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ABSTRACT

Lattice-based Cryptography is an up and coming field of cryptography that utilizes

the difficulty of lattice problems to design lattice-based cryptosystems that are resistant

to quantum attacks and applicable to Fully Homomorphic Encryption schemes (FHE).

In this thesis, the parallelization of the Residue Number System (RNS) and algorithmic

efficiency of the Number Theoretic Transform (NTT) are combined to tackle the most

significant bottleneck of polynomial ring multiplication with the hardware design of

an optimized RNS-based NTT polynomial multiplier. The design utilizes Negative

Wrapped Convolution, the NTT, RNS Montgomery reduction with Bajard and Shenoy

extensions, and optimized modular 32-bit channel arithmetic for nine RNS channels

to accomplish an RNS polynomial multiplication. In addition to a full software

implementation of the whole system, a pipelined and optimized RNS-based NTT unit

with 4 RNS butterflies is implemented on the Xilinx Artix-7 FPGA(xc7a200tlffg1156-

2L) for size and delay estimates. The hardware implementation achieves an operating

frequency of 47.043 MHz and utilizes 13239 LUT’s, 4010 FF’s, and 330 DSP blocks,

allowing for multiple simultaneously operating NTT units depending on FGPA size

constraints.
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DEFINITIONS

Variable Name

M System modulus
n Input polynomial length
w Modulus bitwidth
wch RNS channel bitwidth
ZnM Length n vector of integers mod M
ωn n-th root of unity
k Number of RNS channels
D Dynamic range of RNS base
X̂ Variables in base 2

XRNS RNS representation of X
xi RNS value of X for channel i
Di D divided by moduli i
|X|i X mod channel i
X−1i Modular inverse of Xi with respect to channel i
Wi RNS conversion weight for channel i
d Propagation delay
f Operating frequency
` FIFO Length
B Buffer length

Table 1. Table of Definitions.
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Chapter 1

INTRODUCTION

Cryptography is the field of study concerning how to send secure messages through

an insecure channel. In today’s world, the need to securely send information for the

sake of business, banking, personal communication, or any internet communication is

unparalleled and requires the application of cryptography schemes that have extremely

fast, resource-efficient, and secure encryption and decryption operations. With the

recent discoveries of quantum-computing attacks that present security risks to classical

cryptography, established cryptographic schemes will soon need to be replaced with

new schemes that are future-proofed in terms of both attack resilience and perfor-

mance needs. One paramount area of cryptographic research that is anticipated by

researchers to have both the benefits of future-proof security and speed is Lattice-based

Cryptography.

Encrypt Decrypt
Insecure 
Channel

Ciphertext

Plaintext Plaintext

Figure 1. Cryptography Model showing encryption and decryption of data on both
ends of an insecure channel.

Lattice-based Cryptography is a branch of cryptography which utilizes the mathe-

matics of lattices to provide security for a cryptographic scheme. The core benefit of
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Lattice-based Cryptography is that lattice problem hardness enables cryptographic

schemes to be resistant to quantum attacks. Additionally, lattice-based cryptosystem

algorithms are relatively simple and able to be run in parallel due to their dependency

on operations on rings of integers for certain cryptosystems. Often paired with lattice-

based cryptosystems is Fully Homomorphic Encryption, which is an encryption that

enables arbitrary calculations on encrypted data while maintaining correct intermedi-

ate results without decrypting the data to plaintext. Both arenas are currently in the

research spotlight. If these areas of cryptography are to be realized and implemented

in greater scale in the future, their time-critical elements need to be understood and

accelerated. Modular polynomial multiplication is one of the most critical modules in

Lattice-based Cryptography and Fully Homomorphic encryption so this thesis focuses

on an efficient design of a RNS-based NTT polynomial multiplier.

1.1 Problem Statement and Space for Hardware Optimizations

As determined by a host of Lattice-based Cryptography hardware acceleration

papers and general survey papers ([1], [2], [3],[4], [5], [6]), there are two primary bottle-

necks of lattice-based cryptographic schemes: Modular polynomial multiplication and

Gaussian sampling. Lattice-based Cryptography algorithms rely on massive numbers

of polynomial multiplications to encode and decode polynomial plaintext/ciphertext

using key values. These keys then rely on a large number of Gaussian samples because

they are required to be random polynomials. Together they make up the two areas of

hardware optimization currently seen in the field. A deeper review of the two primary

areas of optimization has been provided in Chapter 2.

