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ABSTRACT  
   

The global transport and deposition of anthropogenic nitrogen (N) 

to downwind ecosystems are significant and continue to increase. Indeed, 

atmospheric deposition can be a significant source of N to many 

watersheds, including those in remote, unpopulated areas. Bacterial 

denitrification in lake sediments may ameliorate the effects of N loading by 

converting nitrate (NO3
-) to N2 gas. Denitrification also produces nitrous 

oxide (N2O), a potent greenhouse gas. The ecological effects of 

atmospheric N inputs in terrestrial ecosystems and the pelagic zone of 

lakes have been well documented; however, similar research in lake 

sediments is lacking. This project investigates the effects N of deposition 

on denitrification and N2O production in lakes. Atmospheric N inputs might 

alter the availability of NO3
- and other key resources to denitrifiers. Such 

altered resources could influence denitrification, N2O production, and the 

abundance of denitrifying bacteria in sediments. The research contrasts 

these responses in lakes at the ends of gradients of N deposition in 

Colorado and Norway. Rates of denitrification and N2O production were 

elevated in the sediments of lakes subject to anthropogenic N inputs. 

There was no evidence, however, that N deposition has altered sediment 

resources or the abundance of denitrifiers. Further investigation into the 

dynamics of nitric oxide, N2O, and N2 during denitrification found no 

difference between deposition regions. Regardless of atmospheric N 

inputs, sediments from lakes in both Norway and Colorado possess 
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considerable capacity to remove NO3
- by denitrification. Catchment-

specific properties may influence the denitrifying community more strongly 

than the rate of atmospheric N loading. In this regard, sediments appear to 

be insulated from the effects of N deposition compared to the water 

column. Lastly, surface water N2O concentrations were greater in high-

deposition lakes compared to low-deposition lakes. To understand the 

potential magnitude of deposition-induced N2O production, the 

greenhouse gas inventory methodology of Intergovernmental Panel on 

Climate Change was applied to available datasets. Estimated emissions 

from lakes are 7–371 Gg N y-1, suggesting that lakes could be an 

important source of N2O.  
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CHAPTER 1 

Introduction 

Human activities, such as fossil fuel combustion and agriculture, 

have increased concentrations of nitrogen (N) in the atmosphere and 

resulted in the long-distance transportation of N pollutants (Galloway 

1998). Indeed, atmospheric N deposition can be the dominant source of 

new N to watersheds, even in remote and unpopulated regions. Such 

elevated N inputs to lakes can have significant ecological effects such as 

reduced water quality, changes in the composition of fish communities, 

and shifts in nutrient limitation of algae and zooplankton (MEA 2005, Elser 

et al. 2009). Denitrification is a microbial process that can ameliorate 

these effects by converting NO3
- into inert di-nitrogen (N2) gas. 

Denitrification also produces nitrous oxide (N2O), a greenhouse gas that is 

296 times more potent than carbon dioxide according to the International 

Panel on Climate Change (IPCC 2006). The US Environmental Protection 

Agency has also declared that greenhouse gases such as N2O are 

harmful to human health (EPA 2009). Thus, while the environmental 

benefit of denitrification is the removal of excess N inputs, this process 

might also increase atmospheric concentrations of N2O. 

Why study denitrification in lakes? 

Freshwater quality 

Americans place substantial value on the ecosystem services 

provided by lakes, including clean drinking water, recreation, and sense of 
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place (Carson and Mitchell 1993, Wilson and Carpenter 1999). Economic 

losses from nutrient loading to US freshwaters exceed $2 billion annually 

(Dodds et al. 2009). Consequently, natural resource managers are 

concerned with water quality. Denitrification may mitigate the eutrophying 

effects of anthropogenic N inputs by permanently removing N that may 

otherwise be retained by biotic uptake and assimilation (Seitzinger et al. 

2006). Microorganisms capable of denitrification are widely found in 

terrestrial and aquatic environments where concentrations of oxygen are 

low and where organic carbon and NO3
- are available as substrates. The 

global atmospheric N deposition rate is expected to increase substantially 

in the next few decades (Galloway et al. 2004). Thus, investigating the 

effects of N deposition on lakes is critical as such elevated inputs can 

have significant negative ecological effects. Lakes have only been recently 

recognized as biogeochemical sinks for N and it is essential to understand 

the factors that influence denitrification in lake sediments (Harrison et al. 

2009). 

Nitrous oxide production 

Interest in denitrification not only arises from its potential to mitigate 

the effects of N loading, but also due to its production of N2O. The global 

warming potential of N2O is nearly 300 times greater than that of CO2 

(Forster et al. 2007). In addition, N2O is considered the most significant 

ozone-depleting substance currently being emitted (Ravishankara et al. 

2009). The current atmospheric concentration of N2O is 319 ppb and it is 
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increasing 0.3% per year due primarily to human activities (Galloway 

1998, Nevison et al. 2007). The proportion of N lost as N2O during 

denitrification is small, generally less than 1% of total gaseous production 

(Knowles 1982). However, elevated N loading increases both total and 

relative emissions of N2O compared to N2 via enhanced denitrification 

(Seitzinger and Nixon 1985). Indeed, 90% of N2O production by rivers and 

estuaries (1.2 Tg N y-1) is estimated to result from anthropogenic N 

loading (Seitzinger et al. 2000, Seitzinger et al. 2006). Nitrous oxide 

emissions from lakes have not been quantified even though lakes cover 

the same global surface area as rivers and have the potential for greater 

N2O production due to their longer water residence times.  

Research approach and considerations 

The effects of anthropogenic N inputs on denitrification and related 

N2O emissions have been well studied in terrestrial and marine 

ecosystems, however similar research in lakes is lacking. The overall 

objectives of this dissertation are to understand how atmospheric N 

pollution has altered biogeochemical processes in lake sediments. This 

research contrasts responses between lakes at the ends of two gradients 

of N deposition, in Norway and Colorado (USA), to address the questions: 

How has atmospheric N deposition altered background rates of 

denitrification and related greenhouse gas production in lake sediments? 

How has N deposition altered resource limitation of sediment 
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denitrification? What is the effect of atmospheric N deposition on the 

abundance of denitrifying bacteria and denitrification kinetics?  

Following this introduction there are five chapters that are 

presented as separate manuscripts and a summary chapter. The second 

chapter investigates denitrification and N2O production in sediments and 

the responses of denitrification to short-term resource enrichment. The 

third chapter examines denitrification kinetics and the abundance of NO3
-- 

and nitrite-reducing bacteria. The fourth chapter describes the temporal 

dynamics of nitric oxide, N2O, and N2 production during denitrification in 

sediments. The fifth chapter investigates responses of pelagic and benthic 

bacteria to experimental resource enrichment. The sixth chapter describes 

greenhouse gas dynamics in lakes. The final chapter summarizes the 

findings of the dissertation research, compares responses between lakes 

in Norway and Colorado, and compares sediments responses to those of 

soils that receive atmospheric N deposition.  
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CHAPTER 2 

Atmospheric Nitrogen Deposition Influences Denitrification and Nitrous 

Oxide Production in Lakes (Norway) 

ABSTRACT 

Microbially mediated denitrification is an important process that 

may ameliorate the effects of nitrogen (N) loading by permanently 

removing excess N inputs. In this study, we measured the rate of 

denitrification and nitrous oxide (N2O) production during denitrification in 

sediments from thirty-two Norwegian lakes at the high and low ends of a 

gradient of atmospheric N deposition. Denitrification and N2O production 

rates averaged 41.7 and 1.1 N µmol m-2 h-1, respectively, for high- 

deposition lakes. There was no detectable denitrification or N2O 

production in low-deposition lakes. Epilimnetic nitrate concentration was 

strongly correlated with denitrification rate (R2 = 0.67). We also measured 

the denitrification rate in response to experimental additions of organic 

carbon, nitrate, and phosphorus. Experimental nitrate additions stimulated 

denitrification in sediments of all lakes, regardless of N deposition level. In 

fact, the rate of denitrification in nitrate-amended treatments was the same 

magnitude for lakes in both deposition areas. These findings suggest that 

lake sediments possess considerable capacity to remove nitrate and that 

this capacity has not been saturated under conditions of chronic N 

loading. Further, nitrous oxide was nearly 3% of the total gaseous product 
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during denitrification in high-deposition lakes, a fraction that is comparable 

to polluted marine sediments. Our findings suggest that while lakes play 

an important role in N removal in the landscape, they may be a source of 

N2O emissions, especially in areas subject to elevated N inputs.  

INTRODUCTION 

As humans continue to dominate the global nitrogen cycle, 

denitrification plays an important role in the landscape by removing excess 

N inputs that may otherwise be available for uptake, transformation, and 

transport and, thus, impacts on receiving ecosystems (Galloway et al. 

2004, Schlesinger 2009). Denitrification (microbial conversion of nitrate to 

inert atmospheric nitrogen gas) also potentially influences global climate 

through the ancillary production of nitrous oxide, a potent greenhouse gas 

(Knowles 1982). Heterotrophic microorganisms capable of denitrification 

are widely distributed in terrestrial and aquatic environments. As land-

based N inputs cascade from soils to rivers, lakes, groundwater, and 

ultimately, estuaries and coastal areas, denitrification reduces 

downstream N loading (Galloway et al. 2003, Seitzinger et al. 2006). 

Aquatic ecosystems are particularly vulnerable to N-induced 

eutrophication, as primary production is frequently limited by N in both 

marine and fresh waters (Elser et al. 2007). Through removal and storage 

of nutrients, lakes reduce the transport of N from land to the ocean, 

(Seitzinger et al. 2006). In lakes, denitrification rates are greatest in the 
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sediments because of favorable conditions for facultatively anaerobic 

denitrifying bacteria. Yet lakes are often overlooked in efforts to quantify 

both global denitrification rates and N2O emissions (Seitzinger et al. 2000, 

Seitzinger et al. 2006). Consequently, we have an incomplete 

understanding of the contributions of lake sediments to denitrification and 

have little information about the resources potentially controlling 

denitrification in lakes. We also do not have a good idea about the 

magnitude of N2O production in lakes compared to other ecosystems. 

Here, we measured rates of denitrification and N2O production in lakes 

across a gradient of atmospheric N inputs and tested for resource 

limitation of denitrification.  

Even in unpopulated areas, lakes are subject to anthropogenic 

influences via atmospheric N deposition. Human activities have increased 

atmospheric concentrations of oxidized nitrogen (Galloway 1998), 

resulting in the long-distance transport and deposition of biologically 

available N species. The magnitude of these inputs is substantial and 

increasing. Globally, rates of atmospheric N deposition relative to 1990 

are expected to double by 2050, to 125 Tg N/y (Galloway et al. 2004). 

Most investigations into the effects of N deposition focus on terrestrial 

ecosystems and there are limited data on the responses of lakes and 

reservoirs (hereafter as “lakes”). A recently published model by Harrison 

et al. (2009) estimated that, globally, lakes remove 19.7 Tg N/y from the 
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landscape and that small lakes (<50 km2) are responsible for nearly half of 

this removal. This is significant given that lakes cover less than 3% of 

global surface area (Seitzinger et al. 2006). Further, as the rate of 

anthropogenic N loading increases, the rate of denitrification in soils and 

marine sediments generally increases (Firestone et al. 1980, Seitzinger 

and Nixon 1985). We similarly hypothesized that atmospheric N deposition 

influences denitrification in lake sediments.  

The effectiveness of denitrification in removing nitrate may 

eventually become limited by the availability of other key resources, such 

as phosphorus (P). Indeed, such limitations might help explain why 

anthropogenic N inputs can accumulate to high levels in receiving waters. 

While aerobic bacteria in aquatic ecosystems are often limited by P 

(Cotner et al. 1997), little is known about the effects of P supply on 

denitrification. The strongest evidence for P limitation of heterotrophic 

microbial respiration comes from experimental additions of P to relatively 

N-rich soils (Cleveland and Townsend 2006). Fertilization of soils with P 

resulted in substantial carbon dioxide losses via soil respiration. In forest 

and riparian soils, researchers have observed no effect of P enrichment 

on denitrification rates (Ullah and Zinati 2006) while P enrichment reduced 

denitrification rates in salt marsh sediments (Sundareshwar et al. 2003). 

Kaste and Lyche-Solheim (2005) estimated by mass balance that 

denitrification was a significant sink for elevated atmospheric N inputs in a 
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P-fertilized lake, relative to an unenriched lake. While this investigation 

suggests that P plays a role in regulating N retention, P limitation of 

denitrification in lake sediments was not directly tested. We measured 

denitrification rates and tested for resource limitation of denitrification in 

sediments, which includes, to our knowledge, the first direct test of P 

limitation of short-term denitrification rates. We hypothesized that 

denitrification would be limited by phosphorus in sediments of lakes 

subject to atmospheric N deposition because phosphorus is the next likely 

resource to limit heterotrophic microbes after organic carbon and nitrate.  

Interest in denitrification arises not only from its potential role in 

ameliorating excess N inputs to ecosystems, but also due to its production 

of N2O, a greenhouse gas that has increased 18% since pre-industrial 

times (Galloway 1998, IPCC 2007). Nitrous oxide emissions from rivers 

are estimated to account for ~20% of emissions from all aquatic 

ecosystems, excluding lakes (Seitzinger et al. 2000, Seitzinger et al. 

2006). Surprisingly, N2O emissions from lakes have not been quantified 

even though lakes cover the same global surface area as rivers. 

Production of N2O by soils and marine sediments increases as the rate of 

anthropogenic N loading increases because of increased denitrification 

(Firestone et al. 1980, Seitzinger and Nixon 1985). The proportion of N 

lost as N2O during denitrification (hereafter, “relative N2O production”) is 

small, generally less than 1% of total gaseous production. In terrestrial 
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soils and aquatic sediments ecosystems, relative N2O production is known 

to be influenced by the rate of N loading, availability of organic carbon, pH, 

and the concentration of dissolved oxygen (Firestone et al. 1980, 

Seitzinger 1988). We hypothesized that atmospheric N deposition 

influences both N2O fluxes and the relative production of N2O because of 

increased denitrification and elevated concentrations of nitrate, 

respectively.  

Here we report responses of denitrification in lake sediments 

across a gradient of N deposition. Given the six-fold difference in N 

loading rates at the extreme ends of the gradient, we expected the 

denitrification rate to be greater in high-deposition areas compared to low-

deposition areas. We also expected limitation of denitrification by P to be 

more frequent in high-deposition lakes than in low-deposition lakes. Lastly, 

we predicted the rate of N2O production and proportion of gaseous flux as 

N2O in high-deposition lakes to exceed that of lakes in the low-deposition 

region.  

METHODS 

Study site 

We sampled 32 lakes located in southern Norway between June 

and August 2007. Norway receives atmospheric pollution from industrial 

regions of Europe and total (wet and dry) N deposition rates are 10-20 kg 

N ha-1 y-1 in southwest regions of the country, decreasing to less than 4 kg 
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N ha-1 y-1 in east-central areas (Tørseth and Semb 1998, Klein and 

Benedictow 2006) (Fig. 1). We sampled 16 lakes each at the high and low 

ends of the N deposition gradient that spans over 400 km. The gradient 

encompasses a large number of unpopulated and sparsely vegetated 

watersheds, making it well suited to evaluate the influence of atmospheric 

deposition without confounding influences of variable land use history and 

vegetation type. In each region, we chose lakes with similar surface area, 

depth, and landscape position. Exposed rock, moss, and scattered trees, 

including Norway spruce (Picea abies) and aspen (Populus tremula), 

characterized the watersheds, which were largely undeveloped with the 

exception of sheep grazing and occasional seasonal cottages. Mean 

annual precipitation is approximately 1,700 mm in high-deposition areas 

and 700 mm in low-deposition areas (http://biogeo.berkeley.edu/ 

worldclim1_4/grid/ curprec_30s_esri). Mean elevation of the sampled 

lakes was 230 and 993 m above sea level in regions receiving high and 

low rates of atmospheric N deposition, respectively. Watershed percent 

tree cover data was generated from MODerate-resolution Imaging 

Spectroradiometer (MODIS) datasets (Hansen et al. 2003). See Table 1 

for a summary of individual lake characteristics. 

Field sampling and laboratory procedures 

Lakes were visited during summer 2007; dates of sampling for each 

lake are given in Table 1. Fieldwork was staggered so that sampling of 
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lakes in high- and low-deposition regions was not strongly skewed by 

date. High-deposition lakes were sampled in late June and late July, while 

low-deposition lakes were sampled in early July and early August. Lakes 

in high-deposition regions were thermally stratified while most lakes in 

low-deposition regions were not, due largely to differences in mean lake 

depth between regions.  

 Lakes were sampled from an inflatable boat. The deepest part of the 

lake was found using a portable echo sounder after which a vertical profile 

of temperature and dissolved oxygen was made at ~1-m intervals using a 

YSI model 85 temperature-oxygen probe (YSI, Yellow Springs, Ohio, 

USA). Four independent water samples were taken using a battery-

powered submersible pump fitted with tubing to take in water at 1 - 1.5 m 

depth. Water samples were frozen until analysis for dissolved organic C 

(DOC) on a Shimadzu TOC 5000 (Shimadzu, Kyoto, Japan). Water pH 

was determined using an Accumet AR10 pH meter and nitrate + nitrite 

(hereafter: NO3-N) concentration was measured on a Metrohm 761 

Compact Ion Chromatograph (Thermo Fisher Scientific, Waltham, 

Massachusetts, USA) at the Kiowa Environmental Chemistry Laboratory 

(University of Colorado-Boulder, USA). Concentrations of total P in the 

study lakes were generally very low. To reduce the detection limit, 

oxidized TP samples were concentrated 5-fold using the method of 
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Solorzano and Sharp (1980) after which P concentrations were analyzed 

using the ammonium molybdate method (APHA 2005). 

Surface sediments were collected using a LaMotte dredge from a 

water depth of approximately 10 m or at the maximum lake depth if the 

lake was less than 10 m deep. Sediments were returned to the laboratory 

and processed within four hours of collection. Denitrification rates were 

measured using the acetylene inhibition method (Yoshinari and Knowles 

1976). For each lake, six analytical replicate 100-g subsamples of 

homogenized sediments were slurried with 80 ml of lake water collected 

from above the sediments using a Van Dorn sampler. Bottles were purged 

of oxygen with nitrogen gas (N2). Acetylene was added to half of the 

bottles (three per lake) to block the reduction of N2O to N2. After vigorous 

shaking, we collected 10-mL samples from the headspace volume (about 

550 mL) at the onset of anoxic conditions (0 h) and at 4 and 12 h. 

Incubations were conducted at 15°C in dark conditions. Gas samples were 

analyzed for N2O on a Varian CP-3800 gas chromatograph (Varian, Palo 

Alto, California, USA) with an electron-capture detector. The production of 

N2 and N2O by denitrification was determined as the accumulation of N2O 

during incubations amended with acetylene. Nitrous oxide produced by 

denitrification was determined as the accumulation of N2O for incubations 

that were not amended with acetylene (Garcia-Ruiz et al. 1998, Rudaz et 

al. 1999). Relative N2O production was determined as the N2O flux for 
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incubations without acetylene divided by the N2O flux for incubations with 

acetylene for the 0 – 4 h and 4 – 12 h periods. Denitrification and N2O 

production were converted to an areal basis and reported as µmol m-2 h-1: 

rates measured on the basis of mass of dry sediment (N µmol g-1 h-1) were 

multiplied by the bulk density of the top 7 cm of sediment (g/m2) 

determined for each lake (Richardson et al. 2004). The dredge collected 

sediments from an area of 221 cm2 to a depth of 7 cm. 

We also conducted a resource enrichment experiment to determine 

if the instantaneous sediment denitrification rate was limited by organic 

carbon, nitrate, or phosphate. For each lake, three analytical replicate 50-

g subsamples of homogenized sediments were slurried with 40 mL of one 

of five different incubation media. The incubation media were: distilled 

water as a control, 100 mg organic carbon (oC, as dextrose and 

acetate)/L, 100 mg nitrate (NO3
-)-N/L, 13.84 mg phosphate (PO4

3)-P/L, or 

a combined medium that included oC, NO3
- and PO4

3- (CNP) at the 

concentrations just described. To prevent the de novo synthesis of nitrate 

reductase enzymes, chloramphenicol was added to a concentration of 10 

mg/L to all incubation media. We induced anoxia by purging oxygen from 

the slurries with ultra high purity N2 gas and blocked the reduction of N2O 

to N2 using acetylene. We collected 3.5-mL initial samples and final 

samples at the end of 4 h incubation at 15°C in dark conditions, both after 

vigorous shaking. Gas samples were analyzed for N2O on a Shimadzu 
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14A gas chromatograph with an electron-capture detector. Denitrification 

rates for resource enrichment assays are reported on the basis of dry 

sediment mass. 

 Sediment water content was determined as mass loss after drying 

subsamples at 105°C for 48 h and organic matter (OM) content was 

determined as mass loss on ignition at 550°C for 4 h. Total C and N 

contents of dried sediments were measured with a Perkin-Elmer CHN 

elemental analyzer (PerkinElmer, Waltham, Massachusetts, USA). 

Phosphorus content of combusted sediment was measured 

colorimetrically following extraction with 0.5 M hydrochloric acid using the 

acid molybdate technique (APHA 2005, Lukkari et al. 2007).  

Statistical analysis 

We performed t tests to compare organic matter, water content, 

and sediment nutrient pools between lakes in high- and low-deposition 

regions. We used Mann-Whitney U tests to compare relative N2O fluxes 

between lakes in high- and low-deposition regions, as the assumption of 

normality was not met. Multiple linear regression was used to identify 

relationships among sediment response variables and predictor variables. 

For rates of denitrification, N2O production, and relative N2O production, 

predictor variables included water nitrate concentrations, water pH, 

sediment organic matter, sediment C:N ratio, and watershed percent tree 

cover. Models were selected by considering all subsets on the basis of 
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adjusted R2 and Mallows’ Cp (Cetin and Erar 2006). We evaluated multi-

colinearity using tolerance values and selected final models for which 

tolerance values were >0.5 for all predictor variables. When necessary, 

response and predictor variables were transformed to improve normality. 

One-way analysis of variance (ANOVA) was used to test the significance 

of responses of the denitrification rate to resource enrichment treatments. 

Student’s t and Mann-Whitney U tests were calculated in Excel 2008 

Version 12.1.7. Multiple linear regression analysis and ANOVA were 

performed using JMP (SAS Institute, Inc., Cary, NC, USA) Version 5.0.1.2, 

with α = 0.05.  

RESULTS 

Bulk sediment and water characteristics 

There were no significant differences in sediment water content 

(data not shown), OM, total C, N, and P content, or ratios of C:N, C:P, and 

N:P between lakes in high- and low-deposition regions (P > 0.05). Bulk 

sediment characteristics for all lakes are reported in Table 2. Water 

column NO3
- concentrations in lakes receiving elevated N inputs were 

greater than that for lakes in low-deposition regions, which were generally 

undetectable (Table 2). There was no correlation between water NO3
- 

concentrations and sampling dates (R2=0.06, P > 0.30). The concentration 

of DOC was greater in surface waters of lakes in high-deposition regions 

compared to those in low-deposition regions (P < 0.0001). There was no 
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difference in the concentration of total dissolved P across the N deposition 

gradient. Characteristics of surface lake waters for all lakes are reported in 

Table 2. 

Denitrification rates and resource limitation of denitrification 

The accumulation of gaseous products of denitrification (N2-N and 

N2O-N) was greater for high-deposition lakes compared to low-deposition 

lakes at both the 4 h and 12 h time periods (Fig. 2A). For high-deposition 

lakes, the mean denitrification rate during the 0 – 4 h period was greater 

than that during the 4 – 12 h period (Table 3). There were no detectable 

differences in concentrations of N2O between the three sampling time 

points for incubations of lakes in low-deposition areas; thus, we were 

unable to determine a denitrification rate for these lakes. In high-

deposition lakes, the denitrification rate during the 0 – 4 h period was 

strongly correlated with the concentration of nitrate in surface waters (y = -

0.2 + 1.3 * NO3
-, R2 = 0.67, P < 0.001, Fig. 3). Multiple regression analysis 

for high-deposition lakes revealed that denitrification was best predicted 

by water NO3
- concentrations, pH, and sediment C:N for the 0 – 4 h period 

(y =1.07 * NO3
- + 0.18 * pH - 1.81 * C:N + 1.17, R2

 = 0.70, P < 0.001) and 

by water nitrate concentrations, sediment C:N, and percent tree cover for 

the 4 – 12 h period (y = 1.55 * NO3
- - 6.81 * C:N + 1.38 * tree cover + 6.33, 

R2 = 0.68, P < 0.001).  
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In the resource enrichment experiments, denitrification rate 

increased significantly over the control in the nitrate and the combined 

CNP treatments for all lakes and these treatments did not differ from one 

another (P < 0.001, Fig 4). Mean denitrification rates in the oC and PO4
3- 

treatments did not differ from the control. Further, while the denitrification 

rate for lakes in low-deposition areas was undetectable in ambient 

samples and in resource enrichment treatments lacking NO3
-, the 

denitrification rate after experimental NO3
- additions was the same for 

lakes in high- and low-deposition areas. 

Nitrous oxide fluxes and relative production of nitrous oxide 

Mean concentrations of N2O were greater in incubations of 

sediments from high-deposition lakes compared to low-deposition lakes 

for all time periods (Fig. 2B). There was net N2O production in the 0 – 4 h 

period and net N2O consumption during the 4 – 12 h period for high- 

deposition lakes (Table 3). For low-deposition lakes, there was no 

difference in concentrations of N2O for assays incubated with and without 

acetylene at the 0, 4, and 12 h sampling points and, thus, we were unable 

to determine a flux rate for these lakes (Fig. 2C). The N2O flux from 

sediments in high-deposition lakes was predicted by water column 

concentrations of NO3
- and percent tree cover for the 0 – 4 h period (y = 

0.95 * NO3
- + 0.76 * tree cover – 1.56, R2 = 0.51, P = 0.004, Fig. 2D). For 

the 4 – 12 h period, N2O flux was predicted by sediment C:N, OM, and 
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water pH (y = -4.78 * C:N + 5.06 * OM - 0.25 * pH + 5.80, R2 = 0.61, P < 

0.01). For lakes in high-deposition regions, relative production of N2O 

(fraction of overall flux attributable to N2O) decreased from 0.025 to -0.020 

between the 0 – 4 h and 4 – 12 h period, indicating a shift from N2O 

production to consumption (Table 3, Fig. 2B). Nitrogen gas was the 

dominant product of denitrification for the duration of the incubation. The 

relative production of N2O during the 0 – 4 h period was strongly predicted 

by water column concentrations of NO3- and the watershed percent of tree 

cover of  (y = 0.33 * NO3
- + 0.51 * tree cover – 0.68, R2 = 0.43, P < 0.01). 

For the 8 – 12 h period, relative N2O production was not correlated with 

any of the predictor variables.   

DISCUSSION 

Factors limiting denitrification in lake sediments 

It has been suggested that lakes are sentinels of nitrogen 

saturation in terrestrial ecosystems subject to chronic atmospheric N 

deposition (Williamson et al. 2008). As land-based anthropogenic N inputs 

are transported across the landscape, lakes perform an important 

ecosystem function by reducing the export of nutrients to downstream 

ecosystems. Consequently, it is crucial to understand the role of 

denitrification in lake sediments in mitigating N loading and in producing a 

potent greenhouse gas. Our hypothesis that denitrification in lake 

sediments is influenced by available NO3
- and thus by the rate of 
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atmospheric N loading was strongly supported both in correlative analysis 

(Fig. 3) and in the short-term enrichment experiments (Fig. 4). The 

denitrification rate for lakes in high-deposition areas was greatest during 

the first 4 h of the incubation and decreased during the 4-12 h period, 

possibly resulting from the depletion of NO3
-. Interestingly, when NO3

- was 

made available in non-limiting concentrations, the denitrification rate in 

sediments from lakes in low-deposition areas was the same as that of 

lakes in high-deposition regions. These findings indicate that lake 

sediments possess considerable capacity for removing NO3
- associated 

with atmospheric N deposition and that this capacity has not been 

saturated even at the relatively high levels of N deposition present in 

southwestern Norway. Our work also adds to the large dataset of N 

cycling in streams (Mulholland et al. 2008) in supporting the conclusion 

that NO3
- concentration is the single most important predictor of 

denitrification.   

Our hypothesis that P limitation influences rate of denitrification 

under high N deposition was not supported (Fig. 4). While experimental P 

additions substantially increase soil respiration of carbon dioxide via 

aerobic heterotrophic microbial respiration (Cleveland and Townsend 

2006, Gnankambary et al. 2008), instantaneous rates of anaerobic 

denitrification in lakes do not appear to be similarly limited. Longer-term 

enrichment bioassays that would permit population-level responses by 
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denitrifiers might yield different insights, but our experiments suggest that 

the ability of lake sediments to remove N via denitrification does not 

diminish due to the onset of secondary limitations on denitrifying bacteria.  

Nitrous oxide production during denitrification 

Our measured N2O flux from denitrification was within the ranges 

reported in the literature for marine sediments, agricultural streams, and a 

eutrophic lake (Seitzinger and Nixon 1985, Wang et al. 2006, Beaulieu et 

al. 2008). The hypothesis that N2O production increases with N inputs was 

supported. These findings indicate that denitrification in lake sediments 

respond to N loading in a similar manner as do marine sediments and 

soils subject to elevated N inputs (Seitzinger and Nixon 1985, Ullah and 

Zinati 2006). Compared to terrestrial ecosystems, however, we have a 

more limited understanding of the roles played by nitrification and 

denitrification in N2O production in aquatic environments. In coastal areas, 

estuaries, and streams subject to anthropogenic N loading, researchers 

have found that denitrification produces more N2O than nitrification 

(Jensen et al. 1984, Seitzinger 1988, Beaulieu et al. 2008). Similarly, 

nitrate fertilization of littoral sediments from a boreal eutrophic lake 

increased N2O production by as much as 100 times, while ammonium 

additions to had no effect on N2O flux, suggesting a low nitrification 

capacity (Liikanen et al. 2003).  



