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ABSTRACT

QR decomposition (QRD) of a matrix is one of the most common linear algebra oper-

ations used for the decomposition of a square/non-square matrix. It has a wide range

of applications especially in Multiple Input-Multiple Output (MIMO) communication

systems. Unfortunately it has high computation complexity – for matrix size of nxn,

QRD has O(n3) complexity and back substitution, which is used to solve a system

of linear equations, has O(n2) complexity. Thus, as the matrix size increases, the

hardware resource requirement for QRD and back substitution increases significantly.

This thesis presents the design and implementation of a flexible QRD and back

substitution accelerator using a folded architecture. It can support matrix sizes of

4x4, 8x8, 12x12, 16x16, and 20x20 with low hardware resource requirement.

The proposed architecture is based on the systolic array implementation of the

Givens algorithm for QRD. It is built with three different types of computation blocks

which are connected in a 2-D array structure. These blocks are controlled by a

scheduler which facilitates reusability of the blocks to perform computation for any

input matrix size which is a multiple of 4. These blocks are designed using two

basic programming elements which support both the forward and backward paths to

compute matrix R in QRD and column-matrix X in back substitution computation.

The proposed architecture has been mapped to Xilinx Zynq Ultrascale+ FPGA

(Field Programmable Gate Array), ZCU102. All inputs are complex with precision

of 40 bits (38 fractional bits and 1 signed bit). The architecture can be clocked at

50 MHz. The synthesis results of the folded architecture for different matrix sizes

are presented. The results show that the folded architecture can support QRD and

back substitution for inputs of large sizes which otherwise cannot fit on an FPGA

when implemented using a flat architecture. The memory sizes required for different

matrix sizes are also presented.

i



ACKNOWLEDGMENTS

I would like to extend my sincere gratitude to my thesis advisor Dr. Chaitali Chakrabarti

for her tremendous support,motivation and patience throughout my work. Her guid-

ance during this research research as well as writing of this thesis during the pandemic

around is greatly appreciated. I am thankful to my committee members, Dr. Daniel

Bliss and Dr. Yu (Kevin) Cao, for providing me feedback and their time on my

research. I would also like to acknowledge the DARPA-PFC program for partially

supporting this work.

I would like to thank Shunyao Wu and Yang Li from Arizona State University

for their contribution and generous help throughout my work. I am grateful to Anu-

raag Soorishetty for providing me guidance and critical feedback. Lastly, I would

like to thank my family and friends for their unceasing encouragement, support and

motivation.

ii



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 QR Decomposition and Back Substitution . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Givens Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Existing Hardware Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 SCALABLE QRD ACCELERATOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Overview of QRD for an nxn Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Programming Elements (PEs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Boundary Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.2 Internal Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 QRD for a 4x4 Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Folded Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.1 Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Schedules for Different Sized Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.1 Schedule for 8x8 Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.2 Schedule for a 12x12 Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.3 Schedule for a 16x16 Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iii



CHAPTER Page

3.5.4 Schedule for a 20x20 Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Memory Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 BACK SUBSTITUTION ACCELERATOR. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Programming Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Back Substitution Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Scalable Architecture for Back Substitution . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Back Substitution for 4x4 Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Back Substitution for 8x8, 12x12, 16x16 matrices . . . . . . . . . . . . . . . . . 39

4.6 Back Substitution for 20x20 matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Architecture Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Precision Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Simulation Results of the QR Accelerator. . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3.1 Timing Results for Matrix Size 8x8, 12x12, 16x16, and 20x20 46

5.3.2 Error Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Simulation results of the Back Substitution accelerator . . . . . . . . . . . . 47

5.5 Hardware Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.5.1 Programming Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.5.2 4x4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.5.3 Implementation of Type I , Type II and Type III blocks . . . . 51

5.5.4 Analysis of Resource Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5.5 Memory Size Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5.6 Maximum Matrix Size Supported . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

iv



CHAPTER Page

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

v



LIST OF TABLES

Table Page

5.1 Error in dB for Matrix R Computed Using QRD Accelerator for Dif-

ferent Matrix Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 R Values for 20x20 Matrix Obtained by fixed point Simulink imple-

mentation of proposed architecture and floating point MATLAB im-

plementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Error in dB for X Values Computed Using Back Substitution Acceler-

ator for Different Matrix Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 X Values for 20x20 Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Resource Utilization of Boundary and Internal Cells . . . . . . . . . . . . . . . . . . 50

5.6 Resource Utilization of 4x4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.7 Resource Utilization of Type I, Type II, and Type III Blocks . . . . . . . . . . 51

5.8 Number of Values Stored in Each Memory for a Matrix of Size nxn . . . . 53

5.9 Memory Required for Matrices of Different Sizes . . . . . . . . . . . . . . . . . . . . . 54

vi



LIST OF FIGURES

Figure Page

3.1 Data Flow in QR Using Systolic Array Architecture . . . . . . . . . . . . . . . . . . 17

3.2 Boundary and Internal Cell Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Boundary Cell Designed In Simulink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Internal Cell Designed in Simulink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Data Flow in QR Using Pipelined Systolic Array Architecture . . . . . . . . . 21

3.6 12x12 Systolic Array Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.7 Block Diagram of the Scalable QR Accelerator . . . . . . . . . . . . . . . . . . . . . . . 23

3.8 Two Possible Schedules for Computing QRD on a 20x20 matrix . . . . . . . 25

3.9 Schedule for Input Size 8x8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.10 Schedule for Input Size 12x12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.11 Schedule for Input Size 16x16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.12 Schedule for Input Size 20x20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Data Flow in Back Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Block Diagram of Back Substitution Accelerator . . . . . . . . . . . . . . . . . . . . . 38

4.3 Schedule of Type I and Type II Blocks in Back Substitution for Input

Size 12x12 and 8x8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Schedule of Type I and Type II Blocks in Back Substitution for Input

Size 16x16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Schedule of Type I and Type II Blocks in Back Substitution for Input

Size 20x20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 Comparision of Foldable Architecture for Different Matrix Sizes With

Flat Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vii



Chapter 1

INTRODUCTION

Demand for wireless communication systems has increased rapidly in the recent years.

With this demand, a need for higher data rates became a challenge in order to increase

capacity of the communication system. Multiple Input Multiple Output (MIMO) is

a technique that can significantly improve the throughput of a system by employ-

ing multiple antennas to support multiple data streams between the transmitter and

receiver concurrently [26] [4]. MIMO technique is an integral part of wireless commu-

nication standards such as IEEE 802.11ac (WiFi), HSPA+ (3G), Long Term Evolu-

tion (LTE), etc. This is because such a system results in increase of system capacity

and spectral efficiency. Therefore, MIMO systems require sophisticated algorithms in

the receiver for signal processing and efficient implementation of such algorithms is

crucial.

QR decomposition is one of the many base-band functions of the MIMO receiver.

It decomposes the complex-valued channel matrix H into an orthogonal matrix Q

and an upper triangular matrix R. The channel matrices in MIMO communication

systems utilize QRD in many linear detection schemes [3] and also complex methods

such as list sphere detection (LSD) algorithm, sphere decoder (SD), etc [24] to leverage

low complexity and high performance. The size of the channel matrix depends on

the number of transmitter and receiver antennas. Thus, as the number of antennas

increase, the complexity of the QRD also increases.

QRD is used not only in MIMO systems but also in beam formation in smart

antennas [26]. Beamforming requires multiple antennas working together to create

constructive and destructive interferences among antennas which produce a specific
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beam pattern. Beamforming can improve the link capacity remarkably providing

wider bandwidth per user channel [26]. Conventional beamformers are limited by

jamming signals at a main lobe and side lobes of the array response. This can

be solved by adaptive beamformer such as MVDR (Minimum Variance Distortion

Response) algorithm. It uses QRD to calculate inverse of an input matrix, and this

facilitates simple solution for complex matrix inversion operation [1].

QRD involves factorizing a square or a non-square matrix A into a product of

an orthogonal matrix Q and an upper triangular matrix R, given by A = QR. The

complexity of QRD is O(n3). QRD is a powerful algorithm to stably compute the

eigen values and the corresponding eigen vectors. It uses successive unitary transfor-

mations which makes it more stable than other common factorizations such as LU

decomposition. It is a dominant method for eigen value computations because of the

recent developments in parallelized versions of QRD [2].

Back Substitution, on the other hand, involves solving a system of linear equa-

tions by transforming them into row-echelon form. The transformation can be done

using different methods such as LU decomposition, QR decomposition, Cholesky de-

composition, etc. QRD is most commonly used algorithm to transform the linear

equations of the form AX = B to UX = Y where U is an upper triangular matrix.

The complexity of back substitution algorithm is O(n2).

QRD can be computed using various techniques such as Gram-Schmidt [23],

Givens Rotations [11], Gentlemans Algorithm [9], Householder reflections [12], etc.

Gram-Schmidt process is a method for ortho-normalizing a set of vectors. In this

method, QR is derived by finding an orthogonal projection vector qn for each col-

umn vector an of input matrix and then subtracting its projections onto the previous

projections (qn−1). The resulting vector is then divided by the length of that vector

to produce a unit vector. In Givens rotation, orthogonal plane rotations are used
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to eliminate the lower triangular matrix elements within a matrix i.e, [ai,j] = 0 for

i > j . The input matrix is pre-multipled by rotation matrices one element at a time

and rotation parameters are calculated so that the sub-diagonal elements are zeroed.

