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ABSTRACT 

Many methods have been proposed to estimate power system small signal 

stability, for either analysis or control, through identification of modal frequencies 

and their damping levels.  Generally, estimation methods have been employed to 

assess small signal stability from collected field measurements.  However, the 

challenge to using these methods in assessing field measurements is their ability 

to accurately estimate stability in the presence of noise. 

In this thesis a new method is developed which estimates the modal 

content of simulated and actual field measurements using orthogonal polynomials 

and the results are compared to other commonly used estimators.  This new 

method estimates oscillatory performance by fitting an associate Hermite 

polynomial to time domain data and extrapolating its spectrum to identify small 

signal power system frequencies.  Once the frequencies are identified, damping 

assessment is performed using a modified sliding window technique with the use 

of linear prediction (LP).  Once the entire assessment is complete the 

measurements can be judged to be stable or unstable.  Collectively, this new 

technique is known as the associate Hermite expansion (AHE) algorithm. 

Validation of the AHE method versus results from four other spectral 

estimators demonstrates the method’s accuracy and modal estimation ability with 

and without the presence of noise.  A Prony analysis, a Yule-Walker 

autoregressive algorithm, a second sliding window estimator and the Hilbert-

Huang Transform method are used in comparative assessments in support of this 
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thesis.  Results from simulated and actual field measurements are used in the 

comparisons, as well as artificially generated simple signals.  A search for actual 

field testing results performed by a utility was undertaken and a request was made 

to obtain the measurements of a brake insertion test.  Comparison results show 

that the AHE method is accurate as compared to the other commonly used 

spectral estimators and its predictive capability exceeded the other estimators in 

the presence of Gaussian noise.  As a result, the AHE method could be employed 

in areas including operations and planning analysis, post-mortem analysis, power 

system damping scheme design and other analysis areas. 
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Chapter 1  

SMALL SIGNAL STABILITY ESTIMATION IN POWER SYSTEMS 

1.1 Overview 
 

As early as the 1920’s, small signal or electromechanical mode analysis in 

power systems was performed due to a phenomenon referred to as hunting [80] 

causing synchronous generator rotor speeds to oscillate about an operating point.  

Engineers discovered that the problem was the result of excessive transmission 

line reactances and found the solution was to add amortisseur windings to the 

affected generator rotors.  Excessive transmission line reactances are still 

recognized today as factor in affecting damping torques within generators. 

Today as was probably the case in the 1920’s, small signal oscillations 

often are initiated by random changes in loads causing local oscillations in 

generators.  Oscillations could also occur between clusters of generators.  

Occasionally these oscillations were further aggravated by high-speed excitation 

controls with large voltage regulator gains and small time constants [1-3].  The 

resulting oscillations could potentially become negatively damped affecting the 

security and reliability of the power system.  High real power loading and high 

var absorption in generators have also been identified with reducing damping 

torques in generators [62] Unacceptable oscillations may occur between a load 

center and one or more local generators.  The exchanges of power between load 

centers and remote generators can also manifest itself in power transfer 

oscillations across transmission lines or paths resulting in interarea oscillations.  

Researchers and engineers [80] have loosely classified the different types of 
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oscillations into three groups based on where the problem occurs and its 

frequency range: 

• Interarea oscillations which occur between groups of generators 

and generally have the lowest frequency range of .2 to .7 Hz. 

• Local oscillations which occur between a generator or groups of 

generators and the electrically adjacent power system with a 

frequency range of .8 to 1.5 Hz. 

• Intraplant oscillations which occur within a generating station or 

cogeneration plant with a frequency range of 2 to 3 Hz. 

In this thesis, only interarea and local oscillations were studied since they 

generally have a direct impact on the interconnected transmission system. 

All types of power system oscillations can potentially affect protection 

systems producing miss-operations, poor coordination or false tripping.  

Mitigation measures can include adding power system stabilizers (PSS), retuning 

existing PSS, adding compensation to high voltage DC converter controls, adding 

or retuning an existing static var compensator (SVC), retuning exciter regulators 

or reducing flows on transmission lines.  Fig. 1.1 shows a typical small signal 

event of a simulated growing oscillation in the rotor angle of a generator caused 

by a slight perturbation near the generator. 

Over the years engineers have employed many tools and test procedures 

for the analysis of these interarea and local oscillations.  Since the resulting 

oscillations are thought to be small deviations about an operating point, the 
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methods employed to study small signal stability events are typically linear 

techniques.  Some of the methods currently used are appropriate for off-line 

analysis while others are applicable for on-line monitoring.  The tools could be 

further characterized by their processing capabilities.  For example, some analysis 

methods are more accurate for use in field testing environments while others show 

greater efficacy using ambient measurements.  Certain techniques are more 

accurate in the presence of noise than other methods. 

 

Fig. 1.1.  Typical generator rotor angle small signal event response. 

Recently an increasing number of state governments in the United States 

of America are adopting mandatory renewable portfolio standards for 

jurisdictional utilities [4] with the potential of future federal regulations being 

mandated for all utilities.  Some proposed wind and solar generation facilities are 

approaching 1000 MW in size [5] and do not anticipate having damping 

mitigation equipment such as PSS.  Complicating this fact is a United States 
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Department of Energy report [6] recommending that new wind generation stations 

locate away from population centers using existing transmission lines for delivery 

to customers thereby increasing congestion.  The combination of size and location 

of large wind farms allows them to have a potentially adverse effect on power 

system modes, which could require additional scrutiny by power system 

engineers. 

The need to continue to develop new tools for estimating modes and their 

damping levels and to design mitigating measures within the power system is 

important for the following reasons: 

• To identify potentially negatively damped local and interarea 

modes. 

• To prevent relay miss-operation resulting from lightly damped 

modes. 

• To aid in the mitigation of lightly damped modes by adding or 

retuning damping mitigation devices. 

1.2 Small signal stability estimation problem 
 

Although many methods have been proposed and are actively employed to 

calculate electromechanical modes in power systems, new methods are 

continually being sought out for their unique capabilities or to complement 

existing methods.  Some successful methods possess two important characteristics 

in their estimating ability:  linearity and orthogonality.  One of the most well 

known tools for estimating periodic signals is the Fourier series.  The Fourier 
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series is a linear representation of orthogonal functions that are also harmonically 

related.  Key metrics such as accuracy in the presence of noise and measurement 

window length are also important for any effective mode estimator.  This thesis 

introduces a new method for identifying modes and their respective damping 

levels.  The method uses an orthogonal polynomial for estimating the spectrum 

from measurements.  Once the frequencies of the modes are identified, a modified 

sliding window technique is used to estimate the damping level of each mode.  

Damping levels are calculated by downshifting the original measurement and 

solving a linear prediction routine by using the estimated frequency spectrum.  

Together, both assessments are referred to as the associate Hermite expansion 

(AHE) method. 

1.3 Small signal estimation methods 
 

One of the earliest tools for identification of power system modes was the 

use of eigenvalue analysis.  Eigenvalue analysis begins with assembling the 

differential and algebraic equations of a study system (1.1) 

( )1.1uDxCy
uBxAx

+=
+=

 

where x is the vector of state variables, y is the vector of output variables, u is the 

vector of input variables, A is the linearized state matrix, B is the input matrix, C 

is the output matrix, and D is the algebraic input-output matrix.  If the Laplace 

transform is taken of state equation of (1.1), the frequency domain expression is 

given as 
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( ) ( ) ( ) ( )[ ] ( )2.10 suBxAIssx +−= −  

where s is the continuous generalized frequency variable, I is the identify matrix 

and x(0) is the set of initial conditions.  The eigenvalues of (1.2) are the roots of 

(1.3).  The generalized frequency variable s can be broken down into the 

components in (1.4), where α represents the damping factor and f represents the 

frequency.  Using the values of α and f, the damping ratio ζ is calculated in (1.5).  

The relations in (1.4) and (1.5) are used repeatedly in the following chapters. 

( ) ( )3.10det =− AIs  

( )4.12 fjs π±α=
 

( )
( )5.1

2 22 fπ+α

α−
=ζ

 

To determine the eigenvalues of the state matrix A, the state equations are 

linearized about an operating point.  For example in the case of an induction 

motor, the operating point may include the quadrature axis stator terminal voltage 

and the direct axis rotor voltage.  The state matrix A associated is decomposed to 

provide the eigenvalues of the study system.  With the eigenvalues known, the 

eigenvectors can be calculated. 

In eigenvalue analysis, the eigenvectors provide important diagnostic 

information about modes and states that is a direct result of being a model-based 

analysis tool.  The relationships in (1.1) represent a system under a forced input.  

If (1.1) is rewritten to represent a system with only initial conditions to provide a 

response its state representation is shown in (1.6). 
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( )6.1xAx =  

Decomposing the state matrix in (1.6) using eigenvalue analysis can take two 

forms. 

( )7.1ΛΞ=Ξ
ΓΛ=Γ

A
A

 

where Γ is a matrix of left eigenvectors of A and Ξ is a matrix of right 

eigenvectors of A.  The right and left eigenvector matrices have been shown [3] to 

provide a mapping between the actual states x in the system to a set of states z that 

are only related to a single mode as given in (1.8) and (1.9). 

( )8.1zx Ξ=  

( )9.1xz Γ=  

In (1.8) the right eigenvectors determine the mode shape or the amount of activity 

in the system states if a certain mode is excited.  Alternately, the relationship in 

(1.9) identifies the weighted combination of system states that contributes to a 

single mode.  A more useful relationship that is widely used in current software 

tools is the participation factor P (1.10), which also relies on the eigenvectors of A 

( )10.1mjjmjmP χγ=  

where γ is the right eigenvector of the j state of the m mode and χ is the left 

eigenvector of the m state of the j mode. 

The participation factor is a per unit metric that defines the amount of activity of 

one selected system state in one selected mode and can be interpreted in the 

reverse order. 
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A power flow program is used to provide the initial conditions for 

eigenvalue analysis.  Fig. 1.2 shows the flowchart for a typical eigenvalue 

analysis algorithm.  To determine which modes are affected by which states, 

participation factors are computed using the modes eigenvectors.  For small signal 

stability problems, complex eigenvalues indicate an oscillatory response to a 

perturbation.  Eigenvalues also contain the frequency of the modes along with 

their damping levels. 

Initialize state equations 
x(0) using power flow 

program.
Begin

Perturb states x(t) 
and measure rate 
of change x(t).

Construct linearized 
state matrix A.

Decompose A to find 
eigenvalues and 

eigenvectors.

Estimation 
complete

 

Fig. 1.2.  Example algorithm for eigenvalue estimation. 

Some of the tools to perform eigenvalue analysis have been used to 

identify power system modes since the 1970’s.  Two programs were developed by 

General Electric for the estimation of eigenvalues from a linearized state matrix:  

Power System Simulator (POSSIM) and the Machine and Network Stability 

(MANSTAB) routine [7].  Both programs follow the general eigenvalue analysis 

routine of Fig. 1.2.  However, MANSTAB utilizes a dynamic model of the system 

as opposed to an algebraic representation found in POSSIM.  As a result, 

MANSTAB has the ability to be used for sub-synchronous resonance analysis 

where as POSSIM is typically used for small signal stability assessments. 

Another eigenvalue analysis package was developed through a joint effort 

between the Electric Power Research Institute (EPRI) and Ontario Hydro 
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resulting in the development of the Multi-Area Small Signal Stability Program 

(MASS) and the Program for Eigenvalue Analysis of Large Systems (PEALS) 

[8].  MASS was initially used to study detailed models such as a power plant or 

small power system representations.  In such models little sparsity exists in the 

linearized state matrix.  The PEALS tool, on the other hand, was designed to 

identify the system’s eigenvalues for a limited number of modes and is generally 

used for large scale analysis.  Within the PEALS tool, two algorithms can be 

selected:  Analysis of Essentially Spontaneous Oscillations in Power Systems 

(AESOPS) algorithm and the modified Arnodi method (MAM).  Both MASS and 

PEALS were later made available in a single package referred to as the Small 

Signal Stability Program (SSSP) [9]. 

An improvement to the AESOPS algorithm has been proposed by Martins 

[10].  Due to the large amount of sparsity that exists in the linearized state matrix 

A, techniques are employed to create a reduced version of this matrix prior to 

factorization.  Another complication to working with large power system state 

matrices is they are usually highly asymmetric.  Reducing the sparsity of the state 

matrix resulted in reduced computation time for determining the eigenvalues.  

Overall, the modified AESOPS method required a longer computation time than 

the original AESOPS algorithm.  Kundur et al [11] examined the accuracy of the 

MASS and the two PEALS algorithms given the same study system.  A review of 

the two PEALS algorithms shows that the AESOPS algorithm is computationally 

faster than the modified Arnodi technique.  A comparison of each algorithms 
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performance shows all three methods reported essentially the same modal 

estimates. 

At present, new tools are being developed utilizing PC based platforms in 

lieu of mainframe applications for eigenvalue analyses.  Small signal stability 

analysis is being performed using MATLAB and Simulink software for designing 

and implementing devices to improve damping levels [12-14].  Due to its multi-

function capability, PC tools offer various abilities to design eigenvalue-based 

controllers that would have been more difficult using mainframe tools. 

In the 1795, a method to identify the relationship between the pressure and 

volume of gases was developed.  Gaspard Riche Baron de Prony proposed fitting 

an exponential model to equally spaced data points and then using another 

exponential model to calculate the intervening points [15].  Today the basic Prony 

analysis typically fits data through a least squares process to obtain a linear 

predictor model.  A simple forward predictor is generally used however more 

sophisticated linear predictors can be applied.  Roots are extracted from this finite 

impulse response (FIR) filter and inserted within an exponential model along with 

complex weights.  A flowchart for the modern basic Prony algorithm is shown in 

Fig. 1.3.  Prony’s method was recognized in the 1950’s by spectral analysis 

researchers as an effective means to obtain spectral estimates [16].  In the 1980’s 

different versions of Prony’s method began to appear [17] as well as greater use 

as an identification tool in lieu of other established spectral methods [18].  In 

addition, researchers in the western United States began to use Prony’s method to 
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investigate oscillatory phenomenon that were occurring during day-to-day power 

system operations [19]. 

Fit equally spaced data to 
a LP model in a least 

squares sense.
Begin

Solve for the roots of 
the LP model with a 
given sample rate Ts.

Construct the 
complex 

exponential model.

Solve for the complex 
coefficients of the 
exponential model.

Estimation 
complete

 

Fig. 1.3.  Basic Prony algorithm for estimating modes. 

Unike eigenvalue analysis, Prony’s method estimates the modes and the 

associated damping levels through a least squares curve fit using measurements.  

Prony’s method also provides phase information as well as the strength of the 

individual modes.  In addition to studying small signal phenomenon, Prony’s 

method has also been used to assess large signal disturbances in the conjunction 

with a time domain sliding window [20].  Because it can estimate phase angles 

associated with modes, Prony’s method can be used as a tool for coherency 

identification either from separated generation clusters or between measurements 

separated spatially [21]. 

Because of its applicability to field measurements and model 

development, Prony analysis has been deployed for the tuning and design of 

power system devices to improve small signal damping.  In one research example, 

engineers and researchers developed test systems with dynamics similar to those 

found in actual practice for the tuning process.  Next, a Prony analysis along with 

a root locus method was then used to derive PSS model which subsequently 
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demonstrated damping improvements [22].  In another case, researchers have 

used the identification capability available in Prony’s method to help design a 

controller for a SVC [23].  With the help of Prony’s method, model validation and 

analysis was also performed in the design of a controller at the site of a DC 

converter station [24].  In this case, both disturbance and ambient data were 

collected for the project. 

One of the principal uses of Prony analysis is to process data from 

different types of field tests for either identification purposes or, as explained 

before, to assemble models.  One type of field test is the staged field test.  This 

may include either the insertion of the brake [25], the intentional tripping of a line 

or an abrupt change in the reference of an exciter’s voltage regulator.  The 

purpose here is to provide an input to the power system large enough to excite 

modes yet small enough not to create a non-stationary event.  Another related 

measurement event is the unintentional yet opportunistic disturbance event.  

Again, the only critical issue here is that the disturbance be not too large or 

extreme so as to create a non-stationary response from the power system.  A third 

type of staged field test is the injection of a small signal into a controller 

producing a modulated signal in the power system.  An example of this type of 

test was mentioned earlier regarding a DC line converter.  As for the type of 

signal, the injection could either be a low level white noise signal, a square wave 

[26] or sinusoid.  Another type of analysis is the collection and processing of 

ambient data from a convenient location, such as a potential or current 
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transformer at a substation or power plant.  It is assumed that the naturally 

occurring noise that exists in the power system would excite modes without the 

need to either inject a signal or stage a non-destructive disturbance.  This type of 

analysis has the obvious advantage of avoiding the need to coordinate a staged 

test making it cost effective and reasonably secure.  In any case, monitoring is 

required for all the tests and analyses described here.  Also, the more monitors 

recording these events insure that the failure of one unit to operate correctly will 

not jeopardize the entire test.  As a consequence, a wide area measurement system 

(WAMS) can play a key role in collecting data for use in a Prony analysis or any 

other small signal assessment. 

Use of Prony analysis has some disadvantages in the estimation of 

electromechanical modes in power systems.  Basic Prony analysis requires the 

user to choose the order of the approximation.  A typical recommendation is to 

select the order to exceed the number of complex modes thought to exist in the 

data set using a range between N/3 and N/2 [27-28], where N represents the 

length of the data block.  If the size of the data set is for example 240, then a 

reasonable order could vary from 80 to 120.  Some researchers have proposed 

setting the order equal to N to improve resolution between closely spaced modes 

[17] and to mitigate noise effects.  However, selecting too high an order can 

produce spurious complex modes, oscillatory behavior and excessive 

computational effort.  Fortunately, an outcome of a Prony analysis provides the 

user the means to quickly sift through the results by examining the amplitude of 
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the complex exponentials.  In general, Prony analysis compares well with 

eigenvalue analysis in that both can accommodate multiple signal systems [29] 

and the accuracy has been found to be similar using identical test scenarios [30].  

In [29], the authors were able to add additional signals to the linear prediction 

model while holding the model order constant. 

A Prony analysis is the application of a deterministic parametric spectral 

analysis method.  However, Prony analysis is not the only parametric method that 

has been employed for the detecting of electromechanical power system modes.  

Researchers have noted that parametric methods, in general, produce high 

resolution spectral results with relative short data records [31] as compared to 

non-parametric methods.  Some of the most recent research has focused on the 

use on autoregressive methods to extract electromechanical frequency and 

damping information.  However unlike the Prony analysis discussed previously, 

autoregression methods use a time-series model that can represent a stochastic 

process using autocorrelation sequence estimates.  Equation (1.11) shows the 

general structure of the model, where ŷ[n] is the approximated function, x[n] is 

the output of the process, u[n] is the input to the process, a are the model output 

parameters, b are the model input parameters, and p and q are the model orders. 
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Autoregressive techniques attempt to model the poles and zeros of the data 

record usually assuming the input is stationary.  To solve for the model 

parameters, the autocorrelation sequence (ACS) estimate is calculated directly 
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from the data record.  The system matrix is symmetric so that fast algorithms can 

be applied to quickly calculate the a and b coefficients.  The resulting system 

matrix has a Toeplitz and Hermitian structure.  If only the output is modeled 

(q=0), the autoregression method referred to as the autoregressive Yule-Walker 

(ARYW) normal method.  Other autoregression (AR) methods besides the 

ARYW method are possible.  The relationship in (1.12) shows the ARYW normal 

equations that are solved for the a model parameters  
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where r is the ACS estimate vector, R is the ACS system matrix and a is the 

output coefficient vector.  Fig. 1.4 provides a flowchart for the ARYW estimation 

method. 

Select a maximum lag and 
calculate the biased 

ACS estimates. 
Begin

Assemble the ACS 
estimate Toeplitz matrix  
R and the ACS vector r.

Solve for the a 
coefficients using a 

fast algorithm.

Solve for the roots of the 
characteristic equation 

using the a coefficients.

Estimation 
complete

 

Fig. 1.4.  AR Yule-Walker autoregression estimation method. 

If both the output and input is used to approximate the process (p≠0, q≠0) 

the resulting technique is the autoregression moving average (ARMA) Yule-
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Walker normal method.  However because the true relationship between the input 

parameters b and the actual ACS values is non-linear, special methods must be 

introduced to solve for both input and output ARMA model parameters.  The 

authors in [18, 31] propose generating an ARMA model by filtering the original 

data record with a created AR filter and estimating the b coefficients from the 

residuals.  Even though this sequential process is sub-optimal it has the advantage 

of not requiring iterations which allows ARMA models to be used in on-line 

power system applications. 

In the 1990’s power system researchers began to assess the effectiveness 

of autoregressive methods as compared to existing Prony and state space methods 

[32].  It was found that the ARMA technique compared favorably to other 

methods in terms of accuracy without the presence of noise.  However in this 

case, the researchers used the data directly instead of calculating the ACS 

estimates to solve for the a coefficients in (1.12).  As a result, the accuracy of the 

ARMA method suffered when white or colored noised was introduced as 

compared to the state space method. 

Other researchers have found that ARMA methods employing the ACS 

estimates were effective in improving damping in the case of tuning damping 

devices [33].  These researchers used an ARMA algorithm for tuning a PSS using 

global signals as opposed to local inputs.  Other researchers have compared the 

accuracy of AR, ARMA and Prony methods in identifying modes from field tests 

and ambient measurements [34].  In the case of using these three parametric 
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methods, researchers varied the model order and gauged the accuracy of the mode 

identification and damping levels.  Frequency estimates from the AR and ARMA 

methods were insensitive to changes in order.  However, damping estimates from 

the AR method approached those obtained from the ARMA method as the pole 

order increased.  In nearly all cases, the ARMA method was found to be superior 

to the AR method when using the same number of poles.  ARMA was also found 

to be essentially equivalent to the Prony results if the numerator and denominator 

orders were allowed to be sufficiently large.  A variation on the ARMA method 

has been used with ambient measurements [35].  In this case, models are 

generated with simple pole-zero transfer functions that enable the user to 

determine the modal content from ambient data. 

Adaptive filtering has been investigated by researchers and the results 

compared with an AR method for identification of modes.  Researchers have used 

the least mean square (LMS) adaptive algorithm with the AR method providing 

an initial starting point versus just using the AR method alone, and found both 

techniques gave acceptable results [36].  However, the step size selection in the 

adaptive algorithm was a critical decision in how the method converged.  In this 

case the investigators assumed a linear method for use on a linear process.  Some 

researchers have developed a modified AR method that is applicable to non-linear 

modal behavior [37].  A method was created that used higher order statistics to 

characterize and detect higher order nonlinearities.  The consequence of this 
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modified AR method is that large signal disturbances with non-linear effects can 

also be assessed to determine their modal content along with damping levels. 

Investigators have used a two-variable ARMA technique that not only 

identifies modes but also provides an indication of the coherency between 

generators or groups of generators [38].  The cross spectrum is calculated on-line 

from time series data to determine the eigenvector associated with modes 

common to generators from different groups.  The results show the researchers 

not only successfully identified the modes but the strength of the relationships 

between generators. 

Research as early as the 1990’s began to focus on using an artificial neural 

network (ANN) to identify electromechanical modes.  Unlike the other 

identification methods described before, the application of neural networks 

requires training to determine the appropriate weights for linkages, also known as 

neurons, for the correct output function.  Once the training session is completed a 

test session is typically performed to gauge the accuracy of the ANN and to make 

any final adjustments to the weights.  Learning is sometimes improved through 

the use of feedback loops to accelerate convergence of the weights to their final 

values.  An ANN also has the ability to take either continuous or discrete inputs 

and generate either continuous or discrete outputs.  Fig. 1.5 shows a general 

structure for a feed-forward multilayer ANN. 
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Fig. 1.5.  Generalized ANN representation. 

Examination of Fig. 1.4 shows that the input layer receives inputs x from 0 

to i while the hidden layer screens and applies weights w to the inputs.  Finally, 

the output layer neurons produce one or more output y’s using the hidden layer 

neuron decisions. 

Researchers have proposed a multilayer ANN which produces a single 

analog output representing the real portion of the most lightly damped system 

eigenvalues [39].  However, the authors wanted to use as many of the power 

system variables that they believed affected the lightly damped eigenvalues.  As a 

result, they constructed a second clustering ANN to select the most effective input 

variables from the initial larger set.  Reducing the number of input variables 

reduces the training time for the multilayer ANN.  But in this case the 

consequence of using fewer input variables was found to reduce the accuracy of 

the multilayer ANN.  The researchers found the computation time of 50 ms gave 

an acceptable level of accuracy for their ANN, which may allow them to employ 

their device for on-line estimation.  However, only one mode was modeled in the 

study.  Also, no consideration was taken for line-out or other network changes 
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which are common in operations analysis and which would require additional 

training. 

Some researchers have studied an adaptive scheme that can learn while the 

ANN is operating on-line in a modal identification role.  The adaptive approach is 

achieved using a Kalman filtering scheme to minimize the output variance of the 

ANN [40].  In this case, outputs and inputs are analog quantities.  The authors 

successfully demonstrated that their method can accurately predict power system 

variables in an on-line setting.  Unfortunately, few documented results were 

provided that demonstrated whether the modified ANN could be employed to 

predict the damping of eigenvalues as originally intended. 