There is a diverse range of devices that will potentially be using Lattice-based
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Cryptography and they will require high performance or resource constrained com-

putation that can’t be obtained with a general-purpose processor. The problem of

polynomial multiplication is chosen because it is one of the most time critical elements

that can benefit from hardware acceleration. The goal of this thesis is to design a

hardware-optimized Residue Number System-based (RNS) Number Theoretic Trans-

form (NTT) polynomial multiplier for application in Lattice-based Cryptography. An

NTT-based multiplication method is chosen for its flexibility, lowest computational

complexity, simplified extensions into hardware, and established foothold in existing

literature. An RNS dataflow is then adopted because of the speed increase found with

a parallel channel system and its natural extension into parallel hardware.

1.2 Related Work

The first notable hardware papers for Lattice based cryptography comes from

Göttert [1] and Pöppelmann [7] [8], which start pinpointing the necessary building

blocks for lattice hardware and begin to make a flexible accelerator given the partially

defined parameter set of lattice cryptography at the time. Howe introduces an

area-optimized FPGA design for the Ring Learning with Errors scheme in [9]. The

Sapphire co-processor [10] was also introduced which is a configurable crypto-processor

focused on lattice-based cryptography. Looking at papers that assisted in hardware

design, work in Lattice-based Cryptography also yielded a Haskell library for lattice

constructions [11], released by Peikert and Crockett with the intention of improving

testing and prototyping. A review of the history and direction of lattice cryptography

can also be seen in [12] by Peikert.

Considering FHE hardware accelerators, there are several existing FPGA accel-
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erators for Homomorphic encryption. A R-LWE and SHE polynomial multiplier

was explored in [13]. Reconfigurable hardware for FHE was explored in [14] and by

Pöppelmann [15]. An FHE co-processor was designed in [16]. [17] created domain

specific accelerators for FHE. Most recently, [18] made an FPGA based hardware

accelerator for R-LWE FHE. The introduction of HEAWS [19], an FHE accelerator

which utilizes RNS and NTT, was also seen recently. In [16], a co-processor that

accelerates a Chinese Remainder Transform, ring addition, ring subtraction, and ring

multiplication is designed and obtains several orders of magnitude acceleration over

CPU runtime. An SHE residue polynomial multiplier was designed in [20]. It uses an

accelerated RNS variant of negative wrapped convolution and is designed for flexibility.

It also features a twiddle factor generator.

Specific to the problem under study, the following papers on RNS and NTT

polynomial multipliers are recently published and relevant to work being built on.

RNS is used in [20] to achieve SHE acceleration. A Negative Wrapped Convolution

polynomial multiplier is used in [21] to multiply integers. Additionally, an NTT-based

polynomial multiplier is designed in [22]. In [23], a systolic architecture is chosen

to make an energy efficient polynomial multiplier. They systolically perform a

standard convolution based multiplication and an NTT multiplication and com-

pare it to a sequential NTT multiplier. Both systolic designs achieve 1.7x to 7.5x

higher throughput over a sequential NTT multiplier. This work builds on many of

these papers by combining the RNS elements and other lattice-based cryptography

acceleration methods. RNS is also used in [24] on RSA and Elliptic curve cryptography.
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1.3 Thesis Contributions

This thesis focuses on designing an RNS-based NTT polynomial multiplier for

application in Lattice-based cryptography and FHE. At the algorithmic level, polyno-

mial multiplication is accomplished using an NTT because of its low computational

complexity and its ability to perform a polynomial multiplication using the negative

wrapped convolution algorithm. This allows input polynomials to be unchanged in size

compared to the zero padded inputs in the NTT. The NTT approach also enables the

use of parallel NTT butterfly units when implemented on an FPGA. At the datapath

level, parallelism via RNS is chosen because it can break large bit-width operations

into smaller channel operations and consequently can lower propagation delays in

the NTT butterfly. To accomplish the required modular multiplication in RNS, an

optimized RNS Montgomery multiplication with efficient Shenoy [25] and Bajard [26]

base extensions is implemented. RNS Montgomery is chosen over a selection of other

RNS modular multiplication methods for its overall lower size when compared to Sum

of Residues and higher speed when compared to Barrett reduction. Lastly at the

computational level, modular channel arithmetic is simplified and streamlined using

hardware efficient modular addition, modular subtraction, and Barrett reduction.