Gentlemans algorithm is based on Givens rotations where the algorithm is modified

to eliminate square root operation. In Householder transformation, Householder re-

flections are are used to calculate QRD by reflecting the first column of a matrix

onto a multiple of a standard basis vector, calculating the transformation matrix,

multiplying it with the original matrix and then recursing down the minors of the

product.

Givens Rotation is used in most of the previously published hardware implemen-

tations because of its numerical stability and accuracy. It is typically implemented

using systolic array architectures consisting of two-dimensional array of programming

elements. This approach takes advantage of the inherent parallelism of Givens ro-

tation for matrix triangularization. In this thesis, we too focus on a systolic array

implementation of Givens rotation based QRD.

1.1 Motivation

The goal of this work is to design an architecture for a scalable QRD and back

substitution for resource constrained systems. This architecture aims to support any

matrix size though here we focus on sizes 4x4, 8x8, 12x12, 16x16, and 20x20. The

resource utilization is very high, that is, the programming elements are re-used as

much as possible. This work makes use of the same programming elements in both

forward and backward computations avoiding separate blocks for the backward flow.

The architectural framework of choice is FPGA.
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1.2 Prior Work

One of the initial implementations of QRD using systolic array was proposed

by H.T.Kung using Givens rotations [10]. A systolic array is a regular array of

programming elements or cells in which data flows in a particular direction. Systolic

arrays can be two-dimensional (rectangular, triangular or hexagonal) and data flow

between the cells can be at different speeds and different directions. Systolic array

architectures are interesting as they can solve certain problems in linear time. Kung

proposed the QRD architecture using two programming elements (PEs), boundary

and internal cells. Boundary cell performs the rotations in Givens rotations and

internal cell uses these rotation parameters to transform the matrix. This architecture

is ideal for real-time matrix computations on VLSI hardware.

Givens rotation based on Logarithmic number system (LNS) has been imple-

mented to avoid the multiplication and division operation. A square root free al-

gorithm using recursive least squares on LNS has been presented in [7]. In these

architectures, the division and multiplication algorithm are replaced by subtraction

and addition. Givens rotation has also been implemented using CORDIC (coordinate

rotation digital computer) algorithm [27]. CORDIC speeds up the computations as

it uses simple shift-add operations to realize Givens rotation. Some of the instances

of QRD implemented on FPGA are shown in [15], [11], [5]. FPGAs provide high per-

formance and power efficiency for custom hardware designs. But for large matrices,

resource limitation on FPGA can be a drawback.

Most of the work described above target at different challenges in hardware de-

sign. As some of the implementations improve accuracy, they require high resource

utilization. Each algorithm used for QRD target different issues such as number of

computations, numerical stability, support for parallel architectures, etc. This the-
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sis facilitates a single design implementation to support flexible matrix sizes with

minimum resource utilization.

1.3 Thesis Contributions

The main contribution of this thesis is the design of a flexible architecture for

QR decomposition and back substitution targeted on an FPGA. The architecture is

based on a systolic array implementation using Givens’ Algorithm. The 2-dimensional

systolic array consists of two fixed Programming Elements (PEs), namely, boundary

cell and internal cell. These cells support both forward and backward paths utilizing

the same architecture to compute the upper triangular matrix R in the forward path

and column matrix X in the backward path.

The foldable architecture for QR decomposition + back substitution supports

matrix sizes that are multiples of 4, though we can extend it to support any matrix

size. The architecture consists of three basic computation blocks along with memory.

We also describe a scheduler to define the sequence of computations through these

computation blocks.

The flexible QR accelerator computes the upper triangular matrix R, and uses

the matrix R to derive the column matrix X as in a linear equation solver for back

substitution. To generate an upper triangular matrix R, a series of rotations needs to

be computed. The PEs in the QR accelerator perform rotations on each element of the

matrix A resulting in the annihilation of the lower triangular matrix. The boundary

cells perform square root and reciprocal operation; the internal cells perform a basic

multiplication and accumulation (MAC) operation.

At the end of the forward computation, the R values computed in the forward path

are stored in each cell. These R values are used in the back substitution to compute

X using the same boundary and internal PEs. A division operation is performed to

5



compute the X value. These X values are stored in a memory to pass as input to

other internal cells belonging to same column which compute an intermediate value

to pass to the boundary cell of the specific row which eventually computes the X

value of that row.

The proposed folded architecture is built using three computation blocks, namely

Type I, Type II and Type III blocks. The Type I block is the triangular block on the

diagonal consisting of four boundary cells and six internal cells, Type II block is a

4x4 kernel of 16 internal cells and the Type III block is a column matrix of 4 internal

cells. The architecture also consists of four memory units, namely, RAM I, RAM II,

RAM III and RAM IV. RAM I stores the rotation parameters C and S from Type I

block, RAM II stores the intermediate values between two Type II blocks, RAM III

stores the matrix R elements computes at each stage in Type I and Type II blocks,

and RAM IV stores the matrix X elements computed in back substitution. The QRD

computation of any sized matrix can be mapped onto this folded architecture. The

scheduler in the design is used to schedule the data flow in each of the computation

blocks and the memory read/writes to support data flow between each of the blocks.

We illustrate the architecture using matrices of sizes of 4x4, 8x8, 12x12, 16x16

and 20x20. We evaluate the hardware performance using resource utilization for each

matrix size compared to the flat architecture. We evaluate the algorithm performance

by calculating the error in deciBels (dB) for the matrix R in QRD and matrix X

in back-substitution. In the forward computation, an average error of -47.89dB is

observed for an input matrix of size 20x20. In the back substitution, an average error

of -36.88dB is observed for matrix size of 20x20.

The proposed architecture can be clocked at 50MHz. The resource utilization of

this architecture shows that it uses 32% of LUT utilization, 3.82% of LUTRAMs,

9.39% of FF and 80.86% of DSPs in Xilinx ZCU102 FPGA. It is 8x times smaller
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than the flat architecture implementation for a 20x20 matrix. In fact, ZCU102 cannot

support flat implementation of matrices larger than 12x12. Using this architecture,

the maximum matrix size supported to compute matrix R and back substitution

depends on the memory size required for each matrix size.

1.4 Organization

The rest of the thesis is divided into the following chapters: Chapter 2 presents

a brief introduction of the existing hardware implementations, QR decomposition

algorithm, and the Givens method. Chapter 3 presents a detailed explanation of the

flexible QRD architecture, the scheduler, and the memory architecture. In Chapter

4, the back substitution accelerator is presented along with the scheduler. Chapter

5 summarizes the results of the flexible and foldable architecture for different matrix

sizes in terms of performance, area utilization and computation times. Chapter 6

concludes the thesis along with future work.
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Chapter 2

BACKGROUND

In this chapter, we first give a brief introduction to the QRD and back substitution,

the Givens algorithm for QRD, and its existing hardware implementations.

2.1 QR Decomposition and Back Substitution

QRD is a linear algebraic method to factorize any given matrix A into two ma-

trices: 1) an orthogonal matrix called Q, and 2) an upper triangular matrix called R

such that A = QR as shown in equation 2.1.

A =

[
q1 q2 . . . qn

]


R11 R12 . . . R1n

0 R22 . . . R2n

. . . . . .

. . . . . .

0 0 . . . Rnn


(2.1)

One of the applications of QRD is solving the linear system of equations. Consider

the following equation AX = B, where A is an n x n matrix. The matrices A and

B are provided as inputs and the objective is to find the column matrix X. Using

QRD, matrix A can be factorized into QR as shown in equation 2.2.

Let AX = B, then if A = QR

(QR)X = B. Thus , RX = Q−1B.

If B′ = Q−1B, then RX = B′

(2.2)
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The resultant equation RX=B’ can be represented as

R11 R12 R13 . . R1n

0 R22 R23 . . R2n

0 0 R33 . . R3n

. . . . . .

. . . . . .

0 0 . . . Rnn





X1

X2

X3

.

.

Xn


=



B′1

B′2

B′3

.

.

B′n


The Xn value can be computed using the reciprocal of the Rn,n value. Solving the

resultant matrix in a bottom-up approach, results in the equations in 2.3.

Rn,nXn = B′n

Rn−1,n−1Xn−1 +Rn−1,nXn = B′n−1

(2.3)

Thus, Xn can be used to compute Xn−1, and Xn−1 can be used to compute Xn−2

and so on. In this way, all the X values in matrix X can be computed using the

matrix R. This is known as the back substitution method to solve for X. Since QRD

has a computation complexity of O(n3) and back substitution has a computation

complexity of O(n2), the resource utilization increases significantly with increase in

input matrix size [17].

2.2 Givens Algorithm

Givens method performs QRD by Givens rotation [11]. Here, all the elements

of a row are rotated in a way that annihilates the lower triangular matrix. In this

thesis, we use the systolic array implementation of Givens rotation-based algorithm

for designing the scalable QRD and back substitution algorithm.

In the Givens algorithm, the elements in the lower triangular matrix of the input

are annihilated at each time-step until an upper triangular matrix is formed. The

9



rotation performed at each step annihilates element aij in matrix A, where i represents

the row and j represents the column, starting from the last row of the first column.

Specifically, Givens matrix G(i, j, c, s)T is used to convert the input matrix A into an

upper triangular matrix. It rotates the ith and jth elements of matrix A by an angle

θ such that cosθ = C and sinθ = S. C and S can be obtained by equations 2.4 and

2.5.

