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ABSTRACT

A complex social system, whether artificial or natural, can possess its macroscopic

properties as a collective, which may change in real time as a result of local behavioral

interactions among a number of agents in it. If a reliable indicator is available to ab-

stract the macrolevel states, decision makers could use it to take a proactive action,

whenever needed, in order for the entire system to avoid unacceptable states or con-

verge to desired ones. In realistic scenarios, however, there can be many challenges in

learning a model of dynamic global states from interactions of agents, such as 1) high

complexity of the system itself, 2) absence of holistic perception, 3) variability of group

size, 4) biased observations on state space, and 5) identification of salient behavioral

cues. In this dissertation, I introduce useful applications of macrostate estimation in

complex multi-agent systems and explore effective deep learning frameworks to ad-

dress the inherited challenges. First of all, Remote Teammate Localization (ReTLo)

is developed in multi-robot teams, in which an individual robot can use its local inter-

actions with a nearby robot as an information channel to estimate the holistic view of

the group. Within the problem, I will show (a) learning a model of a modular team

can generalize to all others to gain the global awareness of the team of variable sizes,

and (b) active interactions are necessary to diversify training data and speed up the

overall learning process. The complexity of the next focal system escalates to a colony

of over 50 individual ants undergoing 18-day social stabilization since a chaotic event.

I will utilize this natural platform to demonstrate, in contrast to (b), (c) monotonic

samples only from “before chaos” can be sufficient to model the panicked society,

and (d) the model can also be used to discover salient behaviors to precisely predict

macrostates.
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Chapter 1

INTRODUCTION

Since long ago, there have been continuous attempts to consider a complex social

system not simply as a set of the membership but as a monolithic agent. A very

old example is the “Leviathan” published in 1651 (Hobbes, 1904), in which Hobbes

represented a society as a huge crowned figure (Fig. 1.1) whose body parts are com-

posed of numerous citizens who have granted a sovereign power to the government

as members of a large commonwealth. Ecologists have developed views of social in-

sect colonies as “superorganisms” within which individual insects show behavioral

patterns for their colony just as cells behave to maintain an organism; for example,

foraging ants can be compared to nutritive cells, egg layers to gametes, and soldiers

to immunocytes (Emerson, 1939). Even further, more recent studies have discussed

the concept of “collective minds” (Couzin, 2007) where animals in a swarm can vir-

tually construct a collective panel sensor covering the entire team by using their local

interactions as an information channel that enables each individual to sense stimuli

occurring beyond its actual sensory range.

Such views could then naturally lead a following question: “Could we define the

state of the macro entity itself as the large-scale counterpart of the state in micro

individuals so as to use them to gain a useful summary of the whole system?” This

approach is more motivated by the notion of “macrostate” in physics, which can

provide a better understanding of a system than “microstate” in many cases where,

for example, the temperature will be more intuitive information than the location

or kinetic energy of every single molecule in the air when controlling the heater in a

house.

1



Figure 1.1: Frontispiece of Leviathan, reprinted from (Hobbes, 1904)

In this spirit, this dissertation explores applications of macrostate estimation on

artificial and natural multi-agent systems in which predictive frameworks are required

to obtain accurate awareness of useful holistic attributes from the observed local inter-

actions. Within robot teams, for instance, Remote Teammate Localization (ReTLo)

is developed for an individual robot to estimate the global structure of the team only

by utilizing the sequential local observations of a nearby neighbor. Analogous to “col-

lective minds” (Couzin, 2007), the ability allows the localizing robot to expand its

sensory range beyond the actual, and it can then wisely choose whether to switch its

motion rule to swiftly shift to a particular destination that could lead a better team

2



formation to succeed in given task. Technically, I will show (a) learning a model of

a modular team can generalize to all others to gain the global awareness of the team

of variable sizes, and (b) active interactions are necessary to diversify training data

and speed up the overall learning process.

The next platform I will explore is the significantly more sophisticated society in

which over 50 ants are undergoing drastic transitions of societal states for 18 days in

terms of social stability. I will utilize this natural colony to demonstrate, in contrast

to (b), (c) monotonic samples only from “stable” can be sufficient to model the

“unstable” society, and (d) the model can also be used to discover salient behaviors

to precisely predict macrostates.

Before we deeply investigate the concrete applications, I will first describe the

concept of “macrostate” and the “estimation problem” that this dissertation handles.

In addition, anticipated challenges that can be accompanied in realistic scenarios will

be discussed, and then I will provide a brief overview of this dissertation.

1.1 Concept of Macrostate: From “micro” to “macro”

According to Poole and Mackworth (2010), a state of an agent must be an instance

that contains all the properties necessary to predict the effects of an action taken and

assess if the agent has reached a goal state. We slightly extend this general condition

to apply to a larger macro entity within which a number of micro-agents can actively

interact with the environments – i.e., a macrostate refers to an instance of properties

necessary to predict the effects of a joint action taken and assess if the macro agent

has reached a goal state.

A macrostate is not necessarily equal to a joint state widely used in problems of

multi-agent planning, where by definition, a set of states from micro-individuals are

simply concatenated resulting in a representation of a higher dimension, because it

3



can be more general to include any properties to holistically characterize the system.

A similar example is the macrostate in physics, where, for example, the volume of a

gas cannot be obtained by a simple concatenation of any microlevel states, such as

locations of molecules, although there could be a functional mapping.

Furthermore, a macrostate can be obtained from different microstates; in ReTLo

task, for instance, the team-level quality to estimate is defined by the positions of all

individual robots, and hence, the robots can actually possess different combinations

of orientations to provide the identical macro formation. Similarly, for an ant colony,

the same level of social stability could be maintained even though a particular ant

has different social ranks at the times of measurement.

1.2 Macrostate Estimation

As stated above, a complex multi-agent system can be deemed as a single large

agent, no matter how many individual members inhabit, experiencing a trajectory of

state transitions over time as depicted below:

· · · −→Mt−1 −→Mt −→Mt+1 −→ · · ·

where Mt is the macrostate at time instant t, and −→ simply denotes the temporal

order of the observed state evolution. In fact, the temporal transitions are primarily

driven by local interactions that micro-agents make – Lt , {`1@t, ..., `N@t} where `i@t

is the encoded interaction of agent i at time t leading:

· · · Lt−1−−→Mt−1
Lt−−→Mt

Lt+1−−→Mt+1
Lt+2−−→ · · ·

where a
b−→ c abstracts underlying stochasticity in the transition from a to c after b

executed. Finally, the estimation problem can now be defined as follows:

Definition. Macrostate Estimation is to reconstruct a macrostate Mt+∆ evolved from

4



a past state Mt using the temporal observations Ot:∆′ ⊆ Lt+1∪Lt+2∪ · · · ∪L∆′ where

0 < ∆ ≤ ∆′.

Here, observations Ot:t+∆′ are involved to consider practical scenarios in which

only a subset of local interactions are observed by the estimator f for a certain

period of time possibly due to its limited sensory capability or the occlusion between

agents. Also, note ∆ ≤ ∆′ implying that the observations Ot:∆′ could be used to

predict a historical state Mt+∆. In this dissertation, therefore, we will apply this

general framing to useful applications of macrostate estimation, whether the focal

system is artificial or natural, and our goal is to build the best estimator f ∗, which

can compute the estimate M̂t+∆ that causes the minimum average error from the

actual macrostate Mt+∆.

1.3 Challenges

As macrostate estimation is conducted on a sophisticated social system, there

could be challenges that must be addressed to obtain a reliable estimator especially

when the environment where the system is deployed imposes realistic constraints. I

suggest six potential issues below and for each, will describe promising solutions that

could have connections with applications in the following chapters.

Challenge 1 (C1): High complexity of system itself

As more agents are involved, a multi-agent system generally becomes more complex

since there are more possible combinations of “microscale” interactive actions and

states from the membership in order to predict the “macroscopic” outcome. In this

respect, all the systems we will explore in this dissertation can be said to be complex

in that robots or insects make frequent interactions with the environments leading

diverse collective properties to emerge that a single micro-member alone or a less
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complex group could not promote.

To model such complexity, I mainly investigate deep neural network models, in

which the complexity can be determined by the number of parameters to be optimized,

and sufficient depth could allow the hierarchical structure to learn sophisticated rela-

tionship from “micro” to “macro” layer by layer. In addition, modularization of the

system could also be effective to model the dynamics in a “less complex” subgroup

and generalize to all other modules to finally obtain a holistic representation. We will

more deeply explore the technique for ReTLo in Chapter 2.

Challenge 2 (C2): Absence of holistic perception

Observations of some individuals may not be available for the estimator in realistic

contexts where sensory and communicational resources are limited to only a subset

at a time. For example, a robot in a robotic team could only observe others located

within its sensory range, and robot-to-robot communication could also be disabled

or discouraged to save communication resources or hide from adversarial agents. In

this case, the motional interactions with the neighbors could be used as the only

medium to gain the global awareness beyond the sensible region. ReTLo problems

in Chapter 2 will focus on this issue to suggest learning motional dependency of

teammates to complement the restricted capability of perception and communication

for better cooperative coordination.

Challenge 3 (C3): Variability of group size

An estimator fitted to a particular system may fail to generalize to another if the

number of involved agents changes causing more or less frequent local interactions.

In other words, re-training could be needed to model the dynamics of the system

whenever the membership changes. To tackle this challenge, modularization could be
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a potential solution by which the estimator is designed to perform within a subgroup

of a meaningful size so that repeating applications of it across other groups could

produce a synthesized inference about the entire team. Although a system becomes

larger or smaller, consequently, the modular estimations can simply adjust the number

of executions without needing failing the model. Chapter 2 will show how these

techniques can be incorporated into multi-robot teams.

Challenge 4 (C4): Biased observations on state space

Learning an effective model of macrolevel states requires sufficient exposure to each

unique state to collect representative data. Some states, however, might not be

observed without any special stimulus to lead a particular condition. In robotic

applications (Chapter 3), I will introduce an active motion rule for an individual robot

to better promote the team to lead more diverse properties and minimize the bias in

observations for learning. In Chapter 4, an alternative approach on ant colonies will

allow for monotonic training datasets to represent only the “normal” state while the

model will also be able to classify the “abnormal” state. Such a challenge can easily

be found in biological or human societies, in which the datasets of normal behaviors,

e.g.) walking pedestrians, are often much cheaper to gain than those of the abnormal,

e.g.) rioting.

Challenge 5 (C5): Identification of salient observations

A complex social system continuously involves numerous microlevel interactions of

various types, which thus should be informative cues of emerging macrostates. It

could, however, be highly cryptic which local behaviors trigger a particular macrostate

especially if a high degree of stochasticity is present. Deep-learning algorithms could

be advantageous in this case since they have been utilized when key features cannot
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be specified in advance, so the model must automatically discover them from the

training data. Even further, in Chapter 4, we will see the potential application of

Grad-CAM (Selvaraju et al., 2017) on ant colonies to locate specific ants that are

engaged in salient micro-interactions to lead macrostates of the society.

1.4 Dissertation Outline

The following is a brief overview of this dissertation to deal with the subjects

mentioned above:

• Chapter 2 — I start with the ReTLo problem in multi-robot teams, in which

an individual robot uses microscopic behavioral observations from its neighbor

to infer the macrolevel formation states. A “modularized” prediction scheme is

suggested to effectively overcome C1∼C3 on differential drive robots in simu-

lations. Not only the inference is validated to be accurate but also a use case in

caging scenario is showcased. To obtain more reliable estimation, furthermore,

sequential observations are considered as input on physical robotic platforms

demonstrating significant improvement over the case where only transient be-

haviors are used.

• Chapter 3 — This chapter focuses on the risk of C4 that the robotic teams

could accompany while learning ReTLo. Unlike the previous approach, the

robotic learner here becomes “active” in motion selection to acquire non-biased

experiences of the team dynamics during data collection. Additional models

are introduced predicting the novelty levels of possible actions to only take the

optimal among them.

• Chapter 4 — I deal with a natural system, an ant colony, as a testbed with C4

to detect the “unstable” social state although only “stable” behaviors are ob-
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servable while learning a macrostate estimator. A generative model is developed

to create fake “ideally stable” behaviors on purpose with which a binary clas-

sifier is trained to successfully perform the macrostate estimation. Moreover,

“salient” behavioral features are located for different macrostates, to bridge the

knowledge gap between microlevel interactions and macro-scale states (C5).

• Chapter 5 — I will conclude the dissertation summarizing contributions and

potential directions of future work.
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Chapter 2

REMOTE TEAMMATE LOCALIZATION 1

We begin with macrostate estimation in robotic multi-agent systems in which the

Remote Teammate Localization (ReTLo) problem is introduced and addressed. In

particular, “formational properties” of the complex set of agents are inferred for indi-

vidual robots to use the situational information to better coordinate the trajectories

of the team eventually. To respect realistic assumptions, the problem is designed to

accompany some of the challenges listed in Section 1.3 – i.e.,) the macroscale struc-

tures depend on continuous interactions of micro-agents (C1), every robot can only

perceive local events (C2), and the learned model must be scalable to varying sizes

of the robot team (C3). Using local interactions to solve the ReTLo problem could

be interpreted in the view of behavioral ecologists like Nikolaas Tinbergen (Brad-

bury and Vehrencamp, 2011) that “implicit cues” in behaviors could be converted

to “explicit signals”. Couzin has also made a relevant point in his article “collective

minds” (Couzin, 2007) that close behavioral coupling that is local but continuous

across an animal swarm can virtually create a “self-organizing array of sensors” by

which an individual can gain useful information beyond its actual sensory power.

Through this chapter, we will examine the realization of such biological insights on

both simulated and physical robotic platforms and also discuss the achievable benefits

1This chapter is based upon (Choi et al., 2017) and (Choi et al., 2020).
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and limitations.

2.1 Introduction: Sensing beyond sensors

In networked multi-robot teams, coordinated macro-behaviors typically emerge

from micro-interactions among adjacent robots with limited sensor range, simple

motion rules, and no persistent connection to any centralized command and con-

trol authority. In principle, such a decentralized approach naturally scales well to

real-world problems where a large number of robots must be deployed over relatively

large areas where constant global communication is impractical. Significant effort has

been focused on the design of decentralized control algorithms for multi-robot sys-

tems (Wang and Kumar, 2002; Correll and Martinoli, 2004; Odhner and Asada, 2010;

Napp and Klavins, 2011; Brambilla et al., 2013; Rubenstein et al., 2014; Wilson et al.,

2014; Derakhshandeh et al., 2014; Yang et al., 2015; Valentini et al., 2015; Valentini

and Hamann, 2015; Elamvazhuthi and Berman, 2016; Valentini et al., 2016). How-

ever, approaches that make use of high levels of communication among agents present

scalability challenges, and approaches that eschew communication often achieve less

than ideal coordination as a consequence.

