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ABSTRACT

To establish reliable wireless communication links it is critical to devise

schemes to mitigate the effects of the fading channel. In this regard, this

dissertation analyzes two types of systems: point-to-point, and multiuser sys-

tems.

For point-to-point systems with multiple antennas, switch and stay di-

versity combining offers a substantial complexity reduction for a modest loss

in performance as compared to systems that implement selection diversity.

For the first time, the design and performance of space-time coded multiple

antenna systems that employ switch and stay combining at the receiver is

considered. Novel switching algorithms are proposed and upper bounds on

the pairwise error probability are derived for different assumptions on channel

availability at the receiver. It is proved that full spatial diversity is achieved

when the optimal switching threshold is used. Power distribution between

training and data codewords is optimized to minimize the loss suffered due

to channel estimation error. Further, code design criteria are developed for

differential systems. Also, for the special case of two transmit antennas, new

codes are designed for the differential scheme. These proposed codes are shown

to perform significantly better than existing codes.

For multiuser systems, unlike the models analyzed in literature, multiuser

diversity is studied when the number of users in the system is random. The

error rate is proved to be a completely monotone function of the number of
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users, while the throughput is shown to have a completely monotone derivative.

Using this it is shown that randomization of the number of users always leads

to deterioration of performance. Further, using Laplace transform ordering of

random variables, a method for comparison of system performance for different

user distributions is provided. For Poisson users, the error rates of the fixed

and random number of users are shown to asymptotically approach each other

for large average number of users. In contrast, for a finite average number of

users and high SNR, it is found that randomization of the number of users

deteriorates performance significantly.
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1. INTRODUCTION

Wireless communication is, by far, the fastest developing section of the

communications industry. Fueled by digital and RF fabrication improvements

and other miniaturization technologies, mobile devices have become smaller,

cheaper and more durable. The advantage of implementing mobile systems

is that it offers a great deal of flexibility to its users in terms of connectivity,

immaterial of their location. But due to channel characteristics and relative

motion between the transmitter and receiver, for reasonable performance at

high speeds and high data rates, schemes that can counteract the degrading

effects of channels have to be devised. Because of this, there still exists a huge

difference between ideal wireless communication systems and the currently

existing systems.

The current 3G technology (Third Generation) is associated with ser-

vices that provide the ability to transfer both voice (eg. Telephone call) and

non-voice data (eg. downloading data from internet, exchanging email, instant

messaging, video telephony etc.,) simultaneously. The cdma2000 standard was

the eventual evolution of the 2G CDMA standard to its 3G equivalent. 3G net-

works are wide area cellular telephone networks which evolved to incorporate

high speed internet access, data transfers and video telephony.

Looking at these trends, it is obvious that the later generations require

systems working on technologies capable of transferring huge amounts of data

at very high speeds. Recent developments in the physical layer have played a

key role in the deployment of new technologies with these standards. The de-
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mand for higher data rates, lower error probabilities and reduced interference

from other users has led to the development of multiple input multiple output

(MIMO) antenna systems. With the growing demand for high speed multime-

dia applications, efficient use of the available scarce spectrum to satisfy this

demand is a key factor. The use of multiple antennas leads to a significant

increase in the achievable data rates compared to that achieved by single input

single output antenna (SISO) systems [1–3], if the path gains between the dif-

ferent antenna pairs fade independently. Note that these benefits are obtained

without any bandwidth expansion or increase in the transmit power. But the

significant capacity improvement obtained for such systems are realized only

for certain cases; realistic channel models lead to variations in the achieved

capacity gains [4].

The high capacity and spectral efficiency results obtained for the MIMO

system depends on the communication scheme used. Traditionally, multi-

antenna systems have been used to increase the diversity order of the system

to combat the effects of fading. Diversity techniques exploit the multiple copies

of the transmitted data received over independently fading channels. Multiple

copies of data are introduced either in the space, time or frequency domain or

a combination of them. By introducing redundancy in the time or frequency

domain, the spectral efficiency of the system deteriorates. However, in the

spatial diversity scheme, redundancy is added in space which implies that there

is no loss in spectral efficiency of the system. For example, in a slow fading
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Rayleigh fading channel system with one transmit and Nr receive antennas, the

transmitted signal passes through Nr independently faded paths. The average

bit error probability of this system can be made to decay as (SNR)−Nr at high

SNRs instead of (SNR)−1 for a single receive antenna case. This is an example

of the spatial diversity scheme [5]. While in the diversity technique, we are

trying to combat fading, there are other schemes, like spatial multiplexing,

which use fading beneficially to achieve higher capacities. If the path gains

between the various antenna pairs fade independently and the channel matrix

is well conditioned, by transmitting independent data streams in parallel over

the spatial channels, the data rates can be increased. This scheme is called

“Spatial Diversity” [6], [7]. It is difficult to compare the performance difference

between the Diversity and the Spatial Multiplexing scheme [8].

Space time (ST) codes are used in MIMO flat fading systems to implement

spatial diversity schemes. In space time codes, data is coded across both the

spatial and temporal domains to achieve diversity and multiplexing gains with

a certain trade off between the two as described in [8]. The two main subdi-

visions in ST codes are the space time block codes (STBC) [9, 10] and space

time trellis codes (STTC) [11]. Though the implementation of STTCs is more

complex than STBCs because of the presence of the Viterbi decoder, STTCs

provide both coding and diversity gains leading to better bit error rate (BER)

performance compared to STBCs, which can only achieve full diversity gain.

Industry standards like the IEEE 802.16e (also known as Mobile WiMAX),

3



LTE-UMTS (3GPP Long Term Evolution-Universal Mobile Telecommunica-

tion Systems; still in the developmental stage) and IEEE 802.11 (Wi-Fi) use

multiple antennas.

Even though most of the literature assumes flat fading channel character-

istics, many wireless systems experience frequency selective fading channels.

The frequency selective behavior of the channel arises when the symbol du-

ration Ts << σTm , where σTm is the rms delay spread of the channel. For

frequency selective channels, the channel in the frequency domain is not flat,

i.e., the channel response is different at different frequencies. A well known

spectrally efficient scheme for data transmission over frequency selective chan-

nels is the orthogonal frequency division multiplexing (OFDM). As shown in

Fig. 1, using OFDM, a digital multicarrier scheme, the channel can be di-

vided into a number of closely spaced orthogonal sub-carriers to transmit the

data in parallel. OFDM is robust against multipath fading and inter symbol

interference (ISI) as the symbol duration in time increases for the lower rate

parallel subcarriers. Channel equalization is also simplified because OFDM,

using the fast Fourier transform (FFT), may be viewed as using many slowly-

modulated narrowband signals rather than one rapidly-modulated wideband

signal. By design, the subcarriers are orthogonal to each other. Thus there is

no cross talk between the various sub-channels and the need for guard bands is

eliminated. The orthogonality allows for efficient modulator and demodulator

implementation, using the FFT algorithm. Due to the recent advances in dig-
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Fig. 1. Frequency Domain representation of a Channel using OFDM

ital signal processing (DSP) hardware design, DSP chips for performing FFT

operations have become very fast, small and inexpensive. This is an added

incentive for using OFDM. OFDM has already been implemented in IEEE

standards for wireless local area networks (WLAN) like the IEEE 802.11a and

the IEEE 802.11g standards. OFDM and MIMO are the fundamental building

blocks of all future wireless standards, and WiMAX will be the first wide-area

implementation to take advantage of these advances.
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2. DIVERSITY COMBINING TECHNIQUES

2.1. Need for MIMO

Looking at the trends in the development of wireless communication tech-

niques, it is obvious that there is a requirement for systems based on tech-

nologies capable of transferring large amounts of data at very high speeds.

The demand for higher data rates, lower error probabilities and reduced in-

terference from other users cannot be satisfied or achieved by having single

transmit antennas and thereby has led to the development of multiple input

multiple output (MIMO) antenna systems. With the growing demand for high

speed multimedia applications, efficient use of the available scarce spectrum

to satisfy this demand is a key factor. The use of multiple antennas leads to a

significant increase in the achievable data rates compared to that achieved by

single input single output antenna (SISO) systems [1–3], only if the path gains

between the different antenna pairs fade independently. Note that these bene-

fits are obtained without any bandwidth expansion or increase in the transmit

power.

The high capacity and spectral efficiency results obtained for the MIMO

system depends on the communication scheme used. In addition to the

traditionally used multiple receive antenna systems, implementing diversity

schemes to combat the effects of fading, by adding multiple transmit antennas

capable of exploiting transmit diversity, the capacity, error performance and

the outage characteristics of a system are dramatically improved.
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While with diversity techniques the aim is to combat fading at the receiver,

at the transmitter by employing space time coding techniques, transmit diver-

sity can be obtained. Beamforming can also be employed at the transmitter

to improve the receive SNR of a system. To employ beamforming though, the

channel between all transmit and receive antennas need to be known at the

transmitter. Using this knowledge the same symbol will be transmitted on each

transmit antenna, but with phase and gain values chosen appropriately. For

this technique to work it is essential for the transmitter to have accurate chan-

nel state information (CSI). Obtaining accurate CSI at the transmitter is very

difficult in practice due to feedback delay and estimation errors. Therefore,

schemes which do not require the knowledge of the channel at the transmitter

are proposed: space-time coding [9–11] and spatial multiplexing [3, 6, 7].

As the name indicates, in space-time coding the information to be trans-

mitted is encoded both spatially and temporally. The encoded sequence is

then transmitted over multiple antennas over multiple time slots using the

same bandwidth. As a special case of this technique, if independent uncoded

streams of symbols are transmitted over different transmit antenna elements,

we obtain the spatial multiplexing scheme. The two main subdivisions in ST

codes are the space time block codes (STBC) [9, 10] and space time trellis

codes (STTC) [11].

For a space time block coded transmit data matrix X and channel matrix

H, which leads to a received matrix Y, the maximum likelihood (ML) decision
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X is based on finding

arg min
X
‖Y −XH‖2, (2.1)

which involves a linear function in the entries of X. For X belonging to a

class of orthogonal space time block codes, the linearity of the likelihood func-

tion decouples decisions on the data symbols. This leads to very simple linear

receiver implementation with very low complexity. Thus, by implementing

orthogonal space-time block codes, while providing both transmit and receive

diversity, a very simple receiver can be implemented making this scheme very

attractive for implementation. In the other class of space time codes titled

Space-Time Trellis Codes, instead of choosing blocks of data sequential coding

is performed. The encoding process is performed by using a trellis diagram

and at the decoder the Viterbi algorithm needs to be implemented [11]. The

Viterbi decoder is also optimal in the ML sense, but its complexity grows expo-

nentially with the number of states in the trellis. Though the implementation

of STTCs is more complex than STBCs, STTCs provide both coding and di-

versity gains leading to a better bit error rate (BER) performance compared

to STBCs, which can only achieve full diversity gain. Industry standards like

the IEEE 802.16e, LTE-UMTS (3GPP Long Term Evolution-Universal Mo-

bile Telecommunication Systems; still in the developmental stage) and IEEE

802.11 (Wi-Fi) use multiple antennas.
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2.2. Diversity Combining

The use of multiple antennas at the receiver to achieve array gain or spatial

diversity is a technique that has been known for some time now [5, 12–14].

In this section we concentrate on the techniques that lead to spatial diversity

gains. Due to the effects of small scale fading and multi-path propagation,

the total signal amplitude received may experience deep fades over time or

space. These deep fades lead to system outage. The most popular and efficient

technique for combating this phenomenon is to provide multiple, independently

faded copies of the same transmitted signal, thereby leading to diversity at the

receiver.

The most popular techniques of providing diversity are:

• Space Diversity: Antennas are separated in space

• Angle Diversity: The angle of arrival is different

• Frequency Diversity: Multiple frequencies are used to transmit the same

information

• Polarization Diversity: Multiple copies have different field polarization

• Time Diversity: Multiple copies are transmitted over different time slots

To obtain maximum benefit from the above mentioned techniques, the

multiple signal copies arriving at the receiver must be uncorrelated (or weakly

correlated with correlation coefficient < 0.5). For example, for spatial diver-

sity to ensure maximum gain, rich scattering is required and also the branches
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should have sufficient spacing between each other, (> λ/2), where λ is the

wavelength of the received signal, leading to the branches to fade indepen-

dently.

Depending on the channel characteristics one or more of the above men-

tioned techniques will be more useful than the others. For example, for a quasi

static channel time diversity will not yield any benefits, while for a frequency

flat fading frequency diversity is not available. The uncorrelated copies of

the transmitted signal can be combined at the receiver by implementing 1)

Maximum Ratio Combining (MRC), 2) Equal Gain Combining (EGC), 3)

Selection Combining (SC), 4) Threshold Combining (TC), or 5) Hybrid Com-

bining. Selecting n of the available N antennas and implementing MRC on

the n antennas is an example of hybrid combining.

2.2.1. Maximal Ratio Combining

In this scheme, as seen in Fig. 2, assuming perfect channel knowledge at the

receiver, the received signal on each branch is co-phased and then optimally

weighted before summing to maximize the received SNR at the output of the

combiner. The optimal weights for each branch are proportional to the branch

SNR and hence, the resulting combiner SNR is a sum of the branch SNRs.

Thus, for any type of channel fading, MRC is the best combiner in terms

of SNR at the receiver, thereby yielding the best performance among all the

combining schemes possible. If N indicates the number of receiver antennas,

10



by analyzing the outage probability it can be shown that a diversity order

of N can be achieved for the MRC scheme [15] (i.e., the average bit error

probability of this system can be made to decay as (SNR)−N at high SNRs

instead of (SNR)−1 for a single receive antenna case. This is an example

of spatial diversity [5]). Importantly, this result will be achieved only when

the branches are uncorrelated. There will be a loss in diversity order if the

branches are correlated. The loss in diversity order is proportional to the

correlation coefficient between the antennas.

Though this is an optimal combining scheme, the requirement for both

the channel phase and gain leads to computation complexity and increase in

resource requirement at the receiver, thereby making this a difficult scheme to

implement.

Fig. 2. MRC/EGC Receiver Structure Fig. 3. Antenna Switching Receiver
Structure
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2.2.2. Equal Gain Combining

The equal gain combining scheme is very similar to the MRC scheme, except

for the assumption of equal channel gains at all receiver antennas. Therefore,

at each branch the received signal is only co-phased without optimally weight-

ing the branches. When the gains on the branches are equal, EGC performs

identical to the MRC, but for unequal gains EGC is suboptimal. The impor-

tant advantage of EGC over MRC scheme is that only the phase of the channel

has to estimated at the receiver thereby leading to lower complexity. An im-

plementation similar to Fig. 2 can be obtained by setting αi = exp(−jφ),

where φ is the phase rotation induced by the channel.

It can be proved that a diversity order of N can be achieved even for the

EGC scheme [15]. Importantly, for both the MRC and EGC schemes, as many

RF chains as the number of receive antennas are required to simultaneously

receive the signals on all branches. Though antennas are inexpensive and rela-

tively simple devices, RF chains are computationally intensive, and expensive.

These are the drawbacks for the above two mentioned schemes when designing

mobile terminals with multiple antennas or low complexity devices.

2.2.3. Selection Combining

The key idea in the selection combining scheme is the selection of the branch

with the largest channel metric at any given moment of time, for decoding

as illustrated in Fig. 3. It is very interesting to note that even though only

12



one branch is selected at the receiver, because the best branch is selected at

any given time, by using ordered statistics, it can be shown that the system

achieves full diversity of N . Similar to the schemes described prior to this,

channel correlation can significantly degrade the performance and diversity

order achievable by implementing SC. It is evident that since only one branch is

chosen for decoding, SC is suboptimal compared to MRC because all available

resources are not used. SC is also suboptimal to EGC, but the most important

reason behind the popularity of the SC is the simplicity in implementation

and decrease in resource requirement and complexity at the receiver, while

still achieving full diversity.

2.2.4. Threshold Combining

This scheme encompasses a wide range of switching schemes, including the

Switch and Stay combining (SSC), switch and examine combining (SEC), post

detection combining scheme and so on. In this work we are only interested

in the SSC scheme, which can be implemented as shown in Fig. 3. Similar

to SC, in the SSC scheme only one receive antenna is used at any given time

to decode the received signal. But the key difference is in how the branch is

chosen. While in the SC scheme the best branch among all available is chosen,

in the SSC scheme a switch is initiated from a particular branch only when

the channel metric on that branch drops below a predefined threshold.

13



Again, it is evident that since the best antenna is not used at any given

time the SSC is suboptimal compared to the SC scheme. But the main ad-

vantage of this scheme is that the channel metric need not be monitored on

all branches to make a decision on the antenna to be used for decoding.

Next, we look at coherent systems which do not have access to perfect

channel state information but have to estimate the channel using noise cor-

rupted pilot symbols.

2.3. Channel Estimation

We consider systems employing coherent demodulation of the received data,

which necessitates the presence of channel state information (CSI) at the re-

ceiver. If CSI is also present at the transmitter end, it can be used beneficially

to increase the data throughput by significant margins by implementing the

beam forming and water-filling schemes [5]. A majority of work in the lit-

erature assumes the presence of perfect CSI at the receiver as this simplifies

analysis. But in practice, this assumption can be made only for a very small

number of systems, as the channel at the receiver or transmitter has to be

estimated. Due to the presence of noise, synchronization errors, approxima-

tion errors, time variations in the channel and relative motion between the

transmitter and the receiver, the channel estimates are never perfect. The two

main techniques of channel estimation are training based and blind estima-

tion methods. In blind estimation methods [16–18], the information symbols

14



are unknown at the receiver, hence their statistical properties are used to es-

timate the channel. For the training based scheme, training/pilot symbols

already known at the receiver are appropriately inserted into the transmitted

signals. The receiver uses these known symbols to estimate the channel. Using

training based schemes leads to degradation of the spectral efficiency but these

methods simplify receiver design. Also, the channel estimation stage and the

data demodulation stage are decoupled in these schemes. Training symbols

are also used for carrier synchronization, frequency offset estimation and link

recovery from outages. In our work, we shall assume that these are perfectly

known and use training only for channel estimation.

Training based channel estimation is a common feature in most of the

current communication systems. In GSM (Group Spécial Mobile) [19], a packet

contains 148 bits, where 26 training bits are inserted in the middle of each

packet, along with 3 more bits at the beginning and the end for training

purposes. In the TDMA standard [20], the training symbols are placed at the

beginning of each packet. It is important to note that in standards employing

CSMA [21,22], training and data symbols are transmitted simultaneously using

separate codes. Not only these but standards for broadband LANs [23–26] and

wireless broadcast networks [27, 28] depend on training symbols to acquire

channel knowledge.

Our work considers the practical receiver using the minimum distance de-

coder, which is optimal when CSI is perfect, suboptimal otherwise. In general,
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the estimated channel is never perfect in any training-based system. Even

though sub-optimal, the estimated channel is treated as the perfect channel

for detection purposes as this simplifies the receiver complexity and structure.

This implies a degradation in the performance of such systems. The training

scheme that we consider is optimized in terms of the MSE of channel estimator,

the number of training symbols, and error probability.

2.4. Antenna Selection for MIMO-OFDM Systems

As a special case, we next briefly highlight our work in [29], where a diver-

sity combining scheme mentioned before, namely, receive antenna selection,

is considered in conjunction with a multiple input multiple output antenna

system operating over frequency selective channels by employing Orthogonal

Frequency Division Multiplexing (OFDM) technique. Further, the channel is

assumed to be unknown at both the transmitter and the receiver. Since, we are

interested in analyzing the performance of a coherent system, the channel is

estimated at the receiver. We address the problem of imperfect channel knowl-

edge by decoupling the AS problem from channel estimation and proposing a

maximum power-based rule for antenna selection and a LMMSE approach for

estimating the channel on the selected antenna.
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Fig. 4. Block Diagram of the System Model

2.4.1. System Model

A Nt × Nr MIMO system as illustrated in Fig. 4 is considered. An OFDM

system with Nc subcarriers is used to transmit symbols output by the STF

encoder. Each STF codeword spans Nx OFDM symbols. The fading channel is

assumed to be frequency selective with an order L but time invariant over Nx

symbols. The channel is represented by hνµ:=
[
hνµ, (0) , . . . , hνµ (L)

]T
ε C(L+1)×1,

where the elements hνµ (l) are i.i.d. CN (0, 1). The received signal by the νth

receive antenna for the qth OFDM symbol, on the pth subcarrier is given by,

yνq (p)=

√
ρ

Nt

Nt∑
µ=1

Hν
µ(p) · xµq (p) + wνq (p) (2.2)

where p ε {0, . . . , Nc − 1}, ν ε {1, . . . , Nr}, µ ε {1, . . . , Nt} and q ε {1, . . . , Nx}. The

noise wνq (p), is i.i.d CN (0, 1). The channel coefficients are defined as

17



Hν
µ(p)=(1/

√
L+ 1)

∑L
l=0 h

ν
µ(l) · e−j2πlp/Nc . The transmitted matrix on the pth

subcarrier is represented by X(p) εCNx×Nt with [X(p)]qµ =xµq (p) and the re-

ceived matrix Y (p)ε CNx×Nr with [Y (p)]qν = yνq (p). The MIMO channel ma-

trix H(p)ε CNt×Nr is defined as
[
Hν
µ(p)

]
= 1√

L+1
[hνµ]Tω(p) where, we have de-

fined ω(p) =
[
1, e−j2πp/Nc , . . . , e−j2πLp/Nc

]T
. The noise matrix W (p)ε CNx×Nr

is defined similar to Y (p). For mathematical convenience, we can repre-

sent the channel matrix H (p) in terms of the time domain channel coef-

ficients hνµ(l) as H(p)=Ω(p) · h, where h=
[
h1, . . . , hNr

]
ε CNt(L+1)×Nr and

hν=
[
(hν1)T , . . . , (hνNt)

T
]T

, and Ω(p)= 1√
L+1

INt
⊗
ωT (p). Here

⊗
denotes the

Kronecker product, and In is the n × n identity matrix. So, (2.2) can be

equivalently expressed in matrix form as,

Y (p)=

√
ρ

Nt

X(p) · Ω(p) · h+W (p) (2.3)

We rely on subcarrier grouping [30] which divides the OFDM symbol with Nc

subcarriers into Ng groups each having Nc/Ng subcarriers which are decor-

related within each group. Each group contains (L+ 1) subcarriers, i.e.,

Nc= (L+ 1) ·Ng.