C = ai,k/ri,j (2.4)

S = ai,j/ri,j (2.5)

To annihilate element ai,j, we multiply elements ai,k and ai,j with the Givens

matrix. C −S

S C


ai,k
ai,j

 =

ri,j
0


Pre-multiplying the matrix A with G affects only the rows i and j of the matrix

A and the element ai,j is annihilated. The element ri,j is computed using

ri,j =
√
a2i,k + a2i,j (2.6)

If more than one entry in the matrix A need to be annihilated, then a sequence of

Givens rotations needs to be performed. Once the required elements are annihilated,

the Q and R matrices are obtained. For example, for a 4x4 matrix, six elements of

matrix A need to be annihilated, hence six Givens rotations need to be performed as

shown in equation 2.2
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x x x x

x x x x

x x x x

x x x x


G4,1−−→



x x x x

x x x x

x x x x

0 x x x


G3,1−−→



x x x x

x x x x

0 x x x

0 x x x


G2,1−−→



x x x x

0 x x x

0 x x x

0 x x x


G4,2−−→



x x x x

0 x x x

0 x x x

0 0 x x


G3,2−−→



x x x x

0 x x x

0 0 x x

0 0 x x


G4,3−−→



x x x x

0 x x x

0 0 x x

0 0 0 x


(2.7)

The annihilation starts from first column and proceeds to the last column. G4,1 is

the first rotation to the input matrix to annihilate the element at 4th row, 1st column.

Then G3,1 rotation is performed to annihilate the a3,1 element and G2,1 rotation is

performed to annihilate the a2,1 element. Thus, annihilation proceeds in reverse order

within a column. Consequently, G4,2, G3,2 are performed to annihilate the elements in

the 2nd column. Finally, G4,3 is performed to annihilate the last element to generate

the upper triangular matrix R.

In the Givens rotation, first column of a matrix is used to find the angle of rotation

and this is used for the rest of the columns. This leads to a regular pattern and hence

it can be mapped to a systolic architecture [22].

The upper triangular matrix computed in this forward path is used to calculate

the X values in a linear equation solver in back substitution. The rotation parameters

used in the QRD are used to compute the matrix B′ which represents the B ∗ QT

matrix. This matrix B′ is used in back substitution in a bottom up approach to

compute the X values.
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2.3 Existing Hardware Architectures

There are several hardware implementations of QRD. The earliest implementation

was proposed by H. T. Kung and W. M. Gentleman in 1981 to solve QRD using

systolic arrays [10]. Several algorithms of QRD have been explored to optimize the

square root operation in [10], as it is compute intensive. In [9], Gentleman proposed

an algorithm to solve the QRD using systolic array without square root. [7] and

[13] proposed a parameter based square-root free algorithms where different values of

parameters lead to different multiplication and division operations.

These algorithms have been implemented on different hardware platforms such as

ASICs (Application Specific Integrated Circuits), FPGAs, GPUs (Graphical Process-

ing Units), etc. The ASIC implemented in [8] proposes a hierarchical pipelining and

folding method. Specifically, they use a folded transformation to map a look ahead

transformed pipelined array to a small square array. In [18], a QRD hardware archi-

tecture based on a parallel tiled QRD algorithm is presented. This implementation

is illustrated for a fixed size 8x8 real matrix and targeted for parallel architectures

where a matrix can be divided into smaller tiles such as a tile size of 2x2. A QRD

implementation based on Gram-Schmidt algorithm was proposed in [25]. As Gram-

Schmidt is computationally expensive, this method performs division operation with

assistance of square root using CORDIC. This is targeted to an ASIC platform and

supports a matrix of size 4x4. The ASIC implementations are fast and efficient but

they lack reconfigurability as they target specific application.

GPUs, on the other hand, are popular hardware platforms as they make extensive

use of parallelism. In [21], data and loop-level parallelism based Givens QRD kernel

is presented. Efficient memory access is achieved using intelligent loading and storing

techniques. In [20], a generalized Givens rotation is presented as an improvement over
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classical Givens rotation using a GPGPU ( General Purpose GPU) with a massively

parallel reconfigurable MPSoC (Multi Processor System on a Chip) architecture.

FPGAs are also reconfigurable platforms which are used as both dedicated hard-

ware or as an accelerator with a host architecture. They have the programmability of

software and performance capability approaching custom hardware implementations.

In [6], a CORDIC-based QRD using Givens algorithm is implemented on an FPGA.

This supports a real input matrix of size 4x4 and achieves high hardware utilization.

The squared Givens rotation implemented in [16] reduces the latency by 50% com-

pared to Givens rotation. A folded systolic architecture is implemented in this design

and targeted on Xilinx Virtex 4 FPGA running at 115 MHz. While results for a 4x4

input matrix are presented in [16], the method is extendable to other matrix sizes

with changes in the control unit.

In [14], a automatic generation tool of different decomposition methods such as

QRD, LUD and Cholesky Decomposition targeted on a Xilinx Virtex 4 FPGA is

presented. The programmable tool supports different decompositions for input matrix

size of 4x4. In [19], a vectorized algorithm is introduced to compute QRD for floating

point input. This architecture computes large matrix sizes of 192x200 in 1 ms but the

hardware resource requirement is extremely high. It requires 274 18x18 multipliers,

33K registers, 29K ALUTs and 5.7 MB of memory, which is not sustainable.

This thesis also presents an architecture targeted on an FPGA to utilize the

reconfigurable aspects, thus reducing the design time. Though most of the existing

implementation have focused on a 4x4 configuration with the assumption that they

can be scaled up for larger matrix sizes, this work explicitly demonstrates how a single

architecture can support different matrix sizes. CORDIC has been used in some of the

hardware implementations to improve the latency in square-root operations of Givens

rotation. Since CORDIC uses high resources, we have not studied it here. Instead, we
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focused on a three-stage pipelined architecture to decrease the clock period, thereby

increasing the design frequency.
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Chapter 3

SCALABLE QRD ACCELERATOR

In the previous chapter, we analyzed different architectures used in QR decompo-

sition accelerators. In this chapter, we give an overview of QRD for a matrix of size

nxn in Section 3.1 followed by description of the programming elements in Section

3.2. Section 3.3 gives a detailed description of QRD for a 4x4 matrix and followed by

description of Scalable architecture in Section 3.4. Section 3.5 presents the details of

memory size required for the design.

3.1 Overview of QRD for an nxn Matrix

In this section, a detailed explanation of the triangular systolic array for QRD

is presented. This implementation consists of two types of programming elements:

boundary cell and internal cell [10]. The boundary cells are placed along the diagonal

of the array and the rest of the elements are implemented by the internal cells. The

rotation parameters C and S mentioned in Section 2.2 are computed by the boundary

cell. These are broadcast to the internal cells in the same row at each time step to

compute the intermediate values. These intermediate values serve as inputs to the

boundary cells in the next row. In the end, R values stored in each cell are the final

R values of the upper triangular matrix.

Figure 3.1 describes the two-dimensional systolic array architecture to compute

matrix R. The round cells represent the boundary cells and the square cells represent

the internal cells. The boundary and internal cells are connected as shown in the

figure. Figure 3.1 also describes the dataflow through the architecture. The input

to the first row of elements in the triangular systolic arrays are passed in a diagonal
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manner. At each time step, C and S values are calculated with elements of the input

matrix of the column. These C and S values are passed to the next internal cell as

inputs. The internal cell takes the C and S values of the boundary cell and input

matrix of the specific column to compute the R value and U value. U value is the

input to the next cell in the next row. The data flow here is in vertical direction.

Note that the C and S parameters generated in the boundary cell do not get modified

in the internal cells but are passed on to the next internal cells at each time step.We

implement this by broadcasting the C and S values to all the internal cells at the

same time.

There is another column of internal cells in the far right which take the B column

vector (AX=B) as input. The C and S values generated in the boundary cell are used

to compute the B’ values which are used in back substitution.

3.2 Programming Elements (PEs)

The two basic programming elements used in this design are the boundary and

internal cells. The boundary cells occupy the diagonal elements of the matrix R

and compute the rotational parameters. The internal cells compute the intermediate

values using MAC operations.

3.2.1 Boundary Cell

The boundary cell takes a complex number A as input and computes C, a real

parameter and S, a complex parameter. It also computes the R value which is stored

in the boundary cell for the next computation. Figure 3.2 describes the ports in

boundary cell.

Algorithm 1 describes the equations used in the boundary cell computations:
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Figure 3.1: Data Flow in QR Using Systolic Array Architecture

Algorithm 1 Boundary Cell Operations

if Uin ← 0 then

C ← 1 ; S ← 0 ; R← R′

else

R′ ←
√
R2 + |Uin|2 ; C ← R/R′

S ← Uin/R
′

R← R′

end if
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Figure 3.2: Boundary and Internal Cell Flow Diagram

Thus the boundary cells perform a reciprocal square root operation to generate

the C and S parameters. This is a compute-intensive operation which requires a very

long clock period if it has to be completed in one-time step. The latency of boundary

cell is significantly larger than the internal cell which only have MAC operations.

To overcome this drawback, the boundary cell is redesigned to support a 3-stage

pipelined architecture. Each boundary cell now takes 3 clock cycles to generate the

C and S parameters. The schedule for the forward path is implemented with the new

pipelined architecture.

In the Simulink design, the pipeline stages are inserted before the square root

operation and before the reciprocal operation as shown in Figure 3.3. This three-stage

pipeline is used to mimic the hardware pipeline stages of the boundary cell. When an

RTL is generated for the boundary cell, the pipeline stages are incorporated in the

square root and reciprocal block which reduce the critical path of the boundary cell.