 

 25 

Although the sediments of lakes we sampled were not likely anoxic 

at the sediment-water interface, our observations may be typical of deeper 

sediments. Studies of agricultural soils have identified two phases of 

denitrification in soils following the onset of anoxic conditions (Firestone 

and Tiedje 1979, Smith and Tiedje 1979). Responses during the first 

phase, lasting 1 – 3 h after the start of anoxic incubation, reflect 

preexisting denitrifying enzymes and thus provide more information about 

the activity of the microbial community. Responses during the second 

phase, starting at 4 – 8 h of incubation, reflect enzyme synthesis by the 

denitrifiers but no significant population growth due to limitation by organic 

carbon. Consequently, the dominant product of denitrification shifts from 

N2 during the first phase to N2O during the transition between phases 

because of a lag in the synthesis of enzymes that reduce N2O. Firestone 

and Tiedje (1979) noted that N2 again becomes the dominant product 

during the second phase. Interestingly, the temporal pattern we observed 

for lakes in high-deposition areas did not follow that observed in 

agricultural soils. Rather, N2 remained the dominant product for the 

duration of the incubation. Sediment denitrifiers in lakes may not 

experience as significant a time lag in synthesizing nitrous oxide after the 

onset of anoxic conditions, as observed in soils. Such a difference may 

result from differences in redox environment between sediments, which 
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are fairly stable, compared to soils, which experience distinct cycles of 

wetting and drying.  

For marine sediments, relative N2O production during denitrification 

is thought to between 0.001 and 0.01 (Seitzinger et al. 2000). We 

observed relative N2O production of 0.025 for high-deposition lakes, just 

below values between of 0.03 – 0.06 that have been reported for heavily 

polluted marine areas (Nishio et al. 1983, Seitzinger and Nixon 1985). Our 

findings suggest that sediments of lakes and coastal areas respond 

similarly to chronic N loading in terms of the gaseous products of 

denitrification. Understanding the relative production of N2O during 

denitrification is important not only for understanding underlying 

biogeochemical processes, but also for predicting N2O emissions at 

broader spatial scales. To date, efforts to quantify global fluxes of N2O 

from aquatic ecosystems have not included lakes. 

Whole-lake estimates of denitrification and nitrous oxide emissions 

Lakes play an important role by removing reactive N from the 

landscape through storage in sediments or biomass, and through 

permanent removal via denitrification. Models of N removal in aquatic 

ecosystems, however, do not distinguish between these potential fates of 

N (Kelly et al. 1987, Wollheim et al. 2008, Harrison et al. 2009). For the 

lakes we sampled, there was no evidence that N is accumulating in 

sediments of high-deposition areas (Table 2), nor did we observe 
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differences in seston N content between lakes in high- and low-deposition 

areas (data not shown). Rather, our results suggest that denitrification is 

the most important pathway for N removal in lakes. 

To evaluate the portion of N inputs that is removed from 

ecosystems, and hence, is unavailable for uptake, transformation, or 

transport, denitrification rates must be translated from the measurement 

scale to broader scales. In the first effort to quantify global lake 

denitrification rates, Seitzinger et al. (2006) estimated that lakes contribute 

to removal of 7-16% of terrestrial N loading. Water residence time explains 

much of the variability in the fraction of N removed from aquatic 

ecosystems by denitrification (Weyhenmeyer et al. 2007, Harrison et al. 

2009). Seitzinger et. al (2006) summarized this relationship as: 

(1) % N removed by denitrification = 23.4 *  

water residence time (months) 0.204 

While water residence time for the lakes we sampled is not known, 

comparable lakes in Norway have residence times between 0.1 – 1 year 

(Berge et al. 1997, Kaste et al. 2003). Applying these residence times to 

formula (1), we estimate that 24 – 39% of N inputs are removed by 

denitrification. Given the 10  – 20 kg N ha-1 y-1 deposited atmospherically 

to lake surfaces, we further estimate that denitrification removes 2.4 – 7.8 

kg N ha-1 y-1 (or 1.8 – 5.8 µmol m-2 h-1). For high-deposition lakes, we 

observed a mean denitrification rate of 41.7 µmol m-2 h-1 (Table 3), which 
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is an order magnitude greater than the “top down” estimate of 

denitrification based on water residence time. While the denitrification 

rates we measured for high-deposition lakes were within published range 

for lakes (Pina-Ochoa and Alvarez-Cobelas 2006), the difference between 

our rates and those based on residence time underscores the challenge of 

extrapolating and modeling measurements made at the scale of hours to 

the whole lake (Groffman et al. 2009). We may have overestimated 

denitrification by performing assays in the laboratory where conditions 

were more favorable for denitrifiers compared to in situ lake conditions. 

For example, our slurries disturbed the sediment profile for the top 7 cm 

that we sampled and allowed for greater diffusion of NO3
- in lake water to 

active sites of denitrification within the sediments. Further, incubation 

temperatures were about 5°C warmer than lake temperatures at the 

sampling depth. Thus, assuming a Q10 value of 2, we may have 

overestimated denitrification rates by ~40%. We also induced anoxia in 

the sediment slurries, whereas sediment conditions were likely oxic at the 

sediment-water interface and suboxic or anoxic only for deeper sediments. 

On the other hand, the anoxic conditions we induced and our use of 

acetylene may have underestimated denitrification rates. In many 

sediments, nitrification is an important source of NO3
- to denitrification. 

However, nitrification requires oxygen and is inhibited by acetylene 

(Groffman et al. 2006). The lack of measurable denitrification in low- 
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deposition lakes may result from tight coupling of nitrification and 

denitrification compared to lakes subject to anthropogenic N loading. 

Acetylene may also incompletely block the reduction of N2O to N2 and 

lead to an underestimation of denitrification. Because of these factors we 

will use estimated denitrification rates of 2.4 – 7.8 kg N ha-1 y-1, based on 

water residence time and N deposition rates as discussed above, to 

estimate lake N2O emissions. 

Understanding relative N2O flux during denitrification is important 

not only for understanding underlying biogeochemical processes, but also 

for predicting N2O emissions at broad spatial scales. Based on Seitzinger 

and Kroeze (1998), global fluxes of N2O produced by denitrification in 

aquatic ecosystems can be estimated as: 

(2) N2O flux (kg N ha-1 y-1) = emission factor * denitrification rate  

(kg N ha-1 y-1)   

The emission factor is based on ratios of nitrous oxide and nitrogen gas 

fluxes observed in studies of estuarine and coastal marine sediments. 

Seitzinger and Kroeze (1998) used a factor of 0.03 for aquatic areas 

(excluding lakes) with external N loading rates >10 kg N ha-1 y-1, 

compared to the mean relative N2O production of 0.025 that we measured 

in high-deposition lakes (Table 3). Applying an emission factor of 0.025 to 

the top down denitrification estimate of 2.4 – 7.8 kg N ha-1 y-1 in formula 

(2), we predict nitrous oxide production is 0.06 – 0.19 kg N ha-1 y-1 (or 0.05 



 

 30 

– 0.15 µmol m-2 h-1) for lakes in high-deposition areas. This is an order of 

magnitude greater than the rate of N2O production we measured (Table 

3), likely for the same reasons that our measured rate of denitrification 

may be overestimated, as previously discussed. While there limited data 

on N2O emissions for lakes, fluxes between 0.06 – 0.19 kg N ha-1 y-1 are in 

the range of N2O emissions reported for eutrophied European lakes 

(Mengis et al. 1997, Huttunen et al. 2003). Further direct measurements of 

N2O fluxes are needed to better understand how anthropogenic N loading 

is altering gas exchange between lakes and the atmosphere.  

Conclusion 

While there are uncertainties in scaling plot-level flux rates to 

whole-lake, or larger, scales, our findings are consistent with a growing 

body of literature suggesting that small lakes play an important role in N 

removal in the landscape. The magnitude of denitrification emissions from 

lakes may be substantial and should be considered in global estimates. 

Global N2O emissions from rivers are estimated at 1.1 Tg N y-1, greater 

than combined emissions from estuaries and coastal areas (Seitzinger et 

al. 2000). Given that denitrification rates and the surface area of lakes and 

rivers are comparable (Seitzinger et al. 2006), current global N2O 

emissions from aquatic ecosystems may be significantly underestimated.  

Atmospheric N inputs to Norway are expected to increase >30% by 

2100 (Hole and Engardt 2008) and similar trends are likely in other areas 
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depending on the alteration of precipitation patterns by climate change. 

Our findings suggest that lake sediments have the capacity to respond to 

current and future N loading rates to remove much of this anthropogenic 

N. However, in doing so the lakes appear to become a potentially 

important source of a potent greenhouse gas, N2O. Consequently, we 

need a better understanding of how elevated N loading affects denitrifying 

communities, denitrification rates, and N2O emissions in lakes. Such 

understanding may allow us to predict lake responses to N loading at 

broader spatial scales, to estimate the role of lakes in processing of N as it 

transits from the atmosphere to the ocean, and to take lake 

biogeochemical processing into account with respect to greenhouse gas 

dynamics.  
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Table 1. Study lakes according to N deposition level.  

Lake 
Sample 

date 
Elevation 

(masl) 

Lake 
surface 

area (km2)1 

Lake 
depth 
(m) 

Tree 
cover 

% 
High-deposition Lakes    
Berse 7/28/07 216 0.37 21.6 40 
Brynesland 7/29/07 228 0.54 46.0 29 
Dypingstjørni 7/31/07 177 0.08 13.4 32 
Eigelivatnet 8/1/07 69 0.29 18.3 52 
Eptelandvatnet 6/22/07 305 0.61 22.6 49 
Furevatnet 7/21/07 146 1.16 14.1 33 
Glypstadvatnet 8/1/07 281 0.36 20.7 43 
Helleren 6/17/07 168 0.18 26.5 28 
Krokavatnet 6/22/07 310 0.11 14.1 66 
Nordravatnet 6/26/07 334 0.21 20.4 56 
Revsvatnet 6/20/07 178 1.41 10.1 43 
Saglandsvatnet 7/25/07 128 0.38 22.9 36 
Skjævelandvnt 6/25/07 294 0.48 18.9 44 
Stølsjørni 7/25/07 189 0.06 13.7 26 
Svartavatnet 7/22/07 450 0.26 18.6 44 
Ulsvatnet 6/16/07 174 0.09 17.7 22 
      
Low-deposition lakes    
Bolvatnet 8/13/07 1,039 0.38 6.7 3 
Djupen 7/6/07 951 0.74 7.6 12 
Flaksjøen 8/14/07 941 1.43 7.9 3 
Goppollvatnet 7/11/07 994 1.47 18.3 7 
Hamntjønna 8/8/07 996 0.07 13.7 4 
Hornsjøen 7/10/07 878 0.83 9.1 21 
Langjtønna 8/17/07 1,020 0.09 15.8 3 
Langrumpa 8/8/07 939 0.14 1.7 3 
Ljosvatnet 7/15/07 827 0.39 5.8 35 
Musvoltjønna 8/9/07 1,280 0.04 9.7 35 
Muvatnet 8/18/07 1,141 0.45 7.6 8 
Ner-Åst 7/8/07 978 0.54 9.1 7 
Nevelvatnet 7/10/07 913 0.59 10.7 18 
Reinsvatnet 7/6/07 961 3.88 6.4 18 
Settningen 8/10/07 1,095 0.08 11.0 12 
Vasjøen 7/8/07 935 1.01 5.5 17 
 

1 http://arcus.nve.no/website/nve/viewer.htm   
 



 40 

Ta
bl

e 
2.

 A
ve

ra
ge

 v
al

ue
s 

(a
nd

 s
ta

nd
ar

d 
er

ro
r, 

s.
e.

) f
or

 v
ar

io
us

 w
at

er
 a

nd
 s

ed
im

en
t p

ar
am

et
er

s 
fo

r t
he

 s
tu

dy
  

la
ke

s.
 

 

 
S

ur
fa

ce
 W

at
er

 
S

ed
im

en
t 

La
ke

 
pH

 
N

O
3- -N

 
µm

ol
/L

 
D

O
C

 
µm

ol
/L

 
TD

P
 

µm
ol

/L
 

To
ta

l C
 

m
m

ol
/g

 
To

ta
l N

 
m

m
ol

/g
 

To
ta

l P
 

m
m

ol
/g

  
C

:N
 

C
:P

 
N

:P
 

O
rg

an
ic

 
m

at
te

r 
B

er
se

 
6.

30
 

14
.4

 
16

3.
5 

0.
09

 
8.

7 
0.

60
 

0.
10

 
14

.5
 

88
 

6.
0 

0.
24

 
B

ry
ne

sl
an

d 
6.

65
 

45
.3

 
16

5.
0 

0.
13

 
10

.9
 

0.
92

 
0.

27
 

11
.8

 
40

 
3.

4 
0.

27
 

D
yp

in
gs

tjø
rn

i 
6.

59
 

20
.3

 
22

1.
3 

0.
14

 
20

.4
 

1.
12

 
0.

45
 

18
.2

 
45

 
2.

5 
0.

40
 

E
ig

el
iv

at
ne

t 
6.

43
 

35
.1

 
11

2.
7 

0.
08

 
14

.5
 

0.
95

 
0.

37
 

15
.3

 
40

 
2.

6 
0.

32
 

E
pt

el
an

dv
at

ne
t 

5.
50

 
13

.6
 

10
5.

2 
0.

08
 

9.
4 

0.
62

 
0.

07
 

15
.3

 
13

4 
8.

8 
0.

25
 

Fu
re

va
tn

et
 

6.
71

 
29

.4
 

23
6.

6 
0.

13
 

11
.5

 
0.

78
 

0.
13

 
14

.8
 

89
 

6.
0 

0.
23

 
G

ly
ps

ta
dv

at
ne

t 
6.

04
 

33
.6

 
89

.7
 

2.
17

 
7.

8 
0.

54
 

0.
15

 
14

.4
 

53
 

3.
7 

0.
21

 
H

el
le

re
n 

5.
55

 
26

.8
 

91
.1

 
0.

08
 

14
.1

 
0.

99
 

0.
24

 
14

.2
 

59
 

4.
1 

0.
28

 
K

ro
ka

va
tn

et
 

6.
22

 
10

.6
 

14
0.

5 
0.

07
 

13
.7

 
0.

81
 

0.
11

 
17

.0
 

12
9 

7.
6 

0.
33

 
N

or
dr

av
at

ne
t 

6.
51

 
16

.8
 

84
.8

 
0.

09
 

5.
9 

0.
31

 
0.

08
 

18
.9

 
71

 
3.

7 
0.

18
 

R
ev

sv
at

ne
t 

6.
62

 
11

.2
 

15
8.

8 
0.

15
 

18
.2

 
0.

97
 

0.
19

 
18

.7
 

96
 

5.
1 

0.
37

 
S

ag
la

nd
s 

6.
67

 
38

.9
 

72
.5

 
0.

16
 

8.
2 

0.
59

 
0.

10
 

14
.0

 
83

 
5.

9 
0.

22
 

S
kj

æ
ve

la
nd

 
6.

73
 

10
.4

 
15

1.
6 

0.
08

 
9.

3 
0.

69
 

0.
20

 
13

.5
 

46
 

3.
4 

0.
27

 
S

tø
ls

jø
rn

i 
5.

76
 

28
.3

 
76

.8
 

0.
08

 
13

.9
 

0.
87

 
0.

15
 

15
.9

 
92

 
5.

8 
0.

30
 

S
va

rta
va

 
5.

93
 

7.
8 

10
9.

3 
0.

15
 

12
.2

 
0.

73
 

0.
14

 
16

.7
 

90
 

5.
4 

0.
30

 
U

ls
va

tn
et

 
5.

48
 

22
.6

 
83

.3
 

0.
13

 
12

.4
 

0.
83

 
0.

14
 

14
.9

 
87

 
5.

8 
0.

26
 

M
ea

n 
6.

23
 

22
.8

 
12

8.
9 

0.
24

 
11

.9
5 

0.
77

 
0.

18
 

15
.5

 
78

 
5.

0 
0.

28
 

s.
e.

 
0.

12
 

3.
0 

13
.0

 
0.

13
 

0.
99

 
0.

05
 

0.
03

 
0.

5 
7.

6 
0.

5 
0.

02
 



 41 

Ta
bl

e 
2,

 c
on

tin
ue

d.
 R

es
ul

ts
 o

f s
ta

tis
tic

al
 te

st
 in

di
ca

te
 if

 th
er

e 
is

 a
 s

ig
ni

fic
an

t d
iff

er
en

ce
 b

et
w

ee
n 

de
po

si
tio

n 
re

gi
on

s.
 

N
on

si
gn

ifi
ca

nt
 re

su
lts

 in
di

ca
te

d 
by

 n
.s

. 

 
S

ur
fa

ce
 W

at
er

 
S

ed
im

en
t 

La
ke

 
pH

 
N

O
3- -N

 
µm

ol
/L

 
D

O
C

 
µm

ol
/L

 
TD

P
 

µm
ol

/L
 

To
ta

l C
 

m
m

ol
/g

 
To

ta
l N

 
m

m
ol

/g
 

To
ta

l P
 

m
m

ol
/g

  
C

:N
 

C
:P

 
N

:P
 

O
rg

an
ic

 
M

at
te

r 
B

ol
va

tn
et

 
6.

28
 

<0
.0

4 
42

1.
4 

0.
19

 
12

.5
 

0.
81

 
0.

13
 

15
 

97
 

6.
3 

0.
28

 
D

ju
pe

n 
6.

74
 

<0
.0

4 
23

3.
1 

0.
14

 
14

.4
 

0.
90

 
0.

15
 

16
 

97
 

6.
0 

0.
32

 
Fl

ak
sj

øe
n 

6.
81

 
<0

.0
4 

28
9.

2 
0.

13
 

9.
5 

0.
68

 
0.

12
 

14
 

78
 

5.
6 

0.
26

 
G

op
po

llv
ne

t 
6.

80
 

<0
.0

4 
14

7.
2 

0.
13

 
9.

3 
0.

67
 

0.
12

 
14

 
78

 
5.

6 
0.

21
 

H
am

nt
jø

nn
a 

6.
19

 
<0

.0
4 

21
0.

5 
0.

28
 

6.
9 

0.
62

 
0.

15
 

11
 

45
 

4.
0 

0.
19

 
H

or
ns

jø
en

 
6.

55
 

0.
13

 
49

8.
9 

0.
30

 
12

.5
 

0.
81

 
0.

22
 

15
 

61
 

4.
0 

0.
28

 
La

ng
jtø

nn
a 

6.
96

 
<0

.0
4 

44
7.

7 
0.

20
 

9.
9 

0.
76

 
0.

07
 

13
 

14
4 

11
.0

 
0.

22
 

La
ng

ru
m

pa
 

6.
94

 
<0

.0
4 

15
1.

5 
0.

16
 

6.
3 

0.
52

 
0.

10
 

12
 

61
 

5.
0 

0.
17

 
Lj

os
va

tn
et

 
6.

78
 

<0
.0

4 
39

5.
9 

0.
56

 
25

.5
 

1.
06

 
0.

22
 

24
 

11
5 

4.
8 

0.
46

 
M

us
vo

ltj
øn

na
 

6.
54

 
<0

.0
4 

38
7.

7 
0.

16
 

13
.8

 
0.

71
 

0.
06

 
20

 
21

8 
11

.2
 

0.
30

 
M

uv
at

ne
t 

7.
50

 
<0

.0
4 

20
7.

9 
0.

13
 

7.
4 

0.
52

 
0.

07
 

14
 

11
4 

8.
1 

0.
18

 
N

er
-Å

st
 

6.
72

 
<0

.0
4 

33
2.

5 
0.

18
 

14
.6

 
1.

07
 

0.
30

 
14

 
48

 
3.

5 
0.

30
 

N
ev

el
va

tn
et

 
6.

53
 

<0
.0

4 
21

8.
6 

0.
16

 
7.

8 
0.

65
 

0.
18

 
12

 
44

 
3.

6 
0.

18
 

R
ei

ns
va

tn
et

 
6.

77
 

0.
13

 
19

8.
4 

0.
16

 
7.

7 
0.

55
 

0.
20

 
14

 
39

 
2.

7 
0.

20
 

S
et

tn
in

ge
n 

7.
01

 
<0

.0
4 

83
.3

 
0.

19
 

3.
8 

0.
31

 
0.

07
 

13
 

54
 

4.
3 

0.
11

 
V

as
jø

en
 

6.
73

 
<0

.0
4 

37
3.

3 
0.

20
 

20
.6

 
1.

23
 

0.
24

 
17

 
85

 
5.

1 
0.

39
 

M
ea

n 
6.

7 
0.

1 
28

7.
3 

0.
20

 
11

.4
1 

0.
74

 
0.

15
 

15
 

86
 

5.
7 

0.
25

 
s.

e.
 

0.
3 

0.
0 

12
3.

1 
0.

11
 

1.
44

 
0.

06
 

0.
02

 
0.

8 
13

 
0.

6 
0.

02
 

hi
gh

 v
s.

 lo
w

 
de

po
si

tio
n 

hi
gh

 
< 

lo
w

 
hi

gh
 >

 
lo

w
 

hi
gh

 <
 

lo
w

 
hi

gh
 =

 
lo

w
 

hi
gh

 =
 

lo
w

 
hi

gh
 =

 
lo

w
 

hi
gh

 =
 

lo
w

 
hi

gh
 

= 
lo

w
 

hi
gh

 
= 

lo
w

 
hi

gh
 

= 
lo

w
 

hi
gh

 =
 

lo
w

 

P
 

<0
.0

01
 

<0
.0

01
 

<0
.0

01
 

n.
s.

 
n.

s.
 

n.
s.

 
n.

s.
 

n.
s.

 
n.

s.
 

n.
s.

 
n.

s.
 

P
 

<0
.0

01
 

<0
.0

01
 

<0
.0

01
 

n.
s.

 
n.

s.
 

n.
s.

 
n.

s.
 

n.
s.

 
n.

s.
 

n.
s.

 
n.

s.
 



 42 

Ta
bl

e 
3.

 A
ve

ra
ge

 ra
te

s 
(a

nd
 s

ta
nd

ar
d 

er
ro

r, 
s.

e.
) o

f N
2O

 p
ro

du
ct

io
n 

an
d 

de
ni

tri
fic

at
io

n 
fo

r t
he

 s
tu

dy
 la

ke
s.

  

 

H
ig

h-
de

po
si

tio
n 

R
eg

io
n 

Lo
w

-d
ep

os
iti

on
 R

eg
io

n 
 

N
2O

-N
  

µm
ol

 m
-2

 h
-1

 
D

en
itr

ifi
ca

tio
n 

   
   

   
   

   
   

N
 µ

m
ol

 m
-2

 h
-1

 
 

N
2O

-N
  

µm
ol

 m
-2

 h
-1

 
D

en
itr

ifi
ca

tio
n 

   
   

   
   

   
   

N
 µ

m
ol

 m
-2

 h
-1

 
Ti

m
e 

pe
rio

d 
(h

) 
0 

- 4
 

4 
- 1

2 
0 

- 4
 

4 
- 1

2 
Ti

m
e 

pe
rio

d 
(h

) 
0 

- 4
 

4 
- 1

2 
0 

- 4
 

4 
- 1

2 
La

ke
 

 
 

 
 

La
ke

 
 

 
 

 
B

er
se

 
0.

6 
-1

.1
 

59
.2

 
24

.8
 

B
ol

va
tn

et
 

- 
- 

- 
- 

B
ry

ne
sl

an
d 

2.
9 

-1
.1

 
11

4.
1 

10
2.

0 
D

ju
pe

n 
- 

- 
- 

0.
2 

D
yp

in
gs

tjø
rn

i 
0.

0 
0.

0 
31

.6
 

0.
8 

Fl
ak

sj
øe

n 
- 

- 
0.

3 
- 

E
ig

el
iv

at
ne

t 
1.

2 
-0

.2
 

41
.5

 
17

.3
 

G
op

po
llv

at
ne

t 
- 

- 
- 

- 
E

pt
el

an
dv

at
ne

t 
0.

0 
-0

.7
 

23
.4

 
2.

4 
H

am
nt

jø
nn

a 
- 

- 
- 

- 
Fu

re
va

tn
et

 
0.

7 
-2

.1
 

61
.4

 
29

.6
 

H
or

ns
jø

en
 

0.
3 

- 
- 

- 
G

ly
ps

ta
dv

at
ne

t 
1.

3 
0.

3 
52

.8
 

54
.0

 
La

ng
jtø

nn
a 

- 
- 

2.
8 

0.
6 

H
el

le
re

n 
0.

3 
-1

.1
 

34
.6

 
32

.8
 

La
ng

ru
m

pa
 

- 
- 

- 
- 

K
ro

ka
va

tn
et

 
1.

0 
0.

0 
10

.5
 

4.
5 

Lj
os

va
tn

et
 

- 
- 

- 
- 

N
or

dr
av

at
ne

t 
0.

8 
-0

.7
 

21
.2

 
6.

5 
M

us
vo

ltj
øn

na
 

- 
- 

- 
- 

R
ev

sv
at

ne
t 

0.
0 

-0
.3

 
21

.6
 

1.
7 

M
uv

at
ne

t 
- 

- 
- 

- 
S

ag
la

nd
sv

at
ne

t 
6.

8 
-0

.5
 

87
.0

 
44

.4
 

N
er

-Å
st

 
- 

- 
- 

- 
S

kj
æ

ve
la

nd
va

tn
et

 
0.

0 
-0

.5
 

29
.1

 
24

.8
 

N
ev

el
va

tn
et

 
- 

0.
6 

- 
- 

S
tø

ls
jø

rn
i 

0.
6 

0.
0 

47
.6

 
22

.8
 

R
ei

ns
va

tn
et

 
- 

- 
- 

- 
S

va
rta

va
tn

et
 

0.
0 

0.
0 

2.
4 

- 
S

et
ni

ng
en

 
- 

- 
0.

3 
- 

U
ls

va
tn

et
 

0.
4 

0.
0 

29
.0

 
2.

0 
V

as
jø

en
 

- 
- 

- 
- 

M
ea

n 
1.

1 
-0

.5
 

41
.7

 
24

.7
 

M
ea

n 
0.

0 
0.

1 
0.

2 
0.

0 
s.

e.
 

0.
4 

0.
2 

7.
4 

7.
0 

s.
e.

 
0.

0 
0.

1 
0.

4 
0.

1 



 

 43 

 

Figure 1. Location of study sites in Norway. Fieldwork was conducted in 

two regions that encompass a gradient of atmospheric nitrogen 

deposition. Nitrogen deposition is greatest in extreme southwestern 

Norway, with rates of 10-20 kg N ha-1 y-1, and decreases to less than 4 kg 

N ha-1 y-1 in northeastern areas (Hole and Tørseth 2002). Circles denote 

lakes sampled in high deposition areas and lakes sampled in low 

deposition areas are denoted by triangles. 
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Figure 2. Comparisons of N2O production following the onset of anoxic 

conditions between N deposition regions in incubations (A) amended with 

acetylene and (B) without acetylene and N2O production in incubations 

with and without acetylene for (C) low-deposition lakes and (D) high-

deposition lakes. Solid symbols indicate lakes in high-deposition areas 

and open symbols indicate lakes in low-deposition areas. Triangles 

indicate incubations amended with acetylene and squares indicate 

incubations without acetylene. 
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Figure 3. Relationship between sediment denitrification rate and water 

column concentrations of nitrate for lakes in the high nitrogen deposition 

region (n = 16 lakes). 
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Figure 4. Denitrification rate in response to experimental resource 

enrichments. Bars are means +/- 1 SE (n = 32 lakes). Letters above bars 

indicate significant differences between means (P < 0.001) 
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CHAPTER 3 

Kinetics Of Denitrification and the Abundance Of Denitrifying Bacteria in 

High-Elevation Lakes Receiving Atmospheric Nitrogen Deposition 

(Colorado, USA) 

ABSTRACT 

The transport and deposition of anthropogenic nitrogen (N) to 

downwind ecosystems is significant and continues to increase. Indeed, 

atmospheric deposition can be the dominant source of new N to 

watersheds. Microbially mediated denitrification in lake sediments may 

ameliorate the effects of N loading by permanently removing such inputs. 

We measured denitrification in sediments collected from alpine and 

subalpine lakes in the Rocky Mountains of Colorado (USA) receiving 

elevated (5-8 kg N ha-1 yr-1) or low (< 2 kg N ha-1 yr-1) levels of 

atmospheric N deposition. The nitrate (NO3
-) concentration was 

significantly greater in high-deposition lakes (11.3 µmol L-1) compared to 

low-deposition lakes (3.3 µmol L-1), but denitrification did not differ 

between high- and low-deposition regions. We estimate that the sampled 

lakes are capable of removing a significant portion of N inputs via 

denitrification in sediments. We also conducted a dose-response 

experiment to determine whether chronic N loading has altered sediment 

denitrification capacity. Under the Michaelis-Menten model, the maximum 

denitrification rate and half saturation constant were 765 µmol N m-2 h-1 
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and 293 µmol L-1 NO3
-, respectively, for all lakes. We estimated the 

abundances of nitrate- and nitrite-reducing bacteria and found no 

difference between high- and low-deposition lakes. The abundances of 

these bacteria were most strongly related to available light and bulk 

sediment resources. Our findings support a growing body of evidence that 

lakes play an important role in N removal and, furthermore, suggest that 

current levels of N deposition have not saturated the capacity for sediment 

denitrification. 

INTRODUCTION 

The global rate of atmospheric nitrogen deposition is expected to 

reach 125 Tg N y-1 by 2050, a seven-fold increase since preindustrial 

times (Galloway et al. 2004). Ecosystems even in unpopulated areas are 

subject to anthropogenic influences via the long distance transport of 

these pollutants (Wolfe et al. 2006). Saturation occurs when N is delivered 

to ecosystems in excess of biological demand and NO3
- leaches from the 

ecosystem (Aber et al. 1998, Tietema 1998). Thus, increases in N 

deposition will perpetuate saturating conditions for systems already 

subject to chronic N loading and may push other ecosystems to 

saturation. As N leaches from soils to the oceans, denitrification (the 

microbial conversion of NO3
- to inert di-nitrogen gas) plays an important 

role in permanently removing N and mitigates N loading to coastal 

ecosystems (Galloway et al. 2003, Seitzinger et al. 2006).  
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Lentic ecosystems, such as lakes and reservoirs, have recently 

been recognized as important biogeochemical sinks for N. Indeed, lakes 

may remove nearly 20 Tg N y-1 from watersheds globally, which 

represents ~30% of estimated inputs to surface waters (65 Tg N y-1, 

Wollheim et al. 2008, Harrison et al. 2009). Such N removal capacity is 

significant considering that lakes occupy 3% of the land surface. Potential 

fates for N in lakes include permanent removal by denitrification, long-term 

storage in sediments, or temporary storage in biomass. Of these 

mechanisms, denitrification may often account for the majority of N 

removed globally from these ecosystems (Saunders and Kalff 2001b). 