Many ANN schemes have been proposed for use as an adaptively tuned 

PSS to improve power system damping.  A multi-layer perceptron (MLP) is 

proposed by some authors to be used as an adaptive analog PSS since it has the 

advantage of changing control capabilities as a result of changing stochastic 

operating conditions and non-linear effects in the power system [41].  The authors 

argue that conventional stabilizers do not have this capability which puts them at 

a disadvantage as compared to an adaptive PSS.  In this research, the MLP PSS is 

trained using a conventional adaptive PSS.  Later the authors train the MLP PSS 

using the input-output relationships of a synchronous generator [42].  With 

inverse mapping, the product of the synchronous machine and the adaptive MLP 

PSS should ideally provide unity output.  Up until this point the authors have only 

tested their proposed MLP PSS on a single machine infinite bus system.  In [43], 
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the authors test their device on a small test system and simulated different 

operating conditions and disturbances.  The researchers demonstrated that either 

operating alone, with another adaptive MLP PSS or in combination with 

convention PSS their proposed device adds positive damping to the test model for 

different operating conditions.  However, no measurements were given regarding 

the computation time or accuracy of the MLP PSS and its left to the reader to 

assess whether the test system had replicated a real world scenario to an adequate 

degree. 

Researchers have further improved on the adaptive MLP PSS design by 

splitting the MLP unit into two interconnected neural networks [44].  One unit 

operates by identifying the plant characteristics using speed deviation as the 

generator output and the PSS output as the generator input.  The second unit acts 

as a controller for the first unit to damp out plant oscillations.  Input of the 

controller is accelerating power from the generator and the output is the actual 

output from the adaptive MLP PSS.  Learning is achieved for both the identifier 

and the controller through a single error vector for each unit while on-line.  

Simulations on a single machine system shows damping is improved using the 

split MLP PSS design.  In [45] the authors applied the improved adaptive MLP 

design to a multi-machine system with the same results.  Finally, the authors hard 

wired their adaptive MLP PSS to a motherboard and used a laboratory facility to 

test the operation on a small synchronous machine [46].  Once again the results 

were successful.  However like the previous study, few metrics were provided to 
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gauge the speed and accuracy of the new design.  Also, the physical tests had 

difficulty mimicking outage conditions that would be seen in a field setting. 

The Matrix Pencil (MP) method was previously used in electromagnetic 

field analysis but has been recently applied to the identification of 

electromechanical modes.  Similar to other subspace analyses, the MP estimator 

calculates the complex modes using a single measurement and is related to the 

Estimation of Signal Parameters by Rotational Invariance Techniques (ESPRIT) 

spectral method [47].  From the measurements, two matrices (Y1 and Y2) are 

constructed using vectors with a length of L (1.13), where L spans the entire 

subspace. 

[ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ] [ ] ( )

[ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ] [ ] ( )

( )13.1

21

21
110

11

132
21

2

1

xLLN

xLLN

NyLNyLNy

Lyyy
Lyyy

Y

NyLNyLNy

Lyyy
Lyyy

Y

−

−



















−−−−

−

=



















−+−−

+
=

















 

It is assumed that the number of signal modes M in the measurement is 

less than L, and Y1 and Y2 can be factored using the relationships in (1.14). 
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 Fig. 1.6 shows the basic steps of the MP analysis method.  Note that the values of 

the matrix R in (1.14) are residues of the roots of the Z0 matrix. 

Select a pencil parameter 
L.Begin Assemble Y1 and Y2 

matrices.

Calculate the 
product Y1

+
 Y2.

Solve for the eigenvalues of the 
product Y1

+
 Y2 representing the 

signal space.

Estimation 
complete

 

Fig. 1.6.  MP analysis technique for the non-noise case. 

Next, the pencil relationship (1.15) is formulated and the eigenvalues of 

the product Y2
+Y1 are the eigenvalues of the signal space [48], where + is the 

Moore-Penrose inverse.  In the presence of noise, the Y1 and Y2 matrices are 

combined and singular value decomposition (SVD) is used to isolate and remove 

the smallest singular values and thus the noise subspace [49].  Use of SVD also 

allows a rational selection of M.  The obvious disadvantage of a MP analysis, like 

the Prony and ESPRIT analyses, is that the selection of the value of M requires a 
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priori knowledge of the number of signal modes contained in the measurement 

which is not always possible. 

( ) ( )15.120121 ZIZRZYY λ−=λ−  

The application of MP analysis to electromechanical mode extraction in 

power systems has already been performed [50] for a theoretical controller design.  

However, the authors had difficulty selecting the order even after examining the 

measurements’ singular values.  A comparison with Prony’s method using field 

measurements reveals that the MP analysis gave very similar results.  On the other 

hand, the MP method demonstrated that, like Prony analysis, assessing non-

stationary disturbances produced erroneous results [51].  A more thorough 

comparison with Prony’s method and the Hankel Total Least Squares method 

shows the MP analysis is less sensitive to noise than the Prony analysis [52].  

Computational speed between MP and Prony analyses was dependent on how the 

inverse is calculated either by SVD or QR factorization.  The authors in [52] also 

used the scheme to dampen lightly damped oscillations through modulation of the 

Pacific DC Intertie. 

Besides MP and general eigenvalue assessments, researchers have used 

other subspace methods for small signal analysis in power systems.  Some authors 

have found that reduced order models can be obtained by separating eigenvectors 

and their associated eigenvalues into smaller subspaces [53].  Other researchers 

have used iterative methods and focused on calculation of only one complex 

eigenvalue in lieu of the conjugate pair.  In addition, the authors have only 
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calculated the most lightly damped eigenvalues which usually garner the most 

interest [54].  To avoid use of models and to be able to use real measurements, the 

researchers in [55] have proposed a stochastic subspace method to calculate the 

modes.  Hankel matrices were constructed using past and present measurements.  

Next, projection and observability matrices are formed after an SVD assessment 

selects the order and removes the unwanted noise.  Finally, the eigenvalues of the 

reduced measurement matrix are found.  Advantages of this method include 

working exclusively with data measurements in lieu of models or ACS matrices.  

Also since the technique uses only ambient data, the method of [55] can be 

implemented in an on-line setting.  A comparison from the results of the method 

in [55] was made with ARMA and state space methods.  The ARMA estimation 

was found to be more accurate with shorter data records than the other two 

methods.  However, the stochastic subspace method was as accurate as the other 

techniques for longer data records and provided higher levels of certainty in the 

results.  In [56], the same authors studied estimating confidence intervals which 

provided more dependable results in modal identification and damping estimates. 

Very recently some researchers have employed adaptive filtering 

techniques for the estimation of power system modes.  One of these methods was 

described earlier in [36] working in conjunction with an AR estimator that 

provided initial weight vector estimates.  Fig. 1.7 shows the components of the 

general LMS adaptive algorithm [57]. 
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Fig. 1.7.  Generalized LMS adaptive algorithm [57]. 

The researchers’ results indicate the convergence time was highly related 

to the step size and the initial values of the weight vector.  Other researchers have 

used variations on the recursive least square (RLS) adaptive algorithm to predict 

power system modes.  RLS algorithms essentially solve for the model coefficients 

a in the AR problem in Fig. 1.4 by calculating the ACS estimate vector r and the 

ACS estimate matrix R at every time step but with actual data measurements.  

Researchers have found the RLS methods are quicker to converge to a solution 

than LMS methods but at a higher computational cost [58-59].  However, it has 

also been shown that RLS methods can accommodate outlier and missing data 

situations successfully while still accurately predicting electromechanical modes.  

Both LMS and RLS methods are time recursive which allows both methods to be 

used in on-line or mode meter applications.  Another potential benefit of these 

time recursive methods is the ability to estimate non-linear modes resulting from 

large signal disturbances.  As the mode changes in time the adaptive algorithms 

can move and track the mode as it changes.  A potential disadvantage of adaptive 



 
 

27 
 

measures is that they are iterative, unlike model based methods, and they require 

additional time to reach a solution for each time step.  In addition, selection of the 

size of the time step for these methods is also a critical decision in terms of 

accuracy and speed. 

A variety of other methods have been proposed to detect and estimate 

small signal power system modes that are worth mentioning here.  The authors in 

[60] have demonstrated use of the Hilbert transform to identify low frequency 

modes.  An interesting outcome of the research is that the method calculates the 

instantaneous modal estimates per step making it applicable to non-stationary 

signal analysis.  The paper contains a comparison of the proposed method to 

Prony’s method. 

Many researchers have used newly proposed electromechanical estimation 

methods to create stability indices resulting from small signal stability 

assessments.  These assessments are generally intended to be used in on-line 

applications using ambient data so as to give power system operators a continuous 

assessment of the power system state.  This is the case in [61] where a parametric 

framework based on the Box-Jenkins model is implemented.  For this application, 

the Box-Jenkins model represents the errors separately from the estimator.  The 

authors then estimate a stability index based on an adjustment to the classical 

damping factor α.  Results show the Box-Jenkins model provided statistically 

better results than the ordinary least squares method and the modified damping 

factor proved to be a reasonable indicator of proximity to instability. 
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In [63] the Heffron-Phillips model for an induction machine is used to 

assess the machine modes and their effects on other induction machines as well as 

synchronous machines.  Although the model is linearized about an operating point 

as in the case of previous discussed methods [7-14], use of the Heffron-Phillips 

model allowed easy computation of the induction machines eigenvalues.  In 

addition, the assessment showed that the induction machine eigenvalues were 

typically damped.  Results also revealed that the critical model components for 

motors are inertial and the rotor open circuit time constant.  However more 

importantly, the design of damping control devices is directly affected by the load 

dynamic representation and thus accurate representation of induction machines is 

critical for the estimation of damping in a power system. 

For [64], the researcher used non-parametric methods to estimate the 

power spectral density (PSD) of measured data.  The tool the author used was the 

Welch periodogram.  Essentially, the Welch periodogram calculates an average 

fast Fourier transform (FFT) using multiple FFTs’ from successive time windows 

to obtain a high resolution estimate of the PSD.  Among non-parametric 

estimators, the Welch PSD method is one of the most accurate.  However like 

other non-parametric methods, the Welch PSD method’s accuracy is a function of 

the record length.  Consequently the greater the number of FFTs’ used and the 

larger the length of the time window, the more accurate the spectral estimate.  

However, increasing both the number of windows and the length of the data 

record comes with a higher computational cost for this method. 
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1.4 Small signal estimation using associate Hermite expansion 
 

From the brief review presented in the last section, various methods have 

been proposed and tested in the attempt to identify electromechanical modes in 

power systems.  Estimation methods can be categorized as either model based or 

measurement based.  Some techniques are described as non-parametric methods 

while others are parametric or curve fitting techniques.  Still other estimators are 

learning algorithms and other methods are purely subspace estimators.  Most of 

these techniques assume the measurements are stationary and can be represented 

by a linear process. 

As was stated earlier, the method used in this thesis to estimate modes and 

their damping levels utilizes an orthogonal polynomial that is fitted in a least 

squares sense to power system measurements.  Order of the estimation is achieved 

through relationships involving time and frequency windows and the time scale 

factor, which also gives the process a degree of noise mitigation capability by 

maintaining a low condition number for the system matrix.  Use of this 

polynomial as a harmonic analysis tool was first suggested by [65] due to its 

isomorphic nature, orthogonal structure and ease of calculating higher ordered 

polynomials.  However, the AHE functions have only recently been proposed to 

be used in the power system field of small signal stability assessment [66]. 

Once the fit with the observations is complete using the AHE polynomials, 

the time domain model parameters are used to extrapolate the Fourier spectrum of 

the initial window and the mode estimates are identified.  Next, the original 
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measurement is downshifted to the baseband for each identified mode.  Several 

sliding windows are constructed and individual spectrums are calculated for each 

mode.  For a particular frequency in a given window, the magnitude of the 

demodulated spectrum is recorded.  The spectrum samples are then used in a LP 

or FIR filter.  The LP filter assumes the spectrum samples are from an 

autoregressive process and provides both frequency and damping factor 

information about the original mode.  This process is repeated for all the 

significant modes that were identified from the initial extrapolated spectrum. 

1.5 Organization of the thesis 
 

A literature summary of recently proposed small signal stability estimation 

methods is provided in Chapter 1 along with a description of the identification 

estimation problem and a brief outline of the proposed new method.  Chapter 2 

describes the proposed AHE algorithm used to estimate electromechanical mode 

frequencies and their respective damping levels.  Prony’s method, a Yule-Walker 

autoregressive method, another sliding window technique and the Hilbert-Huang 

Transform method are describe in detail in Chapter 3 for their subsequent use in 

this thesis.  In Chapter 4, the results from AHE method are compared to results 

from other widely used estimation methods to gauge the limitations and benefits 

of the AHE method using artificially generated signals as well as a field 

measurement case.  In Chapter 5, simulations from a commercial transient 

stability program were generated by applying an approximated impulse to either a 

specific generator’s reference load or voltage setting.  The responses were 
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assessed using the AHE algorithm and the other four estimators.  Results from 

these assessments were compared to results obtained from an eigenvalue small 

signal analysis program.  Using simulations from Chapter 5, a PSS was added to 

three generators to improve damping performance in Chapter 6.  The AHE 

algorithm, Prony’s method and eigenvalue analysis were used to determine the 

modal content prior to using the PSS and to verify the damping improvement after 

the PSS was added.  A four example involved retuning a PSS to improve 

performance from a growing small signal oscillation to a damped stable result.  

Chapter 6 demonstrated the ability of the AHE algorithm to be used as a potential 

design tool for damping mitigation devices.  Chapter 7 summarizes the results 

found from the new method and suggests future work and applications for the 

new procedure. 

 

 

 



 
 

Chapter 2  

ASSOCIATE HERMITE EXPANSION STABILITY ESTIMATION 

2.1 AHE time domain approximation 

This chapter provides the development of the AHE algorithm for the 

estimation of electromechanical modes from power system measurements.  The 

algorithm is composed of two parts.  The first part of the algorithm is the use of 

the AHE polynomials to fit the time domain observations to an approximate 

model.  Using the modeling parameters from the time domain fit, an 

approximation of the Fourier spectrum is generated and from which the modes are 

identified.  For the second part of the algorithm, an established sliding window 

technique is modified and is used to estimate the damping associated with each 

previously identified mode.  A general outline of the AHE algorithm is shown in 

Fig. 2.1 and its components are explained hereafter. 

Estimate the initial 
window’s spectrum.Begin

Identify the 
significant 

modes.

Downshift the 
original observation 

for each mode.

Use linear 
prediction to find 
damping factors.

Estimation 
complete

 

Fig. 2.1.  Overview of the AHE estimation algorithm. 

The heart of the estimation routine is a polynomial that approximates the 

original signal y(t).  If it can be assumed that the signal y(t) is stationary, then it 

can be represented by a linear combination of orthogonal functions.  One such 

representation is the Fourier series that is comprised of orthogonal set of 
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harmonically related sine and cosine terms.  An alternative to the Fourier series 

could include another orthogonal expandable function or series. 

Hermite polynomials constitute a set of functions having infinite time 

support with higher ordered terms calculated recursively (2.1).  This form of the 

Hermite polynomial is not orthogonal and requires a modification to become 

orthogonal [81]. 
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A definition of orthogonality is given in (2.2) 
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where zm(t) and zn(t) are two real-valued functions that exist on an interval from a 

to b.  As a simple example to test orthogonality, two Hermite polynomials over 

the interval from 2 to 5 are examined using (2.2). 
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Unlike the Hermite polynomials of (2.1), the associate Hermite 

polynomials in (2.3) can be shown to demonstrate orthogonality, where π is the 

geometric constant, λ  is the time scale factor and ! is the factoral operator.  As 
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was the case with the original Hermite polynomials in (2.1), the time domain 

associate Hermite polynomials hm(t,λ) also have an order recursive form (2.4). 
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Using the same example before but this time using the associate Hermite 

polynomials over the interval from -∞ to ∞, λ=1, and with the help of l’Hospital’s 

Rule and integration by parts, 
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Consequently, the two associate Hermite polynomials are orthogonal to one 

another [67]. 

To identify the modes in the signal y(t) and assess the level of damping, an 

estimate of the spectrum must be determined.  With the assumption that the AHE 

polynomials can be used to approximate the original signal, the linear time 

domain expansion model of (2.5) is employed, 
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where tw represents length of the time domain window and M is the order of the 

approximation.  The matrix representation of (2.5) is shown in (2.6) where N is 

the number of time samples, 
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Since usually N>M+1 in (2.6), ht is overdetermined.  As a result, the solution of 

the model parameters a in (2.6) is obtained through a least squares normal fit 

using the actual observations y(t) and the time domain AHE matrix ht from (2.5-6) 

in (2.7).
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As an example of the time domain AHE polynomials, Fig. 2.2 show a set of 

curves generated by (2.5-6) with λ=1 and a=1.  Note that the time support 

increases as the order increases.  This is in addition to the support provided by the 

time scale factor λ.  The relationship between the time support required by the 

model and the model’s order M is not only important for accuracy of the 

algorithm estimation of modes but also the degree to which ht is well conditioned.  

A well conditioned ht matrix allows the AHE estimator to successfully identify 

modes in low signal-to-noise ratio (SNR) measurements. 

 

Fig. 2.2.  Time domain AHE polynomials (2.5-6) with lambda=1. 
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2.2 AHE frequency domain approximation 
 

With the model parameters a calculated using (2.7), all that is needed to 

estimate the spectrum of y(t) is the Fourier transform of ht.  In [65] the Fourier 

transform of (2.5-6) is computed with the relationship in (2.8) 
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where Ψ is the Fourier transform operator, f is frequency, μ=1/2πλ, j is the 

complex operator and hm(f,μ) is the frequency domain associate Hermite 

polynomial.  The term μ is the frequency scale factor and provides support in the 

frequency domain.  Splitting the transform of (2.8) into its real and imaginary 

components gives  
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Using (2.8), the Fourier transform of the approximation ŷ(t) in (2.5-6) is 

calculated substituting f for t and μ for λ 
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where fw is the frequency window width or bandwidth at P frequency samples.  

Splitting (2.11) into its real and imaginary components [68] 
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An important point worth noting is that (2.5-6) and (2.12-13) all share the same a 

model parameters and has been studied previously in the field of circuit analysis 

[73].  Equations (2.12) and (2.13) are given in an expanded matrix form in (2.14) 

and (2.15), respectively. 
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where P is the number of frequency samples, hf is the frequency domain associate 

Hermite matrix and M is the order. 
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Fig. 2.3 shows a set of curves for the real and imaginary Fourier transforms of 

amhm(t,λ) represented by (2.14-15) with μ=1 and a=1. 

It should be noted that except for the change of sign on the Fourier 

representations and substitution of variables, curves in Figs. 2.2 and 2.3 could be 

substituted for one another [65, 67-70].  This is due to the isomorphism property 

between the time and frequency domains inherent to the AHE polynomials.  As 

noted in Chapter 1, [65] observed the similarity of the curves in Figs. 2.2 and 2.3 

to truncated sine and cosine functions making them appropriate for harmonic 

analysis. 
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Fig. 2.3.  Frequency domain AHE polynomials (2.14-15) with mu=1. 

Isomorphism between ŷ(t) and its Fourier transform also provides other 

useful properties that can be exploited for use with the AHE polynomials.  Even 

and odd ordered polynomials in the time and frequency domains are also have 

even and odd symmetry, respectively, that can be seen in Figs. 2.2 and 2.3.  The 

real portion of the Fourier transform of the approximated function ŷ(t) is even 

while the imaginary portion has odd symmetry.  Using actual power system 

measurements such as real power flow on a transmission line, the Fourier 

transform of the approximating function ŷ(t) is a symmetric function [72].  Table 

2.1 shows other properties of the AHE polynomials [67]. 
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Table 2.1.  Properties of the AHE polynomials [67]. 

Property Description 

Orthogonal Both time and Fourier representation. 

Expansion Even=even ordered functions. 

Odd=odd ordered functions. 

Fourier transform Symmetric for a real signal. 

Energy The sum of squares of the model 

parameters (Parseval’s Theorem). 

Calculation Order recursive m≥2 for both domains. 

Time & frequency support Support increases as the order M increases. 

 

2.3 Time scale factor and order selection 
 

Choice of the time scale factor λ  affects the amount of support the AHE 

polynomials provide not only in the time domain but also in the frequency domain 

through the frequency scale factor μ.  The AHE polynomials in (2.3-4) have finite 

time support due to the presence of ( )25. λ− t
e  for each term in the expansion up to 

1+M elements.  Conversely, the original Hermite polynomials in (2.1) do not have 

the ( )25. λ− t
e  term and, thus, have infinite time support.  In addition, the original 

Hermite polynomials are not orthogonal to one another. 

Selection of λ was initially proposed by mapping the range of available 

measurements to a scaled set of expansion terms [69-70].  Later, an iterative 
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calculation was employed by another set of researchers to determine not only λ 

but also the order M [68, 73].  As was mentioned before, the order of the 

approximation also affects the amount of support given in the time domain.  In 

[74], the authors developed an empirical relationship (2.16) that defines the 

approximate bounds on the value of λ  

( ) ( )16.2
2

8.17.1
8.17.12 w

w

f
M

M
t

π
+π

<λ<
+π  

where tw is the expected time window, fw is the expected bandwidth and M is the 

order of the approximation.  An example calculation will show how the 

relationship in (2.16) is used.  In estimating electromechanical modes in power 

system it is not uncommon to have large observation windows of 60 seconds or 

more and a bandwidth of 2 Hz giving a value of M=240 based on the work by 

[75].  With M=240, a scale factor range of 1.31<λ<1.82 is obtained using (2.16).  

However as been noted before [69], a large value of M may cause the matrices in 

(2.5-6) and (2.14-2.15) to become ill-conditioned.  Consequently, arbitrarily 

selecting an order and calculating a range of values of λ using (2.16) is probably 

not the most effective method of choosing both parameters.  This is also true if the 

goal is to keep the system matrices well-conditioned so as to accurately estimate 

small signal modes in the presence of noise.  As a result, a better way to calculate 

the order is needed that accounts for all these needs.  Several methods have 

already been proposed and used by researchers in the field of spectral analysis. 

 Many methods for selecting order for spectral estimators involve some 

type of searches.  In order to minimize the time necessary to perform the search, 
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knowing the desired criteria to end the search is critical.  This is true for on-line as 

well as off-line small signal mode estimators.  Fortunately, estimating model 

orders are only needed for parametric methods such as the ARYW technique, 

Prony’s method and the AHE algorithm.  Nonparametric methods like the HHT 

and O’Shea algorithms do not have this requirement.  An incorrect order selection 

can have can negative impact the model and ultimately the estimators ability to 

identify the modes.  If the chosen model order is too high the variance in the 

frequency domain increases with the potential of creating extraneous modes or 

line splitting.  If the order is too low resolution is lost in the frequency domain 

and adjacent modes cannot be distinguished regardless of the size of the data 

record. 

 Some order selection techniques utilize an estimator’s prediction error 

whether in the time or frequency domain.  For example, the ARYW method using 

ACS estimates has a prediction error as shown below [84] 

( )( ) ( )17.21 2
1 jjjj aErrorError −=+  

where ajj are the model parameters.  However, researchers have noted that the 

form of the error in (2.17) is still subjective since the function is monotonic and 

continues to decrease without reaching a minimum as the order approaches 

infinity.  Also worth noting, the relationship in (2.17) also represents the energy in 

the predicted error and would also be applicable to the AHE algorithm due to the 

energy property noted in Table 2.1. 
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 Several search methods to set criteria for selecting estimator orders have 

been developed.  Some of the techniques or rules have been found to favor one 

model over another such as ARMA, AR, etc.  Some methods work well for 

narrowband or lightly damped signals while other methods operate well for 

wideband or heavily damped signals.  Many rules for choosing orders include a 

penalty factor as a result of representing too many terms in the model.  Table 2.2 

shows some of the more frequently used order selection criterion methods or 

rules.  All the criterion rules in Table 2.2 can be used for selecting the order of an 

AR process.  A model order m that is ultimately chosen is one that minimizes the 

criterion rule given the total number of samples N in the data window and the 

prediction error ε. 

Table 2.2.  Search order criterion rules. 

Order selection criterion rules Description 

Akaike Final Prediction Error (FPE) 

Criterion 








−−
++

ε=
1
1

mN
mNFPE  

Akaike Information Criterion (AIC) ( ) mmAIC 2ln2)( +ε−=  

Corrected Akaike Information Criterion 

(AICC) 
( ) N

mN
NmAICC 1

2ln2)(
−−

+ε−=  

Bayesian information criterion (BIC), also 

known as the minimum description length 

(MDL) criterion 

( ) ( )NmmBIC lnln2)( +ε−=  
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Parzen’s Criterion Autoregression Transfer 

(CAT) function 
( )

m

m

j j N
mN
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N
mCAT

ε
−

−












ε
−
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Generalized information criterion (GIC) ( ) ( )mnumGIC ++ε−= 1ln2)(
 

where nu = 2-6
 

 

The magnitude of the approximation order M in (2.5-6) and (2.14-15) not 

only determines the size of the AHE time and frequency domain matrices, but 

also the noise mitigation characteristic of the identification process.  One choice 

for the order was suggested by the work of [75] and noted by [74] in which the 

minimum degree of a bandlimited and timelimited signal is defined as 

( )18.22 ww ftM >  

Although (2.18) provides a starting point for estimating the order of time 

and frequency approximations for the AHE algorithm based on window lengths, it 

can produce an excessively large order for the ht and hf matrices and thus forcing 

them to be less well-conditioned.  It needs to be noted that (2.18) originates from 

the dimensionality theorem and only implies the size of the dimensional space 

that a system matrix may to span but not how well-conditioned the system matrix 

is constructed.  For a 50 second time window and a 2 Hz frequency window, the 

estimate provided by (2.18) suggests that the order should be no smaller than 200. 

