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ABSTRACT

The severity of the health and economic devastation resulting from outbreaks of

viruses such as Zika, Ebola, SARS-CoV-1 and, most recently, SARS-CoV-2 underscores

the need for tools which aim to delineate critical disease dynamical features underlying

observed patterns of infectious disease spread. The growing emphasis placed on

genome sequencing to support pathogen outbreak response highlights the need to

adapt traditional epidemiological metrics to leverage this increasingly rich data stream.

Further, the rapidity with which pathogen molecular sequence data is now generated,

coupled with advent of sophisticated, Bayesian statistical techniques for pathogen

molecular sequence analysis, creates an unprecedented opportunity to disrupt and

innovate public health surveillance using 21st century tools. Bayesian phylogeography

is a modeling framework which assumes discrete traits — such as age, location of

sampling, or species — evolve according to a continuous-time Markov chain process

along a phylogenetic tree topology inferred from molecular sequence data.

While myriad studies exist which reconstruct patterns of discrete trait evolution

along an inferred phylogeny, attempts to translate the results of phylogeographic

analyses into actionable metrics that can be used by public health agencies to direct

the development of interventions aimed at reducing pathogen spread are conspicuously

absent from the literature. In this dissertation, I focus on developing an intuitive

metric, the phylogenetic risk ratio (PRR), which I use to translate the results of

Bayesian phylogeographic modeling studies into a form actionable by public health

agencies. I apply the PRR to two case studies: i) age-associated diffusion of influenza

A/H3N2 during the 2016-17 US epidemic and ii) host associated diffusion of West

Nile virus in the US. I discuss the limitations of this (and Bayesian phylogeographic)

approaches when studying non-geographic traits for which limited metadata is available
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in public molecular sequence databases and statistically principled approaches to this

missing metadata problem. Then, I perform a simulation study to evaluate the

statistical performance of the missing metadata solution. Finally, I provide a solution

for researchers interested in using the PRR and phylogenetic UTMs in their own

genomic epidemiological studies yet are deterred by the idiosyncratic, error-prone

processes required to implement these models using popular Bayesian phylogenetic

inference software packages. My solution, Build-A-BEAST, is a publicly available,

object-oriented system written in python which aims to reduce the complexity and

idiosyncrasy of creating XML files necessary to perform the aforementioned analyses.

This dissertation extends the conceptual framework of Bayesian phylogeographic

methods, develops a summary statistic for translating the output of these models into

an actionable form, and evaluates the use of priors for missing metadata. In doing

so, I lay the foundation for future work in disseminating and implementing Bayesian

phylogeographic methods for routine public health surveillance.
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Chapter 1

VIRUS SEQUENCES IMPLICATE IMMUNE IMPRINTING AS A KEY DRIVER

OF AGE ASSOCIATED DIFFUSION DURING THE 2016-17 US INFLUENZA

H3N2 EPIDEMIC

Author Summary

We employ Bayesian phylogenetic generalized linear models to identify the drivers

of age associated H3N2 influenza diffusion during the 2016-2017 US epidemic across

each of the ten Health and Human Services regions. We show that age associated

diffusion for the 2016-2017 H3N2 epidemic was primarily driven by immunologic

imprinting and other age-based effects. However, our results show that this is not

true across all Health and Human services regions in the US. We use “phylogenetic

relative risks” to demonstrate regional heterogeneity in age associated transmission

risks, suggesting that strategies for controlling influenza spread should be tailored

to specific regional risk patterns. To our knowledge, our study is the first to utilize

genomic epidemiology to analyze the factors underlying age associated influenza H3N2

diffusion during annual outbreaks.
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1.1 Abstract

The growing emphasis placed on pathogen genome sequencing to support outbreak

response highlights the need to adapt traditional epidemiological metrics to leverage

this increasingly rich data stream. In this paper, we employ Bayesian phylogenetic

generalized linear models (GLM) to identify the drivers of age associated H3N2

influenza diffusion during the 2016-2017 US epidemic across each of the ten Health

and Human Services (HHS) regions. We show that age associated diffusion for the

2016-2017 H3N2 epidemic was primarily driven by immunologic imprinting and other

age-based effects. However, our results show that this is not true across all regions. We

validate our phylogenetic results by converting our sequence records to an equivalent

line list representation and fitting a multinomial Bayesian GLM utilizing the same

set of immunologic, demographic, social contact and age-based predictors. We then

use “phylogenetic relative risks” which further demonstrate regional heterogeneity in

age associated transmission risks, suggesting that strategies for controlling influenza

spread should be tailored to specific regional risk patterns. To our knowledge, our

study is the first to utilize genomic epidemiology to shed light on the factors underlying

age associated influenza H3N2 diffusion during annual outbreaks. Future work should

aim to quantify the effectiveness of genomic epidemiology informed control programs

in real-world contexts to facilitate translation of these methods into routine public

health practice.
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1.2 Introduction

During the 2016-2017 season it is estimated that influenza killed approximately

51,000 people in the US (CDC 2019) alone. Putri et al (Putri et al. 2018) recently

estimated influenza direct health care costs to be approximately $11.2 billion dollars

per year, which further underscores the magnitude of these epidemics. Given recent

global pandemics and increasing seasonal severity of influenza outbreaks, there is a

growing need for targeted control strategies to curb the spread of these epidemics.

Often, epidemiologists would benefit by knowing “whom acquires infection from whom”.

In terms of transmission dynamics, what are the sources, and complementary sinks, of

an outbreak. These may be geographic locations, consumer products, or can be based

on host characteristics; such as age, species or vaccination status. An understanding of

such transmission dynamics among various discrete groups provides evidence necessary

for designing and implementing effective disease control strategies. For example, during

influenza outbreaks, identifying key age groups driving transmission would provide

public health agencies with actionable information necessary to inform targeted control

measures.

Recent work in quantifying the importance of various age groups during influenza

(or more broadly, respiratory viral) outbreaks can be roughly categorized into two

groups: methods based on analysis of surveillance count data (Schanzer, Vachon, and

Pelletier 2011; Worby et al. 2015; Goldstein et al. 2017; Katelyn M Gostic et al. 2016;

Katelyn M. Gostic et al. 2019; Ranjeva et al. 2019; Arevalo et al. 2019) and methods

based on compartmental mathematical models (Wallinga, Teunis, and Kretzschmar

2006; Basta et al. 2009; Apolloni, Poletto, and Colizza 2013; De Luca et al. 2018).

While informative, these approaches either obfuscate details of or rely on assumptions
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about transmission processes which ultimately give rise to observed epidemic patterns.

For example, statistical models often rely on observing the magnitude of events in

a particular group without distinguishing the origin of those events. Alternatively,

compartmental models often solely rely on assumptions about between group contact

parameters that are difficult to obtain directly in the population of interest (Mossong et

al. 2008a; Prem, Cook, and Jit 2017; Arregui et al. 2018). Inference of epidemiological

patterns via virus sequences complements these approaches by offering a rich analytical

framework with which one can integrate sequence data with travel, economic, social

and other predictor data (Lemey et al. 2014; Dudas et al. 2017a; Grubaugh et al. 2017)

while simultaneously reconstructing the relatedness of observed cases via phylogeny:

an approximation of ’whom acquired infection from whom’.

The frequency with which molecular data is now generated motivates the use

of virus sequences to shed light on transmission processes and patterns underlying

disease outbreaks. For the last decade researchers have used the nascent field of

Bayesian phylogeography (Lemey et al. 2009) to study the epidemiology of viral

disease outbreaks including Ebola (Dudas et al. 2017a), Mers-CoV (Dudas et al. 2018),

and Zika (Grubaugh et al. 2017) viruses. These methods combine data on discrete

characteristics, such as geographic location or host species, with molecular sequence

data, to infer historical characteristics of infectious disease outbreaks. The advent

of the phylogeographic generalized linear model (GLM) (Lemey et al. 2014) extends

this approach by parameterizing the rates of pairwise discrete trait change as a

log-linear combination of predictors of interest, permitting statistical assessment

of predictor support for reconstructing patterns of trait change across a phylogeny

(Magee, Suchard, and Scotch 2017; Dudas et al. 2017a). Though discrete traits

are often taken to be geographic location of the virus, analyses using host species
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as a discrete trait for pathogens such as SARS-CoV-2 (Fauver et al. 2020), WNV

(Swetnam et al. 2018), HIV (Oster et al. 2015), MERS-CoV (Dudas et al. 2018), and

avian influenza (Trovão et al. 2015; Bahl et al. 2016) have revealed rich between-host

transmission dynamics underlying these respective outbreaks. By reconciling these

two approaches, phylogeographic models can be used to assess the role of specific

host groups in propagating new infections while simultaneously evaluating statistical

support for host-associated factors driving underlying differences in reconstructed

transmission risks.

In this paper, we aim to elucidate the contributions of immunologic, social contact,

demographic and age-based factors to age associated influenza H3N2 diffusion within

a phylogenetic framework. We synthesize available evidence on social mixing patterns

(Mossong et al. 2008a; Prem, Cook, and Jit 2017; Arregui et al. 2018) and immunolog-

ical imprinting (Katelyn M Gostic et al. 2016; Katelyn M. Gostic et al. 2019; Arevalo

et al. 2019), while additionally accounting for demographic structure and age-based

factors, together with virus sequences to reveal the mechanisms driving age associated

influenza spread. In the case of identifying factors driving observed influenza case age

distributions Katelyn M Gostic et al. 2016; Katelyn M. Gostic et al. 2019; Arevalo et

al. 2019; Ranjeva et al. 2019, we believe that signals of host immune pressures exerted

on influenza sequences, which are shaped by early life influenza exposures, should be

detectable within phylogenetic models. We validate our phylogenetic models by fitting

an analogous GLM to line list data derived from the same set of virus sequence records.

To do so, we emulate previous models (Katelyn M Gostic et al. 2016; Katelyn M.

Gostic et al. 2019; Arevalo et al. 2019) and perform parameter inference using the

Bayesian paradigm. Finally, we translate a traditional epidemiological association

measure into a phylogenetic context: the “phylogenetic relative risk” and apply it to
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identify age group(s) driving national and regional transmission during the 2016-17

US influenza A/H3N2 epidemic. Reconstruction of the magnitude of transmission

events between specific groups during phylogenetic analysis permits computation

of the relative risk for specific between group transmission events using standard

formulas. Our goal in framing a common measure of epidemiological association

in a phylogenetic context is to advocate for wider use of phylogenetic methods in

public health risk assessment during viral infectious disease outbreaks. We believe

our study takes a necessary step in bridging the gap between genomic epidemiological

research methods and public health practice by synthesizing classical and genomic

epidemiological methods and applying these principles to the study of age-associated

influenza diffusion.

1.3 Methods

1.3.1 Sequence Data Collection and Evolutionary Model Selection

We downloaded all available influenza A/H3N2 hemagglutinin (HA) sequence

data from GenBank (Dennis A. Benson et al. 2012) and discarded isolates associated

with non-human hosts. We applied the following inclusion criteria to generate the

final analysis data set: a) sequences were from isolates with reported sampling dates

between January 1, 2016 and December 31, 2017; b) sequences had a known sampling

location (to state level); c) sequences had a host age reported in their GenBank record

and d) sequences represented unique influenza H3N2 isolates. The final data set

included 2812 unique HA sequences annotated with sampling time, sampling location

and host age information. We summarize the results of our data collection method in
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Figure 1. In Table S1, we provide sequence data, including sampling dates, locations

and GenBank accessions. We linked each virus to its respective Health and Human

Services (HHS) region, resulting in ten total analyses. We aligned sequences using

MAFFT v. 7.407 (Katoh et al. 2002) with the default settings and inspected the

results manually in Seqotron (Fourment and Holmes 2016). We used jModelTest2

(Darriba et al. 2012) to perform nucleotide substitution model selection prior to

Bayesian analysis. We compared the fit of the 11 named substitution models by using

the Bayesian Information Criterion as the objection function and found the GTR

+ Γ model to be most appropriate for our data. We used the maximum likelihood

(ML) phylogenies generated during the jModelTest2 analyses to test the fit of strict vs

relaxed molecular clocks. We identified the most appropriate molecular clock model

by calculating likelihood scores of the ML phylogeny under both strict and relaxed

molecular clock models and performing a likelihood ratio test (LR test).

1.3.2 Bayesian Phylogenetic Analysis

We modeled molecular evolution using a GTR + Γ nucleotide substitution model

with 4 rate categories and uncorrelated log-normal molecular clock (Drummond et

al. 2006). We specified the non-parametric generalized Bayesian Skyride (Minin,

Bloomquist, and Suchard 2008) model as a coalescent tree prior for our analysis to

account for the a priori expectation that population of infected individuals giving rise

to influenza phylogenies follow non-linear dynamics. To estimate divergence times,

we fixed tip dates as the dates of sampling reported in GenBank for each sequence,

respectively. We used Bayesian MCMC to perform inference for our phylogeographic

model as implemented in BEAST v1.10 (Suchard et al. 2018). For each HHS region,
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we ran the MCMC for 200 million iterations, sampling every 20,000 steps and removed

the first 20% as burn-in. We diagnosed convergence of the MCMC procedure using

Tracer v1.7.1 (Rambaut et al. 2018a) checking that all model parameters had Effective

Sample Sizes (ESS) of 200 or greater.

1.3.3 Measuring Phylogeny-Age Association

The relationship between a discrete state of interest (e.g. location, infected host,

clinical endpoint, etc.) and the genetic evolution of virus can be a powerful analytical

tool in genomic epidemiology. If closely related sequences tend to share discrete traits

more often than would be expected by chance (i.e. that is under tip label permutations),

then, the evolution of these traits are tightly coupled to the phylogenetic tree topology.

Specifically, the null hypothesis is that discrete traits are uncorrelated with genetic

distances among individuals (Parker, Rambaut, and Pybus 2008). We test this null

hypothesis using BaTS software (Parker, Rambaut, and Pybus 2008), and focus on

two metrics, the Parsimony Score (PS) and Association Index (AI) for which null

distributions are obtained via trait label permutations. We performed BaTS analysis

using the last 1,000 posterior trees from our Bayesian phylogenetic analysis. We

calculated null distributions for PS and AI using 100 trait permutations on each tree

topology.
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1.3.4 Identifying Social, Demographic and Immunological Correlates of Influenza

Diffusion via Virus Sequences

Since ecological and evolutionary processes occur on the same time scale for RNA

viral pathogens (Drummond et al. 2003), we can use molecular phylogenies to infer

epidemiological processes giving rise to the estimated trees (Holmes and Grenfell 2009).

Common applications of the technique are to reconstruct the geographic migration

(Lemey et al. 2009; Lemey et al. 2014; Magee, Suchard, and Scotch 2017; Dudas

et al. 2017a; Grubaugh et al. 2017) and host transmission (Trovão et al. 2015; Bahl

et al. 2016; Swetnam et al. 2018; Dudas et al. 2018) histories of RNA viral disease

outbreaks; processes which occurs on faster timescales than viral molecular evolution.

Here, we propose treating host age as a discrete trait upon which phylogeographic

inference is performed. Since geographic migration and host transition processes

to take place on similar timescales for RNA viruses, we expect this to be a valid

inferential target. For example, imagine the transmission of influenza on an airplane

where migration and host diffusion processes occur on the same timescale. Here, there

is influenza transmission between individuals of several age classes while these viral

lineages are, simultaneously, being moved between geographic locations. A popular

approach for identifying factors that are associated with phylogenetic inference of

discrete trait diffusion involves parameterizing the rate parameters rij of the Markov

matrix (Λij) describing the rate of character change between each pair states i and j as

a log-linear function of specific covariates of interest (Lemey et al. 2014). Employing

this approach we parameterize the rate parameters describing transmission between

age groups as a log linear function of social contact, demographic, and immunologic

factors. Particularly, we emulate the examples of (Katelyn M Gostic et al. 2016;
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Ranjeva et al. 2019; Arevalo et al. 2019) which have suggested that these factors

drive age-specific dynamics observed during influenza epidemics. We incorporated

social contact data for the US (Prem, Cook, and Jit 2017) by adjusting the US wide

contact matrix by region specific population densities using the method of (Arregui

et al. 2018). Similar to (Ranjeva et al. 2019; Arevalo et al. 2019) we include the

population proportion of each age group, per HHS region, using population estimates

from the US Census Bureau for 2017. Finally, we incorporate the probability of

immune imprinting to H3-type hemagglutinin via the methods presented in (Arevalo

et al. 2019). Briefly, these models assume that the attack rate on naive: unexposed

individuals is approximately 28%. Then, the probability of infection by a specific age

is assumed to be geometrically distributed (Arevalo et al. 2019; Katelyn M. Gostic

et al. 2019). These age of first infection probabilities are then scaled by seasonal

influenza intensities and the percent of specimens testing positive for each season from

2017 to 1918. We take the average probability of first infection for birth years in each

of the aforementioned age groups our cohorts We additionally include an indicator

variable in our models to describe increases in transmission risk for toddlers and adults

aged 65+ years. We discuss details of the model in the Supplementary Material.

1.3.5 Discrete Trait Analysis and Phylogenetic Relative Risk

We used Markov jumps (MJ) to measure the relative magnitude of transmissions

between age groups within each of the ten HHS region. Briefly, these counting

processes enumerate labeled character changes when using continuous-time Markov

chains to model character evolution along a phylogeny (Minin and Suchard 2008).

We defined and annotated sequences with sixteen age categories for our discrete trait
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analysis. We defined non-overlapping 5 year age intervals from ages 0 to 75+ (ages

0-4, ages 5-9 ... ages 75+) as the groups for our analysis. This decision was driven

by the resolution with which demographic data are typically recorded by the US

Census for each state. Utilizing an asymmetric model of character change (Lemey

et al. 2009) allows us to determine whether each age group acted as a source or sink of

influenza transmissions within distinct regions during our study period. We manually

edited BEAUti generated XML files to count all Markov jumps describing the relative

magnitude of each specific character changes. We quantified the risk of each group

to act as a source or sink by computing the relative risk of viral exchange between

each group using Markov jumps following the example of (Bahl et al. 2016). We

obtained total MJ counts for the last 2000 posterior trees of the Bayesian phylogenetic

analysis in order to incorporate phylogenetic uncertainty into the analysis. We then

created 2× 2 contingency tables for each pairwise combination of age groups within a

given HHS region and calculated relative risks as shown in Figure 2. Similar to the

classical statistic, phylogenetic relative risk values below one indicate the group acts

as a sink and tends to not transmit to its partner group. Alternatively, relative risk

values above one indicate a group acts as a source and tends to transmit infection

to a group. We performed this analysis for each of the ten HHS regions separately

and then combined the results of each individual region to perform our national scale

analysis.