If a single robot could, with little explicit communication, gain awareness of the

status of other very remote agents in the team or awareness of some macroscopic state

of the group, then a new class of highly scalable coordinated behaviors would be pos-

sible. Robots in one location could perform behaviors that complement the actions

of robots in another location in a way that is currently only possible using levels of

signalling that are particularly burdensome in large-scale groups. It is now possible

to shift from explicit to implicit communication, from what behavioral ecologists call

“signals” to “cues” (Bradbury and Vehrencamp, 2011), because of the recent increase

in computational power available on modern small robotic platforms. Whereas the
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platforms of the past compensated for little local computational power with commu-

nication to coordinate with other agents, robotic platforms of the future can rely on

high levels of local computational power to reduce the need for communication that

may be energetically costly or physically infeasible.

Toward this end, we propose machine-learning methods to solve the ReTLo prob-

lem where a robot (Tail) at one end of a line formation of a multi-robot team is to

predict positions of all other teammates only using local observations about a single

nearby teammate. Because each robot has a limited sensor radius and a relatively

simple motion rule that depends on the position of its nearest neighbors, the Tail

has to be able to learn the regularity of the observed motions of its neighbor to fi-

nally infer the poses of all other robots. We introduce a repetitive prediction scheme

to use predictions about nearer teammates to make predictions on farther ones un-

til the prediction reached the Head robot at the other end in line formation. In a

multi-robot simulation, we showed the feasibility of using the method in an example

caging scenario in which the Tail could recognize the early stages of a caging action

of Head and promote a proactive maneuver to better assist in coordinating the team

to quickly enclose an encountered object in the environment.

To demonstrate our approaches, we consider a simple scenario where a heteroge-

neous multi-agent system like the one in Fig. 2.1a maintains a chain formation and

consists of three types of nonholonomic mobile robots: Head, Follower, and Tail.

Head is a robot at one end of the chain formation, Tail is another at the distal end,

and between them is a string of Follower robots. Our goal is to train artificial neural

networks (ANNs) (Schmidhuber, 2015) on Tail to learn how to utilize locally observ-

able information – the position of its nearest neighbor – to estimate the position of

every robot in the system even including the Head when it is outside of the sensor

range of the Tail. The major strength of our approach is that training of the ANNs on
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(a) Multi-robot chain

(b) Caging scenario

Figure 2.1: Motivating examples. Robots move in a chain formation until encounter-

ing an object to be encircled. In (a), heterogeneous robots move in chain formation

from right to left. In (b), the Tail robot breaks out of chain formation to more rapidly

encircle an object encountered first by Head.
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Tail requires only a 3-robot chain, and the resulting ANN can be applied by Tail to

fix the positions of robots in longer chains simply by applying the ANN repeatedly in

a recursive fashion. We first validate our models in a simulation of robots with realis-

tic assumptions – the presence of noise and little-or-no communication availability –

and also show that the approach can facilitate coordinated behaviors like the one in

Fig. 2.1b. A more developed model with Long Short-Term Memory (LSTM) (Hochre-

iter and Schmidhuber, 1997) is then proposed to demonstrate its high reliability on

a physical, commercial robotic platform, ThymioII (Riedo et al., 2013), with the

quantitative and qualitative results.

2.1.1 Chapter Highlights

A brief overview of the subjects in this chapter is as follows:

• Section 2.3 – We will formally build a multi-robotic system under realistic

constraints in which individual mobile robots can perceive only their nearest

neighbors as the team is driven by a Leader robot in the chain formation.

• Section 2.5.1 – The core technique of modular macrostate estimation is intro-

duced. The estimation process is first explained in a short module of 3 robots

first, and then the example is scaled up to a larger team. The same modulariza-

tion method is applied in both the simulated and physical platforms only with

a difference in designs of the main estimator applied.

• Section 2.5.2 – Specific settings on experiments are described including the

Robotarium simulator Pickem et al. (2016) and the hyperparameters for the

neural network models.

• Section 2.6.1 – Improved estimator with LSTM layers is introduced to effec-

tively encode a longer period of observations than the previous feed-forward
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networks, to achieve more accurate predictions on real robots.

• Section 2.6.2 – We will learn the experimental environments on ThymioII (Riedo

et al., 2013) used to gather data samples for training and test. In particular,

practical strategies are explained to generate sufficiently challenging trajectories

for fair evaluations.

2.2 Related Work

In this section, we discuss results from the multi-robot systems literature similar

to ours and elaborate on the distinct contribution of our work.

Cooperative localization and tracking

Although the ReTLo problem is superficially similar to other known cooperative

localization and tracking problems (Grocholsky et al., 2004; Luft et al., 2016; Franchi

et al., 2010; Cheng and Xie, 2014; De Silva et al., 2015), such as cooperative SLAM,

it is distinct from general robotic localization. In ReTLo, the robot does not execute

predictions on its own location but on its teammates using accessible information.

Moreover, in contrast with cooperative localization approaches, robots in ReTLo

are assumed to be communication free and thus not allowed to communicate with

other members during the prediction of positions. Hence, in lieu of direct signaling,

an underlying assumption of the ReTLo problem is that the robot behaviors are

correlated with the state of the environment around them and thus contain cues

about the state of their neighbors. In this sense, state observers in a networked robotic

system are more similar to ReTLo than robotic localization (Xiao-Yuan et al., 2010;

Antonelli et al., 2012), but ReTLo does not depend upon knowledge of the structure

of the underlying robotic controllers and does not require that robots move according

to simplistic, analytically tractable dynamical models. Furthermore, we emphasize
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ReTLo solutions focused on scaling from training with small teams to implementation

in potentially much larger and possibly variably sized teams.

Group state recognition

The ReTLo problem aims to infer the positional state of an entire multi-robot team

using only locally obtainable information in the aspect of a robot member. This is

because the knowledge about global configuration could help make a better decision

for the sake of whole team. In this spirit, Brown and Goodrich (2014) as well as Berger

et al. (2016) show that local interactions of robots within a swarm can be used to

classify swarm-level macroscopic structures, such as particular swarm-level shapes like

flock and torus. In contrast, our work is to estimate the pose of robots themselves,

which are the microscopic elements of the multi-robot team. Consequently, we make

inferences on a space with far more degrees of freedom and require a more powerful

regression model.

Behavioral cue interpretation

In the ReTLo problem, the pose of remote robots is to be inferred from the motions of

nearby robots performing otherwise nominal behaviors. This approach allows infor-

mation to flow around a multi-robot team without traditional communication modal-

ities for explicit signalling, such as radio communication. Motivated by similar con-

straints on reducing the use of these modalities, Novitzky et al. (2012) and Das et al.

(2016) showed how robots performing a special behavior, similar to a “waggle dance”

of honeybees (Von Frisch, 1967), could convey information visually or mechanically

to remotely observing robots. Their approaches are different from ours in that we do

not require robots to deviate from their normal behaviors for the purposes of explicit

communication; we infer positions only from the latent information in nominal robot
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behavior and interactions.

Robot dynamics learning

Byravan and Fox (2017) proposed a deep learning approach to predict the next visual

frame given both a current visual frame as well as knowledge of a force acting on

an object within the frame. One of the motivations for this work was to understand

the dynamics of robotic arms and the relationship with control commands possibly

executed. In the ReTLo problem described, the Tail robot may have accumulated

a global shape of robot team over time, and it has to be able to predict the future

formation as a new observation on its neighbor is provided, which could be viewed

as gaining knowledge of an applied force on the team. Such a similarity inspired the

architecture of our neural network model, but Byranvan and Fox focused on learning

motions of rigid objects whereas a chain of robots in our work can present much

flexibility in team shape. In addition, the positional information about the nearest

neighbor is only loosely analogous to the perfect knowledge of force used in the frame-

prediction example. Consequently, our approach is a significant deviation from the

one proposed by Byravan and Fox (2017).

Robot teams in chain formation

In our running example of a moving chain formation, the formation can be driven by

two heterogeneous leaders, Head and Tail. A similarly structured robotic system was

designed by Elamvazhuthi and Berman (2016) consisting of a long string of holonomic

point robots that are terminated by two leader agents. While the interior robots

in the chain perform simple, wave-like motion rules based on position information

from neighbors only, the two leader robots have pre-programmed trajectories that

are guaranteed to drive the interior robots to desired locations along a formation.
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In contrast, our goal is to infer remote properties of the multi-robot team based on

local information even when the individual-robot motion models are too complex to

be analyzed mathematically. Thus, our methods generalize to more realistic robotic

motion rules – such as nonholonomic robots limited to two-dimensional planar motion

with collision avoidance.

Caging behaviors in multi-robot systems

Our motivating application example, caging, is a popular scenario in the robotics

literature. Wilson et al. (2014) developed a stochastic robotics method for boundary

coverage meant to mimic the collective transport behavior of ants, and Derakhshan-

deh et al. (2014) developed an amoeba-inspired distributed algorithm for coating

objects on a specially defined grid. Each of these applications makes use of iden-

tically controlled agents that come to equilibrium in some desired formation, often

with the assumption of a simplistic motion model. In contrast, we focus on heteroge-

neous multi-agent systems where some agents must gain global situational awareness

in order to make decisions about whether and when to switch from certain behavioral

modes to certain other modes. In principle, our method could be used in combina-

tion with these other techniques so that agents can determine when to switch to other

behaviors after the desired configuration has been reached.

2.3 System Design 2

We consider a multi-agent system consisting of n nonholonomic mobile robots that

move within a chain formation in the plane of R2. At all times, each one has a pose

denoted by a three dimensional vector (x, y, θ) where x and y specify its position and

θ its orientation. Every robot is controlled by a decentralized controller and can only

2(Choi et al., 2017)
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detect the distance and angle to another robot or other object within a limited sensor

radius. Due to this limitation, each robot cannot localize in the global coordinate

system but can use their own frame of reference to represent observed objects.

Each robot type from Fig. 2.1a has a distinct motion rule.

• The Head moves independently in the given space.

• The n − 2 Follower robots continuously update their position to maintain a

constant distance between their two nearest neighbors.

• The Tail either follows its single neighbor at a constant distance or moves

independently.

So as the Head moves, it pulls a nominally rigid chain of robots behind it, but Tail

can switch to moving independently of the others, causing the chain to be pulled at

both ends.

Formally, we define the set of robots R , {1, 2, . . . , n} where robot n is the Head,

robot 1 is the Tail, and robot i ∈ {2, . . . , n−1} is a Follower, interchangeably denoted

as Follower (i − 1) where (i − 1) indicates the number of robots ahead of the Tail

(i.e., Follower 1 is closest to the Tail). Every robot i ∈ R is assumed to abide by

nonholonomic unicycle kinematics of the form
ẋi = vi sin(θi)

ẏi = vi cos(θi)

θ̇i = ωi

where vector ~pi , (xi, yi) is the robot’s Cartesian position, θi is the robot’s orientation,

vi is the linear velocity of the robot, and ωi is the angular velocity of the robot. The

pose ~si , (xi, yi, θi) of a robot i ∈ R is a vector containing its position in the

plane and its heading orientation. Thus, by adjusting ωi and vi, the nonholonomic
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robot can be driven like a unicycle over the plane. We use this model for simplicity.

However, the data-oriented machine learning approaches described in Section 2.5.1

and Section 2.6.1 should be applicable to a wide range of other kinematic and dynamic

models as well.

To implement the chain-following formation shown in Fig. 2.1a, we use fully actu-

ated, holonomic kinematics in the Cartesian plane to generate reference trajectories

for ωi and vi to track within the more realistic nonholonomic unicycle kinematics. As

described above, the underlying robots attempting to track these reference behaviors

will do so with some error because they are nonholonomic. So the actual behavioral

rules are a composition of simplistic holonomic kinematics with the more realistic

nonholonomic kinematics of the robots. The particular coordinate transformation

and nonholonomic constraints are implemented under conventional control theory for

differential wheeled robots, and so we only present the fully actuated, target motion

rules here. In particular:

• The Head robot approximates the motion rule:

~̇pn = ~Th − ~pn

where ~Th is some target Cartesian position in the space. Thus, the Head robot

is always moving toward some target point set elsewhere in its control hierarchy.

• Each Follower robot i ∈ {2, . . . , n− 1} approximates:

~̇pi = kf ((‖~pi − ~pi−1‖ − d)(~pi−1 − ~pi) + (‖~pi − ~pi+1‖ − d)(~pi+1 − ~pi))

where kf is a scalar that scales the difference between the desired spacing around

robot i to a desired velocity that should, if geometrically possible, return the

Follower to a distance of d away from its two neighbors.
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• The Follower normally behaves like a Follower with one neighbor, as in:

~̇p1 = kt((‖~p1 − ~p2‖ − d)(~p2 − ~p1)).

However, it could switch to an independent motion rule when it has noticed

that Head has detected some object to encircle particularly to achieve caging

missions attempted in Section 2.5.4.

Thus, the challenge is how the Tail can use regularities in the patterns of interactions

that emerge from such simple motion rules to predict the positions of all teammates,

including the farthest Head, by using only accessible knowledge such as the position

of robot 2, the Follower closest to Tail.

2.4 ReTLo Problem 3

The ReTLo is to localize all teammates from the view of Tail only using locally

observable information of the position of Follower 1 at every time step. Here, we

introduce a general version of ReTLo with a practical assumption that until a specific

time instant τ , all the information about positions and orientations of all robots

have been shared reliably with the Tail robot, possibly via global communication,

but continued information sharing is unavailable after time τ . Consequently, Tail

must use this localization technique to extrapolate from the previously known reliable

positions. Based on this setting, we will actually deal with two different scenarios

after time τ where in Section 2.5.1 the Tail relies only on most recent observations

at each time instant while in Section 2.6.1, all the prior knowledge until τ are also

utilized for future estimations.

Formally, at the time instant τ , the following set of poses of all teammates is

3(Choi et al., 2020)
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available:

{~pr@t, θr@t} (2.1)

where ~pr@t , (xr@t, yr@t) is the position of robot r at time t and θr@t is the orientation

of robot r at time t, with r ∈ {T, F1, F2, ..., Fn−2, H} and t ≤ τ . The ReTLo problem

is thus, at each time t > τ , to observe the position of F1, ~pF1@t
, and use all available

information to predict the pose set in Equation 2.1 for time t′ where τ < t′ ≤ t. In

other words, the ReTLo problem is a specific example of macrostate estimation (c.f.

Section 1.2) in which macrostate Mt′ ,
N⋃
i=1

{pi@t′ , θi@t′} is estimated given the previous

state Mτ and the temporal observations Oτ :t , {p2@τ , ..., p2@t}.

2.5 On Computer Simulations 4

We first investigate the plausibility of ReTLo on computer-simulated robots before

real robotic models are implemented. Specifically, a machine learning pipeline which

involves relatively shallow feed-forward neural networks is proposed here to use recent

positional observations from the nearest follower at each time to predict the pose

information of all teammates, although we will see later in Section 2.6 a more advanced

model to ensure higher performance on actual robots.