 Many researchers have suggested that a reduced rank matrix can provide 

an adequate approximation, under some basis, for an initially ill-conditioned 

matrix.  Once determined, the effective rank of the original matrix would then be 
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used as the order of whatever model is being constructed.  To determine the 

effective rank of the initial ht matrix, the same researchers propose using only the 

largest singular values of the system matrix and discard the remaining singular 

values and their associated singular vectors. 

Obtaining the singular values requires decomposing the matrix, which can 

be accomplished by several methods.  One of the most popular direct 

decomposition methods is the use of SVD.  After a SVD has been performed on 

the ht matrix, the component matrices (U, Σ , V) are produced.  Equation (2.19) 

shows the component matrices of the ht matrix, 

( ) ( )19.2thSVDVU =Σ  

where Σ  contains the singular values of ht along its main diagonal, and V and U 

contain the eigenvectors of ht
Tht and htht

T, respectively.  By removing the weakest 

singular values from the Σ  matrix, the model becomes less sensitive to noise in 

the input measurements and thus accomplishes one of the goals stated earlier.  

With the smallest singular values removed, the order of the approximation will 

change from M to K and the model parameters can be determined in a least 

squares sense 

( )20.21

1
∑
= σ

=
K

m
m

T
m

m

yvua  

where σm are the largest singular values of ht, y are the measurements, and um and 

vm are the column vectors of U and V, respectively. 
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To demonstrate an idea of how singular values can be used to select the 

rank and, thus the order of the matrix, Fig. 2.4 shows the singular values for a 

typical ht matrix.  In the figure, the singular value magnitudes are maximum at 

low orders of the ht matrix.  However, as the order transitions from 70 to 75 the 

magnitudes of the singular values drop dramatically.  Researchers suggest that the 

effective rank of the matrix is defined by the decrease in singular value 

magnitudes in this area.  As was mentioned before, researchers further suggest 

that a matrix with an order in this range is a suitable approximation to the original 

matrix [85].  Other methods have been proposed to identify the effective rank of a 

reduced order matrix using singular values and SVD. 

 

Fig. 2.4.  Normalized singular values vs. order for an example ht matrix. 

One method for estimating the rank of a matrix has been proposed in [71] 

and later demonstrated in [82].  In these publications, the author calculates a ratio 

of l2 norms as seen in (2.21) 
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where r represents the largest singular value in the approximated matrix and m 

represents the order of the initial matrix.  The largest value that the ratio v(r) can 

acquire is 1 when r=m, or ( ) ( )m
t

r
t hh = .  If the ratio is near 1 for low values of r 

relative to m, then the ht matrix has a low rank or order, while for high values of r 

the ht matrix has a high rank or order.  In all cases, the norm ratio is bounded from 

0 to 1.  Fig. 2.5 shows a plot of v(r) from (2.21) using the same matrix used in 

Fig. 2.4. 

 

Fig. 2.5.  Ratio of norm v(r) per order. 

Another technique to identify the order of a reduced rank matrix while 

again using singular values was proposed by [83].  In the authors’ technique, the 
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( ) ( )22.21−⋅= ttt hhhk  

where k(ht) represents the condition number of the ht matrix.  As admitted by the 

authors in [83], the condition number in (2.22) can be difficult to calculate since it 

requires the computation of the inverse of the original matrix.  If the original 

matrix was severely ill-conditioned or nearly singular, finding an inverse of the 

system matrix may be a challenge.  An estimate for the condition number in 

(2.22) is given in (2.23) and requires only the SVD algorithm to be performed.  

The ratio of the largest and smallest singular values provides an approximation of 

the condition number for the original matrix. 

( ) ( )23.2
min

max

σ
σ

≅thk  

As the condition number increases from 1, the effective rank is noted and 

becomes the estimate for the order of the original matrix. 

An important difference between the condition number based method for 

estimating rank and the norm ratio method described earlier are the bounds for 

each method.  For the condition number technique, the range is only bounded on 

one side and extends from 1 to infinity, with 1 indicating a well conditioned 

matrix.  This approach provides a clearer assessment than the rank estimation 

found in the norm ratio technique (Fig. 2.5).  Fig. 2.6 shows the effect on the 

condition number as the order increases for the same matrix used in Fig. 2.4. 
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Fig. 2.6.  Condition number (k) per order. 

 In [71], the author concedes that for the norm ratio based method choosing 

a value for r to position v(r) close to one is somewhat subjective and is based on 

experience and experimentation.  This can also said to be true for the condition 

number technique. 

Section 2.2 and 2.3 state that a unique feature of the AHE functions is that 

the order of the approximation provides both frequency and time domain support.  

This can be verified by reviewing Figs. 2.2 and 2.3 such that a higher order 

provides greater window length or support.  The risk for using a higher order for 

greater support is the possible generation of an ill-condition ht matrix.  On the 

other hand, if the AHE estimator is intended to be used in low SNR environments 

and this requires avoiding use of an ill-conditioned system matrix.  As discussed 

previously, the three methods that estimate the rank of the reduced system matrix 

by selecting the span between the largest and smallest singular values will 
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produce a noise tolerant model.  Unfortunately, all three singular value-based rank 

selection methods chose the order somewhat arbitrarily and, thus, require some 

previous experience by the user.  In order to satisfy the requirements of selecting 

an order that gives adequate time and frequency support and creates a system 

matrix that is noise tolerant, a compromise needs to be reached in the estimation 

of the order. 

 If (2.16) is solved in terms of the order M assuming a constant time scale 

factor λ, the relationship in (2.24) is defined.  Using the value for the order M, the 

time scale factor is calculated in (2.25).  The procedure for calculating both the 

order and the time scale factor is outlined in Fig. 2.7. 

( ) ( )24.28.17.1 2
−π

π
= ww ftM  

( ) ( )25.2
8.17.1/2 +π

=λ
M

tw

 

Select the lengths of the 
time and frequency 
windows, tw and fw.

Begin
Solve for the 

order estimate M 
(2.24).

Using the order 
estimate, solve for λ 

(2.25).

Use both M and λ in the 
time and frequency AHE 

approximations.  

Fig. 2.7.  Calculation of order and time scale factor. 

 
 According to [74], both (2.18) and (2.24) determine an order for the AHE 

polynomials that provide adequate support for approximating for time and 

frequency domains.  However, an important objective of this thesis is to also 

develop a noise tolerant estimator.  To find which order estimator is better for this 
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purpose, the l2 norm condition number for ht

 

 was calculated for increasing values 

of order using the methods of (2.18) and (2.24).  Fig. 2.8 shows the percent 

difference between the condition numbers from the two methods.  The figure 

shows that the method of (2.24) generates a lower condition number than the 

technique of (2.18). 

Fig. 2.8.  Condition number percent error vs. order. 

The method of (2.24) is the technique employed in the remainder of this thesis. 

2.4 Mode identification and damping estimation 

Once the model parameters a have been determined and the spectrum 

extrapolated, the estimated modes are identified by locating the peaks in the 

magnitude response using (2.26), where D is the maximum number of peaks in 

the spectrum.  For the rest of this section, the reference to fi is as an estimated 

modal frequency in the algorithm. 
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( )( ) ( )26.2,3,2,1ˆmaxarg DifYfi ==  

Next, the damping associated with the estimated frequencies is calculated 

using a modified sliding window technique.  The method used here evolved from 

a technique by the authors of [76].  Using two time domain windows (Fig. 2.9), 

the researchers of [76] used the discrete Fourier transform definition to calculate 

the magnitudes of the peaks identified using (2.26) from two windows (Fig. 2.10).  

Using the relationship in (2.27), the damping factor of the mode was estimated 
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where t1 and t2 are the start times of the first and second windows respectively, TG 

is the difference in the start times t2–t1, tw  is the window width and |F(2πfi)| is the 

magnitude of the spectrum at the frequency fi.   

0

TG tw

tw
 

Fig. 2.9.  Sliding time domain windows. 
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 In the calculation of (2.26) and (2.27), the authors assumed the signal to be 

stationary in order to apply a linear approximation to solve for the damping factor.  

The values of |FA| and |FB| are the Fourier spectrum magnitudes representing their 

respective time domain windows. 

M
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de

0

│FA│

│ΔF│ = │FA│- │FB│

│FB│

fi Frequency
 

Fig. 2.10.  Fourier spectrum of two time domain windows. 

At a given frequency, the Fourier spectrum magnitude represents the 

square root of the signal’s energy.  As a result, if the magnitude of the peak 

decreases from the first to the second window the energy of the mode is 

decreasing and the mode is deemed to be positively damped.  Stated another way, 

a decrease in the Fourier magnitude from the first to the second window 

represents a stable mode located in the left side of the pole-zero plane.  If the peak 

increases from one window to the next, damping is judged to be negative and the 

mode exists in the right side of the pole-zero plane. 

The authors in [76] noted that the size of tw is restricted to be equal to or 

greater than integer multiples of the period of the mode fi.  Secondly, the 
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difference in the starting times of the two windows TG also is required to be an 

integer multiple of the period of f. as well.  These two assumptions are necessary 

to derive the relationship of (2.27) as used by the authors.  However, these 

assumptions also impose restrictions on the size of the window along with the 

start times between the windows.  In [77], this author proposes using a tapered 

window in lieu of a rectangular window used in [76].  The benefits of the tapered 

window are that it reduces leakage effects that are produced by the rectangular 

window and thus removes the restrictions on the start times imposed by [76].  

However to accommodate noise in the signal, the procedure outlined in [77] 

requires an iterative solution. 

The author in [77] updated his methodology [78-79] to include linear 

prediction using frequency samples instead of the time measurements themselves.  

Prior to this research, the author proposed essentially non-parametric methods 

using only two sliding windows.  In his new version, the author of [78-79] uses a 

unique combination of non-parametric and parametric tools for electromechanical 

damping estimation.  Using sliding tapered windows from his early research, a 

description of the algorithm is given below.  If the complex signal within a 

noiseless measurement is described as 

( ) ( ) ( )28.2,,0 w
tj ttAety ii == α+ω  

where A is the amplitude, ωi is the angular frequency, and αi is the damping 

factor.  The first step in the process is to downshift to the baseband, or fi, using 

(2.29). 
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( ) ( ) ( )29.22 ifj
d etyty π−=  

This procedure removes the oscillatory component of (2.28) and, assuming 

2πfi=ωi, leaves an approximation of a damped exponential (2.30). 

( ) ( )30.2t
d

iAety α≅  

In the case of a real signal 

( ) ( ) ( )31.2,,02cos wi
t tttfAety i =π= α

 

( ) ( ) ( )

( ) ( )32.2,,04cos
2
1

2
1

2cos

wi
t

id

tttfAe

tftyty

i =





 π+=

π=

α  

The first term in the parenthesis of (2.32) indicates that evaluating the 

spectrum of yd(t) at f=0 will provide the damping information from the original 

time series in (2.31) without the oscillatory component, and the artifacts 

represented by the second term can be ignored.  As an example of the 

downshifting effect and using αi=-.005 s-1 and fi=1.0 Hz in (2.31), the spectrums 

for y(t) and yd(t) are estimated as shown in Fig. 2.11. 
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Fig. 2.11.  Estimated spectrums for y(t) and yd(t). 

In this thesis, the AHE polynomials are used to approximate time 

measurements representing (2.31).  Next, the spectrum is estimated and critical 

frequencies are identified.  With the frequencies located, the AHE polynomials 

are now fitted to the downshifted measurements generated from (2.32) to generate 

a new set of model parameters using a sliding window.  For each subwindow, its 

spectrum is estimated and the magnitude of |Ŷf0| at f=0 is recorded.  A vector of 

frequency samples is created and used within a linear predictor algorithm.  The 

type of linear predictor used in the AHE algorithm is a forward predictor, which is 

also an FIR filter (2.33). 
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where d is the shift index, l is the order of the predictor, af are the predictor model 

parameters and |Ŷf0| is the estimated spectrum of the downshifted measurements.  

As an alternative to (2.33), other linear predictors can be used for estimating the 

model parameters.  A combination of forward or backward linear predictors can 

be substituted for the simple predictor in (2.33) [31].  Also, depending on whether 

the data is windowed, pre-windowed or non-windowed also affect the type of 

predictor that can be selected as well as its overall performance. 

The damping factor is calculated by solving for the roots of the 

characteristic equation of the linear predictor and provides an estimate of the true 

damping factor in (2.28) or (2.31).  A new estimate of the frequency is now 

computed (2.34) 

( )34.2iidiu fff +=  

where fiu is the “upshifted” frequency estimate from the linear predictor that 

replaces the original estimate fi.  A summary of the estimation process is given in 

Fig. 2.12.  The process is repeated until all the relevant modes have been 

identified and their damping levels estimated. 

2.5 Summary of the proposed AHE algorithm 

An outline of the AHE algorithm is shown in Fig. 2.13.  The order of the 

time and frequency domain approximations is set using the relationship in (2.24), 

and the value of λ is calculated using (2.25).  Next, the ht matrix is calculated.  

The coefficients in (2.5-6) are solved in a least square sense using the pseudo-

inverse formula of (2.7) with the order M and time scale factor λ.  With the a 
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coefficients found, the approximation of the spectrum is calculated (2.14-15) and 

the significant frequency estimates are identified (2.26).  For each significant 

mode, the original observation is downshifted with the baseband frequency 

estimate fi (2.29) or (2.31) and the model coefficients are recalculated using the 

new time signal.  The spectrum is estimated again and the magnitude of the 

downshifted frequency response |Ŷf0| at f=0 is recorded.  This is repeated for a set 

of sliding windows of length nd samples until a vector is generated.  The vector is 

applied to a linear predictor (2.33) and the downshifted frequency fid and damping 

factor estimates are calculated by solving for the roots of the characteristic 

equation of the linear predictor.  The downshifted frequency estimate is added to 

the original estimate fi to obtain a new estimate fiu (2.34).  This process is repeated 

for all the significant modes found from the original spectrum approximation. 

Shift sliding 
window by nd.

Estimate the spectrum 
for y(t) and detect 
frequency fi (2.26).

y(t)

X

Use linear predictor 
and solve for 

estimates of fid and αi.

yd(t)

Estimate the spectrum 
|Ŷf0| for yd(t).

Record the magnitude of 
the spectrum at f=0.

i=i+1

cos(2πfit)

 

Fig. 2.12.  Damping estimation process for a real measurement [78-79]. 
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Calculate order M (2.24) and time 
scale factor λ (2.25).

Calculate the ht matrix (2.5-6).

Identify the estimated modes fi (2.26).

Final 
window?

no

yes

Last mode fi?i=i+1
no

yes
Estimation 
complete

Downshift y(t) to the baseband for 
fi to obtain yd(t) (2.29) & (2.32).

Shift window
by nd.

Use linear prediction 
to solve for

αi and fid for each fi.

Estimate spectrum and 
record |Ŷf0|.

Solve for the a coefficients (2.7) and 
extrapolate the spectrum (2.14-15).

y(t)

 

Fig. 2.13.  AHE algorithm for estimating small signal modes. 
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2.6 Example calculation of the AHE algorithm 

To demonstrate the proposed AHE algorithm as described in this chapter 

and shown in Fig. 2.13, an example estimation is performed.  The simulated rotor 

angle of Fig. 1.1 is assessed and the input and output results are obtained.  A 

graphical user interface (GUI) was written using MATLAB that incorporated the 

AHE algorithm along with other spectral estimators.  The GUI allows the user to 

select the sampling frequency, the AHE polynomial order, the LP order and the 

selection of an optional tapered window among other items.  The estimated 

spectrum can be displayed along with the output of the LP filter.  Fig. 2.14 shows 

a view of the GUI written for this thesis. 

 

Fig. 2.14.  Graphical User Interface with the AHE algorithm. 

A simulated input measurement of a generator rotor angle was created 

using a commercial transient stability program and was sampled at 240 Hz and 

decimated to 24 Hz over a window of approximately 10 seconds.  This simulated 
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measurement was applied to the algorithm in Fig. 2.13.  Next, the order M was 

calculated to be 20 using (2.14) and the time scale factor λ was calculated to be 

0.627 using (2.25).  The matrix ht was calculated and the model coefficients a 

were determined using (2.7).  With the model coefficients known, the model 

estimate of the time domain output ŷ(t) and the estimated spectrum |Ŷ(f)| were 

calculated (2.14-15).  With the spectrum estimated, the modes of the model can be 

identified using (2.26).  Table A.1 in Appendix A contains the original simulated 

measurement, the model time domain estimate, the estimated spectrum and the 

model coefficients.  The estimated spectrum |Ŷ(f)| for identification of the mode 

can be seen in Fig. 2.14.  A mode at approximately .98 Hz was identified from the 

estimated spectrum. 

With the mode found, the original signal is downshifted to the baseband or 

estimated modal frequency and the model coefficients re-determined.  The 

estimated spectrums for six windows were recalculated and the spectrum 

magnitude |Ŷf0| at f=0 was recorded.  With the values of |Ŷf0| known, a fifth order 

forward linear predictor was used to estimate the damping.  Results from the 

linear predictor show the .98 Hz mode has a negative damping ratio of 

approximately 1.17%.  Table A.2 in Appendix A lists the values of the seven 

estimated spectrums along with the values of  used in the LP filter to estimate 

damping. 

 

 



 
 

Chapter 3  

OTHER ESTIMATION METHODS 

3.1 Introduction 

In Chapter 1 many estimation methods were discussed in terms of their 

abilities to accurately predict the components of power system modes.  In this 

chapter, four techniques are reviewed in detail that will be used in this thesis as a 

comparison to the AHE method.  Two of these methods are parametric estimation 

techniques while one is a Fourier based non-parametric method and the last 

estimator is a combination of parametric and non-parametric methods.  The 

reason these four estimators were chosen to have their capabilities compared with 

the AHE algorithm in this thesis is that all four algorithms have been successfully 

utilized in the estimation of small signal stability in power systems. 

The first method to be review is the basic least squares Prony’s method.  

Initially proposed by Baron de Prony in 1795 to study the relationship between 

pressure and volume in gases, this estimation technique has only been used in the 

last 25 years as a method to estimate power system modes for small signal events.  

The other parametric method is based on the Yule-Walker equations.  For this 

thesis, the Yule-Walker method will employ ACS estimates compiled from 

measured values.  The non-parametric method has been recently proposed for 

predicting the instantaneous frequency and damping components of power system 

modes and is referred to as the Hilbert-Huang Transform (HHT) estimation 

method.  As the name implies, a HHT analysis uses the Hilbert transform as well 
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as empirical mode decomposition (EMD) to separate the different modes within 

the original measurements.  For the last method, the estimator used here that has 

both parametric and non-parametric characteristics is an older sliding window 

method referred hereto as the O’Shea sliding window method.  Although both the 

AHE algorithm and the O’Shea method rely on simple linear predictors for 

determining damping levels, they utilize different means for generating the 

spectrum approximations for identifying the frequency components of the modes 

and creating the downshifted spectrums used by the LP.  All four of these 

methods were briefly discussed in Chapter 1, but will be discussed here in more 

detail. 

3.2 Least squares Prony’s method 

As explained earlier, the basic least squares Prony’s method used today is 

a parametric method that employs block processing of measurements into an 

exponential model.  The steps to perform the least squares Prony’s method were 

given in Fig. 1.3.  Because it does utilize block processing, the method is 

generally not appropriate for non-stationary signals and steps need to be taken to 

isolate the measurements into a non-time varying form to use Prony’s method.  

The order selection discussed in the literature is usually in the range of N/3 to N/2 

[27-28], where N is the number of samples in the window. 

The exponential model used in basic Prony’s analysis is shown in (3.1) in 

the continuous time form 
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( ) ( )1.3,,0ˆ
1

w

M

k

ts
k tteBty k ==∑

=  

where sk are the continuous time eigenvalues as defined in (1.4), M is the order, Ts 

is the sampling period and Bk are the complex residues.  A more convenient form 

of (3.1) is the discrete time model shown in (3.2) 

[ ] ( )2.3ˆ
1
∑
=

=
M

k

j
kk zBjy  

where zk are the discrete time poles of the estimated response as defined as (3.3).  

Its important to note that the complex residues contain the information how the 

modal information is allocated along the state y(t). 

( )3.3skTs
k ez =

 
 To solve for the poles in (3.2) and thus completing steps one and two of 

Fig. 1.3, various methods can be employed.  However, the simplest way to obtain 

the poles is to form a forward linear predictor using solely the measurements y(t) 

as opposed to the linear predictor model in (2.33) that uses frequency samples.  

The closed form of the linear predictor is shown in (3.4) and the matrix form is 

shown in (3.5). 
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 Its worth noting here that there is no requirement to use the simple linear 

predictor in (3.4-5) to find the poles of the measurement.  In fact, more complex 

linear predictors can be used in place of (3.4-5), such as a backward predictor or a 

combination of forward and backward predictors as found in the covariance and 

modified covariance spectral estimators.  As was mentioned before, actual 

measurements y(t) can be replaced with ACS estimates.  At this point, the 

characteristic equation of (3.4-5) is formed in the least squares Prony’s method 

and the roots determined. 

 In the last two steps, the roots zk are inserted into the exponential model of 

(3.2).  The complex residues are solved by taking product of the inverse of a Van 

Der Monde matrix containing the poles and a vector containing the 

measurements.  With the residues found, the model is complete.  At this point, an 

estimate of the measurement, the variance, and the spectrum estimate can be 

obtained.  In addition, the damping kα  and frequency fk components of the mode 

as well as the phase θk of the individual modes can be predicted using the values 

in (3.6-8).  The amplitude of the mode is equal to the absolute value of the 

complex residues, Bk. 
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3.3 AR Yule-Walker (ARYW) estimation method 

In Chapter 1 the Yule-Walker method was introduced in regards as 

another technique for estimating electromechanical or power system modes.  In 

this section the equations are provided in detail for using this method for 

computation comparison.  The ARYW estimation method assumes that an 

autoregressive process can be estimated by calculating the model parameters for 

an all pole estimator.  These parameters are found by assembling an estimate of 

the ACS matrix and finding the product of its inverse and the ACS vector, as seen 

in matix form (3.9) 

( )9.3rRa −−=  

where R is the ACS estimate matrix and r is the ACS estimate vector.  Like 

Prony’s method in section 3.2, the data manipulation for the ARYW normal 

equations includes block processing. 

As shown in Fig. 1.4, the first step in the ARYW estimation method is to 

select a maximum lag or order M for the estimator.  The methodology here is 

similar to the order selection method used for the Prony estimation method 

discussed in the previous section.  In addition, the order selection rules such as 

AIC, BIC and FPE described in Table 2.2 can be used here as well.  Next, the 

ACS estimates are generated using (3.10) 
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where m is the lag index, N is the number of samples, + is the complex conjugate 

operator and y(k) are the data measurements.  Only the positive ACS estimates 

need to be determined since the property holding that real positive estimates with 

positive lags equal complex conjugate estimates for negative lags holds (3.11).  

Also, biased ACS estimates are used in lieu of unbiased estimates in order to 

force the ACS estimate matrix to be positive semi-definite and thus ensuring that 

a solution to (3.9) exists. 

( ) ( ) ( )11.3mrmr −= +
 

With the ACS estimates calculated, the values are used to populate the 

ACS estimate matrix R and estimate vector r in the matrix form of (3.9) as well as 

(3.12).  By inspection, the ACS estimate matrix is Toeplitz.  Also because the 

positive lag elements equal the negative conjugate lag elements, the matrix is 

Hermitian or conjugate symmetric.  The model parameters a are then solved 

either in a least squares sense or using fast algorithms such Levinson or Levinson-

Durbin.  This completes the model building process for the ARYW estimation 

method. 
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3.4 Hilbert-Huang Transform estimation with Empirical Mode Decomposition 

A method briefly described in Chapter 1 that is becoming increasingly 

popular in estimating small signal modes is based on the Hilbert transform and is 

collectively referred to as the HHT estimator.  In addition, since this method 

calculates the instantaneous frequency and damping components of a small signal 

mode as a time domain function, it holds the promise of being used in an on-line 

prediction method.  Unlike the Fourier transform that converts a time domain 

function into the frequency domain, the Hilbert transform of a time domain signal 

remains in the time domain 

( )[ ] ( ) ( )13.3*1 tx
t

txH
π

=  

where * represents the linear convolution operator.  Assume that x(t) is an 

exponentially damped sinusoid given in (3.14). 

( ) ( ) ( )14.3cos δ+ω= α tAetx i
ti

 

The objective in using the HHT method is to first form the analytic 

function XA(t), in (3.15), as the complex sum of the original signal and the Hilbert 

transform of the original signal. 

( ) ( ) ( )[ ] ( )15.3txjHtxtX A +=  

To identify the damping associated with x(t), the derivative of the function 

ln(XA(t)) (3.16) is calculated.  To identify the frequency component of the mode, 

the derivative of the phase of the analytic function XA(t) (3.17) is computed. 