Arithmetic units such as the base extensions and accumulators are also streamlined by

being pipelined and having internal MAC units unrolled into parallel multiplications.

Registers are then properly placed to lower combinational delay per cycle and to

achieve an average throughput of one butterfly operation per cycle. The entire design

is then implemented in software with hardware units simulated in hardware.

With these design elements briefly stated and summarized, the specific contributions

of this thesis are providing in the following list:
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• Algorithm level/data-path level/computation level design for an RNS-based

NTT polynomial multiplier that targets a polynomial length of n = 1024,

w = 32-bit coefficients, and k = 4 RNS channels of width wch = 8-bit for

lattice schemes and a polynomial length of n = 4096, w = 128-bit coefficients,

k = 4 RNS channels of width wch = 32-bit for FHE schemes. The design uses

4 sequential/simultaneously operating NTT units with an RNS dataflow that

takes advantage of hardware parallelism.

• C++ code for the fully parameterizable RNS-based NTT polynomial multiplier.

Includes the RNS-based butterfly NTT with classical NTT and radix-2 butter-

fly NTT for comparison, negative wrapped convolution, parameter/coefficient

generation using modular functions, RNS Montgomery Reduction, Bajard and

Shenoy base extensions, RNS forward and reverse conversion, Barrett channel

reductions, and supporting test functions to verify all units.

• Verilog FPGA results for size and timing of the RNS-based NTT unit, RNS

Montgomery multiplication unit, RNS Bajard and Shenoy base extension units,

and optimized modular channel arithmetic units on a Xilinx Artix-7 FPGA

(xc7a200tlffg1156-2L).

• Literature survey of lattice bottlenecks including polynomial multiplication

(School Book, Comba, 3-way Toom-Cook, k-way Toom-Cook, Furer, Karatsuba,

Schonhage-strassen, and FFT algorithms) and Gaussian sampling.

• Background and explanation for the NTT, RNS, RNS Montgomery multiplica-

tion, RNS Bajard and Shenoy base extensions, modular arithmetic optimizations,

and parameter selection.
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1.4 Section Summary

The general chapter contents for this thesis are as follows:

• Chapter 1 introduces the hardware optimization problem, related work, thesis

contributions, and a self-referential section summary.

• Chapter 2 contains background information relevant to cryptography and the

direction of hardware/software design.

• Chapter 3 contains documentation and algorithms for each component of the

RNS-based NTT polynomial multiplier.

• Chapter 4 contains details of hardware implementation including size/timing

results for the major modules implemented on an Artix-7 FPGA.

• Chapter 5 contains final commentary on the design and future design considera-

tions.
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Chapter 2

BACKGROUND

2.1 Quantum-Proof Cryptography

Cryptography can be broken down into public-key (asymmetric) and symmetric-

key cryptography. A key is generally a string of numbers that can be arithmetically

applied to plaintext information to make it appear random. When a party knows the

key(s) used in a scheme, they are able to translate between plaintext and ciphertext

using protocol encryption and decryption operations. Symmetric-key schemes are the

oldest computation-era cryptographic schemes, where only one common private key is

known to the sender and recipient of a message. The security level of a symmetric-

key cryptographic scheme is generally equal to the number of operations needed to

randomly guess the key.

N

p1 f1 f2

p2 p3 p4 p5

Figure 2. The Integer Factorization problem which is solved in polynomial time by
Shor’s algorithm [27].

Symmetric-key schemes suffer when many communication channels are open, as

each pair of communicators requires a unique and safely conveyed private key. Public-
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key schemes, the primary focus for lattice-based cryptography, make use of both

a private key shared only between sender and recipient and a public key, which is

generated from the private key in an unknown way but shared with all on the channel.