2.5.1 Methodology

Our goal is to design an essentially communication-free algorithm that enables

Tail to estimate the position of each distant robot r ∈ {F2, F3, . . . , H} in the team

using only locally sensed information about robot 2, Follower 1 immediately ahead

of it. Furthermore, the same algorithm should be able to be used for a wide range of

team sizes. The scalability of our approach comes from our use of modular artificial

neural networks that are applied recursively as opposed to a monolithic ANN tailored

4(Choi et al., 2017)
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for a particular team size.

2.5.1.1 Learning from Instant Behaviors

Toward accomplishing our goal, we first consider the simple 3-robot case (n = 3)

where robot 3 is the Head. On Tail, we use backpropagation Bishop (2006) to train

a set of ANNs, {ANNx, ANNy, ANNθ}, as regression models that can predict the

Cartesian coordinates of robot 3 as well as the orientation of robot 2 (Follower) using

only the sensed coordinates of robot 2. They are trained with pose data collected

at discrete time instants during interactions among the three robots in simulations

where robot 3 takes arbitrary motions.

Each ANN is a multi-layer perceptron employing three layers – one input layer,

one hidden layer, and one output layer. The hidden layer utilizes 12 nodes, each

of which performs computations that take values from all nodes of the input. Each

hidden node uses the logistic, sigmoidal activation function whose output ranges

continuously from 0 to 1. For regression purposes, one node set in the output layer

has a linear activation function taking outputs of all hidden nodes as input. The

major difference in the structure of the three ANNs is in their input layer. The

ANNx, which is used to predict ~xH@t, takes six inputs consisting of:

• ~sF@t, the pose of robot 2

• ~pF@t+1, the relative coordinates of robot 2 at time t+ 1

• b, a scalar bias

where all positions noted here are assumed to be expressed in the reference frame of

the Tail robot because, in practice, the Tail has to understand positions of others

by projection onto the local coordinate system centered at itself. Though a similar

conversion may be considered for orientation, we use absolute direction in this work
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(i.e., assume that all robots agree on compass directions) for simplicity. In training,

the ANNy that estimates ~yH@t uses these same six inputs plus ~xH@t. Similarly, the

ANNθ for ~θF@t+1 takes the seven inputs of ANNy as well as ~yH@t. For the n > 3

case, we explain how coordinate transformations allow these ANNs to be applied

recursively to predict all robot positions in the following section.

2.5.1.2 Scalable, Modular Prediction Strategy

For estimation with n = 3, the ANNs on Tail can estimate ~pH@t−1 and θF@t at

any time t using only the locally sensed position of Follower (assuming the initial

orientation of all robots are known). Throughout the estimation process, the ~xH@t

input to ANNy and ANNθ will be estimated by ANNx, and the ~yH@t input to ANNθ

will be by ANNy. For example, as the ReTLo technique is needed from time τ + 1,

using the position information of Follower at τ and τ + 1, the Tail can first estimate

the orientation θ̂F@τ+1. Then, by utilizing the subsequent observations of ~pF@τ+1 and

~pF@τ+2 and the predicted orientation θ̂F@τ+1, Tail can estimate ~̂pH@τ+1 as well as

θ̂F@τ+2. Similarly, for every time instant t > τ , Tail can estimate ~pH@t−1 and θF@t.

As described in Section 2.5.1.1, our approach trains three ANNs for the n = 3 case

and applies them recursively to estimate the positions of robots in the n > 3 case.

An alternative approach would be to apply ANNs trained on data for cases where

n ≥ 3. However, training under that approach would be complicated by a relatively

large state space, and a new training phase would be required whenever the number

of deployed robots changed.

For scalability and to simplify the training process, we take advantage of a co-

ordinate transformation. Assume that n > 3 and Tail has processed the estimation

until t = τ + 3 as described above. Tail can transform the estimates for robots 2

and 3 into the reference frame of robot 2 to predict ~p4@τ+1; that is, the Tail can act
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as if it is robot 2 predicting the position of robot 4. The predicted position also can

be transformed back to the natural reference frame of Tail for it to gain the global

awareness. By such a repeated computation, Tail can finally obtain estimates for

the full pose information up to robot i ∈ {3, . . . , n − 1} and thus also the position

information up to robot (i+ 1) in finite time. Estimates of a far robot i ∈ {3, . . . , n}

will be delayed, but this delay scales only linearly with the distance from the Tail,

which is no worse than would be expected with direct communication of position in

a distributed, ad hoc wireless network. Thus, the ANNs trained in the 3-robot case

are a general purpose tool for inferring pose information for arbitrary length chains.

2.5.2 Experimental Configurations

Experiments were conducted in the simulation platform designed for use with

the Robotarium Pickem et al. (2016), a remotely accessible swarm-robotics testbed

consisting of large numbers of GRITSBot robots Pickem et al. (2015). The GRITS-

Bot is a nonholonomic, differential drive robot that is modeled explicitly within the

Robotarium simulator, available in both Matlab and Python. In principle, robotic

implementations tested within the simulator can easily be ported to the actual Rob-

otarium multi-robot testbed environment and executed remotely. For our simulated

case, the rectangle-shaped arena has width 1.2 and length 0.7, and the diameter and

sensor radius of each robot are 0.03 and 0.12, respectively.

2.5.2.1 Training Procedure

In the learning phase, only three robots, one Head, one Follower, and one Tail,

are involved as explained in Section 2.5.1.1. They are allowed to interact with each

other according to the built-in motion rules described in Section 2.3. During the

interactions, all pose information is recorded every time step to later train the three
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ANNs on Tail. For efficient learning, Head is designed to choose its actions from a

predetermined set of linear and angular velocity values, leading the team to move

forward or make different curves.

In addition to the velocity of Head, it is important to vary the motion-rule param-

eter kt on Tail as well. The ANN is trained in a 3-robot scenario where the motion

of Tail is not constrained by any robots that follow its own motion; however, when

applying the ANN recursively in the n > 3 case as described in Section 2.5.1.2, the

fictitious Tail robots in each recursion step will be more constrained than a true Tail.

By training with different values of kt, the ANN is able to anticipate this reduced

flexibility.

Our training data is generated from the 20 combinations of the five Head velocities

with four kt parameter values. Each of the 20 treatments was allowed to run for 800

time steps, and the resulting trajectories were replicated five times so that Gaussian

noise ε ∼ N (0, 0.0012) could be added to each datum to ensure stable performance

of the ANNs even with noise. All ANNs were trained for 500 epochs with a learning

rate of 0.05 and momentum 0.2.

2.5.2.2 Estimation Phase

To examine the feasibility and accuracy of our estimation method in various set-

tings, we first show position estimation results from experiments where the Tail only

has access to local information about its immediate neighbor. In particular, the relia-

bility will tested on various types of team structures while moving, e.g.) straight and

curving. Next, a different scenario is introduced where the ANN is used to interpolate

between slow updates from periodic communication of other robot positions. Also,

we test the effect of noise on the estimation performance.
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2.5.3 Quantitative Evaluations

As a measure of estimation accuracy, the Euclidean distance between the actual

position of robot i ∈ {3, ..., n} and the corresponding estimate in Tail ’s perspective

is calculated every time step. Estimates with an error below the robot diameter of

0.03 are considered to be accurate. Moreover, the testing duration 1, 600 is twice the

training duration, which ensures that the ANN is tested with novel challenges.

To differentiate between followers during the experiments, we use the naming

convention that Follower 1 is adjacent to Tail, Follower 2 is adjacent to Follower 1,

Follower 3 is adjacent to Follower 2, and so on.

2.5.3.1 Estimation without Communication

Fig. 2.2a plots the accuracy in the simplest case where the Head leads the other

five robots to travel straight. The estimation error is larger for farther robots as they

inherit some error from estimations of nearer robots. Yet, every error is below 0.03

and thus within our accuracy tolerance through 1, 600 steps.

We also tested our model with a curve formation that is more complex than a

straight line. Fig. 2.2b shows the performance for the case where the Head leads a

team of five robots to make a curve. The overall error is larger than the previous

case, but every error remained in the acceptable level. The error peaked near 400 time

steps when the curve’s angle was at the maximum during the execution. However,

the error decreased after that peak as robots recovered from overshooting the turn

and returned to their straight trajectory.

Then, we explored a case of six robots, one more than the previous case, while

making a turn. As shown in Fig. 2.2c, the overall performance was worse than the two

previous cases, as the estimate for Head was inaccurate between 350 and 750 steps.
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Figure 2.2: Estimation errors. (a), (b), and (c) are cases when Tail performs the

estimation without any assistance of communication. Cases (d) and (f) allow Tail

to access to the actual pose information of the team every 150 time steps. (e) is a

noise-corrupted configuration of (b), and (f) is of (d).
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Though the estimation for the other robots (Follower 2, 3, and 4 ) was accurate, the

accumulated error caused unacceptable estimation error for Head. Nevertheless, the

performance pattern looks similar as the previous experiment in that the peak error

occurs near 500 steps and declines to below the 0.03 accuracy threshold as the robots

return to a more predictable straight-line trajectory after 750 time steps.

2.5.3.2 Intermittent Communication

Although we have focused on scenarios where there is no robot-to-robot commu-

nication, we also tested the effect of intermittent communication providing limited

information at a relatively slow rate. In reality, we could expect that robots can, in

principle, broadcast their own pose data but do not frequently do so due to techno-

logical limitations or to save on communication cost. For instance, an aerial robot

may only be able to share its pose periodically with a single base station that can

relay it later to other robots that periodically fly by.

In our case, every 150 time steps, Tail is allowed to access to actual position and

orientation information for estimation process. Between messages, Tail must use the

ANN to infer the pose of others, but actual pose is known intermittently.

Fig. 2.2d illustrates the improvement by the periodic communication, when six

robots are turning a curve as previous setting. Just after the communication update,

the error rapidly decreases toward zero due to the introduced information from the

communication burst. These periodic decreases in error allow for longer periods of

time when the total error is kept under the accuracy threshold.

2.5.3.3 Reliability Demonstration

In this set of experiments, we tested the case where measurements were corrupted

with noise. Specifically, we added noise ε ∼ N (0, 0.0012) to every data instance
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that is fed to the ANNs in order to examine if the scenarios that already showed

successful results would lead to the similar performance in this situation as well. The

distribution of noise was chosen to simulate that 99% of measurements would have

an error off the true value by ≤ 0.003, 10% of the diameter of simulated robots.

Fig. 2.2e shows a noise-corrupted version of the scenario evaluated earlier in

Fig. 2.2b. Despite the additive noise, the ANNs still perform reliably well; every

estimate is within the accuracy threshold over time. On average, the error has a

similar shape to Fig. 2.2b.

The case in Fig. 2.2f was configured as in the periodic communication case of

Fig. 2.2d with additive noise. The noise-corrupted results vary only slightly from the

noise-free results, and so our approach can perform well even in a noisy environment.

2.5.4 Use Case: Proactive Assist for Caging Mission

Finally, we return to the motivating multi-robot team application that we in-

troduced in Fig. 2.1b. The multi-robot team is to surround an object after being

detected by Head. Empirically, we found that caging cannot be accomplished in a

team of only Head and Follower robots because the Follower robots have no attrac-

tion to the object and thus will not circle it under their simple motion rules. By

estimating the behavior of Head, the Tail can determine when the Head has detected

an object and roughly where the object is. At that point, the Tail can move in a

direction that ensures that the Follower robots (which are influenced by both their

forward and rearward neighbors) are pulled toward the object.

In this scenario, we assume that Head and Tail can follow along with the surface

of an object that they locally encounter in the environment. We also assume that

Follower uses a potential-field-based controller Arkin (1998) to avoid collisions when

in close proximity to the object. Because Head will detect the object before Tail, we
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Figure 2.3: Applicable caging scenario for a team with a Tail that can infer changes

in the behavior of the Head from remote.

will study the case where Tail detects that Head has begun a caging maneuver that

can be assisted by Tail. In that condition, Tail will begin to encircle the object in

the reverse direction of Head. In the end, when Head and Tail are facing each other,

they will switch to a Follower motion rule so that the caging formation converges

to equilibrium “net” around the object, in which all the robots maintain the same

distance to neighbors over time.

Fig. 2.3 shows our implementation for 6 robots deployed for the caging mission

on the simulator. We placed a virtual, circular object for the mission at the center

with a circular boundary drawn around it indicating the desired final positions of the

robots. The robot team starts searching from bottom left as shown in Fig. 2.3a. In
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Fig. 2.3b, Head has sensed the object and begins to move around it, and this motion

is detected by Tail that starts to deviate from simply following its nearest neighbor.

2.3c illustrates how the complementary actions of Head and Tail lead to an encircling

maneuver, and Fig. 2.3d shows the final formation.

2.6 On Physical Testbeds 5

We have looked at the demonstrations of ReTLo in simulated environments. In

this section, the implementation expands to actual, physical robots to investigate

the feasibility of the proposed approach on more realistic environments. In fact, the

prediction power showed some limitations in previous experiments especially when a

longer chain of robots was deployed, and therefore, we might ask questions: “Will the

same model be sufficient to perform as well on the real robotic platform, where more

noisy factors could be present?”, “If not, how could it be improved?” The following

sections answer these questions.

2.6.1 Methodology

From the previous method, the fundamental mechanism of “modular” prediction

(Section 2.5.1.2 is still used here to take its advantages, but LSTM layers are deployed

in the learning model to consider as input signal not only newly incoming observations

but also the past trajectory, which includes prior knowledge and previous predictions

(c.f. Fig. 2.4). More technical details of the new model are provided in Section 2.6.1.1,

followed by experimental settings and results.

5(Choi et al., 2020)
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Figure 2.4: Illustration of our proposed pipeline in a snapshot example of 5 robots at

time t. Each robot has a limited view and a motion rule dependent on its neighbors

except the Head robot leading the team at the front. Tail uses recent observations

on its neighbor, Follower 3, which is denoted as O(t− 1, t). A sequence of historical

poses, h, is also encoded for the model to make a final prediction on the unseen

teammates.

2.6.1.1 Learning from Behavioral Sequences

Because the learned regressor is designed to work in a modular team of 3 robots,

notations for robot r ∈ {H,F, T} only indicate the identities of Head, Follower, and

Tail and not any additional intermediate Follower robots. Recall that all positions

noted here are assumed to be expressed in the reference frame of the Tail robot

though we use absolute direction for orientation.