1.3.6 Identifying Correlates of Age Associated Diffusion using Sequence Databases

In previous works (Katelyn M Gostic et al. 2016; Katelyn M. Gostic et al. 2019)

describing the role of immunologic imprinting in shaping influenza A case age distri-
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butions, correlates of age associated influenza risk were identified by fitting suites of

multinomial generalized linear models (GLMs) to case count data binned by birth

year. We emulate this approach by noting that molecular data reported in sequence

databases may be converted to a line list representation given a set of sufficient

metadata is present with the sequence record. Concretely, a virus sequence record

containing both i) age of infected host and ii) date of isolate collection can be converted

to an equivalent line list representation by calculating the birth year. We converted

the 2812 sequence records meeting the aforementioned inclusion criteria to a line list

representation. For the purposes of statistical analysis, we assumed sequenced isolates

are a random sample of all isolates tested for influenza at public health laboratories.

We take care to justify this assumption in the context of influenza surveillance in

the US. Guidance on seasonal influenza surveillance is administered through the

Association for Public Health Laboratories (APHL) via the “Flu Right Size Roadmap”

(APHL 2013) which establishes several key components of a successful surveillance

system. Specifically, it recommends that surveillance systems: i) establish a represen-

tative network of specimen submitters from ILINet providers, clinical and commercial

labs, ii) utilize a statistical, systematic approach to collect and appropriate, adequate

number of specimens for testing, iii) utilize sampling approaches that ensure submitted

specimens are clinically, temporally, geographically and virologically representative of

the population and iv) send representative clinical specimens and/or virus isolates

to CDC or a CDC-designated laboratory for national surveillance purposes (APHL

2013). We expect that this serves to reduce judgement and convenience sampling

which ultimately comprise the external validity the sampled isolates. In the absence

of information on the specific sampling strategy employed by each submitting public
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health laboratory in the US, it is reasonable to assume that most follow a statistically

principle sampling approach as prescribed above.

We fit our multinomial models using the Bayesian paradigm to all 2812 sequences

available from the US to determine national level effects and drivers of case age

distributions. Some advantages of using a Bayesian approach are parameter uncertainty

is available in the form of posterior distributions and best-subset model selection is

available using well-established techniques (George and McCulloch 1997). We discuss

model fitting and selection specifics in the Supplementary Material. We utilized this

analysis as a baseline to which we compare our phylogenetic risk models results.

1.4 Results

1.4.1 Phylogenetic Analysis within US HHS regions

The final data set included 2812 influenza A/H3N2 HA sequences annotated with

state-level sampling location, isolation date and host age information. We provide

a graphical summary of collected sequences in Figure 1. Sequence counts for each

region ranged between 147 (HHS region 7) and 422 (HHS region 4) as we show in

Figure 3. We observed large sequence counts for the 75+ age group in all regions.

We additionally observe increased counts individuals aged 24 years and younger for

some regions. Taking these distributions to be representative of the full case age

distributions in each region, there is clearly heterogeneity among regions. In Figure 1,

we show an overview of the sequence inclusion algorithm used to derive our analysis

data set. We provide the accession numbers for the sequences included in this study

in the Supplementary Material.
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Figure 1. Overview of sequence inclusion criteria. Total number of sequences
remaining after each step is indicated by the number below each arrow. The number
of sequences discarded during each filtering step is shown below the corresponding
discard node.

In Table 1, we provide the estimated mean substitution rate and 95% highest

posterior densities (HPD) for the substitution rate and tree root age, stratified by HHS

region. Our phylogenetic analyses estimated posterior hierarchichal mean substitution

rates to be between 3.53× 10−3 to 5.41× 10−3 substitutions/site/year for all regions.

These posterior means are commensurate with other studies of influenza A/H3N2 HA

sequences (Bedford et al. 2010; Bahl et al. 2011). The estimated tree root ages ranged

between late May 2015 (HHS region 2) and December 2015 (HHS region 10) across

all regions.

1.4.2 Measuring the Strength of Phylogeny-Age Associations

We measured the strength of association between age groups and phylogenetic

relatedness using PS and AI statistics as implemented in the program BaTS (Parker,

Rambaut, and Pybus 2008) separately for each HHS region included in our study.
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Figure 2. In the classical epidemiological method, relative risk (RR) is computed as
the ratio of the probability of an event of interest (disease progression) in one group
versus the probability of the same event in another group. These groups are often
defined by the presence/absence of an exposure of interest. The computation of
relative risk from observational count data is then straightforward using the formula
(A/A+C)/(B/B+D). In the phylogenetic context, we are similarly interested in
estimating the relative probability of transmission from one group to another. We
populate (for each pair of discrete traits in a model) a 2X2 contingency table. Cell A
contains the number of Markov Jumps (MJ) from group 1 to group 2. Cell C
contains the MJs from all other groups to group 2. The probability that a MJ to
group 2 originates in group 1 is A/(A+C). We now need to compute the probability
that an introduction to other regions (not including group 2) originates in group 1.
We populate Cell B with the MJs originating in group 1 and ending in groups not
including group 2. Cell D contains the remaining MJs between all other groups
excluding groups 1 and 2. We compute the required probability as B/(B+D). The
relative risk of an introduction from group 1 to group 2 is then the ratio of these
probabilities, (A/A+C)/(B/B+D).

15



Figure 3. Age distribution of H3N2 sequences by HHS region. We observe a large
proportion of cases in the 75+ year age group in all HHS regions. Some regions show
a larger proportion of sequences among children ages 0-9 as well as young adults
between ages 20-24. We assume that random isolates are selected for sequencing and
reporting to GenBank and these distributions are, in part, reflective of underlying
case age distributions in each respective HHS region.
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Posterior mean (95% HPD)

TMRCA Subs. rate MJs

Region 1 2015.6 (2015.2-2016.0) 4.58e-03 (3.32e-03-6.05e-03) 107 (103-112)
Region 2 2015.3 (2015.1-2015.6) 3.54e-03 (2.71e-03-4.39e-03) 135 (130-139)
Region 3 2015.6 (2015.5-2015.8) 4.11e-03 (3.40e-03-4.95e-03) 236 (247-260)
Region 4 2015.7 (2015.6-2015.9) 4.00e-03 (3.39e-03-4.64e-03) 315 (305-325)
Region 5 2015.7 (2015.5-2015.8) 4.92e-03 (4.06e-03-5.82e-03) 232 (226-238)
Region 6 2015.7 (2015.5-2015.9) 3.86e-03 (3.17e-03-4.68e-03) 303 (284-324)
Region 7 2015.7 (2015.3-2016.0) 4.11e-03 (3.04e-03-5.28e-03) 108 (105-114)
Region 8 2015.4 (2015.2-2015.7) 3.83e-03 (3.11e-03-4.51e-03) 205 (198-211)
Region 9 2015.5 (2015.4-2015.7) 4.56e-03 (3.77e-03-5.44e-03) 250 (242-258)
Region 10 2015.9 (2015.6-2016.2) 5.41e-03 (4.08e-03-6.71e-03) 134 (123-145)

Table 1. Posterior summary of Bayesian phylogenetic analysis. We show the mean
and 95% highest posterior density regions (95% HPD) for the root age, substitution
rate, and total Markov jump (MJ) transitions for each HHS region. Time to most
recent common ancestor is denoted as TMRCA.

We present the mean, 95% HPD of the AI statistics for the observed tip distribution

along with the mean and 95% HPD from the null distributions for each HHS region in

Table 2. Our AI analysis results show that the pattern of age group changes is tightly

correlated with genetic distance between isolates for each HHS regions except 3, 7

& 10 (Tables 2) We suspect that increased sampling of the 75+ age group (perhaps

due to higher rates of medically attended ILI or case ascertainmentm) for regions 3

& 7 likely contributed to the lack of observable phylogeny-trait association signals

in these regions. This would be due to smaller distances between the permutation

(null) and observed distributions. For the PS statistics, we show the results in Table

3. We uncovered a similar pattern as that of the AI analysis, however, this analysis

additionally suggests a lack of detectable phylogeny-trait correlation signal for region

5 & 8. These regions seem to similarly have over-representation of the 75+ age

groups in their sequence distributions (Figure 4) and we suspect this leads invariant

distributions for the test statistics, as mentioned above. Nonetheless, for the remaining
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regions, our results are interpreted as the phylogeny being informative about the

pattern of evolution for a specific discrete trait; the pattern of age group changes.

In our application, this suggests that genetically similar isolates are more likely to

share an age group. Compared with our a priori expectation that most transmissions

occur within (rather than between) age groups, driven by the assortativity observed

in the inferred contact patterns (Mossong et al. 2008a; Prem, Cook, and Jit 2017),

this seems quite reasonable. Motivated by these results, we continued the analysis of

age associated diffusion via phylogeographic GLMs, noting reduced confidence in the

results of these models for region 3, 7, & 10.

1.4.3 Determining Drivers of Influenza Case Age Distributions via Sequence

Databases

Modeling the observed case counts in sequence databases offers a complementary

approach to the analysis of line list data when the latter is unavailable in the population

of interest. Given sufficient metadata is reported with the sequence record, it is

straightforward to convert sequence data to a line list representation. We fit Bayesian

multinomial GLMs to case counts binned by 5-year age intervals to mirror the

granularity with which social contact and US population data were available. We show

the fit of our final model to the case age distribution of all 2,812 records included in

this study in Figure 4. Similar to previous studies, we find strong support for modest

protection via hemagglutinin (HA) imprinting (0.44, 95% HPD 0.23-0.92, BF: 75.89,

Table4) as a predictor of the case distribution among age groups. Additionally, we

found that increased increased influenza risk for the elderly (ages 75+) was strongly
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Posterior mean (95% HPD)

AI (95% HPD) null AI (95% HPD) p-value

Region 1 14.527 (13.482–15.459) 16.179 (15.187–17.029) < 10−2

Region 2 19.013 (17.676–20.313) 22.376 (21.486–23.153) < 10−2

Region 3 34.918 (33.255–36.477) 35.395 (34.263–36.351) 0.21
Region 4 41.220 (39.339–42.999) 44.317 (43.098–45.327) < 10−2

Region 5 34.162 (32.637–35.727) 35.481 (34.208–36.560) 0.04
Region 6 39.467 (37.711–41.165) 42.763 (41.586–43.948) < 10−2

Region 7 14.879 (13.885–15.799) 15.569 (14.831–16.213) 0.1
Region 8 27.852 (26.512–29.220) 29.026 (28.211–29.814) < 10−2

Region 9 36.275 (34.408–38.100) 38.029 (36.713–38.952) 0.01
Region 10 15.637 (14.636–16.606) 15.372 (14.706–16.013) 0.77

Table 2. Posterior summary of BaTS analysis. We show the mean and 95% highest
posterior density regions (95% HPD) for the Association Index (AI) for each HHS
region, along with the mean and 95% HPD values from the null distributions. We find
that AI scores are lower than would be expected by chance except in HHS regions 3,
7 & 10. Broadly, this indicates the presence of phylogeny-trait correlation and trait
structure in the data. We suspect that increased sampling of the 75+ age group (due
to higher rates of medically attended ILI) for regions 3 & 7 likely contributed to the
lack of phylogeny-trait association signals in these regions. For HHS region 10, we
believe particularly sparse sequence sampling (149 sequences) contributed to the
observed lack of phylogeny-trait association. We display p-values < 0.05 in bold.

supported (5.47, 95% HPD 1.92-3.99, BF: 24999, Table 4). We observed reduced

risks for cases between ages 0-4 with a strong protective effect inferred by our models

(0.44, 95% HPD 0.02-0.69, BF: 6.90, Table 4). Similar to other H3N2 outbreak years,

there was a larger proportion of cases in elderly birth cohorts (aged 75+ years) which

is reflected in the empirical age distributions (Figure 3). As previously suggested,

these patterns are congruent with the notion of birth year specific imprinting effects

(Katelyn M Gostic et al. 2016; Katelyn M. Gostic et al. 2019). Social contact showed

limited posterior support for inclusion in our models (BF < 1, Table 4) which is

expected since social contact rates are incorporated into the null model expectation
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Posterior mean (95% HPD)

PS (95% HPD) null PS (95% HPD) p-value

HHS region 1 103.271 (101–105) 110.895 (107.282–114.206) < 10−2

HHS region 2 136.714 (134–139) 156.555 (152.878–161.405) < 10−2

HHS region 3 246.786 (243–250) 251.606 (246.287–255.531) 0.09
HHS region 4 304.473 (300–309) 320.486 (313.662–325.940) < 10−2

HHS region 5 237.506 (234–241) 243.202 (238.002–247.193) 0.05
HHS region 6 282.337 (278–287) 299.310 (292.610–304.612) < 10−2

HHS region 7 105.215 (103–107) 105.709 (102.259–109.055) 0.35
HHS region 8 201.846 (199–205.) 205.091 (201.301–210.088) 0.08
HHS region 9 255.902 (252–260) 269.758 (264.275–274.473) < 10−2

HHS region 10 114.506 (112–117) 115.926 (111.511–119.898) 0.33

Table 3. Posterior summary of BaTS analysis. We show the mean and 95% highest
posterior density regions (95% HPD) for the Parsimony Score (PS) for each HHS
region, along with the mean and 95% HPD values from the null distributions. We
find that the PS scores are lower than would be expected by chance in all regions
except HHS regions 3, 5, 7, 8 &10 indicating the presence of phylogeny-trait
correlation. Similar to the results reported for the AI statistic, dense sampling of the
75+ age group in HHS regions 3, 5, 7 & 8 likely contributed to the lack of observable
signal. Sparse sequence sampling in HHS region 10 likely contributed to the lack of
an observable phylogeny-trait correlation signal. We display p-values < 0.05 in bold.

(derived from the numerical solution of an age structured SIR model) as described in

the Supplementary Material.
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Figure 4. Observed and fitted influenza H3N2 case age distributions, US, 2016-17.
We show the predicted age distribution using posterior mean parameter estimates
over the 2p possible models. These predictions are primarily driven by imprinting and
age (elderly) risk parameters since other parameters receive little support for
posterior inclusion.

Posterior mean (95% HPD)

Predictor Effect size (β) Inclusion prob. Bayes’ Factor

HA imprinting 0.44 (0.231-0.924) 0.986 75.89
0-4 age-based risk 0.42 (0.020-0.691) 0.87 6.90
75+ age-based risk 5.47 (1.92-3.99) 0.99 24999
Total daily contacts 1.7e−3 (3e-6-0.055) 0.078 8.48e−2

Table 4. Posterior summary of Bayesian multinomial GLM analysis. We show the
mean and 95% highest posterior density regions (95% HPD) for the coefficient effect
sizes and posterior inclusion probability from BSSVS. We compute Bayes’ factors for
coefficient inclusion and see support for imprinting and age-based risk as strong
determinants of sequence (case) age distributions.

1.4.4 Virus Sequences Strongly Support Hemagglutinin Imprinting as the Key

Driver of Age Associated Influenza H3N2 Diffusion in the US

We examined the roles of social contact, immunologic, age and demographic factors

on the rates of age associated diffusion (i.e. the rates of a Markov transition matrix)
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using a phylogeographic GLM, emulating the Bayesian multinomial model fit to the

H3N2 sequence age distribution. However, since we are now modelling the between

group transition rates directly, we used appropriate modifications to the included

predictor variables as discussed in the supplementary material. Since we used CTMCs

to model the transmission of viral lineages between age groups, positive coefficient

values are associated with supportive effects such that increases in predictor vales

increase transmission rates between age groups. Conversely, negative coefficient values

are associated with protective effects such that increases in predictor values results in

reduced transmission rates between groups. Our models show strong support for HA

imprinting (in the group of origin, i.e. the transmitting group) in HHS regions 1, 3, 5,

8, 9 and 10 as demonstrated by high posterior inclusion probabilities in these models

(Figure 11). Across these regions, we found a protective effect of homotypic immune

imprinting on viral transmission rates as demonstrated by strictly negative 95% HPD

regions for model coefficients. In HHS regions 2 and 7, we see a similar trend toward

support for protective HA imprinting, however, the 95% HPD regions both cross

zero and have relatively low posterior inclusion probabilities. The notion that HA

imprinting reduces between group transmission rates is consistent with both total and

partial protection hypotheses. In the case of the former, total protection conferred by

imprinting from a matched HA type would eliminate transmissions from this group

entirely since they would not transition to an infectious state. If HA imprinting were

to confer partial protection such that case severity is reduced, it is easy to imagine

that reductions in viral shedding rates, length of infectious period or myriad other

mechanisms could lead to reduced transmission rates from these groups.

Across numerous regions (2-6 and 8, Figure 11) we found a supportive effect of

population density on transmission rates, as demonstrated by positive coefficient values
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and high posterior inclusion probabilities. We observed similar trends in regions 1, 7,

9 and 10 though the 95% HPD regions for model coefficients often included zero, or, in

the case of region 10, was associated with a small posterior inclusion probability. This

could be due to several reasons: small sample sizes for these regions (Figure 3) could

limit the power of the phylogenetic GLM to detect statistical associations, (Lemey

et al. 2014; Magee and Scotch 2018) or, other predictors in these regions better explain

the reconstructed transmission dynamics between groups. Notwithstanding potential

limitations, a supportive effect of population density on groupwise transmission rates

is consistent with predictions from structured compartmental models where the ratio

of group populations appears in the next generation matrix which defines the growth

of infectious individuals in each compartment (Driessche 2017). We similarly observed

a positive, supportive effect of elderly age on between group transmission rates across

regions 2-6 and 8. While this may partially be driven by the increased rates of

medically attended respiratory illness, it is also possible that these groups transmit

to other at increased rates. Lee et al. show that elderly influenza patients sustain

prolonged viremia accompanied by viral shedding (Lee et al. 2009), which may increase

the probability of transmission to an elderly individual’s contacts.

Overall, we see broad posterior support for HA imprinting, population density and

age-based risk in our phylogeographic models of age-assocaited influenza A/H3N2

diffusion. These results are consistent with associations identified during our standard

Bayesian GLM analysis which used a line list representation of the sequence data.