( )( ) ( ) ( )16.3lnln AttX iA +α=  
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( ) ( )17.3δ+ω=∠ ttX iA  

The method as outlined so far will work for disturbances with a single 

mode.  However, many actual power system disturbances contain more than one 

mode and these will need to be isolated.  To accomplish isolating modes in order 

to use the HHT method, empirical mode decomposition (EMD) is executed to 

separate multiple signals into a single mode individual signal or intrinsic mode 

function (IMF).  A limitation of using EMD as proposed is that it can only 

effectively separate signals that are more than an octave apart.  Under this 

scenario instead of producing a single frequency component, the standard EMD 

algorithm produces a multimodal signal that cannot be easily processed by the 

HHT algorithm.  The problem is compounded by the fact that if the prior or 

higher frequency IMF is not completely isolated, the other lower frequency IMF’s 

will be contaminated.  To overcome this constraint, masking signals are used as 

proposed by some researchers.  A FFT based empirical masking method is one 

technique that has been proposed and demonstrated [86].  The following steps 

highlight the FFT based masking approach: 

• Perform a FFT analysis to identify all the frequencies in the 

original signal. 

• Build masking signals starting from the highest frequency 

component. 



 
 

71 
 

• Reconstruct IMF’s using one or more masking signals depending 

on the frequency distance between the highest two frequencies 

and their magnitudes. 

• For each successfully recreated IMF, execute the HHT algorithm 

to identify the damping and frequency components for that mode. 

Other masking methods have also been proposed by researchers based on energy 

within the mode. 

Once the individual components of the original signal have been removed, 

the combination of the original EMD and the HHT algorithms are used as before.  

Fig. 3.1 shows an overview of the HHT estimation method with EMD and 

masking. 

Use Empirical Mode 
Decomposition on x(t).Begin

If modes are known to be 
within an octave of one 

another, use a masking signal.

Apply HHT to each 
IMF to obtain (3.16 

& 3.17).

Solve for the derivitive of (3.16 
& 3.17) to find the damping 
and frequency components.

Estimation 
complete

 

Fig. 3.1.  Summary of the HHT algorithm. 

3.5 O’Shea sliding window estimator 

 As explained in previous chapters, the O’Shea sliding window estimator 

was derived from another sliding window algorithm proposed by [76].  

Unfortunately, the previous method imposed restrictions on the location and size 

of the subwindows in order to ease the calculation of the damping factor.  The 

O’Shea estimator brought two innovations to the other method, with the most 
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important change being the use of a LP to estimate damping factors in lieu of 

single formula.  Once the frequencies were identified using the FFT, the original 

signal was downshifted thus removing a particular oscillatory component of the 

signal and allowing the linear predictor to find the modes damping level.  Fig. 3.2 

shows the O’Shea sliding window estimator with linear prediction.  Some of the 

relationships in the O’Shea method are used in the AHE algorithm. 

Identify the estimated modes fi (2.26).

Final 
window?

no

yes

Last mode fi?i=i+1
no

yes
Estimation 
complete

Downshift y(t) to the baseband for 
fi to obtain yd(t) (2.29) & (2.32).

Shift window
by nd.

Use linear prediction 
to solve for

αi and fid for each fi.

Estimate the spectrum using 
the FFT and record |Ŷf0|.

Calculate the estimated spectrum 
using the FFT.y(t)

 

Fig. 3.2.  O'Shea sliding window algorithm. 

 



 
 

Chapter 4  

AHE COMPARATIVE ASSESSMENT 

4.1 Single and multi-mode comparison 

 To assess the ability of the AHE algorithm described in Chapter 2 a 

number of comparisons were performed using four other identification methods 

reviewed in Chapter 3.  In this section, an assessment is made using simple 

noiseless single and multi-mode functions.  A Prony analysis, an autoregressive 

technique using the Yule-Walker (ARYW) equations, the Hilbert based HHT 

algorithm using EMD, the O’Shea sliding window estimator as well as the AHE 

method were applied to two noiseless, stationary real functions 

 
( ) ( ) ( )1.42cos 1

1 tfets t π= α  
 

( ) ( ) ( ) ( )2.42cos2cos 21
21 tfetfets tt π+π= αα  

 

where α is the damping factor, f is the frequency, and s(t) is the artificial test 

function in the analysis. 

Different frequencies and damping factors were used in the single-mode 

case (4.1) to measure the efficacy of each method.  Table 4.1 shows the results of 

the five methods for the single mode case using a single 50 second window 

length. 
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Table 4.1.  Comparison results for the single mode scenarios. 

Test Signals AHE Prony ARYW HHT O’Shea 
f α f α f α f α f α f α 

(Hz) (s-1) (Hz) (s-1) (Hz) (s-1) (Hz) (s-1) (Hz) (s-1) (Hz) (s-1) 

.200 -.005 .200 -.005 .200 -.005 .203 -.023 .200 -.005 .200 -.005 

.200 -.100 .200 -.100 .200 -.100 .214 -.105 .200 -.100 .200 -.100 

2.00 -.005 2.00 -.005 2.00 -.005 2.00 -.021 2.00 -.005 2.00 -.005 

2.00 -.100 2.00 -.100 2.00 -.100 2.00 -.100 2.00 -.100 2.00 -.100 

.200 +.005 .200 +.005 .200 +.005 .203 +.023 .200 +.005 .200 +.005 

2.00 +.005 2.00 +.005 2.00 +.005 2.00 +.021 2.00 +.005 2.00 +.005 

 

 For the multi-mode case, differing combinations of frequencies and 

damping factors were used in (4.2) to generate the simulated test measurements.  

Table 4.2 shows the results of the five estimators for the noiseless, stationary 

multi-mode case using a 50 second window. 

Table 4.2.  Comparison results for the multi-mode scenarios. 

Test 
Signals AHE Prony ARYW HHT O’Shea 

f α f α f α f α f α f α 

(Hz) (s-1) (Hz) (s-1) (Hz) (s-1) (Hz) (s-1) (Hz) (s-1) (Hz) (s-1) 

.200 
2.00 

-.100 
-.100 

.200 
2.00 

-.100 
-.100 

.200 
2.00 

-.100 
-.100 

.215 
2.00 

-.113 
-.095 

.200 
2.00 

-.100 
-.100 

.200 
2.00 

-.101 
-.100 

.200 
2.00 

-.005 
-.100 

.200 
2.00 

-.005 
-.100 

.200 
2.00 

-.005 
-.100 

.203 
2.00 

-.026 
-.086 

.200 
2.00 

-.005 
-.100 

.200 
2.00 

-.005 
-.100 

.200 
2.00 

-.050 
-.010 

.200 
2.00 

-.050 
-.010 

.200 
2.00 

-.050 
-.010 

.208 
2.00 

-.059 
-.021 

.200 
2.00 

-.050 
-.010 

.200 
2.00 

-.050 
-.010 

.200 

.300 
-.005 
-.500 

- 
- 

- 
- 

.200 

.300 
-.005 
-.500 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 
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.200 

.300 
-.005 
-.005 

.200 

.301 
- 

+.050 
.200 
.300 

-.005 
-.005 

- 
- 

- 
- 

.199 

.299 
-.006 
+.005 

.200 

.300 
+.002 
-.003 

.200 

.250 
-.001 
-.001 

.200 

.250 
-.008 
+.031 

.200 

.250 
-.001 
-.001 

.230 
- 

-.048 
- 

.149 

.229 
+.058 
-.117 

.200 
- 

- 
- 

 

 A review of the single mode results show that all five methods reasonably 

agreed in terms of the identification frequency components of the modes.  The 

only notable difference among the five estimators was the damping prediction of 

the ARYW method and the frequency estimates for low frequency values.  One 

solution may be to reduce the lag of the estimator to improve the variance of the 

damping estimate without sacrificing resolution of the frequency estimate. 

 As was the case for the single-mode estimator results, the five methods 

predicted the frequency components reasonably successfully when two modes are 

provided with different frequencies and damping factors.  Again, the only 

exception was for the ARYW estimate.  This method had difficulty proving 

accurate frequency and damping estimates for low frequency modes.  When the 

frequencies were within .100 Hz of each other, only the Prony assessment 

accurately estimated all the modal values.  If the damping levels were minimal, 

the AHE technique could identify the modes but not their damping levels.  Results 

from using the O’Shea algorithm nearly matched the results from the AHE 

method.  For the HHT method, neither mode was estimate accurately when the 

frequencies were within an octave of one another.  However, the limitation of the 

basic HHT algorithm to estimate accurate modes that are within an octave is well 

known and masking methods have been proposed to remedy this effect.  Table 4.3 

shows the last three modes in Table 4.2 with a proposed masking scheme applied.  
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As can be seen, the masking method did improve the frequency identification as 

compared to not using a mask.  However, the damping component estimation was 

still problematic.  One solution may be to use a better derivative estimator or 

another type of masking method. 

 

Table 4.3.  HHT masking results. 

Test 
Signals 

Without 
masking 

With 
masking 

f α f α f α 

(Hz) (s-1) (Hz) (s-1) (Hz) (s-1) 

.200 

.300 
-.005 
-.500 

- 
- 

- 
- 

.119 

.189 
+.021 
-.146 

.200 

.300 
-.005 
-.005 

.199 

.299 
-.006 
+.005 

.191 

.303 
-.014 
-.037 

.200 

.250 
-.001 
-.001 

.149 

.229 
+.058 
-.117 

.194 

.253 
+.138 
+.052 

4.2 Additive noise comparison 

 White noise q(t) was introduced into two multi-mode signals (4.3) and 

each of the five estimators used in the previous section was employed to assess 

each mode for increasing levels of noise.  The values of the components of the 

modes used in (4.3) are given in Table 4.4. 

( ) ( ) ( )
( ) ( ) ( ) ( )3.4

2cos2cos 21
21

tqtstw
tfetfets tt

+=
π+π= αα

 

Table 4.4.  Mode components for noise assessment. 

Signal Mode Frequency Damping 

#1 #1 .25 Hz -.050 s-1 3.18% 
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 #2 1.25 Hz -.005 s-1 .064% 

#2 #1 .45 Hz -.005 s-1 .177% 

 #2 .85 Hz -.050 s-1 .936% 

The order of the AHE approximation for the noise assessment was chosen 

by selecting the largest order needed to supply the time and frequency support for 

the AHE functions and at the same time keeping the order as small as possible to 

allow the condition number of the ht matrix to be very nearly equal to 1 for the 

noise mitigation requirement.  Using (2.24-25), the order M and the time scale 

factor λ were calculated for a 50 second window to be 137 and 1.41, respectively.  

As shown in Fig. 2.8, the use of (2.24) provides a low condition number which is 

required for generation of a noise tolerant AHE estimator.
 

The mean square error (MSE) of the estimate of the damping factor and 

the frequency component was used as an error metric and the SNR in (4.4) was 

used as measure for the amount of white noise introduced into the artificial 

measurement. 

( )( )
( )( ) ( )4.4

var
/)(

log10
2

10 











 −
= ∑

tq
Nsmeants

SNR
 

Figs. 4.1 and 4.3 show the results from the five estimators for signal #1 

after repeated trials at a different noise levels for the frequency components of the 

.25 Hz and 1.25 Hz modes, respectively.  Similarly Figs. 4.2 and 4.4 show the 
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estimator results of the damping components of the .25 Hz and 1.25 Hz modes, 

respectively. 

For signal #1, the AHE method performed better than the other estimators 

in predicting the frequency and damping components of the two modes as the 

noise levels increased.  In the case of the .25 Hz mode, all five estimators 

predicted the correct frequency components to as low as a SNR of 15 dB.  

However below 15 dB, the AHE method performed significantly better that the 

other estimators.  An observation made from the Figs. 4.1 and 4.2 is that as the 

SNR decreases from 15 to 2 dB the HHT, ARYW and O’Shea methods accuracy 

remains relatively constant.  However, the accuracy of the Prony method 

continuously decreases as the noise level increases. 

In the case of the moderately damped mode for signal #1, the AHE 

estimator performed better than the other four predictors from a SNR of 15 to 2 

dB for both mode components.  As was noted before, an examination of the Figs. 

4.3 and 4.4 shows that the accuracy of Prony estimation continuously decreased 

as the noise level increased where as the accuracy of the other estimators 

remained relatively flat in this noise range. 

For signal #2, the AHE method again performed better than the other four 

estimation methods for both the frequency and damping components between an 

SNR of 15 and 2 dB.  Fig. 4.5 shows the frequency component results for the .45 

Hz mode and Fig. 4.6 shows the damping component of the mode while Figs. 4.7 

and 4.8 show the frequency and damping performance of the .85 Hz mode.  As 
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before, the Prony analysis performance continuously worsened as the noise level 

increased.  However, the performance of the other estimators remained relatively 

flat in this noise range. 

 

Fig. 4.1.  Noise results for the frequency component of the .25 Hz mode. 

 

Fig. 4.2.  Noise results for the damping component of the .25 Hz mode. 

2 4 6 8 10 12 14 160

1

2

3

4

5

6

7

SNR(dB)

Lo
g(

1E
+0

7 
x 

M
SE

)

 

 

AHE
Prony
HHT
ARYW
OShea

2 4 6 8 10 12 14 160

1

2

3

4

5

6

7

SNR(dB)

Lo
g(

1E
+0

7 
x 

M
SE

)

 

 

AHE
Prony
HHT
ARYW
OShea



 
 

80 
 

 

Fig. 4.3.  Noise results for the frequency component of the 1.25 Hz mode. 

 

 

 

Fig. 4.4.  Noise results for the damping component of the 1.25 Hz mode. 
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Fig. 4.5.  Noise results for the frequency component of the .45 Hz mode. 

 

 

Fig. 4.6.  Noise results for the damping component of the .45 Hz mode. 
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Fig. 4.7.  Noise results for the frequency component of the .85 Hz mode. 

 
 
 
 
 
 

 
Fig. 4.8.  Noise results for the damping component of the .85 Hz mode. 
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4.3 Window length comparison 

 Using the artificial signal in (4.3) but with f1=.20 Hz, α1=-.05s-1, f2=1.20 

Hz and α2=-.005s-1 and without the noise component q(t), the length of the 

observation window was reduced from 180 seconds to assess the accuracy of the 

five methods relative to one another.  Unlike, however, the previous analysis the 

percent error was calculated in lieu of the MSE for both the frequency and 

damping components of the mode as the window was reduced. 

Figs. 4.9 and 4.11 show the frequency components for the .20 Hz and 1.20 

Hz modes, respectively.  The damping component effects as the observation 

window is reduced are shown in Figs. 4.10 and 4.12 for the .20 Hz and 1.20 Hz 

modes, respectively. 

 

 

 

Fig. 4.9.  Reduced window length results for .20 Hz frequency component. 
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Fig. 4.10.  Reduced window length results for damping component of .20 Hz 
mode. 

 

 

 

Fig. 4.11.  Reduced window length results for frequency component of 1.20 Hz 
mode. 
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Fig. 4.12.  Reduced window length results for damping component of 1.20 Hz 
mode. 

 
 For both modes, the ARYW algorithm was markedly inferior to the other 

four estimators and consequently it was not plotted with the other results.  The 

remaining four estimators accurately predicted the frequency components of the 
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was slightly less accurate as the other methods when the window length 

approached the .20 Hz frequency’s fundamental period.  For the frequency 

component of the 1.20 Hz mode, all estimators performed nearly equally well. 

For the damping components of each mode, the AHE algorithm predicted 

as accurately as the other estimators to a window length of 15 seconds.  The only 

method that showed any noticeable deviation was the HHT algorithm.  At relative 
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function (3.15) that is relatively constant.  Choosing the location of the slope of 

this function is somewhat subjective and thus can be improved through careful 

attention. 

4.4 Sampling rate comparison 

 A comparison was made using the synthetic signal studied in section 4.3 

along with the five estimators.  In these tests, the sampling rate was varied to 

highlight any differences in prediction capability among the estimators.  As was 

found in the previous section, the Yule-Walker algorithm’s performance was 

substantially weaker than the other four estimators and its results were not 

recorded here.  In general, the various sampling rate frequencies were kept 

relatively low due to the fact that most power system recording devices sample at 

low rates such as 30 Hz for a typical phasor measurement unit (PMU). 

Figs. 4.13 and 4.15 show the results of reducing the sampling rate for the 

frequency components for the .20 Hz and 1.20 Hz modes, respectively.  Next the 

performance of each estimator’s ability to predict the damping components for the 

.20 Hz and 1.20 Hz modes are given in Figs. 4.14 and 4.16, respectively.  Like the 

window length analysis, the error metric used was the absolute percent error in 

lieu of the MSE.  Again, the MSE was not used in this comparison since there 

were not multiple trials so no random variable was introduced.  The window size 

used for this assessment was 50 seconds, which was the same record length used 

in the assessments for the additive noise and single and multi-mode assessments. 
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Fig. 4.13.  Sampling rate results for frequency component of .20 Hz mode. 

 
 

 
 
 
 

 
Fig. 4.14.  Sampling rate results for damping component of .20 Hz mode. 
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Fig. 4.15.  Sampling rate results for frequency component of 1.20 Hz mode. 

 
 
 
 
 
 
 

 
Fig 4.16.  Sampling rate results for damping component of 1.20 Hz mode. 

 

0 50 100 150 2000

0.2

0.4

0.6

0.8

1x 10-3

Sample rate (Hz)

Pe
rc

en
t e

rr
or

 (%
) (

f=
1.

20
 H

z)

 

 

AHE
Prony
HHT
OShea

0 50 100 150 2000

0.5

1

1.5

Sample rate (Hz)

Pe
rc

en
t e

rr
or

 (%
) (

al
ph

a=
-.0

05
)

 

 

AHE
Prony
HHT
OShea



 
 

89 
 

 A review of Figs. 4.13 and 4.15 show that the AHE and O’Shea 

algorithms perform better than the HHT and Prony methods while estimating the 

frequency component for both modes down to a sample rate of 5 Hz, particularly 

for the .2 Hz mode.  This result is important particularly for the low frequency 

mode of .2 Hz where low interarea oscillations occur and may suggest a lower 

sampling rate could be applied.  Also, Fig. 4.13 shows the AHE algorithm is 

nearly as accurate at low sample rates than at high rates indicates that there is 

probably no benefit for sampling at higher rates for this algorithm.  The 

consequence of this observation is that the estimation can be achieved with less 

data for the same amount of time. 

 As was the case with the frequency component, the AHE and O’Shea 

algorithms estimated the damping components of both modes more accurately 

down to a sample rate of 5 Hz.  However, all the methods performed relatively 

well in the prediction of damping levels with no noticeable difference between the 

high and low frequency modes.  The HHT algorithm appeared to perform least 

accurately than the other methods particularly for the low frequency mode but the 

results overall are still acceptable. 

4.5 Non-stationary assessment 

 Because a non-stationary assessment of the various estimators is difficult 

to perform, a non-computational review of the methods is discussed here.  Most 

parametric and non-parametric estimators, including Prony’s method, are 

generally acknowledged not to be appropriate for non-stationary measurements.  
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This is particularly so for estimating damping levels.  This is true as well for the 

for the AHE algorithm as a simple example will show.  Using the modes from the 

previous section, a multi-mode artificial signal is generated over a 50 second 

window but with only the .20 Hz mode existing in the first 25 seconds of the 

measurement and only the 1.20 Hz mode in latter 25 seconds.  Such an abrupt 

change would not be expected in a physical measurement but it does represent a 

true non-stationary measurement.  Fig. 4.17 shows the generated artificial time 

measurement. 

 

Fig. 4.17.  Non-stationary test signal. 
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oscillatory components of the modes.  On the other hand, the damping results are 

not as accurate as accurate as in the case where both modes exist throughout the 

0 10 20 30 40 50-1

-0.5

0

0.5

1

Time(seconds)

M
ag

ni
tu

de



 
 

91 
 

entire window.  For the AHE, the damping estimate for the 1.20 Hz mode is 

extremely inaccurate due to the fact that the sliding window mechanism that 

estimates damping occurs in the initial portion of the window.  In this case, the 

number of subwindows used by the linear predictor is 18 and each subwindow is 

shifted by 5 samples.  With the subwindows 10 seconds wide and the sampling 

rate set at 12 Hz, the effective span of the FIR filter is 17.5 seconds and thus the 

estimator never sees the second signal since it exists in the latter half of the 

measurement. 

Table 4.5.  Non-stationary results. 

Window 
Sizes 

Test 
Signals Prony AHE 

f α f α f α 

 (Hz) (s-1) (Hz) (s-1) (Hz) (s-1) 

25 sec+ 
25 sec 

.200 
1.20 

-.050 
-.005 

.202 
1.20 

-.070 
-.006 

.201 
1.20 

-.050 
-.053 

50 sec .200 
1.20 

-.050 
-.005 

.200 
1.20 

-.050 
-.005 

.200 
1.20 

-.050 
-.005 

 

 In the simple example, the AHE algorithm fails to identify the non-

stationary measurement.  However, the users could adjust the amount of shift 

between subwindows or the size of the subwindows even though this requires 

prior knowledge of the measurement.  Researchers have proposed a method to 

calculate the instantaneous frequency and damping estimates of known non-

stationary measurements using the HHT algorithm employed in previous sections 

of this chapter [86].  Although the method is still being refined, the authors have 

successfully demonstrated its ability to find the mean of the frequency and 
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damping estimates for individual windows of a disturbance event.  Fig. 4.18 

shows the estimation results for the same signal as seen in Fig. 4.17 and reported 

in Table 4.4.  In the figure, the derivative of the instantaneous phase of the 

analytic function in (3.15) is calculated using (4.5) and (4.6).  Note that the 

frequency component of 0.20 Hz is clearly seen in the window from 0 to 25 

seconds.  The mean is recorded over a stable range of the signal and found to be 

0.194 Hz.  For the 1.20 Hz mode, the mean of this signal was recorded to be 1.200 

Hz over the stable range of the response. 
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Fig. 4.18.  HHT frequency decomposition of signal in Fig. 4.17. 
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 For the HHT assessment of the damping level of the modes in Fig. 4.17, 

the instantaneous damping factors for the .20 and 1.20 Hz modes were found to be 

-.050 and -.005.  To calculate the instantaneous damping factor, the derivative of 

the natural log of the analytic function of (3.15) or ln(|XA(t)|) was computed.  

Although the scale is difficult to read, Fig. 4.19 shows the instantaneous damping 

level of the signal in Fig. 4.17.  However, the mean of the two windows does 

verify the damping levels have been successfully isolated. 

 
Fig. 4.19.  HHT damping decomposition of signal in Fig. 4.17. 

4.6 Field measurement assessment 

 A search was performed for actual field testing by a utility and 

measurements were obtained of a brake insertion test on a transmission network 

in northwest area of the United States.  Using the five methods employed in this 

chapter, one of the field test measurements was analyzed and the results compared 

with those reported by the initial researchers.  Fig. 4.20 shows the field 

measurement of real power flow on a 500 kV transmission line over a 15 second 
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window following a brake insertion.  Table 4.6 shows the results of the 

assessment of the signal in Fig. 4.20 including those reported by the initial 

researchers.  Only two modes with a damping ratio of less than 10%, .246 Hz and 

.363 Hz, were found by the researchers from this test and these are the modes 

assessed by the AHE algorithm and the other four estimators. 

 

 

Fig. 4.20.  Field measurement of a brake insertion. 

 
Table 4.6.  Field test comparison. 

Initial field 
assessment AHE Prony ARYW HHT O’Shea 

f α f α f α f α f α f α 

(Hz) (s-1) (Hz) (s-1) (Hz) (s-1) (Hz) (s-1) (Hz) (s-1) (Hz) (s-1) 

.246 

.363 
-.151 
-.213 

.231 

.363 
-.186 
-.193 

.238 

.360 
-.191 
-.165 

.187 

.387 
-.483 
-.228 

.144 

.264 
-.062 
-.098 

.200 

.333 
.489 
.454 
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 As can be seen in the table, the AHE algorithm performed well in relation 

to the findings from the initial researchers for the two dominant modes in the field 

measurement.  Also, the AHE algorithm exceeded the predictions from the other 

algorithms with the exception of one frequency estimate from the Prony analysis. 

4.7 Comparative assessment summary 

 In this chapter a group of established spectral estimators performances 

were compared to the performance of the AHE algorithm under five different 

scenarios.  The four estimators included an analysis using Prony’s method, an 

autoregressive model using the Yule-Walker equations with ACS estimates, the 

Hilbert-Huang Transform algorithm with Empirical Mode Decomposition and the 

O’Shea sliding window technique.  In all scenarios, artificial signals were created 

for processing by each estimator. 

The first assessment evaluated the all five algorithms ability to distinguish 

single and multi-mode signals with varying assumptions over a 50 second time 

window.  For the single mode case, each method accurately identified the 

frequency and damping components of complex modes over a frequency range of 

.2 to 2 Hz and with growing and decaying oscillations.  The notable exception 

was the slightly inferior performance of the autoregressive Yule-Walker method.  

In the multi-modal case with two modes, the estimators were able to identify both 

frequency components and damping levels when the frequencies were well 

separated.  However, only Prony’s method was able to distinguish both frequency 

and damping levels when the frequencies were within .05 to .1 Hz of each other 
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regardless of damping levels.  The AHE algorithm was able to distinguish 

frequency components with these closely adjacent modes where the other 

estimators, other than Prony’s method, had difficulty. 

For the second assessment, white noise was added to two multi-modal 

artificial signals each with one lightly damped mode and one moderate damped 

mode (Table 4.4).  The window length was again kept at 50 seconds and a number 

of trials were completed at specified SNR levels.  As the SNR was reduced, the 

MSE was recorded for each estimator and the results were recorded.  Results 

showed that the AHE algorithm performed more accurately than the other 

estimators at SNR levels below 15 dB.  However, the AHE algorithm was able to 

accurately estimate all four modal components to a SNR of 2 dB as compare to 

the other four methods. 