In this work, we use a significantly different deep neural network architecture than

our previous ReTLo model on simulations. As shown in Fig. 2.5, our proposed model

here uses not only the current observation of the follower as an input but also a

historical sequence of poses. We deconstruct the architecture here.
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Figure 2.5: Structure of our proposed deep neural network. This is an snapshot exam-

ple when applied to a focused module of 3 robots, called Tail, Follower, Head within

it, at time t+ 1. The Encoder–Decoder structure encodes: 1) historical positions and

orientations of Follower and Head until t − 1, and 2) the observed positions of the

Follower at t and t+ 1. The decoder part learns to estimate: 1) the position of Head

at t, and 2) orientations of Follower at t and t+ 1 and Head at t.

• We use a fully connected (FC) layer fobs of size k ∈ N to encode observations

into a feature vector o ∈ Rk. That is,

o = fobs(Xobs) (2.2)

where Xobs = (~pF@t, ~pF@t+1) is the observed positions of Follower at times t and

t+ 1.

• A historical sequence of poses is encoded by a bi-directional LSTM layer (Wu

et al., 2016),

h = fhist(Xhist) (2.3)

where fhist is a LSTM layer, Xhist = (~pH@t−`:t−1, θH@t−`:t−1, ~pF@t−`:t−1, θF@t−`:t−1),

and h ∈ R2×m is the encoded history feature where ` is the length of historical

sequence, and m is the size of LSTM layer.
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• The o and h feature vectors are synthesized by a layer φ, which is passed as

input to two separate final regressors, gp and gθ, such that

Yp = gp(φ(o, h)),

Yθ = gθ(φ(o, h))

(2.4)

where Yp = ~̂pH@t and Yθ = (θ̂F@t, θ̂H@t, θ̂F@t+1).

For fusion of o and h features, layer φ in Equation 2.4 could be implemented

by any type of layer. During our experiments, we built a FC layer of size

d ∈ N to find a nonlinear relationship between the input features and achieved

a satisfactory performance.

Furthermore, orientation estimate θ̂F@t+1 gained with θ̂F@t is estimated again

when θ̂F@t+2 is estimated at the next prediction step. Although our model

keeps the later estimate only, we discovered that involving it in both steps can

regulate the regressor during learning to produce a model that achieves a better

validation score.

To find a best combination of model parameters mentioned above, we performed an

extensive random search with choices of other learning parameters and finally set

k = 80,m = 160, and d = 160.

2.6.2 Experimental Configurations

Here, I describe detailed configurations that could reproduce the experimental

results to be discussed. Because the distinction from previous settings is to perform

the macrostate estimation on real robots, the environmental information of employed

robotic platform, ThymioII, and other connected hardware devices are first explained,

and then, strategies for effective data collection are described with the entire training

procedure.
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(a) (b)

Figure 2.6: (a) Thymio robot equipped with a Raspberry Pi and a potable battery

to stably communicate with the central computer during experiments. (b) Arena of

2.5m × 1.9m observed by an overhead camera on which each robot is covered by a

triangle pattern of a unique color to easily track its position and orientation for data

collection. The red dot on the arena is the randomly sampled destination of Head

(Pink robot).

2.6.2.1 Robotic Platform – ThymioII

To demonstrate the effectiveness of our method, we employ a commercially avail-

able, two-wheeled physical robotics platform, ThymioII (Riedo et al., 2013), which

allows to execute a team of small two-wheeled mobile robots. Although each Thymio

robot has sensing and computation capabilities, we used a central computer con-

nected with a overhead camera to simulate better proximity sensors, more powerful

computing power, and a GPS system that would be generalizable to other robotic

platforms run in a similar physical scenario. Specifically, the central system is config-
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Duration Num. of Samples Num. of Instances

3 robots 100.6 minutes 6, 975 465

5 robots 45.0 minutes 8, 736 208

Table 2.1: Description of data collected from executions of 3-robot and 5-robot teams.

ured to detect the locations of robots in real time using off-the-shelf computer vision

packages and communicate with a Raspberry Pi board (Upton and Halfacree, 2014)

mounted on each robot (Fig. 2.6a), which implements control laws based on the re-

ceived positional information about neighboring robots. The Tail and each Follower

robots were configured, as in our previous simulation work, to regulate distance with

the robot ahead of it. Regulation of the distance behind each Follower robot was

achieved through stopping (as opposed to backward motion), which reduced higher

frequency oscillations in individual robot motion. Additional details about the phys-

ical constraints of the laboratory testbed are can be viewed in a supplementary video

at https://youtu.be/Ok7Car0IcCE.

2.6.2.2 Data Collection

We collected the pose data from two robot teams, one of 3 robots and one of

5 robots, that ran separately in an arena of 2.5m × 1.9m (Fig. 2.6b). The location

detection was performed at 4 frames per second at each of which a new command

was received by each robot. Also, all pose data was collected at the rate of 2 frames

per second, which was not necessarily synchronized with the command timing. We

set the length of history to 5 seconds (10 time steps in data recording) and the time

window for prediction to the next 8 seconds (16 time steps).

We also designed a central trajectory planner Ψ to generate highly arbitrary poses
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of the robot team without frequent human intervention. Ψ essentially provides ran-

dom waypoints to the Head robot simulating a virtual rectangular grid G of 12×8 cells

overlaid on the physical arena, denoted as c1, c2, ..., c96 where each cell is considered

to be networked with other neighboring cells in 8 directions. Ψ particularly operates

an array of memory M to maintain indices of the two cells most recently visited by

the Head (i.e., the latest at M [0] and the earlier at M [1]). Immediately after the

Head has reached its destination, for calculating the next waypoint, Ψ first deter-

mines a set of candidate cells C = {ci | A(M [0], i) ∧ ¬A(M [1], i) ∧ i 6= M [1]} where

A(a, b) is the function returning either True if ca and cb are adjacent in G or False

otherwise. Then, a random coordinate is eventually drawn as the next destination by

uniform distribution across all the regions lying in C, as shown as red points ahead

of the moving team in Fig. 2.9 and the supplementary video, linked above. With the

wheel speeds in our implementation, the Head robot appeared to trigger roughly 2

to 3 times of destination change during the inference time period of 8 seconds.

Table 2.1 provides details about the collected data, where a Sample refers to a

set of coordinates and orientations in a 3-robot group with which a prediction can

be performed, and an Instance is a set of all available samples for 13 seconds from

the entire team. To reduce temporal autocorrelation to help ensure independence of

instances, we clustered recordings so that instances are separated by at least 7 seconds.

All the collected data is open to the public to encourage more future works on ReTLo

at https://github.com/ctyeong/ReTLo.

2.6.2.3 Training Procedure and Evaluation Protocols

Our model is implemented in the Tensorflow Python library 6 to realize the entire

pipeline, and it was trained to minimize loss functions such as Euclidean distance and

6https://www.tensorflow.org
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mean absolute errors for position and orientation estimation, respectively. 60% data

from the 3-robot team is used to train our model, and another 10% was set aside

for validation. At each epoch of training, a validation followed so that the learned

weights that achieved the best validation performance were saved. The rest of 30%

data and all the data from 5-robot were used to test the model. We compare our

proposed model to two different alternative approaches:

• 2X Heuristic: The prediction on Head within a modular subteam is performed

by doubling the vector ~pF − ~pT .

• FC : Two fully connected layers run in the predictor without historical informa-

tion, which is based on the previous model on computer simulators.

2.6.3 Quantitative Evaluations

Here we explore the performance of proposed model in quantitative manners. As

in Section 2.5.3, For each prediction, the Euclidean distance from the true position is

treated as the corresponding error.

2.6.3.1 Overall Performance

In Fig. 2.7, we compare the averaged error for position predictions of the three

models in both the 3-robot and 5-robot team cases. In the case of 3 robots, the average

error is calculated only on the prediction for the Head robot, while in the 5-robot case,

it involves all predictions for Follower 2, Follower 3, and Head. Moreover, for every

model except the 2X Heuristic, the mean performance of 5 separate learning sessions

is obtained with the standard deviation. Fig. 2.7 shows that the machine learning

methods outperform the 2X Heuristic in any case. Particularly, the performance

gap between 2X Heuristic and FC becomes much larger in 5-robot case implying
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Figure 2.7: Average accumulated error of each model in two different sizes of robot

team. For each machine learning method, the mean performance of 5 separate sessions

is reported with a error bar of performance variation.

that realistic stochasticity presents a significant challenge to the straightforward 2X

Heuristic case. Moreover, our model clearly shows the performance gain over the

FC model, since the average error was reduced by 47% and 40% in the 3-robot and

5-robot case, respectively. Also, considering the diameter of a Thymio robot is 12 cm,

as only three robots are deployed, the average distance between the prediction and

the true position is shorter than the length of the robot body. This overall result

proves the effectiveness of encoding a sequence of historical behaviors as a feature

input over the model fed only with very recent observation.

2.6.3.2 Temporal Analysis

In this section, we analyze the performance of the machine-learning based models

from a more fine-grained perspective. For each model, Fig. 2.8 visualizes the step-wise

error for different target robots (i.e., Follower 2 and Head) in 5-robot case, which
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Figure 2.8: Average step-wise error for different target robots in 5-robot team. For

each model, all the prediction errors at different time steps are averaged for a specific

robot. The error bars represent the standard deviation of 5 separate models in terms

of the performance metric. For the sake of visualization, the error for Follower 3 is

omitted, but note that in any model, the error ranges between the two visualized

errors at every step.

is calculated by averaging the errors of each step across instances. By doing so, we

can better understand the approximate time frame within which estimation error

stays below an acceptable error level. During this evaluation, we also had 5 separate

training sessions to gain the mean and the variability of the performance. Fig. 2.8

shows that for any target robot, the error increases over time due to the design

of the repetitive prediction method where previous errors would negatively impact

the prediction power for the following steps. In a similar sense, each model brings

about larger error on the Head prediction than on the Follower 2. However, at every

time step, our approach causes less error than the FC model for any robot, and the
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visualized error bars confirm that the performance improvement of our approach is

significant in every case. Especially for first 4 seconds, the prediction on Head from

our model appears more accurate than the prediction on Follower 2 from the FC

implying that until then, our method also has less error for the estimate of Follower 3

as well. Having said that, the more rapid increase in error of our method for the

position of Head may highlight the liability of relying more on prior information

for future predictions. Nevertheless, these results demonstrate the potential of our

approach to reduce the communication bandwidth necessary for a multi-robot team

to perform localization.

2.6.4 Qualitative Evaluations

Fig. 2.9 shows images of three different instances of 5-robot team in which both

the true positions of all robots and the predictions on them are represented. The

triangles indicate the true positions and orientations, where the yellow triangle is the

Tail and the red triangle is the Head. The circles indicate the estimated positions of

the two farthest Follower robots as well as the Head.

Predictions until 4 seconds appear reliable, although there are some errors while

the group of robots is turning with a high angle and when the Head changes its

destination. Predictions tend to be biased more toward the inside of the curve the

team is moving on. Unexpectedly, at any instant of time, the maximum position error

is often at intermediate Follower robots and not at the most distant Head robot. Such

corrections may be the result of using historical information to constrain the possible

locations of farther robots, as in data fusion techniques that use formal dynamical

models to physically constrain estimator variance. However, our approach does not

utilize explicit formal dynamical models.
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Figure 2.9: Sample video frames with prediction results of our proposed model for

three different instances of 5 robot team. Each row presents four frames of an instance

for first 4 seconds. The yellow robot is Tail, the pink is Head, and in-between are

Follower robots. The colored circles are predicted position outputs, in each of which

a black arrow is drawn to indicate the predicted orientation as well. The colored

triangles with a black line through the center are the results of localization detection

used in data collection stage. A small red dot on the arena in each frame is the

random destination the Head is moving toward, which is re-sampled at intervals.

2.7 Concluding Remarks

To summarize, we have explored ReTLo problems as a useful example of macrostate

estimation in complex multi-robot systems. We have designed a scalable algorithm

to enable an individual robot in multi-robot system to predict the evolved formation

of all teammates, “macrostate”, from the motions of an only observable neighbor,

“micro observations”, while remote communication is limited. Particularly, a mod-
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ular prediction scheme has been introduced to build practical estimators under the

challenges such as C1∼C3 in Section 1.3 by tuning the model within a modular team

of 3 robots and later applying to all other modules when deployed in a larger team –

i.e., additional training of model is not needed even when the team size has changed.

We first used a realistic robotic simulator with noise and nonholonomic kinematics

to show that a robot at one end of a chain could successfully estimate the position

of all other robots with very little explicit message passing. Although performance of

the estimator was strongest when the formation took on simple shapes, like a line, the

method was still able to estimate robot positions for more complex maneuvers. We

showed that the method could allow robots to coordinate to encircle an encountered

object and that the far-robot position inferences were sufficient for the robots to

coordinate their actions.

In addition, by incorporating historical data into the design of a scalable, localiza-

tion regression module, we have improved upon our previous simulations in estimating

the positions of robots in a multi-robot team using only observations of a single, near-

est neighbor robot. The new approach greatly reduces estimator error, giving it the

potential to greatly reduce communication bandwidth in other localization schemes

that otherwise require continuous communication among robots.

To test our approach, we utilized a commercially available robotic platform,

ThymioII, to collect datasets from 3-robot and 5-robot teams. Through empirical

experiments, we showed that the proposed machine learning model offers more accu-

rate estimation than other approaches. We analyzed our estimator performance over

time and demonstrated its improved performance for short horizons but potential

added liabilities for longer time horizons. Lastly, we overlaid visualizations of the

prediction outcomes on images of the actual robotic system to illustrate specific cases

where low estimation error was provided for far-away robots despite high error on
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more nearby robots.

45



Chapter 3

ACTIVE INTERACTIONS FOR NONE-BIASED LEARNING 1

With earlier ReTLo problems, we have explored the feasibility of predicting forma-

tional macrostates from microlevel behavior observations in the system that accom-

panies some of the challenges mentioned in Section 1.3. In particular, as summarized

in Section 2.7, the proposed estimation framework could address C1∼C3 largely by

modularizing the learning and application of estimators. However, we may also need

to consider C4 since the training data collected from a modular team of 3 robots

might be biased toward more limited formational features than the ones that could

actually evolve from the whole team. In fact, as stated in Section 2.5.2.1, we have

adopted a heuristic approach during data collection to combat such an issue in which

constant values such as kt are controlled for the Tail robot to experience varying

distances to its neighbor, and it appears helpful in experiments while far teammates

tend to lead various amounts of space to their neighbors. Yet, that heuristic has a lim-

itation in that it is “system-dependent” because the motion rule and the controllable

values should be known in advance.

In this chapter, therefore, we will discuss an alternative and “system-independent”

approach to guide the process of data collection to acquire less biased datasets and

ultimately gain a better generalizable estimator. To be specific, inspired by active

learning paradigms (Settles, 2009), we build an additional module on the Tail to turn

an “active” mode on to purposely take trajectories that would lead novel formations

during data collection. This is actually a completely different approach than the

previous, where the robot “passively” followed a pre-programmed motion rule for

1This chapter is based upon (Choi and Pavlic, 2020).
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both training and test. This chapter, thus, will provide an opportunity for us to find

whether and how the intervention in robot dynamics at the stage of training could

bring a significant impact on the learning performance of macrostate estimator.