Defining Yg(l):=Y (Ngl + g) and Xg(l), Ωg(l) and Wg(l) similarly

for g=0, . . . , Ng − 1 and l=0, . . . , L, the codeword for the gth group

is Xg= diag [Xg(0), . . . , Xg(L)], a block diagonal matrix with each

block Xg(l)ε CNx×Nt . The received signal on the gth group Yg =[
Yg(0)T , . . . , Yg(L)T

]T
, the reduced DFT matrix Ωg =

[
Ωg(0)T , . . . ,Ωg(L)T

]T
18



and the noise matrix Wg=
[
Wg(0)T , . . . ,Wg(L)T

]T
. The input-output relation

for each group can now be expressed as,

Yg=

√
ρ

Nt

Xg · Ωg · h+Wg (2.4)

Let each transmitted codeword on the group, Xg, be chosen from a code

book X . Defining |X | as the cardinality of the code book, the data

rate, in bits per subcarrier, for the GSTF code can be expressed as,

R={log2 |X |/(L+ 1)} bits/subcarrier.

The power constraint on the transmitted codeword is

E
[
tr
(
XHX

)]
=NxNcNt, and the truncated Fourier matrix satisfies

ΩHΩ=NgINt(L+1). The latter is because we design each group to con-

tain exactly (L+ 1) subcarriers, making Ωg unitary for g=0, . . . , Ng − 1 , i.e.,

ΩH
g Ωg=INt(L+1).

2.4.2. Training and Data Transmission

Training sequences are inserted into transmission frames to estimate the chan-

nel. In every symbol there is a training group, g=τ , and Ng − 1 data groups,

g 6= τ and the following power constraint is implemented,

σ2
τ (L+ 1)NxNt + σ2

D(L+ 1)Nx (Ng − 1)Nt=NcNxNt (2.5)

where σ2
τ and σ2

D are the transmit power allocated for each training subcarrier

in g = τ and for each subcarrier in data groups, g 6= τ , respectively. Incor-

porating the power constraint, the received signal on the gth group can be
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expressed as,

Yg=

√
ρσ2

g

Nt

Xg · Ωg · h+Wg (2.6)

where σ2
g=σ

2
D or σ2

g=σ
2
τ depending on whether g=τ or not. Defining γ as the

power allocation ratio for training with respect to the total transmit power,

γ=σ2
τ (L+1)
Nc

, we can express σ2
τ and σ2

D in terms of γ as,

σ2
τ=γNg σ2

D=
(1− γ)Ng

Ng − 1
(2.7)

2.4.3. Channel Estimation

We use the training group to estimate the channel on the νth antenna. For the

LMMSE estimator that we adopt, it is well known that when Xτ is unitary,

i.e., XH
τ Xτ=INt(L+1), the mean squared estimation error is minimized [31].

The channel estimate on the νth antenna can be expressed as,

ĥν=

√
Nt

σ2
τρ

(
Nt

σ2
τρ

+ 1

)−1

ΩH
τ X

H
τ Y

ν
τ (2.8)

and it is Gaussian with E

[(
ĥν
)(

ĥν
)H]

=σ2
ĥν
INt(L+1) where, σ2

ĥν
=
(

ρσ2
τ

Nt+ρσ2
τ

)
.

The estimation error covariance is given by, E
[
(eν) (eν)H

]
=σ2

eINt(L+1), where

σ2
e=
(
ρσ2
τ

Nt
+ 1
)−1

. The MMSE estimate, ĥν , is uncorrelated with the corre-

sponding error vector eν due to the orthogonality principle.

Note that the number of parameters to be estimated in ĥν is NtNr (L+ 1).

Therefore, at least NtNr (L+ 1) measurements are needed. Looking at the

dimensions of Yτ , Nx (L+ 1)·Nr ≥ Nt (L+ 1)·Nr, which implies that Nx ≥ Nt.
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2.4.4. Antenna Selection

For the sake of exposition we study the selection of a single antenna only, which

can be extended to the case of selection of multiple antennas. The selection

rule we implement is given by,

d= arg max
ν=1,...,Nr

‖Y ν
τ ‖2. (2.9)

This is the maximum signal power selection rule, which also corresponds to

selecting the antenna with the best MMSE channel estimate.

Analog power estimators can be implemented using a bandpass filter fol-

lowed by an envelope detector and a squarer, all of which can be realized using

passive circuits.

Note that the analog power estimators cannot differentiate between the

various subgroups, so the power has to be estimated based on all the subcar-

riers in each of the Nx OFDM symbols. Thus, the AS rule for our proposed

system is defined as,

arg max
ν
‖Y ν‖2= arg max

ν

∥∥∥ĥν∥∥∥2

2.4.5. Decoder

The minimum distance decoder, defined as,

X̂g= arg min
Xg
‖Y s

g −ms
g‖2 (2.10)
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is chosen, where, the estimated channel on the selected antenna ĥs is used for

decoding. Though sub-optimal, we use the minimum distance decoder because

of its relative simplicity. It can be seen that the minimum distance decoder in

(2.10) is equivalent to the ML decoder when the channel estimates are perfect

or when unitary codes are used.

2.4.6. Performance Analysis

The received signal at the selected antenna on the gth group can be expressed

as,

Y s
g =

√
ρσ2

D

Nt

Xg · Ωg · ĥs + η (2.11)

where we have defined, η:=
√

ρσ2
D

Nt
Xg · Ωg · es +W s

g .

Therefore, the received signal on the gth group and the selected antenna

can be expressed in terms of the (known) estimated channel and colored Gaus-

sian noise η with covariance Rη=
ρσ2
D

ρσ2
τ+Nt

XgX
H
g +INx(L+1). Using this, the Cher-

noff bound on the PEP is given by

Pr
(
Xg → X ′g

)
≤

 Nr

2 (M !)Nr−1 (π)M
1∏M
i=1 λi

M∑
i1=1

. . .

M∑
iMNr−M=1

l1! . . . lM !

λl11 . . . λ
lM
M


·
(

σ2
Dρ

4α2Ntλm

)−MNr

(2.12)

where λm=(c1β + 1), c1=
ρσ2
D

ρσ2
τ+Nt

, β:= maxXgεX
{
λmax{Xg(l)Xg(l)

H}
}

,

M=Nt(L + 1), and the underlying codes are assumed to achieve full

transmit diversity. Thus it can be seen that a diversity advantage of
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MNr=Nt(L + 1)Nr is achieved by this system, which is the same as that

achieved by a full complexity system.

For the system with perfect CSI available at the receiver, the chan-

nel at each antenna (hν) has the distribution CN (0, INt(L+1)) instead of

ĥν∼CN (0, Rĥν ), implying α2=1 in (2.12) when CSI is perfect. Moreover, due

to the absence of estimation error, the additive gaussian noise is zero mean

Gaussian distributed with covariance Rη=INx(L+1). Thus, λmax(Rη)=1. As

there are no training symbols, the total available power is completely allo-

cated to data symbols, i.e., σ2
D=1. So, the PEP for the perfect CSI case is

obtained by substituting α2=1, σ2
D=1 and λm=c1β + 1=1 in (2.12), i.e.,

Pr
(
Xg → X ′g

)
≤

 Nr

2 (M !)Nr−1 πM
· 1∏M

i=1 λi

M∑
i1=1

. . .
M∑

iMNr−M=1

l1! . . . lM !

λl11 . . . λ
lM
M

( ρ

4Nt

)−MNr

(2.13)

This expression will be compared with (2.12) to quantify the loss in perfor-

mance due to CEE.

2.4.7. Optimal Power Allocation

The effective loss due to estimation is obtained by taking the ratio of the

average PEPs in (2.12) and (2.13) as,

δ:=
ργ (1− γ)N2

g

(Ng − 1)
(
ρβ(1−γ)Ng

(Ng−1)
+ ργNg +Nt

) (2.14)

To improve the performance of the system, δ has to be maximized. For

a fixed value of Ng, Nt and SNR ρ, we find the optimal value of γ (i.e., γopt),
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that maximizes δ to be,

γopt=

(
β + A

ρ

)
−
√(

β + A
ρ

)(
(Ng − 1) + A

ρ

)
(β + 1−Ng)

(2.15)

where A=Nt(Ng−1)

Ng
.

Further analytical and simulation results to corroborate the analytical

results derived above can be found in [29]. In the following section, we highlight

the novel contributions in this dissertation following.

2.5. Contributions

Here we list the novel contributions in this dissertation:

• Switch and stay diversity combining for multiple input multiple output

has been proposed and analyzed for the first time in the literature

• For when perfect channel knowledge is available at the receiver only, a

novel switching algorithm is proposed based on instantaneous received

SNR

• For a fixed switching threshold that does not depend on the SNR, it is

proved that receive spatial diversity cannot be achieved

• Optimal switching threshold is derived to be a logarithmic function of

SNR, and when implemented is shown to help achieve full spatial diver-

sity
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• When channel is unknown at the coherent receiver, linear minimum mean

square error (LMMSE) estimation is proposed and a low complexity

transmission frame structure is developed

• Receive power based switching algorithm is proposed, and an optimal

switching threshold is derived to be a logarithmic function of SNR again,

and full spatial diversity is shown to be achievable

• Power allocation between training and data codewords is optimized to

minimize the loss in performance due to channel estimation errors

• Switching rates are calculated and for high SNR it is shown that the

switch and stay combining has significantly lower switching rates than

antenna selection diversity

• When the channel is unknown at the receiver, differential space time

systems are considered

• Lower and upper bounds on the error rate is derived and once again

the dependence of the achievable diversity on the switching threshold is

illustrated

• Code design criteria is proposed and for the special case of two transmit

antenna systems, parametric unitary codes are designed and are shown

to outperform existing codes

• Multiuser system implementing multiuser diversity (MUD) when the

number of users N is random is analyzed
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• Error rate of the MUD system with a fixed number of users N is shown to

be a completely monotonic function while the corresponding throughput

has a completely monotonic derivative with respect to N

• Error rate is also shown to be a log-concave function with respect to N

which implies that the error rate is a non-increasing function of N

• Using the completely monotone property of the error rate and the com-

pletely monotone derivative property of the throughput, it is shown that

randomness in N always hurts the performance of the MUD system

• Further, using Laplace transform ordering, the distributions of the ran-

dom variable N can be ordered in terms of the performance of the aver-

aged system

• When N is assumed to be Poisson distributed and the user channel is

assumed to be Rayleigh faded, the SNR of the best user chosen from this

random set is shown to be Gumbel distributed even for a finite Poisson

parameter

• Finally, the error rate, throughput and the ε-outage capacity is derived

for this system and compared against their corresponding values for a

MUD system with a fixed N

2.6. Organization of Dissertation

In the next chapter we present switch and stay combining (SSC) for a multiple

input multiple output (MIMO) systems with perfect channel knowledge at the
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receiver. Following this, in the Chapter 4, we analyze SSC for MIMO sys-

tems for which the channel is unavailable at the receiver but is estimated. We

present training, channel estimation and switching schemes and then analyze

the performance of such systems. For non-coherent MIMO systems imple-

menting SSC, differential space time coding is proposed in Chapter 5. In this

chapter, based on the error rate novel code design criteria are proposed.

In Chapter 6 the second area of focus, multiuser systems, are introduced.

Following this in Chapter 7 the problem of multiuser diversity in multiuser

systems with a random number of active users is described and analyzed in

depth.
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3. SWITCH AND STAY FOR MIMO SYSTEMS WITH

PERFECT CHANNEL KNOWLEDGE

3.1. Introduction

For communication over wireless fading channels, diversity combining tech-

niques can lead to significant improvement in the system performance [5].

However, the receiver complexity required for implementing diversity combin-

ing in multiple input multiple output (MIMO) systems can be significant since

as many radio frequency (RF) chains as the number of receive antennas are

needed to estimate the channel amplitude and phase on each antenna. An-

tenna Selection (AS), where only the antenna with the largest channel gain is

chosen for decoding, is one possible technique that can reduce MIMO system

complexity [32, 33]. AS can be implemented using a single RF chain but the

channel gain has to be monitored on all antennas. To further reduce the com-

plexity, while still maintaining the diversity advantage, the switched combining

technique for single input multiple output (SIMO) systems has been proposed,

where the antenna used for reception is switched only when the gain on the

current antenna falls below a predetermined threshold. This has the advantage

over AS that the gain needs to be monitored only on the antenna in use [34].

We now summarize the literature on SIMO switch and stay combining.

In [34], the performance of a continuous-time model of switch and stay combin-

ing for SIMO systems is analyzed over independent Rayleigh fading channels,

where a switch occurs if and only if the SNR downward crosses a pre-specified

threshold. In [35], a discrete-time switch and stay system model is intro-
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duced and its performance for a downward threshold crossing switching rule

is analyzed. The performance of a discrete-time system with binary NCFSK

modulation over Nakagami-m and Rician fading channels is analyzed for a

switching rule based only on the current estimate of the channel on the current

antenna in [36,37]. References [38] and [39] analyze the effect of correlated and

non identical branches for different fading distributions on the performance of

systems implementing the switching algorithm proposed in [36].

Existing literature on switch and stay combining only considers single in-

put multiple output (SIMO) systems for analysis. MIMO systems have been

shown to offer tremendous gains in capacity and achievable data rates [1–3]

compared to their single input counterparts without any increase in bandwidth

or power. However, this gain is obtained at the cost of higher complexity and

implementation cost. Switched diversity at the receiver end promises a signifi-

cant reduction in the system complexity while suffering a modest performance

loss compared to antenna selection.

In this work, for the first time, ST coded MIMO systems employing switch

and stay combining (SSC) at the receiver, with two antennas, is proposed.

A bound on the PEP is derived and the optimal switching threshold that

minimizes the bound in derived. Using this bound we illustrate a (log ρ)N/ρ2N

behavior of the error rate at high SNR. Also, we shown that when a fixed

switching threshold is used a maximum diversity order of N only is achievable

whereas when the optimal switching threshold is implemented the full spatial
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diversity of 2N can be achieved. To help with the hardware design we also

derive the switching rate achieved by this system.

3.2. System Model

The system under consideration employs N transmit antennas and following

the SSC literature, two receive antennas. At the receiver, only one RF chain

is assumed to be present. Therefore, at any given time data can be received

only on one antenna. The received signal on the ith antenna is given by,

yi=

√
ρ

N
Xhi + wi, (3.1)

where ρ is the average receive SNR, i ∈ {1, 2} is the receive antenna index,

and yi ∈ CTc×1 is the received vector at the ith receive antenna; X ∈ CTcxN

is the transmitted ST codeword spanning N transmit antennas and Tc time

instants, where Tc is the coherence time of the channel, with Tc ≥ N ;

hi= [hi1, hi2, . . . , hiN ]T ∼ CN (0, IN) contains the channel coefficients between

the transmit antennas and the ith receive antenna. Here, the channel hin

is assumed to be frequency flat Rayleigh block faded, i.e., the channel fades

independently between adjacent blocks but is constant across each block of

data spanning Tc samples. The noise vector for the ith receive antenna sat-

isfies wi ∼ CN (0, ITc). For the case of switch and stay combining with

independent and identically distributed (i.i.d.) branches, due to symmetry,

having more than two receive antennas does not provide any improvement
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in performance since switching occurs without examining the other antennas’

gain [40]. The channel is unknown at the transmitter and a power constraint,

E
[
tr(XHX)

]
=NTc, where tr(·) is the trace operator, is imposed on the trans-

mitted symbols.

3.2.1. Switching Algorithm and Receive SNR Distribution

We now describe the algorithm used to switch between the two receive an-

tennas. Define si,t := (ρ/N)‖hi‖2 as the SNR at receive antenna i, where

i ∈ {1, 2}, and time t ∈ Z and zt as the SNR at the output of the switch

and stay combiner, which is a function of the antenna currently in use. The

switching rule adopted in this work is based on the discrete-time algorithm

proposed in [36] and is defined as below,

zt=s1,t iff


zt−1=s1,t−1 and s1,t ≥ Θ

zt−1=s2,t−1 and s2,t < Θ

, (3.2)

where Θ is the switching threshold common to both the branches. The case

when zt=s2,t is the same as (3.2) with s1,t interchanged with s2,t.

The cumulative distribution function (CDF), Fz(u)=Pr{zt ≤ u}, of the

instantaneous SNR at the output of the combiner is [36],

Fz(u) = Pr{(zt=s1,t and s1,t ≤ u) or (zt=s2,t and s2,t ≤ u)} (3.3)

= Pr{Θ ≤ s1,t ≤ u}+ Pr{s2,t < Θ}Pr{s1,t ≤ u},

= Pr{Θ ≤ s1,t ≤ u}+ Pr{s1,t < Θ}Pr{s2,t ≤ u}, (3.4)
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where (3.4) is obtained from (3.3) based on the assumption that the channel

is both spatially and temporally (across blocks) i.i.d. Since the channel at

the ith receive antenna is hi ∼ CN (0, IN), the instantaneous received SNR is

chi-square distributed with 2N degrees of freedom, si,t ∼ χ2(2N). Thus, from

(3.4), we have Fz(u)=(Fs(u)− Fs(Θ))I(u ≥ Θ) + Fs(Θ)Fs(u), where, Fs(·) is

the common CDF of s1,t and s2,t and the indicator function I(u ≥ Θ)=1 if

u ≥ Θ, and 0, else. Thus, the CDF of zt can be expressed as,

Fz(u)=


A(Θ)

[
1− exp

(
−Nu

ρ

)∑N−1
j=0

(Nu/ρ)j

j!

]
u < Θ

1− [1 + A(Θ)]
[
1− exp

(
−Nu

ρ

)∑N−1
j=0

(Nu/ρ)j

j!

]
u ≥ Θ

, (3.5)

where A(Θ)=1 − exp (−NΘ/ρ)
∑N−1

j=0 [(NΘ/ρ)j/j!]. The probability density

function (PDF) can be expressed from (3.5) as,

fz(u)=[I(u ≥ Θ) + A(Θ)]

[(
N

ρ

)N
exp

(
−Nu

ρ

)(
uN−1

(N − 1)!

)]
. (3.6)

3.3. Performance Analysis

We will consider the maximum likelihood (ML) decoder given by,

X̂= arg min
X∈X

∥∥∥∥y∗ −√ ρ

N
Xh∗

∥∥∥∥2

, (3.7)

where for simplicity y∗:=yi∗ and h∗:=hi∗ are the received signal and the chan-

nel vectors at the current antenna i∗, selected according to the switching rule

in (3.2), so that zt=(ρ/N)‖h∗‖2, and X is the code book with Tc ×N matrix

elements.

32



The pairwise error probability (PEP) is the probability of detecting one

codeword while the other is transmitted from a code book containing only

a pair of codewords. The PEP of a space-time coded MIMO system imple-

menting SSC at the receiver has not yet been analyzed prior to this work.

Defining, X1 and X2 as the two chosen codewords from X , the instantaneous

PEP conditioned on the channel, can be upper bounded as [32],

PEP(ρ|h∗) ≤ 1

2
exp

(
−ρ
4N
‖(X1 −X2)h∗‖2

)
. (3.8)

Let the eigenvalue decomposition (X1 −X2)H (X1 −X2) =V ΛV H , define Λ

as the diagonal matrix containing the eigenvalues λn, for n ∈ {1, . . . , N},

and V as the corresponding unitary matrix. We assume, without loss of

generality, that λN ≥ λN−1 ≥ . . . ≥ λ1 and that λ1 > 0 so that the codeword

difference matrix, (X1−X2), is full rank. Further, since ‖V Hh∗‖2=‖h∗‖2, the

instantaneous PEP in (3.8) can be further upper bounded as,

PEP(ρ|h∗) ≤ 1

2
exp

(
−ρλ1

4N
‖h∗‖2

)
. (3.9)

Thus, recalling that zt=(ρ/N)‖h∗‖2, the average PEP given by E[PEP(ρ|h∗)],

can be expressed as,

PEP(ρ)≤1

2

∫ ∞
0

exp

(
−λ1

4
u

)
fz(u)du, (3.10)
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where, fz(u) is given in (3.6). Substituting (3.6) into (3.10) and defining,

C:=(λ1/4) + (N/ρ), we express the average PEP as,

PEP(ρ)≤1

2

(
N

Cρ

)N [
1− exp

(
−Θ

N

ρ

)N−1∑
j=0

Θj

j!

(
N

ρ

)j
+ exp (−CΘ)

N−1∑
j=0

(CΘ)j

j!

]
.