We believe the concordance between phylogenetic and standard GLM analysis results

bolster the results obtained in each independent analysis and that the inferences drawn

by the phylogenetic GLM are due to true signal in the data. Together our results

indicate homotypic immune imprinting was a key driver of age related age diffusion
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at national and regional scales (Table 4). Given the confidence that our models are

detecting true signal in the data, we proceed to analyze reconstructed patterns of age

associated diffusion afforded by casting this problem in a phylogenetic context.
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Figure 5. Phylogenetic GLM results for each of 10 HHS regions. We modeled the
age associated diffusion of influenza as a log-linear combination of social contact,
immunologic, age and demographic factors. We found strong support for
hemagglutinin imprinting as the key driver in a majority of regions. We also found
considerable support for age and population density predictors across several regions
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Figure 6. Visual summary of phylogenetic risk ratio results for US H3N2 influenza
epidemic. We show the phylogenetic relative risk inferred from our GLM analyses.
We found significant risks (indicated by larger, bold circles in the matrix) for seniors
(75+ years) as the group of origin for individuals aged 20-29 and 55+ years, notably
excluding adults ages 35-50. The lack of significant transmission to individuals aged
35-50 years may be driven by HA imprinting since during 1968-1977 H3N2 was the
only circulating influenza strain. After this period, it remained the dominating
circulating strain in years where these birth cohorts would be exposed to their first
influenza infections.

1.4.5 Regional Heterogeneity in Age Structured Transmission Patterns

Given we used asymmetric Markov models to describe viral transmission among

various age groups, we are able to quantify the relative source-sink dynamics between

age groups, offering a complement to traditional, surveillance-based approaches for
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inferring important groups during epidemics. Using phylogenetic relative risks (Figure

2), we investigated age structured transmission patterns at the national and HHS

regional levels. Nationally, we recovered patterns consistent with known influenza

epidemiology. For example, we see an elevated risk of transmission between school

aged children (ages 15-24), which reflects their high within group social contact rates

relative to other age groups (Mossong et al. 2008b; Prem, Cook, and Jit 2017). Our

results also show that seniors (65+ years) tended to be sources of infection for other

senior individuals, again mirroring the known assortative nature of social contacts.

Specifically, we find that individuals aged 75+ years are frequently sinks for infection

arising in other senior individuals. Additionally, we find that individuals aged 75+

years transmitted to numerous groups. First, we see that they tended to transmit

infection more frequently to individuals aged 55+ years. The transmissions from

individuals ages 75+ years to the 55-59 year age group could represent transmissions to

those individuals caring for them in professional or personal capacities. Interestingly,

we also see frequent transmission to individuals ages 20-29 years, which could represent

the grandparent-grandchild transmission effect noted by Towers et al. (Towers and

Feng 2012).

When we examine HHS regions independently, the specific patterns of risk diverge

from the general patterns detected at the national scale. For example, in regions

3, 4 and 7, we find significant phylogenetic risks for transmissions from school-aged

individuals (15-24 years) to seniors (75+ years) (Figure 7). Alternatively, in region

2 we found an increased frequency of transmissions between school-aged individuals

(Figure 7). In Region 9, we see significant transmission clustering between individuals

aged 60+ years. Regions 1, 5, 6, 8 and 10 exhibit ’well mixed’ transmission patterns

where between groups takes place at roughly the same frequencies (Figures 7). Overall,
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these analyses highlight the inferential power of phylogenetic methods and the utility

of using virus sequences for evaluating differences in regional influenza risks. Overall,

we see stark heterogeneity between regions in the magnitude and distribution of risks

among various age groups when compared to the national analysis.
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Figure 7. Visual summary of regional phylogenetic risk ratio results for the
2016-2017 US H3N2 influenza epidemic. We show significant risks as bubbles that are
opaque and larger than corresponding spots within the same region. This allows us to
quickly identify regions, such as regions 1, 5, 6, 8 and 10, which have well mixed
epidemics in which all age groups transmit influenza to each other at similar
magnitudes. In contrast, regions 2, 3, 4, 7, and 9 show evidence of significant age
related structure to transmission patterns inferred from phylogenetic reconstructions.
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1.5 Discussion

1.5.1 2016-2017 US Influenza A/H3N2 Epidemic through the Lens of Genomic

Epidemiology

In this study, we quantified role of immunologic, demographic, age and social con-

tact factors on the age associated diffusion on influenza A/H3N2 while simultaneously

estimating the risk of transmission between various age groups by using molecular

sequence data annotated with host age information. We identified, toddlers aged 0-4

years, school-aged individuals (aged 15-24 years) and seniors aged 75+ years as key

age groups driving national influenza A/H3N2 transmissions using two independent,

though complementary, modeling approaches. Though we take care to distinguish this

national trend from patterns generated by region level phylogenetic analysis.

Statistical analyses of traditional surveillance case count data (Katelyn M Gostic

et al. 2016; Katelyn M. Gostic et al. 2019) suggest a critical role for childhood

immune imprinting in shaping case age distributions during influenza A outbreaks in

the US. We corroborate that claim with both our phylogenetic and standard GLM

analyses based on collected sequence data. However, the geographic resolution of our

phylogenetic results paints a more detailed picture of the heterogeneous patterns of

risk which characterize different HHS regions. Nationally, we see an elevated risk of

transmission from seniors aged 75+ years to individuals aged 20-29 and 55+ years.

Notably, this excludes individuals aged 35-50 years; corresponding to a period of time

in which influenza A/H3N2 viruses were the only or dominant circulating influenza

strains in the US (Katelyn M Gostic et al. 2016). Combined with the notion of

subsequent immune protective effects conferred by such early life influenza exposures,
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we suspect these transmission patterns may driven by high probabilities of early life

exposure to homosubtypic H3N2 viruses for these birth cohorts.

Previous studies suggest the nature of school age childrens’ highly assortative

contact networks are important for propagating initial seasonal epidemics (Glass

and Glass 2008). Analyses of social contact and household structure data suggests

young adults’ and seniors’ social contact network structures, especially in industrialized

countries, show strong assortative features which support influenza transmission (Prem,

Cook, and Jit 2017). To test these hypotheses, we augmented our phylogenetic and

standard GLM analyses with social contact data (Mossong et al. 2008b) projected to

HHS regional demographic structure (Arregui et al. 2018). We fail to detect significant

effects due to total, daily social contacts, though this could be obfuscated by a strong

signal for immunologic imprinting present in our data set. By calculating phylogenetic

relative risks using the reconstructed transmission events between groups, we recover

elevated transmission risks in associative groups, as expected by social contact patterns.

Synthesizing our inferred transmission risks with previous reports that peak incidence

occurs earlier in seniors than other groups (Schanzer, Vachon, and Pelletier 2011), we

postulate that seniors may have played a critical role in seeding the initial phase of

the 2016-2017 US epidemic.

There is concern among researchers about potential bias in phylogenetic recon-

structions due to convenience sampling of isolates for sequencing (Lemey et al. 2014;

Magee, Suchard, and Scotch 2017; Magee and Scotch 2018). To measure the degree

of phylogeny-trait association in our data sets, we calculated the Parsimony Score

(PS) and Association Index (AI) for each HHS regions. For this analysis, the null

hypothesis is that discrete traits are not uncorrelated with genetic distance, as inferred

by a phylogeny. Using both the AI and PS statistics, we reveal limited phylogeny-
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trait association for regions 3, 7 & 10. Regions 5 & 8 show limited phylogeny-trait

association under the PS criterion, however, the AI indicated that there is, indeed,

detectable phylogeny-trait association for these regions. Together, we interpret these

results as showing detectable phylogeny-trait associations in all regions except 3, 7 &

10. Therefore, we are confident that our phylogenetic models for these regions are

detecting true, underlying signals in the data. We suspect low sequence counts in

region 10 and highly imbalanced sampling for regions 3 & 7 contributed to the lack

of detectable phylogeny-trait association and reduces our confidence in the modeling

results from these regions. We take additional steps to validate our phylogenetic GLM

estimates via comparison against another Bayesian GLM fit to a line-list represen-

tation of our full sequence data set. Overall, we demonstrate congruence between

the inferences rendered by each modeling framework, however, differences in method

granularity prohibited more direct comparison between model estimates. We interpret

the congruence and similar magnitude of coefficient effect size estimates as evidence

that our phylogeographic models capture the underlying signal present in the data,

bolstering their utility as actionable public health evidence.

1.5.2 Public Health Implications

Our findings suggest genomic epidemiological evidence is potentially useful for

informing disease control efforts. Assuming that the age groups mix assortatively

(i.ei with each other more than others), the optimal target for vaccination is the

group with the highest transmission risk (Keeling and Rohani 2008). This has clear

implications for informing disease control efforts if genomic epidemiology methods are

used as evidence for decision making within public health contexts. Overall, our results
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suggest that regionally tailored approaches to influenza control may be warranted.

For example, public health practitioners could use phylogenetic relative risk measures

to focus control efforts on specific groups with elevated transmission risks. Applying

the example using our national level analysis, our results suggest focusing generally

on increasing vaccination coverage of school-aged individuals (aged 15-24 years) and

seniors aged 75+ years, which may curb further spread to both other senior adults

and individuals aged 20-29 years (Figure 7), both of which our results implicate as

important groups for influenza spread during the 2016-17 season.

Extending the example to the regional level, different vaccination strategies tailored

to specific regional risk scenarios, for example focusing on increasing vaccination

coverage of children ages 5-14 in HHS regions 2, 3, 4 and 7 may lead to better

influenza control. Similarly, our results suggest that increasing vaccination coverage

among seniors in region 9 may bolster regional control efforts. Mathematical studies of

optimal vaccine allocation during influenza epidemics have suggested prioritization of

school-aged children (Mbah et al. 2013) as well as adults aged 30-39 years (Medlock and

Galvani 2009), though these models are often based exclusively on social contact data

collected (Mossong et al. 2008a) or inferred (Prem, Cook, and Jit 2017) from survey

data. Alternatively, our approach integrates multiple sources of evidence, including

social contacts, to arrive at coherent risk estimates offering complementary benefits

to both surveillance based and mathematical approaches for risk determination and

public health decision making.

While genomic epidemiology abound in the literature (Swetnam et al. 2018; Dudas

et al. 2017a; Grubaugh et al. 2017; Trovão et al. 2015), descriptions of implementations

of these approaches in public health agencies are paradoxically scant. We find only

one implementation case study (Poon et al. 2016) reported in the literature, yet,
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there is no clear reference to implementation frameworks or accepted constructs in

their treatment. Clear implementation strategies are required to facilitate uptake

of these methods into routine public health workflows. Otherwise, their potential

disruptive impact on public health practice will likely remain unrealized as they move

from “bench to bookshelf”. Brownson et al. (Brownson, Fielding, and Maylahn 2009)

describe two key tenets of evidence-based public health as i) using the best available

peer-reviewed evidence and ii) systematically using data and information systems.

We suggest genomic epidemiological approaches to risk quantification satisfy these

requirements, especially considering the increasing interest (Gwinn, MacCannell, and

Khabbaz 2017) in using molecular sequences for public health investigations. To

facilitate the uptake of these methods, we plan to make these methods available

in our open-source ZooPhy tool (Scotch et al. 2010; Scotch, Magge, and Vaiente

2019), alleviating, at least partially, technical barriers to the implementation of these

methods. This is a critical first step in making outcomes of phylogenetic analyses

accessible and actionable for public health workers, toward the aim of translating

genomic epidemiological evidence into routine public health practice.

1.5.3 Limitations and Future Work

The nature of isolate sampling by reference laboratories for influenza HA gene

molecular sequencing is a concern for epidemiological investigations using secondary

data sources, such as GenBank. There is an understanding among researchers that

imbalanced sampling schemes may lead to biased reconstructions of discrete trait

evolution (Lemey et al. 2014; Magee, Suchard, and Scotch 2017; Magee and Scotch

2018). We motivated our use of HA molecular sequence as representative of infections
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in the underlying population by relying on guidance provided to state laboratories to

establish systematic, statistically sound influenza surveillance systems. Our per region

proportion of included sequences ranged between 45% (region 5) and 80% (regions

5 and 10, data not shown) of all available sequences in GenBank. Previous results

suggest these sampling proportions should be sufficient to recover root trait signals

embedded in molecular sequence data (Magee and Scotch 2018). However, we are

not assured this same result when considering the total count and pattern of MJ

between groups. Thus, differences in hospitalization and sampling rates between age

groups may contribute to the observed results. Similarly, we only included sequences

from the US in this analysis which may influence our reconstruction results. We

also acknowledge that our work focuses exclusively on influenza A/H3N2 viruses.

Other circulating seasonal variants of influenza A, as well as influenza B, may exhibit

different age associated diffusion patterns. Future work is necessary to determine

the statistical performance of these methods under various sampling intensities and

epidemic scenarios. In this paper, we have shown how molecular epidemiology can

shed light on subpopulation transmission dynamics during influenza outbreaks. We

urge for continued reporting of relevant clinical metadata with pathogen genome

sequences to enable further study of subpopulation transmission dynamics during

influenza and other viral disease outbreaks. We envision studies which systematically

apply tested implementation frameworks as a necessary next step in translation of

these methods. Under the RE-AIM implementation framework (Glasgow, Vogt, and

Boles 1999), quantifying reach, the proportion of the total population that receives

benefit from an intervention and effectiveness (reduction of disease due to application

of an intervention) are important steps for translating evidence into practice. These

measurements must necessarily be made in real world contexts. Thus, future work
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is needed to quantify the effectiveness of molecular epidemiological methods in for

quantifying risk and informing control efforts in such settings.
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1.7 Supplementary Methods

1.7.1 Bayesian GLM for Case Counts Observed in Sequence Databases

In Figure 8 we show the overall structure of our Bayesian GLM. We modeled the

case counts, Yi in each age group as multinomial random variables given by parameter

pi describing the probability of a case in each age group. Following Gostic et al.

(Katelyn M Gostic et al. 2016) we model this probability as a linear combination of a

null expectation D0 and covariates of interest. We discuss the derivation of the null

expectation in the following section. We incorporated social contact, probability of

matched immune imprinting and two dummy variables allowing for increased risk

for young and elderly groups grouped into the design matrix X. We defer discussion

of the details regarding these covariates until the following section. We take α as

the complement of matched immune imprinting to ensure π sums to one. To achieve

variable selection, we use a mixture of “spike and slab” normal priors (George and

McCulloch 1997). To enable Gibbs sampling, we introduce binomial latent variables

rk which describe the mixture component membership of each βk. We set the prior for

rk such that each variable had a 50% prior inclusion probability in the model. Taking

the approach in (Lemey et al. 2014), we can determine variable importance via Bayes

Factors (BF) using the ratio of posterior to prior inclusion odds. We fit our Bayesian

GLMs using the full set of 2812 sequences via Gibbs sampling. We ran our MCMC

for 150000 iterations, sampling at every step and discarded the first 50000 iterations

as burn-in.
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Figure 8. Directed acyclic graph (DAG) describing the the Bayesian GLM for
sequence counts.

1.7.2 Null Expectation for Influenza A/H3N2 Case Age Distribution

To generate a null expectation for influenza case age distributions, we first note

that the distribution of case ages during an influenza outbreak will be determined by

nonlinear transmission dynamics distributed across an age stratified social contact

network. To reflect these assumptions, we employed an age-structured SIR model with

16 compartments representing the 16 non-overlapping 5-year age intervals described

for our phylogeographic models.

Ṡi = −βSi
∑
j

Cij
Ij
Nj

(1.1)

İi = βSi
∑
j

Cij
Ij
Nj

− γIi (1.2)

Ṙi = γIi (1.3)
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We parameterized our SIR model using 2017 population estimates from the US

Census and age stratified social contact rates (Cij) estimated for the US population

(Prem, Cook, and Jit 2017). Then, to complete our model specification, we assumed

an R0 of 1.4 and an infectious period (γ−1) of 5 days, commensurate with previous

studies of influenza H3N2 dynamics. We used these assumptions to calculate the per

contact transmission probability, β, as 1.81%

Lemma 1.

The transmission probability per contact β is given by the expression R0γ
s(K)

where s

is the spectral radius operator and K is the next-generation matrix (Driessche 2017).

Lemma 2.

The next generation matrix K is given by β
γ
∗Cij fifj where Cij is the rate of contact

between group i and group j and fi is the fraction of the total population comprised

of age group i.

We computed the null expectation (or equivalently, the prior) by simulating from

our model over the course of one influenza season (365 days, beginning on week 40).

Model simulations were initiated assuming one infected individual in each age group.

Then, we calculated the proportion of infected individuals belonging to each age

compartment at the end of the simulations. That is,

D0i =

∫ T

0

Ri∑
iRi

(1.4)
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1.7.3 Phylogenetic GLM for Age-associated Influenza A/H3N2 Diffusion

Bayesian phylogeographic models treat diffusion in discrete space as a K dimen-

sional continuous time Markov chain, parameterized by a K ×K infinitesimal rate

matrix describing state transitions (Lemey et al. 2009). Recent work extends the

parameterization of these models such that the individual rate parameters of the

Markov transition matrix are assumed to be a log linear function of predictors of

interest (Lemey et al. 2014). In our case we consider K = 16, where 16 is the number

of 5 year age groupings that we consider. Our full model takes the form:

log(Λij) = β1δ1Ci,j + β2δ2fi + β3δ3fj + β4δ4Ai + β5δ5Aj + β6δ6τi + β7δ7τj (1.5)

1.7.3.1 Predictors for Phylogeographic GLM of Age Associated Influenza A/H3N2

Diffusion

We tested several predictors of age-associated influenza diffusion in our GLM

treatment.

• Social contact patterns, Cij . Considering the total densities of possible hosts

is natural in epidemiological modeling as SIR-type models often assumes that

mass action transmission (Begon et al. 2002). We tested the impact of daily

social contact patterns on age-associated influenza diffusion by estimating social

contact matrices for each HHS region. We do so by transforming a social contact

matrix estimated for the US by Prem et al (Prem, Cook, and Jit 2017) by

applying a density correction method proposed in (Arregui et al. 2018) using

demographic data from the US Census.
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• Population density, f . To test the influence of population density on influenza

diffusion, we calculated the proportion of total US population comprised of a

particular age group using 2017 population size estimates from the US Census.