For the window length assessment, the ARYW method was not considered 

due to its overall inferior performance.  The other four estimators were actually 

able to predict the frequency components fairly accurately to windows as small as 

15 seconds.  The AHE algorithm had difficulty isolating the .20 Hz mode since 

the window was approaching the fundamental period of the oscillatory 

component.  When the 1.20 Hz mode was evaluated, the AHE algorithm was as 

accurate as the other estimators in its prediction.  For the damping component 

analysis, the AHE was as accurate as the other methods.  The only exception was 

the HHT algorithm which appeared to have a problem extrapolating the phase of 

the analytic function for small window sizes. 
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For the sampling rate comparison, the AHE algorithm was generally more 

accurate than the other estimators for both high (200 Hz) to low (5 Hz) sampling 

frequencies.  Other than accuracy considerations, the results also suggest no 

benefit is obtained from the additional data resulting from higher sampling rates if 

the AHE algorithm is used.  Alternately, the results suggest use of the lower 

sampling rates would translate into lower computational speeds. 

Finally, the issue of non-stationary signals and their predictive abilities is 

discussed.  Other than the HHT algorithm, all the other estimators are parametric 

in nature and are generally believed not to be capable of providing meaningful 

results.  A simple example is performed using the Prony and the AHE methods.  

Although able to identify the frequencies correctly, both methods could not isolate 

the damping levels accurately.  Research has shown that the only estimator of the 

five used in this chapter capable of predicting modes in non-stationary signals 

successfully is the HHT technique.  This technique was applied to the signal in 

Fig. 4.17 and successfully identified both the frequency and damping components 

of the modes in the artificial signal.  Table 4.7 shows a synopsis of how the AHE 

algorithm performed for the various artificial measurement scenarios. 

Table 4.7.  AHE comparison results. 

Scenario AHE performance 

Single/multi-mode 

prediction 

Equal to or better than other estimators except for 

minor cases. 

Noise tolerance Performs better than other estimators down to SNR 
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levels of 2 dB. 

Reduced window 

length 

Accuracy tied to the period of the lowest modal 

frequency. 

Sample rate Equal to or better than other estimators. 

Non-stationary signal Not suitable for non-stationary analysis. 

 

 



 
 

Chapter 5  

COMPARATIVE ASSESSMENT-SIMULATED MEASUREMENTS 

5.1 Introduction 

 The intent of the previous chapter was to compare the performance of 

various measurement based estimators against the AHE algorithm using artificial 

measurements.  To complement the results of Chapter 4, the performances of the 

five estimation methods were assessed using simulated measurements generated 

from time domain simulations.  A WECC powerflow case and the GE powerflow 

and transient stability program PSLF were used to provide the time domain 

simulation values.  To provide reference frequency and damping levels, a model 

based method was used to estimate the dominant modes within the WECC case.  

The model based method used here was the eigenvalue analysis routine described 

previously in Chapter 1.  For the eigenvalue analysis, the PowerTech small signal 

analysis module SSAT in their DSATools software package was used with inputs 

from the WECC powerflow case and its accompanied dynamic representation.  

PowerTech’s PSAT powerflow module was also used in eigenvalue analysis. 

In order to excite the dominant angle and speed modes in the transient 

stability simulation an input was applied to the identified generator’s control 

models.  For these simulated measurements, the input was an approximated 

impulse applied to either the reference voltage of an excitation model or the 

reference load setting in a governor model.  Fig. 5.1 shows the process used to 

generate the dominant modes in the eigenvalue analysis and the excitation of the 

modes in time-domain simulations.  An example of the approximated impulse 
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applied to the models within the transient stability program can be seen in Fig. 

5.2. 

Calculate angle and speed 
dominant modes using 

eigenvalue analysis.
Compare

fi, αi

Measurement based 
methods.

Generator (dominant mode)
excitation model.

Impulse 
approximation

Generator (dominant mode)
governor model.

Measurement based 
methods.

fi, αi

VrefPref

fj, αj

 

Fig. 5.1.  Evaluation of simulated modes using the AHE and other estimation 
methods. 

 

Fig. 5.2  Approximated impulse input. 
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 With the time domain response resulting from the approximated impulse, 

the dominant frequencies and their associated damping levels were predicted 

using the five estimators.  The results from the AHE algorithm and the other 

spectral estimators were then compared to the frequencies and damping levels 

predicted by the eigenvalue analysis. 

5.2 Simulation results 

As described before, a full-loop WECC powerflow case was selected with 

over 15000 buses and nearly 3000 generators and was assessed using the SSAT 

software package.  The resulting set of lightly damped modes provided a 

benchmark for the other measurement-based estimators.  Next, the impulse 

approximation was applied either to the machines voltage reference in its exciter 

model or the load reference in its governor model, depending on the eigenvalue 

state, using the GE transient stability program.  This process is highlighted in Fig. 

5.2.  A control depiction of the application of impulse approximations of Fig. 5.2 

in the transient stability simulations is given in Fig. 5.3 for both excitation system 

and governor models. 

With the time-domain results obtained from the PSLF software package, 

the AHE algorithm, Prony’s method, the Yule-Walker autregression algorithm, 

the O’Shea sliding window method and the Hilbert-Huang Transform estimator 

were then used to identify the dominant frequency and its associated damping 

level.  As examples of the application of the approximated impulse to model 

reference signals, Figs. 5.4 and 5.5 show positively damped and negatively 
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damped speed responses from separate simulations, respectively.  Eigenvalue 

analysis identified the mode in Fig. 5.4 with a frequency of 1.039 Hz and a 

damping ratio of 3.01%.  For the speed deviation mode shown in Fig. 5.5, the 

SSAT software package determined the dominant mode to be 0.691 Hz with a 

damping level of -4.70%. 

Σ

Terminal 
Voltage

Vref +
-

+
Impulse 

Approximation

Error Signal to 
Excitation System

Error Signal
to Governor

Σ

Generator
Loading

Pref +
-

+
Impulse 

Approximation  

Fig. 5.3.  Impulse approximation application. 

 

 

 

Fig. 5.4.  Positively damped speed response from an impulse to an excitation 
system. 

0 5 10 15 20 250.9994

0.9996

0.9998

1

1.0002

1.0004

Time (sec)

Sp
ee

d 
(p

u)



 
 

103 
 

 

 

Fig. 5.5.  Negatively damped speed response from an impulse to an excitation 
system. 

Of all the dominant modes identified, 78 of the most lightly damped 

modes were selected using eigenvalue analysis to be subsequently evaluated by 

the five estimators.  In this particular computation of the eigenvalues using SSAT, 

the modes are primarily local modes in the range of .6 to 2 Hz.  Consequently, the 

modes reflect the weakness of the adjacent electrical network and the 

characteristics of the immediate generator. 

The MSE was calculated for the frequency and damping ratio estimates 

from each method per mode relative to the frequency and damping level estimate 

obtained from the eigenvalue analysis.  Specifically, the SSAT results provided 

the baseline or benchmark frequency and damping values for the MSE 

calculation.  Although providing a benchmark for the other estimators, the 

eigenvalue analysis results should also be viewed as estimates as well since the 
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true damping levels and frequencies are essentially unknown.  Within the results, 

the mean of the squared errors were computed over the 78 modes previously 

mentioned.  Table 5.1 shows the summary of the results of the assessment. 

Table 5.1.  Results from simulated measurements. 

Method MSE 

 Frequency Damping 

AHE 0.0053 0.0002 

Prony 0.0049 0.0005 

HHT 0.0109 0.0020 

ARYW 0.0070 0.0008 

O’Shea 0.0092 0.0007 

5.3 Simulated measurements assessment summary 

A review of the results in Table 5.1 shows that using the modes generated 

by the SSAT eigenvalue analysis package as benchmarks and the PSLF time 

domain results as simulated measurements the five measurement based estimators 

predicted both components of the mode reasonably accurately.  A further review 

shows the AHE algorithm did estimate the damping levels more accurately than 

the other four prediction methods.  Least squares Prony’s method predicted the 

frequency component of the modes more accurately than the other algorithms.  

However, the AHE algorithm was second only to the Prony analysis for accurate 

frequency identification.  In addition, the AHE algorithm outperformed the other 
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sliding window algorithm in both modal categories and consequently the AHE 

technique appears to be an improvement to the O’Shea spectral estimator. 



 
 

Chapter 6  

DAMPING MITIGATION APPLICATIONS 

6.1 Introduction 

One of the primary uses of both the model and measurement based small 

signal estimators is the design of damping mitigation schemes.  Of these schemes, 

the most widely used mitigation device is the power system stabilizer (PSS).  The 

PSS has historically been a piece of physical equipment installed in the excitation 

system of synchronous generators to add positive damping to rotor oscillations 

typically caused by small signal phenomenon.  Recent applications, however, 

have seen the implementation of the PSS moved from a hardware scheme to a 

purely software routine within the controls of an excitation system voltage 

regulator. 

The rotor deviations that the PSS is meant to dampen are generally the 

result of changes in the electrical power that is seen at the terminals of the 

machine.  This relationship is defined in (6.1) 

( ) ( )1.6
2
1

2

dtPP
H

w

PP
dt

wHd

EM

EM

∫ ∆−∆=∆

∆−∆=
∆

 

where H represents the collective inertia of the rotating components of the 

generator, ΔPM is the change in mechanical power, ΔPE is the change in electrical 

power and Δw is the effective speed deviation.  If the right hand side of (6.1) is 

positive the machine’s rotor accelerates and if the relationship is negative the 

rotor decelerates.  The intent of the PSS is not only to dampen rotor or speed 
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oscillations that can negatively affect the generator or cause the machine to 

inadvertently trip but to also prevent the generator from contributing to 

disturbances beyond the generator or the plant that are regional in nature.  

Regional oscillations are either local or interarea as defined in Chapter 1. 

 To dampen the rotor deviations, the PSS must generate electrical torque in 

phase with rotor deviations [3].  As was mentioned before, the typical location for 

a PSS to provide a supplementary signal is within the voltage regulator of a 

synchronous generators excitation system.  Fortunately, the excitation system is 

an appropriate location to generate electrical torque, if only briefly, without the 

need to manipulate the generators prime mover.  This is accomplished by 

modulating the field voltage of generator or, equivalently, the output voltage of 

the exciter or its field circuit.  As the relationship in (6.2) shows [87], an increase 

in the field voltage of a generator will increase the electrical power of the machine 

( ) ( )2.6sin ϕ=
s

tf
E X

VE
P  

where Ef is the field voltage of the machine, Vt is the terminal voltage of the 

generator,  φ is the angle between the internal and terminal voltages of the 

generator and Xs is the synchronous reactance.  The relationship in (6.2) 

represents an ideal unsaturated, round-rotor synchronous generator under 

balanced conditions at constant speed without armature resistance.  Fig. 6.1 [1] 

shows a simple representation of a PSS providing a supplementary signal to the 

voltage regulator in a typical excitation system control scheme.  Its worth noting 

that the choice of input signals available to most PSS are not solely limited to 
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shaft speed deviation.  Other inputs can include frequency and electrical power 

deviations depending on the manufacturers and customers preferences.  In 

addition, most PSS that are installed today employ dual input signals as compare 

to older PSS that use single input signals to generate a supplementary signal in 

phase with the electrical torque of the machine. 

In this chapter, several examples are provided showing the application of 

PSS to improve damping to generators without PSS that have lightly damped 

modes.  The improvement of damping before and after the addition of the PSS 

will be evaluated using the AHE algorithm and Prony’s method.  The pre-PSS and 

post-PSS damping levels will also be verified using eigenvalue analysis.  Three 

examples of generators without PSS will be taken from those studied in Chapter 4 

with one example of three generators at a plant with their PSS schemes retuned.  

Consequently, this chapter demonstrates another potential use for the AHE 

algorithm besides the identification process performed in the previous chapter. 
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Fig. 6.1.  Typical PSS application within an exciter [1]. 
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6.2 PSS function and settings 
 

The PSS typically employs phase lead compensation to the input signal for 

its control scheme.  Other settings of the PSS for the four examples assessed in 

this chapter were kept the same with the exception being the gain of the 

controller.  Some of the other elements included in the PSS controller that were 

not adjusted included the transducer time constant, the washout time constant and 

output limiters.  Design of the PSS in terms of filtering either for noise or 

torsional effects, low power operation and disabling do to extreme events were 

not modeled here.  Fig. 6.2 shows the simplified, continuous time control diagram 

of the PSS used in the examples in this chapter 

Δw
sTw

1+sTw

Kgs

1+sTr

(1+sT1)(1+sT3)
(1+sT2)(1+sT4)

Vsup

Vmax

Vmin  

Fig. 6.2.  Simplified control scheme for a speed deviation stabilizer. 

 
where Kgs is the stabilizer gain, 1/T1 and 1/T3 are the zero locations, 1/T2 and 1/T4 

are the pole locations, Tr is the transducer time constant, Δw is the change of 

speed input, Tw is the washout time constant, Vmax and Vmin provide the output 

limits, and Vsup is the output of the PSS. 

The transducer time constant in the PSS represents the delay associated 

with the speed or frequency sensor and is usually not considered in choosing the 

overall compensation of the PSS.  Also not part of the compensation scheme of 
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the PSS, the washout time constant Tw is selectable usually with a range of 10 to 

20 seconds.  Because the PSS is only meant to provide an output during small 

signal events, under normal conditions the PSS should provide no modulation to 

the field voltage of a generator.  The purpose of the washout time constant is to 

remove any bias from the output of the PSS that may exist under steady state 

conditions. 

As explained previously, the compensation provided by the PSS is phase 

lead in nature.  Essentially, the PSS is a derivative approximation over the 

frequency range of interest.  As a result, any spurious noise within the PSS prior 

to the compensation stages could be greatly amplified in the output Vsup which 

will be applied to the field winding of the synchronous generator.  To mitigate 

any extreme outputs due to noise seen by the PSS, designers have installed 

adjustable output limits Vmax and Vmin.  With the limits in place, a certain amount 

of protection from spurious signals within or before the PSS is be obtained. 

The phase lead compensation of the PSS is accomplished using two stages 

representing the second functional block in Fig. 6.2.  In each of the four examples, 

the amount of compensation is kept the same with only the location of the poles 

and zeros being modified according to the frequency fi detected by the estimators 

in the pre-compensated scenario.  Per stage, the amount of compensation was kept 

at approximately 48˚.  The oscillatory frequency identified by the estimators and 

the amount of compensation per stage establishes the pole and zero locations.  If a 

single stage can be represented as (6.3), the relationship in (6.4) can be used to 
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find the time constant associated with the pole location and subsequently the time 

constant representing the inverse of the zero location. 
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The value of q was set at 7, giving 48̊  of phase lead compensation per stage  as 

defined by the relationship in (6.5). 
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6.3 PSS application example #1 

The first example of simulated shaft speed oscillations from a synchronous 

generator is shown in Fig. 6.3.  In this simulation, the generator initially does not 

have a PSS modeled.  A 100 millisecond impulse to Vref of the excitation system 

is used to generate a time domain response.  Using the time response, the AHE 

algorithm identified the lightly damped mode at approximately .76 Hz with a 

damping ratio of 1.90%.  An assessment using Prony’s method revealed a mode at 

the same frequency as found by the AHE algorithm and a damping ratio of 1.56%.  

Eigenvalue analysis indicated the uncompensated mode to be .75 Hz with a 

damping ratio of 2.38%. 

With the data collected using the AHE estimator, a shaft speed deviation 

PSS model was applied to the synchronous generator.  Using (6.5), the value of q 

was set equal to 7 giving a phase lead compensation per stage of nearly 48˚ and 
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the gain Kgs was fixed at 2.5 pu.  The values of T1 and T3 were calculated to be 

.549 seconds while T2 and T4 were determined to be .078 seconds.  Subsequently, 

the approximated impulse was applied to the exciter model to obtain the time 

domain response.  Both the AHE algorithm and Prony’s method revealed the 

dominant oscillatory mode to be .77 Hz.  Prony’s method showed that the 

damping level improved to 3.71% while the AHE method found the damping 

improved to 3.92%.  Eigenvalue analysis verified that the damping increased but 

to 4.87% at .75 Hz.  Fig. 6.3 shows the speed deviation response with the PSS 

modeled.  As can be seen, damping to the generators speed deviations has 

improved through use of the tuned PSS. 

 

Fig. 6.3.  PSS application example #1. 

6.4 PSS application example #2 

Fig. 6.4 shows a speed deviation response from a simulated impulse 
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a PSS and both the AHE algorithm and Prony assessment estimated the dominant 

oscillatory frequency to be .96 Hz.  However, the AHE method predicted the 

damping level to be 6.51% while the Prony estimator determined the damping 

level to be 6.44%.  Eigenvalue analysis reported the dominant mode to have a 

damping ratio of 6.24% at a frequency of .95 Hz.  Typically, a damping level in 

excess of 5% is deemed to be sufficiently damped.  In this case a higher damping 

level was assumed to be desired. 

With this information, a PSS model was applied to the generator and the 

phase lead compensation was set once again to be approximately 48˚ per stage.  In 

this case, the gain of the PSS was set to 5 pu.  Using (6.4), the values of T1 and T3 

were computed to be .438 seconds while T2 and T4 were calculated to be .063 

seconds.  Again, the simulated impulse to the excitation system was performed 

and the time domain response was retrieved.  Both Prony’s method and the AHE 

technique found the dominant mode was moved to .95 Hz at a damping ratio of 

9.90%.  A slightly higher damping ratio of 10.21% was reported by eigenvalue 

analysis but at the same oscillatory frequency of .95 Hz.  The speed deviation of 

the generator with the PSS modeled is shown in Fig. 6.4.  As can be seen in the 

figure, damping has significantly improved as a result of the tuned controller. 
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Fig. 6.4.  PSS application example #2. 

6.5 PSS application example #3 

Fig. 6.5 shows a speed deviation response from a simulated impulse 

applied to another synchronous generators excitation regulator.  This is the same 

simulated response as seen in Fig. 5.4 of the previous chapter.  The model initially 

does not have a PSS and both the AHE algorithm and a Prony assessment 

estimated the dominant oscillatory frequency to be 1.052 Hz.  Eigenvalue analysis 

identified the dominant frequency to be 1.039 Hz.  The AHE technique found 

damping was 3.35% at 1.052 Hz, while Prony’s method found the damping to be 

slightly greater at 3.53%.  As stated earlier, the eigenvalue analysis found the 

damping at 1.039 Hz to be 3.01%. 

 Using the data collected, the settings were calculated for a PSS model 

using a gain Kgs of .50 pu and a 48˚ per stage of phase lead compensation.  Next, 

values of T1 and T3 were calculated to be .400 seconds and T2 and T4 were found 

0 5 10 15 20 250.999

0.9995

1

1.0005

1.001

Time (sec)

Sp
ee

d 
(p

u)

 

 

w/o PSS
w/ PSS



 
 

115 
 

to be .057 seconds.  The impulse was applied to the model again and the time 

response recorded.  In this case the AHE algorithm found the dominant mode 

increased to 1.081 Hz with a damping ratio of 5.56%.  Prony’s method found the 

frequency component of the mode was 1.083 Hz at a damping level of 5.79%.  An 

eigenvalue assessment showed the frequency of the mode was 1.063 Hz and 

damping improved to 5.42%.  The plot of the speed deviation of the synchronous 

generator with the tuned PSS model included is shown in Fig. 6.5.  As was the 

case with the other examples, the damping at the frequency of interest has 

improved through use of the tuned PSS. 

 

Fig. 6.5.  PSS application example #3. 
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oscillation that the current PSS is unable to restrain effectively with the current 

settings.  Eigenvalue analysis has revealed that the dominant mode is at .691 Hz 

with a damping ratio of -4.70%.  The AHE algorithm and Prony’s method found 

the dominant mode to be at .699 Hz and .697 Hz, respectively.  Damping level for 

their associated frequencies was found to be -4.09% and -3.47% for the AHE and 

Prony’s methods, respectively.  The speed deviation response of the generator 

without the originally tuned PSS is shown again in Fig. 6.6 as a comparison. 

 The original speed input PSS model was retuned using the frequency 

estimated from the AHE algorithm.  Keeping the same amount of phase lead 

compensation as was used in the previous examples, (6.4) was used to select the 

new controller time constants.  A value of .609 seconds was calculated for the T1 

and T3 time constants and a value of .087 seconds was determined for the T2 and 

T4 time constants.  A PSS gain Kgs of 3.0 pu was chosen as well.  An impulse was 

reapplied to the excitation system model of the synchronous generator and the 

time response was captured.  Eigenvalue analysis showed the retuned PSS to have 

a dominant mode at .603 Hz and a damping ratio of 3.99%.  The AHE algorithm 

found the dominant mode of the impulse response to be .594 Hz with a damping 

level of 5.11%.  Prony’s method found nearly the same frequency of the dominant 

mode at .595 Hz but the damping ratio was slightly higher at 6.38%.  Fig. 6.6 

shows the speed deviation of the generator with the retuned PSS represented.  

From the figure it is apparent that the generator response is now stable and well 

damped as a result of retuning the PSS. 
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6.7 PSS application summary 

The AHE algorithm has been used in this chapter as a potential design tool 

for tuning or retuning PSS to dampen small signal events that occur in modeling 

power systems for purposes involving damping assessment.  Actual PSS tuning 

activities are performed in the field in order to capture dynamics that are not 

present or accurately modeled in large base cases.  The method described here is 

not meant to represent an optimal tuning procedure but simply to demonstrate the 

applicability of the AHE algorithm.  Results of the pre- and post-design efforts 

were compared to results from both Prony and eigenvalue estimators.  Both 

Prony’s method and eigenvalue analysis have both been used successfully in the 

past in the design of damping devices in power systems.  In addition, the AHE 

algorithm could be employed as a verification tool after a damping device has 

been installed or tuned in the field.  Traditionally, tuning is performed primarily 

in the field using different methods.  Verification of the damping devices 

performance is typically completed using simulations within a commercial 

transient stability program or a custom time domain simulation program.  These 

results are then re-verified through simple field tests such as tripping of a local 

transmission element, switching between manual and automatic voltage regulators 

or switching a reactive element such as a capacitor or reactor. 
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Fig. 6.6.  PSS application example #4. 

The purpose of this chapter was to demonstrate that the AHE algorithm 

could perform the design or verification task as well as other popular estimators 

such as Prony’s method and eigenvalue analysis.  Results from the four simple 

PSS design examples support this conclusion.  Table 6.1 shows the results of the 

pre- and post-design estimates from the three prediction methods for the four 

examples assessed.  Table 6.2 shows the final compensation settings for the four 

PSS examples used in this chapter.  It should be noted that all other PSS settings 

were kept the same for the four examples. 

Table 6.1.  Damping application results. 

  Before After 

Example Method fi ζi fi ζi 

#1 AHE .760 Hz 1.90% .770 Hz 3.92% 

 Prony’s .760 Hz 1.56% .770 Hz 3.71% 
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 eigenvalue .750 Hz 2.38% .750 Hz 4.87% 

#2 AHE .960 Hz 6.51% .950 Hz 9.90% 

 Prony’s .960 Hz 6.44% .950 Hz 9.90% 

 eigenvalue .950 Hz 6.24% .950 Hz 10.21% 

#3 AHE 1.052 Hz 3.35% 1.081 Hz 5.56% 

 Prony’s 1.052 Hz 3.53% 1.083 Hz 5.79% 

 eigenvalue 1.039 Hz 3.01% 1.063 Hz 5.42% 

#4 AHE .699 Hz -4.09% .594 Hz 5.11% 

 Prony’s .697 Hz -3.47% .595 Hz 6.38% 

 eigenvalue .691 Hz -4.70% .603 Hz 3.99% 

 

Table 6.2.  Example PSS settings. 

Example Kgs T1 T2 T3 T4 

#1 2.5 pu .549 sec .078 sec .549 sec .078 sec 

#2 5.0 pu .438 sec .063 sec .438 sec .063 sec 

#3 .50 pu .400 sec .057 sec .400 sec .057 sec 

#4 3.0 pu .609 sec .087 sec .609 sec .087 sec 



 
 

Chapter 7  

CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

 As shown in this thesis, there are many off-line tools for engineers to use 

in assessing electromechanical modes in power systems.  Some algorithms are 

applicable for only simulated measurements where no noise interference exists.  

One such case is use of estimators on simulated signals generated from a transient 

stability program.  Because of the advent of devices like the PMU and other long-

term recording equipment, many tools and techniques are now being employed to 

assess small signal stability phenomenon directly from measurements taken from 

the field.  Uses of these measurements vary from tuning damping equipment to 

performing post-mortem analysis of power system disturbances.  Whatever the 

intent of the assessment, field measurements are susceptible to noise interference.  

Consequently, the tools to perform off-line estimation of electromechanical 

modes in power systems must be capable of providing accurate predictions in the 

presence of noise.  The finding of this thesis is that the orthogonal polynomial 

based AHE algorithm is a new method for estimating electromechanical modes 

and is an improvement over other popular small signal estimators when signals 

are corrupted with noise. 

A comparison was performed in Chapter 4 between the AHE algorithm 

and four other estimators in terms of their performance under various aspects of 

artificially generated measurements.  The other methods included a least squares 

Prony analysis, a Yule-Walker autoregressive estimator, the O’Shea sliding 
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window method employing the FFT algorithm, and the Hilbert-Huang Transform 

method.  References to each of these other four methods are provided in Chapter 

2 and a description of their function is given in Chapter 3. 