(3.11)

Since the upper bound on the average PEP expression is not readily expressible

in the form PEP(ρ) ≤ (Gcρ)−d, with a coding gain of Gc and a diversity order

of d, it is not possible to determine the coding gain or the achievable diversity

order directly from (3.11). In Section 3.3.2, the achievable diversity order is

determined by further analyzing (3.11). Before we embark on the diversity

and coding gain analysis, we address the issue of the optimal selection of the

switching threshold.

3.3.1. Optimal Switching Threshold

If the switching threshold Θ is either too large (switching too often) or too

small (switching rarely) compared to the average SNR ρ, the performance of

the system resembles that of a multiple input single output (MISO) system

because in either case the information about the channel quality is not fully

exploited before switching and thereby the available diversity benefit is not

exploited. This motivates optimizing the threshold Θ as a function of ρ. By

taking the derivative of the average PEP upper bound (3.11) with respect to

Θ and setting it to zero, the optimal switching threshold can be derived for a
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given ρ as,

Θo=

(
4N

λ1

)
ln

(
Cρ

N

)
, (3.12)

where we recall that C:=(λ1/4)+(N/ρ). Note that the choice in (3.12) depends

on the codeword pair in the PEP through λ1, and does not necessarily minimize

the bit error probability. Hence, it should be viewed as a guideline for choosing

the optimal threshold with its logarithmic dependence on ρ. Nevertheless,

in the following, we show that for this choice of the switching threshold the

system yields full spatial diversity.

3.3.2. Diversity Order

By using the optimal switching threshold (3.12), the PEP upper bound in

(3.11) can be expressed as,

PEP(ρ)≤1

2

(
N

Cρ

)N 1−
(
Cρ

N

)−ϕ
ρ


N−1∑
j=0

(
ϕ
ρ

ln
(
Cρ
N

))j
j!

+

(
Cρ

N

)−N N−1∑
j=0

((
N + ϕ

ρ

)
ln
(
Cρ
N

))j
j!


 , (3.13)

where, for convenience we define ϕ:=4N2/λ1.

Using (3.13), we establish that PEP(ρ)=O
(
(ln ρ)N/ρ2N

)
as ρ → ∞ in

the following theorem, which will also be helpful in determining the achievable

diversity order.
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Theorem 1. The average PEP scales as,

lim
ρ→∞

PEP(ρ)

(ln ρ)N/ρ2N
≤ ϕN+1

2NNN !
. (3.14)

Proof. Please see the Appendix.

Using the conventional definition of diversity order [41], i.e., d =

limρ→∞− ln(PEP(ρ))/ ln(ρ), we have the following corollary,

Corollary 1. The diversity order achieved by this system, d=2N .

Proof. Taking the natural log of both sides of (3.14) we have for ρ sufficiently

large,

ln(PEP(ρ))−N ln(ln(ρ)) + 2N ln(ρ) ≤ ln

(
ϕN+1

2NNN !

)
. (3.15)

Dividing both sides by − ln ρ and taking the limit we have

d= lim
ρ→∞

− ln(PEP(ρ))

ln ρ
≥ 2N. (3.16)

Since the diversity order cannot exceed 2N in a N × 2 system, together with

(5.28) we have d=2N and the corollary is proved.

Remark : For the case of full complexity systems and systems employing an-

tenna selection, the average PEP is expressed in the form PEP(ρ)=O(ρ−d),

where d=2N . In the SSC case, however, we have PEP(ρ)=O((ln(ρ))Nρ−d).

The (ln(ρ))N term can be viewed as a penalty in the average PEP for using

SSC over antenna selection. Nevertheless the diversity order as defined in

(5.28) is still 2N .
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Note that, in achieving full diversity, we used the optimal threshold in

(3.12). In fact, following a similar line of reasoning, it can be shown that when

Θ is independent of ρ and not optimized, only d=N can be achieved, leading

to the loss of receive antenna diversity.

3.4. Switching Rate

Though switching between antennas has certain benefits, a high switching rate

requires hardware capable of faster synchronization and noise immunity which

leads to larger power consumption [42]. This is of particular concern for mobile

terminals with limited resources and battery power. The switching rate, Sr(ρ),

for a ST coded MIMO system employing SSC at the receiver is given by the

expression,

Sr(ρ) =
1

Tc
[Pr{S|zt=s1,t}Pr{zt=s1,t}+ Pr{S|zt=s2,t}Pr{zt=s2,t}](3.17)

=
2

Tc
[Pr{S|zt=s1,t}Pr{zt=s1,t}] =

1

Tc
Pr{s1,t < Θ}, (3.18)

where S is the switching event as described in (3.2). The last equality is

obtained since the channel on the two branches are assumed to be i.i.d. Here,

Pr{s1,t < Θ}=Fs(·) is the common normalized CDF of si,t, for i ∈ {1, 2}. The

instantaneous received SNR si,t=(ρ/N)‖hi‖2. Thus the switching rate can be

expressed as,

Sr(ρ) =
1

Tc

(
1− exp

(
−NΘo

ρ

)N−1∑
j=0

(NΘo/ρ)j

j!

)
, (3.19)
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where Tc is the channel coherence time and Θo is the appropriate optimal

switching threshold given by (3.12).

Using the properties of the χ2 CDF, it can be seen that Sr(ρ) behaves like

O((ln(ρ)/ρ)N). If instead, antenna selection (AS) is used at the receiver with

i.i.d. antennas, then the switching rate is Sr(ρ)=1/(2Tc). At high SNR values,

it can be seen that this is much higher than the switching rate for SSC.

3.5. Simulations

In this section, simulation results are provided for the ST coded MIMO system

employing the switch and stay diversity combining at the receiver. For all

simulations, we choose a 2 × 2 MIMO system implementing the switching

algorithm described in (3.2). For the above described system, Alamouti codes,

with symbols chosen from a QPSK constellation are used at the transmitter

In Fig. 15, we illustrate the effect of optimization of the switching thresh-

old. The analytical upper bound derived in (4.11) is also plotted against the

simulated PEP curve to validate the tightness of the bound. It can be seen

that the analytical upper bound is about 3 dB loose for the fixed threshold

case. But by optimizing the switching threshold the analytical curve is only

about 1 dB loose.

In Fig. 17, we plot the BER performance of the system. The effect of

choosing a fixed switching threshold independent of ρ, compared to using the
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Fig. 5. Pairwise Error Probability: Simulation vs. Analytical

optimal switching threshold, (4.12), on the BER performance, is shown. It can

be seen that the performance and diversity order of the system is significantly

degraded when a fixed threshold is employed instead of the optimal switching

threshold. The SSC scheme with perfect CSI at the receiver is also illustrated

in Fig. 17. Due to the extra (log(ρ))N penalty term in SSC performance

compared to the AS case, the achievable diversity gain is observed at higher

SNRs for the SSC case. Both the systems employing SSC and antenna selection

achieve a diversity order of 2N at high SNR values which cannot be illustrated

in the plots.

To verify the validity of the optimal switching threshold in (4.12), we
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Fig. 6. BER: Alamouti Code, QPSK Symbols, Receive End SSC

simulate the BER of the system in Fig. 7, for fixed SNR values, over a range

of switching thresholds to find the optimum value. The BER for average SNR

values of ρ = 2, 5, 8, 12 and 15 dB is illustrated to show the logarithmic

growth of the switching threshold that minimizes the BER. Further, in Table

I, we compare the analytically derived optimal switching threshold in (4.12),

against the switching threshold values obtained numerically from Fig. 7 for

these average SNR values. It can be seen that the analytical and the simulation

values are very close to each other which validates our analytical results.

Finally, in Fig. 8, we illustrate the behavior of the switching rate with

SNR and number of transmit antennas as discussed in Section 3.4, for both the
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Table I. Optimal Switching Threshold Θo, Analytical vs Simulation

SNR (dB) Analytical (dB) Simulation (dB)
2 1.33 0.5
5 2.33 3.00
8 3.82 5.50
12 6.407 7.50
15 8.84 9.00

perfect and the estimated channel case. We assume a normalized coherence

time Tc=1 sec. It can be seen that the optimal switching threshold scales as

O
(
(ln(ρ)/ρ)N

)
. When the switching threshold is fixed at a low value compared

to the SNR ρ, it can be seen that the switching rates are the lowest, as com-

pared to the case when the switching threshold is fixed at Θ=30 dB, leading

to very high switching rates. Implementing the optimal switching threshold,

it can be seen that switching rates in-between the above two cases can be

achieved along with significant performance improvement as seen from Fig.

15, and 17. Additionally, the switching rate for systems employing antenna

selection is also shown and it can be seen that for i.i.d. block fading channels,

the SSC scheme has a smaller switching rate.
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Fig. 7. BER for orthogonal ST codes vs Switching Threshold Θ

3.6. Appendix: Proof of Theorem 4

In this Appendix, we establish (3.14). Using
∑∞

j=0(xj/j!)=ex, in (3.13), with

x=(ϕ/ρ) ln(Cρ/N), we can write,

PEP(ρ) ≤ 1

2

(
N

Cρ

)N 1−
(
Cρ

N

)−ϕ
ρ

exp

(
ϕ

ρ
ln

(
Cρ

N

))
−
∞∑
j=N

(
ϕ
ρ

ln
(
Cρ
N

))j
j!


+

(
Cρ

N

)−(N+ϕ
ρ

) N−1∑
j=0

((
N + ϕ

ρ

)
ln
(
Cρ
N

))j
j!

 .(3.20)

Substituting (3.20) on the LHS of (3.14), we encounter three limits: (i)

limρ→∞(Cρ/N)(ϕ/ρ) = 1, which can be shown by taking logarithm of both
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Fig. 8. Switching Rates Sr(ρ): Perfect CSI vs Estimated CSI

sides and using the L’Hospital’s rule; (ii)

lim
ρ→∞

ρN

(ln ρ)N

∞∑
j=N

(ϕ
ρ

ln(Cρ
N

))j

j!
=
ϕ

N !
, (3.21)

where we interchanged the limit and infinite sum by using the Dominated

Convergence Theorem and (iii)

lim
ρ→∞

ρN

(ln ρ)N

N−1∑
j=0

((
N + ϕ

ρ

)
ln
(
Cρ
N

))j
(Cρ
N

)(N+ϕ
ρ

)j!
=0 . (3.22)

which is straightforward to show since even for j = N − 1, the largest term of

the summation, the limit is zero. Using these we arrive at

lim
ρ→∞

PEP(ρ)

(ln ρ)N/ρ2N
≤ ϕN+1

2NNN !
. (3.23)

which is what we needed to show.
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4. SWITCH AND STAY FOR MIMO SYSTEMS WITH

IMPERFECT CHANNEL KNOWLEDGE

4.1. Introduction

In the previous chapter switch and stay combining for space time coded MIMO

systems with perfect CSI was studied. Again, we would like to note that in all

previous work on switch and stay combining, the channel is assumed to be per-

fectly known at the receiver or differential/non-coherent schemes are adopted.

It is well known that coherent systems yield better performance compared to

differential/non-coherent schemes at the additional cost of channel estimation

complexity.

So in this chapter we assume the channel is unknown at both the trans-

mitter and the receiver. To coherently decode the received signal we design a

MMSE channel estimation scheme. In this work, for the first time, ST coded

MIMO systems employing switch and stay combining (SSC) at the receiver,

with two antennas, is proposed. When the channel has to estimated, the

training scheme required for MMSE channel estimation is described, based on

which, a received-power based switching algorithm, which makes the channel

estimation process independent of the switching algorithm, is proposed for the

first time, to the best of our knowledge. After upper bounding the PEP, the

optimal switching threshold for the imperfect channel case is derived. Further,

the power distribution between training and data is optimized to minimize the

loss suffered due to channel estimation and is shown to go to zero when the
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block length is increased. The switching rate of the system is also calculated

as this is important in design of the system hardware.

4.2. System Model

The system under consideration employs N transmit antennas and following

the SSC literature, two receive antennas. At the receiver, only one RF chain

is assumed to be present. Therefore, at any given time data can be received

only on one antenna. The received signal on the ith antenna is given by,

yi=

√
ρ

N
Xhi + wi, (4.1)

where ρ is the average receive SNR, i ∈ {1, 2} is the receive antenna index,

and yi ∈ CTc×1 is the received vector at the ith receive antenna; X ∈ CTcxN

is the transmitted ST codeword spanning N transmit antennas and Tc time

instants, where Tc is the coherence time of the channel, with Tc ≥ N ;

hi= [hi1, hi2, . . . , hiN ]T ∼ CN (0, IN) contains the channel coefficients between

the transmit antennas and the ith receive antenna. Here, the channel hin

is assumed to be frequency flat Rayleigh block faded, i.e., the channel fades

independently between adjacent blocks but is constant across each block of

data spanning Tc samples. The noise vector for the ith receive antenna sat-

isfies wi ∼ CN (0, ITc). For the case of switch and stay combining with

independent and identically distributed (i.i.d.) branches, due to symmetry,

having more than two receive antennas does not provide any improvement
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in performance since switching occurs without examining the other antennas’

gain [40]. The channel is unknown at the transmitter and a power constraint,

E
[
tr(XHX)

]
=NTc, where tr(·) is the trace operator, is imposed on the trans-

mitted symbols.

In practice, the channel has to be estimated on each antenna by using

pilot symbols. Due to the presence of noise, the estimated channel at the

receiver is imperfect, leading to degradation in performance compared to the

perfect channel case. Channel estimation for MIMO systems implementing

SSC at the receiver and performance analysis of MIMO-SSC systems with

imperfect channel has never been considered prior to this work. In this section

we address the above stated issues.

When only one RF chain is available at the receiver, the channel has to

be estimated sequentially at each antenna which requires multiplexed train-

ing [43]. This technique is inefficient because the system cannot estimate the

channel on both antennas and make a decision to switch simultaneously. For

MIMO systems with only one RF chain at the receiver, we now propose a

training scheme to make a switching decision, estimate the channel at the re-

ceiver for coherent detection, and characterize the loss in performance suffered

due to channel estimation error, and suggest how the loss can be minimized.

To implement the coherent detector at the receiver, the channel on the

current antenna is estimated using a MMSE estimator. To aid this estimation

process, pilot codewords are inserted at the beginning of each block followed
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by K data codewords. The total length of the block is the coherence time Tc,

and each block is assumed to have a training duration Tτ ≥ N , and K data

codewords with duration TD each.

Assuming that adequate timing synchronization exists at the receiver, the

received codewords can be decoded individually. The received signal for the

training codeword can be expressed as,

ỹi=

√
ρσ2

τ

N
X̃hi + w̃i, (4.2)

where, X̃ : Tτ ×N is the training codeword, and for the data codewords as,

y
(k)
i =

√
ρσ2

D

N
X(k)hi + wi, (4.3)

where σ2
τ is the portion of the total transmit power allocated per symbol during

the training part of the block and σ2
D is the portion allocated per symbol during

the data transmission, X(k) and y
(k)
i are the kth data codeword and received

vector, k ∈ {1, . . . , K}, where K is the total number of data codewords in

each block. Additionally, the total training and data power satisfies:

σ2
τTτN + σ2

DKTDN=(Tτ +KTD)N. (4.4)

4.3. Channel Estimation and Switching with a Single RF Chain

Based on the assumption that the channel on each antenna is constant over

the coherence time, it is sufficient to estimate the channel using the training

codeword placed at the beginning of the block. The MMSE estimator is chosen
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to be implemented here. Choosing the training matrix, X̃, to be unitary,(
X̃
H

X̃=IN

)
, which is optimal over quasi-static channels [43], the channel

estimate on the ith antenna is given by,

ĥi=

√
ρσ2

τN

ρσ2
τ +N

X̃
H

ỹi. (4.5)

Using (4.5) it can be shown that ĥi ∼ CN (0, α2IN), where

α2:=ρσ2
τ/(ρσ

2
τ +N). The channel estimation error ei:=hi − ĥi is uncorre-

lated with ĥi due to the orthogonality principle [44]. Further, the error

ei ∼ CN (0, (N/(N + ρσ2
τ )) IN). We reiterate that to get more equations than

unknowns for estimation we assume Tτ ≥ N .

4.3.1. Switching without Perfect Channel Knowledge

For receivers with only estimated channel knowledge, the switching algorithm

in (3.2) will beimplemented by defining si,t:=(ρ/N)‖ĥi‖2 as the SNR at the ith

receive antenna, i ∈ {1, 2}. But, because only one RF chain is available at the

receiver, the system cannot estimate the channel on both antennas and make

a decision to switch simultaneously. Further, if the estimated channel norm on

the current antenna is larger than the predefined threshold Θ, then the current

antenna will be used again for demodulating the present block of data and the

channel information on the other antenna is unnecessary. So, if the channel on

both receive antennas is estimated every time, the resource requirement at the

receiver is higher. Also, the switching necessary for estimating the channel
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Fig. 9. Transmitted Block

on the other antenna increases the switching overhead. To overcome these

problems, the receive power, instead of the estimated channel power can be

used for switching. In fact, since X̃ in (4.5) is unitary, the received power is a

known scalar multiple of the estimated channel power:

si,t=
ρ

N
‖ĥi‖2=

[
1

στ

(
1

N
ρσ2
τ

+ 1

)]2

‖ỹi‖2, (4.6)

where ‖ỹi‖2 is the received power at the ith antenna over the training codeword

X̃. Therefore, for switching, one can use only the received power by computing

the right hand side of (4.6) to obtain si,t.

Based on this, each transmitted block can be designed as shown in Fig.

9, where it can be seen that the power on the current antenna is estimated at

the beginning of the block, prior to the training period or A/D conversion. If

a switch is necessary, it is assumed that it takes place during the guard band

following the power estimation phase. Following this, the channel on the cho-

sen antenna is then estimated using the training codeword, which is used for

coherently decoding the K data codewords. Note that the received power can

be estimated using simple analog circuitry which avoids the need for channel

estimation before switching. The decision to switch is made prior to channel
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estimation thereby leading to significant reduction in system complexity com-

pared to the alternative of estimating the channel before switching. In what

follows, we characterize the performance in the presence of channel estimation

error where we assume the guard bands are negligible, for simplicity.

4.4. Performance Analysis for the Imperfect Channel Case

In each received block, since the channel and the noise statistics are assumed

to be the same for all k ∈ {1, . . . , K} data code words, for simplicity, the index

k is dropped. Therefore, the received signal on any of the data codewords and

the current antenna i∗, after channel estimation can be expressed as:

y∗=

√
ρσ2

D

N
Xĥ

∗
+ η, (4.7)

where, y∗:=yi∗ and ĥ
∗
:=ĥi∗ for convenience, η:=

√
ρσ2

D/NXe + w which

can be used to show that η ∼ CN (0,Rη) with Rη=a
2XXH + ITD , and

a2:=ρσ2
D/(N + ρσ2

τ ). Here, ĥ∗ is the estimated channel on the current an-

tenna and e is the estimation error.

Though the switching algorithm uses the received power instead of the

estimated channel on the antenna, we analyze the performance for the case

when the estimated channel is used, since from (4.6) we know that they yield

the same switching rule by appropriately normalizing the threshold. Since the

noise η containing the channel estimation error is not white, implementing

the ML decoder would be computationally complex. Hence, the minimum
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distance decoder in (3.7) is implemented by replacing the true channel h∗ with

the estimated channel ĥ∗, which though suboptimal, is simpler. However, the

minimum distance decoder is equivalent to the ML decoder when the channel

is known perfectly at the receiver, or if the transmitted data codewords are

square unitary.

For this imperfect channel case, conditioned on the estimated channel,

using (4.7) and the decoder in (3.7), the instantaneous PEP can be upper

bounded as,

PEP(ρ|ĥ∗) ≤ 1

2
exp

(
−ρσ2

D

4N

‖(X1 −X2)ĥ∗‖2

εHRηε

)
, (4.8)

where ε=(X2 −X1)ĥ∗/‖(X1 −X2)ĥ∗‖. To get a PEP expression that is simi-

lar to the perfect channel case in (3.11), we would like to upper bound εHRηε.

Now, defining λN(·) as the N th eigenvalue function, and using ‖ε‖2=1, we

have εHRηε ≤ λN(Rη) ≤ 1 + a2λN(X1X1
H). Since the bound depends

on the transmitted codeword, we can further upper bound it by defining

β:= maxX1∈X
λN(X1X1

H), so that λmax:=1 + a2β to get a bound indepen-

dent of the transmitted codeword. Substituting into (4.8), we continue to

have an upper bound on the PEP:

PEP(ρ|ĥ∗) ≤ 1

2
exp

(
−ρσ2

D

4N

‖(X1 −X2)ĥ∗‖2

λmax

)
(4.9)

≤ 1

2
exp

(
−ρσ2

Dλ1‖ĥ∗‖2

4Nλmax

)
, (4.10)

where λ1 is as defined in (3.9), and (4.10) is obtained with an argument iden-

tical to that of (3.9).
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Since the estimated channel at the ith receive antenna is ĥi ∼

CN (0, α2IN), the normalized instantaneous received SNR is still χ2(2N).

Thus, the density function of the SNR at the output of the combiner for

this case can be expressed as in (3.6), but with the substitution ρ→ρα2. Using

similar upper bounding techniques as in Section 3.3 for the perfect channel

knowledge case, the average PEP for imperfect channel knowledge case can be

expressed as,

PEP(ρ) ≤ 1

2

(
N

Ceρα2

)N [
1− exp

(
−Θ

N

ρα2

)N−1∑
j=0

Θj

j!

(
N

ρα2

)j

+ exp (−CeΘ)
N−1∑
j=0

(CeΘ)j

j!