We allow for separate predictors for the origin and destination groups by including

both origin and destination predictors values (indexed by i, j, respectively).

• Increased age group risk, A. A basic tenet of influenza epidemiology states

that the very young and elderly are at increased risk for infection. To reflect

this assumption in our modeling scheme, we defined a variable A that is defined

by an indicator function with value one for 0-4 and 65+ year age groups and is

zero for all others. The approach emulates the variables included by in other

work on age-associated influenza diffusion.

• H3 imprinting probabilities, τ . Recent work in modeling age-associated

influenza diffusion suggests that immune dynamics play an important role in

shaping the severity and age distribution of cases during seasonal epidemics

(Katelyn M Gostic et al. 2016; Ranjeva et al. 2019; Arevalo et al. 2019). Specifi-

cally, the antigenic type of an individuals’ first influenza exposure shapes their

future ability to mount immune responses to subsequent influenza exposures,

a process known as ’original antigenic sin’ (Smith et al. 1999). We follow the

examples of (Katelyn M Gostic et al. 2016; Arevalo et al. 2019) and include the

probability that an individual born in year y was first infected (i.e. imprinted)

by an H3-type influenza virus. A priori, we expect that individuals with low

probabilities of H3 imprinting will transmit H3-type influenza at increased rates

due to reduced ability to produce anti-H3 influenza immune responses. We use

H3 imprinting probabilities as calculated by Arevalo et al. (Arevalo et al. 2019)
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and estimate an age-group wide imprinting probability by averaging individual

birth cohort probabilities.
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Chapter 2

DIVERSITY, DILUTION AND WEST NILE VIRUS: INTERROGATING

ECO-EPIDEMIOLOGICAL HYPOTHESES WITH VIRUS SEQUENCE DATA

2.1 Abstract

In recent years, genomic surveillance and phylodynamic analysis has emerged as

the premier tool with which emerging disease outbreaks are studied. Though West

Nile virus (WNV) has been studied extensively since its emergence in the US, our

understanding of the factors shaping early patterns of WNV spread are paradoxically

scant. Previous phylodynamics studies are focused on reconstructing spatial history

of WNV without quantifying the roles that specific factors had in shaping observed

epidemic patterns. In particular, the roles of avian species density and overall avian

diversity in shaping patterns of WNV spread in the US remain uncertain. In this study,

we employ Bayesian phylogeographic generalized linear models (GLMs) to interrogate

the roles of avian species density and diversity in shaping early epidemic expansion

of WNV in the US. We show that early WNV dispersal was driven primarily by

American Robin (AMRO) density and that WNV was less likely to disperse between

regions with high avian biodiversity, supporting the hypothesis that dilution effects

are prominent in the WNV disease system. To our knowledge, our study represents

the first effort to utilize genomic epidemiology to examine the association between

avian species density and diversity and WNV dispersal in the US. Future work should

focus on identifying correlates of highly granular WNV spread by linking appropriate

molecular sequences sequences with detailed predictor and geographic metadata.
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2.2 Introduction

West Nile virus (WNV) is a mosquito-borne, zoonotic RNA flavivirus capable of

causing severe, neuroinvasive disease in human, avian and equine populations. WNV

endemicity is maintained in an enzoonotic transmission cycle involving amplifying

bird hosts and Culex species mosquitoes, though researchers have shown that vertical

transmission within mosquitoes (Nelms et al. 2013) and direct transmission between

birds (Komar et al. 2003) is also possible. After its introduction to the US via New

York City (NYC) in 1999 (Lanciotti et al. 1999), WNV spread rapidly across the US

and by the end of 2004 had been detected in 48 states (Malkinson et al. 2002; Swetnam

et al. 2018). Several previous works focused on reconstructing the spatial history of

WNV in the US (Pybus et al. 2012; Di Giallonardo et al. 2016; Swetnam et al. 2018)

reach the general consensus that the virus spread rapidly from its origin in NYC,

traveling simultaneously down the East Coast and across the Midwest. Researchers

generally believe these patterns to be consistent with migratory bird movements

(Pybus et al. 2012; Di Giallonardo et al. 2016; Swetnam et al. 2018; Hadfield et

al. 2019), though explicit testing of these assumptions remains an open problem.

WNV is distinguished by its relatively broad host range with infections reported in

over 300 bird (Komar 2003; Marra et al. 2004; Reisen 2013) and numerous mammalian

species (Reisen 2013). Though WNV infection occurs in several species, experimental

evidence indicates that Passerine birds (those belonging to the order Passeriformes)

are both highly competent WNV hosts (Komar et al. 2003) and are preferred by

biting Culex species mosquito vectors in the US (Kilpatrick et al. 2006; Molaei et

al. 2006; Hamer et al. 2009; Simpson et al. 2011) and Europe (Rizzoli et al. 2015).

Of probable Passerine amplifying hosts, recent studies suggest that American Robins
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(Turdus migratorius) and House Sparrows (Passer domesticus) (Komar 2003; Komar

et al. 2003; Komar et al. 2005; Kilpatrick et al. 2006; Nemeth et al. 2009; Wheeler,

Vineyard, et al. 2012; Wheeler, Langevin, et al. 2012) are among the most important

hosts for WNV amplification and maintenance. American Robins (AMRO) are highly

competent, migratory birds which tend to be the preferred host for biting Culex

mosquitoes (Komar et al. 2003; Kilpatrick et al. 2006; Simpson et al. 2011). Their

widespread distribution and migratory patterns have led researchers to hypothesize a

key role of this species for WNV dissemination in the US. Conversely, House Sparrows

(HOSP) are also highly competent hosts (Komar 2003) capable of sustaining viremia

for several weeks post infection (Nemeth et al. 2009; Wheeler, Langevin, et al. 2012;

Wheeler, Vineyard, et al. 2012). Field studies report seroprevalence rates of up to 69

percent (Komar et al. 2001; McLean 2006) within the species, indicating widespread

exposure to WNV. Further, work by Duggal et al. (Duggal et al. 2014) shows that

modern circulating WNV strains tend to produce higher viremia titers than the

founder strain (NY99 genotype) in HOSP. Together, these results underscore the

potential importance of these two species for viral amplification and maintenance in

the US.

Another potential factor which influences the disease ecology of pathogens capable

of infecting multiple host species of varying competence is the “dilution effect”; a

mechanism which posits that increased host species biodiversity attenuates disease

risk in multi-host pathogen systems. The dilution effect hypothesis was formalized

by Ostfeld & Keesing in a seminal paper describing reduced Lyme disease prevalence

in diverse host communities (Ostfeld and Keesing 2000), however, the concept has

been generalized and tested in several multi-host pathogens (Ezenwa et al. 2005;

Clay et al. 2009). In the case of WNV, empirical studies offer conflicting evidence
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regarding the associations between avian biodiversity and WNV. While early works

report observation of dilution effects (Ezenwa et al. 2005; Swaddle and Calos 2008;

Allan et al. 2009), some recent studies either report failing to detect dilution effects

(Loss et al. 2009) or, in one case, detection of an an amplification effect (Levine

et al. 2017); where disease risk is maximized (instead of minimized) in highly diverse

host communities (Miller and Huppert 2013; Levine et al. 2017).

Though WNV has been studied extensively in the 20 years since its emergence,

the specific factors enabling its rapid invasion and migration across the US remain

unclear. In this paper, we take a Bayesian phylogeographic approach to quantifying

the contribution of avian population and biodiversity factors on the spatiotemporal

spread of WNV in the US. The specific aims of this study are to identify avian

population and diversity factors that drove on the spatiotemporal spread of WNV in

the US, while simultaneously reconstructing its early epidemic spread in the US. We

will employ the phylogeographic generalized linear modeling framework introduced by

Lemey et al (Lemey et al. 2014) by modeling WNV migration between Health and

Human Services (HHS) regions as a log-linear combination of avian population and

diversity predictors derived from Christmas Bird Count data (Bock and Root 1981).

Adopting this framework permits statistical assessment of whether a predictor was

supportive of or protective against WNV migration between specific HHS regions. We

argue that a phylogeographic investigation of WNV ecology is especially prudent since

pathogen genome sequencing is increasingly used to support emerging viral disease

outbreak responses (Grubaugh et al. 2017; Dudas et al. 2017b; Dudas et al. 2018).

We complement previous studies of WNV ecology by synthesizing evidence reported

across the literature into a single modeling framework. Previous phylogeographic

analyses of WNV are generally focused on reconstructing the migration history of
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WNV without explicitly testing for associations between factors potentially driving

the inferred spatial spread. While informative, these primarily descriptive studies

do not attempt to quantify the contribution of various factors influencing WNV

disease ecology (Pybus et al. 2012; Di Giallonardo et al. 2016; Swetnam et al. 2018;

Hadfield et al. 2019). To our knowledge, this study represents the first application of

phylogeographic GLM techniques to understanding the ecologic factors driving WNV

migration in the US.

2.3 Methods

2.3.1 Sequence and Metadata Collection and Processing

We downloaded all published WNVmolecular sequences available through GenBank

(Dennis A. Benson et al. 2012). We excluded sequences from known dead-end hosts

(humans and equines) and minor vector genera (Coquillettidia) which do not contribute

significantly to viral propagation since our analysis is primarily focused on identifying

ecologic factors associated with WNV spread. The resulting final data set was

comprised of sequences obtained from birds and Culex mosquitoes. We then applied

the following inclusion criteria to obtain a final sequence data set: a) sequences had

a state-level location of sampling reported in their GenBank record b) sequences

included the full coding region (CDS) of the WNV genome c) sequences had the year

of isolate sampling available in their GenBank record and d) sequences had the host

genus and species from which the isolate was derived reported in their associated

GenBank record. We annotated each sequence with sampling date, location and host

genus and species information to create the full data set. We generated independent
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analysis data sets by sampling 300 sequences and 500 sequences from the full set

without replacement, respectively, in addition to sampling the full set of sequences.

Our sampling scheme was motivated by previous work on ancestral reconstruction

efficiency indicating that sampling 50% of available sequences provides convergent

root state estimates (Magee and Scotch 2018) and computational expedience. We

provide a visual summary of the sequence inclusion algorithm in Figure 9. We aligned

each set of 300 sequences using MAFFT v. 7.407 (Katoh et al. 2002) using the default

settings and inspected the results manually in Seqotron (Fourment and Holmes 2016).
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Figure 9. Overview of sequence inclusion algorithm. We downloaded all available full
length, CDS sequences from GenBank and applied the inclusion criteria represented
by decision nodes. The total sequences remaining after each step is shown below the
arrow to the next decision node. The number of sequences discarded after each
filtering step is shown below the corresponding exclude sequences node.

2.3.2 Bayesian Phylogenetic Analysis

We modeled molecular evolution using the GTR + Γ nucleotide substitution

model with 4 rate categories and uncorrelated, log-normal relaxed molecular clock

(Drummond et al. 2006), taking cues from other studies of WNV molecular evolution

(Di Giallonardo et al. 2016; Swetnam et al. 2018). Since localized WNV epidemics

have been reported periodically in several states across the US, we specified the non-

parametric Bayesian skyline model as a prior for the tree generating model reflecting

these a priori expectations about WNV demographic history. Since sampling time

metadata are not required when uploading molecular sequences to GenBank, the

resolution with which sampling dates are reported tend to be heterogeneous. To

ameliorate this heterogeneity, we fixed tip dates as the year of sampling reported

in GenBank for each sequence in order estimate divergence times. We note that

other alternatives, such as a data-augmentation approach which treats the unknown
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sampling times as parameters within the model are possible. As we are primarily

focused on reconstructing broad historical patterns in WNV, we feel that this choice is

merited and supported by other work in this area (Di Giallonardo et al. 2016; Swetnam

et al. 2018). We estimated the unknown parameters of our phylogenetic models using

Bayesian Markov Chain Monte Carlo (MCMC) as implemented in BEAST v1.10

(Suchard et al. 2018). For each data set, we ran our MCMC for 350 million iterations,

sampling every 35,000 steps and removed the first 25% as burn-in. We diagnosed

convergence of the MCMC procedure using Tracer v1.7.1 (Rambaut et al. 2018a)

checking that all model parameters had Effective Sample Sizes (ESS) of 200 or greater.

We summarized posterior tree distributions as Maximum Clade Credibility (MCC)

trees using TreeAnnotator (Suchard et al. 2018), discarding the first 2000 trees as

burn-in.

2.3.3 Avian Predictor Data Collection and Processing

Conflicting results from previous empirical studies make it unclear whether avian

biodiversity is broadly supportive of or protective against WNV disease risk (Ezenwa

et al. 2005; Swaddle and Calos 2008; Levine et al. 2017). In other words, is WNV

ecology driven by a dilution effects or, conversely, does avian diversity increase risk?

To address on this question, we interrogate the dilution effect hypothesis using a

phylogenetic GLM framework. We obtained Christmas Bird Count (CBC) data (Bock

and Root 1981) from years 1999 to 2016 for the 39 avian species represented in our

molecular sequence data set, generously provided by the National Audubon society.

This data set included species count data for CBC years 2016 as well as survey area

effort data that records the number of observers and observer hours for each reported
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count. We normalized total counts for each survey area, for each year, by the total

number of observers contributing to each corresponding survey area count. This is

motivated by the fact that observation effort heterogeneity will bias observed count

data between survey areas. We computed HHS region level estimates of AMRO and

HOSP density by averaging normalized species specific survey area counts within

each HHS region. Previous empirical work focused on detecting dilution effects for

WNV examined both Passerine and Non-Passerine diversity and their association

with WNV disease risk. We follow this example and compute the Shannon diversity

for Passerine and Non-Passerine species (Tramer 1969; Spellerberg and Fedor 2003)

using the normalized counts for each survey area. We followed the same procedure of

averaging estimates of Shannon diversity for all survey areas located within each HHS

region to generate average HHS regional Shannon diversity predictors.

2.3.4 Identifying Ecological correlates of WNV Spatial Diffusion

We modeled the rate of WNV diffusion between Health and Human Serivces (HHS)

regions in the US as a log-linear combination of avian predictors calculated from

Christmas Bird Count data (Bock and Root 1981) using the Bayesian phylogeographic

generalized linear model (GLM) framework introduced by Lemey et al (Lemey et

al. 2014). Epidemiological reports indicate that WNV was first detected in the

US 1999 (Lanciotti et al. 1999) and rapidly expanded to the West Coast where

it was first detected in the summer of 2003 (Reisen et al. 2004). Based on these

reports, we expect that the WNV migration in the US is divided into two phases; an

early period in which WNV was actively spreading across the US (years 1999-2004)

and a later period in which WNV became endemic is suitable localities (from 2004-
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present). To reflect these assumptions, we employed the epoch modeling concepts

introduced by (Bielejec et al. 2014) to allow for predictor temporal heterogeneity in

our phylogeographic reconstructions. This approach involves dividing evolutionary

history along a phylogeny into discrete partitions (that is, non-overlapping subsets)

for which separate phylogeographic GLMs are specified. Following epidemiological

reports of WNV, we defined two epochs corresponding to the periods in which WNV

was actively spreading across the US (years 1999-2004) and when it had successfully

established endemicity across several regions in the US and began to establish locally

adapted strains (years 2004-present)

Given the role of amplifying host density for successful establishment of WNV in

previously unaffected areas, we included predictors for each American Robins (AMRO)

and House Sparrows (HOSP) motivated by previous work showing these species to be

among the most important amplifying hosts for WNV. To test hypotheses related to

avian biodiversity and WNV migration (which we take as a proxy for disease risk),

we included predictors for Passerine, Non-Passerine and Total avian diversity in our

phylogeographic GLM, following the examples of previous analyses of WNV risk and

avian biodiversity (Ezenwa et al. 2005; Loss et al. 2009; Levine et al. 2017). For all

predictors, we follow standard practices and normalized values prior to inclusion in the

phylogeographic GLM. We additionally log transformed values for AMRO and HOSP

density predictors, as is standard practice. Since Passerine and Non-Passerine Shannon

diversity are calculated on the log scale, we include these predictors in our model

without log transformation. We use the following abbreviations for predictors included

in our model: total avian diversity (TD), Non-Passerine diversity (ND), Passerine

diversity (PD), HOSP density (S) and AMRO density (R). We use separate predictors

for origin and destination locations to incorporate predictor spatial heterogeneity into
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our analysis (Lemey et al. 2014). Epochs are denoted by the subscript t which separates

the predictors and their inferred coefficients into the temporal periods described above.

Practically, this is similar to change-point regression, a commonly used technique in

classical statistics; except, in our case, the time at which the predictors change values

is assumed to be known a priori.

Our “epochize” phylogeographic GLM takes the following form:

Λijt = TDitβ1tδ1t +NDitβ2tδ2t + PDitβ3tδ3t + Sitβ4tδ4t +Ritβ5tδ5t+ (2.1)

TDjtβ6tδ6t +NDjtβ7tδ7t + PDjtβ8tδ8t + Sjtβ9tδ9t +Rjtβ10tδ10t (2.2)

where each β is the coefficient for the corresponding predictor in the full GLM and

each δ a binomial variable used to indicate the inclusion of a specific predictor in the

model. The binomial indicator variables can be used in a Bayesian Stochastic Search

Variable Selection (BSSVS) procedure as developed by (George and McCulloch 1997)

and introduced into the phylogenetic GLM by (Lemey et al. 2014). Since we divided

the our GLM into two epochs, we can perform BSSVS separately for each epoch

allowing us to determine which predictors were important during the early epidemic

expansion of WNV in the US. We performed inference for our phylogeographic GLM

using Bayesian MCMC as implemented in BEAST v1.10.1 (Suchard et al. 2018). We

ran our MCMC for 10 million steps, sampling every 1000 steps, conditioning on the

last 1000 posterior trees from the associated phylogenetic inference for each sample.

2.3.5 Evaluation of Predictor Support

The key metric when evaluating predictor support the phylogeographic GLM are the

posterior inclusion probabilities of each individual predictor. For a specific predictor,
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the posterior inclusion probability is calculated as the Monte Carlo expectation of

the binomial indicator variables included in the GLM parameterization described

above. Intuitively, a higher inclusion probability suggests greater statistical support

for models including the corresponding predictor relative to models which omit this

predictor. Following standard practices, we specified a prior inclusion probability for

each predictor such that there is a 50% prior probability that, overall, no predictors

are included in the model. We quantified the support of each predictor via calculation

of Bayes factors (BFs) which are defined as the ratio of posterior and prior inclusion

odds (Kass and Raftery 1995; Lemey et al. 2014). We use a cutoff of ≥3 as the baseline

with which we compare posterior predictor support, since this is considered to be

substantial evidence in support of a specific model hypothesis (Kass and Raftery 1995).