Here we report on denitrification in sediments of high-elevation Colorado 

lakes receiving low (< 2 kg ha-1 yr-1) or elevated (> 6 kg ha-1 yr-1) inputs of 

atmospheric N deposition and estimates of the role of these lakes in 

reducing downstream N loading. 

Given the expected increases in anthropogenic N inputs and the 

susceptibility of remote ecosystems to atmospherically deposited N, it is 

important to understand the limits to denitrification. Just as terrestrial 

ecosystems may experience N saturation (Aber et al. 1998), aquatic 

ecosystems may similarly become prone to increased N exports. Models 

of N saturation were originally developed for terrestrial ecosystems and 

more recently have been applied to streams (Bernot and Dodds 2005, Earl 

et al. 2006). Indeed, there is strong evidence that the efficiency of removal 
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of NO3
- by denitrification in streams decreases with increasing N loading 

rate (Mulholland et al. 2008). We directly tested the denitrification capacity 

of lake sediments by performing NO3 dose-response experiments. We 

expected a negative relationship between denitrification capacity and N 

deposition rate if chronic atmospheric N deposition had produced a 

saturating effect as suggested for temperate forests.  

Microbial communities influence biogeochemical processes that are 

critical to N cycling in soils and lake sediments. Chronic N loading has 

altered the composition and function of microbial communities in soils, 

reducing respiration rates and increasing N mineralization rates (Lovett 

and Rueth 1999, Bowden et al. 2004, Wallenstein et al. 2006a). 

McCrackin and Elser (2010) found sediment denitrification was greater in 

lakes receiving elevated N deposition, however, there was no difference in 

potential denitrification (assays amended with non-limiting concentrations 

of NO3
- and organic carbon, oC) between lakes at the extreme ends of a 

gradient of N deposition, despite a five-fold difference in atmospheric N 

loading rates (< 4 to 20 kg N ha-1 y-1). These data suggest that sediment 

function has not been affected; however, the composition of denitrifying 

communities per se has not been directly analyzed in lakes subject to 

long-term N deposition. Here we contrast the abundance of denitrifying 

bacteria in sediments between lakes in two regions with differing levels of 

atmospheric N inputs. 
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In addition to understanding how denitrification varies between 

lakes, there is interest in understanding how denitrification varies within a 

given lake. In terrestrial ecosystems, denitrification is known to vary at 

small scales, both temporally and spatially, making it a particularly difficult 

process to measure (Groffman et al. 2006). Such variability likely exists in 

lake sediments as well, because factors that influence denitrification – 

concentrations of oxygen, oC, NO3
- – will fluctuate as the balance 

between production and respiration shifts with the availability of light. In 

littoral sediments where denitrification is tightly linked with nitrifying 

bacteria as a source of NO3
-, benthic periphyton may suppress 

nitrification—and hence denitrification—by out-competing nitrifying 

bacteria for ammonium (NH4
+, Risgaard-Petersen 2003). As light declines 

in deeper water layers, corresponding decreases in the abundance of 

periphyton may allow nitrifiers and denitrifiers to more successfully 

compete for N. Indeed, a study of marine sediments found that 

denitrification increased with water depth and that rates of denitrification 

and gross primary production were strongly negatively related (Sundbäck 

et al. 2004). Accordingly, we hypothesized that microbially mediated N 

cycling in lakes is influenced by water depth because of competition from 

microalgae. We tested this hypothesis by quantifying the abundance of 

bacterial capable of NO3
- and nitrite (NO2

-) reduction in 16 lakes and in 

one lake along a water depth gradient.  
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METHODS 

Study site 

We sampled 20 lakes located in the Rocky Mountains of Colorado 

(USA) between June and August 2008. The eastern slopes of the Rocky 

Mountains near Niwot Ridge Long Term Ecological Research site (NWT) 

and the Loch Vale Watershed Research site (LVW) in Rocky Mountain 

National Park receive atmospheric N deposition from fossil fuel 

combustion and agricultural sources in Denver and eastern Colorado 

(Nanus et al. 2003, Burns 2004). The rate of inorganic N (NO3
- + NH4

+) 

deposition has increased over the past 20 years to 6-8 kg ha-1 y-1 from 

background levels of < 2 kg ha-1 y-1 (Fig. 5; data from the National 

Atmospheric Deposition Program, nadp.sws.uiuc.edu). Lakes in central 

and western Colorado near the Rocky Mountain Biological Laboratory 

(RMBL, Gothic, CO) and the Mountain Studies Institute (MSI, Silverton, 

CO) receive < 2 kg ha-1 y-1 atmospheric inputs of N. Lakes near NWT and 

LVW are considered to be in the high-deposition region and lakes near 

RMBL and MSI are considered to be in the low-deposition region. 

Selected lakes were within 6 km of a trailhead. Mean annual temperatures 

at high elevations are < 2˚C and the lakes are generally covered with ice 

between November and June (Baron et al. 2000). Catchment vegetation 

below the tree line (~3,300 m) is characterized by Englemann spruce and 

subalpine fir forests. Alpine tundra is found above the tree line. With the 
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exception of Estes Lake, the sampled lakes were small, generally ~ 0.1 

km2, and the watersheds were unpopulated. 

The sampled lakes occupy geologically diverse bedrock (Kent and 

Porter 1980). In the vicinity of Rocky Mountain National Park, 

Precambrian-age granite, gneiss, and schist dominate the underlying 

geology. Near RMBL the geologic parent materials include Mesozoic 

sedimentary rocks and Paleozoic metamorphics and intrusives. The San 

Juan Mountains surrounding MSI are characterized by extensive volcanic 

deposits and felsic gneisses and granites of the Uncompahgre formation. 

Field sampling and laboratory procedures 

 We sampled 10 lakes in both the high- and low-deposition regions 

(Table 4). Each lake was visited once during summer 2008. Fieldwork was 

staggered so that sampling of lakes in high- and low-deposition regions 

was not strongly skewed by date. High-deposition lakes were sampled in 

late June and late July 2008 and low-deposition lakes were sampled in 

early July and early August 2008. An inflatable boat was used for 

sampling each lake. The depth of the lake was measured with a hand-held 

echo sounder. Water temperature and dissolved oxygen at the sampling 

depth were measured with a YSI model 85 temperature-oxygen probe 

(YSI, Yellow Springs, Ohio, USA). Water was collected just above the 

sediments using a battery-powered submersible pump and then filtered 

with Pall A/E glass fiber filters. Water samples were frozen until analysis 
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for dissolved organic carbon (DOC) on a Shimadzu TOC 5000 (Shimadzu 

Corporation, Kyoto, Japan) and for nitrate plus nitrite (hereafter: NO3
-) 

concentration on a Lachat Quick Chem 8000 autoanalyzer (Hach 

Corporation, Loveland, Colorado, USA).  

 Photosynthetically active radiation (PAR) was measured at the 

surface and at 10 m or at the maximum lake depth if <10 m using a LI-

COR data-logger and model LI-192 Underwater Quantum Sensor (LI-COR 

Corporation, Lincoln, NE, USA). The light extinction coefficient (k) was 

calculated as k = -z * LN(IZ/I0), where IZ is the irradiance at 10 m or the 

maximum lake depth, I0 is the irradiance at the lake surface, and z was the 

depth at which irradiance was measured. 

 Surface sediments were collected using a LaMotte dredge from a 

water depth of approximately 10 m or at the maximum lake depth if the 

lake was < 10 m. The dredge collected sediments from an area of 221 cm2 

to a depth of ~7 cm. Sediments were returned to the laboratory and 

processed within 24 hours of collection. Denitrification was measured 

using the acetylene inhibition method (Yoshinari and Knowles 1976). To 

estimate the background rate of denitrification, three replicate 100 g 

subsamples of homogenized sediments from each lake were slurried with 

80 mL of water collected from above the sediments. Bottles were purged 

of oxygen with nitrogen gas (N2) and acetylene was added to block the 

reduction of N2O to N2. After vigorous shaking, we collected 10-mL 
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samples from the headspace volume (about 550 mL) at the onset of 

anoxic conditions (0 h) and at 4 h. Incubations were conducted at 4°C 

(estimated annual temperature at sediment depth) in dark conditions. Gas 

samples were analyzed for N2O on a Varian CP-3800 gas chromatograph 

(Agilent Technologies, Santa Clara, CA, US) with an electron-capture 

detector. The denitrification rate was determined as the production of N2O 

during the incubations on the basis of dry sediment mass and was 

converted to an areal basis using the sediment bulk density for each lake 

(Richardson et al. 2004).  

We conducted a dose-response experiment to evaluate the 

capacity of sediments to denitrify additional NO3
- inputs. For each lake, 

three replicate 50-g subsamples of homogenized sediments were slurried 

with 40 mL of one of six different incubation media. The incubation media 

were: distilled water as a control, 0.07 mg nitrate-N L-l (NO3
--N, 5 µmol  

L-1), 0.7 mg NO3
--N L-l (50 µmol L-1), 7.0 mg NO3

--N L-l (500 µmol L-1), 70 

mg NO3
--N L-l (5,000 µmol L-1), and a potential denitrification medium 

(oCNP) consisting of 100-mg oC (dextrose and acetate) L-1, 100 mg  

NO3
--N L-l (7,143 µmol L-1), 13.84 mg phosphate (PO4

3-)-P L-1 (450 µmol  

L-1, for N:P ratio of 16). We induced anoxia and amended the slurries with 

acetylene as described above. We collected 3.5-mL initial samples and 

final samples at the end of the 4-h incubation at 17°- 20°C in dark 

conditions, both after vigorous shaking. These slurries were incubated at 
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room temperature because we interested in maximal denitrification rates, 

not rates that are representative of in situ conditions, and for comparison 

with previous studies (McCrackin and Elser 2010). Gas samples were 

analyzed for N2O on a Shimadzu 14A gas chromatograph (Shimadzu, 

Kyoto, Japan) with an electron-capture detector. Denitrification in 

response to experimental resource enrichments is reported on the basis of 

dry sediment mass and was converted to an areal basis using the 

sediment bulk density for each lake. 

We investigated the influence of atmospheric N deposition and 

individual lake characteristics on NO3
-- and NO2

--reducers (together as 

denitrifiers) in a subset of 16 lakes by estimating the culturable 

populations of these organisms using a most probable number (MPN) 

technique (Staley and Griffin 1981). We further investigated the spatial 

variability of these organisms for Little Molas Lake along a water depth 

gradient. To determine the MPN of denitrifiers, we suspended 4-g 

subsamples of homogenized sediment in 25 mL of 25% Ringer’s solution, 

forming a slurry from which 100 µL was inoculated into each well of a 96-

well micro-titer plate by 10-fold serial dilutions (Johnson et al. 2007). Prior 

to inoculation with sediment slurry, 100 µL of NO3
- broth (9.9 mmol NO3

-/L, 

Difco Laboratories, Detroit, MI, USA) was added to each well. Plates were 

incubated in a dark, anoxic environment in a vacuum desiccator for one 

week. Positive growth was determined by the addition of diphenylamine to 
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test for the presence of NO3
- and N(1-napthyl)-ethylene-diamine-

dihydrochloride to test for the presence of NO2
-. Wells that indicated NO2

- 

were scored positive for NO3
--reducing bacteria and wells that indicated 

the absence of NO3
- and NO2

- were scored positive for NO2
--reducing 

bacteria. Scores were translated to the MPN of each microorganism using 

a probability table developed by Rowe et al. (1977).     

 Sediment water content was determined as mass loss after drying 

subsamples at 105°C for 48 h and organic matter (OM) content was 

determined as mass loss on ignition at 550°C for 4 h. Total C and N 

content of dried sediments were measured with a PerkinElmer CHN 

elemental analyzer (Perkin-Elmer, Waltham, MA). Total phosphorus 

content of combusted sediment was measured colorimetrically following 

extraction with 0.5 M hydrochloric acid using the acid molybdate technique 

(Lukkari et al. 2007).  

Statistical analysis 

We performed t tests or, where the assumption of normality was not 

met, Mann-Whitney U tests to compare water concentrations of NO3
-, 

DOC, sediment organic matter, sediment nutrient pools, MPN of 

denitrifiers, and gas fluxes from slurry incubations between lakes in high- 

and low-deposition regions. Under the assumption that the denitrification 

process is a single step that converted NO3
- to N2O + N2, the Michaelis-

Menten model was used to determine dose-response relationships of 
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denitrification to experimental additions of NO3
- (Betlach and Tiedje 1981, 

Silvennoinen et al. 2008):  

(1) Denitrification rate = (Vmax * [NO3
-]) / (Km + [NO3

-])  

Here the denitrification rate is the production of N2O plus N2, Vmax is the 

maximum denitrification rate, and Km is the NO3
- concentration that results 

in 50% of the denitrification rate, also referred to as the affinity constant 

(Laverman et al. 2006). The parameters Vmax and Km were estimated by 

fitting the “ligand-binding, one-site saturation model” in SigmaPlot Version 

10 (SSI, San Jose, CA, USA) to measured denitrification rates. 

Parameters were estimated separately for each lake, separately for lakes 

in the high- and low-deposition regions, and together for all sampled lakes.    

Multiple-linear regression was used to identify relationships among 

predictor variables and background denitrification, potential denitrification, 

and the MPN of NO3
-- and NO2

--reducers. Predictor variables included 

water concentrations of NO3
- and DOC, sediment organic matter, 

sediment C, N, and P content, ratios of sediment C:N and N:P, the PAR 

light extinction coefficient, and bacterial abundances. Models were 

selected by considering all subsets on the basis of adjusted R2 and AIC. 

We evaluated multi-colinearity and selected final models for which 

tolerance values were > 0.5 for all predictor variables. When necessary, 

response and predictor variables were transformed to improve normality. 
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Statistical tests were performed using JMP (SAS Institute, Inc.) Version 

8.0.1, with α = 0.05.  

RESULTS 

Water and bulk sediment characteristics 

The mean concentration of NO3
- was greater in high-deposition 

lakes compared to low-N deposition lakes at 11.3 µmol L-1 and 3.3 µmol L-

1, respectively (Table 4). High- and low-deposition lakes did not differ in 

DOC concentrations, which averaged 0.64 mmol L-1 across all lakes. 

There were no significant differences in sediment organic matter, total C, 

N, and P content, or ratios of C:N, C:P, and N:P between lakes in high- 

and low-deposition regions (P > 0.05). Lakes in the low-deposition region 

were generally thermally stratified whereas lakes in the high-deposition 

region were not. All lakes were oxic at the depth where sediments were 

collected.  

Dose-response experiment 

Among the study lakes, the denitrification rate in response to the 

maximum dose of NO3
- was between 9 and 1,600 µmol N m-2 h-1 with a 

mean rate of 700 µmol N m-2 h-1 (+ 117 SE, Table 5). Assuming Michaelis-

Menten kinetics, Vmax was 765 µmol N m-2 h-1 and Km was 293 µmol L-1 

NO3
- across all lakes (R2 = 0.98, P = 0.001; Fig. 6). The half-saturation 

constants, Km, for the study lakes were negatively related to sediment OM 

content (Table 6). The fitted Vmax for high-deposition lakes was 
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comparable to that for low-deposition lakes, at 797 and 700 µmol N m-2 h-

1, respectively. When the Michaelis-Menten model was fit to the data for 

each deposition region separately, the half-saturation (or NO3
--affinity) 

constant for high-deposition lakes was nearly half that of low-deposition 

lakes (448 and 207 µmol L-1 NO3
-, respectively); however, these values 

were not statistically different (P > 0.05).  

Denitrification in sediments 

  In slurries amended with lake water, denitrification (N2 + N2O) was 

undetectable in nine of the sampled lakes (Table 5). For all lakes, the 

mean denitrification rate was 4.4 µmol N m-2 h-1 (+ 3.3 SE). Where 

denitrification was observed, the mean rate was 8.4 µmol N m-2 h-1 (+ 6.3 

SE) with a range of 0.7 to 61.9 µmol N m-2 h-1. There was no difference in 

mean background rates of denitrification in lakes between high- and low-

deposition regions (P > 0.05). The concentration of dissolved NO3
- was 

the strongest predictor of denitrification (Table 6, Fig. 7). 

The mean rate of potential denitrification (in response to non-

limiting concentrations of oC, NO3
-, and P) was nearly 200 times greater 

than the mean rate of denitrification in assays amended with lake water 

(Table 5). There was no difference in potential denitrification potential 

between high- and low-deposition lakes, which averaged 924 µmol N m-2 

h-1 (+ 159 SE). The rate of potential denitrification across all lakes was 

negatively related to the sediment C:P ratio (Table 6).    
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Most probable number of denitrifying bacteria 

The abundances of sediment denitrifiers varied between lakes, but 

did not differ between deposition regions (P > 0.05, Table 7). The mean 

abundances of NO3
-- and NO2

--reducing bacteria at the maximum 

measured depths were 38 (+ 7 SE) x 104 and 15 (+ 5 SE) x 102 bacteria g-

1 dry sediment, respectively, across all lakes (Table 4). Regression 

analysis revealed that the MPN of NO3
--reducing microbes was negatively 

related to available light and positively related to sediment OM. The 

abundance of NO2
--reducing bacteria was negatively related with the 

sediment C:N ratio (Table 6). Intensive sampling in Little Molas Lake at 

0.5, 1, 2, and 6 m, yielded no statistically significant depth variation in 

terms of abundances of bacteria capable of NO3
-- and NO2

--reduction; 

however, the MPN generally increased from 0.5 to 6 m water depth (Table 

7).  

DISCUSSION 

Nitrogen removal in lakes 

In catchments subject to N loading, seasonal patterns of NO3
- 

export are an indicator of N saturation (Aber et al. 1998, Stoddard et al. 

1999). Nitrogen saturation begins with increased seasonal NO3
- 

concentrations in stream water exiting the watershed. Later stages occur 

when NO3
- concentrations are elevated in all seasons, with no decline 

during the growing season, and where watershed NO3
- exports exceed 
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inputs. Symptoms of advanced stages of N saturation have been 

observed in catchments of the Colorado Rocky Mountains and 

atmospheric N deposition have been linked with elevated NO3
- 

concentrations in high-elevation lakes and streams (Williams et al. 1996, 

Burns 2004). Recent models have found that lakes are significant sinks for 

N, removing an average of 0.3 mol N m-2 y-1 through denitrification and 

burial in the sediment (Harrison et al. 2009). Here, we investigated the role 

that lakes play in removing N from high-elevation ecosystems. We 

measured potential denitrification and conducted dose-response 

experiments to investigate the upper capacity for N removal by 

denitrification.  

We found that sediments possess considerable capacity for 

denitrification regardless of the atmospheric N loading rate (Table 5). 

Potential denitrification did not differ between regions, consistent with 

experiments conducted with sediments of Norwegian lakes across a 

gradient of deposition (McCrackin and Elser 2010). The mean potential 

denitrification rate for Colorado lakes was three times that of Norwegian 

lakes. The difference between studies could be due to the underlying 

denitrifying communities because in Norway the N deposition rate is two to 

three times greater than that in Colorado (Tørseth and Semb 1998). 

Further, the potential rate of denitrification was comparable to the 

maximum denitrification rate (in response to additions of 5000 µmol  



 

 63 

L-1 NO3
-), and both were up to three orders of magnitude greater than 

denitrification measured in response to additions of lake water. This 

observation and the large NO3
- half-saturation concentration (Km,), which 

was ~35 times greater than current mean lake water NO3
- concentrations, 

suggest that denitrifying communities are functioning well below their 

maximum potential rates. These results are not strictly comparable 

because of temperature differences between the incubations but are 

consistent with evidence that NO3
- often limits denitrification in sediments 

(Seitzinger et al. 2006, Mulholland et al. 2008). Denitrification in sediments 

of highly N-loaded lakes may be more likely to saturate than the 

unproductive lakes that we sampled. Thus, it would be interesting to 

compare our findings to denitrification kinetics in sediments of lakes in 

agricultural landscapes. 

The NO3
--affinity constant for all lakes in the dose-response 

experiment, 298 µmol L-1 NO3
-, is comparable to values reported in the 

literature for soils and sediments but greater than that measured in pure 

cultures (Table 8, Oren and Blackburn 1979, Betlach and Tiedje 1981, Yu 

et al. 2006). In pure cultures, generally low values for Km reflect the 

absence of diffusion barriers between NO3
- and active sites of enzymes. 

Results from pure cultures might also reflect a bias of isolated taxa that 

are selected for fast growth and high affinity for NO3
- (Laverman et al. 

2006). Half-saturation constants < 50 µmol L-1 have also been reported for 
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lake and coastal marine sediments, although these low values might 

reflect enhanced microbial access to NO3
- and oC resulting from stirring or 

shaking sediment slurries during incubation (Koike et al. 1978, Oremland 

et al. 1984). Silvennoinen et al. (2008) reported Km of 20 µmol L-1 using 

sediment cores from a eutrophied river. In this case, the low half-

saturation concentration was attributed to a bacterial community with a 

high affinity for NO3
-. Thus, differences in Km values between pure cultures 

and environmental samples likely reflect both the effects of the physical 

structure of sediment or soil as a diffusional barrier and the innate affinity 

of microorganisms for NO3
-. The magnitude of the Km that we measured 

suggests that, while our slurry method disturbed the sediment structure at 

the onset of the experiment, the lack of shaking during the course of the 

incubation may result in conditions similar to that of intact sediment. 

Alternatively, the denitrifiers in sediments of lakes we sampled may have 

lower affinity for NO3
- compared to those in other ecosystems.   

In Colorado lakes and elsewhere, N deposition has reduced pH, 

changed the composition and biomass of the diatom community, altered 

the stoichiometric ratios of N to P in the water column, and shifted 

phytoplankton nutrient limitation (Baron et al. 2000, Elser et al. 2009). 

Future population growth in metropolitan Denver or agricultural 

intensification in eastern Colorado will result in increased N inputs to the 

Front Range of the Colorado Rocky Mountains and will further stress 
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ecosystems that currently show signs of N saturation (Burns 2004). 

Catchment storage and removal of inorganic N is between 21% and 97%, 

varying largely due to differences in forest and soil cover (Sickman et al. 

2002), although lakes weren’t specifically considered. Musselman and 

Slauson (2004) surveyed high-elevation lakes in Colorado and found that 

NO3
- concentrations decreased between lake inlets and outlets. While the 

sediments of the lakes we sampled show considerable denitrification 

capacity, the actual role that sediments play in N removal depends on lake 

depth and water residence time in addition to the actual denitrification rate 

(Kelly et al. 1987). Lake N removal has been observed to correlate 

negatively with lake depth and positively with water residence time (Dillon 

and Molot 1990, Molot and Dillon 1993). The denitrification rate we 

measured in high-deposition lakes was at the low end of that reported for 

other lakes (Pina-Ochoa and Alvarez-Cobelas 2006), although such rates 

may not be comparable because of differences in N inputs or methods. 

Still, these data permit us to make a preliminary estimate of the magnitude 

of N removal via denitrification.  

We estimated the fraction of N that may be removed in the sampled 

lakes based on the background denitrification rate as in Harrison et al. 

(2009) as RN = 1 – exp(-Vf / H), where Vf is the piston velocity for N (m y-1) 

in lake sediments and H is the areal water discharge from the lake, 

hydraulic load (m y-1). Using the method of Kelly et al. (1987), the piston 



 

 66 

velocity was estimated as Vf = denitrification rate/[NO3
-], with the 

measured denitrification rate and NO3
- concentration for each lake. The 

mean piston velocity was 2.1 m y-1, with a range of 0 – 23.8 m y-1, 

comparable to values reported by Harrison and colleagues (2009). The 

hydraulic load was estimated as in Wollheim and Vorosmarty (2006) as H 

= z/τ, where the mean lake depth, z (m), was estimated as one-third of the 

maximum depth of each lake and the water residence time, τ (y), was 

assumed to be 0.083 (1 month) or 1 y, which is in the range of residence 

times reported for lakes in areas where we sampled.  

Nitrate concentrations in lakes in the Colorado Rocky Mountains 

vary seasonally due to the timing of snowmelt and biological assimilation 

(Campbell et al. 2002). In the Loch Vale watershed, stream water NO3
- 

concentrations have been found to vary between 10 and 35 µmol L-1 

seasonally (Baron and Campbell 1997). Concentrations tend to peak in 

lake May, decrease during June and July, and increase in the fall. 

Assuming lakes follow a similar pattern, the timing of our sampling likely 

missed peak NO3
- concentrations. We expect the denitrification rate would 

increase with additional NO3
-; thus, variability in concentrations contributes 

to uncertainty in our estimates. Indeed, temporal variation in sediment 

denitrification has been attributed to seasonal changes in dissolved NO3
- 

concentrations (Hasegawa and Okino 2004). Consequently, we calculated 
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a 95% confidence interval (CI) of N removal based on the standard error 

of mean RN to reflect uncertainty and variability in these parameters.  

In the case of extremely short (1 month) residence times, we 

estimate that the sampled lakes could remove an average 11% (4 – 25% 

CI) of N inputs across all lakes, 18% (10 – 38% CI) for high-deposition 

lakes and < 1% (0 – 2% CI) for low-deposition lakes. For a 1 y residence 

time, denitrification could remove an average 26% (9 – 43% CI) for all 

lakes, 41% (10 – 72% CI) for high- deposition lakes, and 9% (0 – 18% CI) 

for low-deposition lakes. There are many uncertainties in scaling from 

laboratory measurements of denitrification to whole-lake estimates of N 

removal. To refine these estimates, existing models of N removal (e.g. 

Harrison et al. 2009) could be modified and downscaled. Further work is 

needed to understand the in situ denitrification rate and how it varies 

within and between lakes, and the seasonality of NO3
- concentrations. 

Obtaining such data from remote, high-elevation lakes is challenging. 

While our estimates are approximate, they suggest that denitrification in 

lake sediments can be an important biogeochemical sink for N in lakes 

receiving atmospheric deposition.  

Atmospheric N deposition is the dominant source of new N to 

watersheds in the Front Range of the Colorado Rocky Mountains 

(Sickman et al. 2002). The source of NO3
- to sediment denitrifiers, 

however, is not clear. In Colorado, NO3
- and NH4

+ are 61% and 39%, 



 

 68 

respectively, of N deposition (Baron et al. 2000). Thus, deposition can 

deliver NO3
- to the lake directly or through watershed runoff, and indirectly 

through nitrification resulting from elevated NH4
+ inputs. Indeed, isotopic 

studies have found that nitrification in talus slopes is a significant source of 

NO3
- to streams in the Colorado Front Range (Campbell et al. 2002, 

Nanus et al. 2008). In lake sediments, the extent to which nitrification and 

denitrification are coupled depends on concentrations of NO3
- in bottom 

waters (Dong et al. 2000, Seitzinger et al. 2006). Where NO3
- 

concentrations are < 10 µM, over 90% of denitrification may tightly 

coupled with nitrification. Where NO3
- concentrations are > 10 µM, such as 

in high-deposition lakes, sedimentary denitrification may predominantly 

consume NO3
- that diffuses from the water column.  

Due to their underlying geology, lakes in the high-deposition region 

are sensitive to atmospheric deposition (Clow et al. 2003, Nanus et al. 

2009). Increased pH and decreased acid neutralizing capacity have been 

observed in surface water of lakes in the Colorado Front Range. Indeed, 

Elser and colleagues (2009) sampled lakes in the same regions and 

reported that pH averaged 6.5 in high-deposition lakes and 7.1 in low-

deposition lakes. The optimum pH range for denitrification is between 7 

and 8 and there is generally a positive relationship between pH and 

denitrification rates (Knowles 1982). Interestingly, whole-lake studies 

found that experimental acidification enhanced, not repressed, 
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denitrification rates (Rudd et al. 1988). Accordingly, it is not clear whether 

reduced pH in high-deposition lakes had a positive or negative effect on 

our denitrification measurements.   

Another factor that could have influenced our results is thermal 

stratification. Lakes in the low deposition region tended to be thermally 

stratified, while lakes in the high-deposition region were not, likely 

because lakes were deeper in the former region. Stratification may have 

reduced sedimentation rates by trapping particles above the thermocline 

(Håkanson and Jansson 2002). Previous work found that sediment 

denitrification was not limited by oC so it is unlikely that stratification 

influenced the MPN results or denitrification measured in response to the 

addition of lake water (McCrackin and Elser 2010). Additionally, all of the 

sampled lakes are unproductive and we found no evidence of anoxia in 

the hypolimnion. Lastly, we only collected water from above the 

sediments, so we do not know how concentrations of NO3
- and DOC differ 

between the surface and at depth.  

Abundance and distribution of denitrifiers 

Denitrification is a difficult process to measure because of 

limitations in current methods and because of inherent temporal and 

spatial variability in the process itself (Groffman et al. 2006). Aquatic 

ecosystems, such as lakes, are considered “hot spots” for denitrification 

compared to terrestrial ecosystems because of the role of water in 
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stimulating favorable conditions for denitrification. Difficulties in measuring 

denitrification are compounded in lakes because of the challenge of 

collecting intact sediments for laboratory study or of making in situ 

measurements of sediment processes in deep water. Consequently, very 

little is known about how microorganisms and biogeochemical processes 

are distributed between lakes or across sediments within a lake.  

Despite chronic differences in N inputs, we found no difference in 

the abundance of denitrifying bacteria between high- and low-deposition 

lakes. The Front Range of the Colorado Rocky Mountains receives < 8 kg 

N ha-1 y-1 atmospherically. This rate is less than that the eastern US or 

Europe, which are as high as 11- 20 kg N ha-1 y-1 (Tørseth and Semb 

1998, Bergstrom and Jansson 2006), but this level of N loading has 

produced measurable changes in high-elevation ecosystems in Colorado. 

The ratio of C:N in foliage of old-growth forests has decreased and soil N 

content and N mineralization rates have increased (Baron et al. 2000). 

Perhaps the current N deposition rate in the Front Range is insufficient to 

alter the sediment microbial abundance and function as has been 

observed in soils. For example, both fungal and bacterial biomass 

decreased 20% in hardwood forest soils receiving more than double (20 

kg N ha-1 y-1) the N inputs of the Front Range (DeForest et al. 2004). 