3.1 Introduction: Learning is not a one-way process

Collecting a sufficiently large dataset is essential to fully utilize machine learning

algorithms by training on non-biased datasets; the trained model should be exposed

to a diverse number of scenarios to ensure good performance with arbitrary scenarios

that may occur when deployed in the real world. In robotic systems, such a large

amount of data can be gathered by repeatedly executing particular motions of robots

or demonstrating human actions for specific tasks so that the trained model can suc-

cessfully understand the involved dynamics from obtained observations. The data

generation, however, is not cost-free; most robots are powered by an electric battery,

and human assistance may be needed when the robot unexpectedly fails during op-

eration (e.g., humanoids falling down or mobile robots getting stuck on obstacles).

Thus, developing an efficient learning method is crucial to lead the trained robot to

reach a satisfactory performance with exposures to less but representative data.

In this work, we develop a method for a robot in a multi-robot team to actively

choose behaviors that are likely to generate better quality, non-biased training data,

thus leading to improved performance with less data gathered. We focus on the Re-

mote Teammate Localization (ReTLo) problem introduced in the previous chapter,

where a robot in the rear of a convoy uses passively obtained information from the

robot ahead of it to localize all other robots in the convoy without requiring com-

munication by explicit signaling among robots. We showed that a robot trained in

a 3-robot team could accurately predict positions of robots in larger teams through

repeated application of the trained predictor. Here, we propose the Selective Ran-
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Figure 3.1: Illustration of the SRS framework during data gathering in the 3-robot

convoy, as part of the learning process in the Remote Teammate Localization (ReTLo)

problem. While the Head and the Follower are moving as defined in their motion

rules, the Tail instead chooses to follow a highly novel path among random motion

selections.

dom Sampling (SRS) framework for a robot learner in its 3-robot training team to

choose among noisy actions that will reveal the most informative team-level features

in gathered data (Fig. 3.1).

Inspired by selective sampling in active learning (Cohn et al., 1994; Dekel et al.,

2012), SRS enables the estimating robot to select among random behaviors to obtain

better training samples and consequently gain accurate localization ability with fewer

observations. In particular, our method proposes two additional learning modules to

determine which random motions to discard or follow in the view of an individual

robot. The first module predicts the future trajectory of entire team to infer the effects

of each of k random motions of the learner. The second module is an autoencoder to

evaluate the novelty of samples with these candidate motions compared to previously
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seen data. The motion that provides the most optimal novelty will be selected.

3.1.1 Chapter Highlights

A brief overview of the subjects in this chapter is as follows:

• Section 3.3 – We will learn how SRS can be implemented in the form of neural

network by which a future team trajectory is hallucinated, the novelty levels of

random actions are predicted, and only the optimal action is finally selected.

• Section 3.4 – Experimental configurations on Webots are shared with the

details of data collection procedure, in which a number of sufficiently complex

trajectories are generated for reasonable evaluations .

• Section 3.5 – Active approaches demonstrate further improvement over its

counterpart from the previous chapter. Clear effects on data distribution are

also visualized to better analyze the proposed method in terms of state space

search.

3.2 Related Work

Novelty/Anomaly Detection using Autoencoder

The SRS framework operates a neural network as an autoencoder to evaluate robotic

pose sequence inputs in terms of originality. The autoencoder’s reconstruction error

should be higher for inputs that are dissimilar to ones from the training dataset.

Richter and Roy (2017) built a deep autoencoder for visual images streamed from

mobile robots. If the imaged environment looks novel, the robot is set to exert a safe

behavior ignoring all the commands from the trained policy function because it could

behave unexpectedly under the unusual data. Similarly, Kerner et al. (2019) dealt

with multispectral image data sent from the Curiosity rover on Mars. Some of the im-
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ages contained non-typical properties in appearance, and so a deep autoencoder was

trained to provide useful features from the reconstruction error so that the final classi-

fier could accurately differentiate the images with novel patterns. Similar approaches

to using deep autoencoders for novelty detection exist in detecting mechanical (Oh

and Yun, 2018), geochemical (Xiong and Zuo, 2016), and traffic (Zhu and Laptev,

2017) anomalies. All of these existing approaches have focused on automated state

analysis or perception after all training data was already available. In contrast, we

apply autoencoders for novelty detection in the process of a robotic trainee to make

choices that collect data for better future learning.

Active Learning for Robots

Active learning has been a crucial research field in robotics because gathering a large

volume of labeled data is particularly challenging with robot operation. For example,

there has been much research on implementing intelligent robot systems that can

ask a human operator to present behavioral demonstrations to successfully complete

the given task especially when the robot faces environments about which it is not

sufficiently certain (Chao et al., 2010; Cakmak and Thomaz, 2012; Maeda et al.,

2017; Chen et al., 2018). In an approach similar to ours, Palo and Johns (2019)

demonstrated that a robot active learner can use the reconstruction error of trained

autoencoder as the decision variable on whether to ask for additional demonstrations

or not. In our work, however, the robot is situated in a multi-robot team, and there

is not a specific task where a human operation can suggest the optimal trajectory of

state–action pairs. Furthermore, our framework incorporates the active exploration

with random search by selectively allowing it to execute random actions, and it could

be considered as a model case that is applicable beyond robotic scenarios.
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Active Localization

Active localization methods are to ask mobile robots to behave in a certain way for

them to gain better awareness of the locations of themselves or a target in spatial

space. In this study, humans are not involved for assistance, and active maneuvers

are linked to the capability of state perception, which may sound more relevant to our

work than the policy learning. With a relatively long history of research (Burgard

et al., 1997; Fox et al., 1998), there have been information-theoretic frameworks in

which the robot is essentially to move in directions that decrease the uncertainty on

localization predictions. More recently, reinforcement-learning algorithms have been

investigated to train the robot agent by designing an effective reward function that

promotes the best distributions of candidate locations (Chaplot et al., 2018; Gottipati

et al., 2019). These approaches do not involve efficient sampling for further learning,

whereas our robot becomes able to learn better in subsequent training. Additionally,

our work aims more at better understanding kinematic dynamics of the entire team

through experiences as a robot member by moving toward or away from its neighbor

somewhat arbitrarily.

3.3 Methodology

In the last chapter, we demonstrated that encoding historical sequences plays a

critical role to accurately solve the ReTLo problem in real robotic platforms. The

same LSTM-based predictive model is used here for localization with a few changes:

1) all the orientations θr@t converted to (cos θr@t, sin θr@t) to better quantify border

values near −π and π (Hara et al., 2017), and 2) the Bi-linear LSTM layer replaced

by a regular, unidirectional LSTM layer (Hochreiter and Schmidhuber, 1997) as we

have found that it speeds up training and does not degrade performance.

Our original approach of local training followed by global execution is still em-

51



ployed for scalable inference; neural networks are trained only within a 3-robot convoy

but can be deployed directly in larger teams by using the predictions for nearer robots

as observational inputs for farther robots. Because the current work focuses on a data

acquisition method for better training, most explanations only involve the small team

of three robots (Head, Follower, Tail). Details about scaling these prediction results

to more robots can be found in Section 2.5.1.2.

Formally, the predictive model takes as input the combination of the historical

trajectory ht of length ` and the latest observations ot at time t where

ht , (~pF@t−`−1:t−2, cos θF@t−`−1:t−2, sin θF@t−`−1:t−2,

~pH@t−`−1:t−2, cos θH@t−`−1:t−2, sin θH@t−`−1:t−2)

and

ot , ~pF@t−1:t.

Then, the estimation output yt is

yt , (~̂pH@t−1, cos θ̂H@t−1, sin θ̂H@t−1, cos θ̂F@t−1:t, sin θ̂F@t−1:t).

Previously, a small team of 3 robots was used to collect training data while the

Head was moving toward random waypoints, and the Follower and the Tail were

just following the distance-based motion rules. Our approach here is to diversify the

training samples through two ordered phases:

• The Random-Only (RO) phase allows Tail to draw additive noises wt , (σx@t, σy@t) ∼

N (0,Σ) to apply to its original destination ~p′T@t that its motion planner actually

returns while collecting first m samples. Then, an autoencoder (φ, ψ) and a pre-

dictive model ζ are trained with the data of m samples for novelty measurement

and action “hallucination” (Caley and Hollinger, 2020) (described later).
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• Once the training is finished, the Selective-Random (SR) phase begins during

which Tail makes use of the trained models to selectively perform the most

useful motions only while finally collecting n−m more samples.

3.3.1 Selective Random Sampling

Once m samples are collected during the RO phase, the data are used to train φ,

ψ, and ζ for different goals in a self-supervised manner. Specifically, models φ and ψ

are encapsulated in the form of a LSTM-based autoencoder in which φ is to learn to

encode a sequential input as a compact vector, and ψ decodes it to fully recover the

original input (Zhu and Laptev, 2017). The input to φ is in fact a shortened version

of ht by discarding the poses from the most recent step:

h′t = (~pF@t−`−1:t−3, cos θF@t−`−1:t−3, sin θF@t−`−1:t−3,

~pH@t−`−1:t−3, cos θH@t−`−1:t−3, sin θH@t−`−1:t−3).

As a result, the entire autoencoder is trained to minimize the reconstruction error

e = ||h′t − ψ(φ(h′t))||2 for the input sequence. We later use e as the indicator of

novelty as it would be higher when input h′t is less likely to have come from the data

distribution with which the autoencoder was trained (Richter and Roy, 2017; Zhu

and Laptev, 2017; Oh and Yun, 2018; Xiong and Zuo, 2016; Palo and Johns, 2019).

Model ζ also uses φ(h′t) as input but learns instead to estimate the discarded poses

(~pF@t−2, cos θF@t−2, sin θF@t−2, ~pH@t−2, cos θH@t−2, sin θH@t−2) meaning that it predicts

the next poses of the entire team from the history of length `−1. As the ψ and ζ all use

the same encoded vector output from φ, we train them all simultaneously (Fig. 3.2)

so that the multi-task learning can regulate the entire network and lead to better

generalized performance.

With the modules trained, the Tail then starts the SR phase to gather n−m more

53



Figure 3.2: Proposed neural network structure to learn the LSTM autoencoder (φ, ψ)

and the next-step predictor (ζ) simultaneously in a self-supervised manner.

samples. First, the robot draws k random noisy destinations at time t by repeating

the process conducted in the RO phase k − 1 more times. Inspired by the so-called

hallucinations described by Caley and Hollinger (2020), the (φ, ζ) is used to estimate

the poses of the robot team at time t+1. Then, the robot adjusts the predicted relative

positions assuming the feasible trajectory to each of the k random destinations under

the non-holonomic constraints. Lastly, the sequence of length ` − 1 including the

adjusted version of estimation is provided as input to the autoencoder (φ, ψ) to

compute the reconstruction error e, the novelty index, to select the best motion.

Different selection policies are introduced and tested in Section 3.5.2.1 based on the

e values of the random actions.
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Team Size Num. of Samples Num. of Instances

Train 3 robots 4500 300

Val 3 robots 450 50

Test 5 robots 6300 150

Table 3.1: Description of data collected.

3.4 Simulation Configurations

To evaluate our proposed method in ReTLo scenarios, we simulate Thymio (Riedo

et al., 2013) robotic platforms within the Webots (Michel, 2004) open-source robotic

simulator. Robots are programmed to follow at a distance of 30 cm on a simulated

arena of 3 m×3 m throughout all the experiments. For training and validation data,

only 3-robot teams were utilized, while the test datasets involve a 5-robot team as

described in Table 3.1. In all datasets, the Head is configured to move toward

random nearby waypoints that are each centered on a grid cell in a virtual 10 × 10

grid overlaid on the arena (c.f. Fig. 3.3). A new destination is drawn whenever the

robot enters a new cell, as it can move fast enough that 3–4 destinations are given

every 10 seconds.

Following our previous conventions, a sample is the unit of a set of data with

which one prediction can be executed for a focal 3-robot team as the history length `

is set to 10 steps. In addition, an instance represents a series of samples from the

same trajectory for 26 steps when the sampling rate is 2 samples per second, which

is the same speed as the frequency of the action command to each robot. Also, each

trajectory instance was logged at least 7 seconds after the previous one so that there

is little spatial correlation between the instances.
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Figure 3.3: Snapshot of the Webots simulator running 5 Thymio robots on the 3 m×

3 m arena.

Regardless of sampling technique, all evaluated models are set to obtain the same

amount of training data from the 3-robot team for comparative evaluation, 300 in-

stances for training and 50 instances for validation. Moreover, in all cases with random

motions, we alternate between random and passive modes in Tail every 6 steps to

avoid completely losing the connection to its team members. Lastly, the accuracy of

the models is measured with the Euclidean distance between the true positions and

the predictions.

3.5 Evaluations

Here we validate the proposed approach to see whether the SRS strategy can

improve the previous model by employing a more active Tail robot during data col-

lection. Because randomness is a core property in the SRS, the effect of purely

random behaviors are first examined to find any benefit over the previous passive

model. Then, we will investigate the properties of SRS itself from the quantified
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Figure 3.4: Test performance as different levels of random noise perturb the regular

destinations Tail. Thymio size is 11 cm.

performance to the effect to the distribution shape of collected datasets.

3.5.1 Purely Random Motions

We first explore the different noise levels involved in random motions in order to

estimate the performance that the pure random policy can achieve. For simplicity,

we assume Σ = Iσ where I is a 2× 2 identity matrix and σ is a predetermined noise

level. Figure 3.4 shows the average prediction errors from all predictions on test

datasets for six different noise levels (normalized to the 11 cm size of the robot). All

noise-levels tested resulted in better performance than the no-noise case, implying

that noise injection into the behavior of the tail (which coupled into the behaviors

of the rest of the team) may generate more realistic training data. Furthermore,

the prediction error is minimized at a non-trivial noise level of 75%; increasing noise

further will degrade estimation accuracy. Thus, whereas low-noise levels generate

useful training data about the multi-robot dynamics, high-noise levels obscure robot

57



dynamics. This pattern is similar to the injection of white noise in computer vision to

improve the performance of an image classifier. A certain degree of noise can enhance

better generalizable features for high-level image classes, but too much noise would

likely spoil the key characteristics to the level where a human could not recognize

patterns correctly. Hereafter, we use 75% as the noise parameter σ for all the following

experiments that involve random motions.

3.5.2 Selective Random Motions

Here, we investigate the performance of our proposed framework in various sce-

narios when k = 30 random noisy destinations are considered at each timestep. We

assume the m = 100 training instances (33% data) have been gathered already from

the RO phase, and the SR phase begins now to obtain n = 300 (100% data) in

total. To avoid bias caused by random samples, 3 separate datasets are gathered

for each configuration resulting in 3 individual prediction models. Thus, the average

performance over the 3 evaluations is reported as the final performance.