Since in Simulink, a square root or reciprocal block cannot be broken down into a

three-stage pipeline, the boundary cell is designed in this way to simulate the hardware

behavior. Thus both in the hardware and in the Simulink simulation, the outputs of

the boundary cell are generated after three clock cycles and hence the same schedule

is followed for both implementations. Furthermore, to decrease the computations
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Figure 3.3: Boundary Cell Designed In Simulink

of the boundary cell, each boundary cell is provided with the magnitude as input

which is the square of the real and complex value of the current input A. For the

first boundary cell which calculates R1,1, the magnitude is sent as input from the

testbench. For the other boundary cells, the magnitude is calculated in the internal

cell above the boundary cell and sent using vertical connections.

3.2.2 Internal Cell

The internal cells occupy the non-diagonal elements of the upper triangular matrix

in the triangular systolic array. They have a significantly lower complexity than

the boundary cell. Figure 3.2 describes the internal cell ports. An internal cell

computes two complex multiplications, two scalar multiplications, and one addition

and subtraction. Algorithm 2 describes the computations in an internal cell:

Algorithm 2 Internal Cell Operations
Uout ← CUin − SR

R′ ← S∗Uin + CR

The internal cell uses the C and S inputs generated from the boundary cell and
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Figure 3.4: Internal Cell Designed in Simulink

Uin passed as input to the internal cell to generate Uout, which is passed as input to

next boundary or internal cell present in a vertical data flow in the systolic array.

The R value is computed using Uin, C and complex conjugate of S(S∗). The R

value generated is stored in a local memory to be used in the next computation.

At the end, the R value stored in the cell represents the final R value of the upper

triangular matrix. Figure 3.4 describes the block diagram of the internal cell designed

in Simulink:

The internal cells are used in the the last column to compute the B’ values from

the input column vector B. The B′ values generated from these internal cells are

stored and used in back substitution as inputs. In the forward path, the internal

cells in the upper triangular array and the internal cells in the column matrix have

same functionality. In the back substitution, internal cells in the last column become

inactive since they do not compute any intermediate values.
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3.3 QRD for a 4x4 Matrix

In Figure 3.5, the round cells represent the 3-stage pipelined boundary cell and

the square cells are internal cells.To synchronize the data flow between boundary and

internal cells, a delay of two clocks is used in the vertical data flow i.e between two

consecutive rows. Since C and S parameters from the boundary cell are broadcast in

the same time steps to the internal cells of each row, the inputs to these columns are

passed in the same time step.

Figure 3.5: Data Flow in QR Using Pipelined Systolic Array Architecture
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Figure 3.6: 12x12 Systolic Array Architecture

In a 4x4 triangular array, when the first boundary cell (B11) receives the first

input a11 at the first time step t1, it computes the C and S in a three stage pipeline.

Therefore, the first C and S values are generated after 3 clock cycles. The R value

generated is stored in the boundary cell to be used for the next computation.

At the end of the third clock cycle t3, C and S values are propagated to the

internal cells I12, I13, I14, in the fourth time step. The other inputs to the internal

cell, (a12,a13,a14), are also passed at the fourth time step. The internal cells generate

the inputs to the next set of PEs in the next row. The boundary cell B22 receives the

input at fourth time step, thus generating the rotation parameters C and S at the

end of 7th time step.

The inputs to the internal cells I23 and I24 are delayed for 3 clock cycles to wait

for next set of C and S values. Once the C and S values are propagated from the

boundary cell B22, I23 and I24 calculate the next set of inputs for row 3. The boundary

cell B33 generates the outputs in the same way and internal cell I34 generates inputs

for the boundary cell B44. At the end of 4th input for the first boundary cell B11, the

R value stored in the PE is the final R value R11. In the similar way, at the end of

all computations, each PE stores the R values. The R values thus held in each PE

are the values of the upper triangular matrix R.
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Figure 3.7: Block Diagram of the Scalable QR Accelerator

3.4 Folded Architecture Overview

In this section, we describe the proposed folded architecture and the schedule pat-

tern used in the folded architecture. The block diagram of the proposed architecture

is shown in Figure 3.7. There are three different types of computation blocks: a) Type

I block: the triangular type, which consists of four boundary cells and six internal

cells, b) Type II block: rectangular part which consists of sixteen internal cells, and

c) Type III block: the column matrix part which consists of a column of four internal

cells. These three blocks form the basic blocks of the folded architecture. The three

compute blocks are connected to three memory blocks as shown in the Figure 3.7.

Thus, a 12x12 matrix can be formed with three Type I blocks, three Type II blocks

and three Type III blocks. The Type I block writes the C and S values to RAM I,

the Type II block reads the C and S values from RAM I. RAM II reads and writes

the Uin values to/from the Type II block. The RAM I is connected to Type III block

as well to read the C and S values. RAM III is connected to all the three blocks as

it stores the R values computed in each cell.
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3.4.1 Schedule

The schedule used in the design follows a pattern which makes it flexible to use

for any matrix size. The number of cycles for which a programming element is active

depends on the input matrix size. Based on the active time of the blocks, the schedule

for each of the RAM read and write also differ. The active time of the first boundary

cell of a Type I cell is equal to n+3 where n is the matrix size. For a 20x20 matrix,

the boundary cell is active for 23 cycles while for a 12x12 matrix, it is active for 15

cycles.

The minimum time required for a Type II block to wait to start a computation

after the boundary cell of Type I block computes C and S values is 15 cycles. This

time is required to synchronize the internal and boundary cell computations which

take different number of cycles for their computations. This includes the read and

write time of the C and S value to the memory RAM I. To elaborate, C and S values

generated in each row of a Type I block have a time difference of 5 cycles whereas the

time difference between two rows in a Type II block is 2 clock cycles. To maintain

synchronization between these two types of blocks, the minimum time for a Type II

block to start computation after a Type I block generates first set of outputs is 15

cycles.

A Type I block requires outputs from the last row of a Type II block to compute

R values for the rows which are greater than 4. The minimum clock cycles required

for a Type I block to wait for the inputs to be available after a Type II block is active

is 12 clock cycles. This is because, the first output generated from the fourth row of

a Type II block is 12 clock cycles after the Type II block is active.

In the schedule, the Type II blocks are active in a horizontal pattern i.e. all the

columns of a set of 4 rows are finished first before starting computations for the next
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Figure 3.8: Two Possible Schedules for Computing QRD on a 20x20 matrix

set of 4 rows. An alternative pattern which can be used is a zigzag pattern where the

Type II blocks are active in a vertical pattern. Figure 3.8 represents the schedules

of the two patterns. Both these patterns have been analyzed in the thesis and it has

been found that the schedule B with horizontal pattern is more optimized than the

schedule B with vertical pattern. It takes less clock cycles and less memory since

the wait time for the last Type I computation is less. Adding to this, this pattern

takes less resources as the C and S values of each set of rows can be overridden in

the consecutive operations. In the vertical pattern, all the C ans S values need to be

saved in the RAM for all the computation time as the last column uses all the C and

S values generated from the Type I blocks.

The Type III block follows the same schedule as the first Type II block of a row.

The C and S values read from RAM I are passed as inputs to both the blocks. The

only difference is that the Type III block is a column matrix and the matrix B′ matrix

values are generated earlier than the R values in Type II block.
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Figure 3.9: Schedule for Input Size 8x8

3.5 Schedules for Different Sized Matrices

3.5.1 Schedule for 8x8 Matrix

The schedule for a 8x8 matrix is explained in this section. 8x8 QR computation

requires two Type I blocks, one Type II block and two Type III blocks. Figure 3.9

represents the active time of each block.The computation starts with passing the first

four columns of matrix A as inputs at time 0 to the Type I block. The first boundary

cell in the Type I block takes 11 clock cycles to compute the R11 value. The 8 C

and S values from the boundary cell are passed to the next internal cell in the row

1 as well as to the RAM I. The RAM I stores the C and S values and use them in

computing R values in Type II cell.

The first C and S value is available to the Type II block at 15th clock cycle. At

15th clock cycle, the last four columns of 8x8 matrix are passed as inputs to the Type

II block. This block computes the R1,5 to R4,8 values. The R1,5 value is computed

at 22nd clock cycle. Once the R4,5 computation is started in the Type II block, the

Type I block can be reused again to compute the R5,5 value. When the Type II block
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is active, at the same time, Type III block is also active to compute the B’ values.To

compute the R5,5-R8,8 values, the Type I block is active from 27th to 33rd clock cycle.

As the Type I computations are completed and C and S values are calculated and

stored in the RAM I , the Type III block is reused again to compute the last 4 values

on B’. This block is active from 42nd to 45th clock cycle.

3.5.2 Schedule for a 12x12 Matrix

Next we describe the implementation of a 12x12 matrix on the folded architecture.

The 12x12 array can be divided into blocks as show in Figure 3.6. For the ease of

understanding, the Type I blocks are called as B1,B2,B3 and Type II blocks are

referred to as, I1,I2 and I3 as shown in Figure 3.6. Type III blocks are called I4,I5

and I6. To begin with, the first four columns of the 12x12 input matrix A are passed

as inputs to the Type I block B1 i,e., to the columns A1 to A4.

Since each boundary cell takes 3 clock cycles to compute the first C and S values,

the first boundary cell B11 takes 15 clock cycles to complete all the computations and

compute the final R11 value. The C and S values generated at each time step are

stored in a memory, RAM I at address 1-12. These values are used to calculate the

matrix R values for columns 5-8 and 9-12 in the Type II blocks I1 and I2.