In Chapter 4, the AHE algorithm capability was compared to the other 

four estimators using different combinations of single mode and multi-mode 

signals from .2 to 2 Hz over a fixed window.  A review of the results shows that 

the accuracy of the AHE method met or exceeded the performance of the other 

estimators in identifying the different frequencies and damping levels.  The 

exception was when the modes were sufficiently close in frequency with widely 

different damping levels. 

In the additive white noise tests, a artificial measurement of 50 seconds 

was assessed.  The added noise in this case was white or Gaussian, maintaining a 

constant variance across a spectrum from .2 to 2 Hz.  For each SNR level, the 

MSE over different trials was recorded for each of the five estimators.  Results of 

the analyses showed that the accuracy of the AHE algorithm modal estimation 

exceeded that of the other methods below a SNR of 15 dB to as low as 2 dB. 

For the tests of reduced window length, a multi-mode signal was used 

except without the additive white noise.  The observation window length was 

reduced and the absolute percent error was recorded for decreasing lengths for 

each frequency and damping component.  Results from the analysis reveal that the 

AHE algorithm was as accurate as the other estimators for each modal 

component.  For the sampling rate test, both sliding window algorithms 
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performed better than the other estimators as the sampling rate decreased as low 

as 5 Hz.  This result was true for both frequency and damping component 

predictions.  In addition, the AHE algorithm was found to be nearly as accurate at 

low sample rates than at high rates suggesting that there is little benefit for 

sampling at higher rates for this algorithm.  The consequence of this observation 

is that the estimation can be achieved in a shorter amount of time with less data. 

 In Chapter 5, a commercial transient stability program was used to 

generate simulated power system measurements that were assessed using the five 

spectral estimators.  The measurements were made by applying an impulse to the 

excitation system of a number of generators.  Eigenvalue analysis provided a 

benchmark for the other estimators performance.  The AHE algorithm performed 

better than the other four estimators in predicting damping levels.  For the 

frequency component of the modes, the AHE algorithm was only slightly less 

accurate than the least squares Prony analysis.  These results suggest that during 

actual recorded small signal disturbances the AHE algorithm will provide 

accurate results as compared to other established estimators. 

 Results from Chapter 6 suggest that the AHE algorithm can also be used 

in designing or verifying small-signal damping devices, such as the PSS.  The 

AHE technique was able to accurately identify the oscillatory and damping 

components in the pre-mitigation scenario.  These results provided the data to 

design the controller.  After each PSS was tuned or retuned, the results were again 

assessed using the AHE algorithm to verify damping improvement.  Results from 
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both Chapters 5 and 6 also suggest that the algorithm would be useful in post-

mortem analysis that is often performed following a major power system 

disturbance. 

 Table 7.1 summarizes the primary benefits of the AHE algorithm reported 

and examined in this thesis.  As was mentioned before, a GUI or graphical user 

interface was written in MATLAB that incorporated the AHE algorithm, the least 

squares Prony’s method, the Yule-Walker autoregressive method, the Hilbert-

Huang Transform algorithm and the O’Shea sliding window method.  The GUI 

was used interactively for most of the research performed throughout this thesis.  

Results from the analyses were presented both graphically and through lists using 

the GUI.  The code the AHE algorithm is provided in Appendix B.  Also, the 

codes for the Prony analysis and the Yule-Walker algorithm are provided in 

Appendix C and D, respectively.  The initial code for the HHT algorithm can be 

accessed at [88] and was modified for use in this thesis. 

Table 7.1.  Demonstrated benefits of the AHE algorithm. 

Contribution Synthetic 

Measurements 

Simulated 

Measurements 

Noise tolerant estimation. X  

Estimation of simulated 

power system signals. 

 X 

Damping mitigation device 

design and verification. 

 X 

 



 
 

124 
 

7.2 Future work 
 
 Utilities are often required to verify generator testing results before the 

data is accepted for modeling in large study cases.  The verification process is not 

standardized and usually involves performing simulated large-signal transient 

stability disturbances.  Although the results of this type of assessment are 

valuable, a small-signal stability analysis would provide further insight into the 

accuracy of the data.  Currently, the small-signal tools that are available are part 

of suites of software modules.  Incorporating the AHE algorithm directly into 

either the Siemens PTI or the GE PSLF power flow and dynamic packages would 

allow quick assessment of data accuracy without the need for a suite of modules.  

The assessment would be close to a linear simulation unlike simulations from 

large signal or transient stability results. 

 Calculating a small signal stability index for operators usage similar to 

other alarms they are encounter on a daily basis has been proposed by a number 

of researchers.  The indices or alarms can simply prompt an operator that a 

condition exists or that the operator should take action.  A controlled action could 

take the form of a remedial action or a protective scheme.  An index could be 

associated with the most lightly damped mode or it can be linked to a frequency 

range of a known interarea or local modes.  In either case, the AHE algorithm 

could be applied in the development of such an index even if the assessment is 

completed off-line. 
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 Most of the actual power system disturbance events are non-stationary to 

some degree, which result in both the frequency and damping levels varying in 

time.  Except for the HHT method, all the methods used in this thesis employ 

schemes applicable to stationary disturbances.  Implementing a scheme using the 

AHE algorithm that could be used on-line provides an opportunity to assess the 

non-stationary characteristics of identified modes.  The ability within the 

algorithm to generate frequency samples originates from overlapping windows.  

Use of small windows to track varying mode components has already been 

performed.  A modification of components of the functional portions of the AHE 

algorithm and not necessarily the interpolative or extrapolative elements may be 

possible.  Table 7.2 lists the possible future applications of the AHE algorithm 

through additional research. 

Table 7.2.  Potential future applications for the AHE algorithm. 

Future work Planning Operations 

Incorporate the algorithm directly into a 

commercial power flow package. 

X X 

Stability index or alarm generation.  X 

Non-stationary mode analysis. X X 
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function [dfac,freq,ampl,phase,H,theta,y_hat] = 
Prony(y,v,order,fs)  
%clear all 
  
dt = 1/fs; 
y = detrend(y,'constant');  
N = length(y); 
  
%snr = 10*log10(sum(y.^2) ./ sum(nse.^2)) 
for j=1:length(y) - order % row index 
    for k=1:order  % column index 
        Ylp(j,k) = y(order + j - k);  % N-M x M matrix. 
    end 
end 
  
for i=1:length(y) - order 
    ym(i) = y(order + i); 
end 
  
an = []; 
lp = []; 
an = pinv(Ylp)*ym'; 
lp = [1 -an']; 
rLP = roots(lp);  % calculate the roots of the lp. 
  
  
dfac = log(abs(rLP))/dt; 
a = imag(rLP); 
b = real(rLP); 
freq = atan(a./b)/(2*pi*dt); 
  
zz = []; 
for k =1:length(y) 
    for i=1:order 
        zz(k,i) = rLP(i)^(k-1); 
    end 
end 
       
yMM = y(1:length(y));  
  
B = []; 
B = pinv(zz)*yMM; % Calculate the residues. 
  
z_z = zz(2,:);    % Calculate the Prony spectrum. 
theta = [(2*pi/N).*[0:(N/2)-2]]; 
for jk=1:length(theta) 
    H(jk) = 0; 
    for k=1:length(B) 
        H(jk) = B(k)/(1 - z_z(k)*exp(2i*pi*theta(jk)*dt)) + 
H(jk); 
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    end 
end 
  
ampl = sqrt(real(B).^2 + imag(B).^2); 
phase = atan(imag(B)./real(B))*(180/pi); 
ampl = ampl/max(ampl); 
[ampl,AI] = sort(ampl,'descend'); 
dfac = dfac(AI); 
freq = freq(AI); 
phase = phase(AI); 
  
y_hat = zz*B; 
pexp(1:length(y)) = 0; 
for j=1:length(y) 
    for i=1:order 
        pexp(j) = pexp(j) + B(i)*(rLP(i)^(j-1)); 
    end 
end 
  
ki = order; 
for k=1:ki 
    f(k) = (k-1)*(4/ki); 
    z = exp(2i*pi*f(k)*dt); 
    for j=1:order 
        xZ(k,j) = B(j)/(1 - rLP(j)*(z^-1)); 
    end 
end 
for k=1:ki 
    xZZ(k) = 0; 
    for j=1:order 
    xZZ(k) = xZZ(k)+ xZ(k,j); 
    end 
end 
xZZ = 20*log10(xZZ); 
y_PR = xZZ; 
  
y_hat = real(pexp); 
SNR = 10*log10((y'*y)/((y-y_hat')'*(y-y_hat'))); 
  
end 
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function [y_AH,xtt1,y_AHf1,y_AHph,ff,sing,aaa,nexp] = 
AHE(xtt,v,fs,Beta)  
 
N = length(xtt); % Define the window size. 
  
dt = 1/fs; 
t0 = (N/2) * dt; 
ff = 0:.001:2; 
  
Xf_0 = [];Ylp = [];ym = []; 
  
pk_1 = 0;frq1 = 0; 
v1 = v(1:N); 
f_w = 2; 
t_w = max(v1); 
  
xtt1 = xtt(1:N)'; 
xtt1 = detrend(xtt1,'constant'); 
xtt1 = xtt1.*kaiser(N,Beta)';  
nt = length(v1);           % nt is the observation time window 
size. 
nf = length(ff); 
  
nexp = (1.7/pi)*(sqrt(pi*t_w*f_w) - 1.8)^2;nexp = ceil(nexp); 
%nexp = ceil(2 * f_w * t_w); 
lamdat = t_w/(2*(sqrt(pi*nexp/1.7) + 1.8)); 
%nxp = nexp; 
  
lamdaf = 1/(2*pi*lamdat); 
ht_mas = []; 
for k = 1:nt  % Calculation of the time domain hermite matrix per 
row. 
    t(k)=(v1(k)-t0)/lamdat; 
    ht_mas(k,1)=exp(-.5*(t(k)^2))/((pi^.25)*sqrt(lamdat)); 
    ht_mas(k,2)=sqrt(2)*t(k)*exp(-
.5*(t(k)^2))/((pi^.25)*sqrt(lamdat)); 
    for m=3:nexp+1, 
        ht_mas(k,m)=((sqrt(2)*t(k)*ht_mas(k,(m-1)))-(sqrt(m-
2)*ht_mas(k,(m-2))))/sqrt(m-1); 
    end 
end 
     
aaa = pinv(ht_mas)*xtt1'; % for singular value process 
[U,S,V] = svd(ht_mas); 
sing = diag(S); 
  
for k = 1:nf        % Build the frequency domain master matrix.   
    f(k) = ff(k)/lamdaf; 
    hf_mas(k,1) = exp(-.5*(f(k)^2))/((pi^.25)*sqrt(lamdaf)); 
    hf_mas(k,2) = sqrt(2)*f(k)*exp(-
.5*(f(k)^2))/((pi^.25)*sqrt(lamdaf)); 
    for m=3:nexp+1, 
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        hf_mas(k,m) = ((sqrt(2)*f(k)*hf_mas(k,(m-1)))-(sqrt(m-
2)*hf_mas(k,(m-2))))/sqrt(m-1); 
    end 
end 
  
Hfr = zeros(nf,nexp+1);                     % Build real 
component of master frequency matrix. 
Hfr(:,1:2:nexp+1) = hf_mas(:,1:2:nexp+1); 
z = 0; 
for k = 3:2:nexp+1 
    Hfr(:,k) = Hfr(:,k).*(-1)^(k-z); 
    z = z + 1; 
end 
  
Hfi = zeros(nf,nexp+1);                     % Build imag 
component of master frequency matrix. 
Hfi(:,2:2:nexp+1) = hf_mas(:,2:2:nexp+1); 
z = 1; 
for k = 4:2:nexp+1 
    Hfi(:,k) = Hfi(:,k).*(-1)^(k-z); 
    z = z + 1; 
end 
Hfi = -Hfi; 
  
Hfrr = zeros(nf,nexp+1);                      
Hfii = zeros(nf,nexp+1);                      
for k = 1:nf        
    Hfrr(k,:) = Hfr(k,:)*cos(2*pi*t0*ff(k)) + 
Hfi(k,:)*sin(2*pi*t0*ff(k)); 
    Hfii(k,:) = -Hfr(k,:)*sin(2*pi*t0*ff(k)) + 
Hfi(k,:)*cos(2*pi*t0*ff(k)); 
end 
Hr = Hfrr; 
Hi = Hfii; 
  
for k=1:nt, % Calculation of the approximating function over the 
observation window. 
    t(k)=(v1(k)-t0)/lamdat; 
    ht(k,1)=exp(-.5*(t(k)^2))/((pi^.25)*sqrt(lamdat)); 
    ht(k,2)=sqrt(2)*t(k)*exp(-
.5*(t(k)^2))/((pi^.25)*sqrt(lamdat)); 
    for m=3:nexp+1, 
      ht(k,m)=((sqrt(2)*t(k)*ht(k,(m-1)))-(sqrt(m-2)*ht(k,(m-
2))))/sqrt(m-1); 
    end 
    y_AH(k)=0; 
    for n=1:nexp+1, 
      y_AH(k) = y_AH(k)+(aaa(n)*ht(k,n)); 
    end 
end 
  
for k=1:nf %Calculate the approx spectrum for freq ident 
    y_AHfr(k) = 0; 



 

159 
 

    y_AHfi(k) = 0; 
    for n=1:nexp+1, 
        y_AHfr(k) = y_AHfr(k) + aaa(n)*Hr(k,n); 
        y_AHfi(k) = y_AHfi(k) + aaa(n)*Hi(k,n); 
    end 
    y_AHf1(k) = (y_AHfr(k)^2 + y_AHfi(k)^2)^.5; 
    y_AHph(k) = (180/pi)*angle(complex(y_AHfr(k),y_AHfi(k))); 
end 
  
y_AHph = unwrap(y_AHph); 
end 
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Table A.1.  Input and output data from an example AHE calculation. 

time y(t) ŷ(t) |Ŷ(f)| a 
        0 
    0.0417 
    0.0833 
    0.1250 
    0.1667 
    0.2083 
    0.2500 
    0.2917 
    0.3333 
    0.3750 
    0.4167 
    0.4583 
    0.5000 
    0.5417 
    0.5833 
    0.6250 
    0.6667 
    0.7083 
    0.7500 
    0.7917 
    0.8333 
    0.8750 
    0.9167 
    0.9583 
    1.0000 
    1.0417 
    1.0833 
    1.1250 
    1.1667 
    1.2083 
    1.2500 
    1.2917 
    1.3333 
    1.3750 
    1.4167 
    1.4583 
    1.5000 
    1.5417 
    1.5833 
    1.6250 
    1.6667 
    1.7083 
    1.7500 
    1.7917 
    1.8333 

  80.6527 
   81.1617 
   82.2834 
   83.1279 
   83.4560 
   83.2546 
   82.5580 
   81.4361 
   79.9889 
   78.3400 
   76.6260 
   74.9846 
   73.5433 
   72.4105 
   71.6702 
   71.3747 
   71.5428 
   72.1590 
   73.1750 
   74.5150 
   76.0821 
   77.7671 
   79.4577 
   81.0456 
   82.4327 
   83.5342 
   84.2829 
   84.6302 
   84.5490 
   84.0355 
   83.1102 
   81.8194 
   80.2334 
   78.4464 
   76.5708 
   74.7314 
   73.0577 
   71.6738 
   70.6890 
   70.1873 
   70.2200 
   70.8007 
   71.9042 
   73.4687 
   75.4013 

 79.311304 
 79.310074 
 79.308407 
 79.306160 
 79.303155 
 79.299163 
 79.293895 
 79.286995 
 79.278019 
 79.266428 
 79.251567 
 79.232655 
 79.208766 
 79.178818 
 79.141566 
 79.095590 
 79.039303 
 78.970961 
 78.888677 
 78.790473 
 78.674327 
 78.538239 
 78.380354 
 78.199070 
 77.993184 
 77.762095 
 77.505996 
 77.226081 
 76.924822 
 76.606196 
 76.275895 
 75.941575 
 75.612988 
 75.302030 
 75.022757 
 74.791184 
 74.624921 
 74.542667 
 74.563415 
 74.705460 
 74.985181 
 75.415602 
 76.004875 
 76.754587 
 77.658198 

  1.975111 
  2.089462 
  2.374095 
  2.715052 
  3.016348 
  3.214241 
  3.270887 
  3.169431 
  2.913277 
  2.530467 
  2.088887 
  1.734169 
  1.702625 
  2.095016 
  2.741710 
  3.460345 
  4.140169 
  4.711060 
  5.124359 
  5.346395 
  5.356684 
  5.147506 
  4.723655 
  4.101934 
  3.310284 
  2.386781 
  1.380474 
  0.398106 
  0.793041 
  1.749509 
  2.612165 
  3.322978 
  3.844201 
  4.149484 
  4.224042 
  4.065197 
  3.682496 
  3.097239 
  2.341431 
  1.456180 
  0.489719 
  0.506157 
  1.475471 
  2.365505 
  3.126310 

  0.744922 
 -0.380106 
  0.816212 
 -1.656779 
 -0.097947 
  2.765953 
  0.435847 
 -7.999669 
 -1.556073 
 11.363199 
  3.326055 
 -5.397153 
 -1.046159 
 -7.144679 
 -2.063448 
  6.347110 
  1.278241 
  7.974523 
  1.414623 
 -2.057287 
 -1.789636 
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    1.8750 
    1.9167 
    1.9583 
    2.0000 
    2.0417 
    2.0833 
    2.1250 
    2.1667 
    2.2083 
    2.2500 
    2.2917 
    2.3333 
    2.3750 
    2.4167 
    2.4583 
    2.5000 
    2.5417 
    2.5833 
    2.6250 
    2.6667 
    2.7083 
    2.7500 
    2.7917 
    2.8333 
    2.8750 
    2.9167 
    2.9583 
    3.0000 
    3.0417 
    3.0833 
    3.1250 
    3.1667 
    3.2083 
    3.2500 
    3.2917 
    3.3333 
    3.3750 
    3.4167 
    3.4583 
    3.5000 
    3.5417 
    3.5833 
    3.6250 
    3.6667 
    3.7083 
    3.7500 
    3.7917 
    3.8333 

   77.5856 
   79.8904 
   82.1787 
   84.3169 
   86.1822 
   87.6686 
   88.6916 
   89.1909 
   89.1329 
   88.5132 
   87.3574 
   85.7222 
   83.6956 
   81.3947 
   78.9617 
   76.5543 
   74.3361 
   72.4633 
   71.0705 
   70.2581 
   70.0837 
   70.5565 
   71.6386 
   73.2483 
   75.2694 
   77.5619 
   79.9735 
   82.3506 
   84.5480 
   86.4352 
   87.9035 
   88.8694 
   89.2776 
   89.1026 
   88.3502 
   87.0589 
   85.3009 
   83.1811 
   80.8336 
   78.4161 
   76.0994 
   74.0536 
   72.4337 
   71.3652 
   70.9321 
   71.1691 
   72.0595 
   73.5371 

 78.699730 
 79.852603 
 81.079183 
 82.331089 
 83.550092 
 84.670276 
 85.621231 
 86.332023 
 86.736313 
 86.777998 
 86.417035 
 85.635156 
 84.440600 
 82.871642 
 80.997977 
 78.919451 
 76.762392 
 74.672609 
 72.805607 
 71.315050 
 70.339329 
 69.988039 
 70.329687 
 71.381572 
 73.103753 
 75.397575 
 78.109913 
 81.043341 
 83.970829 
 86.655103 
 88.870352 
 90.423569 
 91.174425 
 91.050472 
 90.055927 
 88.273103 
 85.855401 
 83.013208 
 79.993302 
 77.054180 
 74.440974 
 72.361528 
 70.967259 
 70.341259 
 70.493986 
 71.367571 
 72.847393 
 74.779051 

  3.714449 
  4.095301 
  4.245149 
  4.153012 
  3.822556 
  3.275283 
  2.559967 
  1.792583 
  1.330161 
  1.730946 
  2.683375 
  3.757969 
  4.789809 
  5.691910 
  6.402483 
  6.874415 
  7.073522 
  6.978809 
  6.582996 
  5.892816 
  4.928929 
  3.725656 
  2.332050 
  0.839287 
  0.937689 
  2.526985 
  4.091941 
  5.531261 
  6.772928 
  7.753099 
  8.416544 
  8.718556 
  8.627033 
  8.124837 
  7.213488 
  5.922306 
  4.342817 
  2.814681 
  2.667394 
  4.589995 
  7.323209 
 10.361584 
 13.533695 
 16.733981 
 19.875435 
 22.879893 
 25.676333 
 28.201278 
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    3.8750 
    3.9167 
    3.9583 
    4.0000 
    4.0417 
    4.0833 
    4.1250 
    4.1667 
    4.2083 
    4.2500 
    4.2917 
    4.3333 
    4.3750 
    4.4167 
    4.4583 
    4.5000 
    4.5417 
    4.5833 
    4.6250 
    4.6667 
    4.7083 
    4.7500 
    4.7917 
    4.8333 
    4.8750 
    4.9167 
    4.9583 
    5.0000 
    5.0417 
    5.0833 
    5.1250 
    5.1667 
    5.2083 
    5.2500 
    5.2917 
    5.3333 
    5.3750 
    5.4167 
    5.4583 
    5.5000 
    5.5417 
    5.5833 
    5.6250 
    5.6667 
    5.7083 
    5.7500 
    5.7917 
    5.8333 

   75.4939 
   77.7903 
   80.2675 
   82.7598 
   85.1064 
   87.1603 
   88.7959 
   89.9133 
   90.4421 
   90.3425 
   89.6071 
   88.2629 
   86.3715 
   84.0307 
   81.3729 
   78.5604 
   75.7769 
   73.2138 
   71.0553 
   69.4612 
   68.5509 
   68.3925 
   68.9970 
   70.3177 
   72.2565 
   74.6745 
   77.4044 
   80.2650 
   83.0741 
   85.6598 
   87.8689 
   89.5739 
   90.6769 
   91.1116 
   90.8460 
   89.8844 
   88.2688 
   86.0814 
   83.4443 
   80.5167 
   77.4884 
   74.5672 
   71.9637 
   69.8702 
   68.4445 
   67.7926 
   67.9603 
   68.9296 

 76.988411 
 79.301053 
 81.559282 
 83.634185 
 85.430994 
 86.888721 
 87.974455 
 88.674122 
 88.982811 
 88.896683 
 88.408681 
 87.509374 
 86.192751 
 84.466224 
 82.362319 
 79.949240 
 77.338055 
 74.683129 
 72.174664 
 70.023916 
 68.441223 
 67.610328 
 67.662846 
 68.656173 
 70.559424 
 73.249505 
 76.519079 
 80.096126 
 83.671755 
 86.934062 
 89.602765 
 91.459116 
 92.368497 
 92.291626 
 91.283443 
 89.480761 
 87.080399 
 84.312356 
 81.411488 
 78.592077 
 76.029534 
 73.849950 
 72.128727 
 70.897462 
 70.155680 
 69.884903 
 70.061594 
 70.665820 

 30.399744 
 32.226204 
 33.645377 
 34.632742 
 35.174762 
 35.268786 
 34.922675 
 34.154144 
 32.989887 
 31.464498 
 29.619265 
 27.500870 
 25.160059 
 22.650362 
 20.026932 
 17.345655 
 14.662764 
 12.035480 
  9.525046 
  7.205954 
  5.193161 
  3.715360 
  3.168164 
  3.626742 
  4.550557 
  5.521290 
  6.372755 
  7.044845 
  7.517829 
  7.789991 
  7.869193 
  7.769103 
  7.507176 
  7.103398 
  6.579436 
  5.958052 
  5.262817 
  4.518251 
  3.750826 
  2.992034 
  2.286983 
  1.717033 
  1.430963 
  1.545095 
  1.940625 
  2.438462 
  2.945348 
  3.421189 
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    5.8750 
    5.9167 
    5.9583 
    6.0000 
    6.0417 
    6.0833 
    6.1250 
    6.1667 
    6.2083 
    6.2500 
    6.2917 
    6.3333 
    6.3750 
    6.4167 
    6.4583 
    6.5000 
    6.5417 
    6.5833 
    6.6250 
    6.6667 
    6.7083 
    6.7500 
    6.7917 
    6.8333 
    6.8750 
    6.9167 
    6.9583 
    7.0000 
    7.0417 
    7.0833 
    7.1250 
    7.1667 
    7.2083 
    7.2500 
    7.2917 
    7.3333 
    7.3750 
    7.4167 
    7.4583 
    7.5000 
    7.5417 
    7.5833 
    7.6250 
    7.6667 
    7.7083 
    7.7500 
    7.7917 
    7.8333 

   70.6221 
   72.9082 
   75.6202 
   78.5672 
   81.5513 
   84.3808 
   86.8811 
   88.9030 
   90.3269 
   91.0671 
   91.0720 
   90.3268 
   88.8557 
   86.7245 
   84.0418 
   80.9599 
   77.6699 
   74.3916 
   71.3581 
   68.7954 
   66.9008 
   65.8225 
   65.6446 
   66.3798 
   67.9704 
   70.2954 
   73.1846 
   76.4351 
   79.8295 
   83.1520 
   86.2012 
   88.8004 
   90.8043 
   92.1022 
   92.6196 
   92.3196 
   91.2047 
   89.3191 
   86.7522 
   83.6406 
   80.1676 
   76.5577 
   73.0621 
   69.9391 
   67.4287 
   65.7289 
   64.9747 
   65.2248 