We first discuss the policies to choose the best motion among the 30 random

candidates. Then, the overall and step-wise accuracy of SRS is compared with other

baseline sampling techniques:

• Passive: Follow motion rule without additive noise.

• Rand-Only: Persist with the random sampling only.

Lastly, the effects of the SRS framework on the distribution of collected data are

explored with visualizations.
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3.5.2.1 Selection Policy

We evaluate 4 different policies for selecting among 30 motion candidates that vary

in novelty index. Policy SRS-Max chooses the motion maximizing the reconstruction

error e at each timestep. SRS-Q2 and SRS-Q3 pick the ones leading the second and

the third quantile of error, while SRS-Med uses the median motion.

Figure 3.5(a) shows that as more data is collected reaching 300 instances, the

policies that value higher reconstruction errors, such as SRS-Max and SRS-Q3, show

a decrease in performance, whereas the other policies increase their performance.

SRS-Med finally outperforms the SRS-Max with 100% instances, although is poorer

performing with 66% instances. This observation is consistent with the high noise

levels in Section 3.5.1. In other words, the prediction model performs accurately be-

cause the effect of actions with high reconstruction errors could be balanced off by the

original 100 instances from the RO data. Yet, as the high-error samples start over-

whelming the training set with more instances, it degrades the overall performance

because the training dataset could no longer contain representative features of the

dynamic system.

In addition, any policy shows higher improvement than the 12.3 cm error of Rand-

Only method when 66% instances are used (Fig. 3.5(b)). This actually implies that

the added 33% instances collected by SRS led to the improvement via selective random

motions and not random motion in general.

Because the SRS-Med is the best policy among others, the following results only

involve the model for further analysis.
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Figure 3.5: Average errors for all predictions in 5-robot teams. In each configuration,

the mean performance of 3 individual models trained with 3 different datasets is

reported. (a) Four different selection approaches of the SRS. (b) Comparison with

baseline models where the error bars represent the standard deviation of individual

models.
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3.5.2.2 Comparative Evaluations

Figure 3.5(b) clearly highlights the performance margins that our method can

gain only with a careful change of training data. As discussed in Section 3.5.1, the

Rand-Only method is an improvement over Passive sampling, but the improvement

was not as stable as it showed almost a tie with 66% instances. Furthermore, Fig. 3.6

displays that the Rand-Only always offers lower errors for Head than the Passive, but

it is always less accurate in the case of the Follower 2. Thus, although the random

motions of Rand-Only in the 3-robot training scenario improve its ability to learn

how to accurately predict the position of Head in the 5-robot test scenario, the data

gathered by Rand-Only is not rich enough to improve predictions of the intermediate

robots in the 5-robot scenario.

The SRS-Med approach, however, clearly showed lower error than the Passive as

well as the Rand-Only on average. Figure 3.5(b) reveals that even with all available

instances, Passive could not reach the performance of the SRS-Med that only used

66% instances. The Rand-Only could achieve that level, but it needed 100 more

instances, which suggests that the SRS-based behavior could accelerate learning and

save on resources in gathering training data for the same performance level.

From Fig. 3.6, we also observe that the SRS-Med could provide better samples

than the Rand-Only in all predictions, though it could not outperform the Passive

sampling for Follower 2. Still, the performance drop was slower over time to almost

reach the same performance level at the end.

3.5.2.3 Distribution Shift of Collected Data

Here, we examine the effect of the SRS algorithm on the distribution of training

samples acquired. The SRS-Max with 66% instances is explored to observe the most
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Figure 3.6: Average prediction error of evaluated models in 5-robot teams at each

prediction step of tested instances until 13th prediction is performed. (a) Prediction

error for Head. (b) Prediction error for Follower 2.
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Figure 3.7: Distributions of robot-to-robot distances from three separate 66% datasets

collected by SRS-Max. For each gathering, the Rand-Only was applied for the first

33% data (RO phase) followed by the execution of SRS for the next 33% (SR phase).

dramatic change of the sample distributions when the SRS framework is deployed

after 100-sample collection in the RO phase.

In Fig. 3.7, histograms of robot-to-robot distance between Head and Follower

and between Follower and Tail are displayed from three separate datasets. Each

histogram shows a bell-shaped distribution centered around 40 cm, which is close

to the predetermined distance of 30 cm (consistent with error from a proportional

controller). Also, because the Rand-Only and the SRS-Max both have non-random

modes at intervals as well, their distributions do not significantly differ. Nevertheless,

the histograms suggest that SRS-Max generally picks motions to collect more data

with relatively long distances, as the distributions of SRS-Max present longer right

tails at the cost of shorter left tails and lower peaks. This supports our design by

which the measured usefulness from the novelty detector encourages the robot learner

to diverge from its nominal behavior into an unexplored behavioral space that is

beneficial for learning more quickly. Consequently, the SRS-Max led to a shift of the

distribution of samples toward the side of longer distance where the Rand-Only had

gathered sparse samples, to reduce the risk of biased data collection. Finally, the
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combination of such distributions can provide better representations for any target

robot than using only one of them, as demonstrated in Fig. 3.6.

3.6 Concluding Remarks

As an extension to our previous passive algorithm, we have shown an active policy

for a robot to better learn ReTLo, so that it can not only maintain the original

functionality to tackle C1∼C3 (c.f. Section 2.7) but also effectively address C4 from

the five big challenges listed in Section 1.3. To be specific, we have discussed effective

data sampling methods for an individual robot in a multi-robot system to actively

move to be able to access non-biased observations for further learning about team-

level formational properties.

Our experiments have demonstrated the utility of random behaviors during data

collection in learning mobile robots. To a point, injecting randomness into behavior

can improve a robot’s ability to learn about the coupled system around it. Further-

more, our SRS algorithm takes advantage of an LSTM autoencoder to shape its noisy

behaviors so as to be more useful by predicting novelty of the hypothetical actions.

We have found that there is an optimal level of novelty because the actions of too

low would lead similar macrostates to the ones already seen, while too high would

extremely peculiar states that would not likely faced in a natural dynamics.

Such a success of the novelty-driven policy, however, may lead the following ques-

tions: “Is involving active agents really necessary in any case of macrostate estima-

tion?”; “What if it is too expensive to deploy an active, controllable agent, as in

natural social systems?” In the next chapter, we will use exemplar natural systems

as a testbed to pursue the above questions and will devise alternative approaches if

needed.
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Chapter 4

INTENTIONAL BIASED LEARNING FOR STATE DETECTION IN INSECT

COLONY 1

We have discussed positional macrostate estimation in robotic multi-agent sys-

tems – ReTLo problem – in which an individual robot can notice the positions of

all of its teammates only from the behavioral variations of the nearest neighbor. In

particular, Chapter 3 has introduced controlling the robotic learner to be “active” in

motion selection to better gather “non-biased”, representative samples about the dy-

namics of the entire team for training. Although such a strategy has demonstrated a

significant improvement on learning performance also addressing C4 (c.f. Section 1.3),

the same approach may not be applied, for instance, in natural systems, where par-

ticular individuals cannot easily be controlled. A human or robotic operator could

be involved to control a realistic replica to deceive the living mates and promote a

certain macrostate (Yang et al., 2019), but it will be very costly.

Through this chapter, we will study macrostate estimation scenarios in which

intentional biased learning can be effective as an alternative approach to C4, so that

“active” state space searching is not needed. To be specific, we will employ ant

colonies as a representative of natural complex systems (C1) from which behavioral

observations in “normal” state are only available to learn a model while it must be

able to detect whether the hive has turned “abnormal”. One-class Classification (OC)

paradigms are adopted for a successful binary classifier to build from the monotonic

observation data, with an assist of a generative model that can synthesize artificial

ant motions.

1This chapter is based upon (Choi et al., 2021).
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In addition, C5 could be present in natural systems especially if some microlevel

interactions are salient but cryptic to human observers in predicting macroscopic

states. As a potential tool to decrypt the relationship, an existing method Grad-

CAM (Selvaraju et al., 2017) will be showcased on top of the macrostate estimator

to locate specific agents who are engaged in informative behaviors that the model has

used in leading its decision.

4.1 Introduction: Can we learn “abnormal” from “normal”?

In natural social systems, complex interactions among large numbers of individuals

can give rise to phenomena such as “collective minds” (Couzin, 2007) and, as in

colonies of ants, even “superorganisms” where it is often more convenient to describe

the collective as a single monolithic entity moving from one macrostate to another.

Some species of ants have colonies sufficiently small to be observed in their entirety

with state-of-the-art video-recording technologies while still sufficiently large to have

rich, multi-scale behaviors. Whereas the dynamical processes underlying the non-

trivial interactions between ants are cryptic to human observers, there is potential

for techniques from machine learning and artificial intelligence to identify social in-

teraction patterns that warrant further study. For example, in species of ants that

can elect new reproductive individuals after the previous reproductive is artificially

removed (Heinze et al., 1994; Sasaki et al., 2016), machine learning could in principle

help to identify abnormal patterns that only occur during this conflict resolution.

However, such a behavioral classifier for underappreciated abnormal patterns would

necessarily be limited to training data from videos of behaviors under known normal

conditions.

Here, we propose an alternative application of One-class Classification (OC) to

solve the abnormal state detection problem for video data of social systems under
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Figure 4.1: Proposed scenario in which observational data from an ant colony are

accessible during its stable state, while the trained predictive model is to classify

behaviors from unseen, unstable states.

transition. In these systems, behavioral data for training the classifier is only available

for the typical state of the system, but the classifier must be able to classify abnormal

samples presented to it after training. For OC problems, Support-Vector-Machine–

inspired approaches have widely been utilized with the combination of autoencoders,

which can learn key features in unsupervised manners while significantly reducing the

number of dimensions of original input (Xu et al., 2015; Ribeiro et al., 2020). One

of the most successful algorithms of this sort is Deep Support Vector Data Descrip-

tion (DSVDD) (Ruff et al., 2018), which learns a hyperspheric feature space where the

samples of an available class lie densely around a central point ~c so that the distance

from it is used as the indicator of novelty during test. We argue that the distancing

approach of DSVDD may oversimplify useful relationships among features for OC

especially in high-dimensional spaces. Thus, we propose a generative module, Inner

Outlier Generator (IO-GEN), to replace the heuristic reference ~c with synthesized
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“inner outlier” observations of an imaginary social-system state so that a separate

classifier on DSVDD can use both the hyperspheric structure of data description and

high-dimensional feature representation to learn behavioral abnormality.

We apply this IO-GEN approach to the analysis of Jerdon’s jumping ant (Harpeg-

nathos saltator), which typically resides in a stable (normal) state while it has a set

of reproducing workers known as gamergates. When the gamergates are removed,

the colony moves into a transient unstable state (abnormal) during which members

go through a process that comes to consensus on a subset of workers that take over

the role of the previous gamergates (Heinze et al., 1994). There are known behav-

ioral interactions that only occur during the unstable colony state, but a detailed

understanding of how the transient state is resolved remains elusive. We created a

dataset for analysis by extracting optical flows from a colony of over 50 H. saltator

ants to record their behavioral data for 20 days in a lab setting where the colony

was artificially triggered to induce “stable–unstable–stable” colony state transitions.

We then developed an approach following the simplified diagram in Fig. 4.1. Video

data of a particular stable colony is used for normal-class training, and our proposed

model then later assesses whether a focal colony is stable or unstable based on a short

sequence of new optimal flow inputs.

Lastly, we will move one step further to examine the potential use of our model

with Grad-CAM to decipher the role of microscopic interactions as the macrostate

transitions – i.e., the estimator will be asked to indicate salient behaviors that it

has associated with particular global states when making predictions. Using the

visualized associations, 1) decision makers could better assess the focal social system

from observed behaviors, and also, 2) the predictive model could be verified by the

experts who can conclude whether the discovered behavioral features look reasonable

and compatible with their prior knowledge of the society.
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4.1.1 Chapter Highlights

A brief overview of the subjects in this chapter is as follows:

• Section 4.3 – I will briefly provide background knowledge of unique properties

in the species of H. saltator to emphasize the value of them as a testbed in this

study.

• Section 4.5 – The details of used dataset are offered, such as the recording

process of the 20-day video and the number of samples for training and test.

An online link is also shared to foster future studies on it.

• Section 4.6 – I will explain each component in the proposed pipeline comprised

of DSVDD, IO-GEN, and Classifier. Structural information is followed by the

specific hyperparameter settings. Program codes are also open to the public

online to offer concrete ideas of the implementation. Lastly, the Grad-CAM

method is explained to visualize learned behavioral features.

4.2 Related Work

Behavioral Cues for Inferring Collective States

Inference and prediction of current and future collective states is potentially useful

in a number of applications. For example, for human crowds, intelligent surveillance

cameras can detect abnormal collective states (e.g., conditions consistent with group-

level panic or rioting behavior) (Mehran et al., 2009) so that authorities can prioritize

surveillance resources and execute proactive mitigation strategies. Alternatively, as

introduced through last chapters, individual robots in a multi-robot system can use

local information of the pose of nearby robots to infer the large-scale formation of the

team it participates in and then alter its own trajectory to more effectively achieve a
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group-level response to a stimulus encountered at distal ends of the team.

In behavioral ecology, however, modeling efforts have been focused either on the

coarse-grained collective scale or the fine-grained individual scale but rarely the con-

nection between the two. For example, many mathematical and statistical models

have been developed for understanding the evolution of group-level states and how

they adapt to changes in the environment (Couzin et al., 2002; Reid et al., 2015;

Sasaki et al., 2016; Pratt et al., 2002; Buhl et al., 2006). These approaches provide

insights into the overall function of collective states but do not provide so much in-

sight into how map observations of an individual to the collective context of that

individual. On the other end of the spectrum, more recent deep learning approaches

for image segmentation or object detection have been tuned to track individual an-

imals from video frames (Bozek et al., 2018; Nath et al., 2019). These efforts are

focused on accelerating data acquisition for existing statistical pipelines that human

researchers employ but on making automated inferences across the individual–group

scales. Calhoun et al. (2019) used an unsupervised learning framework to discover

latent states in Drosophila melanogaster flies during courtship, but the inference scale

was only limited to the group of two engaged flies while our work deals with much

larger social groups.