As the first C and S values are generated from the Type I block and written to

the memory, they are read from the memory and passed to the first internal cell of

the Type II block I1 to compute the matrix R for columns 5-8. At the same time,

the inputs A5 to A8 are passed as inputs to the Type II block I1. Since each internal

block takes one-time step to calculate the U values, as described in section 3.3.2, the

first internal cell I15 takes 12 clock cycles to compute the R1,5 value. Parallelly, the

C and S values are passed as inputs to the Type III block I4 as well to calculate the

column matrix B′. Figure 3.10 represents the schedule for 12x12 matrix.
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When the R1,5 value is computed, the Type II block I2 can now be used to compute

the matrix R for columns 9-12. Parallelly, once the last row of the Type II block I1

generates the Uout values, the Type I block is active again to compute the matrix

R for rows 5-8. The C and S values generated at each time step are stored in the

RAM I at address space 21-28. As the Type II block I2 finishes the computations of

R1,9-R1,12 the same block as (I3) is used now to compute the R values for R5,9-R8,12.

The new C and S values generated in the second Type I computations (B2) are used

in this computation. For computing the R5,9-R5,12 values, Uout values computed in

the I2 are required as inputs. Hence these values are stored in memory unit RAM II.

When the new C and S values are read from RAM I and the Uout values are read

from RAM II, the Type II block (I3) computations begin. Similarly, Type III block

(I5) is active at the same time to compute the B’ values for the row 5-8. Once the Uout

values are generated from the last row of the Type II block, i,e., I8,9-I8,12, the Type

I block (B3) is active again to compute R9,9-R12,12. The C and S values generated

are passed to the Type III block (I6) to compute the B’ values for the rows 9-12.

Once the B′12 value is computed, the forward computations are marked finished in

the architecture. The final R values from each Type I and Type II blocks are stored

in another memory unit RAM III for back substitution.

3.5.3 Schedule for a 16x16 Matrix

In this section, schedule for 16x16 matrix is explained. Figure 3.11 represents the

active time of Type I, Type II and Type III blocks. The Type I block is active for 19

clock cycles computing the R1,1 value at the 19th clock cycle using the first column

of input matrix A. C and S values generated at each time step in the boundary cell

are stored in RAM I. At clock cycle 14, C and S values are read from RAM I and

passed to Type II block. At 15th clock cycle, the columns 5 to 8 of input matrix A
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Figure 3.10: Schedule for Input Size 12x12

are passed as inputs to the Type II block. At clock cycle 30, Type II block finishes

the computation of R1,5 to R4,8. The Type II block then starts the computation of

R1,9 to R4,12, reading the C and S values from RAM I. Consequently, Type II block

computes the R1,13 to R4,16 values in clock cycles 47-62.

During the computation of R4,5 to R4,8 values in Type II block, as the Uout values

are computed at the internal cells, they are passed to the Type I block to compute

the R5,5 to R8,8 values. The Type I block is active from 27th to 41th clock cycle. The

C and S values computed in this time period are stored in RAM I. As the Type II

block finishes the computations of R1,13 to R4,16, it reads the C and S values from

RAM I to compute the values R5,9 to R8,12 from 63rd to 74th clock cycle. From clock

cycle 75-86, R5,13 to R8,16 are computed in the Type II block.

From clock cycle 75-85, Type I block computes the R values R9,9 to R12,12 values.

After the Type II block computations of previous row are finished, the Type II block
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now computes the R values R9,13 to R12,16. It reads the inputs from RAM II which

stores the Uout values from Type II block of previous row. The final set of R values

are computed in the Type I block in clock period 101-107.

As the first Type II block of each row computes the R values, the Type III block

computes the B’ values parallely. Hence the B’ values are computed in the clock

periods 15-30, 63-74, and 89-96 for B′1 to B′4, B
′
5 to B′8 and B′9 to B′12. B′13 to B′16 are

computed in the clock period 116-119 after the final computations of Type I block.

This finishes all the computations in the forward path.

Figure 3.11: Schedule for Input Size 16x16

3.5.4 Schedule for a 20x20 Matrix

The schedule for a 20x20 matrix is explained in this section. Figure 3.12 represents

the active time of each block. The Type I block is active at time 0. The first column

of the input matrix A arrives at time step 0. For 20 clock cycles, the boundary cell
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of Type I block computes C and S values and passes them to the internal cells and to

RAM I. The last C and S value in the first row of Type I block is computed at 23rd

clock cycle since boundary cell takes 3 clock cycles for the computation. The R1,1

value is generated at 23rd clock cycle and R1,2-R1,4 are computed at 24th clock cycle.

Consequently, the R2,2-R4,4 values are computed and stored in the RAM III.

Type II block computations start at 17th clock cycle. C and S values are read

from RAM I at 16th clock cycle and the column matrix A5-A8 are passed as inputs

at 17th clock cycle. The Type II block is active from 17th clock cycle to 96th clock

cycle. During this time, it computes the R values R1,5 to R4,8. For the first four rows,

the Type II block takes 20 clock cycles to compute the R values. At 17th clock cycle,

Type II block starts the computation of R1,5 value and completes it at 36th clock

cycle. Then it starts the computation of R1,9-R4,12. The column matrices A9-A12 and

C and S values from RAM I are passed as inputs to Type II block at 37th clock cycle.

This repeats till 96th clock cycle till R1,13-R4,16 values are computed and stored in

RAM III.

At 29th clock cycle, the Type II block computes the Uout values which are passed

as inputs to the Type I block to compute R values from R5,5-R8,8. So the Type I block

can start the computation at 29th clock cycle. It takes 19 clock cycles to compute the

R5,5 value and hence the computation ends at 47th clock cycle. Parallelly, the C and

S values generated from the boundary cells are stored in RAM I.

To compute the R values R5,9-R8,12, the Type II block needs to wait to complete

the computation of the previous 4 rows. Hence, it starts at the 97th clock cycle. The

R5,9 value is computed at 112th clock cycle after which the Type II block now starts

the computation of R5,13 value. To compute the R5,13 to R8,16 values, the Type II

block requires Uin inputs from the previous Type II block. These values were stored

in the RAM II during the computation of R1,13 -R4,16. The Uin values are read from

31



Figure 3.12: Schedule for Input Size 20x20

RAM II and passed to Type II block at 97th clock cycle along with C and S values

from RAM I.

The Type I block is activated at 109th clock cycle to compute the values R9,9-

R12,12. As described above, the Type II block is active from 145th to 168th clock cycle

to compute the R9,13-R12,20 values.

To compute the R13,13 to R16,16 values, the Type I block is active from 157th clock

cycle to 167th clock cycle. As the C and S values are generated and stored in RAM

I, the Type II block is active from 182 to 189th clock cyles to compute the R values
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from R13,17 to R16,20. The final set of R values, R16,16 to R20,20 are computed from

194 to 200th clock cycle.

The Type III block is active parallelly when first Type II computation of each row

is active. The C and S values read at each row are passed as inputs to Type III block

as well. The B‘ column values are stored in RAM III to be used in back substitution

in backward path. The figure shows the active time of each blocks in the schedule for

20x20 input.

3.6 Memory Architecture

Recall that the scalable QR decomposition accelerator has a memory architecture

with three different memories to store the rotation parameters RAM I, the data

between two Type II blocks RAM II and the R values computed at each stage RAM

III. The memory sizes depend on the input matrix size and increases as the input size

increases.

RAM I is used to store the rotation parameters from the boundary cells. The

computations in the ith row require n-i+1 rotation parameters to be generated at the

boundary cell. For instance, for an 8x8 input matrix, the first boundary cell generates

8 sets of C and S parameters. The boundary cell in second row generates 7 sets of C

and S parameters. Since the computations are complex in nature, C is a real number

but S is a complex number. Hence each set of C and S parameters consists of three

values, Creal, Sreal and Scomplex. So a total of 3*(n-i+1) parameters needs to be saved

in the RAM I for each row. With the folded architecture, there is an added advantage

that all the Type II cells of each row are computed first before computing the R values

in Type II cells in the next set of rows. Hence, as the clock cycles advance, the C

and S values stored in the previous rows can be overridden once the parameters are

no longer used.
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RAM II is used to store the Uout values from the last row of internal cells of Type

II cells. These are passed as inputs to the Type II cells in the next row. For Type

II cells connected vertically, Uout needs to be saved to compute the R values after

all the Type II computations of previous row are completed. The number of values

stored depends on the size of input matrix. The number of Uout values at each row

is equal to the row number. For example, in a 20x20 matrix, Uout values are stored

for Type II cells computing R5,9 to R8,12, R5,13 to R8,16, R5,17 to R8,20. Therefore,

each Type II cell computation requires 16 inputs, and since each Type II cell has four

internal cells, 16x4x3 sets of values are stored in RAM II. For the next set of Type

II computations, i.e., R9,13 to R12,16, R9,17 to R12,20, each Type II cell requires 12

inputs and hence 12x4x2 sets of values are stored. For the consequent computations,

8x4x1 set of values are stored. As the clock cycles advance, the RAM II memory can

be overwritten to store subsequent Uout values, as the previously used values are no

longer required. Hence, RAM II of size 528B is required to store the Uin values when

input matrix size is 20x20.

In the QR accelerator, matrix R is computed and used for back substitution.

Hence, at each stage, the values of matrix R from Type I and Type II cells are stored

in RAM III. As the matrix size increases, the number of R values to store increases.