The public key is then used to encrypt messages and the private key is used for

decryption. Low key sizes make lattice-based cryptosystems a strong candidate for

full scale implementation.

Traditional cryptographic schemes make use of difficult mathematical problems

to obtain their security in transmitting digital information. These problems have

mainly pertained to factorization and historically have not been considered break-

able in polynomial time on standard computational devices (polynomial time being

the generally acceptable measure of maximum complexity before a computation is

deemed infeasible). The difficulty in solving public-key cryptographic problems can

be measured in terms of average-case hardness and worst-case hardness. Average-case

hardness can be thought of as the resistance to random guesses from a probability

distribution and it means the cryptographic security problem is difficult to solve in

most cases. Worst-case hardness is when the cryptographic security problem is difficult

to solve for only some cases. Some traditional cryptography problems include the

following.

• Integer Factorization - Factoring large numbers down to their prime factors.

• Discrete Logarithm - Computing the discrete logarithm of certain large numbers.

• Elliptic-Curve Discrete Logarithm - Computing the discrete logarithm of a

random elliptic curve element with respect to a known base point.

While these problems have been effective for past cryptography applications, Shor’s

algorithm in 1995 [27] finds a number’s prime factors in polynomial time on a quantum

computer and will break each of these traditional problems. From here, the search for
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a quantum proof problem has become an increasingly important area of cryptography

research.

2.2 Lattice Problems

Lattice problems have been found to be one solution to the quantum computing-

proof problem. A lattice is described as an infinite repetition of points in an n-

dimensional space. To represent a lattice, a matrix of basis vectors which make up

each contained point is used.

Figure 3. Closest Vector Problem. Given a random vector (red) find the closest
lattice point (blue) to the random vector.

A linear combination of these vectors is then determinable for each point in the

lattice. This matrix can be written as

L(B) = Bx : x ∈ Zn = L(b1, ..., bn) =
n∑
i=1

xibi : xi ∈ Z (2.1)
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Given this mathematically constructed environment, several problems involving

lattices can be generated. These include:

• Shortest Vector - Find the shortest nonzero vector in a lattice given the basis of

the lattice.

• Closest Vector - Given a basis of a lattice and a vector v not in the lattice, find

the closest vector to v that is in the lattice.

• Covering Radius - Given a basis for a lattice, find the smallest sphere that always

includes exactly 2 lattice points when placed at every lattice point.

In 1996, Ajtai [28] found that proving worst-case security for the shortest vector

problem also yielded average-case security. The implications of this meant that worst-

case lattice problems can only be reduced to average-case cryptography problems

when tackled with quantum computing and it has thusly given rise to mass interest in

lattice-based cryptography, specifically for the next generation of quantum-resistant

cryptographic schemes.

2.3 Lattice Cryptography Schemes

Following the discover of Ajtai in 1996 [28], the use of lattices appeared in cryp-

tography in multiple schemes including NTRU, LWE, and R-LWE. The following

sections contain brief descriptions of them.

It should be noted that the use of rings from number theory are often critical to most

cryptography schemes. A ring is an abstract algebraic set that is closed under addition

and multiplication. Some simple examples of rings include the integers Z, complex

numbers C, and integers modulo some number q which is written as Zq. While many

sets of numbers can be considered a ring, the general functionality of wrapping around
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a modulus as with Zq is of most concern in the context of cryptography. Lattice-based

cryptography schemes make use of rings in its polynomials to speed up calculations.

A polynomial ring is written as Zq[x]/Φ where Φ is generally Φ = xn + 1. This has the

effective impact of limiting the size of polynomial used in the cryptographic scheme

to that of size Φ. The degree of these polynomials are generally a large prime number

or power of two with coefficients modulo a small integer. By keeping computations in

rings, computation is made more efficient and precise as operations take place in a

finite space and because reduction in the integer space results in reduced key sizes.

2.3.1 NTRU

NTRU [29], developed in 1996, is a public-key encryption scheme. It was the

first scheme to use polynomial rings for efficiency and compactness and is the fastest

known lattice-based encryption scheme. It is also listed in the IEEE P1363 standard.