]
, (4.11)

where Ce:= (Lr +N/ρα2) and Lr:=σ
2
Dλ1/(4λmax). Optimizing (4.11) with re-

spect to Θ, we have,

Θo=

(
N

Lr

)
ln

(
Ceρα

2

N

)
, (4.12)

which is the threshold that (ρ/N)‖ĥ∗‖2 should be compared with for switching.

If instead, we threshold the received signal ‖yi∗‖2 for switching, using (4.6),

we see that (4.12) should be scaled with [στ (N/(ρσ2
τ ) + 1)]

2
. Like the perfect

channel case, (4.12) should be viewed as a guideline as to how to choose the

threshold, rather than an exact value for optimum BER performance.

For the system with perfect channel knowledge, the channel at the receiver

hi ∼ CN (0, IN), making α2=1 and σ2
D=1 since all the available power is allo-

cated to the data payload. Additionally, since the noise is wi ∼ CN (0, ITD),
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λmax=1. Thus, not surprisingly, the average PEP upper bound for the perfect

channel case can be obtained from (4.11).

Since, the PEP in the imperfect channel case in (4.11) has a similar form

as the perfect case in (3.11) with the substitutions ρ→ρα2, λ1/4→Lr, after

substituting the optimal switching threshold, the following follows from The-

orem 4,

Theorem 2. The average PEP, with the optimal switching threshold (4.12),

can be upper bounded as,

lim
ρ→∞

PEP(ρ)

(ln ρ)N/ρ2N
≤ ϕN+1

e

2NNN !
. (4.13)

where ϕe= limρ→∞N
2/(α2Lr).

Proof. Identical to the proof of Theorem 4 in the Appendix, by making the

following substitutions: ρ→ ρα2; ϕ→ ϕe; and C → Ce.

Using similar arguments as described in Corollary 1, it is straightforward

to show that a diversity order of 2N is achieved when the optimal switching

threshold is used, which is the full spatial diversity.

From Theorems 4 and 5, we observe that the average PEP for both

the perfect channel and the estimated channel case asymptotically behave

as O
(
(ln(ρ))N/ρ2N

)
. So, it would be insightful to characterize the loss in per-

formance suffered due to channel estimation error. Taking the ratio of (4.13)

and (3.14), we see that the loss in performance at high SNR is proportional to
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(ϕe/ϕ)N+1 = limρ→∞((a2β + 1)/(σ2
Dα

2))N+1. This is an approximation to the

loss in performance because both (4.13) and (3.14) are upper bounds. This

loss can be minimized by optimizing the power distribution between training

and data code words, i.e., σ2
τ and σ2

D, which we pursue without resorting to ap-

proximations in section 4.4.1, not only for high SNR, but also for any average

SNR.

4.4.1. Optimal Power Allocation

We now calculate the loss induced due to imperfect channel estimates as this

would indicate when differential systems, with less complexity, yield better

performance than coherent systems with imperfect channel for the SSC system

under consideration.

Defining γ:=(σ2
τTτ/(Tτ +KTD)) as the power allocation ratio between the

training power and the total transmitted power, we can express σ2
τ and σ2

D as,

σ2
τ=

γ(Tτ +KTD)

Tτ
σ2
D=

(Tτ +KTD)(1− γ)

KTD
. (4.14)

Recalling the power constraint in (4.4), if σ2
τ � σ2

D, the quality of the estimates

improve but there is a degradation in the performance due to a decrease in

the SNR for the data symbols. Conversely, if σ2
D � σ2

τ , again there is a loss

in performance owing to the fact that the channel estimates are degraded.

So, the power allocated to the training and data codewords, σ2
τ and σ2

D, has
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to be optimized to reduce the degradation suffered due to imperfect channel

estimation.

Recalling from the average PEP upper bound derivation that εHRηε ≤

λmax=a2β+1, we can express the instantaneous PEP for the imperfect channel

case as,

PEP(ρ|ĥ∗)=Q

√ρσ2
D

2N

‖(X1 −X2)ĥ∗‖2

εHRηε

≤Q
√ρσ2

D

2N

‖(X1 −X2)ĥ∗‖2

(a2β + 1)


=Q

(√
ρδ

2N
‖(X1 −X2)h

∗‖2

)
,

(4.15)

where the normalized channel of the selected antenna in the imperfect channel

case h
∗
:=(1/α)ĥ∗, has the same distribution with h∗, which is its counterpart

for the perfect channel case, and

δ:=
σ2
Dα

2

a2β + 1
. (4.16)

By substituting for σ2
D, α2 and a2, we can also express δ in terms of the power

allocation ratio γ as,

δ=
ργ(1− γ)(Tτ +KTD)2

ρ((1− γ)Tτβ + γKTD)(Tτ +KTD) +N
. (4.17)

When the channel is perfectly known at the receiver, the noise covariance

Rη=ITD , and σ2
D = 1, yielding the instantaneous PEP as,

PEP(ρ|h∗)=Q
(√

ρ

2N
‖(X1 −X2)h∗‖2

)
. (4.18)
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Since in (4.15) and (4.18), h
∗

and h∗ are identically distributed, comparing

(4.15) with (4.18), the effective loss in SNR due to channel estimation error

is lower bounded by δ, which is a lower bound on the actual loss in SNR due

to the fact that (4.15) is an upper bound. Note that since there is a loss due

to channel estimation, the loss in average SNR is always less than one, and

therefore the lower bound to it satisfies δ ≤ 1. To minimize the loss suffered

due to estimation, δ has to be maximized (i.e., made as close as possible to

one) with respect to γ (equivalently, σ2
D and σ2

τ ). Further, it can be seen that

there is an equivalence between the high SNR quantity ϕe/ϕ = limρ→∞(a2β+

1)/(σ2
Dα

2) of the previous section and limρ→∞ δ
−1. Therefore, maximizing δ

at high SNR with respect to the power allocation ratio γ implies minimizing

the loss in performance mentioned right before Section 4.4.1. Different than

that discussion, we will consider maximizing δ for any average SNR ρ. For the

special case when square unitary codes are used for transmitting data, β = 1

thereby making (4.15) an equality, and δ is no longer a bound on the loss, but

is an equality.

The optimal value of γ that maximizes δ can be found by setting the

derivative of δ in (4.17) with respect to γ to zero, as

γopt=
−ζ +

√
ζ(ζ − β + KTD

Tτ
)

KTD
Tτ
− β

, (4.19)

where ζ:=β +NKTD/(ρ(Tτ +KTD)).

Using (4.19) we can show the following for any ρ:
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Theorem 3. As the number of data codewords increases (K → ∞) the pair-

wise error probability for the imperfect channel case approaches that of the

perfect channel case, for any ρ.

Proof. To prove the theorem, we will need to unpack the dependence of each

term in (4.16) on K. Since σ2
D in (4.14) depends on γ, we begin by using (4.19)

to see that γopt = O(1/
√
K). Using this in (4.14), it can be seen that σ2

D → 1 as

K →∞. Also, from (4.14) σ2
τ = O(

√
K). Recalling that α2 = ρσ2

τ/(ρσ
2
τ +N),

and that σ2
τ = O(

√
K), it is clear that α2 → 1 as K →∞. Using the definition

of a2 = ρσ2
D/(ρα

2
τ +N), it is clear that a2 → 0 as K →∞, since σ2

τ →∞ and

σ2
D → 1 as K →∞. Putting it all together we have δ → 1 as K →∞ for all

ρ. Since δ is a lower bound on the actual loss, when δ → 1 so does the loss in

average SNR.

Theorem 3 indicates that when the coherence time is large and one can

afford to increase the number of data blocks K, the effect of channel estimation

can be made arbitrarily small when the power allocation is optimized. This

further underlines the need for optimization of the power allocation.

4.5. Switching Rate

Though switching between antennas has certain benefits, a high switching rate

requires hardware capable of faster synchronization and noise immunity which

leads to larger power consumption [42]. This is of particular concern for mobile
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terminals with limited resources and battery power. The switching rate, Sr(ρ),

for a ST coded MIMO system employing SSC at the receiver is given by the

expression,

Sr(ρ)=
1

Tc
Pr{s1,t < Θ} = Sr(ρ)=

1

Tc

(
1− exp

(
−NΘo

α2ρ

)N−1∑
j=0

(NΘo/α
2ρ)

j

j!

)
,(4.20)

where Tc is the channel coherence time and Θo is given by (4.12). Recall

from (4.6), using si,t = (ρ/N)‖ĥi‖2 with Θo defined in (4.12) would result

in the same switching rate as using si,t = ‖yi‖2 with Θo in (4.12) scaled

by [στ (N/(ρσ2
τ ) + 1)]

2
. Therefore, the switching rate for the received power

switching rule is captured by the estimated channel switching.

Using the properties of the χ2 CDF, it can be seen that Sr(ρ) behaves like

O((ln(ρ)/ρ)N). If instead, antenna selection (AS) is used at the receiver with

i.i.d. antennas, then the switching rate is Sr(ρ)=1/(2Tc). At high SNR values,

it can be seen that this is much higher than the switching rate for SSC. If the

fading is assumed to be correlated across time on each antenna but i.i.d. across

the two antennas, it is straightforward to show that the switching rates for both

the case of SSC and AS are scaled down by an identical factor proportional to

the increase in the coherence time Tc. But even for this case, for the channel

model described, the SSC scheme yields a lower switching rate than the AS

scheme. This shows that the switching overhead needed to implement the SSC

algorithm is significantly lower compared to the AS algorithm.
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4.6. Correlated Fading

For the switching model assumed in our work, assuming the fading to be

correlated across blocks will not change the average probability of error per-

formance. However the outage duration changes thereby leading to changes

in the switching rate Sr(ρ). Further, for the channel model assumed, even for

the case of time correlated block fading channels, the switching rates of both

the SSC and the antenna selection scheme are scaled down identically propor-

tional to the coherence time. But the SSC scheme still has a lower switching

rate than antenna selection. We explain these issues in more detail below.

Consider the CDF expression (3) in the manuscript which can be

expressed as,

Fzt(u) = [Pr{zt = s1,t and s1,t ≤ u}+ Pr{zt = s2,t and s2,t ≤ u}] (4.21)

= 2 [Pr{zt = s1,t and s1,t ≤ u}] (4.22)

= 2 [Pr{(zt−1 = s1,t−1 and s1,t ≥ Θ) or (zt−1 = s2,t−1 and s2,t < Θ) and s1,t ≤ u}]

(4.23)

= 2 [Pr{zt−1 = s1,t−1 and s1,t ≥ Θ and s1,t ≤ u}]

+Pr [{zt−1 = s2,t−1 and s2,t < Θ and s1,t ≤ u}] (4.24)

Here, zt−1 = s1,t−1 or zt−1 = s2,t−1 indicates which antenna was used for the

(t − 1) block. Though the fading is assumed to be correlated, conditioning

on the antenna used for the t − 1 block does not give any information about

either s1,t or s2,t. Thus, the result in eqn. (4) in the manuscript still holds.
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This implies that the PDF of the SNR at the output of the combiner is the

same as that for the i.i.d. case. Therefore, there is no change in performance

when the fading is correlated compared to the i.i.d. case.

Fig. 10. PEP, Correlated vs. i.i.d. temporal fading

Assuming the fading to be correlated also assumes a larger coherence time

Tc. Though larger Tc implies longer fade duration for each antenna, it also

implies that the average rate of the SNR falling below the switching threshold

is also smaller. Therefore, assuming time correlation implies longer outage

duration. Therefore errors instead of occurring independently are now bursty

in nature. Fig. 10 shows the PEP plots for the i.i.d vs. correlated fading case.

Jakes’ channel model is used for generating the correlated channels and for this
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a sampling frequency fs = 1000 samples/sec is used and Doppler shifts of 50

Hz and 100 Hz are considered. It can be seen from Fig. 2 that the performance

of the correlated block fading is identical to the i.i.d. block fading case. To

conclude, assuming the fading to be correlated across the blocks does not affect

the average performance of the system, but changes the distribution of errors

as explained previously.

Switching Rate for the SSC scheme considered is given by the expression:

Sr(ρ) =
1

Tc
Pr [s1,t < Θ] (4.25)

Since the two branches at the receiver are assumed to be i.i.d. block fading,

even when the channel on each antenna is correlated across time (i.e., across

blocks), the above expression holds. For larger coherence time (Tc), the switch-

ing rate decreases for the SSC schemes. In comparison, the switching rate for

an antenna selection scheme with two receive antennas can be expressed as,

Sr =
1

Tc
[Pr {s1,t < s2,t|zt = s1,t}+ Pr {s2,t < s1,t|zt = s2,t}] (4.26)

Since the two antennas are spatially i.i.d,

Sr =
1

Tc
Pr {s1,t < s2,t} . (4.27)

Since s1,t and s2,t are i.i.d., as the coherence time of the channel increases

it can be seen from (4.27) that the switching rate decreases but it does not

depend on ρ. So, for the SSC scheme, from (4.25), it can be seen that as

ρ increases the switching rate decreases, while for antenna selection scheme
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(4.27) the switching rate does not decrease with SNR. Thus to conclude, for

the channel model assumed, even for the case of time correlated channels, since

the switching rates of both schemes are scaled down identically proportional

to the coherence time, the SSC scheme still yields lower switching rates than

the antenna selection scheme. We have added these points to Section VI in

the manuscript.

Table II. Optimal Switching Threshold Θo, Analytical vs Simulation

SNR (dB) Analytical (dB) Simulation (dB)
5 2.77 2.50
8 5.82 5.50
12 9.02 9.00
15 10.84 11.00

4.7. Simulations

In this section, simulation results are provided for the ST coded MIMO sys-

tem employing the switch and stay diversity combining at the receiver. For all

simulations, we choose a 2×2 MIMO system implementing the switching algo-

rithm described in (3.2) for the perfect channel case or the received power based

switching algorithm for the estimated channel case. For the above described

system, Alamouti codes, with symbols chosen from a QPSK constellation are

used at the transmitter, yielding β=1 for all simulations considered. For a

fixed value of Tc, the data transmission efficiency, is defined as E :=K/(K+ 1),
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Fig. 11. Pairwise Error Probability: Simulation vs. Analytical

where it is assumed that Tτ=TD. When the power allocation between training

and data is not optimized, i.e., when equal power allocation is employed, we

have σ2
τ=σ

2
D=1 to satisfy the power constraint defined in (4.4).

The value of K implicitly defines the channel coherence time and vice-

versa. Since we assume that the power estimation duration, and the training

duration are fixed, to study the behavior of the system for different values of

the coherence time Tc, we assign different values for K. The value of K = 5

is chosen to indicate very short coherence time, while K = 40 is chosen for

large coherence time and K = 28 is for a moderate value. For example, in an

urban environment, a slow fading channel is known to have a doppler of about
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Fig. 12. BER: Alamouti Code, QPSK Symbols, Receive End SSC

5 Hz, while a fast fading channel has a doppler of about 50 Hz. So, if the

training, power estimation and each data codeword duration is assumed to be

5 ms each, then, ignoring the guard bands, a coherence time of about 35 ms

is represented when K = 5, a coherence time of about 150 ms when K = 28,

and a coherence time of about 210 ms when K = 40.

In Fig. 11, we illustrate the effect of optimization of power allocation

and switching threshold for K=28 and 40 on the PEP performance. The

analytical upper bound derived in (4.11) is also plotted against the simulated

PEP curve to validate the tightness of the bound. It can be seen that the

analytical upper bound is about 3 dB loose for the fixed threshold case. But
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Fig. 13. BER for orthogonal ST codes vs Switching Threshold Θ

by optimizing the switching threshold, for K=40, the analytical curve is only

about 1 dB loose. Additionally, we see that for K = 28, by optimizing the

power allocation between training and data for the fixed threshold case, a gain

of about 2 dB is obtained at 10−3 PEP which reduces the loss in performance

to only 2 dB compared to the perfect CSI case with fixed threshold. By using

the optimal switching threshold in addition to optimal power allocation 4 dB

improvement in the PEP can be observed with respect to the fixed threshold

PEP simulation curve. The loss compared to the perfect CSI case using the

optimal switching threshold is only about 1.8 dB at 10−3 PEP.

In Fig. 12, we plot the BER performance of the system for K=5, 28 and
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Fig. 14. Switching Rates Sr(ρ): Perfect CSI vs Estimated CSI

40, with E=0.83, 0.97, and 0.98 respectively. The effect of choosing a fixed

switching threshold independent of ρ, compared to using the optimal switching

threshold, (4.12), on the BER performance, is shown. Also, for the estimated

channel case, in Fig. 12, the effect of increasing K on the BER performance

is shown to validate Theorem 3. It can be seen that the performance and

diversity order of the system is significantly degraded when a fixed threshold

is employed instead of the optimal switching threshold. The system performs

the worst when neither the power allocation nor the switching threshold is

optimized. For the fixed threshold and equal power allocation case the BER

performance is identical for both K = 5 and 28. For K = 5, for a fixed
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switching threshold, but optimal power allocation, a marginal improvement of

about 0.4 dB can be observed while an improvement of about 3 dB can be seen

for K = 28. By optimizing both the power allocation and switching threshold,

an improvement of 2 dB for K = 5 and about 6 dB for K = 28 can be seen at

about 10−3 BER. Also, a significant improvement in the diversity order can be

observed. To corroborate Theorem 3, we also plot the BER curve for K=40

with optimal power allocation and optimal switching threshold. It can be seen

that for K = 40, the loss in performance due to channel estimation is now

less than 3 dB at a BER of 10−3 which indicates the gain in performance by

increasing K when γ is optimized. The SSC scheme with perfect CSI at the

receiver is also illustrated in Fig. 12. Due to the extra (log(ρ))N penalty term

in SSC performance compared to the AS case, the achievable diversity gain

is observed at higher SNRs for the SSC case. Both the systems employing

SSC and antenna selection achieve a diversity order of 2N at high SNR values

which cannot be illustrated in the plots.

To verify the validity of the optimal switching threshold in (4.12), we

simulate the BER of the system in Fig. 13, for fixed SNR values, over a range

of switching thresholds to find the optimum value. The BER for average

SNR values of ρ = 5, 8, 12 and 15 dB is illustrated to show the logarithmic

growth of the switching threshold that minimizes the BER. Further, in Table

II, we compare the analytically derived optimal switching threshold in (4.12),

against the switching threshold values obtained numerically from Fig. 13 for
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these average SNR values. It can be seen that the analytical and the simulation

values are very close to each other which validates our analytical results.

Finally, in Fig. 14, we illustrate the behavior of the switching rate with

SNR and number of transmit antennas as discussed in Section 4.5, for both the

perfect and the estimated channel case. We assume a normalized coherence

time Tc=1 sec. It can be seen that the optimal switching threshold scales as

O
(
(ln(ρ)/ρ)N

)
. When the switching threshold is fixed at a low value compared

to the SNR ρ, it can be seen that the switching rates are the lowest, as com-

pared to the case when the switching threshold is fixed at Θ=30 dB, leading

to very high switching rates. Implementing the optimal switching threshold,

it can be seen that switching rates in-between the above two cases can be

achieved along with significant performance improvement as seen from Fig.

11, and 12. It can also be seen that in all three cases, the estimated channel

switching rate is marginally lower compared to the perfect channel case. Ad-

ditionally, the switching rate for systems employing antenna selection is also

shown and it can be seen that for i.i.d. block fading channels, the SSC scheme

has a smaller switching rate.
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5. DIFFERENTIAL MIMO SYSTEMS WITH RECEIVE

SWITCH AND STAY DIVERSITY COMBINING

5.1. Introduction

Communication with multiple antennas have been of prime interest for over

a decade [3, 45]. Results capturing the significant improvements in error rate

performance, and achievable capacity due to multiple antennas have been well

established [1–3]. Unfortunately, due to the limitations in implementing mul-

tiple antenna schemes posed mainly by space constraints and hardware short-

comings, many of the well established multiple antenna results are yet to be

realized.

To address hardware complexity in single input multiple output (SIMO)

systems, antenna selection at the receiver is one of the proposed approaches

[29,33,46,47], where only the best antenna, in the sense of a largest instanta-

neous received signal metric (SNR or power), is used for decoding the received

signal. However, to select the best antenna, the metric has to be monitored

on all antennas. To reduce complexity, in [34], the switch and stay combining

technique was proposed where the antenna used for reception is switched only

when the metric on the current antenna falls below a predetermined threshold.

The advantage of this scheme over selection of the best antenna is that the

metric needs to be monitored only on the antenna in use.

The authors in [34] analyze the performance of a SIMO system implement-

ing the continuous time model of switch and stay combining over independent

Rayleigh fading channels, where a switch occurs if and only if a downward
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crossing of the threshold is detected. A discrete time version was first pro-

posed and analyzed in [35, 48]. In [36, 37], the performance of binary NCFSK

modulation over Nakagami-m and Rician fading channels is analyzed for a

simplified version of the switching algorithm based only on the current chan-

nel estimate on the current antenna. In [38, 39], the effect of correlated and

non identical branches for different fading distributions on the performance of

systems implementing the switching algorithm proposed in [36] is studied.

To reap the benefits of a multiple input multiple output (MIMO) system,

in [49] an extension of the switch and stay combining scheme to space-time

coded MIMO systems was proposed. It is shown that when full rank space-

time codes are used at the transmitter and an optimally designed switching

threshold is used at the receiver, full diversity can be achieved both when

perfect or imperfect channel knowledge is available at the receiver. However,

as the channel fading rapidity increases or the number of antenna pairs whose

channel needs to be estimated increases, a significant challenge is posed to

accurately track the channels at the receiver. Channel estimation also has the

drawbacks of increasing the training overhead and system complexity. This

problem can be alleviated by implementing non-coherent schemes which do

not need channel information, similar to those proposed in [50,51].