For an nxn matrix, RAM III requires N(N+1)/2 values to be stored. Since, the R

values are complex, the total number of values stored are n(n+1). These R values

are read in back substitution to compute the column matrix X.
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Chapter 4

BACK SUBSTITUTION ACCELERATOR

In the previous chapter, we have described a folded architecture for scalable QRD.

In this architecture, the matrix R and the matrix B’ are computed and stored in the

memory unit RAM III. In back substitution, these two matrices are used to compute

the column matrix X, where RX = B’. In this chapter, we describe the extensions

that are needed to also compute back substitution.

The boundary and internal cell, the PEs which constitute the Type I and Type II

blocks are now designed with added functionality for back substitution. The direction

of computation is governed by an enable signal. The X values are computed in the

boundary cells of Type I block. The internal cells of Type I and Type II block compute

the intermediate values required to compute the X values.

4.1 Programming Elements

The two basic programming elements used in this design are still the boundary cell

and internal cell. Recall that the boundary cells compute the rotational parameters

and the internal cells compute the intermediate values using MAC operations in the

forward computation. The same cells are now used in back substitution to compute

the X values. The same boundary cell is used to compute X values in back substitu-

tion. A control signal is used to control the forward and backward computations in

the cell. The following are the equations used in the back substitution:

X ← B′

R
(4.1)

In back substitution, the boundary cell computes the X values from inputs Bin,

35



the input from column matrix B′ and matrix R. The R value which was computed in

the forward path is fetched from the memory during back substitution. The internal

cell is used to compute intermediate values in the backward path in back substitution.

The following are the equations used in the back substitution:

R′i,j ← B′i −Ri,jXi (4.2)

In the back substitution, the internal cell computes the Rout values from inputs

Bin, Xin and R. The Xin value is fetched from memory which is computed in the

boundary cell of the column where the internal cell is present. All internal cells in

the same column use the same Xin values. Bin values are passed from other internal

cells computed in the previous time step. The Figure 4.1 represents the data flow in

the back substitution accelerator.

Figure 4.1: Data Flow in Back Substitution

4.2 Back Substitution Implementation

The back substitution implementation uses the same architecture as the foldable

QR accelerator discussed in the previous chapter except that the direction of data flow
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is reversed and the boundary and internal cells now have an additional back substi-

tution functionality. In the algorithm used in back substitution, we use a bottom-up

approach in the, i.e, Xn value is computed first followed by Xn−1, Xn−2 and so on.

The computation of X1 value marks the completion of linear equation solver and both

the forward and backward computation of the scalable architecture.

Figure 4.2 describes the block diagram of the proposed architecture. After the B′n

value is computed in the forward path, the en bs signal is enabled. The Rn,n value

is read from the memory RAM III and passed as input to the last boundary cell of

the Type I block. The Xn value thus computed in the boundary cell is propagated

as input to all the other internal cells of the column in Type I block. Parallelly, the

B’ values from Type III block and R values from RAM III block are passed as inputs

to compute the intermediate values. These values are passed as input to the next

boundary cell in the Type I block to compute the Xn−1 value. The X values thus

computed are passed to another memory RAM IV which stores the X values to pass

to the Type II cell to compute the intermediate values for the rest of the n-4 rows

where nxn is the input matrix size. In this way, the X values are computed in each

boundary cell and stored in the memory.

In back substitution, as the Type III cell finishes the computations in QRD accel-

erator, the values are stored in the RAM III memory. To start the back substitution

computation, the B’ values are read from the memory and passed to the Type I block.

The R values are read from RAM III and passed as input to the last column of PEs

in the Type I block. Every two clock cycles, the boundary cell computes the X values

and stores them in RAM IV. Once the X value is computed in the last boundary cell,

it is stored in RAM IV and read in subsequent clock cycles to pass as input to the

Type II block.

In back substitution, the Type II block computes the intermediate values at every
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Figure 4.2: Block Diagram of Back Substitution Accelerator

clock cycle. Here, the computation starts from the last column and ends in the first

column. The first column outputs are passed as inputs to the Type I or Type II

blocks. Since there is no vertical dependency between two Type II cells, there is no

need of RAM II in back substitution.

Once all the X values are computed, the back substitution is completed. All the

X values are stored in RAM IV. The memory required for RAM IV depends on the

size of the input matrix. For a matrix of size nxn, RAM IV needs to store n values.

4.3 Scalable Architecture for Back Substitution

This section gives a detailed description of schedule used in back substitution for

different matrix sizes. The schedule used in the design follows a pattern which makes

it flexible to use for any matrix size and it varies for each matrix size. The active

time of each cell is one clock cycle since each cell boundary cell

4.4 Back Substitution for 4x4 Matrix

In this section, the back-substitution method is illustrated using a 4x4 matrix.

For a 4x4 matrix as input, the foldable architecture uses only one Type I block and
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one Type III block. At clock period 25, the Type III block finishes the forward

computation and generates Bin input for the last boundary cell in the Type I block.

This is because, the back substitution algorithm follows a bottom-up approach.The

first X values X4 is computed at 27th clock cycle. This X value is propagated to the

internal cells of the fourth column in the same time step.

The B’ outputs from the Type III block are passed in the same clock cycle to

these internal cells. Each internal cell calculates the intermediate value, and passes

them as input to the next cell to the left. At clock cycle 29, the boundary cell in the

third row computes the X3 value and passes it as input to the internal cells in third

row. These internal cells take the inputs from the boundary cell along with the inputs

from the internal cells on the right to compute intermediate values. In a similar way,

the boundary cell in second row computes the X2 value at 31st clock cycle and the

boundary cell in first row computes the X1 value at 33rd row. At 33rd clock cycle, all

the X values are computed and the back substitution is completed.

4.5 Back Substitution for 8x8, 12x12, 16x16 matrices

In this section, the back substitution schedule for 8x8, 12x12 and 16x16 matrices

is presented. For an input matrix of size 8x8, the forward computation ends at 54th

clock cycle. The schedule is shown in Figure 4.3. The boundary cell reads the B’

input from RAM III and R8,8 value from RAM III to compute the X8 value. This

value is passed as input to other internal cells in the 4th column of Type I block. The

third boundary cell in Type I block then computes the X7 value from intermediate

output computed in internal cell and R7,7 value read from RAM III. The Type I

computations end at 60th clock cycle and the X values are stored in RAM IV. From

57th to 63rd clock cycle, Type II block reads the X values from RAM IV and computes

the intermediate values. These are passed to the Type I cell for computing X4 to X1
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values in 64th tp 70th clock cycle. In this way, the X values are computed in back

substitution for an 8x8 matrix.

Figure 4.3: Schedule of Type I and Type II Blocks in Back Substitution for Input
Size 12x12 and 8x8

For an input matrix of 12x12, the computations are similar to the 8x8 matrix.

The corresponding schedule is presented in Figure 4.3. Type I block starts at 81st

clock cycle to compute X12 to X9 values. These are stored in RAM IV. Type II block

then computes the intermediate values to pass as inputs to Type I in 84th to 90th

clock cycle. Type I block then computes X8 to X5 values in 91st to 97th clock cycles.

Type II block reads the X values from RAM IV and computes the intermediate values

from 95th to 102nd clock cycles. Type I block then computes the X4 to X1 values in

103rd to 109th clock cycle. Back substitution finishes at 109th clock cycle for a 12x12

matrix.

For an input matrix of size 16x16, the schedule for back substitution is presented

in Figure 4.4. Type I block starts at 128th clock cycle to compute X16 to X13 values.

These are stored in RAM IV. Type II block then computes the intermediate values

to pass as inputs to Type I in 131st to 137th clock cycle. Type I block then computes

X12 to X9 values in 138th to 144th clock cycles. Type II block reads the X values

from RAM IV and computes the intermediate values from 136th to 149th clock cycles.

Type I block then computes the X8 to X5 values in 150th to 156th clock cycle. Type
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Figure 4.4: Schedule of Type I and Type II Blocks in Back Substitution for Input
Size 16x16

II block reads the X values from RAM IV and computes the intermediate values from

148th to 168th clock cycles. Type I block then computes the X4 to X1 values in 169th

to 175th clock cycle. Back substitution finishes at 175th clock cycle for a 16x16 matrix.

4.6 Back Substitution for 20x20 matrix

In this section, the back-substitution method for a 20x20 matrix is described in

details. Figure 4.5 represents the active time of each block during back substitution.

In a 20x20 matrix, the forward computation is completed at clock cycle 220. B′20,20

value is computed in clock cycle 220 and passed as input to the Type I block. R20,20

value is read from RAM III in the clock cycle 220. The boundary cell B4 computed

the X20 value at 221st clock cycle. This value is passed as input to other internal cell

in column 4 of Type I block as well as to write to memory RAM IV. The internal

cells compute the intermediate values at 222nd clock cycle and pass the output to

the next cells connected to the left. The boundary cell in row 3 of the Type I cell

computes the X19 value and passes it to the internal cells in the 3rd column. Using

this X value and the inputs from the internal cells in 4th column, they compute the

intermediate values and pass them to the cells on the left. The boundary cell in row
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2 of the Type I cell computes the X18 value at 225th clock cycle and the boundary

cell in row 1 computes the X17 value at 227th clock cycle.