One-class Classification (OC) for Visual Data

Classical OC methods, such as One-class Support Vector Machine (OC-SVM) (Schölkopf

et al., 2001) and Support Vector Data Description (SVDD) (Tax and Duin, 2004),

either use a hyperplane or a hypersphere tightly bounding the known-class data for

separation. Recently, these methods have been augmented with autoencoders that

highly reduce input dimensions of graphical data without supervision (Xu et al., 2015;

Ribeiro et al., 2020). As an extension, DSVDD is designed to optimize the objective
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of SVDD in an end-to-end deep neural network pipeline (Ruff et al., 2018). In par-

ticular, the autoencoder’s encoder is fine-tuned to generate a feature space in which

the in-class samples lie densely close to a pre-defined central vector ~c, while the out-

of-class samples are sparsely away from them (Fig. 4.2b). Although DSVDD showed

Figure 4.2: Conceptual feature formations in different methods on two-dimensional

planes assuming only typical examples have been used for training each model.

(a) The encoding from autoencoder cannot ensure a clear separation of atypical sam-

ples. (b) DSVDD forms the space in which data of seen class surround a central

point ~c more closely than unseen examples. (c) Generators in GANs learn to produce

typical properties used for training. (d) IO-GEN synthesizes inner outliers much more

densely to later substitute for ~c.

competitive performance with several benchmark datasets, we argue that its distanc-
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ing scheme – simply using the distance to ~c – is not sufficiently rich to distinguish

novel samples, and we combine DSVDD with a generative approach to improve OC

for this case.

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) can also be

used in OC by synthesizing fake outcomes consistent with typical samples that are

then used in training to improve the generalizability of the OC (Sabokrou et al.,

2018; Yadav et al., 2020; Perera et al., 2019). However, these approaches adopt the

conventional min–max scheme of GANs to closely emulate the data distribution of

the available class (Fig. 4.2c) although the ultimate goal is to identify novel samples

from a different distribution. Instead, our IO-GEN generates fake outcomes even

closer to the idealized central vector ~c (Fig. 4.2d). These more prototypical samples

allow the subsequent classifier to learn sharper discrimination in the DSVDD feature

space between normal and abnormal samples.

4.3 Backgrounds

Here, we explore preliminary knowledge about the employed species of ant, Harpeg-

nathos saltator, to better understand the social dynamics in their colonies.

4.3.1 Harpegnathos saltator

A key characteristic of ants is their reproductive division of labor. In most ant

colonies, a single “queen” is chiefly responsible for laying eggs that develop into “work-

ers” that are responsible for caring for the next generation of eggs. Because workers

typically cannot produce new workers themselves, the death of a queen usually means

the expiration of the colony shortly after. However, certain species of ants have more

flexible workers. In the case of H. saltator, workers have retained the ability to mate

but do not lay eggs while another reproductive is present. However, when there is no
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Figure 4.3: Two examples of Dueling interaction, for each of which four sequential

snapshots are captured only around the participants. As at the top, largely, two ants

are engaged with bouts of active antennation moving back and forth. More ants,

however, can participate as well as seen at the bottom.

living reproductive in a colony, mated workers engage in a several-week hierarchy ref-

ormation process that terminates as several mated workers activate their ovaries and

begin to produce eggs (Liebig et al., 1999; Sasaki et al., 2016). The ascension of these

so-called “gamergates” inhibits this process from continuing, thus bringing the colony

back to a typical state. When those gamergates die or are removed, this process will

begin again, thus allowing colonies to survive essentially indefinitely (Liebig et al.,

1999; Sasaki et al., 2016). During the several-week transient hierarchy-reformation

state, mated workers can be observed performing special sterotyped aggressive be-

haviors known as dueling and dominance biting (Peeters and Hölldobler, 1995; Heinze

et al., 1994) (c.f. Fig. 4.3). Although these behaviors are clear signs that the colony

is in this transient state, the precise sequence of events that leads to colony-level
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resolution is still unclear.

4.4 Abnormal State Detection

Abnormal state detection is a binary classification problem to correctly detect

the colonial macrostate as either “stable” or “unstable” given a short observation

sequence of ant behaviors. Since we adopt the OC approaches to respect realistic

scenarios, we assume that following the notation in Section 1.2, the original state

Mt = “stable” as τ ≤ t ≤ τ ′ where τ and τ ′ are the initial and the last time stamp

of the observed period when the training data is available, respectively. Thus, our

goal is to learn the estimator f to accurately predict later state Mt′ using behavioral

observations Ot′−∆:t′ where τ ′ < t′, and ∆ is as a short period of time as several

seconds. More details about the composition of observational input and the designs

of the estimator are described in the following sections.

4.5 Optical Flow Datasets from Colonies Stabilized

Deep-learning methods for image and video data have shown that optical flows

can effectively complement classical RGB data in learning because they can extract

transient behavioral characteristics (e.g., shooting), while RGB data largely provides

the understanding of scenic context with visible objects (e.g., a bow and arrows) (Si-

monyan and Zisserman, 2014). Because our framework only expects ants and crickets

they feed on in scenes, we only use optical flows in our datasets so that learning will

be based solely on behavioral flows; this is a similar approach to the human-crowd

behavior classification by Mehran et al. (2009).

Figure 4.4 shows the basic environments of our video recording from which optical

flows are directly extracted. We used a colony of 54 H. saltator ants in a plastic nest

covered by a transparent glass. While an overhead camera records the nest, not
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Figure 4.4: Over 50 ants are placed to densely live in a plastic arena. Some ants

can be unseen as they are present in the foraging chamber led by the tunnel at the

bottom side. A few crickets are also visible on this snapshot.

all ants may appear in the scene because some may move to an off-camera foraging

chamber led by a tunnel on the bottom side of the nest. Videos were recorded for

20 days, denoted as D-2, D-1, D+1, . . . , D+18, where D-0 represents the instant

removal of all recognized gamergates between days 2 and 3) to artificially trigger the

transient state of the colony. From D+1, we observed frequent dueling and dominance

biting until the aggressiveness almost disappeared on the last several days across the

group. A shorter highlight video of the 20-day state progression is available at: https:

//youtu.be/eGFQb45QejQ. By performing downsampling techniques, m sequential

optical flows were sampled every 2 minutes, and, for each flow, a pair of horizontal and

vertical motional representations in the spatial resolution of 64 × 64 were extracted

from two consecutive frames with an interval of 0.5 seconds. The code provided by

Wang et al. (2016) was used to acquire 1, 333m stable-class and 11, 984m unstable-

class optical flows in total. Three unique splits of stable class were prepared to
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Figure 4.5: Example of optical flows: from the left, the original RGB frame image,

and horizontal and vertical representations in which brighter (darker) are more rapid

movements in the positive (negative) direction as the top-left corner is the origin.

obtain the average performance of three separate models, as 80% and 20% were

used for training and test, respectively in each split, while all unstable samples were

included in every test set. All the data and split information are accessible online at

https://github.com/ctyeong/OpticalFlows_HsAnts.

4.6 Methodology

4.6.1 Deep Support Vector Data Description

DSVDD in our framework follows its original design from Ruff et al. (2018). It is

built from the encoder part φ of a pre-trained autoencoder that us used to learn a

feature space F in which the samples of known class have a lower average distance to

a central vector ~c than those of novel class. Specifically, we adopt One-class DSVDD,

which minimizes the objective:

min
W

1

n

n∑
i=1

||φ(xi;W )− ~c||2 +
λ

2

L∑
l=1

||W l||2F

where || · ||F is the Frobenius norm. The first term is closing the distance between ~c

and the feature representation of each sample xi in encoder φ parameterized by W ,
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Figure 4.6: Training pipelines for IO-GEN (left) and and Classifier (right). IO-

GEN must meet two objectives simultaneously, one with the pre-trained DSVDD

and one with the discriminator. Classifier learns binary classification on the data

description that the DSVDD offers. Patterned components represent their parameters

fixed during the training phase.

and the second term is a weight decay regularizer for L layers with λ > 0. In the

original method of DSVDD, the trained parameters W = W ∗ are used to generate a

distance:

s(x) = ||φ(x;W ∗)− ~c||2

that is a proxy for how atypical a sample x is. For some threshold τ > 0, s(x) > τ

classifies x as atypical. Our method, however, substitutes the distancing heuristic s(x)

by IO-GEN and Classifier, described below, that we argue better utilize key features

in the normal set in order to discriminate abnormal data after training.

4.6.2 Generative Model of “Ideally Normal” Ant Behaviors — Inner Outliers

As shown in Fig. 4.6, IO-GEN G is designed to operate with both the pre-trained

DSVDD φ and a discriminator network D, as a generative model of optical flows.

With the discriminator, an adversarial learning is performed following the standard

77



objective:

min
G

max
D

(
Ez∼Nσ [log(1−D(G(z)))] + Ex∼p[log(D(x))]

)
where Nσ is the zero-mean normal distribution with standard deviation σ, and p is the

probability distribution of real optical-flow data. Due to the first term, the outcomes

from IO-GEN are adjusted to appear sufficiently realistic to deceive the discriminator.

The DSVDD is used to force the learned synthetic data to be inner outliers close to

~c in F , while the parameters of itself are not updated. In particular, we use the

feature-matching technique proposed by Salimans et al. (2016), which incorporates

the minimization:

min
G
||Ez∼Nσ [φ(G(z))]− ~c||22

The composite loss function for IO-GEN is:

LG = Ez∼Nσ [log(1−D(G(z)))] + λ
(
||Ez∼Nσ [φ(G(z))]− ~c||22

)
where λ > 0 is the hyperparameter to determine the relative weights between the two

terms to minimize. In other words, IO-GEN is trained to produce behavioral flows

of ants that not only look real but also feature the closest proximity to ~c in F of

DSVDD.

4.6.3 Classification Model

Classifier utilizes real data from stable colony states as well as the generated IO-

GEN inner outliers to learn to predict the likelihood of unstable behaviors on given

m instant frame images as in general binary classifiers. We use a novel strategy,

label switch, during training by which the real stable samples are labelled as “un-

stable” (atypical), and the synthetic ones are as labeled as “stable” (typical). This

technique leads the Classifier to eventually make low-, mid-, and high-range likeli-

hood predictions for synthetic, stable, and unstable data, respectively, as though the
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augmented state of inner outliers was the “most stable” state . That is, Classifier

offers likelihood outcomes y somewhat consistent with the class distribution around

~c allowing for a clear separation between real stable and unstable data.

4.6.4 Network Structures & Relevant Parameters

A Deep Convolutional Autoencoder (DCAE) is used as the backbone of DSVDD

and IO-GEN once it has been trained with the data of stable ants to minimize the

reconstruction error in the Mean Squared Error (MSE) between the input encoded

and the decoded output. Per input, m optical flows are all stacked one another to

constitute an input x ∈ R64×64×2m after normalization to range in [−1, 1]. In the

encoder, three convolutional layers with 32, 64, and 128 2D kernels are employed

in series as each kernel is of 3 × 3 size. Also, every output is followed by a ReLU

activation and 2D maxpooling. The decoder has the reversed architecture of the

encoder with two modifications: 2D upsampling instead of maxpooling and an added

output layer with 2m kernels and a tanh activation. Additional 32 convolutional

kernels are placed as the bottleneck between the encoder and the decoder to obtain

a compact encoding scheme ~v ∈ R1×2048 when flattened. DSVDD takes advantage

of the pre-trained encoder to reshape the space of ~v by learning data description F

as the reference vector ~c is the mean of available encoded samples according to Ruff

et al. (2018).

IO-GEN essentially employs a fully connected layer with the ReLU activation that

takes a noisy vector ~z ∈ R1×100 as input. It is then connected to a replica of pre-trained

decoder so that realistic synthesis can be learned faster from the prior knowledge of

reconstruction. The discriminator network builds an extra fully connected layer with

a sigmoid activation on top of encoder, but its weights are all reinitialized because

otherwise it appears to easily overwhelm IO-GEN in performance causing unstable
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adversarial training. Also, λ = 10 was empirically found most effective to minimize

LG .

Because Classifier comes after DSVDD, it has an independent architecture in

which five convolutional layers learn 8, 16, 24, 48, and 48 one-dimensional kernels,

respectively. Each layer has a LeakyReLU activation (α = 0.3) and 1D average

pooling, and lastly, a fully connected layer is deployed to provide a predicted likeli-

hood of unstable state via a sigmoid function. All codes are also available online at

https://github.com/ctyeong/IO-GEN.

4.6.5 Salient Behavior Localization

In the last experiment, we will apply Grad-CAM, introduced by Selvaraju et al.,

on top of the final classifier to visualize the behavioral features learned. Here, based

on the original paper (Selvaraju et al., 2017), a brief explanation of the technique

is provided with the integration with our framework. Basically, we will utilize the

three-dimensional feature map F , φ(x;W ∗) produced by the DSVDD to see how a

small variation in it can affect the final likelihood output of the Classifier y:

αk =
1

Z

∑
i

∑
j

∂y′

∂F k
ij

where Z is a constant to lead to the global average, y′ is the output of the Classifier

before the sigmoid activation, and thus αk implies the average impact that the features

in the kth channel make to increase y′ as well as y. Then, the final Grad-CAM

heatmap at i, j can easily be computed as follows:

hij = ReLU(
∑
k

αkF
k
ij)
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Figure 4.7: Optical flow weights each sampled at the interval of over 2 minutes for

20 days. The horizontal axis shows the days of observation with the red separator

when the gamergates were intentionally moved. The vertical axis indicates the weight

levels, each standardized in [0, 1] by the global max and min, omitting extreme outliers

for clarity.

where ReLU works as the identity function for the the positive inputs, but it passes

0 for the negative (i.e., it is a rectifier). It is used to consider only the features that

bring positive impacts on the likelihoods of unstable state – when increased, y also

raises, and also, the entire heatmap H can be resized to superimpose on the original

image. In Section 4.6.5, we will discuss the obtained results on the real ant images.

4.7 Experiments

We are currently ready to examine the effectiveness of the proposed prediction

framework with well designed experiments. Firstly, we will try to manually find any

patterns from the extracted optical flow datasets to discuss whether sophisticated

predictive models are needed for the OC task in the focal system. Then, the IO-

GEN based approach will be tested primarily with comparisons with other baselines,
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especially the ones that could justify the structural designs of the IO-GEN pipeline.

Interesting internal behaviors of the IO-GEN model itself will also be analyzed to

explain how the successful performance could be achieved. Lastly, Grad-CAM is

adopted to show its potential use case to reveal behavioral features from natural,

living agents in a human-understandable way.

4.7.1 Analysis of Optical Flow Weights

We first attempt to make use of the optical flow dataset to discover insightful

motional patterns without any complex model. In particular, as with Mahasseni

et al. (2013), we compute an optical flow weight wi for each frame i by averaging

the magnitudes of flow vectors at all locations. Fig. 4.7 displays the obtained weight

signal in time as m = 1 optical flow frame is considered for each sampling interval.

For first two days, the weights generally stay in a certain range implying some

behavioral regularity maintained among ants. Yet, an obvious increase is noticed

immediately when the gamergates are moved away starting D+1, because the nega-

tive event triggered a social tournament in which frequent aggresive behaviors were

elicited. As the unstable state develops, the magnitude level continues to decrease

and finally recovers the original extent roughly on D+10, even though we could still

find several ants that presented hostile interactions.