The original NTRUEncrypt scheme a uses secret key that consists of two sparse

polynomials with coefficients of −1, 0, 1 and limited to a degree < n. The public key

is the quotient of the secret key in Zq[x]/(xn − 1) where the degree of polynomial n is

prime and q is a power of two integer that is the same order of magnitude as n. The

public key is generated as

h = pg/f mod q (2.2)

where p ∈ Z[x]/(x2 − 1) and g and f are the two secret key polynomials. If the

polynomial f is found to not be invertible modulo q and modulo p, the key needs

regenerated. The ciphertext of a plaintext message M is encrypted as

C = hs+M mod q (2.3)
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Decryption is then done by multiplying the ciphertext by the secret key and eliminating

certain terms due to many of them being small. For the original NTRU cryptographic

scheme, there is no discovered relation between the cryptography problem in NTRU

and a worst-case lattice problem. One issue with the given formulation of the secret

and private keys in NTRU is that there is a non-uniform distribution among the

ring used for the private key. As sampling uniformity provides optimal resistance

to random guesses of the key, this leads to difficulty in achieving hardness. This

problem was answered in [30] where a relationship between ring-LWE hardness and a

version of NRTU proved the new version secure. It was found that if the secret key

polynomials are rejection sampled from a discrete Gaussian distribution (rejecting

sample if it is not invertible), the public key will be statistically indistinguishable from

a uniform distribution. The updated NTRU uses a ring of Zq[x]/(xn + 1) instead of

Zq[x]/(xn − 1). In 2019, NTRU is optimized using the NTT in [31].

2.3.2 Learning With Errors

Learning with errors (LWE) is a cryptographic problem that was introduced in

2005 by Regev [32] and has average-case hardness. LWE has a search version and a

decision version and the problem formulation is as follows:

1. Given a dimension n > 1, an integer p ≥ 2 used as the modulus, a discrete

Gaussian error distribution X, and Zq the integers modulo some integer q:

2. Generate some vector s ∈ Znq , a uniformly random vector a ∈ Znq , and an error

value e from X.

3. Generate a sample point (a, t) where t = 〈a, s〉+ e mod p.
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4. Search LWE problem: Given a certain number of computed pairs of points

(ai, ti), find s.

5. Decision LWE problem: Given a certain number of computed pairs of points

(ai, ti) and random points from a uniform distribution, determine which points

originate from s.

In 2012, a LWE-based system was implemented in software and hardware [1]

highlighting the core hardware-related problems of polynomial multiplication and

sampling from discrete Gaussian distributions. It is possible for there to be both a

polynomial and matrix based variant of LWE. In the paper, it was found that the

polynomial version of a LWE-based cryptosystem was more successful in all metrics

(speed, memory requirement, etc.) with the exception of the matrix version having

smaller message expansion factors (ratio of the encoded data length to decoded data

length). LWE has been used to prove the security of many cryptosystems however

they are limited on efficiency due to their keys being matrices randomly generated

over Zq for a small integer q, with dimension that linearly increases with security. The

solution to this comes in the form of ring variants.

2.3.3 Ring Learning With Errors

In 2009, a varinant of LWE called Ring Learning with Errors (Ring-LWE) was

proposed by Lyubashevsky, Peikert, and Regev ([33] and [34]). Ring-LWE allows for

more natural and efficient design of cryptography functions by utilizing polynomials

in rings. In Ring-LWE, the key size is reduced by a factor of n compared to its LWE

parent. LWE may use up to several thousand bits to secure a message that would take

Ring-LWE only hundreds of bits, making Ring-LWE a more feasible system for any
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implementation that has constrained computation resources. Ring-LWE additionally

has been the basis for a published paper that supports fully Homomorphic encryption

[35].