Interestingly, a recent meta-analysis of N fertilization studies found that 

bacterial biomass did not change significantly in response to N additions, 
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although N-cycling bacteria were not specifically considered (Treseder 

2008). Alternatively, sediments may insulate bacterial communities from 

adverse effects of N deposition that have been observed in the water 

column. 

In terms of within-lake spatial variability, we expected the MPN of 

denitrifers to be greater in profundal compared to shallow sediments. 

Indeed, we found that the light extinction coefficient was a co-predictor of 

the MPN of NO3
- -reducers, suggesting available light can influence 

bacterial abundance. Results of our more intensive sampling in Little 

Molas Lake are consistent with this relationship, in that the MPN of NO3
--

reducing bacteria generally increased moving from 0.5 to 6 m. In addition 

to less competition for resources by periphyton, bacteria in deep 

sediments also experience a more stable thermal regime and are not 

subject to seasonal changes, such as freeze-thaw cycles, as are microbes 

in shallow sediments (Neilson et al. 2001, Sharma et al. 2006). 

Furthermore, abundances of NO3
-- and NO2

--reducing bacteria were 

related to sediment resources. This result, taken together with the 

relationship to available light, suggests that these bacteria are more 

strongly influenced by environmental conditions than by anthropogenic N 

inputs.  

We found no relationship between the abundance of denitrifying 

bacteria and denitrification process rates across the lakes we sampled. 
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Rather, the denitrification rate was best predicted by water NO3
- 

concentrations (and not the MPN of NO3
-- or NO2

--reducers) and MPN’s 

were related to lake and sediment characteristics. Wallenstein and 

colleagues (2006b) proposed that ephemeral conditions such as 

temperature and concentrations of oxygen and NO3
- influence the 

instantaneous denitrification rate, while long-term environmental 

conditions influence the composition of denitrifying community. Indeed, 

this proposal is consistent with our observations. While we expected the 

abundances of denitrifiers to increase with depth, the littoral areas of lakes 

have been found to contribute disproportionately to denitrification and 

organic matter mineralization compared to profundal areas (Ahlgren et al. 

1994, den Heyer and Kalff 1998, Saunders and Kalff 2001a). In addition, a 

study of Lake Constance (bordered by Austria, Switzerland, and 

Germany) found that bacterial biomass was 2 to 5 times greater in 

profundal sediments but bacterial metabolic activities were an order of 

magnitude greater in littoral sediments (Sala and Gude 2006). In these 

studies, differences in responses rates were attributed warmer 

temperatures higher quality substrates in shallow areas. Thus, perhaps in 

lake sediments, connecting bacterial biomass and community structure to 

denitrification process rates will not lead to improved mechanistic models 

of denitrification. Rather, identification of the environmental factors that 
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most influence sedimentary denitrification (e.g. temperature, oxygen,  

NO3
-) could be a focus of future research efforts.  

Most probable number techniques measure the growth of culturable 

bacteria and, thus, underestimate abundances of in situ populations. Also, 

certain members of the bacterial community may respond 

disproportionately to the incubation conditions. Thus, the application of 

molecular techniques would be useful to further characterize the 

abundance and composition of denitrifiers and investigate possible 

deposition-related effects. We compared our results to those determined 

with similar methods and found that the abundances of lake sediment 

denitrifiers were within the ranges reported for desert, riparian, and prairie 

ecosystems, but less than that for grazed and agricultural influenced soils 

(Table 9). The MPN’s may not be directly comparable because of 

differences in incubation conditions. It is notable, however, that despite 

significant differences in environmental conditions across ecosystems 

(such as the quality of oC and the temperature and moisture regimes) the 

abundances of denitrifiers are fairly comparable. Unlike nitrification, which 

is limited to few taxa, denitrification can be performed by biochemically 

diverse microorganisms (Knowles 1982). Indeed, denitrifiers have flexible 

metabolic pathways and use electron acceptors other than N oxides, 

perhaps allowing them to develop similarly sized communities in a wide 

range of ecosystems.  
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In summary, our data suggest that atmospheric N deposition has 

not altered the function of denitrifying microbial communities or the 

abundance of NO3
-- and NO2

--reducing bacteria. While lakes in the 

Colorado Front Range receive less atmospheric N deposition than those 

in other areas, they may be more sensitive to the effects of deposition 

because of exposed bedrock and the lack of vegetation (Clow et al. 2003). 

The effects of N deposition appear more pronounced in the water column 

of lakes compared to sediments, when one considers such phenomena as 

shifts in the community structure, abundance, and nutrient limitation of 

phytoplankton, as well as changes in lake water chemistry (Wolfe et al. 

2001, Elser et al. 2009, Hessen et al. 2009). Further, lakes might play an 

important role in removing N from ecosystems via denitrification in 

sediments. Our findings suggest that even if atmospheric N deposition 

rates increase substantially, lake sediments possess significant capacity 

to remove much of this anthropogenic N.  
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Table 6: Comparison of multiple-linear regression models for sediment 

fluxes and the abundances of denitrifiers. R2 denotes goodness-of-fit 

values adjusted for the number of parameters in the model.  

Response 
variable 

Predictor 
variables R2 P Equation 

Km 
Sediment 
OM 0.26 0.02 

Log Km = -3.15 
arcsine OM + 3.61 

Denitrification 
rate  

µmol N m-2 h-1 [NO3
-] 0.22 0.04 

Log denitrification rate 
= 0.42 * log [NO3

-] + 
0.07 

aDenitrification 
rate  

µmol N m-2 h-1 [NO3
-] 0.48 0.03 

Log denitrification rate 
= 1.67* log [NO3

-] – 
1.07 

Potential 
denitrification 
rate  
µmol N kg h-1 

Sediment 
C:P 0.28 0.03 

Log potential 
denitrification rate = - 
1.12 * log sediment 
C:P + 4.84 

MPN NO2
- 

reducers 
Sediment 
C:N 0.24 0.04 

Log MPN denitrifiers = 
- 7.46 log sediment 
C:N + 10.87 

MPN NO3
- 

reducers 

bPAR, 
sediment 
OM 0.28 0.047 

Log MPN NO3
- 

reducers = 3.80 * log 
PAR + 2.56 arcsine 
OM + 3.78  

 

a Excludes 9 lakes with no measureable denitrification flux 

bPAR is the light extinction coefficient, k (Eq. 1). 
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Table 7. Average (and standard error, s.e.) values of MPN of NO3
-- and 

NO2
--reducing bacteria for the study lakes.  

 
  Most Probable Number 

High-
deposition 

Lakes 
Sample 
depth PAR 

Nitrate 
reducers  
g-1 (x104) 

Nitrite 
reducers  
g-1 (x102) 

Brainard 3 0.71 90.9 19.7 
Dream 4 0.59 3.0 6.8 
GL1 9 0.82 18.9 0.3 
GL3 10 0.81 75.7 24.7 
Isabelle 10 1.25 65.7 5.8 
Long 3 0.89 38.1 30.4 
Mitchell 1.5 0.22 30.4 71.1 
Nymph 1 0.18 5.1 1.1 
Red Rock 1 0.21 39.5 0.3 
 Mean  40.8 17.8 
 s.e.  10.9 8.1 
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Table 7, continued. Results of statistical test indicating whether there was 

a significant difference between deposition regions. Non-significant results 

indicated by n.s. 

  Most Probable Number 

Low-deposition 
Lakes 

Sample 
depth PAR 

Nitrate 
reducers  
g-1 (x104) 

Nitrite 
reducers  
g-1 (x102) 

Andrews 0.5 0.11 2.2 0.8 
Andrews 6 1.33 65.2 5.7 
Clear  10 0.72 2.9 4.1 
Dollar 5 1.17 40.4 0.5 
Highland Mary 10 1.15 4.0 6.0 
Irwin 5 0.65 15.2 5.5 
Little Molas 0.5 0.12 5.5 5.2 
Little Molas 1 0.16 5.4 5.4 
Little Molas 2 0.26 7.5 9.8 
Little Molas 6 0.81 65.9 3.1 
Lost 10 0.84 57.0 24.2 
Potato  10 0.90 32.0 46.2 
 mean1  35.3 11.9 
 s. e.1  9.9 5.9 

high vs. low deposition  high = low high = low 
 P  n.s. n.s. 
     
1Mean and standard error values and statistical analyses do 

not include samples from Andrews lake 0.5m depth and Little 

Molas lake depths 0.5, 1, and 2 m. 
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Table 8. Comparison of half-saturation constants for denitrification for 

aquatic ecosystems. 

  

Location 

Incubation 
Temperature 

ºC Method 
Km  

(µmol N) Reference 
20 Colorado 
lakes, CO, 
USA 17-20 

Sediment 
slurry, 
static 298 This study 

Temmesjoki 
River, Finland 15 

Intact 
sediment 
core 20 

Silvennoinen 
et al. 2008 

Barataria 
Basin Estuary, 
LA, USA 26-29 

in situ 
chamber 433 

Yu et al. 
2006 

Scheldt 
Estuary, 
Netherlands 
and Belgium 20 

Sediment 
slurry, 
shaken 200-400 

Laverman et 
al. 2006 

San Francisco 
Bay, CA, USA 20 

Sediment 
slurry, 
stirred 50 

Oremland at 
al. 1984 

N/A 30 

Pure 
culture, 
stirred <15 

Betlach and 
Tiedje 1981 

Kysing Fjord, 
Denmark 12 

Sediment 
slurry 344 

Oren and 
Blackburn 
1979 

Tokyo Bay, 
Japan 16 

Sediment 
slurry, 
stirred 27 

Koike et. al 
1978 
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Table 9. Cross-ecosystem comparison of MPN of NO3
-- and NO2

--reducing 

bacteria. Instances where authors did not report separate abundances of  

NO3
-- and NO2

--reducing bacteria are shown as denitrifiers.  

 

a converted from areal to dry sediment mass basis assuming bulk density  

of 0.14 g dry sediment cm-3. 

  Most probable number  
(cells g-1 dry sediment or soil) 

Reference Location Nitrate 
reducers 

Nitrite 
reducers 

Denitrifiers 

This study Lake 
sediment, 
USA 

0.2–9.1 x 
105 

1–7.1 x 103  

McCrackin 
et al., 2008 

Desert soil, 
USA 

0.3–1.5 x 
105 

2–2.8 x 102  

Johnson et 
al., 2007 

Desert crust, 
USA 

0.1–1.8 x 
104 

1–7 x 102  

McCarty et 
al., 2007 

Riparian soil, 
USA 

  1–8 x 105 

Laverman 
et al., 2006 

Eutrophic 
lake 
sediment, 
Netherlands 

  a3.6 x 106 
– 3.6 x 108 

Cannavo et 
al., 2002 

Agricultural- 
influenced 
soils, France 

4–6.7 x 
106 

2.4– 
4.2 x 104 

 

Cannavo et 
al., 2004 

Agricultural- 
influenced 
soils, France 

 2.3 x 106  

Patra et al., 
2005 

Ungrazed 
grassland, 
France 

  1.5– 
2.5 x 106 

Florinsky et 
al., 2004 

Prairie soil, 
Canada 

  1.5– 
23.9 x 104 

Sotomayor 
and Rice, 
1996  

Prairie soil, 
USA 

  1 x 102 –  
1 x 105 
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Figure 6. Results of dose-response experiments. (A) Points are the mean 

denitrification rates (+ SE). Lines are the predicted denitrification rate 

using Eq. 1. (B) Points are the mean denitrification rate for all sampled 

lakes (+ SE). The solid line shows the predicted denitrification rate using 

Eq. 1, where Vmax is 765 µmol N m-2 h-1 and Km is 293 µmol L-1 NO3
-.  

A 
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Figure 7. Relationship between denitrification and NO3
- for lakes in the 

high- (solid circles, n = 10 lakes) and low-deposition (open circles, n = 10 

lakes) regions (R2 = 0.22, P = 0.04). 
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CHAPTER 4 

Temporal Dynamics of Denitrification in Lake Sediments (Norway) 

ABSTRACT 

 Lakes are important sinks for nitrogen (N) in the landscape via 

biological assimilation, sedimentation, and denitrification. Of these 

mechanisms, microbially mediated denitrification in sediments is 

considered the most important pathway by which N is removed from lakes. 

We investigated the dynamics of gases produced and consumed during 

denitrification to determine whether chronic N loading has affected the 

functional performance of denitrifying communities. Sediments were 

collected from 29 lakes that receive either high (10-20 kg N ha-1 y-1) or low 

(<4 kg N ha-1 y-1) levels of atmospheric N deposition in three regions of 

southern Norway and in the Arctic archipelago of Svalbard. Denitrification 

dynamics were investigated by incubation in an automated system that 

monitors nitric oxide (NO), nitrous oxide (N2O), di-nitrogen (N2), oxygen 

(O2), and carbon dioxide (CO2) production. There were no differences 

between deposition regions in terms of net cumulative production of NO, 

N2O, and N2 and total N denitrified after incubation for 64 h. There were 

differences in responses between lake sediments, suggesting that certain 

denitrifying communities are inherently more efficient than others in 

converting NO3
- to N2, perhaps due to community composition.   



 

 98 

INTRODUCTION 

 Lakes are important sinks for N in the landscape. In areas that 

receive N from anthropogenic sources, lakes perform an important 

ecosystem service by reducing N loading to downstream ecosystems. A 

recently published model estimates that lakes and reservoirs remove 

nearly 20 Tg N y-1 from watersheds globally, which represents ~30% of 

estimated inputs to surface waters (Harrison et al. 2009). Potential fates of 

N are biological assimilation, burial in sediments, and denitrification (the 

microbial conversion of NO3
- to N2 gas). Of these mechanisms, 

denitrification is considered to be the most significant and it is the only 

permanent sink for NO3
- (Saunders and Kalff 2001). Consequently, it is 

important to understand the factors that influence denitrification.   

 In lakes, denitrification occurs primarily in sediments where 

concentrations of oxygen are low and there is available organic carbon 

(oC) and NO3
-. Obligate intermediate products of denitrification are nitrite 

(NO2
-), NO, and N2O. The kinetics of existing enzymes and the synthesis 

of new reductase enzymes influence the transient concentrations of NO 

and N2O that accumulate during denitrification (Betlach and Tiedje 1981). 

Production of intermediates is also influenced by factors such as the 

composition of the denitrifying community, pH, or concentrations of 

oxygen, NO3
-, NO2

-, or NO (Firestone et al. 1979, Firestone et al. 1980, 

Cavigelli and Robertson 2000, Morley et al. 2008). 
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 Biogeochemically and taxonomically diverse microorganisms are 

capable of using N oxides as electron acceptors (Knowles 1982). 

Differences in the composition of denitrifying communities have been 

observed along environmental gradients of salinity, NO3
-, and pH (Santoro 

et al. 2006, Desnues et al. 2007). Thus, there is potential for sediment 

microbial communities to differ between lakes that receive either high or 

low levels of atmospheric nitrogen (N) deposition. Even in relatively 

remote areas, catchments are subject to anthropogenic influences from N 

compounds that are transported long distance in the atmosphere (Wolfe et 

al. 2006). Chronic N loading often results in acidification of surface water, 

shifts in dissolved nutrient concentrations and phytoplankton community 

composition, and altered food web dynamics (Bergstrom et al. 2005, Elser 

et al. 2009, Hessen et al. 2009). The ecological effects of N deposition on 

sediment processes are not well understood. 

 The objectives of this study were to contrast the functional 

performance of “intact” bacterial communities in lake sediments from 

different N loading regimes by comparing the dynamics of NO, N2O, and 

N2 under controlled laboratory conditions. A variety of microorganisms are 

capable of reducing NO3
- to NO2

- during respiration but fewer taxa have 

the ability to further reduce NO2
- and other intermediates of denitrification 

(Knowles 1982). In addition, comparative genomics has revealed that 

there are often taxon-specific processes regulating each step of the 
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denitrification process (Rodionov et al. 2005). Hence, differences in 

community composition could result in different patterns of NO and N2O 

production and reduction during denitrification. Sediments were collected 

from lakes across a gradient of atmospheric N deposition in Norway and 

Svalbard. Previous studies have found elevated denitrification in 

sediments of lakes that receive high levels of N deposition, but no 

differences in the potential denitrification rate (in response to non-limiting 

concentrations of organic carbon and NO3
-) or in the abundance of 

denitrifying bacteria (McCrackin and Elser In revision). These studies 

involved bulk, end-point determinations of gas fluxes and thus may not 

detect differences between communities in terms of denitrification 

dynamics that could be revealed through the high-resolution monitoring of 

gases produced during denitrification that are presented here.  

METHODS 

Study Sites 

 During summer 2009, we sampled lakes located at the high and low 

ends of a gradient of N deposition that spans over 400 km across 

southern Norway. Norway receives atmospheric pollution from industrial 

regions of Europe and total (wet and dry) N deposition rates are 10-20 kg 

N ha-1 y-1 in southwest regions of the country, decreasing to less than 4 kg 

N ha-1 y-1 in east-central areas (Tørseth and Semb 1998, Klein and 

Benedictow 2006). Lakes near Egersund (58.35° latitude, 6.04° longitude), 
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in southwestern Norway, are considered to be in the high-deposition 

region, while lakes near Lillehammer (61.07° latitude, 10.27° longitude) 

and Atna (61.52° latitude, 10.27° longitude) are considered to be in the 

low-deposition region. In addition, we sampled two non-glacial lakes near 

Ny-Ålesund (78.93° latitude, 11.95 ° longitude) on the Svalbard 

archipelago. While there is evidence that some atmospheric N deposition 

reaches Arctic areas including Svalbard, we considered this area to be at 

the extreme low end of the N-deposition gradient (Holmgren et al. 2010). 

 Lakes in southern Norway occupy watersheds that are undeveloped 

with the exception of sheep grazing and occasional seasonal cottages. 

Exposed rock, grass, and scattered trees, including Norway spruce (Picea 

abies), characterized the catchments. At Svalbard, the catchments were 

predominantly occupied by talus; sparse vegetation included mosses and 

lichens. In all areas, the sampled lakes were generally small and deep, 

with surface area < 20 ha and maximum depth greater > 5 m (Fig. 8). 

Field sampling and sample analyses 

 Each lake was sampled once using an inflatable boat (Table 10). The 

depth of the lake was measured with a hand-held echo sounder. Water 

temperature and O2 concentration at the sampling depth were measured 

with a YSI model 85 temperature-oxygen probe (YSI, Yellow Springs, 

Ohio, USA). Surface sediments were collected using a LaMotte dredge 

from a water depth of approximately 10 m or at the maximum lake depth if 
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the lake was < 10 m. Sediments were stored in plastic bags at 4ºC in dark 

conditions until analysis. Total carbon (C) and N contents of dried 

sediments were measured with a Flash EA 1112 elemental analyzer 

(Thermo Finnigan, Milan, Italy). Total phosphorus (P) content of 

combusted sediments was measured colorimetrically following extraction 

with 0.5 M hydrochloric acid using the acid-molybdate technique (Lukkari 

et al. 2007). Sediment water content was determined as mass loss after 

drying subsamples at 105°C for 48 h and organic matter (OM) content was 

determined as mass loss on ignition at 550°C for 4 h.  

 Water was collected from just above the sediments using a 

submersible pump. All lake water samples were filtered with Pall A/E glass 

fiber filters and frozen until analysis of dissolved nutrient species. Water 

was analyzed for DOC on a Shimadzu TOC 5000 (Shimadzu Corporation, 

Kyoto, Japan). Nitrate plus nitrite (hereafter: NO3
-) concentration was 

determined on a Metrohm 761 Compact ion chromatograph (Metrohm, 

Riverview, Florida, USA).  

Incubation procedure 

 For each lake, 10 g of sediment were combined with 40 mL of 

incubation media and a Teflon magnetic stir bar in 120-mL serum bottles. 

The incubation medium was composed of 2 mM NO3
- (as KNO3) and 5 

mM glutamate that was adjusted to a pH of 7.1 with 0.1 M sodium 

hydroxide. Bottles were capped with butyl-rubber septa and an aluminum 
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crimp seal. To remove background gases in the sediment slurry and 

headspace, bottles were evacuated and filled with helium (He) for five 

cycles while constantly stirred. The bottles were incubated in an 

automated system described in detail by Molstad et al. (2007). Briefly, 

incubation bottles were held in a water bath at a temperature of 12°C and 

stirred continuously throughout the experiment. Headspace gas was 

collected by an autosampler attached to a peristaltic pump and analyzed 

by an Agilent 7890A gas chromatograph (Agilent Technologies, Santa 

Clara, CA, USA) with electron-capture and thermal-conductivity detectors 

to determine concentrations of O2, CO2, N2O, and N2. A Teledyne 200E 

Chemiluminesence NO/NOx analyzer (Teledyne Technologies, Thousand 

Oaks, CA, USA) was used to determine the NO concentration. Each bottle 

was sampled 20 times over the course of 64-h incubations. Gas removed 

for sampling was replaced with an equal volume of He. While the 

replacement of sampled headspace gas with He maintained a constant 

pressure in the bottles, this procedure resulted in a ~3% dilution of 

headspace gas. To correct for dilution, the measured gas concentrations 

were adjusted based on bottles that contained only incubation medium in 

a He-filled headspace, with a spike of neon gas. Neon is inert and found in 

extremely low concentrations in ambient air, making it an appropriate 

indicator of sampling-related dilution. Corrections for the leakage of N2 

and O2 though tubing into the bottle headspace were determined based 
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on the accumulation of these gases in bottles that contained incubation 

medium in a He-filled headspace. Published gas solubility constants for 

O2, CO2, NO, N2O, and N2 were used to determine the total amount of gas 

in the gas and liquid phases (Wilhelm et al. 1977).  

 Data analysis was conducted on total N denitrified, cumulative net 

production of NO and N2O, and cumulative production of N2 gas over the 

incubation period for each lake. Total N denitrified was determined as the 

sum of NO, N2O, and N2 (µmol) at the end of the incubation period (at 64 

h). The net cumulative production of each gas was determined by 

measuring the area below the curve using SigmaPlot 10 (Systat Software, 

Inc., San Jose, CA, USA). Total N denitrified and cumulative net NO, N2O, 

and N2 produced are reported on the basis of sediment dry mass. 

Statistics 

 We used a multivariate approach to identify relationships between 

the sampled lakes with respect to NO, N2O, and N2 production. Principal 

components analysis (PCA) was applied to the correlation matrix of total N 

denitrified and the net cumulative production of NO, N2O, and N2 gases. 

Components with an eigenvalue > 1 were retained in the analysis. In 

interpreting the factor pattern, a variable was said to load on a given 

component if the factor loading was > 0.5 or < -0.5. Multiple-linear 

regression analysis was used to determine the importance of DOC, NO3
- 
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and, sediment nutrients in predicting the principal components, the 

cumulative production of gases, and total N denitrified.  

 Student’s t-tests were used to compare water and sediment 

nutrients, principal components, cumulative production of gases, and total 

N denitrified between deposition regions. When necessary, response and 

predictor variables were transformed to improve normality. Statistical 

analyses were performed in JMP 8.0.1 (SAS Institute, Inc., Cary, NC, 

USA) with α = 0.05.  

RESULTS 

Sediment and water characteristics 

 Lakes were unproductive and the hypolimnion of each lake was oxic. 

Lake water temperatures averaged 12°C at the sediment collection depth 

from which sediments were collected, except for the Svalbard lakes, which 

were 4°C. Nitrate was significantly greater in high deposition lakes 

compared to low deposition lakes, at 11.4 (+ 1.7 SE) and 0.8 (+ 0.1 SE) 

µmol N L-1, respectively (Table 10). The concentration of DOC did not 

differ between deposition regions (P > 0.05) and averaged 138 (+ 9.7 SE) 

µmol L-1 across all lakes. There were also no differences in sediment OM, 

C, N, or P contents nor in ratios of C:N, C:P, or N:P between N deposition 

regions (P > 0.05, Table 10).  
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Denitrification dynamics 

 The production of NO, N2O, and N2 through the course of the 

incubations followed a similar pattern (Table 11). There was initial and 

generally sequential accumulation of NO and N2O, which decreased when 

these intermediates were reduced to N2, followed by accumulation of N2. 

Production of N2 typically occurred 20 - 24 h after the start of the 

incubation but was later than 40 h for several lakes. These patterns are 

illustrated for one lake, Skjævelandvatnet, in Fig. 9. There was one 

exception, Åsdalstjørna, which showed no N2 production during the 64-h 

incubation. Subsequent analysis of the headspace of the Åsdalstjørna 

incubation bottle at 240 h detected N2; however, the exact time that N2 

production commenced is not known.  

 The total amount of N denitrified varied widely among the lakes, 

between 1.3 and 138.6 µmol N g-1. Across all lakes the average total N 

denitrified was 22.8 µmol N (+ 6 SE). Neither total N denitrified nor the 

cumulative net production of NO, N2O, or N2 by sediments differed 

significantly between N deposition regions. Initial concentrations of O2 in 

the bottles that were not removed by He-flushing were 400-700 ppm, 

which remained stable or decreased during the incubation period. 

Exponential production of CO2 was observed in the incubations. 

Cumulative production of CO2 did not differ between sediments in either 

deposition region.   
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 Total N denitrified and cumulative N2O and N2 production were not 

related to water or sediment nutrients. Net cumulative NO production was 

positively related to sediment OM (R2 = 0.15, P = 0.04, log cumulative NO 

production = 3.92 * OM – 0.67). The PCA of NO, N2O, and N2 production 

and total N denitrified found that 77% of the variance of these variables 

was explained by two components (Table 12). Component 1 was 

associated with N2O production and total N denitrified and Component 2 

was associated with N2 and NO production. Neither component differed 

between the high and low N deposition regions (Table 11, Fig. 10). 

Regression analysis revealed that component 1 was not predicted by 

DOC, NO3
- or any of the measured sediment resources. Component 2 

was positively related to sediment OM (Fig. 11, R2 = 0.28, P = 0.01, 

Component 2 = 7.21 * OM – 1.26).  

DISCUSSION 

The dynamics of NO, N2O, and N2 production during denitrification 

are often explored in laboratory cultures or in cultures extracted from 

environmental samples. Here, we investigated denitrification dynamics of 

bacterial communities in sediments of 29 lakes that were located across a 

gradient of atmospheric N deposition. We controlled for O2, temperature, 

and initial pH and supplied NO3
- and oC in non-limiting concentrations to 

reveal differences in the performance of active sediment communities in 

terms of the production of N gases during denitrification. Principal 
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components analysis suggest that lake sediments differ in their efficiency 

of converting the intermediate products to N2 as well as in the total amount 

of N that is denitrified. Variables that differentiated the performance of the 

sampled sediment communities were cumulative net N2O production and 

total N denitrified, which loaded on component 1. There was no evidence 

that chronic N loading has altered the behavior of sediment denitrifying 

communities. 

Nitric oxide production was the only response variable that was 

related to any of the identified predictor variables. Sediment OM positively 

related to cumulative net NO production and principal component 2, which 

was related to NO production. There is evidence that humic compounds in 

lake sediments can reduce the activity of enzymes (Håkanson and 

Jansson 2002). Humic compounds have large surface areas and charged 

sites that attract and hold a variety of molecules (Brady and Weil 2002). 

Thus, even though the sediment slurries were constantly stirred, OM could 

have delayed diffusion NO to the active of sites of enzymes and allowed 

NO to accumulate. Indeed, Åsdalstjørna presented a unique regulation 

pattern with respect to NO across all lakes. Net cumulative NO production 

for this lake was 40 times greater than the average of the other lakes and 

at the end of the incubation, there was no detectable N2. We expected 

such elevated NO concentrations would have been toxic for the sediment 

microbial community (Zumft, 1997). At some point between 64 and 240 h, 
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however, NO was consumed and production of N2O and N2 occurred. The 

OM content of Åsdalstjørna sediments, 49% of dry mass, was greatest of 

all lakes, which averaged 16% (excluding Åsdalstjørna).  It is not clear, 

however, why such an effect of OM would occur for NO and not the other 

gases. These results illustrate the challenge of identifying the factors that 

are most influential for the functional performance of a microbial 

community.  

 Actual denitrification rates will not only depend on the underlying 

bacterial community, but also on environmental conditions such as 

temperature, pH, and concentrations of O2, oC, and NO3
- (Wallenstein et 

al. 2006). Here, we compared of responses between sediments by adding 

oC and NO3
- in excess of background concentrations. Thus, incubation 

conditions are not representative of in situ conditions. To this end, our 

assays reflect potential denitrification rather than actual denitrification 

rates. Prior work with sediments of many of the same lakes found that 

denitrification was significantly greater in lakes from high N deposition 

regions relative to low deposition regions due to elevated NO3
- 

concentrations in lake water (McCrackin and Elser 2010). Experimental 

evidence suggests that patterns of denitrification and N2O production and 

consumption are related to microbial community composition (Balser and 

Firestone 2005). For example, Cavigelli and Robertson (2000, 2001) 

found the denitrification rate and N2O flux to differ between two soil 
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microbial communities that differed taxonomically, even under controlled 

conditions. The application of molecular techniques would be useful to 

further characterize the denitrifying communities in order to relate 

taxonomic differences to functional performance.   

The sediments of lakes we sampled were likely oxic at the 

sediment-water interface because all of the sampled lakes are 

unproductive and we found no evidence of anoxia in the hypolimnion. 

Thus, the anoxic conditions that we created during the incubations were 

likely typical of deeper sediments where the bulk of denitrification occurs. 

Exponential CO2 production that we observed for the incubations suggests 

that there was growth of the microbial communities as a whole during the 

incubation (Colores et al. 1996). Within the sediment of each lake, 

however, we do not know whether all members of the microbial 

community responded consistently to the incubation conditions. It is also 

not known how the sediment microbial community varies within lakes.   

It is also interesting that the functional performance of sediments 

from the Arctic lakes, Blokkvatnet and Hajeren, are comparable to that of 

lakes in southern Norway. Denitrifying communities are structured by long-

term environmental conditions (Wallenstein et al. 2006), which differ 

between the regions we sampled. One obvious environmental difference 

is temperature, which averages -5.8°C at Ny Ålesund (Birks et al. 2004) 

and between 0.5 and 5°C in southern Norway (http://www.worldclim.org/). 
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The temperature regime affects the timing and duration of ice cover, and 

thus, the delivery of atmospheric N deposition to the lake as well as the 

length of the growing season, which is important in terms of the quantity 

and quality of oC available to heterotrophic bacteria (Wetzel 2001, Adrian 

et al. 2009). Perhaps the differences in climate between temperate-boreal 

biome in southern Norway and the Arctic are not great enough to result in 

changes in the functional performance of the community as, say, the 

contrast between tropical and Arctic biomes. Additionally, we only 

sampled two lakes in Svalbard, so the responses we observed may not be 

representative of other Arctic lakes.  