Consequently, a simple model could be attempted to use the overall rise of flow

weight as the only feature to distinguish unstable ants from stable ones especially at

early development of unstable state. Following experimental results, however, will

provide concrete examples to explain the limitations of such design and the need of

more complex models for reliable predictions.
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m 1 2 4

AUC 0.760 ± 0.016 0.786 ± 0.009 0.787 ± 0.008

Table 4.1: Average performance when the number of optical flow image frames per

input is set to 1, 2, or 4.

4.7.2 Evaluations

We here demonstrate the OC performance of our proposed method, first with

an ablation study to find the best number of optical flow frames per input. Next,

the baselines used for comparison are introduced, and ours competes with them to

explore its overall reliability as well as robust prediction in various time windows

during colonial stabilization.

Following protocols of previous works (Ruff et al., 2018), the Area Under the

Curve (AUC) of the Receiver Operating Characteristics (ROC) are measured for

each model to reflect the separability between classes. Particularly, the average over

three distinct splits is reported with the standard deviation when needed.

4.7.2.1 Effects of Observational Length

From the test with m ∈ {1, 2, 4}, Table 4.1 reports that there was an improvement

as m increased from 1 to 2, while doubling it to 4 did not offer any benefit. The result

may indicate that the observation of one more second does not add significantly more

information. Learning IO-GEN could also be more challenging as it is asked to

generate longer motional sequences. Thus, m is set to 2 hereafter considering both

efficiency and effectiveness of our model.
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4.7.2.2 Baseline Models

OFW uses the temporal optical flow weights to set the best threshold to report

the best classification result. DCAE is a similar threshold-based method relying

on the reconstruction error as the feature of novelty (Kerner et al., 2019). OC-

SVM (Schölkopf et al., 2001) takes the encoder of DCAE to build the One-class

SVM on it providing the performance with the best ν parameter. While DSVDD

here is designed similarly to the description by Ruff et al. (2018), the adjustments

in our implementation are described in Section 4.6.4 above. GEN and N-GEN are

generative models to train a separate classifier as our method. GEN is, however, a

standard generative model adopting the feature matching technique in the discrimi-

nator network instead without the intervention of DSVDD. N-GEN replaces φ(G(z))

with arbitrary noisy data ~v′ ∈ R1×2048 where each element of ~v′ is drawn from N (0, α)

where α is the global variation of ~v ∼ φ(G(z)).

4.7.2.3 Overall Detection Performance

Table 4.2 helps estimate overall reliability of each model for the image inputs that

can be captured at an arbitrary timing since all samples from unstable colony were

included for test. OFW and DCAE suggest the limitation of only relying on thresh-

olding a simplistic one-dimensional signal. In particular, the low accuracy of DCAE

implies that precise reconstruction is achieved also for unseen, unstable motions. Sim-

ilarly, the OC-SVM can utilize only little benefit from the encoding capability. On

the other hand, DSVDD leads at least 45% increase of AUC score simply fine-tuning

the encoder part of DCAE because unstable examples are more easily distinguished

in the newly learned hyperspheric data description. In addition, our model brings

about a further improvement proving that utilizing a subsequent classifier with syn-
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METHOD AUC

OFW 0.506

DCAE 0.506 ± 0.002

OC-SVM 0.523 ± 0.004

DSVDD 0.762 ± 0.013

GEN 0.587 ± 0.032

N-GEN 0.699 ± 0.006

IO-GEN 0.786 ± 0.009

Table 4.2: Average AUC of tested models with the standard deviation as all 18-day

unstable observations are considered.

thetic examples can be more effective than the distancing heuristic in DSVDD to

make full use of multi-dimensional relationships among features. Nevertheless, GEN

and N-GEN provide 25% and 16% poorer performance than ours although both also

use synthetic data to train a classifier. N-GEN actually performs better than GEN

implying that the prior knowledge on data description is useful for effective data syn-

thesis. Still, its insufficient reliability emphasizes the realism in generated datasets

as well.

4.7.2.4 Results in Different Developmental Phases

Figure 4.8 displays the performance variation of each model as the tested unstable

ant data are confined in various temporal windows. Consistent with Fig. 4.7, the pre-

diction performance generally degrades for later temporal bins because ant behaviors

are more stabilized. Our framework still demonstrates the top performance in almost
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Figure 4.8: Average AUC changes for predictions within different temporal windows.

* marks statistically significant improvement against DSVDD (p < .05).

any phase especially showing the highest margins from DSVDD while the colony could

induce most diverse motions with the dramatic stabilization between D+2 and D+10.

As expected from Fig. 4.7, OFW and DCAE highly depend on the timing of appli-

cation because their scores are close to that of DSVDD early while lower even than

0.5 after D+6. If the initial social transition is weaker, these models may perform

poorly due to less intense competition caused. As in the previous experiment, the

results from GEN and N-GEN highlight the importance of using knowledge of feature

space to generate data as a proxy of unseen class. As illustrated in Fig. 4.2, GEN

produces fake motion samples that closely resemble stable ants, and so the classifier

cannot perform well even on abnormal samples in the early days just after the social

transition is artificially triggered.
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Figure 4.9: Optical flow examples: (top two rows) Six synthesized pairs from IO-GEN;

(bottom two rows) Six real examples. Each (H-V) pair show horizontal and vertical

motions, respectively, for which pixels are normalized in each image in a colormap.

4.7.3 Model Properties

Figure 4.9 compares synthetic optical flows from IO-GEN to real optical flows;

the generated optical flows are visually similar to real flows. Furthermore, Fig. 4.10a

illustrates that the lowest distance distribution to ~c is measured with IO-GEN, as

designed, whereas GEN behaves similarly to the stable dataset. Fig. 4.10b finally

shows the predictive outcomes of Classifier, which are likelihoods of unstable state.

With the label switch, the confidence becomes positively correlated with the distance

to ~c viewing inner outliers as samples from the most stable colony. Clear differences

87



Figure 4.10: For different types of data: On the left, normalized Euclidean distances

to ~c in feature description F of DSVDD. On the right, predicted likelihoods from

Classifier.

between classes imply that learned knowledge to discriminate stable and more-stable

states in DSVDD can be transferred for classification of another pair as stable or

unstable.

4.7.4 Identification of Salient Interactions

So far, we have investigated a new method to precisely classify the binary social

state only when behavioral observations of only one state are available to model the

world. The approach has shown its success though the focal system inherits the

realistic challenge C4 and also does not allow motional state search strategies, such

as SRS in Chapter 3, to be directly applicable. In this section, we will explore the

feasible use of Grad-CAM in the proposed state estimation pipeline, motivated by

the fifth challenge, C5, in Section 1.3.
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Figure 4.11: Two examples in two rows in each of which Grad-CAM heatmap is

resized and superimposed on original RGB video frames sequentially sampled every

second. Red regions have higher values while the blue lower values.

For evaluation, the Grad-CAM module is set up on the (DSVDD, Classifier) es-

timator, and higher values in the output heatmap represent the positive influence on

the likelihood of stable state. Thus, we will manually verify whether the dueling inter-

actions are captured on input frames during the unstable period. Because the strong

association between unstable colony and dueling is already known, it is expected that

the containing regions tend to have high intensities in the heatmap. Moreover, from

the results, we could estimate the potential ability of the model to discover crucial

behavioral cues for macrostate estimation in other types of society.

Figure 4.11 offers two examples from the näıve Grad-CAM method where the

heatmaps are superimposed on the original RGB video frames instead of the input

optical flows for better scenic understanding. Obviously, there is very little differ-

ence in the heatmaps between time stamps within the same example and also across

examples, even though the central areas commonly show higher gradients than near
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boundaries implying that the Classifier hypothesizes relatively strong associations of

any behaviors at the broad center area with the social instability in any case. This

can be a wisely learned strategy to consider the observed trend from Fig. 4.7, with

which unstable periods generally involve more intensive behaviors with higher optical

flow magnitudes especially at early stages.

To more clearly investigate the effects of microlevel interactions, the heatmap

algorithm is configured to 1) subtract the position-wise global minimum from the

heatmap value at each x,y position and 2) only display top 5% regions. Fig. 4.12 and

Fig. 4.13 provide 6 examples in which dueling interactions occurred and were properly

recognized by the Classifier to predict unstable colonies. In fact, this capability

supports that our model with Grad-CAM could be used to reveal cryptic behavioral

cues also in other biological systems.

4.8 Concluding Remarks

As stated in the beginning of this chapter, we have investigated an alternative

approach to the method in Chapter 3 to estimate social stability in ant colonies that

inherit the fourth challenge (C4) introduced in Section 1.3. Our approach allows for

some bias in the training dataset in which behavioral samples only from the stable

state are contained albeit the ultimate goal is to also detect the unstable state. With

the monotonic data, the detection problem has been re-framed in the aspect of OC

to make full use of the biasness.

We have introduced a novel generative model IO-GEN, which can take advantage

of pre-trained DSVDD and a separate classifier to successfully solve the problem of

OC. Our framework has been applied to a 20-day video recording from a nest of over

50 ants of H. saltator to identify a colony’s stable or unstable state only from a 1-

second motional sequence. Experimental results have demonstrated that the classifier
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trained with the synthetic data from IO-GEN can outperform other state-of-the-art

baselines at any temporal phase while the insect society is stabilized.

Even further, an additional module based on Grad-CAM has demonstrated its

potential use to tackle C5. The results enabled to ensure that the estimator can not

only learn reasonable holistic patterns that are consistent with the prior observations

on behavioral trends in optical flows but also discover the individual motions that

might have been cryptic to human observers.
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Figure 4.12: Three dueling examples in three rows as only the regions of top 5%

positive gradients are visualized for each frame. The Classifier focuses around the

duelers (manually located with dashed ovals) and a few of other movers.
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Figure 4.13: Other three dueling examples in three rows. Similar properties

to Fig. 4.12 are observed.
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Chapter 5

CONCLUSION

In this chapter, we will conclude the dissertation summarizing all the contributions

and discussing the potential directions of future work.

5.1 Summary of Contributions

The main contribution of this dissertation is, first of all, to formalize macrostate

estimation problem in complex multi-agent systems, motivated by the historical at-

tempts of viewing a complex social system as a single, large agent to abstract all

microlevel events. The advantages of being able to infer macrostates have also been

described with five challenges C1∼C5 that could make it difficult to perform the

estimation in any realistic systems. Successful approaches have been introduced to

address each challenge across artificial and natural multi-agent systems. Specific con-

tributions are described below.

5.1.1 Remote Teammate Localization 1

Chapter 2 formalized the ReTLo problem in multi-robot teams in which an in-

dividual robot is trained to predict positional states of the whole system only from

local views of a nearby neighbor. I introduced a “modular” estimation approach to

effectively tackle C1∼C3, and its reliability was evaluated on both simulated and

physical robotic platforms. The results have supported the utility of the approach

for the robotic members to successfully coordinate themselves under practical, unfa-

vorable conditions where remote communication is not allowed, or proximity sensors

1(Choi et al., 2017), (Choi et al., 2020)
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produce noisy measurements. A novel strategy was also proposed to achieve caging

behavior using the ReTLo ability. Furthermore, the real-robot datasets have been

uploaded online to encourage more participations from the research community.

5.1.2 Active Actions for Non-biased Learning 2

In Chapter 3, an improved learning model of ReTLo was introduced in which the

individual robotic learner is designed to have a capability of moving “actively” to ac-

cess “non-biased” observations during the stage of data collection. This method was

invented to mitigate C4 by allowing the learner to select its actions independently

of the pre-programmed motion rule so as to avoid gathering only similar, biased ob-

servations over time. To realize effective activeness, I suggested random sampling of

actions incorporated with original designs of neural networks that are trained in unsu-

pervised and self-supervised manners simultaneously to predict novelties of reachable

states and only select the optical action. The experimental results demonstrated that

the active data sampling can lead a high performance learning with less but better

representative data while the identical estimator is used with the previous passive

model.

5.1.3 Intentional Biased Learning for State Detection in Insect Colony 3

In Chapter 4, social stability was estimated in an ant colony, which is a highly

complex social system accompanying C1. As opposed to Chapter 3, I demonstrated

that learning with “biased” datasets can still be useful to estimate macrostates under

C4 without controlling particular micro-agents. Motivated by one-class classification

approaches, I proposed a framework to distinguish “unstable” social states when only

2(Choi and Pavlic, 2020)

3(Choi et al., 2021)
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the data of “stable” states are available for training. In particular, I have shared

online the used video data of 20-day motional observations from over 50 ants while

their colony transitioned through stable–unstable–stable states. To the best of my

knowledge, I showed the first work to learn a generative model that synthesizes fake

behavioral representations of ant, and also, the artificial dataset could assist in learn-

ing a high-performance classifier for the OC task. Program codes are also available

online. Moreover, the Grad-CAM technique was adopted as a promising solution to

solve C5 visually highlighting “salient” micro-behaviors which may have been enig-

matic to human observers in the relationship with macroscale states.

5.2 Future Directions

In the future work of ReTLo, we could more deeply investigate the factors in

model accuracy such as the length of history or types of team behavior that might

favor the prediction scheme. Specifically, Reinforcement Learning based methods

could be devised for the Tail robot to stay active even after training to maximize the

localization performance – i.e., once a trained estimator has been equipped on Tail,

it could try to learn its own motion rules to improve its remote localization ability

by continuously interacting with the environments. Then, the learned motions could

drive the team to stay within a certain range of formations on which the localization

error can be minimized in average, however Head leads the team at a distal end.

Also, because the LSTM layer is exposed to various evolutions of team shape

during training, the vector representation of it may be examined to characterize

team states and ultimately detect large-scale group-shape abnormalities that may be

important to detect for situational awareness. Beyond these approaches, Bayesian

implementations could be considered to make better use of uncertainty information

from sensors and provide confidence estimates for the position of each robot in the
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team.

In addition, we could explore applicable cases of ReTLo beyond caging scenario

where multiple Tail robots are deployed in the same team to cooperatively drive other

robots to a destination state based on their real-time predictions of global formation.

Moreover, an autonomous vehicle could utilize a ReTLo-like inference model to predict

potential accidents that may have occurred several cars ahead using the behavioral

variations of the car immediately in front.

With the natural systems, one of the future directions could be to quantify the

macrostates at a higher resolution. For instance, a colony of Harpegnathos saltator

undergoes a stabilization process taking multiple days or weeks until an equilibrium

of stability is reached. This means that within a small time window of minutes

or hours, the colony may experience different stages of states although behavioral

changes could look very subtle to human eyes. If a model can be learned to detect such

a unnoticeable progression, it could help human observers better assess the system

dynamics and also learn about more diverse salient behaviors using the Grad-CAM

technique.
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