Additionally, these cutoffs consistent with previous work in Bayesian phylogeography

for evaluating evidence in support of specific predictors of GLM parameterized discrete

trait diffusion (Lemey et al. 2009; Lemey et al. 2014; Magee et al. 2015).

2.4 Results

2.4.1 Timing, Origin and Evolution of WNV in the US

The final data set included 1059 WNV sequences annotated with host group,

year and HHS region of sampling. We provide a summary of the sequence collection

results in Figure 9. Of note, our final data set did not contain sequences from HHS

region 10 which is reflected in Figure 10. In Table 5, we show a summary of the

phylogenetic analysis results for the two independent samples. Overall, we inferred a

mean substitution rates on the order of 10−4 substitutions per site, per year which
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is commensurate with other studies of WNV molecular evolution (May et al. 2011;

Swetnam et al. 2018; Hadfield et al. 2019). Bayesian molecular clock dating of WNV

genomes indicates that the most recent common ancestor (MRCA) occurred between

late September to early October of 1997 (posterior mean TMRCA: 1997.54-1997.77,

Table 5). We estimated the mean (95% HPD) TMRCA for each tree as 1997.74

(1996.82-1998.56) and 1997.77 (1996.98-1998.45) for the 300 and 500 sequence models,

respectively. When including all available WNV genomes, we recover a slighly earlier

mean estimate of 1997.54 (95% HPD region: 1996.15-1998.52). Though the earliest

case of WNV was observed in the US in 1999 (Lanciotti et al. 1999), this is a reasonable

TMRCA estimate given known monophyly and, indeed, sequence similarity between

the US founding strain (NY99) and IS98; a strain isolated from a White Stork (Ciconia

ciconia) during an outbreak in Israel in the summer of 1998 (Lanciotti et al. 1999;

Malkinson et al. 2002; Charrel et al. 2003).

Posterior mean (95% HPD)

Root age (TMRCA) Substitution rate

300 sequence sample 1997.74 (1996.82-1998.56) 4.38e-04 (3.95e-04, 4.83e-04)
500 sequence sample 1997.77 (1996.98-1998.45) 4.70e-04 (4.42e-04, 4.97e-04)
Full sequence sample 1997.54 (1996.15-1998.52) 5.074e-04 (4.83e-04, 5.33e-04)

Table 5. Posterior summary of Bayesian phylogenetic analysis. We show the
mean and 95% highest posterior density regions (95% HPD) for the root age,
hierarchical mean substitution rate for each data set sample.

55



Figure 10. Maximum Clade Credibility trees for 300 (A), 500 (B) and
total (C) sequence samples. As a note, the final data set did not contain any
WNV genomes from HHS region 10 (Washington, Idaho, Alaska, Oregon) as
discussed in the main text.
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2.4.2 Avian Density and Diversity Drive Early WNV Migration in the US.

To determine the factors influencing the geographic dispersal of WNV in the US,

we used an epochized phylogeographic GLM fitted to viral genomic data obtained from

GenBank. In Figure 11, we show the posterior inclusion probabilities and coefficient

effect size estimates for our epochized phylogeographic GLM. Panels A and B show the

results from the 300 and 500 sequence samples, respectively, while panel C corresponds

to results obtained for models fit to the full set of WNV genomes (Figure 11). We

find that predictor support for WNV dispersal was primarily concentrated during

the early epoch (years 1999-2004), congruent with our a priori expectations. Of the

10 predictors assessed, we found substantial evidence for 3 predictors which were

supported categorically across sequence data samples (Tables 6, 8 & 10).

Our models show that WNV dispersal tended to originate from HHS regions with

high total avian diversity (BF support for inclusion: >100, Tables 6 & 8). Specifically,

we estimated strong supportive effects for total avian diversity (TD) at the region of

origin (O). For the 300 sequence sample, we estimated a posterior mean coefficient

effect size of 5.997 (95% HPD interval, 3.882-7.929, Table 6). We similarly observed a

strong positive associations for models fit the 500 sequence sample; where we estimated

a posterior mean coefficient effect size of 7.309 (95% HPD: 5.079-9.860, Table 8).

When we fitted our phylogeographic GLMs to the the full set of WNV genomes, we

see that total avian diversity is similarly, strongly supported with a posterior mean

coefficient of 10.036 (95% HPD region: 8.061-12.134, Table10). The positive effect

of total avian diversity on WNV dispersal and disease risk is consistent with the

notion of an amplification effect, as previously described for WNV (Levine et al. 2017).

However, this can be due to myriad mechanisms. One plausible explanation is that
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highly diverse communities are more likely to contain sufficient densities of those

highly competent avian hosts which are preferred by biting Culex vectors (i.e American

Robins, Northern Cardinals, House Sparrows and others) necessary to initiate and

sustain enzoonotic WNV transmission cycles. A related hypothesis suggests that avian

host diversity may be associated with Culex vector abundance by providing numerous

bloodmeals on WNV incompetent hosts which indirectly leads to higher infection

rates (Levine et al. 2017). Regardless of the specific mechanism, our results indicate a

clear signal that total avian diversity in the region of origin was the primary driver of

regional WNV dispersal from 1999 to 2004.

We found American Robin density at the origin to be strongly positively associated

with viral dissemination between HHS regions in the US (BF support for inclusion:

>100, Tables 6 & 8. For models fit to the 300 sequence sample, we estimated a

posterior mean coefficient effect size of 3.32 (95% HPD: 1.96-4.829, Table 6) and a BF

associated with “decisive” support (Kass and Raftery 1995). Similarly, we estimated a

strong positive association for phylogeographic models fit to the 500 sequence sample.

Here, we estimated a posterior mean coefficient effect size of 1.397 (95% HPD region:

0.413-3.217, Table 8 ) which, albeit lower than our model estimates for the 300

sequence sample, corroborates the presence and direction of this association. The

BF for this predictor also corresponded to “decisive” posterior support (BF: 581.542,

Table 8). Finally, when fit to all available WNV sequence data, our modeling results

confirm the presence of a positive association between regional WNV dispersal and

American Robin density (Table 10). Our phylogeogrpahic models provide evidence

which directly suggests that AMRO density was broadly supportive of regional WNV

dispersal within the US from 1999-2004, after which its effect diminished, reflecting

reduced inter-regional WNV dispersal after 2004. The importance of American Robins
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in maintaining and amplifying local WNV epidemics is well established (Kilpatrick

et al. 2006; Marm Kilpatrick et al. 2006). Here, we provide substantial evidence

that AMRO density is positively correlated with the regional dissemination of WNV

from 1999-2004; similar to other supported predictors, we see that the effect of this

predictor is negligible after 2004 (BF for inclusion: <1, Tables 7 and 9).

Since Non-Passerines are known to be relatively incompetent hosts compared to

their Passerine counterparts and are occasional bloodmeal hosts for biting Culex

vectors (Molaei et al. 2006; Simpson et al. 2011), disease ecological theory predicts

that avian communities with high Non-Passerine diversity will be less capable of

sustaining enzoonotic WNV transmission, resulting in a net protective effect (Ostfeld

and Keesing 2000; Ezenwa et al. 2005) on WNV disease risk. We tested whether this

protective effect extended to regional WNV spread by including it as a predictor in

our phylogeographic GLM. Consistent with ecological theory, we inferred a protective

effect on regional WNV dispersal in our phylogeographic models. This suggests a

reduced likelihood of WNV dispersal between regions with high Non-Passernie avian

diversity. We estimated posterior mean coefficient effect sizes of -4.777 and -4.349 for

models fit to the 300 and 500 sequence samples, respectively (Tables 6 & 8). These

strong negative associations are accompanied by strictly negative 95% HPD regions

and decisive posterior support (BF: >100, Tables 6 & 8). For models fit to the 300

and 500 seuqence samples, we note that this effect was localized to the region of origin

(Tables 6 & 8). However, when increasing the data available to our phylogeographic

models, we recover a protective effect for both origin and destination regions. For the

full sequence models, we estimated mean posterior coefficients of -6.106 and -1.261 for

the origin and destination regions, respectively, along with strictly negative 95% HPD

regions (Tables 10). Together, this offers strong evidence of a negative association
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between WNV dispersal and Non-Passerine diversity and offers empirical support for

the dilution effect during early WNV expansion in the US.

We found a significant propensity for reduced regional WNV dispersal from regions

with highly diverse Passerine avian communities. Though models fit to the 300 and

full sequence samples are associated with strong evidence according to the BF, the

coefficient 95% HPD region estimates cross zero, which is commonly interpreted as a

lack of association in phylogeographic models (Table 6 & Table 10). However, we found

a negative association which meets both standards of evidence when we fitted our model

to the 500 sequence sample. In particular, we estimated a posterior mean coefficient

effect size of -3.111 alond with a strictly negative 95% HPD region, consistent with

the notion of a protective, dilution effect (Table 8). It is expected that highly diverse

Passerine communities results in sufficiently low densities of key amplifying hosts such

that it reduces the likelihood of sustained epizootic transmission in these communities.

Our models corroborate theoretical expectations by demonstrating that this protective

effect extends to geographic dispersal of WNV. We observed numerous predictors in

both epochs which correspond to strong or decisive support when considering their

BF alone. However, in concordance with standard interpretations of phylogeographic

GLMs, we only considered predictors with BFs greater than 3 with strictly positive

(or negative) 95% HPD regions as providing substantial statistical evidence of an

association with WNV dispersal. Predictors with substantial BF support and 95%

HPD regions which contain zero are: Non-Passerine density in destination region, total

avian diversity in the destination region and Passerine diversity in the destination

region (Tables 6, 7, 8 & 9).

We found moderate support for total avian and Passerine diversity influencing

regional WNV migration during the second epoch (Figure 11). Interestingly, we
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observed a shift from increased probability of WNV diffusion from regions with

highly diverse (total) avian communities, to that of a reduced probability of diffusion

between these regions, signaling a shift in WNV disease ecology. During this epoch, we

estimated that total avian diversity acts to reduce geographic dissemination of WNV,

which is possible through the mechanisms discussed above (Table 11). The increase in

dispersal propensity for regions with high Passerine diversity may be related to the

co-evolution between WNV and resident Passerine birds. If so, the mechanisms for

increasing dispersal probability would be similar to those discussed for total avian

diversity; more diverse Passerine communities are more likely to contain high densities

of those few, highly competent Passerine hosts.
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Figure 11. Avian density and diversity support regional WNV migration.
We fit “epochized” phylogeographic GLMs to 300 (A), 500 (B) and full (C) sequence
samples of WNV genomes obtained from GenBank. Overall, we find strong support
for three predictors (AMRO, ND, TD) across data samples indicating avian density
and diversity helped shape WNV dispersal patterns during its early epidemic
expansion in the US.
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Summary Statistics

Predictor Inclusion Prob. Mean (95% HPD) BF

House Sparrow Density (o) 0.067 0.066 (-3.767, 3.918) 1.0
House Sparrow Density (d) 0.107 0.048 (-3.891, 3.727) 1.6
Robin Density (o) 0.999 3.320 (1.960, 4.829) -
Robin Density (d) 0.114 -0.081 (-3.807, 3.707) 1.8
Non-Passerine Diversity (o) 0.999 -4.777 (-6.645, -2.819) -
Non-Passerine Diversity (d) 0.335 -0.281 (-3.668, 3.430) 7.0
Passerine Diversity (o) 0.096 -0.139 (-3.862, 3.878) 1.5
Passerine Diversity (d) 0.268 0.132 (-3.910, 3.478) 5.1
Total Avian Diversity (o) 0.999 5.977 (3.882, 7.929) -
Total Avian Diversity (d) 0.317 0.278 (-3.647, 3.406) 6.5

Table 6. Posterior summary of 300 sequence Bayesian phylogeographic
GLM, 1999-2004. Here, we bold rows associated with predictors for which we
estimated BF greater than 3 that have 95% HPD regions which do not contain zero.
Dashes reepreseent Bayes’ Factors greater than 1000

Summary Statistics

Predictor Inclusion Prob. Mean (95% HPD) BF

House Sparrow Density (o) 0.009 -0.005 (-3.909, 3.888) 0.128
House Sparrow Density (d) 0.008 -0.003 (-3.902, 3.848) 0.118
Robin Density (o) 0.004 0.006 (-3.865, 3.974) 0.056
Robin Density (d) 0.024 -0.004 (-3.813, 3.993) 0.340
Non-Passerine Diversity (o) 0.016 0.006 (-3.944, 3.741) 0.228
Non-Passerine Diversity (d) 0.004 0.021 (-3.778, 4.005) 0.063
Passerine Diversity (o) 0.069 0.100 (-3.929, 3.723) 1.037
Passerine Diversity (d) 0.631 0.868 (-2.615, 3.466) 23.839
Total Avian Diversity (o) 0.019 0.018 (-4.082, 3.815) 0.273
Total Avian Diversity (d) 0.059 0.017 (-3.665, 3.975) 0.869

Table 7. Posterior summary of 300 sequence Bayesian phylogeographic
GLM, 2004-2016.
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Summary Statistics

Predictor Inclusion Prob. Mean (95% HPD) BF

House Sparrow Density (o) 0.115 0.097 (-3.888, 3.758) 1.814
House Sparrow Density (d) 0.013 0.010 (-3.961, 3.839) 0.179
Robin Density (o) 0.977 1.397 (0.413, 3.271) 581.5
Robin Density (d) 0.069 -0.023 (-3.928, 3.963) 1.037
Non-Passerine Diversity (o) 0.982 -4.340 (-6.260, -2.606) 755.9
Non-Passerine Diversity (d) 0.914 -0.905 (-2.209, 0.345) 147.9
Passerine Diversity (o) 0.951 -3.111 (-5.253, -1.364) 270.4
Passerine Diversity (d) 0.086 -0.040 (-3.890, 3.804) 1.317
Total Avian Diversity (o) 0.982 7.309 (5.079, 9.860) 755.9
Total Avian Diversity (d) 0.875 0.883 (-1.444, 2.202) 97.80

Table 8. Posterior summary of 500 sequence Bayesian phylogeographic
GLM, 1999-2004. Here, we bold rows associated with predictors for which we
estimated BF greater than 3 that have 95% HPD regions which do not contain zero.

Summary Statistics

Predictor Posterior Inclusion Prob. Mean (95% HPD) BF

House Sparrow Density (o) 0.007 0.043 (-3.852, 4.023) 0.10
House Sparrow Density (d) 0.004 -0.019 (-3.800, 3.957) 0.05
Robin Density (o) 0.005 -0.024 (-3.955, 3.832) 0.07
Robin Density (d) 0.059 -0.024 (-3.742, 3.932) 0.88
Non-Passerine Diversity (o) 0.009 -0.002 (-4.046, 3.698) 0.13
Non-Passerine Diversity (d) 0.003 0.001 (-3.863, 3.875) 0.04
Passerine Diversity (o) 0.038 0.041 (-3.691, 3.930) 0.55
Passerine Diversity (d) 0.211 0.206 (-3.650, 3.756) 3.72
Total Avian Diversity (o) 0.023 0.034 (-3.821, 3.847) 0.33
Total Avian Diversity (d) 0.033 0.018 (-3.930, 3.850) 0.48

Table 9. Posterior summary of 500 sequence Bayesian GLM, 2004-2016.
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Summary Statistics

Predictor Inclusion Prob. Mean (95% HPD) BF

House Sparrow Density (o) 0.48 0.577 (-3.117, 3.578) 13.2
House Sparrow Density (d) 0.02 -0.032 (-3.817, 4.036) 0.35
Robin Density (o) 0.99 4.178 (1.893, 6.915) -
Robin Density (d) 0.02 -0.006 (-3.940, 4.008) 0.23
Non-Passerine Diversity (o) 0.99 -6.106 (-8.389, -3.452) -
Non-Passerine Diversity (d) 1.0 -1.261 (-1.954, -0.719) -
Passerine Diversity (o) 0.721 -2.196 (-5.218, 2.454) 36.0
Passerine Diversity (d) 0.435 -0.297 (-3.265, 3.449) 10.7
Total Avian Diversity (o) 1.0 10.036 (8.061, 12.134) -
Total Avian Diversity (d) 1.0 1.502 (0.746, 2.660) -

Table 10. Posterior summary of 1059 sequence Bayesian phylogeographic
GLM, 1999-2004. Here, we bold rows associated with predictors for which we
estimated BF greater than 3 that have 95% HPD regions which do not contain zero.
Additionally, we show BFs with associated posterior inclusion probabilities of 1 as
dashes.

Summary Statistics

Predictor Inclusion Prob. Mean (95% HPD) BF

House Sparrow Density (o) 0.129 0.078 (-3.867, 3.657) 2.067
House Sparrow Density (d) 0.014 -0.021 (-3.919, 3.775) 0.194
Robin Density (o) 0.010 0.010 (-3.972, 3.787) 0.145
Robin Density (d) 0.011 -0.002 (-3.859, 3.990) 0.151
Non-Passerine Diversity (o) 0.069 -0.005 (-3.760, 3.925) 1.031
Non-Passerine Diversity (d) 0.022 0.006 (-3.886, 3.940) 0.310
Passerine Diversity (o) 0.898 1.161 (-0.490, 3.215) 122.6
Passerine Diversity (d) 1.000 2.646 (1.302, 3.731) -
Total Avian Diversity (o) 0.121 0.024 (-3.997, 3.738) 1.916
Total Avian Diversity (d) 0.950 -1.519 (-2.588, -0.608) 263.6

Table 11. Posterior summary of 1059 sequence Bayesian phylogeographic
GLM, 2004-2016. Here, we bold rows associated with predictors for which we
estimated BF greater than 3 that have 95% HPD regions which do not contain zero.
Additionally, we show BFs with associated posterior inclusion probabilities of 1 as
dashes.
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2.5 Discussion

The recent emergence of numerous zoonotic viruses such as Ebola, Zika and SARS-

CoV-2 are serious public health threats which have caused widespread health and

economic devastation. Modern tools and methods are urgently needed to adapt to

these emerging and converging disease risks. For zoonotic diseases, an understanding

of specific factors which contribute to disease dispersal is a prerequisite to developing

potential interventions to curb disease spread. A trend in recent years toward rapid,

genomic sequencing of viral pathogens has proven to be a powerful tool for recon-

structing the timing and spread of emerging disease outbreaks while simultaneously

assessing factors which support disease dispersal (Dudas et al. 2017b; Deng et al. 2020).