In summary, certain microbial assemblages may be inherently more 

effective than others in removing N via denitrification, regardless of 

background N inputs. Chronic N loading in the high-deposition region of 

Norway (10-20 kg N ha-1 y-1) does not appear to have altered the 

dynamics of denitrifying communities in lake sediments. This finding is 

important because atmospheric N loading is expected to increase 30% in 

Norway by 2100 and similar increases are expected in other areas 

depending on precipitation patterns (Galloway et al. 2004, Hole and 

Engardt 2008). Differences in denitrification performance between 

sediment communities could have important implications for mitigating the 

effects of N loading in lakes. Lakes with more efficient denitrifying 

communities could be strong sinks for N and reduce exports to 
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downstream ecosystems. We were not able to explicitly determine the 

factors that influence NO, N2O, and N2 dynamics and further investigation 

of the denitrifying community composition may allow us to better 

understand the observed denitrification dynamics.   
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Table 12. Principal components analysis of total N denitrified and net 

cumulative production of NO, N2O, and N2 gases. Values in bold are 

considered to load on the given component. 

 Component 1 Component 2 
Factor Loadings:   

N2 0.31 -0.66 
N2O 0.62 0.41 
NO 0.00 0.62 
Total N denitrified 0.72 -0.07 

Eigenvalue 1.87 1.15 

Fraction of variance 
explained 

46.7% 30.1% 
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Figure 8. Location of study sites in Norway. Fieldwork was conducted in 

two regions that encompass a gradient of atmospheric nitrogen 

deposition. Nitrogen deposition is greatest in extreme southwestern 

Norway, with rates of 10-20 kg N ha-1 y-1, and decreases to less than 4 kg 

N ha-1 y-1 in northeastern areas (Hole and Tørseth 2002). Circles denote 

lakes sampled in high-deposition areas and lakes sampled in low-

deposition areas are denoted by triangles. 
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Figure 8, continued. Location of study sites in Svalbard archipelago. 

Triangles denote sampled low-deposition lakes. 
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Figure 9. The accumulation of NO, N2O, and N2 for Skjævelandvatnet 

sediment over the course of the incubations. Gaseous production for the 

other lakes generally followed a similar pattern.  
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Figure 10. Principal components analysis of total N denitrified and the 

cumulative net production of NO, N2O, and N2 gases.  
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Figure 11. Relationship between principal component 2 and sediment OM 

content (R2 = 0.28, P = 0.01, Component 2 = 7.21 * OM – 1.26). 
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CHAPTER 5 

Pelagic and Sediment Bacterial Responses to Resource Enrichment in 

Lakes Receiving Atmospheric Nitrogen Deposition (Norway) 

ABSTRACT 

Reactive nitrogen (N) compounds are transported long distances by 

the atmosphere and deposited onto watersheds and lakes even in remote, 

unpopulated areas. Global rates of N deposition are expected to increase 

due to various human activities. The effects of such N inputs on bacteria in 

the water column and sediments of lakes are not well understood. We 

examined metabolic responses of pelagic and sediment bacteria to 

organic carbon (oC), nitrate (NO3), and phosphorus (P) enrichment. We 

also measured nitrification potential in sediments. Sampled lakes were 

located in southern Norway and received either high (10-20 kg N ha-1 y-1) 

or low (<4 kg N ha-1 y-1) inputs of N deposition. The surface water of high-

deposition lakes had greater concentrations of NO3
- and total dissolved N 

(TDN) than low-deposition lakes, while the reverse was true for dissolved 

organic carbon (DOC). Total dissolved phosphorus (TDP) did not differ 

between regions. Results of 2-day bioassays indicated that growth of 

bacterioplankton was co-limited by oC, N, P, regardless of N deposition 

rate. For sediments, there were no differences in organic matter (OM) and 

total carbon (C), N, and P contents between deposition regions. Sediment 

respiration responded most strongly to additions of oC, while denitrification 
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responded to NO3
- additions. These responses did not differ between 

regions. Nitrification potential was significantly greater high-deposition 

lakes. Our observation of enhanced nitrification by autotrophic microbes, 

however, is of particular concern as it may contribute to accumulation of 

NO3
- in surface waters. 

INTRODUCTION 

Human activities, such as agriculture and fossil fuel combustion, 

have dramatically altered the balance of nitrogen (N) in the environment 

and resulted in shifts in the trophic status of aquatic ecosystems (Conley 

et al. 2009). Reactive N species (such as NO3
- and ammonium, NH4

+) are 

of particular concern as they may be transported by the atmosphere and 

deposited to lakes and watersheds in unpopulated areas. Indeed, N 

deposition to lakes has been found to alter water chemistry and algal 

community composition high-elevation and Arctic lakes (Baron et al. 2000, 

Wolfe et al. 2006). The effects of N deposition on bacteria in lakes are not 

well documented. Nitrogen deposition may alter bacterial processes in 

lakes and potentially explain phenomenon such as accumulation of NO3
- 

in surface water (Taylor and Townsend 2010).  

It is important to examine the responses of bacterioplankton to N 

deposition because bacteria play an important role in trophic dynamics 

and resource cycling in aquatic ecosystems, representing an average of 

~20% of phytoplankton production in lakes (Cole et al. 1988). This role is 
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greater in oligotrophic lakes because higher bacterial biomass relative to 

phytoplankton biomass is observed in low-productivity lakes compared to 

eutrophic lakes (Cotner and Biddanda 2002). In terrestrial ecosystems, 

chronic N loading has changed the composition of soil microbial 

communities and influenced rates of microbial respiration and N cycling 

(Lovett and Rueth 1999, Bowden et al. 2004, Wallenstein et al. 2006). 

However, the effects of N deposition on bacterial processes in lakes are 

not as well studied as those in terrestrial ecosystems. 

We conducted resource enrichment experiments with pelagic and 

benthic bacteria from lakes located across a gradient of atmospheric N 

deposition in southern Norway. We examine both pelagic and benthic 

habitats because climate and seasonal processes differentially affect 

these environments, and these differences may modulate the effects of N 

deposition. For example, the pelagic zone is subject to diurnal changes in 

light, primary production, and grazing, as well as strong seasonal shifts in 

temperature and mixing due to the presence of ice cover. Except for 

seasonal mixing and sedimentation, profundal benthic zones of 

temperate-boreal lakes experience more stable conditions.  

Beyond relatively direct effects on N availability, atmospheric 

deposition may also affect bacteria indirectly by inducing shifts in 

productivity and nutrient limitation in the catchment and water column of 

lakes, which in turn will influence the organic matter that is available in the 
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water or sediments, and thus, the activities of bacterial communities. 

Recent studies have found that N deposition has increased concentrations 

of chlorophyll and dissolved inorganic N (DIN: NO3
- + NH4) and increased 

ratios of chlorophyll:P and seston C:P in lakes (Bergstrom and Jansson 

2006, Elser et al. 2009b). Atmospheric N deposition has also shifted 

nutrient limitation of phytoplankton from N to P and there is emerging 

evidence that this limitation extends to zooplankton as well (Elser et al. 

2009a, Elser et al. 2010). While the availability of oC has traditionally been 

considered the main factor limiting the growth heterotrophic pelagic 

bacteria, a number of studies have found that availability of N and P also 

stimulates bacterial production (Elser et al. 1995, Wetzel 2001, Cotner and 

Biddanda 2002). Additionally, experimental evidence suggests that 

respiration of heterotrophic microbes may be P limited (Cleveland et al. 

2002, Corstanje et al. 2007). Co-limitation of bacterial growth by oC and N 

and/or P has also been observed in oligotrophic lakes (Carlsson and 

Caron 2001, Bertoni et al. 2008). To evaluate effects of N deposition on 

resource limitation of microbial processes, we measured changes in the 

abundance of bacterioplankton during short-term bioassays in response to 

additions of organic oC, N, and P. For sediment bacteria, we measured 

two forms of respiration, oxic respiration that produces carbon dioxide 

(CO2) production and denitrification (respiration in sub-oxic conditions 
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where NO3
- is reduced to N2 gas), in response to experimental additions of 

oC, N and P.  

Because of deposition-induced differences in resource availability 

in the water column, we expected greater bacterial growth in response to 

oC and P or only to P in high-deposition lakes and greater response to oC 

and N or only to N in low-deposition lakes (Figure 12). Previous work 

found no differences in OM, C, N, or P content of lake sediments across a 

gradient of N deposition (McCrackin and Elser 2010). Measurement of 

bulk resources, however, may not reveal differences in the bioavailability 

or quality of these resources in sediments. If N deposition-related resource 

limitation observed for phytoplankton and bacterioplankton extends to the 

sediments, we would expect evidence of P limitation of respiration in high-

deposition lakes and N limitation in low-deposition lakes.   

Lastly, increased N loading is often associated with increased 

nitrification in soils and streams; however, similar studies in lakes are 

lacking (Hanson et al. 1994, Strauss et al. 2002, Gundersen et al. 2006). 

Nitrification is the oxidation of NH4
+ to NO3

- by chemoautotrophic bacteria 

and archaea. We measured the potential rate of nitrification in sediments 

and expected the rate to be greater in high-deposition lakes because of 

elevated atmospheric inputs of NH4
+ deposition (Tørseth and Semb 1998). 
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METHODS 

Study sites 

 During summer 2007 and 2009, we sampled lakes located at the 

high and low ends of a gradient of N deposition that spans over 400 km 

across southern Norway. Norway receives atmospheric pollution from 

industrial regions of Europe and total (wet and dry) N deposition rates are 

10-20 kg N ha-1 y-1 in southwest regions of the country, decreasing to less 

than 4 kg N ha-1 y-1 in east-central areas (Tørseth and Semb 1998, Klein 

and Benedictow 2006). Lakes near Egersund (58.35° latitude, 6.04° 

longitude), in southwestern Norway, are considered to be in the in the 

high-deposition region, while lakes near Lillehammer (61.07° latitude, 

10.27° longitude) and Atna (61.52° latitude, 10.27° longitude) are 

considered to be in the low-deposition region.  

 Samples for bacterioplankton and sediment analyses were collected 

in 2007 and 2009, respectively, from the lakes at the ends of the N 

deposition gradient. The lakes occupy watersheds that are generally 

unpopulated and sparsely vegetated, making them well suited to evaluate 

the influence of atmospheric N deposition without confounding influences 

of variable land use history and vegetation type. The sampled lakes were 

generally small and deep, with surface area < 20 ha and maximum depth 

> 5 m. Mean annual precipitation is approximately 1,700 mm in the high-

deposition area and 700 mm in the low-deposition area 
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(http://biogeo.berkeley.edu/worldclim1_4/grid/curprec_30s_esri). Mean 

elevation of the sampled lakes was 230 and 993 m above sea level in 

regions receiving high and low levels of atmospheric deposition, 

respectively.  

Field sampling and laboratory procedures 

 In both years, each lake was visited once and fieldwork was 

staggered so that sampling of lakes in high- and low-deposition regions 

was not strongly influenced by seasonal effects. Of the 20 and 28 lakes 

sampled in 2007 and 2009, respectively, 13 lakes were sampled in both 

years (Fig.12, Tables 13 and 14). Each lake was sampled using an 

inflatable boat. Lake depth was measured with a hand-held echo sounder. 

Water was collected from two depths using a battery-powered 

submersible pump. For bacterioplankton, water samples were collected at 

a depth of 1 - 1.5 m. For sediments, water was sampled just above the 

sediments at 10 m depth or at the maximum lake depth if < 10 m.  

Water was filtered with 1-µm polycarbonate filters (Whatman, 

Piscataway, New Jersey, USA) to remove algae, flagellates, and other 

protozoa, allowing us to assay bacterioplankton growth rate without 

grazing losses. Three replicate 10-mL samples were amended with one of 

four different incubation media: 50 µmol/L organic carbon (as dextrose 

and acetate), 7.5 µmol/L N (as NH4NO3) 0.5 µmol/L P (as KH2PO4), or 

combined medium that included all three resources (hereafter: oCNP) at 
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the concentrations just described. Bacterial bioassays were incubated in 

20-mL bottles for two days at lake surface temperature (about 15°C). 

Samples were filtered and flash frozen in liquid N2 and held at -80°C until 

analysis. Bacterial abundance was determined as the concentration of 

DNA, which correlates well with bacterial abundance based on 

epifluorescence counts (Tranvik 1997). DNA was extracted with Triton X-

100 (Dow Chemical Co., Midland, MI, USA) and stained with PicoGreen 

(Invitrogen Corp., Carlsbad CA, USA), a sensitive fluorescent nucleic acid 

stain for quantifying double-stranded DNA. Stained bacterial samples 

were read on a Turner BioSystems Model TD-700 fluorometer (Promega 

Corporation, Sunnyvale, CA, USA) at 480 nm excitation and 525 nm 

emission.  

 Chemical analysis of dissolved nutrients in lake water followed the 

same protocol in both sampling years. All water samples were filtered with 

Pall A/E glass fiber filters (Pall Corporation, Port Washington, NY, USA) 

and frozen until analysis of dissolved nutrient species. Water was 

analyzed for DOC and total dissolved N (TDN) on a Shimadzu TOC 5000 

(Shimadzu Corporation, Kyoto, Japan). Nitrate plus nitrite (hereafter: NO3
-) 

concentrations were determined on a Metrohm 761 Compact Ion 

Chromatograph (Metrohm, Riverview, Florida, USA) in 2007 (Elser et al. 

2009a) and on a Lachat Quick Chem 8000 autoanalyzer (Hach 

Corporation, Loveland, Colorado, USA) in 2009. Nitrate concentrations for 
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lakes sampled in 2007 were reported in Elser et al. (2009a). Ammonium 

was not measured, but is generally low across Norwegian lakes (Hessen 

et al. 2009). Concentrations of total dissolved P (TDP) were determined 

via colorimetric analysis using the ammonium-molybdate method following 

persulfate oxidation (APHA 2005). In 2007, surface water filtered onto 

Whatman GF/C glass fiber filters that were analyzed for chlorophyll by 

extraction with 100% methanol followed fluorometric analysis using a 

Turner BioSystems Model TD-700 fluorometer (Promega Corporation, 

Sunnyvale, CA, USA).  

 In 2009, surface sediments were collected from 14 lakes at each end 

of the N deposition gradient. Sediments were collected using a LaMotte 

dredge from a water depth of approximately 10 m or at the maximum lake 

depth if the lake was < 10 m. Sediments were stored in plastic bags at 4ºC 

in dark conditions until analysis. We conducted a resource enrichment 

experiment to investigate CO2 respiration and denitrification responses to 

additions of oC, NO3
-, or P. We measured metabolic processes rather than 

growth because bacterial DNA extractions were not feasible given the 

large number of samples. Three replicate 50-g subsamples of sediment 

from each lake were slurried with 40-mL of one of five different media. The 

incubation media were: distilled water as a control, 8.3 mmol L-1 oC (as 

glucose), 6.7 mmol L-1 N (as KNO3
-), 0.4 mmol L-1 P (as KH2PO4) or a 

combined medium that included all three resources (hereafter: oCNP). We 
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flushed the incubations with N2 gas to reduce levels oxygen (O2) to ~10% 

of headspace volume. Acetylene was added to block nitrification and the 

reduction of nitrous oxide (N2O) to N2 (Yoshinari and Knowles 1976). We 

collected initial and final samples at the end of 48-h incubation at 12°C in 

dark conditions, both after vigorous shaking. Bottles were not shaken 

during the two-day incubation. Gas samples were analyzed for CO2, N2O, 

and O2 on an Agilent 7890A Gas Chromatograph (Agilent Technologies, 

Santa Clara, CA, USA) with electron-capture and thermal conductivity 

detectors. Gas samples for one lake, Muvatnet, were damaged during 

transport and could not be analyzed. Rates of respiration and 

denitrification were determined as the production of CO2 and N2O, 

respectively, on the basis of dry sediment mass. Exponential production of 

CO2 results from dividing microbial populations during growth (Colores et 

al. 1996). Because there were only two sampling points for our 

incubations, we were unable to determine an exponential CO2 response 

curve, however it is likely that CO2 produced over the incubation period 

results from bacterial growth.  

 Nitrification potential assays were conducted using the shaken-slurry 

method (Hart et al. 1994). For each lake, 10 g of wet sediment was 

combined in a 250-mL Erlenmeyer flask with 100 mL of media containing 

50 mmol L-1 NH4
+ (as (NH4)2SO4) in a phosphate-buffered solution of 1 M 

monopotassium phosphate (KH2PO4) and 1 M dipotassium hydrogen 
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phosphate (K2HPO4) that was adjusted to a pH of 7.0. Sediment slurries 

were shaken for 48 h at 17°C. At four times during the incubation period, a 

15-mL aliquot of the sediment slurry was removed from the flask and 

centrifuged for 10 minutes at 3000 rpm. The liquid portions of the extracts 

were frozen until analysis for NO3
- on a Bran+Luebbe autoanalyzer (SPX 

Corporation, Charlotte, North Carolina, USA). The potential nitrification 

rate was calculated as the linear slope of NO3
-
 concentration in the 

sediment extracts over the 48-h incubation period. 

 Total C and N content of dried sediments were measured with a 

Flash EA 1112 Automatic Elemental Analyzer (Thermo Finnigan, Milan, 

Italy). Total P content of combusted sediment was measured 

colorimetrically following extraction with 0.5 M hydrochloric acid using the 

acid-molybdate technique (Lukkari et al. 2007). Sediment water content 

was determined as mass loss after drying subsamples at 105°C for 48 h 

and organic matter (OM) content was determined as mass loss on ignition 

at 550°C for 4 h.  

Statistical analysis 

Averages of all sediment and water parameters in replicate 

samples (n = 3) were calculated for each lake and compared between 

deposition regions using t tests. Results of bacterioplankton and sediment 

enrichment experiments were analyzed by deposition region and 

individually by lake. Responses for the enrichment treatments (n = 3) were 
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averaged for each lake and analyzed by analysis of variance (ANOVA) to 

evaluate the main effects of resource enrichment treatment (control, oC, 

N, P, and oCNP) and N deposition level (high and low). Post-hoc analyses 

were performed using Tukey’s HSD.  

For individual lakes, responses were analyzed by ANOVA 

(generally df = 3, 15) to evaluate the effects of resource enrichment 

treatment (control, oC, N, P, and oCNP). Each lake’s response was 

classified into several categories depending on the ANOVA results. If the 

ANOVA was not significant, the response was classified as “no resource 

limitation.” If one of the single enrichments (oC, N, or P) was not 

statistically different from the combined oCNP treatment and if both of 

these treatments were significantly greater than the control and other 

treatments, then the response was classified as “single resource limitation 

(X)”, where X is oC, N, or P. For example, if ZoCNP = ZoC > ZN = ZP = 

Zcontrol, where Z is one of the responses (final bacterial DNA concentration, 

CO2 flux, or N2O flux) with the treatment denoted in the subscript, then the 

experiment would be classified as “single resource limitation (oC)”. For 

other significant responses, the we assessed the nature of the interactive 

effect by calculating a parameter R similar to that described by Elser and 

colleagues (2009b): R = (ZoCNP – Zcontrol)/((ZoC – Zcontrol) + (ZN – Zcontrol) + ZP 

– Zcontrol)). When R > 1, the oCNP interaction was classified as super-

additive and when R < 1, the interaction was classified as sub-additive. 
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Experiments classified as super-additive were further divided into 

categories based on the results of individual t tests that contrasted single 

enrichment treatments and control. If there were no significant differences 

such that Zcontrol = ZP, Zcontrol = ZN, Zcontrol = ZoC, then the experiment was 

classified as “strict co-limitation (oCNP).” If two or all of the single 

enrichment treatments were greater than the control, then the experiment 

was classified as “synergistic co-limitation”. Experiments where R < 1 

were further classified by pair-wise comparisons of the treatments (oC, N, 

P, oCNP) with the control, also determined by t tests. If all treatments 

were greater than the control, the response was classified as 

“constrained”. This indicates that one or more resources limited the 

response variable, but that the response was less than expected if all 

resources were added simultaneously. If one or more of the contrasts was 

not significant, the experiment was classified as “antagonistic.” 

Experiments classified as “single limitation (X)” or “sequential co-limitation 

(X)” were considered evidence of a primary limitation by resource X (oC, N 

or P). The analyses of individual lakes treat sediment and water sub-

samples as replicates, although they are not statistically independent. 

Hence, these results should be interpreted with caution because of 

pseudoreplication. Nonetheless, we believe these analyses provide insight 

into variability of bacterial responses between lakes that may not be 
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observed in the comparison of aggregate lake responses between N 

deposition regions.  

Multiple-linear regression was used to identify relationships among 

predictor variables and the initial bacterial DNA concentration, rates of 

CO2 and N2O production in the control treatment (as an estimate of 

background rates), and the potential nitrification rate. Predictor variables 

for bacterial DNA concentration were pH, water concentrations of NO3
-, 

DOC, chlorophyll, and the ratios of DOC:NO3
- and TDN:TDP. For 

sediment processes, predictor variables were sediment OM, C, N, and P 

contents, and concentrations of NO3
- and DOC. Models were selected by 

considering all subsets on the basis of adjusted R2 and AIC. We evaluated 

multi-colinearity and selected final models for which tolerance values were 

>0.5 for all predictor variables. When necessary, response and predictor 

variables were transformed to improve normality. Statistical analyses were 

performed using the software JMP 8.0.1 (SAS Institute, Inc., Cary, NC, 

USA) with α = 0.05.  

RESULTS 

Bacterioplankton 

The lakes differed considerably in terms various water chemistry 

parameters (Table 13). Lakes in the high-deposition region had lower pH 

than low-deposition lakes (6.1 vs. 6.7). Consistent with the oligotrophic 

nature of the lakes, epilimnetic concentrations of DOC and chlorophyll 
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were generally low, averaging 202 (+ 33.4 SE) µmol/L C and 4 (+ 1.1 SE) 

µg L-1 across all lakes, respectively. Average concentrations of DOC and 

chlorophyll were lower in high-deposition lakes compared to those in the 

low-deposition region, at 127 versus 297 µmol L-1 C and 2.2 versus 6.5 µg 

L-1 chlorophyll, respectively. The concentration of NO3
- averaged 22.7 and 

0.13 µmol L-1 in lakes in receiving elevated and low levels of atmospheric 

N, respectively. Total dissolved P did not differ between regions, 

averaging 0.24 (+ 0.1 SE) µmol/L P across all lakes. The ratio of 

TDN:TDP was greater in high-deposition lakes than in low deposition 

lakes (240 vs. 40.2) while the reverse was true for DOC:NO3
- (7.1 vs. 

7,159). The ratio of DOC:TDN:TDP was 1320:240:1 and 1693:40:1 for 

high- and low-deposition lakes, respectively. 

Background concentrations of bacterial DNA did not differ between 

deposition regions, averaging 0.52 (+ 0.06 SE) µg mL-1 across all lakes. 

Regression analysis of the aggregated lake data found that the initial 

bacterial DNA concentration in high-deposition lakes was positively related 

to the ratio of DOC:NO3
- (R2 = 0.40, P = 0.049, log bacterial DNA = 0.27 * 

[DOC/NO3
-] – 0.06). The bacterial DNA concentration for low-deposition 

lakes was not related to any of the predictor variables (P > 0.05). The 

results of ANOVA indicate that the DNA concentration was significantly 

greater in the oCNP treatment compared to control, oC, N, and P and that 

there was no statistical difference between the control and the oC, N, and 
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P treatments (Fig. 13). There was also no significant effect of deposition 

region on overall bacterial DNA concentration and no interaction of the 

deposition region with the enrichment treatments.  

The analyses of individual lakes found that bacterial DNA 

concentrations were greatest in response to the oCNP treatment, except 

for three lakes where there was no significant treatment effect (Table 15). 

The dynamics of co-limitation by oC, N, and P were more varied: one lake 

showed single nutrient limitation, 14 lakes showed co-limitation, and 6 

lakes showed constrained or antagonistic resource limitation. Atmospheric 

N deposition did not influence the frequency of these response categories.  

Sediment bacteria 

The hypolimnetic concentration of NO3
- was greater in high-

deposition compared to low deposition lakes (11.4 v 0.8 µmol L-1 N, Table 

14) but there was no difference in the concentration of DOC, which 

averaged 141.6 (+ 9.7 SE) µmol L-1 C across all lakes. There were also no 

differences in sediment C, N, or P contents nor in ratios of C:N, C:P, or 

N:P between N deposition regions (Table 14). Sediment organic matter 

content did not differ between regions and averaged 18% (+ 1.4 SE) for all 

lakes.  

For aggregated lake data, ANOVA revealed that there was no 

significant effect of N region for either sediment CO2 or N2O production (P 

> 0.05, Figs. 14A and B). Fluxes of CO2 in the oCNP treatment did not 



 

 143 

differ between deposition region, while N2O fluxes were significantly 

greater in the high-deposition region (P = 0.0003). Fluxes of CO2 and N2O 

in the oCNP treatment were positively related to the NO3
- concentration, 

with R2 of 0.33 and 0.39, respectively (P = 0.001, log CO2oCNP = 0.41 * log 

[NO3
-] + 1.22; P = 0.0004, log N2OoCNP = 0.51 * log [NO3

-] + 0.29). Across 

all lakes combined, the flux of CO2 was greatest in the oC and oCNP 

treatments, which did not differ statistically (Fig. 14A). Responses in the N 

and P treatments did not differ from the control. Average CO2 flux for the 

oCNP treatment was 19 (+ 3 SE) µmol C kg-1 h-1. Background CO2 

production (control) was positively related to sediment OM content (R2 = 

0.24, P = 0.01, log CO2 flux = 4.42 * OM + 0.10). Denitrification was 

greatest in the N and oCNP treatments, which were not different (Fig. 

14B). There were no differences in responses between the control and the 

oC and P treatments. The N2O flux in the oCNP treatment was 5.4 (+ 0.7 

SE) µmol N kg-1 h-1 for all lakes combined. The production of N2O in the 

control treatment was best predicted by sediment OM (R2 = 0.27, P = 

0.007, log N2O flux = 5.5 * OM – 1.98).  

Similar to the bacterioplankton bioassays, analysis of individual 

experiments found that sediment enrichment responses varied between 

lakes. For CO2 production, 7 lakes showed no limitation, 8 lakes showed 

single resource limitation, 4 lakes showed co-limitation, and 8 lakes 

showed constrained or antagonistic responses to resource enrichment. In 
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the case of denitrification, one lake showed no limitation, 11 lakes showed 

single resource limitation, 13 lakes showed co-limitation, and 2 lakes 

showed constrained or antagonistic responses to resource enrichment. 

The frequency of these responses did not differ between N deposition 

regions. 

Nitrification potential was significantly greater in sediments of high- 

deposition lakes compared to low deposition lakes, at 156 (+ 24 SE) and 

61 (+ 20 SE) µmol N kg-1 h-1, respectively (Fig. 15). Across all lakes, 

nitrification potential averaged 108 (+ 18 SE) µmol N kg-1 h-1 was best 

predicted by NO3
- concentration in the hypolimnion (R2 = 0.35, P = 0.001, 

log nitrification potential = 0.43 * log [NO3
-] + 1.66).  

DISCUSSION 

Pelagic and benthic bacterial responses to resource enrichment  

Contrary to our expectations and previous results for phytoplankton 

(Bergstrom and Jansson 2006, Elser et al. 2009a), there were no 

deposition-induced differences in resource limitation of bacterioplankton. 

Rather, we observed co-limitation of growth by oC, N, and P across all 

lakes. These results suggest that in these lakes resources available to 

bacteria are stoichiometrically balanced relative to bacterial growth needs. 

The experimental design was not fully factorial, so we could make only 

limited assessments on the interactive effects of oC, N, and P. Our 

analysis of individual lakes suggests that the nature of resource limitation 
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varies among lakes but not between deposition regions. The majority of 

lakes were co-limited by a combination of resources or, in the case of four 

lakes, sequentially by P. Only one lake was limited by a single resource, 

oC. The remaining lakes showed no resource limitation or sub-additive 

responses to resource enrichment. Our results are surprising because the 

availability of dissolved resources is markedly different between deposition 

regions. The concentration of NO3
- and TDN:TDP ratio were significantly 

greater in high-deposition lakes, while the DOC concentration was greater 

in low- deposition lakes. Nevertheless, available supplies of these major 

resources appear to be sufficient to satisfy microbial demands during the 

2-d bioassay experiments.  

The lack of deposition-induced changes to resource limitation in 

pelagic bacteria is consistent with the results of our sediment assays. We 

found no evidence that N deposition has altered the resource status of 

sediment CO2 production or denitrification in either aggregated or 

individual lake analyses. In the case of the former, sediments responded 

most strongly to additions of oC and NO3
- in terms of rates of respiration 

and denitrification, respectively, regardless of N deposition level. As 

observed for bacterioplankton assays, there were a variety of responses 

for experiments of individual lakes. Respiration in sediments from less 

than half of the lakes (11) was limited by oC while respiration in sediments 

from seven lakes was not resource limited. Interestingly, eight lakes 
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showed sub-additive responses (constrained or antagonistic) to resource 

enrichment. The constrained response could occur if resources were 

immobilized in the oCNP treatment rather than used to support respiration. 

In this case, “the sum of the parts is less than the whole.” Antagonistic 

responses could result if “excess oC” was respired in response to oC 

enrichment, resulting in greater respiration rates in this treatment 

compared to the oCNP treatment. Indeed, for experiments with 

antagonistic responses, additional pairwise comparisons revealed that the 

oC treatment was greater than oCNP, N, P, and control. It is unclear why 

respiration responses to resource enrichment results varied between 

experiments. There could be differences in the bioavailability of sediment 

resources or in the composition of microbial community.  

Denitrification in all but four of lakes was limited or sequentially co-

limited by NO3
-. Our findings are consistent with a large body of research 

that finds NO3
- concentration to be an important predictor of denitrification 

(Seitzinger et al. 2006). Interestingly, our previous work found no 

deposition-induced differences in potential denitrification (in response to 

between non-limiting concentrations of oC, N, P, (McCrackin and Elser 

2010). Here we found that N2O production in the oCNP treatment was 

greatest in the high-deposition region. It is unclear why the results differ 

between these experiments because many of the same lakes were 

sampled in both years. The major methodological difference was the 
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length of the assays, which were 2 d in present study compared to 4 h in 

the earlier studies. A longer incubation period could allow for greater 

contact time between NO3
- and the active sites of enzymes and reveal 

differences in the denitrifying community between regions.  