 71.684205 
 73.106375 
 74.916131 
 77.079655 
 79.533101 
 82.173586 
 84.856101 
 87.397458 
 89.588984 
 91.216323 
 92.083655 
 92.039999 
 91.002908 
 88.976233 
 86.058943 
 82.442628 
 78.398480 
 74.253555 
 70.359335 
 67.057276 
 64.643591 
 63.338580 
 63.264302 
 64.431980 
 66.741591 
 69.992537 
 73.904468 
 78.145895 
 82.365948 
 86.227503 
 89.437392 
 91.769961 
 93.083695 
 93.328539 
 92.544040 
 90.849802 
 88.429066 
 85.508465 
 82.335518 
 79.156268 
 76.196012 
 73.643224 
 71.638435 
 70.268919 
 69.567849 
 69.518212 
 70.060341 
 71.101646 

  3.847759 
  4.216422 
  4.523464 
  4.768087 
  4.951419 
  5.075939 
  5.145105 
  5.163067 
  5.134457 
  5.064202 
  4.957376 
  4.819072 
  4.654298 
  4.467884 
  4.264420 
  4.048197 
  3.823167 
  3.592920 
  3.360667 
  3.129234 
  2.901069 
  2.678248 
  2.462494 
  2.255201 
  2.057452 
  1.870050 
  1.693546 
  1.528265 
  1.374337 
  1.231722 
  1.100240 
  0.979591 
  0.869383 
  0.769149 
  0.678369 
  0.596483 
  0.522911 
  0.457060 
  0.398339 
  0.346165 
  0.299971 
  0.259214 
  0.223374 
  0.191962 
  0.164521 
  0.140625 
  0.119880 
  0.101928 
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    7.8750 
    7.9167 
    7.9583 
    8.0000 
    8.0417 
    8.0833 
    8.1250 
    8.1667 
    8.2083 
    8.2500 
    8.2917 
    8.3333 
    8.3750 
    8.4167 
    8.4583 
    8.5000 
    8.5417 
    8.5833 
    8.6250 
    8.6667 
    8.7083 
    8.7500 
    8.7917 
    8.8333 
    8.8750 
    8.9167 
    8.9583 
    9.0000 
    9.0417 
    9.0833 
    9.1250 
    9.1667 
    9.2083 
    9.2500 
    9.2917 
    9.3333 
    9.3750 
    9.4167 
    9.4583 
    9.5000 
    9.5417 
    9.5833 
    9.6250 
    9.6667 
    9.7083 
    9.7500 
    9.7917 
    9.8333 

   66.4573 
   68.5754 
   71.4187 
   74.7811 
   78.4297 
   82.1245 
   85.6353 
   88.7555 
   91.3095 
   93.1574 
   94.1983 
   94.3696 
   93.6481 
   92.0531 
   89.6492 
   86.5515 
   82.9283 
   78.9983 
   75.0220 
   71.2826 
   68.0606 
   65.6060 
   64.1114 
   63.6915 
   64.3721 
   66.0917 
   68.7104 
   72.0270 
   75.7996 
   79.7682 
   83.6753 
   87.2821 
   90.3807 
   92.7994 
   94.4076 
   95.1150 
   94.8711 
   93.6674 
   91.5410 
   88.5801 
   84.9293 
   80.7924 
   76.4287 
   72.1376 
   68.2357 
   65.0251 
   62.7605 
   61.6214 

 72.527802 
 74.213767 
 76.034156 
 77.872168 
 79.626086 
 81.213940 
 82.575945 
 83.674600 
 84.493490 
 85.034729 
 85.315431 
 85.363988 
 85.216200 
 84.911676 
 84.490737 
 83.991845 
 83.449794 
 82.894453 
 82.350082 
 81.835265 
 81.363118 
 80.941787 
 80.575226 
 80.263957 
 80.005853 
 79.796957 
 79.632121 
 79.505583 
 79.411437 
 79.343967 
 79.297879 
 79.268463 
 79.251653 
 79.244047 
 79.242880 
 79.245970 
 79.251648 
 79.258678 
 79.266181 
 79.273566 
 79.280457 
 79.286646 
 79.292042 
 79.296633 
 79.300459 
 79.303592 
 79.306116 
 79.308121 

  0.086438 
  0.073113 
  0.061684 
  0.051910 
  0.043575 
  0.036487 
  0.030476 
  0.025393 
  0.021106 
  0.017500 
  0.014476 
  0.011945 
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    9.8750    61.6938  79.309693 
 

Table A.2.  Estimated spectrums and the downshifted frequency samples from an 

example AHE calculation. 

|Ŷf|1 |Ŷf|2 |Ŷf|3 |Ŷf|4 |Ŷf|5 |Ŷf|6 |Ŷf0| 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

289.5450 
310.0884 
324.5741 
324.5043 
341.0142 
353.6548 
289.5450 
310.0884 
324.5741 
324.5043 
341.0142 
289.5450 
310.0884 
324.5741 
324.5043 
289.5450 
310.0884 
324.5741 
289.5450 
310.0884 
289.5450 
 
 



 

141 
 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0002 
0.0002 
0.0002 
0.0003 
0.0003 
0.0003 
0.0004 
0.0005 
0.0006 
0.0007 
0.0008 
0.0009 
0.0011 
0.0012 
0.0014 
0.0017 
0.0020 
0.0023 
0.0026 
0.0031 
0.0036 
0.0041 
0.0048 
0.0055 
0.0064 
0.0074 
0.0085 
0.0098 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0002 
0.0002 
0.0002 
0.0003 
0.0003 
0.0004 
0.0004 
0.0005 
0.0006 
0.0007 
0.0008 
0.0009 
0.0011 
0.0012 
0.0014 
0.0017 
0.0020 
0.0023 
0.0026 
0.0031 
0.0035 
0.0041 
0.0048 
0.0055 
0.0063 
0.0073 
0.0084 
0.0097 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0002 
0.0002 
0.0002 
0.0003 
0.0003 
0.0004 
0.0004 
0.0005 
0.0006 
0.0007 
0.0008 
0.0009 
0.0011 
0.0013 
0.0015 
0.0017 
0.0020 
0.0023 
0.0027 
0.0031 
0.0036 
0.0042 
0.0049 
0.0057 
0.0065 
0.0075 
0.0087 
0.0100 

0.0000 
0.0000 
0.0000 
0.0000 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0002 
0.0002 
0.0002 
0.0003 
0.0003 
0.0004 
0.0004 
0.0005 
0.0006 
0.0007 
0.0008 
0.0010 
0.0011 
0.0013 
0.0015 
0.0018 
0.0021 
0.0024 
0.0028 
0.0033 
0.0038 
0.0044 
0.0051 
0.0059 
0.0068 
0.0078 
0.0090 
0.0104 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0002 
0.0002 
0.0002 
0.0003 
0.0003 
0.0004 
0.0004 
0.0005 
0.0006 
0.0007 
0.0008 
0.0009 
0.0011 
0.0013 
0.0015 
0.0017 
0.0020 
0.0023 
0.0027 
0.0031 
0.0036 
0.0042 
0.0048 
0.0056 
0.0064 
0.0074 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0002 
0.0002 
0.0002 
0.0003 
0.0003 
0.0003 
0.0004 
0.0005 
0.0006 
0.0007 
0.0008 
0.0009 
0.0010 
0.0012 
0.0014 
0.0017 
0.0019 
0.0022 
0.0026 
0.0030 
0.0035 
0.0040 
0.0047 
0.0054 
0.0062 
0.0072 
0.0083 
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0.0112 
0.0129 
0.0148 
0.0170 
0.0195 
0.0223 
0.0256 
0.0292 
0.0333 
0.0380 
0.0433 
0.0493 
0.0560 
0.0637 
0.0722 
0.0819 
0.0927 
0.1048 
0.1185 
0.1337 
0.1508 
0.1698 
0.1910 
0.2147 
0.2411 
0.2704 
0.3029 
0.3390 
0.3790 
0.4232 
0.4721 
0.5261 
0.5855 
0.6510 
0.7230 
0.8020 
0.8886 
0.9836 
1.0874 

0.0112 
0.0128 
0.0147 
0.0169 
0.0193 
0.0221 
0.0253 
0.0289 
0.0329 
0.0375 
0.0427 
0.0486 
0.0552 
0.0627 
0.0711 
0.0805 
0.0910 
0.1029 
0.1162 
0.1310 
0.1476 
0.1661 
0.1867 
0.2097 
0.2352 
0.2635 
0.2949 
0.3297 
0.3682 
0.4107 
0.4577 
0.5094 
0.5663 
0.6289 
0.6975 
0.7728 
0.8552 
0.9453 
1.0436 

0.0115 
0.0133 
0.0152 
0.0175 
0.0200 
0.0229 
0.0262 
0.0300 
0.0342 
0.0391 
0.0445 
0.0506 
0.0576 
0.0654 
0.0742 
0.0841 
0.0953 
0.1078 
0.1218 
0.1375 
0.1551 
0.1747 
0.1966 
0.2210 
0.2481 
0.2783 
0.3119 
0.3491 
0.3903 
0.4359 
0.4864 
0.5420 
0.6034 
0.6710 
0.7453 
0.8270 
0.9165 
1.0146 
1.1219 

0.0119 
0.0137 
0.0157 
0.0181 
0.0207 
0.0237 
0.0271 
0.0309 
0.0353 
0.0402 
0.0458 
0.0521 
0.0592 
0.0672 
0.0762 
0.0863 
0.0976 
0.1103 
0.1246 
0.1405 
0.1583 
0.1782 
0.2004 
0.2251 
0.2525 
0.2830 
0.3168 
0.3542 
0.3957 
0.4415 
0.4920 
0.5478 
0.6091 
0.6766 
0.7506 
0.8318 
0.9208 
1.0180 
1.1243 

0.0085 
0.0098 
0.0112 
0.0129 
0.0148 
0.0169 
0.0193 
0.0221 
0.0252 
0.0287 
0.0327 
0.0372 
0.0423 
0.0480 
0.0544 
0.0616 
0.0697 
0.0788 
0.0890 
0.1004 
0.1131 
0.1273 
0.1431 
0.1608 
0.1804 
0.2022 
0.2264 
0.2531 
0.2828 
0.3155 
0.3517 
0.3916 
0.4355 
0.4838 
0.5368 
0.5950 
0.6587 
0.7284 
0.8046 

0.0095 
0.0110 
0.0126 
0.0144 
0.0166 
0.0190 
0.0217 
0.0248 
0.0283 
0.0323 
0.0367 
0.0418 
0.0475 
0.0540 
0.0613 
0.0694 
0.0786 
0.0889 
0.1005 
0.1134 
0.1279 
0.1440 
0.1621 
0.1821 
0.2045 
0.2294 
0.2570 
0.2876 
0.3215 
0.3590 
0.4004 
0.4462 
0.4966 
0.5521 
0.6131 
0.6801 
0.7536 
0.8341 
0.9221 
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1.2007 
1.3244 
1.4592 
1.6057 
1.7649 
1.9376 
2.1247 
2.3270 
2.5455 
2.7812 
3.0350 
3.3078 
3.6008 
3.9147 
4.2507 
4.6096 
4.9924 
5.4001 
5.8334 
6.2932 
6.7802 
7.2951 
7.8384 
8.4107 
9.0122 
9.6433 

10.3040 
10.9941 
11.7135 
12.4616 
13.2377 
14.0410 
14.8703 
15.7241 
16.6008 
17.4983 
18.4144 
19.3465 
20.2915 

1.1508 
1.2675 
1.3944 
1.5321 
1.6813 
1.8428 
2.0172 
2.2055 
2.4083 
2.6263 
2.8605 
3.1114 
3.3800 
3.6669 
3.9728 
4.2984 
4.6444 
5.0113 
5.3997 
5.8099 
6.2423 
6.6972 
7.1746 
7.6747 
8.1971 
8.7417 
9.3079 
9.8951 

10.5023 
11.1285 
11.7722 
12.4320 
13.1059 
13.7917 
14.4870 
15.1890 
15.8946 
16.6005 
17.3028 

1.2392 
1.3672 
1.5066 
1.6583 
1.8232 
2.0021 
2.1960 
2.4058 
2.6325 
2.8771 
3.1406 
3.4240 
3.7284 
4.0549 
4.4044 
4.7781 
5.1769 
5.6018 
6.0537 
6.5336 
7.0423 
7.5805 
8.1489 
8.7482 
9.3787 

10.0407 
10.7346 
11.4602 
12.2175 
13.0060 
13.8252 
14.6743 
15.5523 
16.4578 
17.3893 
18.3448 
19.3223 
20.3192 
21.3327 

1.2401 
1.3662 
1.5034 
1.6524 
1.8139 
1.9888 
2.1779 
2.3820 
2.6019 
2.8386 
3.0929 
3.3656 
3.6576 
3.9698 
4.3029 
4.6578 
5.0351 
5.4356 
5.8599 
6.3084 
6.7818 
7.2802 
7.8040 
8.3532 
8.9278 
9.5275 

10.1520 
10.8006 
11.4725 
12.1666 
12.8817 
13.6161 
14.3681 
15.1353 
15.9155 
16.7057 
17.5029 
18.3035 
19.1038 

0.8876 
0.9781 
1.0766 
1.1835 
1.2995 
1.4252 
1.5611 
1.7080 
1.8663 
2.0367 
2.2200 
2.4167 
2.6275 
2.8530 
3.0939 
3.3507 
3.6241 
3.9146 
4.2227 
4.5489 
4.8936 
5.2571 
5.6398 
6.0418 
6.4632 
6.9040 
7.3640 
7.8431 
8.3408 
8.8566 
9.3898 
9.9396 

10.5047 
11.0842 
11.6764 
12.2798 
12.8924 
13.5123 
14.1372 

1.0182 
1.1231 
1.2373 
1.3615 
1.4965 
1.6429 
1.8014 
1.9729 
2.1581 
2.3579 
2.5729 
2.8041 
3.0523 
3.3184 
3.6030 
3.9071 
4.2314 
4.5767 
4.9437 
5.3331 
5.7456 
6.1816 
6.6417 
7.1262 
7.6355 
8.1697 
8.7289 
9.3131 
9.9219 

10.5549 
11.2117 
11.8914 
12.5930 
13.3153 
14.0569 
14.8161 
15.5910 
16.3793 
17.1787 
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21.2463 
22.2072 
23.1703 
24.1314 
25.0856 
26.0282 
26.9539 
27.8570 
28.7317 
29.5719 
30.3712 
31.1229 
31.8205 
32.4569 
33.0253 
33.5187 
33.9300 
34.2525 
34.4793 
34.6041 
34.6206 
34.5229 
34.3056 
33.9639 
33.4935 
32.8907 
32.1528 
31.2778 
30.2645 
29.1129 
27.8239 
26.3997 
24.8435 
23.1597 
21.3542 
19.4341 
17.4077 
15.2849 
13.0773 

17.9976 
18.6803 
19.3463 
19.9905 
20.6074 
21.1915 
21.7366 
22.2367 
22.6851 
23.0753 
23.4004 
23.6535 
23.8274 
23.9151 
23.9097 
23.8041 
23.5917 
23.2659 
22.8205 
22.2498 
21.5486 
20.7122 
19.7366 
18.6189 
17.3570 
15.9501 
14.3988 
12.7061 
10.8780 

8.9265 
6.8773 
4.7996 
2.9634 
2.5265 
4.1955 
6.6374 
9.3352 

12.1657 
15.0804 

22.3596 
23.3964 
24.4393 
25.4842 
26.5264 
27.5612 
28.5833 
29.5872 
30.5673 
31.5173 
32.4311 
33.3021 
34.1237 
34.8890 
35.5912 
36.2234 
36.7786 
37.2501 
37.6313 
37.9157 
38.0973 
38.1703 
38.1295 
37.9702 
37.6884 
37.2808 
36.7449 
36.0791 
35.2830 
34.3571 
33.3032 
32.1246 
30.8259 
29.4133 
27.8950 
26.2809 
24.5833 
22.8174 
21.0016 

19.8996 
20.6863 
21.4591 
22.2127 
22.9416 
23.6400 
24.3016 
24.9200 
25.4886 
26.0004 
26.4485 
26.8256 
27.1247 
27.3385 
27.4601 
27.4825 
27.3992 
27.2040 
26.8914 
26.4564 
25.8951 
25.2047 
24.3839 
23.4332 
22.3557 
21.1579 
19.8508 
18.4521 
16.9892 
15.5043 
14.0619 
12.7594 
11.7361 
11.1672 
11.2167 
11.9598 
13.3476 
15.2542 
17.5444 

14.7644 
15.3914 
16.0151 
16.6323 
17.2398 
17.8338 
18.4108 
18.9667 
19.4976 
19.9992 
20.4674 
20.8977 
21.2858 
21.6275 
21.9185 
22.1546 
22.3319 
22.4465 
22.4952 
22.4747 
22.3824 
22.2161 
21.9742 
21.6557 
21.2607 
20.7897 
20.2445 
19.6281 
18.9446 
18.1996 
17.4006 
16.5569 
15.6801 
14.7847 
13.8882 
13.0116 
12.1798 
11.4215 
10.7677 

17.9863 
18.7992 
19.6141 
20.4274 
21.2353 
22.0337 
22.8181 
23.5842 
24.3270 
25.0416 
25.7229 
26.3655 
26.9642 
27.5136 
28.0082 
28.4429 
28.8124 
29.1117 
29.3364 
29.4820 
29.5449 
29.5217 
29.4102 
29.2087 
28.9166 
28.5347 
28.0650 
27.5114 
26.8796 
26.1778 
25.4168 
24.6106 
23.7769 
22.9375 
22.1190 
21.3524 
20.6731 
20.1192 
19.7295 
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10.7979 
8.4629 
6.0938 
3.7325 
1.5871 
1.7579 
3.9373 
6.2661 
8.5755 

10.8240 
12.9864 
15.0421 
16.9724 
18.7599 
20.3891 
21.8457 
23.1177 
24.1954 
25.0718 
25.7430 
26.2090 
26.4741 
26.5475 
26.4442 
26.1859 
25.8017 
25.3291 
24.8145 
24.3127 
23.8862 
23.6008 
23.5199 
23.6967 
24.1655 
24.9359 
25.9918 
27.2948 
28.7906 
30.4162 

18.0495 
21.0483 
24.0541 
27.0441 
29.9952 
32.8839 
35.6861 
38.3774 
40.9330 
43.3283 
45.5386 
47.5397 
49.3080 
50.8208 
52.0568 
52.9959 
53.6200 
53.9129 
53.8610 
53.4532 
52.6816 
51.5415 
50.0318 
48.1557 
45.9205 
43.3388 
40.4285 
37.2145 
33.7306 
30.0223 
26.1538 
22.2220 
18.3866 
14.9375 
12.4126 
11.5940 
12.8810 
15.7602 
19.4832 

19.1583 
17.3158 
15.5101 
13.7879 
12.2110 
10.8594 
9.8296 
9.2166 
9.0738 
9.3773 

10.0306 
10.9093 
11.8991 
12.9104 
13.8771 
14.7510 
15.4975 
16.0916 
16.5171 
16.7650 
16.8337 
16.7302 
16.4711 
16.0852 
15.6160 
15.1258 
14.6973 
14.4327 
14.4436 
14.8302 
15.6560 
16.9327 
18.6242 
20.6648 
22.9772 
25.4841 
28.1125 
30.7953 
33.4702 

20.1064 
22.8551 
25.7257 
28.6670 
31.6362 
34.5956 
37.5111 
40.3504 
43.0829 
45.6788 
48.1096 
50.3475 
52.3658 
54.1390 
55.6431 
56.8555 
57.7556 
58.3249 
58.5474 
58.4095 
57.9007 
57.0137 
55.7444 
54.0924 
52.0611 
49.6578 
46.8939 
43.7848 
40.3504 
36.6147 
32.6061 
28.3575 
23.9068 
19.2981 
14.5856 
9.8503 
5.3042 
2.6582 
5.7328 

10.2496 
9.8933 
9.7149 
9.7146 
9.8760 

10.1683 
10.5525 
10.9868 
11.4309 
11.8482 
12.2065 
12.4779 
12.6385 
12.6685 
12.5515 
12.2752 
11.8313 
11.2171 
10.4369 
9.5062 
8.4595 
7.3666 
6.3667 
5.7151 
5.7547 
6.6667 
8.3166 

10.4716 
12.9616 
15.6812 
18.5605 
21.5466 
24.5946 
27.6631 
30.7121 
33.7016 
36.5921 
39.3435 
41.9159 

19.5394 
19.5763 
19.8555 
20.3777 
21.1294 
22.0851 
23.2114 
24.4709 
25.8251 
27.2366 
28.6699 
30.0926 
31.4747 
32.7892 
34.0117 
35.1204 
36.0963 
36.9227 
37.5857 
38.0742 
38.3799 
38.4974 
38.4249 
38.1637 
37.7189 
37.0995 
36.3189 
35.3947 
34.3495 
33.2107 
32.0107 
30.7871 
29.5816 
28.4392 
27.4059 
26.5253 
25.8344 
25.3584 
25.1066 
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32.1051 
33.7915 
35.4123 
36.9087 
38.2263 
39.3161 
40.1343 
40.6429 
40.8099 
40.6105 
40.0275 
39.0525 
37.6880 
35.9498 
33.8708 
31.5079 
28.9524 
26.3464 
23.9073 
21.9515 
20.8812 
21.0718 
22.6767 
25.5500 
29.3784 
33.8406 
38.6724 
43.6669 
48.6587 
53.5088 
58.0954 
62.3078 
66.0438 
69.2077 
71.7102 
73.4682 
74.4052 
74.4522 
73.5486 

23.5646 
27.7351 
31.8340 
35.7518 
39.4053 
42.7264 
45.6566 
48.1446 
50.1458 
51.6217 
52.5397 
52.8739 
52.6049 
51.7206 
50.2163 
48.0953 
45.3696 
42.0600 
38.1978 
33.8261 
29.0040 
23.8163 
18.4029 
13.0624 

8.7076 
7.9908 

11.8524 
17.5234 
23.6690 
29.8601 
35.8911 
41.6209 
46.9326 
51.7207 
55.8874 
59.3413 
61.9977 
63.7793 
64.6175 

36.0792 
38.5676 
40.8838 
42.9788 
44.8063 
46.3228 
47.4881 
48.2654 
48.6215 
48.5279 
47.9605 
46.9005 
45.3345 
43.2553 
40.6617 
37.5592 
33.9604 
29.8850 
25.3605 
20.4235 
15.1235 

9.5416 
3.9820 
3.5964 
9.4549 

15.7837 
22.1883 
28.5507 
34.7789 
40.7852 
46.4829 
51.7859 
56.6090 
60.8690 
64.4856 
67.3825 
69.4888 
70.7401 
71.0801 

10.1283 
14.5372 
18.7732 
22.7521 
26.4111 
29.6953 
32.5546 
34.9433 
36.8196 
38.1470 
38.8938 
39.0344 
38.5491 
37.4252 
35.6573 
33.2472 
30.2051 
26.5489 
22.3056 
17.5115 
12.2155 

6.5008 
1.3692 
6.5035 

13.2278 
20.1922 
27.2759 
34.3829 
41.4181 
48.2850 
54.8852 
61.1196 
66.8896 
72.0975 
76.6485 
80.4512 
83.4192 
85.4723 
86.5377 

44.2699 
46.3664 
48.1674 
49.6366 
50.7394 
51.4437 
51.7205 
51.5440 
50.8926 
49.7494 
48.1022 
45.9451 
43.2785 
40.1102 
36.4575 
32.3497 
27.8341 
22.9908 
17.9740 
13.1497 
9.5841 
9.5871 

13.5181 
19.2601 
25.6820 
32.3656 
39.1075 
45.7730 
52.2527 
58.4478 
64.2650 
69.6144 
74.4093 
78.5659 
82.0045 
84.6496 
86.4310 
87.2845 
87.1530 

25.0693 
25.2190 
25.5128 
25.8978 
26.3161 
26.7097 
27.0237 
27.2090 
27.2237 
27.0343 
26.6167 
25.9578 
25.0576 
23.9318 
22.6173 
21.1798 
19.7245 
18.4098 
17.4537 
17.1118 
17.6045 
19.0211 
21.2918 
24.2489 
27.7041 
31.4878 
35.4569 
39.4897 
43.4797 
47.3308 
50.9533 
54.2630 
57.1796 
59.6264 
61.5310 
62.8248 
63.4439 
63.3299 
62.4302 
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71.6431 
68.6955 
64.6788 
59.5822 
53.4180 
46.2349 
38.1537 
29.4753 
21.0903 
16.0138 
19.4699 
29.8028 
43.0900 
57.8982 
73.7137 
90.2735 
107.392 
124.914 
142.691 
160.578 
178.431 
196.109 
213.466 
230.363 
246.660 
262.223 
276.921 
290.630 
303.234 
314.625 
324.706 
333.389 
340.599 
346.273 
350.362 
352.829 
353.654 
352.829 
350.362 

64.4537 
63.2414 
60.9488 
57.5632 
53.0983 
47.6087 
41.2238 
34.2313 
27.3131 
22.1594 
21.9192 
28.1054 
38.6581 
51.6281 
66.0880 
81.5835 
97.8390 
114.648 
131.837 
149.240 
166.700 
184.062 
201.173 
217.883 
234.045 
249.516 
264.158 
277.840 
290.439 
301.842 
311.945 
320.655 
327.894 
333.594 
337.703 
340.184 
341.014 
340.184 
337.703 

