and classification in processor sockets:  

Future directions in non-wet defect detection include investigating the applicability of 

the proposed algorithm to multiple processor sockets and ball grid arrays, and locating 

non-wets for irregular structures of solder joints of processor sockets. Other future 

work include considering new features beside the angular deviations of the joints‟ 

centroids, and characterizing other types of defects in solder joints. 

 Voids detection and classification in solder joints and solder balls:  

More investigations can be conducted to improve the methodology of void detection 

including the detection of voids for irregular sizes of solder balls and solder joints in 

the same image, differentiating between overlapped voids based on light contrast, and 

automatic joint labeling. 

 Automatic defects detection and classification in the die area 

Possible future directions in the area of defects‟ detection in the die area of 

semiconductor units include extensions of the current method to classify other types of 

defects such as stains, fingerprints, water drops, and foreign materials using either a 

reference-free or reference-based classification.  
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