Factors influencing resource limitation 

We found that atmospheric N deposition has not altered the nutrient 

status of bacterioplankton. Further, there was no difference in the initial 

abundance of bacterioplankton between deposition regions and 

abundances were not strongly related to concentrations of chlorophyll or 

DOC as has been observed in other studies (Cole et al. 1988, Simon et al. 

1992). These findings are interesting because chronic N loading has 

shifted the nutrient status of phytoplankton and zooplankton (Bergstrom 

and Jansson 2006, Elser et al. 2009a, Elser et al. 2010). The lack of 

deposition-induced differences in bacterioplankton responses to nutrient 

enrichment is consistent with a similar study conducted in Colorado lakes 

across a gradient of N deposition (M. Kyle, unpublished data). There was 

potential for pelagic bacteria to show strong responses to unbalanced 

resources in the water column because the C:N:P of bacterial biomass is 

thought to be relatively fixed compared to that of phytoplankton (Sterner 

and Elser 2002). Experimental evidence suggests that bacteria have some 

flexibility to alter their cellular element composition in response to 

substrate C:N:P ratios (Tezuka 1990, Chrzanowski et al. 1996), which 
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could explain the results we observed. Additionally, bacterial strains with 

different elemental composition will have different resource requirements 

(Makino et al. 2003). Hence, one possible explanation for apparent co-

limitation of bacterioplankton growth by oC, N, and P in both deposition 

regions is shifts in the composition of the bacterial communities. Chronic 

differences in lake nutrients could result in different assemblages between 

lakes and these assemblages may have nutrient requirements that are 

consistent with the available resources (Fisher et al. 2000, Makino and 

Cotner 2004). Our assays do not reflect seasonal changes in the 

bacterioplankton community composition, however, so our results may not 

be representative of responses in other periods. Alternatively, it is possible 

that factors such as grazing or viral lysis have a stronger influence on 

bacterial communities than available nutrients (Cotner and Biddanda 

2002). Our findings suggest that community-level responses are often 

more difficult to interpret than those of pure cultures. Regardless of 

anthropogenic N inputs, however, pelagic bacteria are growing below their 

potential rate in unproductive Norwegian lakes and are constrained by a 

suite of key resources.  

It is important to understand the factors the influence respiration 

and denitrification in sediments, because of the role these processes play 

in nutrient cycling. Contrary to our expectations, we found no evidence 

that N deposition has altered the nutrient status of sediment CO2 
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production or denitrification, because there were no differences between 

deposition regions in responses to the treatments. While sediment OM 

was nearly 20% of dry mass, respiration responded strongly to additions 

of glucose, perhaps because OM in sediments is not labile. Denitrification 

responded most strongly to additions of NO3
-, suggesting that background 

concentrations in the sediments were low. Our assays were amended with 

acetylene, which would have inhibited nitrification. Therefore we do not 

know the extent to which nitrification and denitrification are coupled in 

sediments of the sampled lakes.  

Recent studies have suggested that denitrification becomes oC 

limited when concentrations of NO3
- are elevated relative to oC 

(Weyhenmeyer and Jeppesen 2009, Taylor and Townsend 2010). Ratios 

of DOC:NO3
- were lower in high-deposition lakes compared to low-

deposition lakes (11 vs. 199, Table 14). Hence, limitation of denitrification 

by oC might explain why NO3
- accumulates in the surface waters of certain 

ecosystems. It is not clear, however, that water column ratios of DOC:NO3
- 

are indicative of conditions in the sediments, where most denitrification 

occurs. The denitrification rate in the N and oCNP treatments did not 

differ, suggesting that there is adequate C available to support 

denitrification even when NO3
- was supplied at concentrations that were 

two orders of magnitude above background. Indeed, a study of NO3
--

amended estuarine sediments found that denitrification exhausts oC after 
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1,600 hours of incubation (Abell et al. 2009). Sediments of the sampled 

lakes have significant denitrification potential and our data suggest that 

the actual denitrification rate will be constrained primarily by processes 

that regulate NO3
- diffusion to denitrifiers.  

Sediment nitrification 

Nitrification potential was greater in high-deposition lakes than in 

low- deposition lakes. Thus, chronic N loading appears to have altered the 

functional performance of the nitrifying community. Nitrification occurs in 

two steps, the oxidation of NH4
+ to nitrite and of nitrite to NO3

-. These 

steps are mediated by two different groups of microorganisms: NH4
+-

oxidizers and nitrite-oxidizers. Ammonium oxidation is believed to be the 

rate-limiting step in nitrification (Kowalchuk and Stephen 2001). A positive 

relationship between abundance of NH4
+-oxidizers and the potential 

nitrification rate has been observed in fertilized agricultural fields (Chu et 

al. 2007, Chu et al. 2008). In lakes, the abundance of NH4+-oxidizers has 

been found to be positively related to trophic status (Whitby et al. 2001). 

Our assays measured NO3
- production from added NH4

+ and, as a result, 

did not reveal whether one or both groups or microbes were affected by N 

deposition. Further work is required to understand how the nitrifying 

community and in situ nitrification rate have been altered by N deposition 

in lake sediments.  
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Notably, the potential nitrification rate across all lakes was about 20 

times the maximum denitrification rate we measured. The interpretation of 

this relationship is difficult because the nitrification and denitrification rates 

are potential rates and not indicative of in situ N-cycling rates. The extent 

to which nitrification and denitrification are coupled in lake sediments is 

influenced by competition for NH4
+ with plankton and diffusion of NO3

- into 

sediments from the water column (Sundbäck et al. 2004, Seitzinger et al. 

2006). For the lakes we sampled, however, it appears that sediment 

nitrification more than meets potential NO3
- requirements of sediment 

denitrifiers. Excess NO3
- could diffuse from the sediments and possibly 

explain the accumulation of NO3
- in surface waters (Finlay et al. 2007), 

such as we observed in high-deposition lakes. 

We do not know the source of NH4
+ to sediment nitrifiers for our 

study lakes. In southern Norway, oxidized and reduced forms of N are 

56% and 44%, respectively, of N deposition (Tørseth and Semb 1998). 

Thus, it is possible that considerable NH4
+ is directly available to 

sediments as a substrate for nitrification, especially in high-deposition 

lakes. Another potential source of NH4+ is the dissimilatory reduction of 

NO3
- (DNRA). This pathway is s believed to occur in environments with 

abundant labile oC relative to NO3
- (Burgin and Hamilton 2007). There are 

few studies of DNRA in lakes, but this process would be unlikely in 

sediments of high-deposition lakes because of elevated background NO3
- 
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concentrations. Alternatively, N deposition reduces soil C:N ratios, 

enhancing microbial N mineralization and potentially the supply of NH4
+ 

from the catchment to the lake (Aber et al. 1998, Baron et al. 2000). 

Nitrifiers are typically poor competitors for NH4
+ relative to periphyton 

(Sundbäck and Miles 2000). If needs of autotrophs are met, which would 

indicate N saturation or growth limitation by another nutrient, then NH4
+ 

may be more available for nitrification in sediments. Indeed, this seems 

possible given the evidence that N deposition has increased the 

prevalence of phytoplankton nutrient limitation by P (Elser et al. 2009a). 

Increased access to NH4
+ could allow populations of NH4

+-oxidizers to 

proliferate and explain the potential nitrification rates that we observed. 

  This study suggests that resource limitation of heterotrophic 

bacterial processes is not responsive to atmospheric N deposition in either 

pelagic or profundal environments. While these responses are not strictly 

comparable for the two habitats, growth and respiration are often tightly 

linked in bacterial communities (Russell and Cook 1995). The specific 

mechanisms responsible for our observations need further research. 

Nitrogen deposition may have altered the composition of the 

bacterioplankton community and the abundance of nitrifying 

microorganisms. Elevated nitrification rates are of particular concern 

because of the potential to exacerbate NO3
- accumulation in high-

deposition lakes.  
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Table 15. Responses of bacterial DNA concentrations to experimental 

resource enrichment for the study lakes. 

Lake 
ANOVA P 

value Result 
High-deposition Lakes  
Berse 0.0145 Antagonistic 
Brynesland 0.0066 Sequential co-limitation (P) 
Eigevatnet 0.0001 Constrained 
Eptelandsvatnet 0.0001 Synergistic co-limitation 
Glypstadvatnet 0.1843 No limitation 
Holmavatnet 0.1558 No limitation 
Mossingtjorna 0.0001 Synergistic co-limitation 
Nordravatnet 0.0452 Antagonistic 
Revsvatnet 0.0006 Synergistic co-limitation 
Saglandsvatnet 0.0002 Strict co-limitation (oCNP) 
Skineldvatnet 0.0001 Synergistic co-limitation 
Snosvatnet 0.0001 Sequential co-limitation (P) 
   

Lake 
ANOVA P 

value Result 
Low-deposition Lakes  
Atnasjoen 0.0001 Sequential co-limitation (P) 
Bolvatnet 0.001 Constrained 
Flaksjoen 0.0001 Synergistic co-limitation 
Goppollvatnet 0.0004 Strict co-limitation (oCNP) 
Hamntjonna 0.0003 Sequential co-limitation (P) 
Langrumpa 0.0001 Constrained 
Ljosvatnet 0.1253 No limitation 
Musvoltjonna 0.0002 Single limitation (oC) 
Muvatnet 0.001 Antagonistic 
Ner-Åst 0.0005 Strict co-limitation (oCNP) 
Nevelvatnet 0.0001 Synergistic co-limitation 
Vasjoen 0.0001 Synergistic co-limitation 
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Figure 12. Potential effects of atmospheric N deposition on bacterial 

nutrient limitation (after Treseder 2008). 
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Figure 13. Location of study sites in Norway. Fieldwork was conducted in 

two regions that encompass a gradient of atmospheric nitrogen 

deposition. Nitrogen deposition is greatest in extreme southwestern 

Norway, with rates of 10-20 kg N ha-1 y-1, and decreases to less than 4 kg 

N ha-1 y-1 in northeastern areas (Hole and Tørseth 2002). Circles denote 

lakes sampled in high deposition areas and lakes sampled in low 

deposition areas are denoted by triangles. 
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Figure 14: Bacterial DNA responses to resource enrichment experiment. 

Bars are means (+ SE) for N = 10 lakes in each deposition region. Letters 

above bars indicate significant differences (P < 0.05).  
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Figure 15. Sediment (A) CO2 and (B) N2O fluxes in response to 

experimental resource enrichment. Bars are means (+ SE) for lakes in 

each deposition region. Letters above bars indicate significant differences 

(P < 0.05).  
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Figure 16. Comparison of nitrification potential between regions. Bars are 

means (+ SE) for lakes in each deposition region. Letters above bars 

indicate significant differences (P < 0.05).  
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CHAPTER 6 

Greenhouse Gas Dynamics In Lakes Receiving  

Atmospheric Nitrogen Deposition (Colorado, USA) 

ABSTRACT 

Anthropogenic nitrogen (N) inputs have been found to influence 

emissions of greenhouse gases from a variety of ecosystems; however, 

the effects of N loading on greenhouse gas dynamics in lakes are not well 

documented. We measured concentrations of carbon dioxide (CO2), 

methane (CH4), and nitrous oxide (N2O) in 26 lakes in the Colorado Rocky 

Mountains (USA) receiving elevated (>6 kg N ha-1 yr-1) or low (<2 kg N  

ha-1 y-1) levels of atmospheric N deposition. The mean CO2 concentration 

in surface waters was 26.9 µmol L-1 and did not differ between deposition 

regions. The CH4 concentration was greater in low-deposition lakes (167 

nmol L-1) compared to high-deposition lakes (48 nmol L-1), while the 

opposite was true for N2O. The concentration of N2O in surface water 

averaged 29 nmol L-1 in high-deposition lakes compared to 22 nmol L-1 in 

low-deposition lakes. Nitrous oxide is of particular interest because it is 

more potent than CO2 as a greenhouse gas and because of its role in the 

destruction of stratospheric ozone. To understand the potential magnitude 

of lake N2O production related to atmospheric N deposition, we applied 

the methodology of Intergovernmental Panel on Climate Change to 

available datasets. We estimated global N2O emissions from lakes to be 
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7–371 Gg N y-1 for 1993, increasing to 11–705 Gg N y-1 in 2050. The 1993 

estimates represent 0.5–25% of emissions from rivers and estuaries, 

suggesting that further research is required to better quantify emission 

rates from lentic ecosystems. 

INTRODUCTION 

Lakes play an important role in the regulation of climate though the 

exchange of heat, water, carbon (C), and greenhouse gases with the 

surrounding terrestrial ecosystem and atmosphere (Williamson et al. 

2009). Both CO2 and CH4 fluxes result from microbial mineralization of 

organic matter imported from the watershed or produced in the lake. 

Nitrous oxide is produced as an intermediate product of denitrification, the 

microbial reduction of nitrate (NO3
-) to N2 gas, and of nitrification, the 

microbial oxidation of ammonium to NO3
- (Knowles 1982, Wrage et al. 

2001). Per molecule, CH4 and N2O are 25 and 298 times more potent, 

respectively, than CO2 in terms of global warming potential (Forster et al. 

2007). Previous work has shown that production of greenhouse gases has 

been enhanced by N loading in a variety of ecosystems including forests, 

grasslands, agricultural fields and streams (Beaulieu et al. 2008, Liu and 

Greaver 2009), but data for lentic ecosystems are lacking.   

Elevated N nitrogen inputs may accelerate rates of C cycling and 

thus result in increased emissions of CO2 and CH4 from lakes (Tranvik et 

al. 2009). Nitrogen loading also increases microbial N2O production 
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through enhanced nitrification and denitrification in soils and sediments 

(Seitzinger and Nixon 1985, Ullah and Zinati 2006). Indeed, ninety percent 

of N2O production by rivers and estuaries (1.5 Tg N y-1) is estimated to be 

derived from anthropogenic N loading (Kroeze et al. 2005). The current 

atmospheric concentration of N2O is 319 ppb and is increasing 0.3% per 

year due to human activities (Forster et al. 2007, Nevison et al. 2007). 

Increases in the production of N2O are of particular concern because, in 

addition to being a potent greenhouse gas, N2O is currently considered 

the single most important ozone-depleting substance (Ravishankara et al. 

2009).  

As fertilizer runs off from agricultural soils and is transported 

through groundwater, streams, and rivers to the oceans, a fraction of N 

leaves the ecosystems as N2O. Such emissions are considered indirect, 

and under methodology of the Intergovernmental Panel on Climate 

Change (IPCC), are estimated using factors that are applied to N loading 

rates. There are separate emission factors for groundwater, river, and 

estuarine ecosystems based on the ratio of N2O to NO3
- in water (IPCC 

2006). Nitrous oxide emissions from lakes are not included in greenhouse 

gas inventories, even with respect to indirect emissions relating to 

agriculture. Further, global N2O emissions from lakes have not been 

quantified even though lakes cover the same surface area as rivers and 

have the potential for substantial N2O production due to their longer water 
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residence times. The few studies that have investigated N2O dynamics in 

lakes have suggested that lakes are not significant sources of N2O 

(Mengis et al. 1997, Huttunen et al. 2003). Consequently, the rate of N2O 

emission from lakes is poorly constrained. 

Here we report on concentrations of CO2, CH4, and N2O in alpine 

and subalpine lakes in the Colorado Rocky Mountains receiving elevated 

or low rates of atmospheric N deposition. We also measured production of 

these gases by sediments from these lakes. Atmospheric deposition is the 

dominant source of N to oligotrophic high-elevation lakes that are 

otherwise not subject to human perturbations, such as land use change, 

wastewater, and direct runoff from agricultural fields (Burns 2004). 

Catchments of lakes receiving chronic N deposition have been diagnosed 

as showing signs of advanced N saturation, meaning that available N 

exceeds biological demand (Burns 2004). Hence, we expected a positive 

relationship between the N deposition rate and concentrations of dissolved 

greenhouse gases and sediment gas fluxes because of increased 

microbial activity. Such increased microbial activity would include 

enhanced respiration, nitrification, denitrification, and methanogenesis. 

Heterotrophic microorganisms could be fueled by dissolved organic 

carbon (DOC) as an energy source because N deposition can increase 

concentrations of DOC in lake water through increased primary production 
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in N-deficient catchments and lakes (Tranvik et al. 2009, Weyhenmeyer 

and Jeppesen 2009).  

METHODS 

Study site 

We sampled 26 lakes located in the Rocky Mountains of Colorado, 

USA between June and August 2008 (Fig. 17). Selected lakes were within 

6 km of a trailhead. The eastern slopes of the Rocky Mountains near 

Niwot Ridge Long Term Ecological Research site (NWT) and the Loch 

Vale Watershed Research site (LVW) receive atmospheric N deposition 

from fossil fuel combustion and agricultural sources (Nanus et al. 2003, 

Burns 2004). The rate of inorganic N (NO3
- + NH4

+) deposition has 

increased over the past 20 years to 6-8 kg ha-1 y-1 (Fig. 17; data from the 

National Atmospheric Deposition Program, nadp.sws.uiuc.edu). Lakes in 

central and western Colorado near the Rocky Mountain Biological 

Laboratory (RMBL, Gothic, CO) and the Mountain Studies Institute (MSI, 

Silverton, CO) receive <2 kg ha-1 y-1 atmospheric inputs of N. Lakes near 

NWT and LVW are considered to be in the high-deposition region and 

lakes near RMBL and MSI are considered to be in the low-deposition 

region.  

Mean annual temperatures at high elevations are less than 2˚C and 

the lakes are generally ice-covered between November and June (Baron 

et al. 2000). Englemann spruce and subalpine fir forests are found below 
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tree line (~ 3,300 m) and alpine tundra is found above tree line. With the 

exception of Estes, the sampled lakes were small, generally ~ 0.1 km2 and 

the watersheds were unpopulated. The watersheds occupy geologically 

diverse bedrock (Kent and Porter 1980). Precambrian-age granite, gneiss, 

and schist dominate the underlying geology, in the vicinity of Rocky 

Mountain National Park. Near RMBL the geologic parent materials include 

Mesozoic sedimentary rocks and Paleozoic metamorphics and intrusives. 

Surrounding the MSI, the San Juan Mountains are characterized by 

extensive volcanic deposits and felsic gneisses and granites of the 

Uncompahgre formation. Other studies performed simultaneously in these 

areas have found that concentrations of particulate and dissolved N and 

phytoplankton nutrient limitation in these lakes are significantly influenced 

by the level of atmospheric N deposition (Elser et al. 2009a, Elser et al. 

2009b) 

Field sampling and laboratory procedures 

Thirteen lakes in each N deposition region were visited once during 

summer 2008 (Table 17). Fieldwork was staggered so that sampling of 

lakes in high- and low-deposition regions was not strongly skewed by 

date. High-deposition lakes were sampled in late June and late July 2008 

and low-deposition lakes were sampled in early July and early August 

2008.  
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 Lakes were sampled from an inflatable boat. The depth of each lake 

was measured using a portable echo sounder. Water samples were 

collected from just above the sediments using a battery-powered 

submersible pump fitted with tubing to take in water at 0.5 – 10 m. Water 

samples were filtered with Pall A/E glass fiber filters (Pall Corporation, 

Port Washington, NY, USA) and frozen until analysis for DOC on a 

Shimadzu TOC 5000. Nitrate plus nitrite (hereafter: NO3
-) concentration 

was measured on a Lachat Quick Chem 8000 Autoanalyzer. Data on DOC 

and NO3
- concentrations for a subset of lakes were previously reported by 

McCrackin and Elser (In revision).  

 Surface sediments were collected using a LaMotte dredge from a 

water depth of approximately 10 m or at the maximum lake depth if the 

lake was < 10 m. The dredge collected sediments from an area of 221 cm2 

to a depth of ~7 cm. We were not able to collect sediment from all lakes 

because rocks, debris, or macrophytes prevented the dredge from 

operating properly (Table 17). Sediments were returned to the laboratory 

and processed within 24 hours of collection. For each lake, three 

analytical replicate 100-g subsamples of homogenized sediments were 

slurried with 80-mL of lake water collected from just above the sediments. 

Bottles were purged of oxygen with nitrogen gas (N2). After vigorous 

shaking, we collected 10-mL samples from the headspace volume (about 

550 mL) at the beginning of the incubations (0 h) and at 4 h. Incubations 
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were conducted at 4°C in the dark. Gas samples were analyzed for CO2, 

CH4, and N2O on a Varian CP-3800 gas chromatograph (Agilent 

Technologies, Santa Clara, CA, US) equipped with an electron capture 

detector, a thermal conductivity detector, and a flame ionization detector. 

Sediment flux rate was determined as the accumulation of each gas over 

the incubation period expressed in terms of dry sediment mass that was 

converted to an areal basis using the sediment bulk density for each lake 

(Garcia-Ruiz et al. 1998, Rudaz et al. 1999). Background denitrification 

rates were measured using the acetylene inhibition method and reported 

separately (McCrackin and Elser In revision). 

 For measurement of dissolved trace gasses in the water column, 

750-mL glass serum bottles were filled using a battery-powered 

submersible pump fitted with tubing to take in water just below the surface 

to above the sediment at 10 m depth, or the maximum lake depth if less 

than 10 m. The temperature and dissolved oxygen content of the water at 

the sampling depth was measured with a YSI model 85 temperature-

oxygen probe (YSI, Yellow Springs, Ohio, USA). At least one bottle 

volume was allowed to overflow prior to introducing a 60-mL headspace of 

ambient air. Bottles were sealed with a screw cap fitted with gray-butyl 

stopper and shaken vigorously for 1 minute (Mengis et al. 1997, Cole and 

Caraco 1998). Immediately after shaking, a 20-mL gas sample was 

collected from the headspace with a syringe and injected into a 10-mL 
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serum vial. Three replicates were collected at each sampling depth per 

lake. Prior to the injection of the environmental sample the serum vials 

were flushed with helium, sealed with gray butyl stopper and aluminum 

crimp top, and evacuated. Gas samples were analyzed for CO2, CH4, and 

N2O on the Varian CP-3800 gas chromatograph as previously discussed.  

 The percent saturation of CO2, CH4, and N2O in water samples was 

calculated as % saturation = ([gas]measured /[gas]saturated) * 100, where 

[gas]measured is the measured concentration of each gas adjusted for the 

introduction of trace gases in the ambient air headspace during 

equilibration, where [gas]saturated is the saturated concentration of each gas 

reflecting the atmospheric concentration of each gas and the solubility 

constant of each gas at the measured water temperature (Weiss 1974, 

Weiss and Price 1980, Wiesenburg and Guinasso 2002).  

 Sediment water content was determined as mass loss after drying 

subsamples at 105°C for 48 h and organic matter (OM) content was 

determined as mass loss on ignition at 550°C for 4 h. Total C and N 

content of dried sediments were measured with a PerkinElmer CHN 

elemental analyzer (PerkinElmer, Inc., Waltham, MA, USA). Total 

phosphorus (P) content of combusted sediment was measured 

colorimetrically following extraction with 0.5 M hydrochloric acid using the 

acid molybdate technique (Lukkari et al. 2007). Results of sediment 
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analyses have been reported separately and are not included here in 

detail (McCrackin and Elser In revision). 

Statistical analysis 

We performed t tests to compare sediment CO2 and CH4 fluxes, 

concentrations of dissolved NO3
-, DOC, CO2, CH4, and N2O between high- 

and low-deposition regions. We used the Wilcoxon signed-rank test to 

compare concentrations of dissolved CO2, CH4, and N2O between the lake 

surface and above the sediment. Multiple-linear regression was used to 

identify relationships among predictor variables and gas flux rates from 

slurry incubations and surface water concentrations of dissolved gases. 

For sediment fluxes, predictor variables included concentrations of NO3
- 

and DOC, sediment OM, sediment C, N, and P content, and ratios of 

sediment C:N, C:P, and N:P. Predictor variables for dissolved CO2, CH4, 

and N2O in surface water were DOC and NO3
- concentrations, and lake 

elevation as a proxy for climate (e.g. annual temperatures, length of 

winter). Models were selected by considering all subsets on the basis of 

adjusted R2 and AIC. We evaluated multi-colinearity and selected final 

models for which tolerance values were >0.5 for all predictor variables. 

When necessary, response and predictor variables were transformed to 

improve normality. All statistical tests were performed using JMP (SAS 

Institute, Inc., Version 8.0.1) with α = 0.05.  
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RESULTS 

Greenhouse gases in lake water 

The mean concentrations of NO3
- and dissolved N2O were 

significantly greater in high-deposition lakes relative to low-deposition 

lakes (Tables 17 and 18). In contrast, average concentrations of DOC, 

CO2, and CH4 were greater in low deposition lakes than high-deposition 

lakes. The surface water concentration of CO2 was positively related to 

concentrations of DOC and NO3
- and CH4 was positively related to DOC 

but negatively related to NO3
- (Table 19). The concentration of N2O was 

positively related to NO3
- (Fig. 18). There was no correlation between 

sampling dates and measured concentrations of DOC and dissolved trace 

gases (R2 < 0.04, P > 0.3) and minimal correlation for NO3
- (R2 = 0.15, P = 

0.05). Across all lakes, mean concentrations of dissolved CO2 and CH4 

were greater in water just above the sediment compared to surface water 

(P < 0.001), while mean concentrations of dissolved N2O did not differ 

between depths (P > 0.05). The surface waters of lakes were 

supersaturated with CO2, CH4, and N2O relative to the atmosphere. For 

CO2, the degree of saturation did not differ between deposition regions (P 

> 0.05). Across all lakes, the mean CO2 saturation was 190% (SE + 14%). 

The mean saturation of CH4 in surface water was 1,930% (SE + 100%) 

and 8,280% (SE + 2,630%) in high- and low-deposition lakes, 

respectively, a significant difference (P = 0.01). The mean saturation of 
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N2O was greater in high-deposition lakes compared to low-deposition 

lakes  (P = 0.02), with values of 156% (SE + 5%) and 138% (SE + 5%), 

respectively. Lakes in the low-deposition region were generally thermally 

stratified whereas lakes in the high-deposition region were not. All lakes 

were oxic at the depth where sediments were collected.  

Sediment greenhouse gas production 

Sediment characteristics were reported previously in detail 

(McCrackin and Elser In revision). Briefly, there were no significant 

differences in sediment OM, total C, N, and P content, or ratios of C:N, 

C:P, and N:P between lakes in high- and low-deposition regions (P > 

0.05). Sediment C, N, and P contents averaged 8.2 mmol g-1, 0.6 mmol g-

1, and 0.1 mmol g-1, respectively across all lakes.  

Sediment production of CO2 under anoxic conditions averaged 0.16 

mmol C m-2 d-1 and 0.32 mmol C m-2 d-1 for high- and low-deposition 

lakes, respectively, a significant difference (Table 20). Methane fluxes 

were greater in sediments from low deposition lakes, averaging 0.8 µmol 

C m-2 h-1, compared to high-deposition lakes, which averaged 2.2 µmol C 

m-2 h-1. Across all lakes, CO2 and CH4 sediment fluxes were negatively 

related to NO3
- concentrations (Table 19). Nitrous oxide production in 

sediments was only observed for four of the sampled lakes and averaged 

2.3 (+ 1.6 SE) µmol N m-2 h-1 for these lakes. The sediment N2O flux did 
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not differ between deposition regions was not predicted by any of the 

identified variables.  

DISCUSSION 

Carbon mineralization in sediments 

Contrary to our expectations, we found no evidence that 

atmospheric N deposition has enhanced C cycling rates in lake sediments. 

Rather, sediment CO2 production was greater in low-deposition lakes 

compared to high-deposition lakes. Across all lakes, C released by 

sediment CO2 production was the two orders of magnitude greater than 

that released through CH4 production. Further, there was no difference in 

sediment OM and C content of bulk sediments between regions, but the 

concentration of DOC was greater in low deposition lakes compared to 

high-deposition lakes. The higher concentration of DOC in low N 

deposition lakes is consistent with greater sediment C mineralization rates 

in the low N deposition region compared to the high-deposition region. 

However, we expected the opposite result because of the fertilization 

effect that N deposition could have on primary production in the 

catchments and water column. Indeed, previous fieldwork at many of the 

same lakes found that concentrations of chlorophyll and seston C were 

significantly greater in high- deposition lakes (Elser et al. 2009a). Such 

differences between studies could reflect seasonal or year-to-year 

differences in catchment or lake productivity. It is also possible that growth 
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of heterotrophic bacterioplankton in low deposition lakes are N limited, 

allowing for DOC to accumulate in the water column (Taylor and 

Townsend 2010). Lastly, at current rates of atmospheric N loading, 

catchment-specific properties for the sampled lakes might have a greater 

influence on lake DOC concentrations than does N deposition, as has 

been observed in other regions (Hessen et al. 2009).  

Methane may represent 20-60% of total C mineralization in lake 

sediments (Bastviken et al. 2008). In our sediment slurry incubations, 

however, CH4 production represented only an average of 7% of total C 

mineralization. In fact, CH4 production by sediments for the sampled lakes 

was two orders of magnitude less than that reported for a eutrophic lake 

and at the low end of that reported for boreal lakes (Liikanen et al. 2002, 

Algesten et al. 2005, Bastviken et al. 2008). The low rate of CH4 

production we observed in sediment could be partially explained by 

temperature, as we conducted our incubations at 4°C, which is colder than 

temperatures for other studies. Methane production in peat soils is 

strongly sensitive to temperature, with Q10 values of 5.3 to 16 (Dunfield et 

al. 1993) and similar results could occur in sediments. It is also possible 

that our slurry incubations were not completely anoxic. During 

denitrification, ratios of CO2:N2 production are 1.5 – 6 (Groffman et al. 

2006), but for our incubations the average ratio of CO2:N2O production (as 

a proxy for CO2:N2) was significantly greater at 95 (+ 26 SE). This 



 

 187 

suggests that there was available oxygen for respiration. Methanogenesis 

is sensitive to reduction-oxidation potential and the presence of strong 

oxidants, such as oxygen or NO3
-, will suppress CH4 production (Le Mer 

and Roger 2001). We also observed a negative relationship between 

water NO3
- concentrations and CH4 production (Table 20). This might 

explain why CH4 production was greater in low-deposition lakes compared 

to high-deposition lakes. Further, published data for CH4 production in 

sediments are often collected from eutrophic lakes and lakes surrounded 

by peatlands or bogs, which would likely have anoxic conditions in the 

sediments and, thus, be more favorable for CH4 production (Huttunen et 

al. 2003). Lastly, the generally low CH4 fluxes we observed could also be 

result from poor quality OM in sediments.  