The introduction and spread of WNV in the Americas provides an ideal model system

with which to study the ecologic factors which support or suppress emerging disease

migration. Previous phylogeographic studies of WNV have shown rapid early spread

that is consistent with migratory bird movements (Pybus et al. 2012; Di Giallonardo

et al. 2016; Swetnam et al. 2018; Hadfield et al. 2019), though this work is largely

descriptive, offering few insights into factors shaping observed migration patterns. In

this work, we modeled the regional diffusion of WNV using Bayesian phylogeography

which allowed us to simultaneously evaluate the contribution of avian demographic and

diversity factors on WNV spread in the US. Numerous field and experimental studies

show Passerine birds are highly competent WNV (Komar et al. 2003) and frequent

(Molaei et al. 2006; Hamer et al. 2009; Simpson et al. 2011; Rizzoli et al. 2015) blood-

meal hosts for biting Culex sp. mosquitoes suggesting that these birds are critical for

dissemination of WNV in the US. In particular, researchers consider two species to be

the most important amplifying hosts: the House Sparrows (Komar et al. 2005; Nemeth
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et al. 2009; Wheeler, Vineyard, et al. 2012) and American Robins (Marm Kilpatrick

et al. 2006; Kilpatrick et al. 2006; Molaei et al. 2006; Simpson et al. 2011).

Similar to previous works, our phylogeographic inference shows rapid, westward

expansion of WNV emanating from the northeastern US (HHS region 2, notably

containing NYC) beginning in 1999 which continued until 2004. We see this reflected

in phylogeographic reconstructions of WNV dispersal. These models suggest that long

range WNV dispersals are expected to be more frequent during this early epidemic

period by the inclusion of more predictors with large coefficient effect sizes (Figure

11). After 2004, long range WNV dispersals were relatively rare and locally adapted

WNV strains began to emerge. For this period, we found little posterior support

for any predictor, suggesting (in the context of the underlying CTMC) long waiting

times between migration events such that they were not observed. From 1999 to 2004,

phylogeographic analysis shows that AMRO density was the principle determinant

of WNV diffusion in the US, suggesting an increased likelihood of dispersal from

regions with high American Robin densities. While the importance of AMRO hosts

for WNV ecology is echoed elsewhere in the literature, here we provide direct evidence

in support of the hypothesis that this species was involved in the westward diffusion

of WNV in the US. American Robins have been frequently implicated as the preferred

bloodmeal host for competent, biting WNV mosquito vectors (Molaei et al. 2006;

Marm Kilpatrick et al. 2006; Kilpatrick et al. 2006; Simpson et al. 2011). Recent

work revealing that Texas, New York and Illinois were critical diffusion loci for WNV

(Swetnam et al. 2018) also lend support to these conclusions since these states tend to

be associated with high AMRO densities as reported in eBird (Sullivan et al. 2009), a

citizen science database of bird sightings. Together these results support the notion

that migratory American Robins were integral in disseminating WNV across the US.
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Though there is compelling evidence of of co-evolution between HOSP and WNV

(Duggal et al. 2014), we fail to detect an association with WNV dispersal in the US

(Figure 11). This could be due to several reasons. House Sparrows are primarily a

resident species in urban environments; therefore, though we expect this species to

be important for local WNV amplification and maintenance they may have limited

contributions to the long-range geographic dissemination of WNV.

Conflicting evidence regarding the associations between avian biodiversity and

WNV risk (Ezenwa et al. 2005; Swaddle and Calos 2008; Allan et al. 2009; Loss et

al. 2009; Levine et al. 2017) motivated our phylogeographic investigation in which we

quantify the direction of association between avian biodiversity and WNV geographic

diffusion; a proxy measure for WNV disease risk. Specifically, two dominant hypotheses

related to biodiveristy effects on WNV disease ecology have been proposed in the

literature. The first posits that biodiversity has a protective effect on disease risk;

reducing vector-borne disease transmission in the presence of moderately competent

and incompetent hosts. Conversely, the notion that host biodiversity can serve to

increase disease transmission has been demonstrated to be theoretically (Begon 2008;

Miller and Huppert 2013) possible and, in one case, detected for the WNV system

(Levine et al. 2017). We tested whether avian biodiversity was broadly supportive of

or protective against WNV dispersal using a phylogeographic models. Overall, we find

a significant protective effect of Non-Passerine avian biodiversity on WNV migration

(mean coefficient effect sizes: -4.77 & -4.34, Tables 6 & 8) across all model replicates.

As predicted by disease ecological theory, this protective effect is likely due to the

removal of otherwise infectious bites from more competent, Passerine hosts (Ostfeld

and Keesing 2000; Ezenwa et al. 2005).

We similarly find a reduced propensity of WNV dispersal from regions with high
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Passerine biodiversity. We fail to detect significant posterior evidence supporting the

inclusion of Passerine biodiversity in our 300 sequence models since the 95% HPD

region crosses zero (Table 6). However, when fit to a larger set of sequence data, we find

substantial evidence of reduced WNV diffusion for regions with highly diverse Passerine

avian communities (Table 8). Again, we expect increased Passerine host biodiversity

reduces the likelihood that a given bloodmeal host for biting Culex sp. vectors is a

highly competent WNV host. It is entirely possible that our phylogeographic models

lacked sufficient power to detect protective effects associated with Passerine avian

biodiversity when fit to only 300 WNV genomes. In our analyses, we found that WNV

transmission was more likely when originating from regions with high total avian

diversity, which may seem paradoxical given the aforementioned negative associations

between biodiversity and WNV dispersal. In terms of disease ecologic hypotheses, this

is consistent with an ’amplification effect’ where disease risk is maximized, instead

of minimized, in mixed host communities (Miller and Huppert 2013). Levine et al

(Levine et al. 2017) also detect positive associations between avian diversity and WNV

risk, consistent with an amplification effect, though astutely argue that this association

may be confounded with community composition; since increased total avian diversity

would subsequently increase the occurrence of highly competent WNV hosts. We

conclude that this may be driving the observed associations in our phylogeographic

analyses; American Robins are relatively rare in many regions across the US, increased

avian diversity in these regions increases the probability that these hosts are present

to amplify and disseminate WNV infections.

In this paper, we have demonstrated the use of phylogeographic GLMs for identify-

ing the ecological drivers of WNV dispersal in the US. Overall, our results suggest that

AMRO are the dominant amplifying species responsible for the westward diffusion of
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WNV in the US and that protective, dilution-type effects were prominent in shaping

early WNV spatial dynamics. To our knowledge, our study is the first to demonstrate

a direct role of American Robins in driving geographic diffusion while simultaneously

quantifying the association between biodiversity and WNV spread in a statistical

framework which is based on viral molecular sequence data. Collectively, this study

highlights the value of phylogeographic evidence for examining disease ecologic and

epidemiological hypotheses about factors related to the emergence and spread of

zoonotic infectious diseases. As geographic metadata become available at increasing

resolution for virus sequences, a promising avenue of research will be modeling local

differences in WNV risk patterns using highly granular bird abundance data coupled

with experimentally derived, species-level competence indices. We believe the value of

phylogeographic techniques for testing disease ecologic and epidemiological hypotheses

will continue to increase as molecular sequences and highly granularity geographic

metadata become increasingly available for myriad pathogens. Although these models

are not amenable to predicting future dispersal patterns, they do provide valuable,

albeit retrospective information about factors driving dispersal in emerging disease

epidemics. Understanding where transmission hotspots are likely to occur, or which

hosts are likely to be actively disseminating infections, is critical for effective disease

surveillance and intervention programs. Finally, viral phylogeography studies are

limited by scant metadata reporting with respect to location and species of infected

host. We elected to model WNV on the HHS regional scale due to heterogeneity

in sequencing availability at the state level (Di Giallonardo et al. 2016; Swetnam

et al. 2018). Therefore, our models do not capture fine scale differences in community

competence associated with diverse community compositions since we model diversity

using a single summary measure (Kain and Bolker 2019). In our study, we discarded
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nearly half of otherwise suitable sequences due to missing host species metadata.

Future studies will benefit from increased effort to include relevant epidemiological

metadata along with molecular sequences when uploading these data to publicly

available databases.
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Chapter 3

GOING BACK TO THE ROOTS: EVALUATING BAYESIAN

PHYLOGEOGRAPHIC MODELS WITH DISCRETE TRAIT UNCERTAINTY

3.1 Abstract

Phylogeography is a popular way to analyze virus sequences annotated with dis-

crete, epidemiologically-relevant, trait data. For applied public health surveillance,

a key quantity of interest is often the state at the root of the inferred phylogeny.

In epidemiological terms, this represents the geographic origin of the observed out-

break. Since determining the origin of an outbreak is often critical for public health

intervention, it is prudent to understand how well phylogeographic models perform

this root state classification task under various analytical scenarios. Specifically, we

investigate how discrete state space and sequence data set influence the root state

classification accuracy. We performed phylogeographic inference on several simulated

DNA data sets while i) increasing the number of sequences and ii) increasing the total

number of possible discrete trait values. We show that phylogeographic models tend

to perform best at intermediate sequence data set sizes. Further, we demonstrate that

a popular metric used for evaluation of phylogeographic models, the Kullback-Leibler

(KL) divergence, both increases with discrete state space and data set sizes. Further,

by modeling phylogeographic root state classification accuracy using logistic regression,

we show that KL is not supported as a predictor of model accuracy, indicating its

limited utility for assessing phylogeographic model performance on empirical data.

These results suggest that relying solely on the KL metric may lead to artificially
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inflated support for models with finer discretization schemes and larger data set

sizes. These results will be important for public health practitioners seeking to use

phylogeographic models for applied infectious disease surveillance.

3.2 Introduction

For the last decade, researchers have used Bayesian phylogeography (Lemey et

al. 2009) to investigate the epidemiology of rapidly evolving viral pathogens with

the aim of elucidating the contributions of discrete traits, often geographic location,

to the propagation and persistence of disease outbreaks. Numerous examples are

available in the literature and recent compelling studies have focused on recent Ebola

(Dudas et al. 2017b), Zika (Grubaugh et al. 2017), West Nile (Swetnam et al. 2018)

and influenza H3N2 (Magee, Suchard, and Scotch 2017), H9N2 (Yang et al. 2019) and

H5N2 (Hicks et al. 2020) virus outbreaks. Bayesian phylogeographic discrete trait

diffusion models require both a set of molecular sequences annotated with isolate

sampling times and metadata describing a discrete traits of interest. Then, discrete

trait diffusion is modeled as a continuous time Markov chain which evolves across

a phylogenetic tree topology. Modeling discrete trait diffusion in this way enables

computation of the model likelihood via Felsenstein’s pruning algorithm. (Felsenstein

1981). Briefly, the algorithm proceeds via a post-order tree traversal and calculates

the partial likelihood, backwards in time, for all trait states at internal tree nodes

using the aforementioned Markov model. In a standard analysis, sequence records

with discrete trait metadata are assumed to have a probability mass function (PMF)

which assigns all mass to the observed trait. Concretely, the partial likelihood vectors

at the tips are one-hot encoded as a vector with dimension equal to the cardinality of
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the discrete trait state space; the total number of distinct values a discrete trait may

take.

For many researchers, the predominant method of obtaining publicly available

molecular sequences for phylogeographic analysis is through the use of GenBank

(Dennis A Benson et al. 2018), a nucleotide sequence database maintained by the

National Center for Biotechnology Information or NCBI (Sayers et al. 2020). Usually,

researchers parse the country field in a GenBank record in order to obtain geographic

metadata for phylogeography studies. However, metadata representing geographic

locations, host age and species, and other discrete characteristics are not required

when submitting new molecular sequences to GenBank databases leading to numer-

ous records with missing metadata. For example, previous work by Scotch et al.

(Scotch et al. 2011) which linked virus sequence records to geographical entities in

the GeoNames ontology (Vatant and Wick 2012) found that 80% of GenBank records

contain “insufficient” geographic metadata. In this case, they defined geographic

metadata insufficiency as data regarding the location of infected host (LOIH) at 1st-

level administrative division (ADM1) or greater granularity. This means geographic

metadata were typically informative for the LOIH at the state (province) or country

level but seldom contained information on finer geographic entities such as counties

or cities. Similarly, Tahsin et al. (Tahsin et al. 2014) reported the proportion of

GenBank virus records with insufficient geographic data to be between 64% and

90%. Many real-world public health tasks require modeling transmission patterns

at high geographic granularity to inform control strategies necessary to curb disease

spread, such as modeling viral diffusion between counties within a state’s boundary.

Therefore, the insufficiency of GenBank metadata represents a major barrier to the

implementation of virus phylogeography for applied public health surveillance.
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This paucity of high resolution geographic metadata has inspired researchers to

develop new methods and tools to ascertain the LOIH for viral sequences represented

in GenBank records (Tahsin et al. 2014; Tahsin et al. 2017; Magge et al. 2018). Indeed,

available pipelines for discerning the LOIH are configured such that they output not

only the most probable location for a specific sequence, but also a vector of other

possible locations along with their relative probabilities (Magge et al. 2018). Building

on the availability of these new pipelines, Scotch et al. (Scotch et al. 2019) introduced

the notion of incorporating sampling uncertainty into phylogeographic analyses. This

parameterization of the standard discrete trait diffusion model involves assigning a

prior PMF to the set of possible geographic locations for each tip with an uncertain

LOIH. The additional uncertainty in LOIH is easily incorporated into the likelihood

calculation using the standard pruning algorithm (Felsenstein 1981) by defining the

partial likelihood vectors at the tips to be the desired PMF.

We note that since phylogeographic discrete trait diffusion models can be applied

to general discrete traits, so too the phylogeographic uncertain trait model (UTM)

introduced by Scotch et al. (Scotch et al. 2019) can be used to assign prior PMFs

to tips missing arbitrary discrete trait information. In the case of non-geographic

discrete traits, where relatively little attention has been paid to resolving insufficient

metadata, this provides two distinct advantages to standard analysis workflows: it

provides researchers with a coherent method of specifying a priori beliefs about unob-

served traits and effectively increases the data set size by including sequences which

would otherwise be excluded from an analysis due to missing metadata. Previously,

phylogeographic researchers studying non-geographic discrete traits, such as host

species or age, were left with two options for sequences with missing metadata: to

manually curate locations for each unresolved record, or, to exclude these sequences
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from phylogeographic analysis (Magee and Scotch 2018; Dellicour et al. 2019). The

former option is extremely labor intensive, difficult to replicate, and cannot be scaled

to large data sets. Conversely, the latter has the disadvantage of reducing the amount

of data included in a given phylogeographic analysis, which may induce biases in

rate matrix parameters if the records with particular discrete traits are selectively

over/underrepresented in the sample (De Maio et al. 2015);

Though phylogeographic discrete trait diffusion models remain a popular and

promising tool for epidemiological inference, relatively few studies aim to quantify

the statistical performance of these methods under various analysis conditions Lemey

et al. 2014; De Maio et al. 2015; Magee, Suchard, and Scotch 2017; Magee and Scotch

2018. Particularly, phylogeographic discrete trait diffusion models are increasingly used

for inference on large discrete state spaces and data set sizes, especially as pathogen

genome sequencing continues to become a routine part of outbreak response. For

example, recent studies commonly use state space sizes ranging from 10 to 56 discrete

entities (Lemey et al. 2014; Magee, Suchard, and Scotch 2017; Dudas et al. 2017b).

Paradoxically, a rigorous examination of model performance with respect to increasing

state space and data set sizes is currently absent from the literature (Lemey et al. 2009;

Lemey et al. 2014; De Maio et al. 2015; Magee, Suchard, and Scotch 2017). Further,

given its recent introduction, the statistical performance of the phylogenetic UTM

(Scotch et al. 2019) compared to other established model parameterizations is yet

to be established. Since the quantity of interest from phylogeographic discrete trait

diffusion models is often the most likely state at the root of the phylogeny, we select

this root state classification task as the primary axis on which we evaluate model

performance. In this paper, we take a simulation-based approach to investigating

the performance of phylogeographic discrete trait diffusion models, paying special
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attention to the roles of data set and discrete state space size for performance on

the root state classification task. Simultaneously, we compare the performance of

the alternative phylogenetic UTM parameterizations against a reference model which

omits sequences with missing metadata. This work represents, to our knowledge, a

unique contribution to understanding the performance of popular phylogeographic

discrete trait diffusion models under various analysis conditions and will be useful

to researchers and public health practitioners tasked with designing phylogeographic

studies using publicly available pathogen sequences.

3.3 Methods

3.3.1 Study Design

There are several ways in which the UTM can be implemented depending on the

prior beliefs of the analyst for the missing discrete state values. For example, if no

information a priori is available with respect to a discrete trait of interest with a

molecular sequence, a reasonable choice may be to use a uniform prior over all possible

trait values (“uniform”). On the other hand, it may be the case that a researcher

wants to incorporate their prior beliefs on the relative probability of each state into

the analysis. While this prior PMF can take many forms (indeed, there are infinitely

many of them), we focused on two possibilities expected to arise frequently in practice:

the researcher assigns most of the prior mass to the correct discrete trait (“informed“),

or, alternatively, most of the mass is assigned to the incorrect state (“misspecified”).

Concretely, for “informed“ models, we assigned 50% of the prior mass to the correct

discrete trait, and divided the remaining mass uniformly across the remaining states.
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Conversely, for “uninformed” models, we reverse the parameterization such that 50%

of the prior mass is placed on an incorrect discrete state (chosen uniformly from the

set of incorrect discrete traits) and the remaining mass distributed uniformly among

the remaining traits. We believe these three options (uniform, informed, misspecified)

are representative of choices likely to be made in practice. Prior to the introduction of

the phylogenetic UTM (Scotch et al. 2019), researchers often exclude sequences with

missing metadata from phylogeographic analyses. We specified this modeling approach

(“drop“) as the reference to which we compared alternative UTM parameterizations.