In this work, differential space-time modulation for a MIMO system em-

ploying SSC at the receiver is proposed and studied for the first time in the

literature. Assuming the receiver does not have access to the channel state
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information, a receive-power based switching algorithm is put forth. With

no need for channel estimation and a low-complexity switching algorithm at

the receiver, the proposed scheme is arguably the least complex multiple input

multiple output (MIMO) system which can still achieve the maximum available

spatial diversity. For the proposed system, the Chernoff bound on the pairwise

error probability (PEP) is derived and the optimal switching threshold that

minimizes the bound is obtained. It is shown that even when full transmit di-

versity is attained by using appropriately designed codes, receive diversity can

be achieved only by using the optimal switching threshold. It is proved ana-

lytically and corroborated by simulations that the optimal switching threshold

for the proposed system is a logarithmic function of the average SNR. Further,

the rank criteria for achieving full transmit diversity is proved to be identical

to that of the full complexity systems but novel performance design criteria are

developed to select the best codes satisfying the rank criterion. For the special

case of 2 transmit antennas new unitary codes are designed which outperform

existing codes designed for full complexity systems.

5.2. System Model

The system under consideration employs N transmit and 2 receive anten-

nas because for the case of independent and identically distributed (i.i.d.)

branches, having more than 2 receive antennas does not yield any additional

performance improvement for switch and stay combining [40]. Since, the chan-
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nel is assumed to be unknown at both the transmitter and the receiver end,

differential space-time modulation with N transmit antennas spanning T time

instants is employed. At the receiver, only one RF chain is present, so that at

any given time data can be received only on one receive antenna. Therefore,

the received signal on the ith receive antenna, after demodulation, matched

filtering and sampling is given by,

yti =

√
ρ

N

N∑
n=1

xtnh
n
i + wti , i = 1, 2, t = 1, . . . , T (5.1)

where ρ is the average SNR at the receiver, xtn is the transmitted symbol on

the nth antenna at time t, wti and yti are the additive noise and the received

signal on the ith receive antenna at time t, respectively, and hni is the channel

between the nth transmit and the ith receive antenna. The channel at the two

receive branches are spatially i.i.d. and on each branch is assumed to change

in an i.i.d. manner every T instants of time. The channel is neither known at

the transmitter nor the receiver and has the distribution hni ∼ CN (0, 1). The

additive noise is wti ∼ CN (0, 1).

Defining X ∈ CT×N with its tth row and nth column containing [X]t,n =

xtn, and channel matrix as H ∈ CN×2 with [H]n,i = hni , one can compactly

represent the received signal using matrices as,

Y =

√
ρ

N
XH + W, (5.2)

where Y = [y1, y2], and W, with dimensions T × 2 denote the received signal

and the additive white Gaussian noise, respectively.
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5.2.1. Data Transmission

Adopting the approach in [51] for differential space-time coding, the trans-

mitted codeword can be represented as X :=
√
T/NΦl, with ΦH

l Φl = IN .

The constant
√
T/N is selected to ensure the transmit power constraint∑N

n=1 E|xtn|2 = 1. The T × N differential transmission can be represented

in canonical form by,

Φl =
1√
2

[
IN VT

l

]T
, l = 1, . . . , L. (5.3)

where Vl is a N × N unitary matrix drawn from the constellation V :=

{V1, . . . ,VL} of size L = 2RN , and R is the transmission rate in bits per

channel use. Though the first half of the canonical representation of Φl is

IN , only the second half is used to form the transmitted codeword across N

channel uses [51], thereby preserving a rate of R bits per channel use. Since Φl

is a unitary matrix, for the rest of the work the unitary space-time modulation

structure is assumed.

5.2.2. Switching Algorithm

The switching algorithm determines the trade-off between performance and the

switching rate of the system, which is important from a hardware complexity

perspective. Given that channel state information is neither available at the

receiver nor will it be estimated, the decision to switch has to be based on

the channel power. Channel power can be estimated using a bandpass filter
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followed by an envelope detector and squarer, which are simple passive analog

circuitry. Since A/D conversion is avoided, this further follows our goal of

designing a minimum complexity MIMO system. Thereby, define si,c := ‖yi‖2

as received signal power currently at the ith antenna, i ∈ {1, 2}, zc as the

currently selected antenna index and zp as the previously selected antenna

index. The switching rule is based on the discrete time algorithm proposed

in [49]:

zc = 1 iff


zp = 1 and s1,c ≥ Θ

zp = 2 and s2,c < Θ

(5.4)

where Θ is the switching threshold common to both branches. Since the two

branches at the receiver are assumed to be identically distributed, the case

when zc = 2 would be similar as (5.4) with s1,c, zp = 1 interchanged with s2,c,

and zp = 2 respectively.

For comparison purposes, a genie-aided switching algorithm, which has

access to perfect channel SNR (unavailable in a differential receiver), is im-

plemented to switch between the antennas. The improvement in performance

when the genie-aided switcher is used instead of the above proposed algorithm

is shown in Fig. 17 in the Simulations section. Since the improvement in

performance is seen only at very low SNR values, and at high SNR the perfor-

mance is identical to that of the receive-power based switcher, for the rest of

this work the above proposed receive-power based switching algorithm is used.
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5.3. Performance Analysis

5.3.1. Decoder

Let y∗ := yzc be the T × 1 received signal on the selected antenna. Consider

the maximum likelihood (ML) decoder:

Φ̂ = arg max
Φl

py∗(y|Φl) (5.5)

where py∗(y|Φl) is the distribution of the received signal on the selected an-

tenna, conditioned on the transmitted codeword Φl.

Since y1 and y2 are identically distributed, and Pr (zc = i|Φl) = 1/2,

py∗ (y|Φl) = pyi (y|zc = i,Φl) . (5.6)

Using Bayes’ rule, (5.6) can be rewritten as,

pyi (y|zc = i,Φl) =
Pr (zc = i|yi = y,Φl) pyi(y|Φl)

Pr (zc = i|Φl)
(5.7)

= 2Pr (zc = i|yi = y,Φl) pyi (y|Φl) . (5.8)

From (5.8) it is seen that the distribution of the received signal on the se-

lected antenna can be obtained by appropriately scaling the distribution of

the received signal on the ith antenna. The scaling factor depends on the

switching/selection algorithm used. Here, Pr (zc = i|yi = y,Φl) is the proba-

bility that the ith antenna is currently selected given that the received signal on

the ith antenna is y, and the transmitted codeword is Φl. Since the switching

rule in (5.4) depends on the received power and the transmitted codewords
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are unitary, the distribution of the received power does not depend on the

transmitted codeword Φl. Therefore, Pr (zc = i|yi = y,Φl) does not depend

on the transmitted codeword. Thus, the ML decoder in (5.5) can be expressed

as,

Φ̂ = arg max
Φl

pyi (y|Φl) = arg max
Φl

‖yHΦl‖, (5.9)

where the second equality follows from [50, eqn. (15)]. This is a general result

that applies to a large class of switching rules. For any receive-power based

switching scheme, the ML decoder is given by (5.9) if unitary codes are used,

which in turn is identical to the single receive antenna system decoding rule.

5.3.2. Pairwise Error Probability Analysis

Since the derivation of the exact bit error rate (BER) expression is not

tractable, in what follows the PEP is analyzed. PEP is formally defined as

the probability that the transmitted codeword Φ1 is incorrectly decoded as Φ2

from a code book containing {Φ1, Φ2} only.

Consider the Chernoff bound on the PEP, Pr(Φ1 → Φ2), which can be

obtained by computing [50,52],

PCB(γ) =
1

2
exp(Ω(ρ, γ)), (5.10)

where

Ω(ρ, γ) = ln

[
Ey∗ [exp (γ ln pyi (y|Φ2)− γ ln pyi (y|Φ1))]

∣∣∣∣Φ1

]
, (5.11)
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0 < γ < 1 is a free parameter that needs to be optimized to minimize the bound

in (5.10), and the expectation is with respect to py∗ (y|Φ1). Substituting (5.11)

in (5.10), the Chernoff bound is given by,

PCB(γ) =
1

2

∫
pyi (y|Φ2)1/2 pyi (y|Φ1)−1/2 py∗ (y|Φ1) dy, (5.12)

where we have selected γ = 1/2 following [50, 53]. In (5.12), pyi (y|Φl) repre-

sents the distribution of the received signal on the ith antenna given that Φl

is transmitted and is given by,

pyi (y|Φl) =
1

πT det(Rl)
exp

(
−yHR−1

l y
)

(5.13)

where Rl = (ρT/N)ΦlΦ
H
l +IT and R−1

l = IT−(1/(1 +N/ρT )) ΦlΦ
H
l which is

obtained by using the matrix inversion lemma [54, page 50]. Using the identity

det(I + AB) =det(I + BA), it follows that det (Rl) = (ρT/N + 1)N . Thus

(5.13) can be expressed as,

pyi (y|Φl) =
1

πT (ρT/N + 1)N
exp

(
−yHy +

yHΦlΦ
H
l y

1 +N/ρT

)
. (5.14)

Aside from (5.14), in order to compute (5.12) an expression for py∗ (y|Φl) is

needed, which is provided next.

Theorem 4. The received signal on the selected antenna given Φl is trans-

mitted is distributed as,

py∗ (y|Φl) =
[
I
(
‖y‖2 ≥ Θ

)
+ Pr (si,c ≤ Θ)

]
pyi (y|Φl) (5.15)

where I (·) is the indicator function and pyi (y|Φl) is given by (5.14).
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Proof. See Appendix A.

Different from systems implementing antenna selection at the receiver [53,

eqn. (15)], the scaling factor for the SSC scheme depends directly on the

choice of switching threshold Θ. In (5.15) for a given average SNR ρ, as

Θ→∞, implying excessive switching, I (‖y‖2 ≥ Θ)→ 0 and Pr (si,c ≤ Θ)→ 1

thereby leading to py∗ (y|Φl) = pyi (y|Φl). Similarly, as Θ→ 0, implying very

rare switching, I (‖y‖2 ≥ Θ) → 1 and Pr (si,c ≤ Θ) → 0 thereby leading to

py∗ (y|Φl) = pyi (y|Φl). Thus, for both cases, i.e., Θ → ∞ and Θ → 0, the

distribution of the received signal on the selected antenna collapses to the

distribution of the received signal on the ith antenna prior to selection. This

illustrates that Θ has to be optimally selected to extract full receive diversity.

The dependence of performance on Θ will be addressed in further detail in

Section 5.3.3.

The asymptotic cumulative distributive function (CDF) of the received

power on the ith antenna is used here because we are interested in high SNR

error rate behavior of the system. Therefore, as ρ→∞, the CDF, Pr(si,c ≤ Θ),

can be expressed as [53, eqn. (29)]:

Pr(si,c ≤ Θ) =
N∑
k=1

B1,k

ρN
Θk +

T−N∑
k=1

B2,k

ρN

{
1− exp(−Θ)

k−1∑
i=0

Θi

i!

}
+ o

(
ρ−N

)
,

(5.16)
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where

B1,k:=
(T − 1− k)!(−1)N−k

(N − k)!(T −N − 1)!(T/N)Nk!
B2,k:=

(2N − 1− k)!(−1)N

(N − k)!(N − 1)!(T/N)N
,

(5.17)

and f(x) = o(g(x)) means limx→∞ f(x)/g(x) = 0. By substituting for

Pr(si,c ≤ Θ) from (5.16) into (5.15) we obtain the expression for py∗ (y|Φl).

Using this result along with (5.14), in the next theorem we establish an upper

bound on the Chernoff bound.

Theorem 5. The Chernoff bound on the PEP for differential modulated

MIMO SSC schemes using a ML decoder can be bounded from above as,

PCB(γ) ≤

[∑T
t=1 exp (− (1− c(ρ)δt) Θ/T ) + B(Θ)

ρN

]
2 (1 + ρT/N)N

∏T
t=1(1− c(ρ)δt)

+ o
(
ρ−2N

)
(5.18)

where 0 ≤ δ1 ≤ δ2 ≤ . . . ≤ δT ≤ 1 are the T eigenvalues of the matrix

∆ =
1

2

(
Φ2Φ

H
2 + Φ1Φ

H
1

)
, (5.19)

B(Θ) =
[∑N

k=1B1,kΘ
k +

∑T−N
k=1 B2,k

{
1− e−Θ

∑k−1
i=0

Θi

i!

}]
with B1,k and B2,k

as defined in (5.17) and c(ρ) := (1 +N/ρT )−1.

Proof. See Appendix B.

It will be shown in Section 5.3.3 that δT < 1 is required for full diversity,

which also is equivalent to the largest singular value of ΦH
2 Φ1 being less than

1 [53]. Further, using the following simple result,

I (v1 + v2 . . .+ vT ≥ Θ) ≥
T∏
t=1

I(vi ≥ Θ/T ), (5.20)
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and using similar algebra as in the proof of Theorem 5, the PEP can be

approximated with the help of a lower bound on the Chernoff bound as

PCB(γ) ≥

[
exp

(
−Θ

∑T
t=1(1−c(ρ)δt)

T

)
+ B(Θ)

ρN

]
2 (1 + ρT/N)N

∏T
t=1 (1− c(ρ)δt)

+ o
(
ρ−2N

)
. (5.21)

Note that (5.21) is not necessarily a lower bound on the PEP even though

it is a lower bound to PCB(γ). In Section 5.5 it will be illustrated that (5.21)

is a tighter approximation to the actual PEP. Further, for a Θ which is not

a function of the average SNR ρ, both (5.18) and (5.21) behave as O(ρ−N).

Thus, in the following section the optimal Θ that minimizes the bound is

derived.

5.3.3. Optimal Switching Threshold

In what follows, (5.18) is minimized to find the optimal switching threshold.

Since minimizing (5.18) with respect to Θ is not straightforward, an asymptotic

approximation of (5.18) is used. The resulting optimal Θ will naturally be a

function of average SNR ρ, and will also be shown to offer full diversity.

Since diversity order is a high SNR phenomenon, only the dominant terms

in (5.18) are retained for optimization assuming that Θ is an increasing func-

tion of ρ,

1

(ρT/N)N
∏T

t=1(1− δt)
exp(−(1− δT )Θ/T ) +

B1,NΘN

ρ2N(T/N)N
∏T

t=1(1− δt)
,

(5.22)
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where for large ρ, the result c(ρ) ∼ 1 is used. The exponent with the largest

eigenvalue δT of (5.19) is the dominant term at high SNR and from (5.17), it

is also seen that B1,NΘN is the dominant term in B(Θ) at high SNR.

To find the optimal Θ that minimizes (5.22), the derivative of (5.22) with

respect to Θ is set to zero to obtain,

Θ exp((λmin)Θ/(T (N − 1))) =

(
(λmin)ρN

NTB1,N

)1/(N−1)

. (5.23)

Solving for Θ in (5.23), the optimal switching threshold minimizing (5.22) is,

Θo(ρ) =
T (N − 1)

(λmin)
W

(
(λmin)

T (N − 1)

(
(λmin)ρN

NTB1,N

)1/(N−1)
)
, (5.24)

where W (·) represents the Lambert W-function defined to be the inverse of

the function x exp(x). Since we are studying the high SNR properties, the ar-

gument of the Lambert W-function is correspondingly large. From the asymp-

totic series expansion of the Lambert W-function in [55, eqn. (4.19)], for large

x we have W (x) ∼ ln(x) which means that W (x)/ ln(x)→ 1 as x→∞. Using

this Θo(ρ) in (5.24) is asymptotically approximated as:

Θo(ρ) ∼ T (N − 1)

(λmin)
ln

(
(λmin)

T (N − 1)

(
(λmin)ρN

NTB1,N

)1/(N−1)
)
. (5.25)

Similar to the optimal switching threshold for MIMO SSC systems with perfect

channel knowledge [49], Θo(ρ) is again a logarithmic function of the SNR ρ.

However, unlike the known channel case a closed form minimum of the PEP

with respect to Θ is not tractable, requiring high SNR approximations of the

preceding equations.
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By using the switching threshold derived in (5.25), the behavior of the

bound in (5.18) at high SNR is studied. In the following theorem we establish

that the Chernoff bound in (5.18) is PCB(γ) = O((ln ρ)N/ρ2N) when (5.25) is

implemented.

Theorem 6. For a pair {Φ1,Φ2} with maximum eigenvalue (5.19) of δT < 1,

when the optimum switching threshold Θo(ρ) in (5.25) is implemented with

equality, the Chernoff bound on the achievable PEP in (5.18) can be bounded

as,

lim
ρ→∞

PCB(γ)

(ln ρ)N/ρ2N
≤ N2N

2NN !(λmin)N
∏T

t=1(1− δt)
. (5.26)

Proof. See Appendix C.

Recalling that diversity order [8] is defined as d :=

limρ→∞− lnPCB(γ)/ ln ρ, taking the natural log of both sides of (5.26)

we have,

ln

(
PCB(γ)

ln(ρ)N/ρ2N

)
≤ ln

(
N2N

2NN !(λmin)N
∏T

t=1(1− δt)

)
. (5.27)

Dividing both sides by − ln ρ and taking the limit we have

d= lim
ρ→∞

− ln(PCB(γ))

ln ρ
≥ 2N. (5.28)

Since the diversity order cannot exceed 2N in a N × 2 system, together with

(5.28) we have d=2N . From (5.26) it is seen that for a given number of

transmit antennas N , codes with larger value of (λmin)N
∏T

t=1(1 − δt) yield
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better performance. Further, (5.26) shows full diversity because when Θ is

optimized the exponential terms in (5.18) behave like O(ρ−N). Note that if

Θ is a constant for all SNR, then the exponential terms in (5.18) behave like

O(1) which limits the diversity order of the system to N only.

To summarize, Theorem 6 establishes that full diversity is achieved when

δT < 1, (which is guaranteed by the assumptions of Theorem 5), and Θo(ρ) is

given as (5.25) (which is obtained by optimizing the dominant terms in (5.22)).

In what follows (5.26) will be used to further refine the code design criteria to

distinguish between codes achieving full diversity.

Further, in Section 5.3.2 it was noted that a fixed switching threshold

will lead to either excessive switching or very rare switching depending on

the average SNR. The switching rate is defined as Sr(ρ) := (1/Tc)Pr(si,c <

θ), where Tc is the coherence time of the channel and Pr(si,c < θ) is the

probability of switching based on the proposed switching algorithm and the

i.i.d. assumption of the two receive antennas. In the high SNR regime, for

antenna selection, the switching rate Sr(ρ) = 1/(2Tc) = O(1) while for a

receiver implementing SSC with optimum switching threshold, the switching

rate behaves as Sr(ρ) = O((ln(ρ)/ρ)N), [49, eqn. (37)]. Therefore it follows

that at large ρ, the switching rate of a SSC-based receiver is significantly

smaller than that of an antenna selection based receiver. For low SNR values

though, the optimal threshold θo in (5.25) cannot be used since it is derived by

assuming large SNR. But, by calculating θo by simulation, the switching rate
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of a SSC receiver can be shown to be less than that of an antenna selection

based receiver. Since, the performance in a high SNR regime is studied in this

work, low SNR analysis will not be further pursued.

5.4. Code Design

In [51], and [56] for full complexity differential systems, the rank and deter-

minant criteria [51, eqn. (38)] for maximizing the diversity and coding gain is

proposed. However, the error rate of the proposed SSC system cannot be ex-

pressed in the form (Gcρ)−d where Gc is the coding gain and d is the diversity

order. Instead, in Theorem 6 it is seen that the performance of our system

depends on the product (λmin)N
∏T

t=1(1− δt) which is different from that pro-

posed in [51, 56]. The design criteria requires not only an I −∆ matrix with

a large determinant but also requires the largest eigenvalue of ∆, i.e., δT , to

be small for better performance. This also suggests that the proposed metric

is more sensitive to the minimum eigenvalue of I−∆ being close to zero than

full complexity schemes. This difference in the criteria, compared to both a

differentially modulated full complexity system [51] and a differentially modu-

lated system employing antenna selection at the receiver [53], motivates code

design for the SSC case. To this end a class of unitary signal constellations

termed parametric codes proposed in [57] are considered. Prior to presenting

our design criteria the parametric codes are briefly described.
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Defining the integers k1, k2, k3 ∈ {0, . . . , L−1}, the parametric codes with

constellation size L for 2 transmit antenna systems are given by,

V(k1, k2, k3) = {Al(k1, k2, k3)|l = 0, . . . , L− 1} (5.29)

where Al(k1, k2, k3) is a 2× 2 unitary matrix obtained as,

Al(k1, k2, k3) =

 exp(jςL) 0

0 exp(jk1ςL)


l

·

 cos(k2ςL) sin(k2ςL)

− sin(k2ςL) cos(k2ςL)


l

·

 exp(jk3ςL) 0

0 exp(−jk3ςL)


l

(5.30)

where ςL = 2π/L. As stated by the authors in [57], when k2 = k3 = 0 diagonal

cyclic codes proposed in [51] are obtained.