Greenhouse gas emissions from lakes 

 Lake gas emissions not only depend on the concentration gradient 

between the lake and the atmosphere, but also on the gas exchange 

coefficient (Wanninkhof et al. 1987). We did not measure gas exchange 

rates for the sampled lakes, so we cannot determine gas emissions. 

However, the surface waters were supersaturated with CO2, CH4, and 

N2O, suggesting that the lakes are sources of these gases to the 

atmosphere. The surface water concentrations of CO2 are three orders of 

magnitude greater than that of CH4 or N2O; thus, CO2 is likely the 

dominant greenhouse gas emitted from the sampled lakes. The dynamics 
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of CO2 in the surface water do not appear to be influenced by atmospheric 

N inputs. We did observe a positive relationship between surface water 

concentrations of CO2 and DOC and NO3
- (Table 19), although there was 

no significant relationship with either predictor variable when considered 

individually. This is interesting because we found NO3
- to be negatively 

related to sediment CO2 production and because other studies have found 

strong positive relationships between CO2 concentrations and DOC 

(Sobek et al. 2003). It is possible that respiration by bacterioplankton and 

sediment bacteria respond differently to N loading, thus, it would be useful 

to further investigate the extent to which bacteria in sediments and pelagic 

areas contribute to CO2 in surface water of the sampled lakes. Overall, 

however, our data are consistent with the well-documented finding that 

most lakes are heterotrophic and sources of CO2 to the atmosphere (Cole 

et al. 1994, Tranvik et al. 2009).  

There are two major pathways for CH4 emissions from lakes, 

diffusion and ebullition (bubble flux) of gas produced in the sediments. 

Ebullition may account for 20 – 70% of CH4 emissions from sediments, 

especially in shallow, eutrophic lakes (Bastviken et al. 2008, Juutinen et 

al. 2009). Our approach for measuring CH4 concentrations only reflects 

diffusive sediment fluxes and are at the very low end of the range reported 

for lakes using similar methods (Bastviken et al. 2004). While there is a 

general lack of CH4-related data for high-elevation lakes, Smith and Lewis 
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(1992) sampled five lakes in the Colorado Front Range, including one of 

the lakes we visited (Long Lake). The dissolved CH4 concentration we 

observed for Long Lake is within the range they reported. Overall, 

evidence presented here suggests that N deposition has reduced 

sediment CH4 production and concentrations of dissolved CH4. 

Methanogenesis is not a significant C mineralization pathway or source of 

greenhouse gas in the sampled lakes, independent of atmospheric N 

inputs.  

Our study lakes were generally supersaturated with N2O and 

concentrations were comparable to limited reports for other lakes (Table 

21). These data suggest that atmospheric N deposition has increased 

concentrations of dissolved N2O and potentially emissions of N2O from 

lakes, consistent with studies of boreal lakes and other aquatic 

ecosystems (Seitzinger et al. 1984, Liikanen et al. 2003, Beaulieu et al. 

2008). In lakes, N2O is produced by denitrification in sediments and by 

nitrification in sediments and the water column (Mengis et al. 1997, Wrage 

et al. 2001). For the lakes we sampled, the source of N2O in the sampled 

lakes is unclear. We expected a correlation between sediment N2O 

production and lake water concentrations of N2O. Denitrification-related 

N2O production, however, was only observed in sediments of four lakes. 

We do not know why there were no N2O fluxes for the majority of 

sediments we sampled. Similar assays conducted with sediments from 
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lakes in Norway found significantly greater N2O fluxes in lakes that receive 

elevated levels of N deposition (McCrackin and Elser 2010). If our assays 

were not completely anoxic, rates denitrification and related N2O 

production could have been repressed. The sediments are still a possible 

source of N2O production because experiments conducted simultaneously 

found considerable denitrification capacity under NO3
- enrichment 

(McCrackin and Elser In revision). Alternatively, nitrification could produce 

N2O as has been observed in soils (Bateman and Baggs 2005). Assays 

conducted with sediments from Norwegian lakes in high-deposition 

regions showed significantly greater rates of nitrification potential (in 

response to non-limiting concentrations of ammonium) than those in low 

deposition regions (M. McCrackin, unpublished data). Further investigation 

is required to determine the source of dissolved N2O observed in the 

water column.  

We do not know how concentrations of dissolved CO2, CH4, and 

N2O in the sampled lakes vary seasonally. These alpine and subalpine 

lakes are covered with ice for more than half of the year. Gases that 

accumulate in the hypolimnion during periods with ice cover might be 

released during spring. Thus, concentrations of dissolved gases that we 

measured in summer months may be greater than average annual 

concentrations. While CH4 and N2O are more potent than CO2 in terms of 

radiative forcing, the low concentrations of these trace gases relative to 
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CO2 indicate that lake greenhouse gas dynamics are dominated by CO2. 

The relatively small surface area of the sampled lakes suggests that they 

do not contribute disproportionately to such dynamics in the Colorado 

Rocky Mountains. Given that N2O plays a significant role in the depletion 

of stratospheric ozone, however, potential N2O emissions from lakes, and 

the effects of N deposition on them, deserve further consideration.  

Under IPCC guidelines for determining greenhouse gas inventories, 

indirect N2O emissions from aquatic ecosystems are estimated for 

groundwater, rivers, and estuaries. These emissions are estimated using 

emission factors that are determined based on the ratio of dissolved N2O 

to NO3
-. While lakes are not currently included in greenhouse gas 

inventories, we followed the IPCC methodology and found that for the 

lakes we sampled, the N2O:NO3
- ratio averaged 0.01 with a range of 0.001 

– 0.07 (Table 21). These values are somewhat larger than the current 

IPCC emission factor for aquatic ecosystems of 0.0075 with a range of 

0.0005 to 0.025. Clarifying the emission factor is important, but the 

dynamics of N2O in lakes are not well documented. We surveyed the 

scientific literature and, where concentrations of N2O and NO3
- were 

reported, determined the N2O:NO3
- ratio to be between 0 and 0.12 (Table 

22). This broad range indicates that a single N2O:NO3
- ratio cannot be 

generalized across all lakes. Further, values for the N2O:NO3
- ratio at the 

high end of this range suggest there is potential for N2O emissions from 
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lakes subject to elevated N loading. Indeed, Wang et al., (2006) reported 

N2O production of 300 µmol N m-2 d-1 in pelagic areas of a hyper-eutrophic 

lake, which is an order of magnitude greater than maximum emission 

rates reported for agricultural fields (Bouwman and Boumans 2002).   

Global N2O emissions from lakes receiving N deposition 

Our data suggest a possibility that lakes could be an 

underappreciated component of global N2O cycling, especially given 

elevated atmospheric N inputs. Here we attempt to quantify this possibility. 

Globally, the largest source of anthropogenic N2O emissions is the 

enhanced conversion of N fertilizer by microorganisms in agricultural soils 

(Forster et al. 2007). Emissions from aquatic ecosystems, however, are 

also significant. Kroeze et al. (2005) estimate N2O emissions by rivers and 

estuaries is 1,256 and 251 Gg N y-1, respectively, which represents 

approximately 15% of total anthropogenic N2O emissions (Denmen et al. 

2007). We used different approaches to quantify global N2O emissions 

from lakes resulting from atmospheric N deposition. First, we estimated 

global N loading to lakes via atmospheric N deposition using published 

datasets of N deposition rates (for 1993 and 2050) and of small lakes, 

large lakes, and reservoirs >1 km2 (Lehner and Döll 2004, Dentener 2006) 

as, atmospheric N deposited to lake surface N kg y-1 = N deposition rate 

kg ha-1 y-1 * lake surface area (ha).  
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Total estimated N input directly to lakes surfaces is 1.1 and 2.1 Tg 

N y-1 for 1993 and 2050, respectively. Based on our analysis, over 90% of 

the global surface area of lakes (2.6 million km2) is subject to atmospheric 

N deposition. To account for watershed inputs of N to the lakes, we 

assumed the catchment area was 25 times greater than that of the lake 

and that 50% of all N deposited to the watershed is subsequently leached 

to the lake (Sjoeng et al. 2007, Harrison et al. 2009). Based on this, inputs 

of N from the watershed were estimated as 13.7 Tg N y-1 for 1993 and 

26.1 Tg N y-1 for 2050. The extent to which lakes are subject to N 

deposition is of interest not only because of the potential for increased 

N2O emissions but also because of the documented effects of N on lake 

stoichiometry and food web dynamics (Elser et al. 2009a, Hessen et al. 

2009). Even lakes that are not directly influenced by human activity are at 

risk from atmospherically delivered pollution, which is of particular concern 

because N deposition rates are expected to increase globally in the next 

few decades, driven by energy demands and agricultural activities 

(Dentener 2006). 

Second, we estimated N2O production as in Kroeze et al. (2005), 

which assumes that such emissions result from nitrification and 

denitrification of inorganic N inputs as, N2O-N kg y-1 = (Nitrification + 

Denitrification) * EF.  



 

 194 

This approach is described in detail by Seitzinger and Kroeze (1998). 

Briefly, it is assumed that 50% of N inputs are denitrified and that the 

nitrification rate exceeds the denitrification rate by 20%. The emission 

factor, EF, is 0.3% of denitrification and nitrification except where N 

loading rates exceed 10 kg N ha-1 y-1, where the EF is 3%. Using this 

method, we estimated N2O emissions to be 146 Gg N y-1 in 1993, 

increasing to 445 Gg N y-1 in 2050. The 1993 emissions represent about 

10% of N2O emitted from rivers and estuaries as estimated by Kroeze et 

al. (2005), although our estimates are not strictly comparable because we 

do not consider all sources of N inputs to lakes, such as run-off from 

agriculture fields or waste water from treatment plants. 

We also estimated N2O emissions using IPCC methodology for 

indirect greenhouse emissions from aquatic ecosystems resulting from 

run-off from agricultural systems. This approach does not specifically 

address atmospheric N deposition to lakes, but in our opinion is most 

appropriate under current IPCC guidelines. Here, N2O emissions are 

determined as N2O-N kg y-1 = atmospheric deposition to lake kg N y-1 * 

EF5, where atmospheric N deposition is calculated as previously described 

and EF5 is the overall emission factor for aquatic ecosystems, with a 

default value of 0.0075 and an uncertainty range of 0.0005 – 0.025 (Table 

22). The emission factors for runoff were based on the observed ratio of 

N2O to NO3
- in groundwater, streams, rivers, and estuaries (IPCC 2006).  
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The resulting estimates for 1993 emissions were 105 Gg N y-1 with 

a range of 7 to 371 Gg N y-1, representing 0.5% to 25% of N2O emissions 

from rivers and estuaries as estimated by Kroeze et al. (2005). Forecasted 

2050 emissions increase to 198 Gg N y-1 with an uncertainty range of 14 

to 705 Gg N y-1 (Fig. 19). The bulk of the emissions are from lakes in 

North and South America. Emissions calculated using the approach of 

Kroze et al (2005) fall within the ranges determined using the IPCC 

methodology. It is not clear that emission factors developed for 

groundwater, rivers, and estuaries are appropriate for lakes given the wide 

range of N2O:NO3
- ratios we found for lakes (Table 21). Overall increases 

in estimates between 1993 and 2050 results from increased N deposition 

rates. In any case, our high-level estimates suggest that lakes should be 

considered in global inventories of N2O emissions from aquatic 

ecosystems. Further analysis is needed to constrain emission factors for 

lakes and to quantify N2O emissions resulting from all sources of N to 

lakes.  

ACKNOWLEDGMENTS 

We thank Marcia Kyle, Erin Seybold, and Melanie Engstrom for 

their assistance with field and laboratory work. We are also grateful to the 

staff of the Mountain Research Station, Niwot Ridge Long Term Ecological 

Research program, Rocky Mountain Biological Laboratory, Mountain 

Studies Institute, and Rocky Mountain National Park for their contributions 



 

 196 

in facilitating this study. Support for this research was provided by National 

Science Foundation grant DEB-0516494 to JJE and graduate student 

research grants to MLM from the Mountain Studies Institute, the American 

Alpine Association, and the Society of Wetland Scientists.  



 

 197 

LITERATURE CITED 

Algesten, G., S. Sobek, A. K. Bergstrom, A. Jonsson, L. J. Tranvik, and M. 
Jansson. 2005. Contribution of sediment respiration to summer 
CO2 emission from low productive boreal and subarctic lakes. 
Microbial Ecology 50:529-535. 

Baron, J. S., H. M. Rueth, A. M. Wolfe, K. R. Nydick, E. J. Allstott, J. T. 
Minear, and B. Moraska. 2000. Ecosystem responses to nitrogen 
deposition in the Colorado Front Range. Ecosystems:352-368. 

Bastviken, D., J. Cole, M. Pace, and L. Tranvik. 2004. Methane emissions 
from lakes: Dependence of lake characteristics, two regional 
assessments, and a global estimate. Global Biogeochemical Cycles 
18:GB4009, doi:4010.1029/2004GB002238. 

Bastviken, D., J. J. Cole, M. L. Pace, and M. C. Van de Bogert. 2008. 
Fates of methane from different lake habitats: Connecting whole-
lake budgets and CH4 emissions. Journal of Geophysical 
Research-Biogeosciences 113:G02024, 
doi:02010.01029/02007JG000608. 

Bateman, E. J. and E. M. Baggs. 2005. Contributions of nitrification and 
denitrification to N2O emissions from soils at different water-filled 
pore space. Biology and Fertility of Soils 41:379-388. 

Beaulieu, J. J., C. P. Arango, S. K. Hamilton, and J. L. Tank. 2008. The 
production and emission of nitrous oxide from headwater streams 
in the Midwestern United States. Global Change Biology 14:878-
894. 

Bouwman, A. F. and L. M. Boumans. 2002. Emissions of N2O and NO 
from fertilized fields: Summary of available measurement data. 
Global Biogeochemical Cycles 16:1058, 
doi:1010.1029/2001GB001811. 

Burns, D. A. 2004. The effects of atmospheric nitrogen deposition in the 
Rocky Mountains of Colorado and southern Wyoming, USA - a 
critical review. Environmental Pollution 127:257-269. 



 

 198 

Cole, J. J. and N. F. Caraco. 1998. Atmospheric exchange of carbon 
dioxide in a low-wind oligotrophic lake measured by the addition of 
SF6. Limnology and Oceanography 43:647-656. 

Cole, J. J., N. F. Caraco, G. W. Kling, and T. K. Kratz. 1994. Carbon 
dioxide supersaturation in the surface waters of lakes. Science 
265:1568-1570. 

Denmen, K. L., G. Brasseur, A. Chidthaisong, P. Ciais, P. M. Cox, R. E. 
Dickinson, D. Hauglustaine, C. Heinze, E. A. Holland, D. Jacob, U. 
Lohmann, S. Ramachandran, P. L. da Silva Dias, S. C. Wofsy, and 
X. Zhang. 2007. Couplings between changes in the climate system 
and biogeochemistry.in S. Solomon, D. Qin, M. Manning, Z. Chen, 
M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, editors. 
Climate Change 2007: The Physical Science Basis. Contribution of 
Working Group I to the Fourth Assessment Report of the 
Intergovernmental Panel on Climate Change. Cambridge University 
Press, Cambridge, UK and New York, NY, USA. 

Dentener, F. J. 2006. Global maps of atmospheric nitrogen deposition, 
1860, 1993, amd 2050. Data set. Available on-line 
[http://www.daac.ornl.gov] from Oak Ridge National Laboratory 
Distributed Active Archive Center, Oak Ridge, Tennessee, USA. 

Dunfield, P., R. knowles, R. Dumont, and T. R. Moore. 1993. Methane 
production and consumption in temperate and subarctic peat soils: 
Response to temperature and pH. Soil Biology and Biochemistry 
25:321-326. 

Elser, J. J., T. Andersen, J. S. Baron, A. K. Bergstrom, M. Jansson, M. 
Kyle, K. R. Nydick, L. Steger, and D. O. Hessen. 2009a. Shifts in 
lake N:P stoichiometry and nutrient limitation driven by atmospheric 
nitrogen deposition. Science 326:835-837. 

Elser, J. J., M. Kyle, L. Steger, K. R. Nydick, and J. S. Baron. 2009b. 
Nutrient availability and phytoplankton nutrient limitation across a 
gradient of atmospheric nitrogen deposition. Ecology 90:3062-
3073. 



 

 199 

Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. 
Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. 
Prinn, G. Raga, M. Schulz, and R. Van Dorland. 2007. Changes in 
atmospheric constituents and in radiative forcing.in S. Solomon, D. 
Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and 
H. L. Miller, editors. Climate Change 2007: the Physical Science 
Basis. Contribution of Working Group I to the Fourth Assessment 
Report of the Intergovernmental Panel on Climate Change. 
Cambridge University Press, Cambridge, UK; New York, NY, USA. 

Garcia-Ruiz, R., S. N. Pattinson, and B. A. Whitton. 1998. Denitrification in 
river sediments: relationship between process rate and properties 
of water and sediment. Freshwater Biology 39:467-476. 

Groffman, P. M., M. A. Altabet, J. K. Bohlke, K. Butterbach-Bahl, M. B. 
David, M. K. Firestone, A. E. Giblin, T. M. Kana, L. P. Nielsen, and 
M. A. Voytek. 2006. Methods for measuring denitrification: Diverse 
approaches to a difficult problem. Ecological Applications 16:2091-
2122. 

Harrison, J. A., R. J. Maranger, R. B. Alexander, A. E. Giblin, P. A. 
Jacinthe, E. Mayorga, S. P. Seitzinger, D. J. Sobota, and W. M. 
Wollheim. 2009. The regional and global significance of nitrogen 
removal in lakes and reservoirs. Biogeochemistry 93:143-157. 

Hessen, D. O., T. Andersen, S. Larsen, B. L. Skjelkvale, and H. A. de Wit. 
2009. Nitrogen deposition, catchment productivity, and climate as 
determinants of lake stoichiometry. Limnology and Oceanography 
54:2520-2528. 

Huttunen, J. T., J. Alm, A. Liikanen, S. Juutinen, T. Larmola, T. Hammar, 
J. Silvola, and P. J. Martikainen. 2003. Fluxes of methane, carbon 
dioxide and nitrous oxide in boreal lakes and potential 
anthropogenic effects on the aquatic greenhouse gas emissions. 
Chemosphere 52:609-621. 

IPCC. 2006. Guidelines for National Greenhouse Gas Inventories, 
Prepared by the National Greenhouse Gas Inventories 
Programme.in H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and 
K. Tanabe, editors. IGES, Hayama, Japan. 



 

 200 

Juutinen, S., M. Rantakari, P. Kortelainen, J. T. Huttunen, T. Larmola, J. 
Alm, J. Silvola, and P. J. Martikainen. 2009. Methane dynamics in 
different boreal lake types. Biogeosciences 6:209-223. 

Kent, H. C. and K. W. Porter, editors. 1980. Colorado Geology. Rocky 
Mountain Association of Geologists, Denver. 

Knowles, R. 1982. Denitrification. Microbiological Reviews 46:43-70. 

Kroeze, C., E. Dumont, and S. Seitzinger. 2005. New estimates of global 
emissions of N2O from rivers and estuaries. Environmental 
Sciences 2:159-165. 

Le Mer, J. and P. Roger. 2001. Production, oxidation, emission and 
consumption of methane by soil: a review. European Journal of Soil 
Biology 37:25-50. 

Lehner, B. and P. Döll. 2004. Development and validation of a global 
database of lakes, reservoirs, and wetlands. Journal of Hydrology 
296:1-22. 

Liikanen, A., L. Flojt, and P. J. Martikainen. 2002. Gas dynamics in 
eutrophic lake sediments affected by oxygen, nitrogen, and sulfate. 
Journal of Environmental Quality 31:338-350. 

Liikanen, A., E. Ratilainen, S. Saarnio, J. Alm, P. J. Martikainen, and J. 
Silvola. 2003. Greenhouse gas dynamics in boreal, littoral 
sediments under raised CO2 and nitrogen supply. Freshwater 
Biology 48:500-511. 

Liu, L. and T. L. Greaver. 2009. A review of nitrogen enrichment effects on 
three biogenic GHGs: the CO2 sink may be largely offset by 
stimulated N2O and CH4 emissions. Ecology Letters 12:1103-1117. 

Lukkari, K., H. Hartikainen, and M. Leivuori. 2007. Fractionation of 
sediment phosphorus revisited. I: Fractionation steps and their 
biogeochemical basis. Limnology and Oceanography: Methods 
5:433-444. 



 

 201 

McCrackin, M. L. and J. J. Elser. 2010. Atmospheric nitrogen deposition 
alters denitrification and nitrous oxide production in lake sediments. 
Ecology 91:528-539. 

McCrackin, M. L. and J. J. Elser. In revision. Denitrification and microbial 
communities in high elevation lakes receiving atmospheric nitrogen 
deposition. Biogeochemistry. 

Mengis, M., R. Gachter, and B. Wehrli. 1997. Sources and sinks of nitrous 
oxide (N2O) in deep lakes. Biogeochemistry 38:281-301. 

Nanus, L., D. H. Campbell, G. P. Ingersoll, D. W. Clow, and M. A. Mast. 
2003. Atmospheric deposition maps for the Rocky Mountains. 
Atmospheric Environment 37:4881-4892. 

Nevison, C. D., N. M. Mahowald, R. F. Weiss, and R. G. Prinn. 2007. 
Interannual and seasonal variability in atmospheric N2O. Global 
Biogeochemical Cycles 21:GB3017, 
doi:3010.1029/2006GB002755. 

Ravishankara, A. R., J. S. Daniel, and R. W. Portmann. 2009. Nitrous 
oxide: the dominant ozone-depleting substance emitted in the 21st 
century. Science 326:123-125. 

Rudaz, A. O., E. Walti, G. Kyburz, P. Lehmann, and J. Fuhrer. 1999. 
Temporal variation in N2O and N2 fluxes from a permanent pasture 
in Switzerland in relation to management, soil water content and 
soil temperature. Agriculture Ecosystems & Environment 73:83-91. 

Seitzinger, S. P. and C. Kroeze. 1998. Global distribution of nitrous oxide 
production and N inputs in freshwater and coastal marine 
ecosystems. Global Biogeochemical Cycles 12:93-113. 

Seitzinger, S. P. and S. W. Nixon. 1985. Eutrophication and the rate of 
denitrification and N2O production in coastal marine sediments. 
Limnology and Oceanography 30:1332-1339. 



 

 202 

Seitzinger, S. P., S. W. Nixon, and M. E. Q. Pilson. 1984. Denitrification 
and nitrous oxide production in a coastal marine ecosystem. 
Limnology and Oceanography 29:73-83. 

Sjoeng, A. M. S., O. Kaste, K. Torseth, and J. Mulder. 2007. Nitrogen 
leaching from small upland headwater catchments in southwestern 
Norway. Water Air and Soil Pollution 179:323-340. 

Smith, L. K. and W. M. Lewis. 1992. Seasonality of methane emissions 
from five lakes and associated wetlands of the Colorado Rockies. 
Global Biogeochemical Cycles 6:323-338. 

Sobek, S., G. Algesten, A. K. Bergstrom, M. Jansson, and L. J. Tranvik. 
2003. The catchment and climate regulation of pCO(2) in boreal 
lakes. Global Change Biology 9:630-641. 

Taylor, P. G. and A. R. Townsend. 2010. Stoichiometric control of organic 
carbon-nitrate relationships from soils to the sea. Nature 464:1178-
1181. 

Tranvik, L. J., J. A. Downing, J. B. Cotner, S. A. Loiselle, R. G. Striegl, T. 
J. Ballatore, P. Dillon, K. Finlay, K. Fortino, L. B. Knoll, P. L. 
Kortelainen, T. Kutser, S. Larsen, I. Laurion, D. M. Leech, S. L. 
McCallister, D. M. McKnight, J. M. Melack, E. Overholt, J. A. Porter, 
Y. Prairie, W. H. Renwick, F. Roland, B. S. Sherman, D. W. 
Schindler, S. Sobek, A. Tremblay, M. J. Vanni, A. M. Verschoor, E. 
von Wachenfeldt, and G. A. Weyhenmeyer. 2009. Lakes and 
reservoirs as regulators of carbon cycling and climate. Limnology 
and Oceanography 54:2298-2314. 

Ullah, S. and G. M. Zinati. 2006. Denitrification and nitrous oxide 
emissions from riparian forest soils exposed to prolonged nitrogen 
runoff. Biogeochemistry 81:253-267. 

Wang, H. J., W. D. Wang, C. Q. Yin, Y. C. Wang, and J. W. Lu. 2006. 
Littoral zones as the "hotspots" of nitrous oxide (N2O) emission in a 
hyper-eutrophic lake in China. Atmospheric Environment 40:5522-
5527. 



 

 203 

Wanninkhof, R., J. R. Ledwell, W. S. Broecker, and M. Hamilton. 1987. 
Gas-exchange on Mono Lake and Crowley Lake, California. 
Journal of Geophysical Research-Oceans 92:14567-14580. 

Weiss, R. F. 1974. Carbon dioxide in water and seawater: the solubility of 
a non-ideal gas. Marine Chemistry 2:203-215. 

Weiss, R. F. and B. A. Price. 1980. Nitrous-oxide solubility in water and 
seawater. Marine Chemistry 8:347-359. 

Weyhenmeyer, G. A. and E. Jeppesen. 2009. Nitrogen deposition induced 
changes in DOC:NO3-N ratios determine the efficiency of nitrate 
removal from freshwaters. Global Change Biology:doi: 
10.1111/j.1365-2486.2009.02100.x. 

Wiesenburg, D. A. and N. L. Guinasso. 2002. Equilibrium solubilities of 
methane, carbon monoxide, and hydrogen in water and sea water. 
Journal of Chemical and Engineering Data 24:356-360. 

Williamson, C. E., J. E. Saros, W. F. Vincent, and J. P. Smol. 2009. Lakes 
and reservoirs as sentinels, integrators, and regulators of climate 
change. Limnology and Oceanography 54. 

Wrage, N., G. L. Velthof, M. L. van Beusichem, and O. Oenema. 2001. 
Role of nitrifier denitrification in the production of nitrous oxide. Soil 
Biology & Biochemistry 33:1723-1732. 

 
 
 



 

 204 

Table 17: Study lakes by N deposition level and average values for DOC 

and NO3
-. 

 
Sample 

date 
Elevation 

(m) 
Sediment 
collected 

Lake 
depth 
(m) 

DOC 
mM 

NO3
- 

µM 
High-deposition Lakes      
Albion 7/1/08 3,345 no 12 0.26 6.5 
Blue 7/23/08 3,398 no 8 0.52 20.5 
Brainard 6/26/08 3,154 yes 3 0.27 12.6 
Dream 7/4/08 3,032 yes 4 0.28 16.6 
Emerald 7/3/08 3,082 no 10 0.49 20.2 
Estes 6/29/08 2,277 yes >20 0.45 6.4 
Green Lake 1 7/25/08 3,421 yes 9 0.33 9.5 
Green Lake 2 7/25/08 3,416 yes 5 0.36 11.1 
Green Lake 3 7/25/08 3,467 no 10 0.43 15.6 
Haiyaha 7/28/08 3,117 no 10 0.14 19.1 
Isabelle 6/30/08 3,314 yes 40 0.39 19.3 
Long 7/5/08 3,219 yes 3 0.72 12.4 
Mitchell 7/23/08 3,280 yes 1.5 0.62 10.8 
    Mean 0.40 13.9 
    s.e. 0.05 1.4 
Low-deposition Lakes      
Andrews 7/11/08 3,284 yes 6 1.44 3.4 
Clear 7/10/08 3,633 yes >25 0.53 6.3 
Dollar 8/6/08 3,059 yes 5 0.60 0.4 
Emerald 8/7/08 3,175 yes 18 0.86 18.5 
Haviland 7/16/08 2,472 no 3 0.77 9.0 
Highland Mary 7/15/08 3,708 no 30 2.39 2.9 
Irwin 8/7/08 3,148 yes 5 0.35 0.5 
Little Molas 7/8/08 3,329 yes 6 0.84 4.1 
Lost 8/6/08 3,010 yes 10 0.18 3.3 
Lost Slough 8/13/08 2,939 yes 4 0.29 0.3 
Potato 7/18/08 2,983 yes 17 1.47 11.4 
Pothole #2 8/12/08 2,482 no 3 0.77 0.4 
Spring Creek 8/12/08 3,040 yes 8 1.45 0.3 
    mean 0.92 4.7 
    s.e. 0.18 1.6 
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Table 19: Comparison of multiple-linear regression models for estimates 

of sediment gas fluxes and dissolved greenhouse gas concentrations. R2 

denotes goodness-of-fit values adjusted for the number of parameters in 

the model. No significant model indicated by n.s. 

 

 

 

Response 
variable 

Predictor 
variables R2 P Equation 

Sediment CO2 
flux  
(mmol C m-2 h-1) [NO3

-] 0.38 < 0.01 

Log sediment CO2 
flux = -0.34 * log 
[NO3

-] + 2.62  
Sediment CH4 
flux  
(µmol C m-2 h-1) [NO3

-] 0.28 0.03 

Log sediment CH4 
flux = -0.64 * log 
[NO3

-] + 1.05  
Sediment N2O 
flux  
(µmol N m-2 h-1) n.s. n.s n.s n.s. 

[CO2] surface 
[NO3

-], 
[DOC] 0.25 0.01 

Log CO2 emission 
= 0.12 * log [NO3

-] 
+ 0.28 * log [DOC] 
+ 0.53  

[CH4] surface 
[NO3

-], 
[DOC] 0.35 0.003 

Log CH4 emission 
= – 0.38 * log 
[NO3

-] + 0.95 * log 
[DOC] – 0.69 

[N2O] surface [NO3
-] 0.43 <0.001 

Log N2O emission 
= 0.11 * [NO3

-] + 
1.31 
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Table 20. Average (and standard error, s.e.) sediment greenhouse gas 

fluxes for the study lakes and results of statistical test comparing 

deposition regions. Nonsignificant results indicated by n.s. 