We utilized a fully factorial, completely randomized design to quantify the rela-

tionships between discrete state space size, data set size and phylogeographic model

performance. We defined 150, 250 and 500 sequences, respectively, as the factor levels

for data set size. Similarly, we defined discrete state space sizes of 4, 8, and 16 states

as factor levels for discrete state space size. We then simulated 25 replicate data

sets under for each of 9 combinations of the aforementioned factor levels resulting

in 225 data sets. We analyzed each data set using the phylogeographic UTM with

either: i) informed ii) misspecified or iii) uniform prior PMFs. We also analyzed each

data set after excluding sequences with missing metadata to serve as a reference for

model comparison. Using this design, we analyzed 225 data sets under each of the 4

alternative model parameterization for a total of 900 independent model analyses. We

discuss the data simulation procedure including generation of missing discrete traits

in the following sections and provide a visual summary in Figure 12.
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3.3.2 Data Simulation

3.3.2.1 Phylogenetic Trees

Since virus sequences represent isolates from individuals infected during epidemics,

we simulated phylogenetic trees using the serially-sampled birth-death SIR model

(SSBD-SIR) (Stadler et al. 2013). The SSBD-SIR model requires specification of

3 parameters: β, γ, φ representing the transmission (birth), recovery (death) and

sampling rates, respectively. An equivalent specification can be made in terms of R0,

the basic reproduction number, by using a fixed recovery rate. We selected simulation

parameters to be similar to general, seasonal influenza outbreaks with an R0 value of

1.4 and assuming an infectious period (φ−1) of one week, consistent with observed

epidemiological patterns (Connolly 2005). Finally, we specified a sampling rate of

20%, reflecting a densely sampled epidemic scenario. We simulated trees until either

150, 250 or 500 tips were sampled. We performed tree simulation using the TreeSim

package in R (Stadler 2011)

3.3.2.2 Sequence Data

We converted branch lengths to units of substitutions by assuming a strict molecular

clock model with a rate of 1×10−3 substitutions per site, per year to allow for sequence

simulation on each tree. We utilized an HKY + Γ model of nucleotide substitution

with 4 rate categories, as is commonly used for modeling influenza molecular sequence

evolution. We simulated 1750 base-pair (bp) sequences using the aforementioned

parameters using Phyx (Brown, Walker, and Smith 2017).
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3.3.2.3 Discrete and Missing Trait Data Simulation

We simulated the evolution of discrete traits on each phylogenetic tree by assuming

traits evolved with a rate of 0.1 substitutions per site per year. Since a key goal of our

study is to estimate the performance of phylogeographic trait models on a variety of

state spaces, we simulated traits with 4, 8 or 16 states. We used random symmetric

Markov matrices with gamma distributed rate parameters. To generate missing traits,

we used a binomial sampling process on the observed traits where each trait is dropped

with 20% probability. A final data set includes sequences written in FASTA format

with discrete trait and sampling time information annotated in the description line.

3.3.3 Bayesian Phylogenetic and Phylogeographic Inference

We performed phylogenetic and phylogeographic inference using BEAST v 1.10.1

(Suchard et al. 2018) . We modeled molecular evolution using an HKY + Γ model

with 4 rate categories, reflecting the conditions under which the data were simulated.

We employ a flexible nonparametric skygrid prior since we know a priori that the

population of infected individuals follow non-linear SIR-type dynamics. We specified a

symmetric Markov model for inference of discrete trait evolution, again driven by our

choice of data simulation conditions. To estimate divergence times, we fixed tip dates

as the dates of sampling recorded during each simulation. We ran the each MCMC

for 100 million iterations, sampling every 10,000 steps and removed the first 20%

as burn-in. We diagnosed convergence of the MCMC procedure using Tracer v1.7.1

(Rambaut et al. 2018b) checking that all model parameters had Effective Sample Sizes

(ESS) of 200 or greater.
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3.3.4 Model Evaluation

Inferring the most likely state at the root of the phylogeny, akin to identifying the

location or host species where an outbreak started, is a key output of phylogeographic

discrete trait diffusion models. We can evaluate the performance of popular phylogeo-

graphic techniques by treating the root state identification problem as a classification

problem, borrowing terms from the machine learning literature. Several metrics are

available to summarize the a classification model with respect to its performance on a

classification task. Given a classification model and labeled test data one can compute

the accuracy of a classification model: the proportion of instances it classifies correctly.

In phylogeography, a central task is to correctly classify the most likely state at the

root of a phylogeny. We recorded the root state from which each simulation was

initialized and calculated the accuracy of phylogeographic models when given more

data (sequences) or when performing inference over increasing discrete state spaces.

Since the result of our Bayesian phylogeographic analysis is a posterior distribution

over root states, we follow standard practice in classification model evaluation and

selected the most likely posterior state j as the root state “prediction” output by our

models.

ĵ = max
j
P(X = j|θ)

Though informative, accuracy does not fully describe the characteristics of a given

classification model. A common measure of classification model performance is the

cross entropy. This is generally interpreted at the number of bits needed to transmit

data from a source distribution when using a model of that distribution. In the

context of classification model evaluation, we can interpret cross entropy as a kind of

“distance“ between the posterior distribution estimated by our model and the true root
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state distributions. Defining the true root state distribution Pj as a one-hot encoded

vector permits computation of the cross entropy using:

C = −
∑
j∈J

Pj logP(X = j|θ)

Another useful metric which measures the efficiency of classification models is the

Kullback-Leibler (KL) divergence. Here, it represents the amount of information we

gain about the distribution of the root state by using our model output relative to

our a priori assumptions. We defined our prior Pj as a uniform distribution over

all possible root states. Then, the KL divergence was calculated using the posterior

distribution over root states P(X = j|θ) output by our phylogeographic models.

KL =
∑
j∈J

Pj logPj − logP(X = j|θ)

For each combination of simulation parameters, we recorded the state at the root of

the phylogeny and calculated the root state accuracy, cross entropy and KL divergence

to measure the performance of the standard and uncertain phylogenetic discrete trait

models. We analyzed the impact of model parameterization, data set size and discrete

state space size on model performance metrics using ANOVA.

3.3.5 Data Availability

We provide the simulated data as analysis-ready BEAST XML files along with

files containing the parameters associated with each data set.
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3.3.6 Factors Influencing Model Accuracy

We modeled root state classification accuracy for our 900 models using logistic

regression by defining factors related to phylogeographic study design choices as

predictors. For these analyses, we set the reference levels of each factor variables to

be: i) 4 discrete states ii) the “drop” model design (where sequences with missing

metadata are excluded) and iii) 150 molecular sequences, respectively.

3.4 Results

3.4.1 Phylogeographic Models show Strong Performance on Moderately Sized Data

Sets

In Figure 13, we show the mean and 95% confidence intervals for each of the

non-reference level factors included in our analysis. Using the standard interpretation

of the odds ratio, we show that increased discrete state space sizes are associated with

weaker model performance with respect to root state classification (Figure 13), p-values

< 0.01). We found that, for our analysis, increasing data set size does not significantly

improve phylogeographic root classification performance ( 13). Interestingly, we see

increased performance at for models with 250 sequences, relative to other data set

sizes, as shown by the positive odds ratios associated with these models (Figure 13,

p-values < 0.05). Overall, we find no significant effects of model implementation

method on root state classification performance.
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3.4.2 Phylogeographic Information Gain Increases with State Space and Data Set

Size

In the phylogeographic context, KL divergence is often used to quantify the

amount of information gained from an analysis with respect to a prior distribution.

Concretely, we are interested in quantifying the amount of information that the root

state posterior contains relative to a uniform (uninformative) prior over all possible

traits. We performed this calculation such that our KL divergence is expressed in

units of bits; representing the total amount of information gained by an analyst from

performing phylogeographic analysis to identify the root state. For many empirical

analyses, since the true root state (and any root states of internal nodes) are unknown

a priori, it is unclear how information gain is related to model accuracy and if

increased information gain translates directly to improved classification performance.

By including KL divergence as a predictor in our logistic regression analysis, we were

able to infer the respective relationship between this metric and model accuracy. We

found that KL divergence was not associated with root state classification performance

(Figure 13, p-value: 0.248). In Figure 14 we present the mean Kullback-Leibler

(KL) divergence (from a uniform prior) for 25 model replicates stratified by model

implementation method as well as state space and data set size. Using ANOVA, we

find that information gain and discrete state space size were significantly related to KL

divergence and that KL divergence tended to increase along with discrete state space

size (p < 0.001, F-score: 255.84, Table 13). Further, we also found KL divergence

to be significantly associated with data set size (p < 0.001, F-score: 255.84, Table

13). We visualize the results of this analysis and show interactions between various

design factors in Figure 15. We utilized Tukey’s HSD post-hoc test to identify that
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this effect is primarily driven by the increase in information gain occurring when

increasing data set sizes from 250 to 500 tips (p < 0.001). Echoing the results of

our logistic regression analysis, we find no significant differences in information gain

between model implementation methods (p-value: 0.866, F-score: 0.242, Table 13).

However, for models with large discrete state spaces, we observed a leveling off in

KL divergence with increasing data set size (Figure 15) indicating a functional limit

to the information a phylogeographic model can extract about the root state given

sufficient data. We also found significant interaction effects between state space size

and data set size (Table 13, p = 9.98× 10−1).

3.4.3 Phylogeographic Cross Entropy increases with Discrete State Space Size

By casting the phylogeographic root state inference problem in a classification

framework, we gain access several established metrics for use in quantifying classifica-

tion model performance. We select cross-entropy due to its usage in a wide variety

of substantive areas. In Figure 16, we show the cross entropy mean and and 95%

confidence interval stratified by model implementation method as well as state space

and data set size. We observed that cross entropy tends to increase with the size of

the state space; this is intuitive since the complexity of the classification task is related

to the size of the state space. In Figure 17, we show the interaction plots between

design factors and cross entropy, noting that cross entropy tended to increase with

data set size which we confirmed using ANOVA (Table 12). Again, we employ Tukey’s

HSD post-hoc testing to show that the sequences (p <0.001). This is congruent

with the results obtained from our logistic regression analysis which indicates that

models fit to intermediate data set sizes tend to perform better than models with
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larger data set sizes. Since we generally expect classification model performance to

generally increase with data set size, we offer an explanation of the apparent increase in

model complexity arising from increasing data set sizes. We expect that classification

performance diminished on larger data set sizes since phylogeographic classification

models perform trait state estimation for all n− 1 internal nodes before making a final

classification for the root trait state; if any errors are made at intermediate nodes,

these errors are propagated back toward the root.

3.5 Discussion

3.5.1 Performance of Phylogeographic Models for Root State Classification

Pathogen molecular sequence data are being created at an unprecedented rate.

So too has interest increased in methods and tools which leverage this new data

stream for public health application. Examples in the literature include evaluating

the impact of hypothetical interventions on epidemic spread (Dellicour et al. 2018) as

well as identifying specific groups or locations responsible for driving epidemic spread

(Lemey et al. 2009; Lemey et al. 2014; Dudas et al. 2017b; Grubaugh et al. 2017;

Magee, Suchard, and Scotch 2017; Swetnam et al. 2018). With increasing metadata

availability, the resolution with which phylogeographic analyses are performed is

increasing (Dudas et al. 2017b; Grubaugh et al. 2017; Dellicour et al. 2018). Concretely,

this translates into specification of models with large number of discrete states and

sequences. Reconstructing epidemiological patterns of infectious disease spread using

pathogen genomes is often achieved by modeling the epidemiological trait of interest

as a continuous time Markov chain which evolves across a phylogeny. The ability of
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these models to accurately reconstruct these traits of interest is paramount to their

use in applied public health settings for modeling infectious disease outbreaks.

In this paper, we took a simulation-based approach and quantified the role of dis-

crete state space and sequence data set sizes on the root state classification performance

of modern phylogeographic models. We focused specifically on root state classification

since, in infectious disease epidemiology, this task is analogous to identifying the

discrete trait (i.e. geographic location, host species, etc.) associated with the origin

of an outbreak. We simulated 225 data sets which we then analyzed using standard

and uncertain phylogeographic discrete trait diffusion models. For the uncertain trait

models, we performed analyses using three distinct prior specifications: i) a uniform

prior across states ii) an informed prior which assigns most of the prior mass to the

correct state and iii) a misspecified prior, which assigns most of its mass to an incorrect

state. We compared characteristics of each model’s MCC phylogeny to characterize

model performance on the root state classification task. We found no significant

differences between model implementation methods and model performance, suggest-

ing that while the phylogeographic UTM does not substantially increase or decrease

model performance. Therefore, it remains an attractive alternative for researchers

wanting to include sequences with missing metadata in their analyses. Interestingly,

a misspecified prior for the tip trait states did not seem to substantially effect root

state predictive accuracy. We expect this is similarly due to errors in the state at

each node being propagated back through the phylogenetic tree during inference. We

expect that while the tip prior misspecification may influence the classification error

at proximal internal nodes, as the model is applied backward in time toward the

root, the partial likelihood vector begins to resemble the stationary distribution of the
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associated Markov model. This is especially likely for fast evolving traits, since the

total evolutionary time for the model is the sum of all branch lengths across the tree.

Though phylogeographic models are popular epidemiological tools in an era of

pathogen genomes aplenty, relatively few studies have characterized the performance

of these methods under various analysis conditions (Lemey et al. 2014; De Maio

et al. 2015; Magee and Scotch 2018; Scotch et al. 2019). Indeed, much of this previous

work is concerned with empirical analyses of virus sequence data sets (Magee, Suchard,

and Scotch 2017; Magee and Scotch 2018; Scotch et al. 2019) and often compares model

root state posterior probabilities as a proxy for performance. The informativeness

of the analysis is then typically assessed by calculating the Kullback-Leibler (KL)

divergence between the root state prior and posterior distributions (Lemey et al. 2014;

Magee, Suchard, and Scotch 2017; Magee and Scotch 2018). Work by de Maio et al (De

Maio et al. 2015) established performance characteristics for several phylogeographic

models using 200 tips and either two to eight discrete states, while focusing on the

role of migration rates and sampling bias on inference quality. In contrast, we focus

on the combined roles of data set and discrete state space sizes and how they impact

discrete trait diffusion model inference.

We found that KL divergence is significantly positively associated with both

discrete state space and data set size. This suggests caution when relying on this

metric as it may erroneously suggest more granular discretization schemes or reward

more data intensive models though this may not translate to increased performance

on the root classification task. For example, though Scotch et al. (Scotch et al. 2019)

found that the phylogeogephic UTM improved performance relative to other popular

heuristics, these conclusions were based on a empirical comparison between model

posteriors. Additionally, we show that KL divergence was not predictive of root state
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classification performance suggesting more informative models may still ultimately

produce incorrect results. So, while empirical studies are informative for assessing

congruence between root state inferences drawn by different phylogeographic methods,

they are not informative with respect to the absolute accuracy (i.e. classification) of

these methods for root state inference. We also find that root classification performance

is the best at intermediate data set sizes. We believe that our models show poorer

performance on larger data sets since as data set size increases, the number of internal

nodes for which trait reconstruction must occur also increases. We expect that

any errors in internal node classification (that is, internal node distributions which

assign the most mass to an incorrect trait state) are propagated back toward the

root. However, this could also be influenced by uncertainty in the phylogenetic tree

topology. Changes in fast evolving traits, such as host age or geography during disease

outbreaks, will be sensitive to uncertainty in branch lengths since as time increases,

the partial likelihood vectors at internal nodes begin to more closely resemble the

stationary distribution of their evolutionary Markov models. Since tree space is known

to grow factorially (Felsenstein and Felenstein 2004) with respect to tip number, it is

likely that a combination of posterior tree uncertainty, mediated through the effect of

increasing tip numbers, also impacted our results. Following this line of reasoning, we

expect that increases in molecular sequence length will improve model performance

since increasing the data available to models (via including more sites independently

evolving across a tree) will reduce tree topological uncertainty.

89



3.5.2 Limitations and Future Work

Phylogeographic discrete trait diffusion models have emerged as the primary sta-

tistical tool for analyzing pathogen genomes annotated with discrete trait metadata.

Given the increasing interest in the application of genome sequencing for public health

outbreak response, it is prudent to establish the performance of phylogeographic

models on different size data sets. This is of direct interest to public health practi-

tioners who may be tasked with designing molecular epidemiological studies within

budgetary, computational or data constraints. Overall, this study aimed to evaluate

the performance of popular phylogeographic models under various analysis conditions,

focusing on the roles of discrete state space and data set size on phylogeographic

model performance. While we find that model performance is significantly increased

at intermediate data set sizes, our results paint suggest caution when relying solely on

KL divergence and other metrics calculated from purely empirical studies. However,

our study is not without limitations. We limited our simulation study to discrete

traits simulated from symmetric Markov rate matrices. This represents the simplest

of the phylogeograhic models; we focused on this case to estimate a baseline for

model performance. In reality, there are several ways in which trait states models are

specified and inferred. Of particular note is the use of Bayesian Stochastic Search

Variable Selection (BSSVS) which augments the model state space such that each

instantaneous rate parameter rij is multiplied by a binomial random variable whose

value represents the inclusion (or conversely, exclusion) of a given rate parameter in

the matrix. The BSSVS parameterization effectively reduces the number of estimated

transition rates which may lead to increased model performance on root state classifi-

cation. Another popular approach for parameterizing discrete trait diffusion models
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is to model each transition rate as linear combination of covariates of interest. This

reduces the problem of estimating transition rates to estimating the coefficients of the

resulting generalized linear model (GLM). Clearly, our results do not extend to these

parameterization methods. Finally, we quantified model performance with respect to

root state classification only. It may be the case that the UTM increases classification

performance on intermediate nodes in the phylogeny and that phylogeographic meth-

ods in general perform better on inferring the discrete states for proximal ancestral

nodes. Quantifying the treewide classification performance of phylogeographic models

under various conditions remains an open area of research.
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Figure 12.

Figure 12. Visual summary of data simulation procedure. We simulated

phylogenetic trees under the serially sampled birth-death SIR model using an R0 of

1.4 and an infectious period of 7 days. We simulated molecular sequence evolution

on each tree topology using an HKY85 model and a strict molecular clock with a

rate of 1 × 10−3 substitutions per site, per year. We also simulated discrete traits

on each tree topology, using symmetric Markov rate matrices with rate parameters

drawn from a gamma distribution and a strict molecular clock with a rate of 0.1

substitutions per site, per year. This results in a set of molecular sequences annotated

with discrete traits and sampling time information. We simulated missing traits using

a binomial sampling process for each tip, indicating the presence, or conversely, the

absence of discrete trait metadata. Finally, each data set was analyzed using one of

four phylogeographic model parameterizations.
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Figure 13.