70.4622 
68.8520 
66.2298 
62.5958 
57.9777 
52.4462 
46.1467 
39.3718 
32.7343 
27.5365 
26.0466 
30.0234 
38.6697 
50.2445 
63.6123 
78.1649 
93.5451 
109.507 
125.858 
142.417 
159.034 
175.554 
191.829 
207.715 
223.071 
237.763 
251.661 
264.642 
276.590 
287.400 
296.974 
305.225 
312.081 
317.479 
321.370 
323.719 
324.504 
323.719 
321.370 

86.5513 
85.4590 
83.2182 
79.7997 
75.1900 
69.3950 
62.4472 
54.4201 
45.4642 
35.9095 
26.6127 
20.1365 
21.5321 
31.0172 
44.4284 
59.6873 
76.0195 
93.0501 
110.534 
128.273 
146.102 
163.844 
181.341 
198.437 
214.979 
230.818 
245.813 
259.828 
272.737 
284.421 
294.775 
303.703 
311.123 
316.967 
321.180 
323.723 
324.574 
323.723 
321.180 

85.9869 
83.7449 
80.3951 
75.9154 
70.2939 
63.5300 
55.6349 
46.6327 
36.5642 
25.4991 
13.6205 
3.8532 

14.4377 
28.8481 
44.1023 
59.9670 
76.3050 
92.9899 
109.895 
126.891 
143.847 
160.630 
177.105 
193.140 
208.603 
223.368 
237.312 
250.316 
262.271 
273.075 
282.636 
290.870 
297.708 
303.088 
306.966 
309.306 
310.088 
309.306 
306.966 

60.6986 
58.0963 
54.5921 
50.1636 
44.7973 
38.4896 
31.2485 
23.0976 
14.0985 

4.6714 
7.3525 

18.6288 
30.8317 
43.7145 
57.1728 
71.1124 
85.4368 
100.044 
114.831 
129.686 
144.497 
159.151 
173.532 
187.525 
201.018 
213.900 
226.063 
237.407 
247.835 
257.259 
265.599 
272.781 
278.745 
283.439 
286.821 
288.862 
289.545 
288.862 
286.821 
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346.273 
340.599 
333.389 
324.706 
314.625 
303.234 
290.630 
276.921 
262.223 
246.660 
230.363 
213.466 
196.109 
178.431 
160.578 
142.691 
124.914 
107.392 
90.2735 
73.7137 
57.8982 
43.0900 
29.8028 
19.4699 
16.0138 
21.0903 
29.4753 
38.1537 
46.2349 
53.4180 
59.5822 
64.6788 
68.6955 
71.6431 
73.5486 
74.4522 
74.4052 
73.4682 
71.7102 

333.594 
327.894 
320.655 
311.945 
301.842 
290.439 
277.840 
264.158 
249.516 
234.045 
217.883 
201.173 
184.062 
166.700 
149.240 
131.837 
114.648 
97.8390 
81.5835 
66.0880 
51.6281 
38.6581 
28.1054 
21.9192 
22.1594 
27.3131 
34.2313 
41.2238 
47.6087 
53.0983 
57.5632 
60.9488 
63.2414 
64.4537 
64.6175 
63.7793 
61.9977 
59.3413 
55.8874 

317.479 
312.081 
305.225 
296.974 
287.400 
276.590 
264.642 
251.661 
237.763 
223.071 
207.715 
191.829 
175.554 
159.034 
142.417 
125.854 
109.507 
93.5451 
78.1649 
63.6123 
50.2445 
38.6697 
30.0234 
26.0466 
27.5365 
32.7343 
39.3718 
46.1467 
52.4462 
57.9777 
62.5958 
66.2298 
68.8520 
70.4622 
71.0801 
70.7401 
69.4888 
67.3825 
64.4856 

316.967 
311.123 
303.703 
294.775 
284.421 
272.737 
259.828 
245.813 
230.818 
214.979 
198.437 
181.341 
163.844 
146.102 
128.277 
110.534 
93.0501 
76.0195 
59.6873 
44.4284 
31.0172 
21.5321 
20.1365 
26.6127 
35.9095 
45.4642 
54.4201 
62.4472 
69.3950 
75.1900 
79.7997 
83.2182 
85.4590 
86.5513 
86.5377 
85.4723 
83.4192 
80.4512 
76.6485 

303.088 
297.708 
290.870 
282.636 
273.075 
262.271 
250.316 
237.312 
223.368 
208.603 
193.140 
177.105 
160.630 
143.847 
126.891 
109.895 
92.9899 
76.3050 
59.9670 
44.1023 
28.8481 
14.4377 
3.8532 

13.6205 
25.4991 
36.5642 
46.6327 
55.6349 
63.5300 
70.2939 
75.9154 
80.3951 
83.7449 
85.9869 
87.1530 
87.2845 
86.4310 
84.6496 
82.0045 

283.439 
278.745 
272.781 
265.599 
257.25 

247.835 
237.407 
226.063 
213.900 
201.018 
187.525 
173.532 
159.151 
144.497 
129.686 
114.831 
100.044 
85.4368 
71.1124 
57.1728 
43.7145 
30.8317 
18.6288 
7.3525 
4.6714 

14.0985 
23.0976 
31.2485 
38.4896 
44.7973 
50.1636 
54.5921 
58.0963 
60.6986 
62.4302 
63.3299 
63.4439 
62.8248 
61.5310 
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69.2077 
66.0438 
62.3078 
58.0954 
53.5088 
48.6587 
43.6669 
38.6724 
33.8406 
29.3784 
25.5500 
22.6767 
21.0718 
20.8812 
21.9515 
23.9073 
26.3464 
28.9524 
31.5079 
33.8708 
35.9498 
37.6880 
39.0525 
40.0275 
40.6105 
40.8099 
40.6429 
40.1343 
39.3161 
38.2263 
36.9087 
35.4123 
33.7915 
32.1051 
30.4162 
28.7906 
27.2948 
25.9918 
24.9359 

51.7207 
46.9326 
41.6209 
35.8911 
29.8601 
23.6690 
17.5234 
11.8524 

7.9908 
8.7076 

13.0624 
18.4029 
23.8163 
29.0040 
33.8261 
38.1978 
42.0600 
45.3696 
48.0953 
50.2163 
51.7206 
52.6049 
52.8739 
52.5397 
51.6217 
50.1458 
48.1446 
45.6566 
42.7264 
39.4053 
35.7518 
31.8340 
27.7351 
23.5646 
19.4832 
15.7602 
12.8810 
11.5940 
12.4126 

60.8690 
56.6090 
51.7859 
46.4829 
40.7852 
34.7789 
28.5507 
22.1883 
15.7837 

9.4549 
3.5964 
3.9820 
9.5416 

15.1235 
20.4235 
25.3605 
29.8850 
33.9604 
37.5592 
40.6617 
43.2553 
45.3345 
46.9005 
47.9605 
48.5279 
48.6215 
48.2654 
47.4881 
46.3228 
44.8063 
42.9788 
40.8838 
38.5676 
36.0792 
33.4702 
30.7953 
28.1125 
25.4841 
22.9772 

72.0975 
66.8896 
61.1196 
54.8852 
48.2850 
41.4181 
34.3829 
27.2759 
20.1922 
13.2278 
6.5035 
1.3692 
6.5008 

12.2155 
17.5115 
22.3056 
26.5489 
30.2051 
33.2472 
35.6573 
37.4252 
38.5491 
39.0344 
38.8938 
38.1470 
36.8196 
34.9433 
32.5546 
29.6953 
26.4111 
22.7521 
18.7732 
14.5372 
10.1283 
5.7328 
2.6582 
5.3042 
9.8503 

14.5856 

78.5659 
74.4093 
69.6144 
64.2650 
58.4478 
52.2527 
45.7730 
39.1075 
32.3656 
25.6820 
19.2601 
13.5181 
9.5871 
9.5841 

13.1497 
17.9740 
22.9908 
27.8341 
32.3497 
36.4575 
40.1102 
43.2785 
45.9451 
48.1022 
49.7494 
50.8926 
51.5440 
51.7205 
51.4437 
50.7394 
49.6366 
48.1674 
46.3664 
44.2699 
41.9159 
39.3435 
36.5921 
33.7016 
30.7121 

59.6264 
57.1796 
54.2630 
50.9533 
47.3308 
43.4797 
39.4897 
35.4569 
31.4878 
27.7041 
24.2489 
21.2918 
19.0211 
17.6045 
17.1118 
17.4537 
18.4098 
19.7245 
21.1798 
22.6173 
23.9318 
25.0576 
25.9578 
26.6167 
27.0343 
27.2237 
27.2090 
27.0237 
26.7097 
26.3161 
25.8978 
25.5128 
25.2190 
25.0693 
25.1066 
25.3584 
25.8344 
26.5253 
27.4059 
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24.1655 
23.6967 
23.5199 
23.6008 
23.8862 
24.3127 
24.8145 
25.3291 
25.8017 
26.1859 
26.4442 
26.5475 
26.4741 
26.2090 
25.7430 
25.0718 
24.1954 
23.1177 
21.8457 
20.3891 
18.7599 
16.9724 
15.0421 
12.9864 
10.8240 
8.5755 
6.2661 
3.9373 
1.7579 
1.5871 
3.7325 
6.0938 
8.4629 

10.7979 
13.0773 
15.2849 
17.4077 
19.4341 
21.3542 

14.9375 
18.3866 
22.2220 
26.1538 
30.0223 
33.7306 
37.2145 
40.4285 
43.3388 
45.9205 
48.1557 
50.0318 
51.5415 
52.6816 
53.4532 
53.8610 
53.9129 
53.6200 
52.9959 
52.0568 
50.8208 
49.3080 
47.5397 
45.5386 
43.3283 
40.9330 
38.3774 
35.6861 
32.8839 
29.9952 
27.0441 
24.0541 
21.0483 
18.0495 
15.0804 
12.1657 

9.3352 
6.6374 
4.1955 

20.6648 
18.6242 
16.9327 
15.6560 
14.8302 
14.4436 
14.4327 
14.6973 
15.1258 
15.6160 
16.0852 
16.4711 
16.7302 
16.8337 
16.7650 
16.5171 
16.0916 
15.4975 
14.7510 
13.8771 
12.9104 
11.8991 
10.9093 
10.0306 

9.3773 
9.0738 
9.2166 
9.8296 

10.8594 
12.2110 
13.7879 
15.5101 
17.3158 
19.1583 
21.0016 
22.8174 
24.5833 
26.2809 
27.8950 

19.2981 
23.9068 
28.3575 
32.6061 
36.6147 
40.3504 
43.7848 
46.8939 
49.6578 
52.0611 
54.0924 
55.7444 
57.0137 
57.9007 
58.4095 
58.5474 
58.3249 
57.7556 
56.8555 
55.6431 
54.1390 
52.3658 
50.3475 
48.1096 
45.6788 
43.0829 
40.3504 
37.5111 
34.5956 
31.6362 
28.6670 
25.7257 
22.8551 
20.1064 
17.5444 
15.2542 
13.3476 
11.9598 
11.2167 

27.6631 
24.5946 
21.5466 
18.5605 
15.6812 
12.9616 
10.4716 
8.3166 
6.6667 
5.7547 
5.7151 
6.3667 
7.3666 
8.4595 
9.5062 

10.4369 
11.2171 
11.8313 
12.2752 
12.5515 
12.6685 
12.6385 
12.4779 
12.2065 
11.8482 
11.4309 
10.9868 
10.5525 
10.1683 

9.8760 
9.7146 
9.7149 
9.8933 

10.2496 
10.7677 
11.4215 
12.1798 
13.0116 
13.8882 

28.4392 
29.5816 
30.7871 
32.0107 
33.2107 
34.3495 
35.3947 
36.3189 
37.0995 
37.7189 
38.1637 
38.4249 
38.4974 
38.3799 
38.0742 
37.5857 
36.9227 
36.0963 
35.1204 
34.0117 
32.7892 
31.4747 
30.0926 
28.6699 
27.2366 
25.8251 
24.4709 
23.2114 
22.0851 
21.1294 
20.3777 
19.8555 
19.5763 
19.5394 
19.7295 
20.1192 
20.6731 
21.3524 
22.1190 
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23.1597 
24.8435 
26.3997 
27.8239 
29.1129 
30.2645 
31.2778 
32.1528 
32.8907 
33.4935 
33.9639 
34.3056 
34.5229 
34.6206 
34.6041 
34.4793 
34.2525 
33.9300 
33.5187 
33.0253 
32.4569 
31.8205 
31.1229 
30.3712 
29.5719 
28.7317 
27.8570 
26.9539 
26.0282 
25.0856 
24.1314 
23.1703 
22.2072 
21.2463 
20.2915 
19.3465 
18.4144 
17.4983 
16.6008 

2.5265 
2.9634 
4.7996 
6.8773 
8.9265 

10.8780 
12.7061 
14.3988 
15.9501 
17.3570 
18.6189 
19.7366 
20.7122 
21.5486 
22.2498 
22.8205 
23.2659 
23.5917 
23.8041 
23.9097 
23.9151 
23.8274 
23.6535 
23.4004 
23.0753 
22.6851 
22.2367 
21.7366 
21.1915 
20.6074 
19.9905 
19.3463 
18.6803 
17.9976 
17.3028 
16.6005 
15.8946 
15.1890 
14.4870 

29.4133 
30.8259 
32.1246 
33.3032 
34.3571 
35.2830 
36.0791 
36.7449 
37.2808 
37.6884 
37.9702 
38.1295 
38.1703 
38.0973 
37.9157 
37.6313 
37.2501 
36.7786 
36.2234 
35.5912 
34.8890 
34.1237 
33.3021 
32.4311 
31.5173 
30.5673 
29.5872 
28.5833 
27.5612 
26.5264 
25.4842 
24.4393 
23.3964 
22.3596 
21.3327 
20.3192 
19.3223 
18.3448 
17.3893 

11.1672 
11.7361 
12.7594 
14.0619 
15.5043 
16.9892 
18.4521 
19.8508 
21.1579 
22.3557 
23.4332 
24.3839 
25.2047 
25.8951 
26.4564 
26.8914 
27.2040 
27.3992 
27.4825 
27.4601 
27.3385 
27.1247 
26.8256 
26.4485 
26.0004 
25.4886 
24.9200 
24.3016 
23.6400 
22.9416 
22.2127 
21.4591 
20.6863 
19.8996 
19.1038 
18.3035 
17.5029 
16.7057 
15.9155 

14.7847 
15.6801 
16.5569 
17.4006 
18.1996 
18.9446 
19.6281 
20.2445 
20.7897 
21.2607 
21.6557 
21.9742 
22.2161 
22.3824 
22.4747 
22.4952 
22.4465 
22.3319 
22.1546 
21.9185 
21.6275 
21.2858 
20.8977 
20.4674 
19.9992 
19.4976 
18.9667 
18.4108 
17.8338 
17.2398 
16.6323 
16.0151 
15.3914 
14.7644 
14.1372 
13.5123 
12.8924 
12.2798 
11.6764 

22.9375 
23.7769 
24.6106 
25.4168 
26.1778 
26.8796 
27.5114 
28.0650 
28.5347 
28.9166 
29.2087 
29.4102 
29.5217 
29.5449 
29.4820 
29.3364 
29.1117 
28.8124 
28.4429 
28.0082 
27.5136 
26.9642 
26.3655 
25.7229 
25.0416 
24.3270 
23.5842 
22.8181 
22.0337 
21.2353 
20.4274 
19.6141 
18.7992 
17.9863 
17.1787 
16.3793 
15.5910 
14.8161 
14.0569 
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15.7241 
14.8703 
14.0410 
13.2377 
12.4616 
11.7135 
10.9941 
10.3040 

9.6433 
9.0122 
8.4107 
7.8384 
7.2951 
6.7802 
6.2932 
5.8334 
5.4001 
4.9924 
4.6096 
4.2507 
3.9147 
3.6008 
3.3078 
3.0350 
2.7812 
2.5455 
2.3270 
2.1247 
1.9376 
1.7649 
1.6057 
1.4592 
1.3244 
1.2007 
1.0874 
0.9836 
0.8886 
0.8020 
0.7230 

13.7917 
13.1059 
12.4320 
11.7722 
11.1285 
10.5023 

9.8951 
9.3079 
8.7417 
8.1971 
7.6747 
7.1746 
6.6972 
6.2423 
5.8099 
5.3997 
5.0113 
4.6444 
4.2984 
3.9728 
3.6669 
3.3800 
3.1114 
2.8605 
2.6263 
2.4083 
2.2055 
2.0172 
1.8428 
1.6813 
1.5321 
1.3944 
1.2675 
1.1508 
1.0436 
0.9453 
0.8552 
0.7728 
0.6975 

16.4578 
15.5523 
14.6743 
13.8252 
13.0060 
12.2175 
11.4602 
10.7346 
10.0407 

9.3787 
8.7482 
8.1489 
7.5805 
7.0423 
6.5336 
6.0537 
5.6018 
5.1769 
4.7781 
4.4044 
4.0549 
3.7284 
3.4240 
3.1406 
2.8771 
2.6325 
2.4058 
2.1960 
2.0021 
1.8232 
1.6583 
1.5066 
1.3672 
1.2392 
1.1219 
1.0146 
0.9165 
0.8270 
0.7453 

15.1353 
14.3681 
13.6161 
12.8817 
12.1666 
11.4725 
10.8006 
10.1520 
9.5275 
8.9278 
8.3532 
7.8040 
7.2802 
6.7818 
6.3084 
5.8599 
5.4356 
5.0351 
4.6578 
4.3029 
3.9698 
3.6576 
3.3656 
3.0929 
2.8386 
2.6019 
2.3820 
2.1779 
1.9888 
1.8139 
1.6524 
1.5034 
1.3662 
1.2401 
1.1243 
1.0180 
0.9208 
0.8318 
0.7506 

11.0842 
10.5047 
9.9396 
9.3898 
8.8566 
8.3408 
7.8431 
7.3640 
6.9040 
6.4632 
6.0418 
5.6398 
5.2571 
4.8936 
4.5489 
4.2227 
3.9146 
3.6241 
3.3507 
3.0939 
2.8530 
2.6275 
2.4167 
2.2200 
2.0367 
1.8663 
1.7080 
1.5611 
1.4252 
1.2995 
1.1835 
1.0766 
0.9781 
0.8876 
0.8046 
0.7284 
0.6587 
0.5950 
0.5368 

13.3153 
12.5930 
11.8914 
11.2117 
10.5549 

9.9219 
9.3131 
8.7289 
8.1697 
7.6355 
7.1262 
6.6417 
6.1816 
5.7456 
5.3331 
4.9437 
4.5767 
4.2314 
3.9071 
3.6030 
3.3184 
3.0523 
2.8041 
2.5729 
2.3579 
2.1581 
1.9729 
1.8014 
1.6429 
1.4965 
1.3615 
1.2373 
1.1231 
1.0182 
0.9221 
0.8341 
0.7536 
0.6801 
0.6131 
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0.6510 
0.5855 
0.5261 
0.4721 
0.4232 
0.3790 
0.3390 
0.3029 
0.2704 
0.2411 
0.2147 
0.1910 
0.1698 
0.1508 
0.1337 
0.1185 
0.1048 
0.0927 
0.0819 
0.0722 
0.0637 
0.0560 
0.0493 
0.0433 
0.0380 
0.0333 
0.0292 
0.0256 
0.0223 
0.0195 
0.0170 
0.0148 
0.0129 
0.0112 
0.0098 
0.0085 
0.0074 
0.0064 
0.0055 

0.6289 
0.5663 
0.5094 
0.4577 
0.4107 
0.3682 
0.3297 
0.2949 
0.2635 
0.2352 
0.2097 
0.1867 
0.1661 
0.1476 
0.1310 
0.1162 
0.1029 
0.0910 
0.0805 
0.0711 
0.0627 
0.0552 
0.0486 
0.0427 
0.0375 
0.0329 
0.0289 
0.0253 
0.0221 
0.0193 
0.0169 
0.0147 
0.0128 
0.0112 
0.0097 
0.0084 
0.0073 
0.0063 
0.0055 

0.6710 
0.6034 
0.5420 
0.4864 
0.4359 
0.3903 
0.3491 
0.3119 
0.2783 
0.2481 
0.2210 
0.1966 
0.1747 
0.1551 
0.1375 
0.1218 
0.1078 
0.0953 
0.0841 
0.0742 
0.0654 
0.0576 
0.0506 
0.0445 
0.0391 
0.0342 
0.0300 
0.0262 
0.0229 
0.0200 
0.0175 
0.0152 
0.0133 
0.0115 
0.0100 
0.0087 
0.0075 
0.0065 
0.0057 

0.6766 
0.6091 
0.5478 
0.4920 
0.4415 
0.3957 
0.3542 
0.3168 
0.2830 
0.2525 
0.2251 
0.2004 
0.1782 
0.1583 
0.1405 
0.1246 
0.1103 
0.0976 
0.0863 
0.0762 
0.0672 
0.0592 
0.0521 
0.0458 
0.0402 
0.0353 
0.0309 
0.0271 
0.0237 
0.0207 
0.0181 
0.0157 
0.0137 
0.0119 
0.0104 
0.0090 
0.0078 
0.0068 
0.0059 

0.4838 
0.4355 
0.3916 
0.3517 
0.3155 
0.2828 
0.2531 
0.2264 
0.2022 
0.1804 
0.1608 
0.1431 
0.1273 
0.1131 
0.1004 
0.0890 
0.0788 
0.0697 
0.0616 
0.0544 
0.0480 
0.0423 
0.0372 
0.0327 
0.0287 
0.0252 
0.0221 
0.0193 
0.0169 
0.0148 
0.0129 
0.0112 
0.0098 
0.0085 
0.0074 
0.0064 
0.0056 
0.0048 
0.0042 

0.5521 
0.4966 
0.4462 
0.4004 
0.3590 
0.3215 
0.2876 
0.2570 
0.2294 
0.2045 
0.1821 
0.1621 
0.1440 
0.1279 
0.1134 
0.1005 
0.0889 
0.0786 
0.0694 
0.0613 
0.0540 
0.0475 
0.0418 
0.0367 
0.0323 
0.0283 
0.0248 
0.0217 
0.0190 
0.0166 
0.0144 
0.0126 
0.0110 
0.0095 
0.0083 
0.0072 
0.0062 
0.0054 
0.0047 
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0.0048 
0.0041 
0.0036 
0.0031 
0.0026 
0.0023 
0.0020 
0.0017 
0.0014 
0.0012 
0.0011 
0.0009 
0.0008 
0.0007 
0.0006 
0.0005 
0.0004 
0.0003 
0.0003 
0.0003 
0.0002 
0.0002 
0.0002 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0048 
0.0041 
0.0035 
0.0031 
0.0026 
0.0023 
0.0020 
0.0017 
0.0014 
0.0012 
0.0011 
0.0009 
0.0008 
0.0007 
0.0006 
0.0005 
0.0004 
0.0004 
0.0003 
0.0003 
0.0002 
0.0002 
0.0002 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0049 
0.0042 
0.0036 
0.0031 
0.0027 
0.0023 
0.0020 
0.0017 
0.0015 
0.0013 
0.0011 
0.0009 
0.0008 
0.0007 
0.0006 
0.0005 
0.0004 
0.0004 
0.0003 
0.0003 
0.0002 
0.0002 
0.0002 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0051 
0.0044 
0.0038 
0.0033 
0.0028 
0.0024 
0.0021 
0.0018 
0.0015 
0.0013 
0.0011 
0.0010 
0.0008 
0.0007 
0.0006 
0.0005 
0.0004 
0.0004 
0.0003 
0.0003 
0.0002 
0.0002 
0.0002 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0036 
0.0031 
0.0027 
0.0023 
0.0020 
0.0017 
0.0015 
0.0013 
0.0011 
0.0009 
0.0008 
0.0007 
0.0006 
0.0005 
0.0004 
0.0004 
0.0003 
0.0003 
0.0002 
0.0002 
0.0002 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0040 
0.0035 
0.0030 
0.0026 
0.0022 
0.0019 
0.0017 
0.0014 
0.0012 
0.0010 
0.0009 
0.0008 
0.0007 
0.0006 
0.0005 
0.0004 
0.0003 
0.0003 
0.0003 
0.0002 
0.0002 
0.0002 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
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0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
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function [dfac,freq,H_hat,ff,a_hat,y_hat] = YW(y,v,order,fs)  
% 
dt = 1/fs; 
y = detrend(y,'constant');  
  
  
  
M = order;   
 
%Lag_m = M; 
r = []; 
 
R = xcorr(y,y,M,'biased'); 
  
N = length(y); 
r=zeros(M+1,1); 
for i = 0 : M, 
   r(i+1)=y(1:N-i)'*y(i+1:N)/N; 
end 
  
a_hat = levinson(r,M); 
H_hat = freqz(1,a_hat); 
  
ff = (0:1:length(H_hat)-1)*(1/(2*dt*length(H_hat))); 
  
%lp = [1 a_hat]; 
lp = a_hat; 
rLP = roots(lp);  % calculate the roots of the lp. 
  
  
dfac = log(abs(rLP))/dt; 
a = imag(rLP); 
b = real(rLP); 
freq = atan(a./b)/(2*pi*dt); 
  
y_hat = zeros(1,(2*length(v)+order)); 
end  
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