Figure 4.5: Schedule of Type I and Type II Blocks in Back Substitution for Input
Size 20x20

The Type II block is used to compute intermediate values to pass to Type I cell

to compute the X16 −X13 values. As the X20 value is written to RAM IV, it is read

as input to the Type II cell’s last internal column cells I16, I12, I8, I4. In the next

clock cycle, the X19 is passed as input to the 3rd column of Type II block along with

R13,19 to R16,19 values and output from the internal cells in column 4. The Type II

block completes the computation at 230th clock cycle and passes the outputs of 1st

column of Type II block’s internal cell to the Type I block. The next computations

of the Type II block start at 229th clock cycle. A minimum delay of 5 clock cycles is

required between two Type II computations for synchronization.

At 230th clock cycle, the Type I block computes the X16 value from inputs from

Type II block and the R16,16 value. Using the same pattern, X16 − X13 values are

generated and stored in RAM IV. The Type II block generates the intermediate values
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following the schedule as shown in the figure. Finally, the Type I block generates the

X1 value at 294th clock cycle marking the end of back substitution and linear equation

solver for 20x20 matrix.
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Chapter 5

RESULTS

In this chapter, the implementation results for the scalable QRD accelerator and

back substitution accelerator are presented. We evaluate the architecture in terms

of hardware utilization, timing summary and the error in dB for X and R values in

comparison with the MATLAB results.

5.1 Architecture Configuration

The proposed folded architecture for scalable QRD+BS is built in MATLAB

Simulink 2018b. Simulink library is used to build the programming elements, namely,

the boundary, and the internal cell. The HDL coder library in Simulink is used to

build the architecture. A separate library called QR BW block is created where the

Type I, Type II and Type III blocks are built and saved. Three different mem-

ory blocks, the control circuitry, the selection blocks are saved in the QR BW block

library.

A MATLAB testbench is built to drive the inputs and the scheduler. Additionally,

the testbench generates the QR and linear equation solver matrices in software to

compare with the Simulink results. This matrix is used as a reference to calculate the

error in the generated results. The input matrix A is obtained from the correlation

matrix output of receiver data generated in an inference mitigation system. All inputs

are complex and represented by 40 bit signed fixed point with 38 fractional bits.
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5.2 Precision Analysis

In this thesis, a signed fixed point data type is used to represent the data. With

the help of precision tool designed by Shunyao Wu, the precision for this design has

been calculated for an error constraint of -40dB. The MATLAB floating point values

are taken as reference to calculate the error.

A software model of the architecture has been designed. The software model

consists of the boundary and internal cells functionality designed in MATLAB code.

These blocks are used in a loop to compute the matrix R. To calculate the right

precision, the error between MATLAB and the Software model of the QR accelerator

is calculate by sweeping the decimal point in the fixed point representation. The

precision with the configuration which has the lowest error is taken as the final preci-

sion. Different data widths have also been tested and 40 bits has been the optimum

number of bits required to represent the data.

Based on the simulation results, a precision of signed fixed point of length 40 bits

is used for the ports. A fraction part of 38 bits is used in the data type with 1 bit

as integer bit and 1 bit as signed bit. In the boundary cell, the reciprocal block uses

a precision of 50 bits with 14 bits as fractional bits. Such a configuration ensured a

-40dB error range for the R values in QR computation and X values in linear system

of equations solver.

5.3 Simulation Results of the QR Accelerator

The timing results are presented in this section for matrix sizes 4x4, 8x8, 12x12,

16x16 and 20x20. For each matrix size, the time taken for the R computation is

presented along with the error performance.
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Matrix Size Real Complex

8x8 -59.81 dB -56.59 dB

12x12 -58.66 dB -54.75 dB

16x16 -55.50 dB -52.50 dB

20x20 -52.62 dB -47.89 dB

Table 5.1: Error in dB for Matrix R Computed Using QRD Accelerator for Different
Matrix Sizes

5.3.1 Timing Results for Matrix Size 8x8, 12x12, 16x16, and 20x20

For the 8x8 matrix, the simulation takes 33 clock cycles. The R results are ob-

tained at the end of each Type I and Type II computation and saved to the memory.

The Type I cell takes 11 clock cycles in the first instantiation and 7 clock cycles in the

second instantiation. The Type II cell takes 8 clock cycles to compute the R values.

For the 12x12 matrix, the forward computation takes 80 clock cycles to compute

the upper triangular matrix. The folded architecture utilizes the Type I and Type

III block thrice. Type II block is instantiated thrice for computing the R values. The

first instantiation of Type I block takes 15 clock cycles, second instantiation takes 11

clock cycles and third instantiation takes 7 clock cycles.

For the 16x16 matrix, the forward computation takes 127 clock cycles to compute

the matrix R. In the folded architecture, the Type I and Type III cells are instantiated

four times and the Type II cell is instantiated six times. When compared with a flat

architecture, the resource utilization in the foldable accelerator is minimized by 4x

times with regard to Type I and Type III cells and 6x times to Type II cell.

For the 20x20 matrix, the forward computation takes 220 clock cycles to compute

the R values.
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R Matrix Scalable Foldable Architecture MATLAB

R17,17 0.000680 0.000680

R17,18 0.000248 + 0.000329i 0.000248 + 0.000329i

R17,19 -0.000273 - 5.351431e-05i -0.000273 - 5.351016e-05i

R17,20 -3.514508e-05 - 0.000235i -3.515331e-05 - 0.000235i

R18,18 0.000786 0.000786

R18,19 -0.000361 + 0.000214i -0.000361 + 0.000214i

R18,20 6.735430e-05 - 0.000409i 6.735457e-05 - 0.000409i

R19,19 0.000581 0.000581

R19,20 -5.801963e-05 + 4.599475e-05i -5.802178e-05 + 4.598813e-05i

R20,20 0.000634 0.000634

Table 5.2: R Values for 20x20 Matrix Obtained by fixed point Simulink implemen-
tation of proposed architecture and floating point MATLAB implementation

5.3.2 Error Performance

Table 5.1 shows the difference between the fixed point Simulink results and the

floating point MATLAB results (reference) for the different matrix sizes. The error

performance is represented by 10log10E, where E is the normalized absolute error

between the Simulink and MATLAB results. From these results, we see that the

error is very small.

Table 5.2 shows the last four rows of matrix R computed in the folded architecture.

The entries are almost identical, further demonstrating that the choice of bit widths

was sufficient to guarantee superior algorithm performance.

5.4 Simulation results of the Back Substitution accelerator

The simulation results for back substitution of matrix sizes 8x8, 12x12, 16x16 and

20x20 are presented in this section. The time taken for computing the matrix X in

back substitution are presented along with the error performance.
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Matrix Size Real Complex

8x8 -36.84 dB -31.59 dB

12x12 -36.24 dB -31.72 dB

16x16 -36.51 dB -32.11 dB

20x20 -36.88 dB -33.59 dB

Table 5.3: Error in dB for X Values Computed Using Back Substitution Accelerator
for Different Matrix Sizes

In backward computation, X values are computed from the R values obtained by

QRD. For an 8x8 matrix, 16 clock cycles are taken to compute the eight X values. It

takes 28 clock cycles to compute the X values for an input size of 12x12. For a 16x16

matrix, 47 clock cycles are taken to compute the X values. For a 20x20 matrix, 73

clock cycles are taken to compute the X values.

Table 5.3 presents the error performance for each input matrix size. We see that

while the errors are still very low, they are larger than that of QRD. This is to

be expected since the errors in QRD are propagated to the back substitution part.

Table 5.4 lists the X values computed in the folded architecture compared to the

MATLAB results. We see that the X values generated from the flexible QRD and

back substitution accelerator are almost equal to the floating point values generated

in MATLAB.

5.5 Hardware Implementation

The flexible QRD accelerator and back substitution for a 4x4 design has been

converted to hardware description and targeted to an FPGA. This design has been

targeted to the Xilinx’s Zynq Ultrascale+ evaluation board ZCU102. A design fre-

quency of 50 MHz has been used for the design. The design is implemented on Vivado

Design Suite 2018.3.
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X Scalable Foldable Architecture MATLAB

X1 6.878399e-07 + 2.695625e-06i 7.310825e-07 + 2.715244e-06i

X2 3.417931e-05 - 8.625340e-05i 3.431856e-05 - 8.620187e-05i

X3 2.922260e-05 - 6.648626e-05i 2.935061e-05 - 6.645610e-05i

X4 -1.497078e-05 + 5.040541e-05i -1.490641e-05 + 5.043102e-05i

X5 7.387381e-05 + 1.049347e-05i 7.391894e-05 + 1.051470e-05i

X6 0.000153 - 0.000135i 0.000153 - 0.000135i

X7 0.000217 - 0.000164i 0.000218 - 0.000164i

X8 4.926616e-06 - 9.052360e-05i 5.000186e-06 - 9.051137e-05i

X9 8.415263e-05 + 6.147030e-05i 8.419702e-05 + 6.152077e-05i

X10 0.000229 - 0.000103i 0.000229 - 0.000103i

X11 0.000316 - 5.126465e-05i 0.000316 - 5.116090e-05i

X12 0.000248 - 9.707633e-05i 0.000248 - 9.702033e-05i

X13 0.000166 - 7.486414e-07i 0.000166 - 6.688314e-07i

X14 0.000333 + 4.998104e-05i 0.000333 + 5.009759e-05i

X15 0.000421 - 2.105430e-05i 0.000421 - 2.095375e-05i

X16 0.000211 - 8.725915e-05i 0.000211 - 8.721449e-05i

X17 0.000253 + 8.163505e-05i 0.000253 + 8.172965e-05i

X18 0.000306 + 0.000102i 0.000306 + 0.000102i

X19 0.000377 + 0.000148i 0.000377 + 0.000148i

X20 0.000322 - 1.690412e-06i 0.000322 - 1.639833e-06i

Table 5.4: X Values for 20x20 Matrix
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5.5.1 Programming Elements

The synthesis results of the programming elements (PE) are presented in this

section. The boundary and internal cell which are the building blocks of the Type I,

Type II and Type III blocks are implemented individually. Table 5.5 represents the

resource utilization of these two types of cells.