Odds ratios show the effect of design factors on model accuracy. We used

logistic regression analysis to estimate the effects of design choices on phylogeographic

model accuracy. For the purposes of analysis, we defined our reference factor levels

to be 4 state, 150 sequence and drop model design, respectively. We show the

factor found to be significant as red points, where grey points represent insignificant

factors. Our analysis shows that relative to this reference level that increasing discrete

state space size reduces the root state classification accuracy of phylogeographic

models. We find that, independently, data set size and implementation method

have no significant effects on model accuracy. However, our analysis shows increased

root state classification performance for models with 250 sequences, suggesting that

phylogeographic models may perform most favorably at intermediate data set sizes.
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Figure 14.

Comparison of Kullback Leibler (KL) divergence stratified by model

design factor . Here, we show the mean and 95% confidence intervals for KL

divergence arranged by increasing data set and discrete state space size. We observed

an upward trend in information gain associated with both increasing discrete state

space and data set sizes. We confirmed the presence of this trend using ANOVA

(Table 13). As suspected, ANOVA suggests no statistically significant differences in

posterior information gains between various model implementation heuristics (Table
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13). We observed a tendency for information gain to increase when increasing data

set size from 250 to 500 sequences.
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Figure 15.

Interaction effects between model design factors and information gain.

We show that estimated mean KL divergence tended to increase when increasing the

data set size from 250 to 500 sequences and that this effect was generally consistent

across model implementations. From this perspective, it is further illustrated that we

find information gain tended to increase with discrete state space size.
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Figure 16.

Comparison of Cross Entropy stratified by model design factor.

We present the mean and 95% CIs of the cross-entropy stratified by data set and

discrete state space size. Similar to KL divergence (Figure 14), we show that cross

entropy tends to increase with discrete state space size. This is expected since the

classification problem becomes more challenging as the total number of states increases.

We also find that cross entropy tends to increase with data set size. This could be due

to phylogegraphic the fact that phylogeographic root state classification first requires

the model infer the discrete state probabilities at all n− 1 intermediate tree nodes.

We expect that inference for an increasing number of internal tree nodes similarly

increases the difficulty of the phylogeographic root state classification task.
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Figure 17.

Interaction effects between cross entropy and model design factors.

By visualizing the interaction between each model design factor, we can observe

that cross entropy remains relatively consistent between models with 150 and 250

sequences. However, it sharply increases significantly when models increase from 250

to 500 sequences (Tukey’s HSD post-hoc analysis, p = 4.2×10−6) similar to the trends

observed with KL divergence.
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Table 12. Analysis of Variance: Cross Entropy
Factor Deg. Freedom Sum Sq Mean Sq F-value p-value

Model 3 19 6 0.27 0.846

Tips 2 667 333 14.498 6.36 ×10−7

States 2 8900 4450 193.481 < 2 ×10−16

Tips * States 4 70 18 0.762 0.550

Residual 888 20147 23 - -

Table 13. Analysis of Variance: Kullback-Leibler Divergence
Factor Deg. Freedom Sum Sq Mean Sq F-value p-value

Model 3 0.3 6 0.27 0.867

Tips 2 8.2 4.09 14.498 6.39 ×10−5

States 2 214.3 107.16 255.884 < 2 ×10−16

Tips * States 4 7.8 1.95 4.662 9.98 ×10−4

Residual 888 366.9 0.42 - -
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Chapter 4

BUILD-A-BEAST: A PIPELINE FOR PRODUCING BEAST XML DOCUMENTS

4.1 Introduction

Bayesian phylogeographic discrete trait diffusion models have emerged as powerful

data analysis tools for pathogen genomes annotated with sampling time and discrete

trait metadata. Many extensions to these models exist, and in particular we have

focused on the utility of modeling “Markov Jumps” which record the relative magnitude

and number of transitions between discrete traits in a given phylogeographic model. In

Chapters 2 & 3, we transformed raw phylogeographic model output to into actionable

information via the calculation of “phylogenetic relative risks” which compute the

relative probabilities that a particular discrete trait, such as a geographic location

or particular species, served as a sink or source of infections. Further, we showed

that “phylogenetic relative risk” analyses tend to produce hypotheses similar to other

popular epidemiological modeling approaches. In the case that discrete traits are not

available for sequences of interest, we showed in Chapter 4 that implementing the

phylogeographic UTM is a viable alternative to other popular heuristics for assigning

missing discrete trait data and that this additional uncertainty does not substantially

influence model performance. Unfortunately, while BEAUTi offers the capability to

record the total number of Markov Jumps, as of version 1.10.X, this does not include

the capability to record jumps counts between each pairwise combination of traits

specified in a model. Enumerating these pairwise jumps is central to computing

phylogenetic relative risks as introduced and utilized in Chapters 2 & 3. To do
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so, researchers must manually manipulate BEAST XML files to implement this

functionality. This represent a large barrier-to-entry for using these models in public

health practice and for making these types of analyses available in public health

informatics applications such as ZooPhy. In this Chapter, we introduce Build-A-

BEAST, a set of extensible python classes designed for BEAST XML modification.

We then describe our implementations of classes for generating BEAST XML with

Markov Jumps and the phylogenetic UTM specification.

4.2 Program Requirements

The most recent version of this software can be obtained from Github at https:

//github.com/matteo-V/Build-A-BEAST. This repository contains a README, code

and example XML files that can be used with the pipeline. Build-A-BEAST is written

using python v3.X and utilized the built-in packages “argparse”, “xml”, and “sys”.

There is one external requirement for the “pandas” package. We list instructions for

installing this package in the README and additionally make a virtual environment

available which packages the necessary dependencies alongside a compatible python

implementation.

4.3 System Architecture

While researchers often implement new phylogeographic models in popular software

software packages like BEAST, there is often a delay in the release of software tools

which eases the burden of specifying these models manually. For example, though the

generalized linear model parameterization of the standard phylogeographic model was
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Figure 18. Build-A-BEAST Class Architecture.
Here we show the UML class diagram describing the architecture of our BEAST
XML modification system. We based our implementation around a unified interface
which defines the public methods for all BEAST XML modifications. We define
classes which implement this interface to generate Markov Jump and uncertain trait
model (UTM) specifications in an input BEAST XLM file.

introduced in 2014 (Lemey et al. 2014), specification of this model was not available

in BEAUTi software until v.1.10.X released (Suchard et al. 2018). Since BEAST XML

is highly idiosyncratic, manual modification of these files is typically only possible

phylogeographic researchers. Further, we expect that manual modifications will not

scale to models with large data set and discrete state space sizes. Therefore, a lack of

a simple, extensible framework to implement these modifications represents a strong

barrier to rapid adoption and implementation of these methods. We provide an

overview of the architecture of our object-oriented system below.

102



4.3.1 Program Inputs

Build-A-BEAST is designed using a pipeline architecture which applied a linear

chain of transformation to a BEAST XML document and output another BEAST XML

document with the specified modifications. As such, it requires as input a BEAUTi-

generated BEAST XML document with a user-specified discrete trait diffusion model.

Any discrete trait diffusion model available within BEAUTi is compatible with this

pipeline.

4.4 Program Execution

We designed Build-A-BEAST to be both a command line tool and set of classes

and interfaces which developers can use to implement their own custom BEAST XML

modification pipelines. We demonstrate general use cases and discuss command line

options for our two implemented components below.

usage : MarkovJumpElement . py [−−help ] −− i n f i l e BEASTXML [−− o u t f i l e OUTFILE]

op t i ona l arguments :

−h , −−help show th i s help message and exit

− i BEASTXML, −− i n f i l e BEASTXML

BEAST XML f i l e

−o OUTFILE, −−o u t f i l e OUTFILE

modi f i ed BEAST XML l o c a t i o n . I f none provided , XML i s modi f i ed in p lace

usage : Miss ingTraitElement . py [−−help ] −− i n f i l e BEASTXML [−− o u t f i l e OUTFILE]
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op t i ona l arguments :

−h , −−help show th i s help message and exit

− i BEASTXML, −− i n f i l e BEASTXML

BEAST XML f i l e

−o OUTFILE, −−o u t f i l e OUTFILE

modi f i ed BEAST XML l o c a t i o n . I f none provided , XML i s modi f i ed in p lace

−−a p r i o r i BEAST XML conta in s p r i o r in fo rmat ion about miss ing d i s c r e t e s t a t e s

For all use cases and tools, we expect that the user will supply the path to a

valid BEAST XML file with a discrete trait diffusion model specified. Any valid

paramerizations is compatible with this pipeline, including the poA user may optionally

specify a path (outfile) where the modified BEAST XML will be saved. If the user

does not enter a path for the output XML file, a prompt will be issued asking the

user if they want to overwrite the XML at the current path location.

4.5 Conclusion

I developed this program to automate the currently idiosyncratic, tedious nature

of manipulating BEAST XML files to implement both total Markov jump counts and

the phylogenetic UTM. As previosuly mentioned, these functions are not currently

supported in the most recent version of BEAUti. Ideally, these tools will enable

researchers to easily produce these files for investigating viral diffusion between

discrete groups of interest. Although the program is built to handle several anticipated

errors, it is possible that more will be discovered by users. In this event, users are

encouraged to report any perceived bugs or issues to GitHub. To my knowledge,
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this framework produces files compliant with BEAST v1.10.X standards. Users are

encouraged to modify, extend and utilize this framework for their applications.
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Chapter 5

DISCUSSION

5.1 Summary of Chapters

The purpose of this dissertation was to develop analytical tools and to expand the

conceptual framework for learning salient features RNA viral disease dynamics from a

set of molecular sequences. While myriad methods exist for reconstructing patterns of

discrete trait evolution along a phylogeny, few of these studies attempt to translate

the results of phyloegographic analyses into actionable metrics that can be used by

public health agencies to direct the development of interventions aimed at reducing

pathogen spread. In Chapter 1, I developed a comprehensible, epidemiologically-

relevant metric, the phylogenetic risk ratio and applied it to studying age associated

diffusion of influenza A/H3N2 during the 2016-2017 US epidemic. The results show

distinct regional age associated transmission patterns and that nationally, transmission

tended to occur within similar age groups. By modelling age associated diffusion

as a continuous time Markov chain, parameterized by a generalized linear model

(GLM), I show a strong association between age-specific hemagglutinin (HA) immune

imprinting and the inferred rates of age associated diffusion, echoing results reported

previously in the literaure. As expected, immune impriting with homosubtypic HA

was associated with reduced rates of age associated diffusion, which we interpret as

either i) reduced transmission from imprinted individuals or ii) reduced disease severity

(and . Under both the partial and full protection hypotheses, which suggest that prior

exposure to homosubtypic HA antigens either: i) confers partial immune protection
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that prevents severe disease ii) confers total protective immunity against a specific

HA subtype. Currently, results from several studies suggest that immune imprinting

confers partial immune protection. In the context of phylogeographic models, both

partial and full immune protection would be associated with reduced rates of age

associated diffusion, so the results are plausible. Also supported for inclusion in the

phylogeographic models was age-specific population density and we show a trend

toward inclusion of social contact patterns, though we fail to detect a statistically

significant effect. Though these predictors are commonly invoked when discussing

determinants of influenza epidemiology, there have been few attempts to quantify the

roles of these factors on directly shaping observed disease dynamical patters within a

phylogenetic framework. Therefore, this study represents a major conceptual leap in

considering age as a discrete trait in phylogenetic models, as well as proposes methods

for translating output of phylogeographic analyses into actionable information for to

public health agencies tasked with influenza disease surveillance and control.

Encouraged by these results, in Chapter 2, I then applied the phylogenetic risk

ratio and Bayesian phylogeographic GLMs to study ecologic factors underlying the

rapid geographic dissemination of WNV in the US. I collected and annotated nearly

1000 WNV genomes with sampling location (at state-level resolution) and host species

excluding genomes collected from human and non-Culicine mosquito hosts. Then, I

modeled the geographic diffusion of WNV in the US as a log-linear combination of bird

host density and diversity across two epochs: early epidemic expansion (1999-2003)

and endemic (2003-current) periods. I obtained bird density and diversity data for

all species represented in the sequence data set from the National Audobon Society’s

Christmas Bird Count and aggregated predictor data into Health and Human Services

(HHS regions). The results indicate that during early epidemic expansion period,
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Passerine and total bird diversity were broadly supportive of WNV dissemination while

Non-Passerine diversity was negatively associated with WNV geographic dissemination,

suggesting a dilution type effect. During the endemic period, there was a similar

role for Passerine diversity in supporting geographic dissemination. However, total

bird diversity was associated with reduced WNV dissemination during this period,

indicating a prominent role for silution effects in shaping WNV dissemination in

this epoch. To uncover the patterns of host-associated diffusion of WNV after its

introduction to the US, I reconstructed the patterns of host associated diffusion and

calculated phylogenetic relative risks to determine which hosts were responsible for a

majority of transmissions during early WNV epidemic expansion. The results shows

frequent and rapid WNV dissemination between Passerine and Non-Passerine hosts

during the epidemic expansion period; implying that bird-to-bird transmission was an

important feature of early epidemic expansion of WNV in the US.

Though Chapters 1 & 2, I demonstrate how epidemiologically-relevant discrete

traits (other than geographic location) can be used in genomic epidemiology studies to

provide actionable public health information in the form of the phylogenetic risk ratio.

However, for many non-geographic traits of interest, metadata in publicly available

molecular sequence databases is quite sparse. Indeed, several otherwise suitable

sequences were excluded from phylogeographic analysis due to missing metadata for

discrete traits of epidemiological relevance. While newer techniques for incorporating

trait uncertainty into discrete phylogenetic models exist: the phylogenetic uncertain

trait model (UTM), a rigorous evaluation of the statistical performance of these

methods relative to standard parameterizations was lacking. In Chapter 3, I perform

a simulation study of the standard and uncertain trait models and characterize

their statistical performace with respect to the root state classification task. Here,
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the goal was to characterize the performance of the phylogeographic UTM. My

results showing that model parameterization does not necessarily increase (nor does it

decrease) classification performance with respect to root state identification in the

phylogeographic context. Therefore, we expect the phylogentic UTM to enable both

highly granular genomic epidemiology studies of viral molecular sequences as well as

increasing molecular data set sizes for sequences with sparse metadata reporting for

epidemiological traits of interest.

In Chapter 4, I discuss the software tools made available to implement these

methods since manual manipulation of BEAST XML is idiosyncratic, error-prone,

and difficult to scale for studies examining discrete traits with large state spaces.

The PRR framework may be used to address complex epidemiological questions and

enjoys efficient algorithms for computing labeled transitions in evolutionary models.

To ensure the technical complexity of implementing these methods is not a barrier

to their wider use in public health surveillance, it is prudent to develop software

and visualization tools which automate these processes. Although there is a tutorial

provided which explicity details the XML modifications necessary to implement Markov

jumps (on which the PRR is based), this process is extremely tedious, error-prone

and cumbersome for discrete traits with large state spaces. Therefore, in Chapter 4, I

introduced a pipeline that may facilitate expanded use of the PRR and phylogenetic

UTM by other researchers, public health departments and within public health

informatics applications designed to simplify the use of viral phylogeography for viral

surveillance (Scotch, Magge, and Vaiente 2019). The pipeline that I created and have

made public (https://github.com/matteo-v/Build-A-BEAST), allows individuals to

simply pass a BEAST XML file, the desired output path, and specify the desired

options using a command line prompt.
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5.2 Future Research

There are several opportunities to extend and apply the research presented in

this dissertation. First and foremost, the phylogenetic risk ratio (PRR) (which was

introduced in Chapter 1) represents a powerful analytical tool which can be used

to translate the results of genomic epidemiological analyses of viral pathogens into

actionable public health information. For example, a promising application of the PRR

would be to quantify the age-associated diffusion of SARS-CoV-2 in the US. The results

of this study could then be used to focus public health resources and intervention efforts

to reduce transmission types with PRR greater than one. Increasingly, public health

and governmental agencies rely on the output of infectious disease models to guide

policy decisions and recommendations aimed at improving infectious disease outcomes.

During the global SARS-CoV-2 pandemic, genomic epidemiological approaches have

received renewed interest. Currently, these efforts are concentrated around estimating

dates of introduction (i.e divergence time dating) of SARS-CoV-2 into certain localities

across the US. Extending these efforts to include phylogenetic risk estimation for

particular age, sociodemographic, and other groups is a particularly promising area.

Additionally, systematic efforts to disseminate and implement genomic epidemiological

methods into routine public health surveillance activities are paradoxically absent from

the literature. We envision studies which systematically apply tested implementation

frameworks as a necessary next step in translation of these methods. Under the RE-

AIM implementation framework (Glasgow, Vogt, and Boles 1999), quantifying reach,

the proportion of the total population that receives benefit from an intervention and

effectiveness (reduction of disease due to application of an intervention) are important

steps for translating evidence into practice. These measurements must necessarily be
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made in real world contexts. Thus, future work is needed to quantify the effectiveness

of molecular epidemiological methods in for quantifying risk and informing control

efforts in such settings.
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APPENDIX A

STATEMENTS FROM CO-AUTHORS IN PUBLISHED WORK
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Chapter 4 of this document has been published in a peer-reviewed journal. Citations
for these chapters are listed below. I have obtained permission to use this work from
all co-authors: Matthew Scotch.

A.1 Chapter 4

Vaiente MA, Scotch M. Going back to the roots: Evaluating Bayesian phylogeo-
graphic models with discrete trait uncertainty. Infection, Genetics and Evolution.
2020 Aug 13:104501. doi:10.1016/j.meegid.2020.104501
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APPENDIX B

SEQUENCE METADATA FOR CHAPTERS 1 & 2
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In Chapter 1, I studied the age associated diffusion of influenza A/H3N2 using
hemagglutinin molecular sequences annotated with patient age obtained from Gen-
Bank genbank2012. In Chapter 2, I studied the geographic diffusion of WNV in
the US using whole genome sequences annotated with host species and location of
sampling. Sequence accessions and relevant epidemiological are available via GitHub
(https://www.github.com/matteo-V/appendices).
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