Among all possible constellations of size L, codes based on

arg max
k1,k2,k3

(
min
Φ1,Φ2

(
(λmin)N

T∏
t=1

(1− δt)

))
, (5.31)

are found where the minimization in the above expression is over all possible

codeword pairs {Φ1,Φ2} in the code defined by [k1, k2, k3]. It is easy to see

from the above criteria that if the code has codeword pairs that lead to δT = 1

(i.e., IT −∆, with ∆ as in (5.19), loses rank), then (5.31) will be zero, thereby

eliminating such codes in the search process. By performing an exhaustive

search over all possible constellations, a number of codes which perform better

than the existing codes designed for full complexity systems are found. Table

III provides a list of these codes. Interestingly, the best parametric codes
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designed for R = 2.5 and R = 3 for differential MIMO systems implementing

antenna selection at the receiver [53] are included in our set of best performing

codes: [31, 4, 2] for rate 2.5 and [63, 6, 0] for rate 3.

5.5. Simulations

For all simulations a 2 × 2 system is considered. The switching algorithm

proposed in (5.4) is employed at the receiver. For Figures 15, 16, 17 the

transmission rate is set to R = 1 bit per channel use, thereby resulting in a

constellation size of L = 2RN = 4.
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First the PEP of receive SSC for MIMO systems using diagonal cyclic

codes is illustrated. In Fig. 15 the PEP obtained for the fixed and optimal

threshold cases are compared against their respective analytical plots. When a

fixed threshold is used, it is seen that a diversity order of only 2 can be achieved,

in agreement with the results in Section 5.3.2. But when the optimal switching

threshold given by (5.25) is used, a larger diversity order is achievable. Since a

diversity order of 4 is only seen at extremely large SNR values, it is not possible

to show it in our plots. Further, it is also seen for the optimal threshold case

the bound is about 2 dB loose at 10−5 BER while for the fixed threshold case

it is about 5 dB loose at 10−3 BER implying the Chernoff bound is tighter
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when the optimum switching threshold is used. The lower bound (5.21) on

the Chernoff bound is also plotted and it can be seen that for the fixed Θ case

the lower bound is a very tight upper bound on the actual PEP. But when the

optimal switching threshold Θo is used, only a gain of 0.2 dB over the upper

bound on the Chernoff bound is obtained at high SNR. Therefore for the cases

considered, the lower bound on the Chernoff bound in (5.21) can be used as a

more accurate approximation to the actual PEP.

In (5.24) and (5.25) the optimal switching thresholds based on high SNR

approximation of the Chernoff bound on the PEP is obtained. In Fig. 15 it

was shown that this choice of optimal threshold still helps achieve full diversity
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without being able to draw any conclusions on whether the actual PEP is

minimized. To obtain better insight the threshold which minimizes the BER

is calculated by simulation. In Fig. 16 the BER for various SNR values is

plotted and the threshold yielding the minimum BER value for each SNR is

obtained. From Fig. 16 it can be seen that optimizing the switching threshold

leads to more significant improvement of BER at high SNR than at low SNR.

Further, in Fig. 16, which is a log− log plot, for sufficiently large ρ it is seen

that Θo increases linearly with ρ. This verifies the result in (5.25) that the

optimal threshold is a logarithmic function of the average SNR.

In Fig. 17 BER for fixed and optimal thresholds is plotted. The BER of
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a differential 2× 2 system employing receive antenna selection is also plotted

for comparison purpose. Again, it is observed that when a fixed threshold is

used, a maximum diversity of only 2 can be achieved. In Fig. 17, the BER

for the following three cases are compared: 1) the optimal threshold in (5.24),

with the Lambert W-function, is used, 2) the optimal threshold in (5.25),

with the log function, is used, and 3) optimal threshold values derived from

Fig. 16 are used. In all 3 cases, the slopes are identical to that obtained by

using antenna selection, implying that a diversity order of 4 will be achieved.

As justified in Section 5.3.2, the optimal threshold functions in (5.24) and

(5.25) only help achieve maximum diversity but do not necessarily minimize

the BER at high SNR. For mid SNR values, the BER obtained by (5.25)

outperforms that obtained by using (5.24). For low SNR values, it is seen

that for switching thresholds derived from Fig. 16, the SSC BER is very close

to that of the AS scheme. For high SNR though the SSC BER is about 2

dB away. Importantly, when the optimal switching threshold is used, due to

the O((ln ρ)Nρ−2N) behavior of the error rate of the SSC system compared to

the O(ρ−2N) behavior of the AS system, the (ln ρ)N penalty term mandates

a larger SNR for the SSC BER curve than the AS BER curve to achieve full

diversity. But both schemes achieve a diversity order of 4 at high SNR values.

Further, the BER performance of a differential MIMO receive-SSC system

implementing a SNR based switching algorithm is also plotted as a benchmark.

Since, in a differential system the SNR is neither known or estimated, a genie-
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Table III. Best performing Parametric Codes [k1, k2, k3] for Differential

MIMO-SSC systems with N = 2

Parametric Codes

Rate 2 Rate 2.5 Rate 3
[11, 4, 2] [31, 4, 2] [63, 6, 0]
[11, 12, 2] [31, 12, 2] [63, 38, 0]
[11, 14, 4] [31, 4, 10] [63, 58, 0]
[11, 12, 4] [31, 12, 10] [63, 6, 32]
[11, 4, 12] [31, 28, 10] [63, 38, 32]
[11, 12, 12] [31, 12, 16] [63, 58, 32]

aided switching algorithm which has access to the SNR, as explained in Section

5.2.2, has been used. It can be seen that when a fixed switching threshold is

used, the performance of the SNR based and the receive-power based switching

algorithms are identical. But when optimal switching thresholds, calculated

by simulation, are used, only at extremely low SNR the genie-aided switcher

outperforms the proposed receive-power based switcher.

In practice, the receive antennas might not be i.i.d. but spatially corre-

lated. To this end, the channel on the two receive branches is assumed to be

correlated with a correlation co-efficient ε. With this model, in Fig. 18 the

BER performance of a SSC system is illustrated. It is seen that when the

optimal threshold in (5.25) is used, the BER performance deteriorates with ε.

Further, when ε = 1 no receive diversity will be achieved.

For the special case of a 2 × 2 systems, in Figs. 19, 20 and 21 the per-

formance of the parametric codes designed for the SSC scheme with those
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Fig. 19. Parametric Codes, R = 2, N = 2

designed for full complexity systems are compared. The performance of diag-

onal cyclic codes proposed in [51] is also plotted to help in this process. In

Table III, since the performance of the proposed codes for a given rate are

identical to one another, only one of the proposed codes for each rate is plot-

ted for comparison purpose. In Fig. 19, codes with rate 2 bits per channel

use are compared. For N = 2, and R = 2, it is seen that the parametric code

leads to about 3 dB improvement in performance compared to the diagonal

cyclic codes. It can be seen that compared to the best code for full complexity

systems, [3, 4, 2], the performance of the parametric codes designed for SSC

systems [11, 4, 12] are almost identical. In Fig. 20 the performance of the
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Fig. 20. Parametric Codes, R = 2.5, N = 2

system for R = 2.5 is compared. The parametric codes designed for full com-

plexity systems, [7, 8, 2] outperform the diagonal cyclic codes by about 7 dB at

10−5 BER, while our design [31, 4, 10] outperforms the full complexity system

codes by about 3 dB at the same BER. Finally, in Fig. 21, comparing the

performance for R = 3, it is seen that the parametric codes designed for SSC

systems [63, 58, 0] outperform the full complexity parametric codes [7, 10, 0] by

about 3 dB.
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Appendix

Appendix A: Proof of Theorem 4

Using the switching algorithm defined in (5.4) we can express the probability

of selecting the ith antenna conditioned on the received signal as,

Pr (zc = i|yi = y,Φl) = Pr (zc = 1|Φl,y1 = y) Pr (i = 1) +

Pr (zc = 2|Φl,y2 = y) Pr (i = 2) ,

= Pr (zc = 1|y1 = y,Φl) , (5.32)
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which is obtained due to assumption of i.i.d. branches. Conditioning on y1 = y

implies si,c = ‖y‖2. So, we can rewrite (5.32), Pr (zc = i|yi = y,Φl), as,

= Pr
((
zc = 1 and zp = 1 and ‖y∗‖2 ≥ Θ

)
or

(zc = 1 and zp = 2 and s2,c < Θ))

= Pr
(
zc = 1 and zp = 1 and ‖y∗‖2 ≥ Θ

)
+

Pr (zc = 1 and zp = 2 and s2,c < Θ)

=
1

2

[
Pr
(
‖y∗‖2 ≥ Θ

)
+ Pr (s2,c < Θ)

]
=

1

2

[
I
(
‖y∗‖2 ≥ Θ

)
+ Pr (s2,c < Θ)

]
(5.33)

where (5.33) is obtained due to the assumption of temporal independence of

the channel. Also, we define the indicator function as I (‖y∗‖2 ≥ Θ) = 1 if and

only if the condition is satisfied. Further since both branches are i.i.d, we have

Pr (zc = i|yi = y,Φl) =
1

2

[
I
(
‖y∗‖2 ≥ Θ

)
+ Pr (si,c < Θ)

]
(5.34)

Using this in (5.8), the required result is obtained.
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Appendix B: Proof of Theorem 5

Using (5.14), (5.15) and (5.16) in (5.12), the Chernoff bound on the PEP can

now be expressed as,

PCB(γ) =
1

2

1

πT (1 + ρT/N)N

∫
exp

(
−yHΓ(ρ)y

)
·[

I
(
‖y‖2 ≥ Θ

)
+

N∑
k=1

B1,k

ρN
Θk +

T−N∑
k=1

B2,k

ρN
{1−

exp(−Θ)
k−1∑
i=0

Θi

i!

}
+ o

(
ρ−N

)]
dy, (5.35)

where

Γ(ρ) :=
1

2

(
R−1

2 + R−1
1

)
= IT −

1

1 +N/ρT
∆ (5.36)

with ∆ = 1/2
(
Φ2Φ

H
2 + Φ1Φ

H
1

)
and B1,k and B2,k as defined in (5.17). Define

the eigenvalue decomposition Γ(ρ) := U·diag[(1−c(ρ)δ1), . . . , (1−c(ρ)δT )]·UH

where it is recalled that c(ρ) = (1 +N/Tρ)−1. Further, by defining r := UHy,

and performing a change of variables, the Chernoff bound can be expressed

as,

PCB(γ) =
1

2πT (1 + ρT/N)N

∫
exp

(
−

T∑
t=1

(1− c(ρ)δt)|rt|2
)

[
I
(
‖r‖2 ≥ Θ

)
+

N∑
k=1

B1,k

ρN
Θk +

T−N∑
k=1

B2,k

ρN
{1−

exp(−Θ)
k−1∑
i=0

Θi

i!

}]
dr + o

(
ρ−2N

)
. (5.37)
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Defining rt := eiασt and after a change of variables the Chernoff bound in

(5.37) can be expressed as,

PCB(γ) =
2T

2πT (1 + ρT/N)N

∫ ∞
0

. . .

∫ ∞
0

exp

(
−

T∑
t=1

(1− c(ρ)δt)σ
2
t

)[
I
(
σ2

1 + . . .+ σ2
T ≥ Θ

)
+

N∑
k=1

B1,k

ρN
Θk +

T−N∑
k=1

B2,k

ρN

{
1− exp(−Θ)

k−1∑
i=0

Θi

i!

}]

σ1 . . . σTdσ1 . . . dσT + o
(
ρ−2N

)
. (5.38)

Now, defining vt := σ2
t , and by a change of variables, the upper bound can

now be expressed as,

PCB(γ) =
1

2πT (1 + ρT/N)N

∫ ∞
0

. . .

∫ ∞
0

exp

(
−

T∑
t=1

(1− c(ρ)δt)vt

)
[I (v1 + . . .+ vT ≥ Θ) +

N∑
k=1

B1,k

ρN
Θk +

T−N∑
k=1

B2,k

ρN

{
1− exp(−Θ)

k−1∑
i=0

Θi

i!

}]

dv1 . . . dvT + o
(
ρ−2N

)
. (5.39)

The exact evaluation of this function is quite cumbersome. Instead,

to simplify the expression, the indicator function is upper bounded as

I (v1 + v2 . . .+ vT ≥ Θ) ≤
∑T

t=1 I(vt ≥ Θ/T ), which is valid because the union

of the individual indicator functions will lead to an overlap of the area of
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interest. Substituting,

PCB(γ) ≤ 1

2 (1 + ρT/N)N

∫ ∞
0

. . .

∫ ∞
0

exp

(
−

T∑
t=1

(1− c(ρ)δt)vt

)[
T∑
t=1

I(vt ≥ Θ/T )+

B(Θ)

ρN

]
dv1 . . . dvT + o

(
ρ−2N

)
(5.40)

where B(Θ) =
[∑N

k=1 B1,kΘ
k +

∑T−N
k=1 B2,k

{
1− e−Θ·

∑k−1
i=0

Θi

i!

}]
. Note that

if 1 − c(ρ)δt = 0, then the corresponding exponential term becomes 1 and

thereby leads to
∫∞

Θ/T
I(vt < Θ/T ) = ∞. This in turn results in PCB(γ) =

∞. Solving the integral in (5.40), the bound on the Chernoff bound can be

expressed as,

PCB(γ) ≤

[∑T
t=1 exp (− (1− c(ρ)δt) Θ/T ) + B(Θ)

ρN

]
2 (1 + ρT/N)N

∏T
t=1(1− c(ρ)δt)

+

o
(
ρ−2N

)
(5.41)

Appendix C: Proof of Theorem 6

In this Appendix, the upper bound stated in (5.26) is established. Substituting

the optimal switching threshold in (5.25) for Θ into (5.18), since Θ(ρ) is a

logarithmic function of ρ, it follows that,

T∑
t=1

exp (−λtΘo(ρ)/T ) = o(ρ−N) (5.42)

and

B(Θo(ρ))

ρN
=

N2N

2NN !(λmin)N
∏T

t=1 λt

(ln ρ)N

ρN
+ o

(
(ln ρ)N

ρN

)
. (5.43)
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Multiplying (5.18) by
(
ρ2N/(ln ρ)N

)
and recalling that (5.18) is an upper

bound to the Chernoff bound on the PEP, the theorem follows.
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6. DIVERSITY IN MULTI-USER SYSTEMS

Driven by the increasing demand for wireless services, and the scarce ra-

dio spectrum, conventional diversity techniques, such as temporal, spatial and

frequency diversity, offer improvements in spectral efficiency for point-to-point

links. These diversity techniques, covered in the previous chapters, are more

suitable in a point-to-point context because the emphasis is on improving the

communication reliability (error probability performance) rather than increas-

ing throughput (spectral efficiency). The authors in [58] have shown that there

is another form of diversity available in multiuser systems called multiuser di-

versity, provided by independent time varying channels across the different

users. Unlike conventional diversity techniques, where fading is treated as an

adverse effect to be combated, in multiuser diversity fading is exploited to im-

prove system performance. Channel fading is a source of randomization that

will be taken advantage of in wireless networks.

The central idea behind multiuser diversity is that in a large system with

users fading independently, it is highly likely to find a user with a very good

channel at any given point of time. By assigning channel access to the best

user the system throughput can be improved. One prerequisite for multiuser

diversity is that the users need to have data that is delay insensitive so that

they can wait for their channel to peak. Larger the number of active users

in the system, the larger the multiuser diversity gain. It is shown that this is

the optimal strategy for both the uplink [59], and the downlink [60] scenarios.

Implementing multiuser diversity in practical systems, leads to issues such as

100



fairness of system resource allocation among users, delay experienced by the

individual users waiting to be served, feedback delay and estimation inaccuracy

of the user fading channel. Nevertheless, multiuser diversity scheduling has

been adopted in 3G (third generation) wireless data systems, e.g. CDMA

2000 1x EV-DO, and HSDPA (an enhancement to WCDMA).

Next we briefly cover the information theoretic results of the multiuser

diversity system. For the uplink channel, the system model can be expressed

as

y[m] =
N∑
n=1

hn[m]xn[m] + w[m] (6.1)

where m is the time index, the channel is assumed to remain constant over

an entire coherence period, and it is i.i.d. across different coherence peri-

ods. Within one coherence period, the time index is dropped and thereby

hn[m] = hn. A channel with L coherence periods can be modeled as a parallel

uplink channel with L subchannels with independent fade. For a given channel

realization hn, n = 1, . . . , N , the sum capacity can be expressed as [15, chap.

6],

Csum = max
Pn,l;n=1,...,N ;l=1,...,L

1

L

L∑
l=1

log

(
1 +

∑
n=1 NPn,l|hn,l|2

No

)
(6.2)

subject to Pn,l ≥ 0 and (1/L)
∑L

l=0 Pn,l = P for all n. Here Pn,l is the power

allocated to the nth user, n = 1, . . . , N and for the lth subchannel, l = 1, . . . , L.

Assuming a symmetric uplink system, the optimal power allocation can be
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relaxed and written as,

1

L

L∑
l=0

N∑
n=0

Pn,l = NP. (6.3)

Therefore, by assuming a total power constraint on all the users, the sum

capacity can be expressed as [15],

Csum = E

[
log

(
1 +

Pn∗(h)|hn∗|2

No

)]
(6.4)

where h := (h1, . . . , hN), n∗ is the index of the user with the strongest channel

for a given h, and

Pn∗(h) =


(

1
λ
− No

maxi |hi|2

)+

if |hn|2 = maxi |hi|2

0 else

. (6.5)

Though this result is derived assuming a total power constraint on all the

users, by symmetry, the power consumption of all the users is the same under

the optimal solution. Therefore the individual power constraints in (6.1) are

automatically satisfied. Thereby, the original problem is solved.

Csum in the symmetric case where users have identical channel statistics

and power constraints has been considered. Even for the asymmetric case,

the optimal strategy to achieve sum capacity is to have only the best user

transmitting at a time, but the criterion of choosing the best user is different.

Maximizing the sum rate may not be the appropriate objective since the user

with the statistically better channel may get a much higher rate at the expense

of the other users [15]. A more fair scheduling algorithm called “proportionally

fair scheduling” is also presented in [15].
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Next, looking at the downlink system, the received signal at the nth user

can be expressed as,

yn[m] = hn[m]x[m] + wn[m] (6.6)

where hn[m] is the channel of user n. The transmit power constraint is P and

wn[m] ∼ CN (0, No) is i.i.d. in time m for each user. Here it is assumed that

there is one base station (BS) transmitting to all users.

Consider the case when the users can track the channel but the BS only

has statistical knowledge of the channel and not the exact channel realizations.

The fading statistics are assumed to be symmetric to all users and by the

assumption of ergodicity, if user n can decode its data reliably, then all the

other users can also successfully decode user n’s data. Thereby the sum rate

can be expressed as,

N∑
n=1

Rn < E log

(
1 +

P |hn|2

No

)
. (6.7)

The bound above is achievable by transmitting to one user only or by

time-sharing between any number of users. Thus in the symmetric fading

channel, we obtain the same conclusion as in the symmetric AWGN downlink:

the rate pairs in the capacity region can be achieved by both orthogonalization

schemes and superposition coding.

For downlink AWGN channels superposition coding was successfully ap-

plied as there is an ordering of the channel strength of the users from weak to

strong. In the case of asymmetric downlink fading channels, users in general
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have different fading distributions and there is no longer a complete ordering

of the users. In this case, we say that the downlink channel is non-degraded

and little is known about good strategies for communication.

Next, consider the case when the base station also knows the channel

realization and can thereby vary the powers as a function of the channel. In a

downlink system where the base station tracks all the channels of the users, the

metric of interest is still the sum capacity. Without fading, the sum capacity

is achieved by transmitting only to the best user [15]. For fading channels,

the best user in each coherence period is picked and an appropriate power is

allocated to this user, subject to a constraint on the average power. Under

this strategy, the downlink channel reduces to a point-to-point channel with

the channel gain distributed as maxn=1,...,N |hn|2. The sum capacity for this

case with optimal power allocation can be expressed as [15],

Csum = E

[
log

(
1 +

Pn∗(h)(maxn=1,..., |hn|2)

No

)]
, (6.8)

where h = (h1, . . . , hN) is the joint fading state, and

Pn∗(h) =

(
1

λ
− No

maxn=1,...,N |hn|2

)+

(6.9)

Next, we provide a brief literature survey of related work. The greedy

scheme mentioned above assumes the ideal situation where fading statistics

are the same for all users. However, in practical systems, the users’ statistics

are not identical, which would result in assigning the channel mostly to the

statistically stronger user, and would be highly unfair. A fair strategy where
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the channel is assigned to the user with the greatest instantaneous normalized

signal-to-noise ratio (SNR) is also proposed [15, chap. 6]. The users are

allowed to have different average channel powers in this setting. Using the fair

channel assignment, the probability of being assigned to use the channel is the

same for each user, even when each user has a different average SNR. A similar

fair assigning algorithm which employs normalization with the time averaged

throughput is proposed in [58]. Asymptotic analysis of this proportional fair

algorithm is presented in [61]. In [62], by applying a first-order Markov chain

model, the authors demonstrate the multiuser diversity-mobility tradeoff for

the proportional fair scheduling proposed by [58].

For single user systems, optimal and practical adaptive modulation tech-

niques have been well established. Several adaptation strategies are proposed

and their spectral efficiencies are compared in [63] and [64]. Assuming perfect

channel quality feedback, a constant-power, rate-adaptive scheme to maximize

the average rate with an average bit error rate (BER) requirement is inves-

tigated in [65]. Good performance of adaptive modulation requires accurate

channel estimation at the receiver and a reliable feedback path between the

receiver and the transmitter. However, the channel feedback information will

become outdated if the channel is changing rapidly. The uncertainty in chan-

nel feedback arises from the feedback delay. The effect of channel feedback

delay on the average BER over Nakagami fading channels is briefly addressed

in [66]. Under an instantaneous BER constraint, an approach to the design
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of a robust adaptive modulation system based on only a single (most recent)

outdated channel estimate is proposed in [67]. Adaptive modulation systems

utilizing better channel prediction by combining a number of past channel es-

timates are investigated in [68], which further improve the performance of link

adaptation. In [69], adaptive modulation schemes based on long-range channel

prediction are presented.