 

CO2 flux 
µmol C  
m-2 h-1 

CH4 flux 
µmol C  
m-2 h-1 

N2O flux 
µmol N  
m-2 h-1 

High-deposition Lakes   
Brainard 103.0 3.6 0.8 
Dream 117.4 1.0 6.4 
Estes 273.7 2.5 0.0 
Green Lake 1 233.0 5.0 0.0 
Green Lake 3 101.3 0.2 0.0 
Isabelle 145.6 1.2 0.0 
Long 200.0 1.1 1.1 
Mitchell 134.0 2.9 0.0 

Mean 163.5 2.2 0.6 
s.e. 26.3 0.7 0.4 

    
Low-deposition lakes   
Andrews 197.3 7.2 0.0 
Clear 463.9 5.6 0.0 
Dollar 333.0 5.6 0.0 
H Mary 312.0 11.6 0.0 
Little Molas 546.6 7.4 0.0 
Lost 223.5 19.1 0.0 
Lost Slough 206.8 9.4 0.0 
Potato 177.1 4.5 1.0 
Spring Creek 
Reservoir 408.2 1.6 0.0 

Mean 318.7 8.0 0.1 
s.e. 53.6 2.1 0.1 

high vs. low 
deposition high < low high < low high = low 

P 0.004 0.003 n.s. 



 

 209 

Table 21. Comparison of dissolved N2O and sediment N2O fluxes among 

different studies. 

Dissolved N2O, nmol N 

 Mean Range 
% 

Saturation Study 
26 lakes, CO, 
USA 26.4 11 - 58 112 - 208% This study 
Taihu Lake, 
China  25 - 62 80 - 689% 

Wang et al. 
2009 

Lake Baldegg, 
Switzerland  10 - 120  

Mengis et al. 
1996 

15 lakes, 
Switzerland 43.9 14 - 152 99 - 798% 

Mengis et al. 
1997 

   
N2O sediment fluxes, µmol N m-2 h-1     

 Mean Range  Study 
17 lakes, CO, 
USA 0.4 0.0 - 5.6  This study 

32 lakes, Norway 0.5 0.0 - 6.8  
McCrackin and 

Elser 2010 
Lake Kevätön, 
Finland  0.4 - 7.1  

Liikannen et al. 
2003 

Lake Kevätön, 
Finland  0 - 1.3  

Liikanen et al. 
2002 

Humber Estuary, 
UK  0.2 - 25.2  

Barnes and 
Owens 1998 

Narragansett 
Bay, RI, USA  0.0 - 0.9  

Seitzinger et al. 
1983 
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Table 22: Comparison of lake N2O emission factors (determined as 

[N2O/NO3
-]). 

 

 

 

 Emission Factor  

  Mean Range Study 
26 lakes, CO, 
USA 0.01 0.001 - 0.07 This study 
Taihu Lake, 
China 0.002 0.0003 - 0.02 Wang et al. 2009 
Greifensee, 
Switzerland 0.002 0 - 0.017 

Mengis et al. 
1997 

Lago di Lugano, 
Switzerland 0.0015 0 - 0.009 

Mengis et al. 
1997 

Lake Baldegg, 
Switzerland 0.016 0.001 - 0.12 

Mengis et al. 
1996 

Lake Huron, USA 0.0011 0.001 - 0.0012 
Lemon and 

Lemon 1981 
Lake Ontario, 
USA 0.001 0.003 - 0.0006 

Lemon and 
Lemon 1981 

Cayuga Lake, 
USA 0.0003 0.0002 - 0.0006 

Lemon and 
Lemon 1981 

    

 
Default 
value 

Uncertainty 
Range  

Indirect N2O 
Emission Factor 
(EF5) 0.0075 0.0005 - 0.025 IPCC 2006 
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Figure 18: Relationship between dissolved N2O and NO3
-. Regression line 

is shown for all lakes, R2 = 0.43, P < 0.001.
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Figure 19. Estimated emissions of N2O (Gg N y-1) from lakes receiving 

atmospheric N deposition by continent. Bars are mean emissions based 

on the IPCC default value emission factor (0.0075). Error bars show the 

upper IPCC uncertainty range for emissions (emission factor of 0.025).  
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CHAPTER 7 

Summary 

Even in remote or unpopulated areas, lakes are subject to 

anthropogenic influences, via atmospheric N (N) deposition. Indeed, N 

that is transported and deposited by the atmosphere can be the dominant 

source of “new” N to many watersheds (Sickman et al. 2002), and can 

decrease water quality and alter in phytoplankton and fish species 

communities (Driscoll et al. 2003, Fenn et al. 2003). Fates of N in lakes 

are biological assimilation, burial in sediments, or denitrification. Of these, 

denitrification is the primary and only permanent mechanism by which N is 

removed (Saunders and Kalff 2001). Global rates of N deposition are 

expected to increase because human population growth will drive demand 

for food and energy (Galloway et al. 2004). Most investigations into the 

ecological effects of N loading have been conducted in terrestrial 

ecosystems and the water column of lakes. Yet there are interactions 

between the terrestrial portion of the watershed, the pelagic zone of lakes, 

and lake sediments and N loading may influence these interactions.  

This research reported here contributes to the body of scientific 

knowledge in several ways. First, we extend previous investigations into 

the ecological effects of N deposition from terrestrial ecosystems and the 

pelagic habitats of lakes into the benthos. We conducted our investigation 

on lakes located at the ends of two gradients of N deposition, in Colorado 
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and Norway. These gradients encompass different geological substrata, 

land use-histories, climates, and sources and patterns of atmospheric N, 

hence, making them useful to understand how generalizable the findings 

are. Second, we conducted experiments to understand the capacity of 

sediment denitrification to respond to predicted increases in N loading. 

Third, we scaled up our findings to understand the role of lakes in 

removing N via denitrification and the magnitude of N deposition-induced 

nitrous oxide (N2O) emissions from lakes. Nitrous oxide emissions have 

been quantified from a variety of terrestrial and aquatic ecosystems, but 

these estimates have not included lakes.  

Summary of findings 

Denitrification 

We contrasted sediment and water resources between N 

deposition regions to assess the magnitude of deposition-induced 

changes to the environment in which denitrification occurs. There was no 

evidence of changes in key sediment resources between N deposition 

regions in either Norway or Colorado. Total carbon (C), N, phosphorus (P) 

and organic matter (OM) did not differ between high- and low-deposition 

regions (Table 22, Chapters 2 and 3). Total C, N, P, and OM contents 

averaged 10.3 mmol g-1, 0.75 mmol g-1, 0.1 mmol g-1, and 20%, 

respectively, across all lakes. In both Colorado and Norway, lakes 

receiving elevated N deposition had significantly greater concentrations of 
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nitrate (NO3
-) compared to lakes in low-deposition regions (15 times 

greater, Table 22, Chapters 2 and 3). The opposite was true for dissolved 

organic carbon (DOC) concentrations, which were two times greater in 

low-deposition lakes compared to high-deposition lakes due to Norwegian 

lakes; DOC did not differ between deposition regions for lakes in 

Colorado. 

When sediments were amended with ambient concentrations of 

NO3
- in lake water, the denitrification rate was greater in high-deposition 

lakes relative to low-deposition lakes (Table 22, Chapter 2). For lakes in 

both regions, there was a strong positive relationship between 

denitrification and water NO3
- (Fig. 20). These results are consistent with 

other studies that have found NO3
- to be an important predictor of 

denitrification (Seitzinger et al. 2006, Mulholland et al. 2008).  

We estimated the fraction of N that may be removed from all 

sampled lakes as RN = 1 – exp(-Vf / ( z/τ)), where Vf is the piston velocity 

for N (m y-1) in lake sediments, z (m) is the mean lake depth, and τ (y) is 

the water residence time (Kelly et al. 1987, Harrison et al. 2009). The 

piston velocity was determined using the denitrification rate and NO3
- 

concentration for each lake as Vf = denitrification rate/[NO3
-]. The water 

residence time was assumed to be 0.083 y (1 month) or 1 y, which is in 

the ranges of those reported for lakes in areas where we sampled. The 

average fraction removed was bounded with a 95% confidence interval 
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(CI) based on the standard error of RN to reflect uncertainty and variability 

of the estimates.  

Overall, denitrification in the sampled lakes may remove 13% (6-

19% CI) of N inputs assuming a one-month water residence time and 39% 

(28-51% CI) assuming a one-year water residence time. Lakes in high-

deposition regions are estimated to remove 16% (9-23% CI) and 64% (49-

78% CI) of N loading if the water residence time is one month and one 

year, respectively. Low-deposition lakes may remove an average of 10% 

(1-20% CI) of N inputs if the water residence time is short (1 month) 

compared to 15% (2-28% CI) if the water residence time is one year. 

While these estimates are approximate and do not reflect seasonal and 

inter-annual changes in key factors such as NO3
- concentrations and 

temperature, they are consistent with a growing body of evidence that 

lakes are important sinks for N (Seitzinger et al. 2006, Harrison et al. 

2009). 

While high-deposition lakes have the potential to remove more NO3
- 

than low-deposition lakes, we evaluated the efficiency of NO3
- removal by 

plotting Vf (piston velocity, calculated as described above) and NO3
- for 

lakes in each deposition region. While there was no relationship between 

Vf and NO3
- concentrations for Colorado lakes, we found a strong negative 

relationship between Vf and NO3
- for Norwegian lakes (Fig. 21, R2 = 0.53), 

indicating that NO3
- removal by denitrification decreases with increasing 
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NO3
- concentration, consistent with observations in streams (Mulholland et 

al. 2008).  

Given the role of denitrification as a mechanism for N removal, we 

investigated the effects of chronic N loading on denitrification 

performance, the abundance of sediment denitrifiers, and resource 

limitation of denitrification. First, incubations that were enriched with non-

limiting concentrations of oC, NO3
-, and P (denitrification potential assays) 

revealed that lake sediments possess considerable denitrification 

capacity, regardless of region or N deposition level (Table 22, Fig. 22, 

Chapters 2 and 3). Results of dose-response experiments with sediments 

of Colorado lakes (Chapter 3) further suggest that sediments can remove 

N inputs through enhanced denitrification without secondary limitation by 

oC or P. Indeed, under Michaelis-Menton kinetics, the half-saturation 

constant of denitrification was ~35 times greater than background NO3
- 

concentrations. Overall, our findings suggest that sediment denitrifiers will 

be able to respond to predicted increases in N deposition rates, provided 

that they have access to NO3
- itself. 

Second, we quantified the abundance of sediment bacteria capable 

of NO3
- and nitrite reduction (together as denitrifiers) in Colorado lakes 

(Chapter 3). There was no difference in abundances between lakes 

receiving elevated or low rates of N deposition. We compared our findings 

to those determined with similar methods and found that the abundance of 
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lake sediment denitrifiers to be within the ranges reported for desert, 

riparian, and prairie ecosystems, but less than that for agricultural soils. 

Denitrifiers have flexible metabolic pathways and use electron acceptors 

other than NO3
-, perhaps allowing them to develop similar abundance in a 

wide range of ecosystems.  

Third, we conducted resource enrichment experiments with lake 

sediments (Chapter 5). We measured metabolic responses of bacteria to 

enrichment with oC, NO3, and P. Results of 48-h bioassays indicated that 

sediments, respiration (CO2 production) responded most strongly to 

additions of oC, while denitrification was limited by NO3
-. These responses 

varied between individual lakes, but overall were the same both high- and 

low-deposition lakes. We also contrasted the rate of potential nitrification 

(in response to non-limiting concentrations of ammonium) between 

deposition regions in Norway. Nitrification potential was significantly 

greater high-deposition lakes, suggesting that this process may be a 

source of NO3
- to denitrification and contribute to elevated concentrations 

of NO3
- in surface waters.  

Greenhouse gas dynamics 

In addition to increasing denitrification rates, we found that N 

deposition has influenced the production of N2O during denitrification. 

There was a positive relationship between sediment N2O fluxes and NO3
-. 

In addition, there was a positive relationship between surface water 
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concentrations of dissolved N2O and NO3
- for lakes sampled in Colorado. 

Nitrous oxide is produced not only by denitrification but also by 

nitrification. Elevated rates of nitrification potential in sediments of high-

deposition lakes suggest that dissolved N2O observed in the water column 

could result from nitrification. Regardless of the source(s) of N2O, our 

evidence suggests that N deposition has enhanced microbial N-cycling 

and N2O concentrations in the water column, which could lead to 

increased N2O emissions from lake surfaces. Because of the role that N2O 

plays in the destruction of stratospheric ozone, we estimated the global 

magnitude of N lake N2O emissions. We applied the methodology of the 

Intergovernmental Panel on Climate Change (IPCC) to spatially explicit 

datasets of N deposition and lakes surface area (Chapter 6). Nitrous oxide 

emissions were estimated as N2O-N kg y-1 = atmospheric deposition to 

lake kg N y-1 * EF5, where EF5 is the IPCC’s overall emission factor for 

aquatic ecosystems, with a default value of 0.0075 and an uncertainty 

range of 0.0005 – 0.025 (IPCC 2006). Such estimated emissions are 7–

371 Gg N y-1 for 1993, increasing to 11–705 Gg N y-1 in 2050. The 1993 

estimates represent 0.5–25% of emissions from rivers and estuaries, 

suggesting lakes could be a source of N2O, especially if all sources of N to 

lakes are considered. Further research is required to better quantify 

emission rates from lentic ecosystems. 
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In addition to N2O, we investigated dynamics of carbon dioxide 

(CO2) and methane (CH4, Chapter 6). In assays amended with lake water, 

rates of CO2 and CH4 production were greater in sediments of lakes from 

low-deposition lakes relative to high-deposition lakes, the opposite of N2O 

production. Concentrations of dissolved CO2 did not differ between 

deposition regions and CH4 was greater in the surface waters of lakes in 

the low-deposition region. Overall, CO2 was the dominant greenhouse gas 

in the sampled lakes; both surface water concentrations and sediment 

fluxes were two orders of magnitude greater than those for CH4 and N2O.  

Future directions 

There was strong correlative evidence that N deposition has 

increased NO3
- concentrations, however, the sources of NO3

- in lake water 

are not clear. Analysis of stable isotopes of NO3
- in lake water, 

precipitation, and catchment run-off would be useful for understanding the 

extent to which NO3
- results from nitrification or originates from 

anthropogenic sources. It would also be interesting to further investigate 

the extent to which nitrification and denitrification are coupled and the role 

of nitrification as a source of N2O in the water column. Lastly, future 

investigations could study sedimentation rates and the activities of 

enzymes involved in OM mineralization to determine the fate of 

deposition-enhanced primary production in the water column and 

sediments.   
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Cross-habitat comparison 

Critical processes and perturbations, such as nutrient cycling and 

nutrient enrichment, occur in both terrestrial and aquatic habitats. 

Understanding the extent to which ecosystem processes in soils and lakes 

respond similarly to atmospheric N deposition may improve our overall 

understanding of ecosystem functioning. Asymmetry in citations patterns 

of aquatic and terrestrial ecologists, however, suggests that terrestrial 

ecologists tend to ignore the literature of aquatic ecologists (Menge et al. 

2009). This is surprising because lentic ecosystems, such as lakes, 

reservoirs, and ponds, are embedded in larger terrestrial ecosystems. 

Perhaps there is a perception that the influence of terrestrial ecosystems 

on lakes is unidirectional through “downhill” inputs of water, sediment, and 

nutrients. Lakes affect local climate through the exchange of water, heat, 

and greenhouse gases with the surrounding watershed (Krinner 2003, 

Tranvik et al. 2009). Such reciprocal influences of lakes on terrestrial 

ecosystems may be less appreciated or less relevant to those who study 

land-based habitats. In order to gain insights from cross-habitat 

comparisons, we summarized the effects of atmospheric N deposition 

between soils and lakes (Table 23).  

C cycling 

Nitrogen limitation of primary production in terrestrial ecosystems is 

widespread, as is co-limitation by N and P (Elser et al. 2007, LeBauer and 
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Treseder 2008). Atmospheric N deposition has been found to relieve N 

limitation, increasing primary production and C storage in temperate and 

boreal forests ecosystems (Magnani et al. 2007, Liu and Greaver 2009). In 

these forests, incremental C sequestration due to deposition is 

predominantly stored in above-ground biomass compared to soils 

(Townsend et al. 1996). Soil C is influenced by increased litter fall 

resulting from deposition-induced enhancement of net primary production 

and by slowed microbial decomposition of OM (De Vries et al. 2006). 

Decomposition is influenced by rates of microbial respiration and activity 

of extracellular enzymes that degrade humus. The responses of these 

processes to N enrichment vary both in magnitude and direction 

depending on ecosystem type. For example, N fertilization repressed soil 

respiration in certain temperate forests (e.g., Bowden et al. 2004, Burton 

et al. 2004) but increased soil respiration in others (e.g., Gallardo and 

Schlesinger 1994, Waldrop et al. 2004). Similarly, NO3
- fertilization 

decreased the synthesis of lignin-degrading enzymes by certain types of 

soil fungi in sugar-maple forests, but increased it in oak forests (Grandy et 

al. 2008, Zak et al. 2008).  

It is not clear how relevant terrestrial processes are as models for 

understanding N deposition effects on lake sediment OM. Except for 

shallow areas dominated by macrophytes, sediments generally lack the 

root-microbe interactions that are present in soils. Also, the environmental 
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conditions (moisture and temperature regime, oxygen concentrations) 

differ greatly between sediments and soils. Lastly, the magnitude and 

nature (e.g. litter versus dissolved forms) of terrestrially derived C inputs to 

sediments deserve further consideration to fully compare responses of 

sediment and soil processes to N enrichment.  

In low productivity lakes, there is evidence that phytoplankton 

communities experience N limitation (Elser et al. 2009), similar to many 

terrestrial ecosystems (Elser et al. 2007). Consequently, N deposition has 

increased concentrations of chlorophyll by a factor of ~3 and seston 

(particulate C) by factor of 1.5 in the sampled lakes (Elser et al. 2009). To 

the extent that N deposition increases primary production in the catchment 

and water column, we would expect DOC concentrations to be elevated in 

high-deposition lakes. Indeed, other studies found a positive relationship 

between N deposition and DOC (Weyhenmeyer and Jeppesen 2009). 

Surprisingly, the opposite was true for lakes we sampled in Norway; the 

concentration of DOC in low-deposition lakes was two times greater than 

that in high-deposition lakes (Table 22). There was no difference in DOC 

between deposition regions for Colorado lakes. Dissolved organic carbon 

is an important energy source for heterotrophic bacteria (Wetzel 2001) 

and thus, enhanced bacterial activity could deplete DOC in the water 

column of high-deposition lakes if bacteria are N limited. However, we 

found no evidence that N deposition has influenced either the abundance 
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or nutrient status of bacterioplankton. For lakes in Norway, DOC 

concentrations were positively related to the proportion of bogs in the 

catchment (R2 = 0.44, P < 0.0001). We do not know which factors 

influence DOC in Colorado lakes. Regardless, it appears that N deposition 

does not have a strong effect on DOC concentrations, in contrast to 

chlorophyll and seston C concentrations. There is potential for increases 

in seston C to increase sedimentation rates and, thus, sediment C 

content. We found no difference in bulk sediment C or OM contents 

between high- and low-deposition lakes. This finding was based on 

analyses of the homogenized sediments that were collected to a depth of 

7 cm with a dredge. It is possible that finer-scale analysis of intact 

sediment cores would reveal differences in patterns of C accumulation 

between deposition regions.  

In soils, N fertilization has been found to enhance CH4 production 

by nearly 100% and reduce CH4 oxidation (consumption) by 38% (Liu and 

Greaver 2009). The net effect of N on CH4 emissions, however, may 

depend on a variety of factors, such as the type of N applied (NO3
- or 

NH4), soil water status, and whether methanotrophic bacteria are N limited 

(Bodelier and Laanbroek 2004). Interestingly, we observed a negative 

relationship between water NO3
- concentrations and both sediment CH4 

production and surface water concentrations of CH4. While we did not 

investigate the nutrient status of methanotrophs, it seems unlikely that N 
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limited the growth of these bacteria in high-deposition lake sediments 

because of chronic N inputs. Alternatively, it is possible that the presence 

of a strong oxidizer, such as NO3
-, suppressed CH4 production (Le Mer 

and Roger 2001). While other studies have focused on reservoirs as a 

source of CH4 because of land use changes (St. Louis et al. 2000), further 

work is required to understand the effects of N enrichment on CH4 

dynamics in lentic ecosystems.  

For sediments, we found that sediment respiration (CO2 production) 

in assays that were amended with lake water was greater in low-

deposition lakes compared to high-deposition lakes. There was a strong 

negative relationship between NO3
- concentrations and CO2 production, 

which suggests that N deposition may repress sediment bacterial 

respiration. In contrast, there was a strong positive effect of N deposition 

on denitrification rates, which also produces CO2 (in ratios of 1.5 – 6 

CO2:N2 (Groffman et al. 2006). Thus, the impact of N deposition on 

sediment CO2 production may depend on the balance of oxic respiration 

and denitrification, although further investigation is needed. While 

microbial respiration and biomass are strongly related in soils (Treseder 

2008), we found no relationship between the abundance of denitrifying 

bacteria and denitrification rates. In addition, there was no difference in 

the abundance of denitrifying bacteria between lakes in high- and low-

deposition regions. Overall, it is not clear how sediment respiration 
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contributes to overall lake respiration. Concentrations of CO2 in surface 

water were the same across high- and low-deposition lakes, suggesting 

that benthic and pelagic respiration, as a whole, has not been influenced 

by N deposition. Nitrogen deposition appears to have the strongest effect 

on concentrations of particulate C in water column and but not total 

sediment C. Further research should investigate deposition-induced 

changes in lake C cycling at broader spatial and temporal scales.  

N cycling 

Nitrogen enrichment of soils by atmospheric deposition has been 

well documented (Fenn et al. 2003). Increased N assimilation by 

vegetation results in increased soil N content though litter fall and 

decomposition (McNulty et al. 1991, Baron et al. 2000). Similar processes 

in lakes could influence the N content of water and sediments. N 

deposition has increased total N, primarily as NO3
-, decreased ratios of 

seston C:N but not increased seston N concentrations (Elser et al. 2009, 

Hessen et al. 2009, Weyhenmeyer and Jeppesen 2009). We did not 

measure dissolved organic N (DON) but other studies have found it to be 

more strongly related to catchment properties (e.g. elevation or tree cover) 

than to N deposition (Ito et al. 2005, Hessen et al. 2009). Concentrations 

of dissolved N2O were greater in high-deposition lakes relative to low-

deposition lakes and positively related to NO3
- concentrations. Analyses of 

bulk sediments found no deposition-induced changes in sediment N 
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content or the ratio of C:N. Thus, N deposition has increased the total N 

content of lakes, but this effect appears to be limited to the water column.  

Enhanced nitrification and denitrification as a result of fertilization 

has been well established in studies of agricultural ecosystems (Bouwman 

et al. 2005, Schlesinger 2009). Elevated nitrification and denitrification 

have also been observed in natural terrestrial ecosystems subject to N 

loading (Backman and Klemedtsson 2003, Seitzinger et al. 2006). In lake 

sediments, we found that denitrification was significantly greater in high-

deposition relative to low-deposition rates and a strong, positive 

relationship between denitrification and hypolimnetic NO3
- concentrations 

(Fig. 20).  

Sediment nitrification rates, when given a non-limiting supply of 

ammonium (NH4
+), were significantly greater in lakes from high-deposition 

regions compared to low-deposition regions. Such potential nitrification 

rates are not indicative of actual nitrification rates, which will be influenced 

by pH and concentrations of oC, oxygen, and NH4
+ (Rysgaard et al. 1994, 

Strauss et al. 2002). A review of the literature found relatively few studies 

of nitrification in lakes compared to other ecosystems and even fewer 

studies of the effects of N loading on lake nitrification. This would be an 

interesting direction for future studies. Given the role that nitrification plays 

in accumulation of NO3
- in Lake Superior (McManus et al. 2003, Finlay et 

al. 2007), for example, it is possible that this process contributes to low 
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ratios of DOC:NO3
- observed in different aquatic ecosystems 

(Weyhenmeyer and Jeppesen 2009, Taylor and Townsend 2010).  

Conclusion 

Both soils and sediments are composed of degraded OM, living 

organisms, mineral particles, and water (Hedges and Oades 1997). 

Despite such similarities, there are marked differences between these 

substrata in terms of their physical properties, sources of materials and 

resources, and rates of nutrient cycling. The research presented here 

identified key contrasts and similarities between soil and sediment 

responses to N deposition. Unlike soils, there was no evidence of 

deposition-related changes to C or N contents of surface sediments. 

Rather, such effects were more visible in the overlying lake water. As far 

as similarities, N deposition does not appear to have influenced the 

abundance of bacteria capable of NO3
- and nitrite reduction, consistent 

with studies that found no N deposition-induced reductions in soil bacteria. 

In terms of bacterial processes, N loading increases rates of denitrification 

and related N2O production in both soils and sediments.  

As land based N inputs are transported from soils to, lakes and 

streams, and ultimately, to the ocean, denitrification plays an important 

role in reducing N loading and eutrophication in downstream ecosystems 

(Seitzinger et al. 2006).  We found that lakes could be important 

biogeochemical sinks for N along the land-to-ocean pathway. Sediments 
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possess considerable capacity to remove NO3
- by denitrification, when 

NO3
- is available. Diffusion of NO3

- to the active sites of denitrifying 

enzymes will limit the role of NO3
- removal by sediments. Consequently, 

there is potential for managed lake ecosystems, such as reservoirs, to 

retain more N than unmanaged lakes (Harrison et al. 2009) because of 

differences in morphology and water residence time. Lentic water bodies 

that are shallow or have long residence times may remove more NO3
- than 

those that are deep or have short residence times because of greater 

contact between the water column and sediments (Kelly et al. 1987, 

Weyhenmeyer et al. 2007). There may be trade-offs, however, between 

NO3
- removal and increased greenhouse gas production. Indeed, elevated 

CO2 and CH4 emissions have been observed in reservoirs (St. Louis et al. 

2000) and increased N2O emissions are possible, as well. This research 

provided a better understanding of the capacity of denitrification in lakes 

that are subject to chronic N loading and the related dynamics of 

greenhouse gases, primarily N2O.  
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Table 24. Comparison of N deposition effects on soil and lake (sediment 

and pelagic) habitats.  

 Soil Sediment Pelagic 
Substrate C Increased soil 

organic C in N 
fertilized plots in 
Scandinavian, NE 
USA forests 
(Hyvonen 2008, 
Zak 2008, DeVries 
2006) 
Increased C 
storage in forests 
(Liu 2009). 

No effect of N 
deposition on 
sediment C 
content. 

N deposition 
increased 
chlorophyll, 
seston C (Elser 
2009, 
Bergstrom 
2006). 
Decreased 
dissolved 
organic C (this 
study) but 
increased DOC 
in other studies 
(Wehenmayer 
2009). 

Substrate N Increased soil N 
(Zak 2008, Fenn 
2003, Baron 2000, 
McNulty 1991). 
Fertilization effect 
depended on forest 
tree species (Lovett 
1999).  

No effect of N 
deposition on 
sediment N 
content. 

N deposition 
increased 
dissolved 
inorganic N, 
increased 
seston N (Elser 
2009). 

Substrate 
C:N 

Decreased soil C:N 
in high-elevation 
Colorado 
ecosystems and 
NE USA forests 
receiving N 
deposition (Baron 
2000, Aber 2003, 
McNulty 1991).  

No effect of N 
deposition on 
sediment C:N. 

N deposition 
decreased 
seston C:N. 
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Table 24, continued.  

 Soil Sediment Pelagic 
Bacterial 
abundance 

Meta-analysis of 
bacterial-specific 
studies found no 
change in 
biomass.  
Across all studies 
microbial biomass 
declined 15%. 
(Treseder 2008). 

No effect of N 
deposition on 
abundance of 
NO3

-- and NO2
--

reducing 
bacteria.  

No effect of N 
deposition on 
bacterioplankton 
abundance. 

Respiration 
(CO2 
production) 

Meta-analysis 
found respiration 
was positively 
correlated with 
microbial biomass. 
If N fertilization 
decreased 
biomass, 
respiration 
decreased as well. 
(Treseder 2008). 
Increased 
respiration in non-
forest ecosystems 
(Liu 2009). 

Negative effect 
of N deposition 
on respiration in 
Colorado lakes 
sediments (when 
amended with 
lake water), no 
effect of N 
deposition on 
Norwegian lake 
sediments (when 
amended with 
de-ionized 
water). 

Not directly, 
measured, but 
no effect of N 
deposition on 
dissolved CO2 in 
surface water. 

Nitrification N fertilization 
increased net 
nitrification (Zak 
2006, Aber 2003, 
McNulty 1991). 
Positive N 
deposition effect 
depended on 
forest tree species 
(Lovett 1999). 

N deposition 
increased 
nitrification 
potential. 

Elevated 
dissolved N2O 
concentrations in 
eutrophic lakes 
attributed to 
nitrification 
(Mengis 1997). 
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Table 24, continued.  

 Soil Sediment Pelagic 
Denitrification N loading 

increased 
denitrification 
(Seitzinger 
2006, Barton 
1999). 

N deposition 
increased 
denitrification. No 
effect of N 
deposition on 
potential 
denitrification. 

 

N2O 
production 

N fertilization 
increased N2O 
production (Liu 
2009, Forster 
2007). 

N deposition 
increased 
sediment N2O 
production. 

Elevated 
dissolved N2O 
concentrations  
eutrophic lakes 
attributed to 
nitrification 
(Mengis 1997). 

CH4 
production 

N fertilization 
increased CH4 
production (Liu 
2009). 

N deposition 
decreased 
sediment CH4 
production. 
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Figure 20. Relationship between denitrification and NO3

- concentrations in 

slurries amended with lake water that was collected just above the 

sediments. This relationship was only significant for Norwegian lakes (R2 = 

0.86, P < 0.0001). 
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Figure 21. Relationship between piston velocity (estimated as 

denitrification rate/NO3
-) and NO3

- concentrations in slurries amended with 

lake water that was collected just above the sediments. This relationship 

was only significant for Norwegian lakes (R2 = 0.53, P < 0.0004). 
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Figure 22. Relationship between rate of denitrification potential and NO3
- 

concentration in water that was collected just above the sediments.  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Figure 23. Relationship between sediment N2O production and NO3
- 

concentrations in slurries amended with lake water that was collected just 

above the sediments. The relationship was only significant for Norwegian 

lakes (R2 = 0.45, P < 0.0001).  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