Resources Boundary Cell Internal Cell

LUT 4109(1.5%) 3222(1.18%)

LUTRAM 242(0.17%) 80(0.06%)

FF 1534(0.28%) 2551(0.47%)

DSP 21(0.83%) 90(3.57%)

Table 5.5: Resource Utilization of Boundary and Internal Cells

The PEs operate at 50 MHz clock frequency with 1.462 ns positive slack in bound-

ary cell and 15.098 ns positive slack in internal cell. The reciprocal and square root

blocks generated in Simulink have a very high clock period. Therefore, these blocks

have been modified to support a pipelined architecture which takes 3 clock cycles

to compute the operations in the boundary cell. In collaboration with Yang Li, the

number of iterations in the hardware reciprocal have been modified without effecting

the error performance. This helped in achieving the 50MHz operating frequency.

5.5.2 4x4 Implementation

This section presents the synthesis and timing results of the 4x4 implementation.

The boundary and internal cells implemented in the previous section are used as

building blocks for designing the 4x4 implementation. The 4x4 implementation op-

erates at 50 MHz with a positive slack of 1.318 ns. Table 5.6 represents the synthesis

results of 4x4 implementation.
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Resources 4x4 Implementation

LUT 33156(11.11%)

LUTRAM 1361(0.92%)

FF 13532(2.27%)

DSP 594(20.29%)

Table 5.6: Resource Utilization of 4x4 Implementation

5.5.3 Implementation of Type I , Type II and Type III blocks

This section represents the synthesis results of the building blocks of the design,

the Type I , Type II and Type III cells. These blocks use 32.68% of the LUTs, 3.82%

of the LUTRAMs, 9.39% of the FFs and 80.86% of the DSPs of the ZCU102. These

three blocks can be used to compute matrix R for any matrix size. Table 5.7 shows

the resource utilization of each of the blocks.

Resources Type I Type II Type III

LUT 33156(11.11%) 49639(18.11%) 9495(3.46%)

LUTRAM 1361(0.92%) 3450(2.4%) 726(0.5%)

FF 13532(2.27%) 32344(5.9%) 6680(1.22%)

DSP 594(20.29%) 1280(50.79%) 240(9.52%)

Table 5.7: Resource Utilization of Type I, Type II, and Type III Blocks

The Type I cell operates at the longest clock period of 20 ns with 1.318 ns of

positive set up slack time. This is the slowest block of the design since it has the

boundary cell which is computationally complex.
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Figure 5.1: Comparision of Foldable Architecture for Different Matrix Sizes With
Flat Architecture

5.5.4 Analysis of Resource Utilization

The folded architecture is designed to minimize the FPGA resource utilization

for QR decomposition and linear equation solver of large matrices. The proposed

architecture offers the flexibility to compute the matrix R and matrix X for any

matrix size. Figure 5.1 shows the resource utilization of the foldable architecture for

each matrix size in comparison with a flat architecture. The red line increases the

point of 100% resource utilization of the ZCU102 FPGA.

It can be observed from Figure 5.1 that matrix size of 12 and greater has a

resource utilization of greater than 100%. This shows that the flat architecture is not

feasible for computing matrix R and matrix X using a single FPGA chip. The folded

architecture makes optimum usage of resources supporting flexibility and scalability

in matrix computation.
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5.5.5 Memory Size Requirements

In this section we present the memory requirements of the proposed folded archi-

tecture. Table 5.8 lists the number of values stored in each memory unit for a matrix

of size nxn. Specifically, RAM I stores the C and S values of first 8 rows. RAM

II stores the data passed between two internal cells connected vertically. Hence it

has to store the Uout values for the first 8 rows. Matrix sizes of 4x4 and 8x8 do not

require vertical data flow between two Type II blocks and thus their RAM II memory

requirement is zero. RAM III stores the R values computed in each PE. Therefore,

it requires a memory to store n*(n+1) values. Finally RAM IV stores n values of

column X. Thus the total number of values stored in the four memories for a matrix

size of nxn is given by equation 5.1.

(5n2 − 38n+ 172) (5.1)

Memory Number of values stored

RAMI 24n - 84

RAMII 4(n2 − 16n+ 64)

RAMIII n2 + n

RAMIV n

Table 5.8: Number of Values Stored in Each Memory for a Matrix of Size nxn

Table 5.9 lists the memory requirements of all matrix sizes supported by this

architecture. The largest matrix size that has been considered is 20x20 and thus the

folded architecture required a total of 7KB of memory.
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Memory 4x4 8x8 12x12 16x16 20x20

RAMI 0.15KB 0.54KB 1.02KB 1.5KB 1.98KB

RAMII 0KB 0KB 0.32KB 0.96KB 2.64KB

RAMIII 0.14KB 0.44KB 0.84KB 1.52KB 2.2KB

RAMIV 0.04KB 0.08KB 0.12KB 0.16KB 0.20KB

Table 5.9: Memory Required for Matrices of Different Sizes

5.5.6 Maximum Matrix Size Supported

We have seen that the flexible QRD and back substitution accelerator supports

any matrix size which is multiple of four. The constraint to support any matrix size

is the maximum size of memory required for each matrix size. RAM II in the design

is the memory which stores maximum number of intermediate values in the design

and this increases as the matrix size increase. This is because, RAM II stores the

intermediate outputs between Type II blocks and number of Type II blocks increase

with increase in matrix size. The maximum memory size supported on ZCU102

FPGA is 4104 KB, which limits the maximum matrix size that can be supported

by this architecture. The total memory required to store these values is given by

5 ∗ (5n2 − 38n + 172) since each value requires 5B. Hence the maximum matrix size

supported by the proposed architecture is 412x412.
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Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Summary

In this thesis, a flexible and scalable implementation of QR Decomposition and

back substitution is presented. It is shown that this architecture can be used to

compute matrix R in QR and back substitution to compute X for any matrix size

which is a multiple of 4.

Givens rotation is used to implement QRD and back substitution. It is a systolic

array architecture consisting of two types of programming elements namely, boundary

cell and internal cell. Boundary cell is a compute intensive block consisting of modules

to compute square root and reciprocal operations. In order to decrease the latency,

a pipelined architecture for boundary cell is implemented. It takes 3 clock cycles to

compute the rotations in boundary cell with this optimization.

The proposed folded architecture is composed of three types of blocks, the Type

I , Type II and Type III. Type I block consists of a 4x4 triangular matrix with four

boundary cells and six internal cells. Type II block is a 4x4 rectangular matrix of

sixteen internal cells and Type III block is a 4x1 column matrix of four internal cells

which computes the Q−1B , where Q is the orthogonal matrix in QR and B is the

column input in AX=B.

A scheduler is designed which controls the programming blocks to support any

matrix size input. It controls the memory read and writes from different blocks. The

schedule pattern for each matrix size is presented in the thesis. This helps derive the

active time of each of the basic computation blocks.
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The flexible QRD accelerator requires four different types of memory to store

intermediate values in the folded architecture. The memory size required for the

flexible QR accelerator depends on the maximum size of the input matrix. In this

work, a maximum size of 20x20 is used as input. The memory required to support

20x20 computations is 1.98KB for RAM I , 2.64 KB for RAM II, 2.2KB for RAM III

and 200B for RAM IV.

It is shown that the flexible QRD architecture is used to compute back substitution

using the same programming elements of QR accelerator. A control signal is used

to control the data flow direction in QR and back substitution. This is illustrated

using matrix sizes 4x4, 8x8, 12x12, 16x16 and 20x20. The scheduler and memory

sizes required in the back substitution is also presented.

The flexible QRD and back substitution accelerator can compute QRD and back

substitution for any matrix size using the same architecture, thereby improving the

resource utilization significantly when compared to implementing a flat architecture

for the same input matrix size. Such a design can be easily implemented on a single

FPGA unlike the flat architecture. The same hardware is used in both forward and

backward computations controlled by an enable signal. Thus the proposed folded

architecture is useful for applications involving multiple matrix sizes where hardware

resources are constrained.

6.2 Future work

The work presented in this thesis is an initial exploration to provide a unified

accelerator for both QR decomposition and back substitution for any matrix size.

• This work presents the synthesis results of flexible QRD and back substitution

accelerator targeted on a Xilinx Zynq Utlrascale+ FPGA. It can be implemented

on the hardware to compute QRD in real time.
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• The input matrix size currently supported are multiples of four such as 4x4,

8x8, 12x12, etc. This can be extended to support any input matrix size.

• The programming elements in this architecture support the QRD and back sub-

stitution. This can be made more flexible by supporting other matrix decom-

positon such as LU decomposition, Cholesky decomposition. The functionality

for different algorithms can be added to the programming elements and enabled

using the scheduler.

• As the matrix size increases, the usage of Type II blocks in the computation

increases quadratically. To address this, for higher matrix sizes, the architecture

can be modified by adding two Type II blocks. The scheduler would then need

to be updated. Such a design would also lead to increase in memory as well.

.
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