When the dynamic range of the channel fluctuations are limited in envi-

ronments with little scattering and/or slow fading, the authors in [58] propose a

scheme called opportunistic beamforming to induce large and fast channel fluc-

tuations artificially by using multiple transmit antennas. Further, in [70] the

authors assume a multiuser frequency selective channel implementing OFDM

where subcarriers are jointly allocated to users with favorable fading channels

on these subcarriers.

In [71] multiuser diversity is studied in MIMO systems with linear re-

ceivers. The impact of adding transmitter or receiver antennas to multiuser

diversity was further investigated in [72–74]. Correlated fading with multiuser

diversity was analyzed in [58]. The authors compared an uncorrelated fading

multiuser system with a fully correlated fading system when multiuser diver-

sity is used for a network with a multi-antenna base station and single antenna

users and showed that the fully correlated fading case has a higher network

capacity. When perfect channel state information is not available in multiuser

MIMO system, random beamforming was proposed to attain the multiuser
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diversity gain with limited channel knowledge [75,76].

Providing quality of service (QoS) to meet the data rate and the packet de-

lay constraints of real-time data users is an important requirement of emerging

wireless networks. To address this issue, channel aware scheduling algorithms

were proposed. Being designed to satisfy the constraints of delay and data

rate, these algorithms also improve the throughput performance by exploit-

ing the channel fluctuations. Perhaps the most well-known channel aware

scheduling algorithm is proportional fair scheduling algorithm used in CDMA

1xEVDO system [77], which maximizes the sum of logarithms of all user’s

average throughput. However, it is worth to know that the stability of the

proportional fair scheduling algorithm was challenged in [78]. The authors

in [79] developed another scheme, where the fraction of the time slots allo-

cated to each user can be arbitrarily chosen based on the service objectives.

A scheduling algorithm exploiting asynchronous variations of channel quality

was proposed in [80]. The performance of channel aware scheduling algorithm

was analyzed in [81]. Many approaches to exploit multiuser diversity require

a centralized scheduler with full or limited knowledge of each user’s channel

state information. However, the scheme to acquire the estimates of the channel

may incur excess overhead and delay, particularly if the number of active users

is large or the channels change rapidly. Therefore, it is of interest to study the

way to exploit the channel fluctuations by distributed channel access like ran-

dom access, which may reduce overhead. The research of multiuser diversity
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in random access is also driven by the proliferation of wireless LAN [24], where

random access such as CSMA/CA is the primary means to provide channel

access. To exploit the channel variations, many works of this kind assume

decentralized channel state information where the base station broadcasts a

pilot signal to all users, and each user measure its own channel using this pilot

signal. The authors in [82, 83] proposed the use of channel state information

to vary the transmission probability in ALOHA. They analyzed the system,

and demonstrated the effect of multiuser diversity on throughput.

108



7. MULTI-USER DIVERSITY WITH RANDOM NUMBER OF

USERS

7.1. Introduction

Point to point diversity combining schemes aim to mitigate the effects of fading

in a wireless channel. Contrary to this, for multi-user systems the authors in

[15] have indicated another form of diversity titled multi-user diversity (MUD),

which thrives on the randomness of the user fading channel. The key idea here

is to provide channel access to the user with the best channel at any instant of

time. This has been shown to be optimal for both uplink [59] and downlink [60]

scenarios.

In the literature so far MUD has been studied for the case of a fixed

number of users only. While the assumption of fixed number of users holds

for the analysis of instantaneous capacity and error rate, it is inaccurate for

calculating time averages of the above mentioned metric. This is because

in reality the number of users change rapidly with time. For example, the

probability of a cell phone user requesting data communication is very low [22].

Further, certain types of data requests such as stocks, weather and email are

bursty in nature. This implies that the number of users actively contending

for channel access across time is a random variable.

Additionally, schemes in which a user is allowed to feedback its channel

metric to request channel access, only if its metric is larger than a predefined

threshold are also proposed [84–86]. Such algorithms also lead to a random

number of users across time.
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Based on the above reasons, in this work we study the effects of ran-

domness of the number of users on system performance. We would like to

emphasize here that in the multi-user system we consider, the base station

does not know the number of users apriori but based on the received packets

schedules the best user at any given time. Also, this work focuses on the sys-

tem performance averaged across time and users but not the performance of

an individual user.

Here we list the novel contributions of this work. For the first time in

literature, analysis of MUD is considered when the number of users is random.

The distribution of SNR of the best user chosen from a random set of users is

derived for very general conditions. For any given user channel fading distri-

bution, we prove that the BER of the system with a fixed number of users is

a completely monotonic function of the number of users N . Further, we also

prove that the capacity of the system implementing MUD with a fixed number

of users has a completely monotone derivative. Using these results and the

Jensen’s inequality, we illustrate that randomization of the number of users

always leads to deterioration of performance. Further, the user distributions

can be Laplace transform ordered with respect to the BER and capacity of the

system. For when the user distribution is Poisson distributed, the tightness of

Jensen’s inequality for BER is proved asymptotically in the number of users.

We also derive formulas for outage expressions for any user fading distribu-

tion. For the special case when the number of users is Poisson distributed and
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when the user channel is Rayleigh faded, a closed form expression for the BER

is derived. Expressions for asymptotic capacity and outage capacity are also

provided.

7.2. System Model

We consider the uplink multi-user system with one base station (BS) and

multiple users. Both the BS and the users are assumed to be single antenna

systems. The received signal at the BS from the nth user can be expressed as,

yn =
√
ρhnxn + wn, n = 1, . . . , N. (7.1)

The number of users N is assumed to be a random variable with a dis-

crete non negative integer distribution. A homogeneous multi-user system is

assumed where the average received power at the BS, ρ, in (7.1), is identical

across all users. hn is the channel, xn is the transmitted symbol, and wn is the

additive white Gaussian noise corresponding to the nth user, n ∈ {1, . . . , N}.

The channel is assumed to satisfy E[|hn|2] = 1 for all n and to be independent

and identically distributed (i.i.d.) across all users. The transmitted symbols

satisfies E[|xn|2] = 1.

7.3. SNR at the Base Station

The instantaneous SNR of all users is evaluated at the BS and the user with

the best instantaneous SNR is selected for transmission. Unlike the existing
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literature on multi-user diversity, the novelty of this work lies in assumption

that the number of users N in the system is a random variable. Additionally,

N is unknown at the BS. The BS station only selects the best user but does

not feedback the quality of the channel to the user, thereby there is no rate

adaptation at the user.

The instantaneous SNR of the nth user at the BS, prior to selection, can

be expressed as

ρn = ρ|hn|2, n = 1, . . . , N (7.2)

The best user is selected to have,

ρ∗ = ρ|h∗|2 (7.3)

where |h∗|2| = maxn{|hn|2}.

Define Fρn(x) as the CDF of the instantaneous SNR of the nth user ρn.

Recalling that the total number of users N is a random variable, the CDF

of the SNR of the best user selected using (7.3), conditioned on N , can be

written as,

Fρ∗|N(x) = [Fρn(x)]N , (7.4)

which is obtained due to the i.i.d. assumption of the N user channels. The

SNR of the best user selected from a random set of users can be obtained by
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averaging (7.4) with respect to the distribution of N , i.e.,

G(Fρn(x)) = Fρ∗(x) = EN

[
[Fρn(x)]N

]
=
∞∑
k=0

Pr(N = k) [Fρn(x)]k , (7.5)

which follows due to the assumption that N is from a discrete non negative

integer distribution. Further, G(Fρn(x)) is recognized to be the probability

generating function of the discrete random variable N .

From (7.5) it can be seen that for any channel fading distribution and for

any non-negative integer distribution on the number of users, the CDF of the

SNR of the best user at the BS can be easily obtained. Further, using (7.5),

the PDF of the SNR of the best user can be expressed as,

g(Fρn(x)) =
∞∑
k=0

Pr(N = k)k [Fρn(x)]k−1 fρn(x) (7.6)

where fρn(x) = dFρn(x)/dx.

In the next section, we analyze the properties of the BER and capacity of

a system with a fixed number of users implementing MUD. Using these results

we characterize the behavior of the multi-user system with a random number

of users implementing MUD.

7.4. Characteristics of the BER and Capacity

7.4.1. Error Rate

In this section, we first prove that the average BER of a multi-user system

implementing MUD on a fixed number of users N is a completely monotonic
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function of N , for very general conditions.

The BER of a multi-user system with a fixed number of users N can be

expressed as,

BER(ρ,N) =

∫ ∞
0

BER(x)d [Fρn(x)]N (7.7)

where BER(x) is the instantaneous BER over an additive white Gaussian

noise (AWGN) channel for an instantaneous SNR x of the best user. Prior to

proving that BER(ρ,N) in (7.7) is completely monotonic, we define completely

monotonic functions.

Definition 7.4.1. [87] A real function f(x) is completely monotonic in argu-

ment x on the interval (0,∞), if it is infinitely differentiable on (0,∞) and

for all k ≥ 0,

(−1)kf (k)(x) ≥ 0, for all x ∈ (0,∞) (7.8)

where f (k)(x) denotes the kth derivative of f(x). If in addition f(0+) < ∞,

then f(x) is completely monotone on [0,∞) and is represented as f ∈

c.m.[0,∞).

Though N is discrete, assuming that BER(ρ,N) is a function of a contin-

uous N we prove that it is a completely monotone function of N . For discrete

N a complete monotonicity definition similar to Definition. 7.4.1 exists in

terms of successive differences of the function [88, pg. 118-119].

We choose to use the continuous version of the definition as it is rela-

tively easier to prove that BER(ρ,N) is a completely monotone function using
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derivatives. Further, the discrete version can be obtained by sampling its

continuous counterpart, thereby validating our approach.

Integrating the BER(ρ,N) expression in (7.7) by parts, we have,

BER(ρ,N) = −
∫ ∞

0

BER′(x) [Fρn(x)]N dx, (7.9)

where BER′(x) = dBER(x)/dx. Since BER(x) is a decreasing function of x,

BER′(x) is negative. This implies that BER(ρ,N) is still positive.

Using (7.9), the kth derivative of BER(ρ,N) can be written as,

d(k)BER(ρ,N)

dN (k)
= −

∫ ∞
0

BER′(x) [Fρn(x)]N [log (Fρn(x))]k dx. (7.10)

In (7.10), since 0 ≤ Fρn(x) ≤ 1, this implies that log (Fρn(x)) ≤ 0, and thereby

[log (Fρn(x))]k switches sign with increasing k. Therefore, we can write,

(−1)k
d(k)BER(ρ,N)

dN (k)
≥ 0, for k ≥ 0. (7.11)

Further, since BER(ρ,N) is infinitely differentiable with respect to N , and

that BER(ρ, 0+) <∞, we have proved that BER(ρ,N) ∈ c.m.[0,∞).

For k = 2, the condition in (7.8) reduces to f (2)(x) ≥ 0, for all x ∈ [0,∞),

which is the necessary condition to establish the convexity of f(x). This implies

that all completely monotonic functions are convex functions as well but the

other way is not always true. From this result, it immediately follows that

BER(ρ,N) is a convex function in N .
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For when the number of users in the system is random, by applying

Jensen’s inequality for convex functions, we have,

EN

[
BER(ρ,N)

]
≥ BER(ρ, λ), (7.12)

where λ = E[N]. With this result we have established that, immaterial of

the distribution of the number of users N , as long as N is random, the BER

averaged across the distribution of N will never be better than the BER of a

system with a fixed number of users. In short, randomization of N will always

hurt the BER performance of a multi-user system.

7.4.2. Capacity

Now, we focus on the properties of the capacity of a multi-user system with a

fixed number of users implementing MUD. The capacity for the fixed number

of users system can be expressed as,

C(ρ,N) =

∫ ∞
0

log2 (1 + x) d [Fρn(x)]N

=
1

log(2)

∫ ∞
0

1− [Fρn(x)]N

1 + x
dx (7.13)

where the latter expression is obtained from the former by performing inte-

gration by parts, and by assuming limx→0 log(1 + x)(1 − [Fρn(x)]N) = 0 and

limx→∞ log(1 + x)(1− [Fρn(x)]N) = 0.

By taking the derivative of C(ρ,N) in (7.13) with respect to N , we have,

dC(ρ,N)

dN
= − 1

log(2)

∫ ∞
0

[Fρn(x)]N log (Fρn(x))

1 + x
dx. (7.14)
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Since log (Fρn(x)) ≤ 0, the first derivative of C(ρ,N) in (7.14) is positive

thereby implying that C(ρ,N) is an increasing function of N . This implies

that C(ρ,N) is not a completely monotonic function of N .

Defining Cd(ρ,N) := dC(ρ,N)/dN , it can be seen that Cd(ρ,N) is a

completely monotonic function since,

C
(k)
d (ρ,N) = − 1

log(2)

∫ ∞
0

[Fρn(x)]N [log [Fρn(x)]]k+1

1 + x
dx. (7.15)

In the above expression, C
(k)
d (ρ,N) switches sign with increasing k thereby

satisfying the conditions required for complete monotonicity (7.8). This fur-

ther implies that C(ρ,N) has a completely monotonic derivative, immaterial

of the fading distribution. Once again, we would like to state here that for the

above result to hold, we have assumed C(ρ,N) to be a function of continuous

N , but the results hold even for discrete N .

The first property we would like to point out here is that since the second

derivative of C(ρ,N) is negative, C(ρ,N) is concave function of N . Applying

Jensen’s inequality for concave functions, we have

EN [C(ρ,N)] ≤ C(ρ, λ). (7.16)

This result implies that immaterial of the distribution of the number of users

N , randomization of N will always hurt the capacity of a multi-user system.

The completely monotone derivative property of C(ρ,N) will be used in the

following section discussing the Laplace transform ordering of random vari-

ables.
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7.5. Laplace Transform Ordering

In this section we introduce Laplace transform (LT) ordering, a method to

compare the effect that different distributions of the number of users has on

the average BER and capacity.

Stochastic ordering of random variables is a branch of probability the-

ory and statistics which deals with partial ordering of random variables with

different distributions [89, 90]. There are several different orderings, such as

the likelihood ratio ordering, mean residual ordering, and Laplace transform

ordering. Of these, we choose LT ordering for reasons which will be evident

soon.

Definition 7.5.1. : [90, pg. 39] Let X and Y be real random variables. X

is said to be less than Y in LT order (written X ≤Lt Y ), if the LTs exist and

satisfy, E
[
e−sX

]
≥ E

[
e−sY

]
for all s > 0.

The existence of the Laplace transform is trivial if X and Y are non-

negative, which is so for our case. Another important theorem that is relevant

to our work is [89, pg. 96] mentioned next,

Theorem 7. Let X and Y be two random variables. If X ≤Lt Y , then,

E [ψ(X)] ≥ E [ψ(Y )] for all completely monotone functions ψ(·), provided the

expectation exists.
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Corollary 2. [88, Corollary 3.2] Let X and Y be two random variables. If

X ≤Lt Y , then, E[ψ(X)] ≤ E[ψ(Y )] for all ψ(·) with completely monotone

derivative, provided the expectation exists.

Further in [90, pg. 61] it is shown that likelihood ratio (Lr) ordering

implies LT ordering and in [90, pg. 63] the necessary conditions for certain

discrete distributions to be likelihood ratio ordered are provided.

From this we can infer that if X and Y are both Poisson distributed with

means λ and µ respectively, such that λ ≤ µ, then X ≤Lr Y , which implies

that X ≤Lt Y . Similarly, if X and Y are geometric distributed with probability

of success on each trail p and q respectively, such that p ≤ q, then X ≤Lr Y ,

which implies that X ≤Lt Y .

From (7.10) recalling that the BER(ρ,N) is a completely monotone func-

tion and that C(ρ,N) has a completely monotone derivative, it follows that if

two random variables N1 and N2 are LT ordered, i.e., N1 ≤Lt N2 then,

EN1

[
BER(ρ,N1)

]
≥ EN2

[
BER(ρ,N2)

]
EN1 [C(ρ,N1)] ≤ EN2 [C(ρ,N2)] (7.17)

7.6. Poisson Distributed N

Consider a multi-user system which contains a large number of users. Each

user will be with a very small probability independent of the number of users

in the system or the activity of the other users. In such a system, as the
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number of users present increases, the probability that N users are at a given

instant will be Poisson distributed. Thereby, in this section we analyze the

system when N is Poisson distributed with parameter λ.

7.6.1. Outage

For extremely slow fading or non-ergodic fading channels, the probability of

outage is an important performance metric. The CDF of the SNR of the best

user chosen from a random set of users given in (7.5) represents the generic

outage probability.

Given N is Poisson distributed with parameter λ, the probability of outage

for a given minimum SNR ρm can be expressed as,

Pr(ρ∗ ≤ ρm) = G (Fρn(ρm))

=
∞∑
k=0

e−λ
λk

k!
[Fρn(ρm)]k

= e−λeλFρn (ρm)

= e−λ(1−Fρn (ρm)) (7.18)

From this expression it can be seen that as λ increases, Pr(ρ∗ ≤ ρm) decreases.

This implies that as the average number of users increases, the outage prob-

ability decreases for any distribution of the user fading channel. This once

again highlights the benefit of implementing MUD.
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Next we would like to illustrate the convergence of the CDF in (7.18) to

one of the three limiting distributions asymptotically with λ. First, we would

like to mention a theorem from [91],

Theorem 8. Define Wn = max{x1, . . . , xn} where x1, . . . , xn are i.i.d. random

variables. Let an > 0 and bn be suitably chosen constants such that, as n→∞,

F n(anx+ bn)→ S(x) (7.19)

at all continuity points of S, which means that F is in the domain of maximal

attraction of the limiting distribution S. A necessary condition for the above

convergence, as n→∞, is given by, [91, 92],

n [1− F (anx+ bn)]→ w(x). (7.20)

Depending on the properties of F (x), S(x) = ew(x) can be one of only three

forms, where

w(x) = x−h for x > 0 or

w(x) = (−x)h for x < 0 or

w(x) = e−x for all x.

Here h > 0 is a real number.

Further details can be found in [91, 92]. Using the above theorem, the

CDF of the SNR of the best user chosen from a random set of users, (7.5),

(7.18), can be expressed for λ→∞ as,

limG(Fρn(x)) = lim e−λ(1−Fρn (x)) = e−w((x−bn)/an)), (7.21)
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where limλ(1− Fρn(x)) = w(x).

This implies that the extreme value distributions defined for the maximum

of a large set of random variables can be used to express the distribution of

the SNR of the best user chosen from a random set of users. Thus, as λ→∞,

Pr(ρ∗ ≤ ρm) = e−w((ρm−bn)/an) (7.22)

is defined by the properties of Fρn(x).

7.6.2. BER

In this subsection, we provide the necessary conditions for the Jensen’s in-

equality for BER(ρ,N) in (7.17) to be tight. To this end we use the results

put forth by the author in [93]. We make use of the following theorem proved

in their work,

Theorem 9. Let f ∈ c.m.[0,∞). Define the average,

I(λ) =
∞∑
k=0

e−λ
λk

k!
f(k)

so that I(λ) = EN [f(N)] where N is a Poisson random variable with mean λ.

Then,

• I(λ) is completely monotone, strictly decreasing in λ (unless f is con-

stant) and ∀ λ ≥ 0, I(λ) ≥ f(λ),
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• If f is c.m. ∈ [0,∞) and regularly varying, i.e., f ∈ Rµ for some µ ≤ 0,

then I(λ) is both c.m. and Rµ, and

I(λ) = f(λ) +O(f(λ)/λ) as λ→∞

where f(x) = O(g(x)) means limx→∞ |f(x)/g(x)| ≤ b for some constant

b > 0, and Rµ denotes that limx→∞ f(κx)/f(x) = κµ holds for all κ > 0. For

the sake of completeness, we define regularly varying functions next.

Definition 7.6.1. A function f : (0,∞)→∞ is regularly varying at infinity

if for all κ ≥ 1, the limit,

lim
x→∞

f(κx)

f(x)
(7.23)

exists and is in (0,∞).

Regularly varying functions are those that scale homogeneously for large

arguments. Once again, we would like to state here that for our result we

have assumed BER(ρ,N) is a function of a continuous N . Since the discrete

version can be obtained by sampling the continuous version, the asymptotic

convergence in the above Definition 7.6.1 also implies the convergence for the

discrete case.

To utilize the above theorems we rewrite the BER(ρ,N) expression in

(7.9) as,

BER(ρ,N) = −
∫ ∞

0

BER′(x)eN log(Fρn (x))dx

=

∫ ∞
0

B(x)eN log(Fρn (x))dx (7.24)
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where B(x) = −BER′(x) = −dBER(x)/dx. Now, setting u := − log(Fρn(x)),

and integrating by substitution we have,

BER(ρ,N) =

∫ ∞
0

B(F−1
ρn (e−u))e−ue−uNdu

fρn(F−1
ρn (e−u))

, (7.25)

where F−1
ρn (x) is the inverse CDF function and fρn(x) is the pdf of ρn. Before

we proceed further, we present Berstein’s theorem next,

Theorem 10. If f ∈ c.m.[a,∞), this implies that

f(x) =

∫ ∞
0

e−sxdψ(s), x ∈ [a,∞), (7.26)

where ψ(s) is monotone non-decreasing and bounded on [0,∞) with ψ(0) = 0

and ψ(∞) = f(a+) <∞.

Following this, we quote Karamata’s Tauberian theorem [94] [95, XIII.4,

Theorem 2] that if f is given by Berstein representation as shown above, i.e.,

f ∈ c.m.[a,∞), then f ∈ Rµ for some µ ≤ 0 if and only if ψ(1/s) ∈ R−µ (i.e.,

ψ(s) is regularly varying as s→ 0).

In equation (7.25) we know that BER(ρ,N) is a completely monotone

function as shown in Section 7.4.1. Therefore using the above mentioned

Bernstein’s representation of completely monotone functions and the Taube-

rian theorem, BER(ρ,N) can be shown to be regularly varying at infinity by

showing that

B(F−1
ρn (e−u))

fρn
(
F−1
ρn (e−u)

)
is regularly varying at the origin, i.e., as u→ 0.
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Using the results cited above from [93], if BER(ρ,N) is completely mono-

tonic and regularly varying,

EN

[
BER(ρ,N)

]
= BER(ρ, λ) +O

(
BER(ρ, λ)/λ

)
λ→∞ (7.27)

holds. Else, if BER(ρ,N) is completely monotonic only and not regularly

varying then,

EN

[
BER(ρ,N)

]
= BER(ρ, λ) +O

(
λBER

′′
(ρ, λ)

)
λ→∞ (7.28)

To give specific examples for regularly varying BER(ρ,N) let us consider

Rayleigh faded channels with parameter 1, and let BER(x) have the general

form of e−x. For this case, we have

B(F−1
ρn (e−u))e−u

fρn(F−1
ρn (e−u))

= (1− e−u)ρ−1e−u = t(u).

From the above expression it is easy to verify that limu→0 t(κu)/t(u) exists

and is finite, thereby proving the regular variation of t(u) near its origin and

in turn proving regular variation of BER(ρ,N) at infinity.

Next, for the more general case of when BER(x) = Q(
√

2x) is considered.

For this case it can shown that,

BER(ρ,N) =
ρ

2
√

2π

∫ ∞
0

e−Nu
(1− e−u)ρ−1e−u√
−ρ log(1− e−u)

du

where we have used the form Q(x) = (1/
√

2π)
∫∞
x
e−y

2/2dy and the Leibniz

integral rule is used to find the derivative of Q(x).
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Once again, we are interested in the behavior of

(1− e−u)ρ−1e−u√
−ρ log(1− e−u)

term. This can be shown to be regularly varying as u→ 0 using (7.23).

Next the more general case of chi-square distributed channel fading with

K degrees of freedom is considered. For this, Fρn(x) = γ(K/2, X/2ρ)/Γ(K/2)

and BER(x) = e−x. The average BER can be written as,

BER(ρ,N) = ρ

∫ ∞
0

e−xeN log(γ(K/2,x/2ρ)/Γ(K/2))dx

By setting u = − log (γ(K/2, x/2ρ)/Γ(K/2)) and integrating by parts, we

have,

BER(ρ,N) =
ρΓ(K/2)

2k/2

∫ ∞
0

eρ(K−2) log(Q(k)u2/K−2)e−Nue−u

e(k/2−1) log(Q(k)u2/K−2) (−(k − 2) log (Q(k)u2/K−2))
k/2−1

du

To obtain the above expression, we need to solve γ(K/2, x/2) = Γ(K/2)e−u

for x. The solution is obtained as,

x = −(K − 2)W
(
−2[(1− e−u)Γ(K/2)]2/K−2

K − 2

)
,

where W(·) is the Lambert-W function [55]. Since we are interested in the

behavior of the arguments of the integral as u→ 0, this leads to the behavior

of the Lambert-W function as its argument approaches 0 from the left. This

in-turn leads to the Lambert-W function approaching −∞ as u→ 0.

Thereby, using the non-principal branch of the Lambert-W function and

the asymptotic representation W(x) ∼ log(x) as x→ 0− on the non-principal
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branch, and the substitution (1− e−u) ∼ u as u→ 0,

x = −(K − 2) log
(
Ω(K)u2/K−2

)
,

where Ω(K) = −2(Γ(K/2))2/K−2/(K − 2). Putting all of this together we can

express BER(ρ,N) as,

BER(ρ,N) =
ρΓ(K/2)

2K/2

∫ ∞
0

eρ(K−2) log(Ω(K)u2/K−2)e−Nue−u

eK/2−1 log(Ω(K)u2/K−2) (−(K − 2) log(Ω(K)u2/K−2))
K/2−1

du.

In the above expression we are interested in the behavior of,

u(2/K−2)(ρ(K−2)−(K/2−1)) (Ω(K))ρ(K−2)

(Ω(K))K/2−1 (−(K − 2)(log(Ω(K)u2/K−2)))
K/2−1

.

Once again, it is straightforward to check that the above function of u is

regularly varying as u → 0, thereby implying that BER(ρ,N) is regularly

varying as N →∞.

In the following section, we consider a specific distribution for N and ρn

and derive a closed form BER expression and asymptotic capacity for a system

implementing MUD with a random number of users.

7.7. A Special Case: Poisson distributed N and Rayleigh Faded

Channels

In this section, the case when the number of users N is Poisson distributed

with parameter λ and the user channels are Rayleigh faded with parameter 1

is considered.
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For this case the CDF of the instantaneous SNR of the best user chosen

from a random set of users in (7.5) can be expressed as,

G(Fρn(x)) = e−λe
(−x/ρ)

for x ≥ 0. (7.29)

From the above equation it is seen that the SNR of the best user is identical to

a truncated and shifted Gumbel distribution [96]. Notice that for x = 0 (7.29)

gives e−λ. For x > 0, (7.29) has the form of the Gumbel distribution (one of

the three limiting distributions) with an = ρ and bn = ρ log(λ) corresponding

to the parameters in [92, pg. 296]. The distribution is therefore of mixed type,

mass of e−λ at the origin and the rest of the distribution has the form of a

truncated Gumbel distribution.

It is important to note here that unlike the usage of the Gumbel distri-

bution in [97] or earlier in (7.22), in (7.29) the parameter λ is finite and not

an asymptotic result in λ. This implies that the result is exact and not an

approximation like in the other two cases.

The CDF expression in (7.29) includes the case when N = 0, i.e., there

are no users in the system. When there are no users, no data will be trans-

mitted in the system and thereby the capacity and BER are both zero. In-

cluding this case into the system performance evaluation would unfairly bias

the performance. Therefore, the N = 0 case is dropped and the zero-truncated

Poisson distribution is chosen for N . For zero-truncated Poisson distributed

N , N ∈ {1, 2, . . .} and λ = λ/(1− e−λ). The CDF of the instantaneous SNR

128



of the best user can be expressed as,

G(Fρn(x)) =
1

1− e−λ
∞∑
k=1

[Fρn(x)]k λk
e−λ

k!

=
eλ(1−e(−x/ρ)) − 1

eλ − 1
. (7.30)

The pdf can be expressed as,

fρn(x) =
λ

ρ(1− e−λ)
e−x/ρe−λe

(−x/ρ)
. (7.31)

We assume the instantaneous BER is of the form,

BER(x) = αe−ηx. (7.32)

For binary differential phase-shift-keying (DPSK) (7.32) is exact with α = 0.5

and η = 1. For Gray-coded M -level quadratic amplitude modulation (M-

QAM), α = 0.2 and η = 1.5/(M − 1) yield a BER within 1 dB for M ≥ 4 [5].

Further using the Craig’s formula,

Q(
√
x) =

1

π

∫ π/2

0

BER

(
x

2 sin2(φ)

)
dφ (7.33)

with α = 1 and η = 1 can be used for modeling BER of other modulation

schemes as well, which would lead to an additional integral to our forthcoming

results. Therefore, the average BER achieved by the system across time, can

be expressed as,

EN

[
BER(ρ,N)

]
=

λα

ρ(1− e−λ)

∫ ∞
0

e−ηxe−x/ρe−λe
−x/ρ

dx. (7.34)
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Setting y = λe−x/ρ and integrating by substitution, (7.34) can be expressed

as,

EN

[
BER(ρ,N)

]
=

α

1− e−λ

∫ λ

0

(
y

λ

)ηρ
e−ydy

=
αλ−ηρ

1− e−λ
γ(ηρ+ 1, λ)

≤ αλ−ηρ

1− e−λ
Γ(ηρ+ 1), (7.35)

where γ(s, x) is the lower incomplete gamma function [98] which has been

upper bounded by the complete gamma function Γ(s) [98]. Additionally, the

average BER depends on λ, which defines the average number of users in the

system. As λ increases, the BER of the system improves thereby highlighting

the benefit of implementing MUD once again.

To find the diversity order achievable by such a system, consider the ex-

pression in (7.35). Using the series expansion of the lower incomplete gamma

function [98], i.e.,

γ(s, x) =
∞∑
k=0

(−1)k

k!

xs+k

s+ k
, (7.36)

we can rewrite (7.35) as,

EN

[
BER(ρ,N)

]
=

αλ−ηρ

1− e−λ
∞∑
k=0

(−1)k

k!

ληρ+k+1

ηρ+ k + 1
,

=
α

ρ(1− e−λ)

∞∑
k=0

(−1)k

k!

λk+1

η + (k + 1)/ρ
. (7.37)

Defining the limit,

lim
ρ→∞

EN

[
BER(ρ,N)

]
1/ρ

=
αλ

η(eλ − 1)
, (7.38)
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which implies that the achievable diversity order will be limited to 1. Contrary

to this, it has been shown in [97] that for a system with a fixed number of users

N , a diversity order of N can be achieved. Due to this difference in achievable

diversity order, at high SNR, the system with a fixed number of users would

always outperform a system with a random number of users significantly, for

any fixed finite λ.

In Section 7.6.2, the tightness of Jensen’s inequality was shown for the

specific case of N Poisson distributed for any channel fading distribution.

This implies that for a fixed SNR, as the total number of users N for the

fixed case, and the average number of users λ increases, such that N = λ,

the BER performance of the two systems become almost identical. We will

further illustrate these points in the Simulations section. Next, we derive the

asymptotic average capacity and the corresponding scaling laws with respect

to λ. The capacity of the multi-user system with a random number of users,

averaged across the user distribution can be expressed as,

EN [C(ρ,N)] = Eρ∗ [log2(1 + ρ∗)] . (7.39)

For the zero-truncated Poisson distributed N and Rayleigh faded channels,

the capacity of the system can be written as (7.13), [99],

EN [C(ρ,N)] =
1

log(2)

∫ ∞
0

1− e−λe
−x/ρ−e−λ
1−e−λ

1 + x
dx. (7.40)

We can express (7.40) for λ→∞ as,

EN [C(ρ,N)] ∼ 1

log(2)

∫ ∞
0

1− e−λe−x/ρ

1 + x
dx, (7.41)
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Fig. 22. BER vs. λ: Rayleigh Fading Channel, SNR = 6 dB

where f(x) ∼ g(x) implies that f(x)/g(x)→ 1 as x→∞. Defining y := e−x/ρ

and integrating by substitution,

EN [C(ρ,N)] ∼ 1

log(2)

∫ 1

0

1− e−λy

1− ρ log(y)

(
ρ

y

)
dy

∼ 1

log(2)

[∫ 1/λ

0

1− e−λy

1− ρ log(y)

(
ρ

y

)
dy +

∫ 1

1/λ

ρ

y(1− ρ log(y))
dy

]
.

(7.42)

The limit of the first term in the integral in (7.42) becomes negligibly small

because limλ→∞ 1/λ = 0, while the second term can be computed as,

1

log(2)

∫ 1

1/λ

ρ

y(1− ρ log(y))
dy =

1

log(2)
log (1 + ρ log(λ)) .
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Fig. 23. Capacity vs. λ: Rayleigh Fading Channel, SNR = 10dB

This implies that the capacity of the system grows like log log(λ), i.e.,

lim
λ→∞

EN [C(ρ,N)]

log(log(λ))
= 1.

7.7.1. Outage Capacity

In this section, we consider the case when fading is non-ergodic. ε-Outage

capacity is defined as the largest rate of transmission R such that the outage

probability is less than ε; ε > 0. To help compare the outage performance of

a system implementing MUD with a random number of users, we first derive

the outage capacity of a system implementing MUD with a fixed number of

users N . By solving Pr(log(1 + ρ∗) ≤ R) = ε in (7.18), the outage capacity for
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Fig. 24. BER vs. SNR: Rayleigh Fading Channel

the system with a fixed number of users can be expressed as,

Co,f (ε) = log2

(
1 + ρF−1

(
ε1/N

))
where F (·) is the CDF of the user fading channel |hn|2. For the case of Poisson-

exponential distribution, F−1(x) = log (1/(1− x)), we have

Co,f (ε) = log2

(
1 + ρ log

(
1

1− ε1/N

))
. (7.43)
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For when the number of users is random, the outage capacity can be similarly

expressed as

Co,r(ε) = log2

(
1 + ρG−1 (ε)

)
= log2

(
1 + ρ

(
− log

(
− log (ε)

λ

)))
, (7.44)

where G−1(x) = − log (− log(x)/λ).

From [92, 97, 100] it is well known that the distribution of the maximum

SNR chosen from a set of N i.i.d. Rayleigh faded users converges to the

Gumbel limiting distribution as N →∞. For when the number of users in the

system is not fixed but random and Poisson distributed, in Section 7.6.1, we

135



show that the distribution of the maximum SNR also approaches the Gumbel

limiting distribution as the average number of users λ grows asymptotically.

Therefore, for the case where λ = N , it follows that the distribution of the

SNR of the maximum in a system with random number of users converges to

the distribution of the SNR of the maximum in a system with fixed number

of users. It is straightforward to prove that this holds even when the number

of users is zero truncated Poisson distributed. Since the CDFs converge, it

implies that their inverses also converge for values close to 1. Therefore it

follows that the ratio of outage capacity of the fixed number of users system

in (7.43) and the outage capacity of the random number of users system in

(7.44) approaches 1 as λ = N →∞.

7.8. Simulations

An uplink multi-user system where both the BS and users having a single

antenna is considered. In this section, using Monte-Carlo and semi Monte-

Carlo simulations the BER, capacity and outage capacity are simulated to

corroborate our analytical results. For all simulations considered herein, the

wireless channel between any user and BS is assumed to be Rayleigh faded

with parameter 1.

In Section 7.4.1 we proved that the BER is a completely monotone func-

tion of number of users N. In Fig. 22, assuming π/4 QPSK symbols are

transmitted, the BER of the system with fixed N is compared with the BER
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averaged across user distributions for various distributions. In Fig. 22, it is

seen that the fixed number of users system performs better than all the ran-

dom number of users systems. Only the error rate performance of the Poisson

distributed users case comes close to the fixed case as λ increases. This follows

our result in (7.27). Also the BER on the log− log plot is seen to be a convex

function which agrees with out result in Section 7.4.1.

Similarly, the capacity was shown to have a completely monotone deriva-

tive with respect to N . Thereby in Fig. 23, the capacity is plotted against λ

for both the fixed and the random user case. Following the result in Section

7.4.2, it is seen that the capacity of the fixed number of users system is the
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highest while for all distributions of N , the capacity is worse.

In Section 7.5, we showed that Poisson distributed random variables and

geometric distributed random variables can be LT ordered, which would also

order their respective BER and capacity performance when averaged across

the respective user distributions. In Fig. 24 and 25 it can be seen that both

BER and capacity follow their corresponding ordering, and that larger the

average number of users the better the performance.

Next, in Fig. 26 we plot the BER of the multi-user system implementing

MUD against average SNR for different λ’s. From Fig. 26, it can be seen

that the analytical approximation derived is within 1 dB of the Monte-Carlo
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simulation result. Following the result in (7.35) it can also be seen that larger

the value of λ, the lower the error rate.

In previous simulations we saw that increasing λ leads to an improvement

in performance, and for a fixed SNR the performance of the system with

random number of users approaches the performance of the system with fixed

number of users. Contrary to this, for a fixed λ, as SNR increases, in (7.38),

it is shown that the diversity order achievable by the random number of user

system is only 1. In Fig. 27 the simulation plots corroborate this result. As λ

increases, the BER of random case coincides with the fixed user case for larger

SNR values but eventually the slope of the curve is equal to 1. This leads us
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to conclude that for low SNR’s but sufficiently large λ the performance of the

random number of users is identical to that of the fixed case. But for high

SNR’s, the performance of the random number of users case is significantly

worse due to the loss in diversity order.

Finally, in Fig. 28 we plot the ε-capacity for both the fixed and random

number of users case. It is seen that immaterial of the operating SNR, for λ

significantly larger, the outage capacity is identical for both the systems. This

justifies our analytical findings in Section 7.7.1.
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8. CONCLUSIONS

To further reduce the implementation complexity of diversity combining

scheme, switch and stay diversity combining at the receiver has been proposed

and studied for space time coded MIMO systems for the first time to the best

of our knowledge. A channel energy based switching algorithm is proposed.

For the ML decoder, the PEP is upper bounded and the optimal switching

threshold is derived, which is a logarithmic function of the average SNR ρ.

The optimal switching threshold not only minimizes the PEP bound but also

is shown to lead to the system achieving full diversity.

Additionally, we show that for the SSC scheme implemented, the asymp-

totic PEP expression behaves as O
(
ln(ρ)N/(ρ)2N

)
instead of O

(
1/ρ2N

)
, which

mandates a higher SNR value to achieve full diversity. The high SNR analysis

in our work helps compare our results with the MIMO systems employing an-

tenna selection at the receiver. This makes a complexity versus performance

tradeoff analysis between antenna selection schemes and SSC in an analytical

framework. From the analysis and the simulation results, it can be seen that

implementing the optimal switching threshold and optimal power allocation is

advisable to achieve better error rate performance.

In practice since perfect channel information at the receiver is not avail-

able it has to be estimated. Channel estimation issues have not been studied

for the SSC scheme, for either SIMO or MIMO systems in the literature. To

fill this gap, a training scheme for the MMSE based channel estimator at the

receiver has been described and the switching algorithm based on the received
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power has been proposed. In the proposed received power based switching

algorithm, the switching rule is implemented prior to channel estimation lead-

ing to significant savings in implementation complexity. We also show that,

by optimizing the power allocation between training and data, significant per-

formance improvement can be achieved for all values of K. As K gets large,

implying a large coherence time, the PEP performance of the channel estima-

tion system approaches the perfect channel case. The high SNR analysis in

our work helps compare our results with the MIMO systems employing an-

tenna selection at the receiver. This makes a complexity versus performance

tradeoff analysis between antenna selection schemes and SSC in an analytical

framework.

From the analysis and the simulation results, it can be seen that im-

plementing the optimal switching threshold and optimal power allocation is

advisable to achieve better error rate performance. Further, when optimal

switching threshold is implemented, the receive power based switching algo-

rithm achieves the same switching rate and error rate performance as the

estimated channel case but at a significantly reduced system complexity, thus

making it an attractive choice for implementation.

Finally we consider the case when no channel state information is avail-

able either at the transmitter or the receiver. A receive SSC scheme for MIMO

systems using differential space-time coding has been proposed and analyzed.

The proposed system model has minimum complexity among all MIMO sys-
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tems aiming to achieve full spatial diversity. Being limited to only 2 receive

antennas due to the assumption of i.i.d branches, a novel switching algorithm

is proposed and the Chernoff bound on the achievable PEP is derived. As an

immediate consequence of the Chernoff bound, it is shown that for any fixed

switching threshold a diversity order of only N can be achieved. Further the

optimal switching threshold is derived to be a function of the SNR and it is

proved that by using this optimal threshold full spatial diversity of 2N can be

achieved while not necessarily minimizing the BER. When the derived optimal

threshold is used it is seen that the error rate behaves as O((ln ρ)N/ρ2N). The

(ln ρ)N penalty term mandates a higher SNR value to achieve full diversity as

compared to the AS scheme, which scales as O(ρ−2N).

Based on the PEP bound using the optimal switching threshold, the code

design criteria for differential MIMO systems employing SSC at the receiver

are proposed. For the special case of 2 × 2 system, parametric codes which

outperform the existing full complexity diagonal cyclic codes and the full com-

plexity parametric codes are designed. Though there is degradation in per-

formance compared to the systems where CSI is available at the receiver, the

proposed system realizes the benefits of a MIMO system at the least possible

implementation complexity making it an attractive choice for implementation.

In the second part, for multiuser systems, unlike the model commonly

assumed in literature, multiuser diversity is analyzed for when the number of

users in the system is random. The BER of multiuser systems implementing
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multiuser diversity is proved to be a completely monotone function of the

number of users in the system, which also implies convexity. Further the

throughput is shown to have a completely monotone derivative with respect to

the number of users. Using the above mentioned properties along with Jensen’s

inequality, it is shown that the error rate performance and throughput averaged

across the user distribution will always perform inferior to the corresponding

performance of a system with fixed number of users. Further,for very general

conditions, using Laplace transform ordering, we provide a method to compare

the performance of the system for different user distributions.

When the number of users are Poisson distributed, for any user channel

fading distribution, we show that the ratio of the error rate performance of

the random number of users system and the fixed number of users system

approaches 1 asymptotically in the average number of users. As a special

case, when the user fading channels are Rayleigh distributed, closed form BER

expression is provided. Also, the throughput and outage capacity is analyzed.
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