2.3.4 Other Schemes

Short integer solution (SIS) is a cryptographic problem that was introduced by

Ajtai in 1996 [28] in his paper proposing an average-case lattice problem. The problem

was the first to be proven as difficult on average as lattice problems in the worst case

leading to future investigation in lattice-based cryptography. Additional schemes such

as Goldreich–Goldwasser–Halevi signature/encryption (GGH) and Bimodal Lattice

Signature Scheme (BLISS) rely on lattices. BLISS is a digital signature scheme

introduced in 2013 in [5]. One of the innovations in BLISS was the presentation

of a new rejection sampling algorithm. The authors improve the computation of

both the exponential and hyperbolic cosine for the sake of implementation efficiency

and they make use of a variant of rejection sampling. Goldreich–Goldwasser–Halevi

signature and encryption scheme (GGH) is a lattice signiture scheme presented at

Crypto conference ’95 and ’97 and explained and suggested insecure in [36]. While not

highly relevant, it is based the closest vector problem and was the original inspiration

for NTRU signatures. Gentry and Peikert also show further potential theoretical

ability to create efficient cryptographic constructions that utilized lattices in 2008 [37].
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2.4 Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) is a form of encryption that allows compu-

tation on encoded data without revealing the true contents to the computer handling

the data. FHE is not a lattice-based scheme, but it is a concept in cryptography that is

finding priority in research along with quantum-proofing cryptographic schemes for its

massive implications in future security. The main benefit of FHE is that an encoded

chain of data flow will remain encrypted for mathematical operations, leaving fewer

instances and consequent vulnerabilities on plain-text data. Gentry published the

first FHE scheme in 2009 in [38]. FHE is often paired with lattice-based schemes and

consequently relies on similar core building blocks such as polynomial multiplication.

Due to the need for frequent bootstrapping in FHE to maintain a decodable noise

level in data, efficient hardware as well as efficient lattice-based schemes are being

researched to pair with FHE. Several of these hardware papers are included in the

following: [13], [14], [15],[19],[35]. Somewhat Homomorphic Encryption (SHE) is also

referenced periodically. It is a homomorphic scheme which only supports a limited

number of ciphertext computations before needing fully decoded.

2.5 The Cryptography Bottlenecks

As seen in Section 2.3, the introduction, and as determined by a host of Lattice-

based Cryptography hardware acceleration papers, there are two primary bottlenecks

of Lattice-based cryptographic schemes: Modular Polynomial multiplication and

Gaussian sampling ( [1], [2], [3], [4], [5], and [6]). The following sections are a review
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of both and give the validation for choosing NTT polynomial multiplication as the

primary focus for this project.

Computationally Intensive Repeated Frequently

Modular Polynomial 
Multiplication

Gaussian Sampling

Figure 4. Lattice-based Cryptography’s Bottlenecks. Operations which are
computationally intensive and frequently used.

2.5.1 Gaussian Sampling

Gaussian sampling is the first mentionable mathematical component in lattice-based

cryptographic schemes, however it is only relevant to the overall scope of Lattice-

based Cryptography and not touched on again for the rest of the thesis. Gaussian

sampling is important because matrices of random numbers are generated and used

to encrypt information, with decryption performed using probabilistic inference. In

LWE-based systems, the private key is a uniformly random matrix and the public

key is calculated using a uniformly random matrix and a certain error distribution.

A Gaussian sampler relies on the standard deviation of the samples σ, precision
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parameter λ which controls how close to statistically ideal the distribution is, and τ

which is the value on the tail of the distribution where all past values are ignored

(sampling in {0, στ} instead of {0,∞}) [2]. A higher standard deviation σ requires

more memory. Precision parameter λ affects security as a more precise distribution

is more secure but results in slower computation. A lattice-based Gaussian sampler

pulls numbers from a discrete Gaussian over an n-dimensional lattice where the mean

and standard deviation are input parameters µ ∈ Rn and σ > 0. An additional term

mentioned in Gaussian sampler discussion is statistical distance (Equation 2.4) from

a desired distribution. On any computed distribution (and especially distributions

drawn from resource-limited hardware), the generated distribution will not perfectly

match an ideal distribution and the difference must be considered for the sake of

ensuring cryptographic security.

∆(X, Y ) =
1

2

∑
x∈L

|P (X = x)− P (Y = x)| (2.4)

Here X and Y are two random variables and x is a distribution on a lattice L.

Several ways to generate random numbers as well as accelerated versions in hardware

are listed below. Additional methods not covered include the binomial method.

According to [2], binomial is not suitable for digital signatures but it is listed among

lattice-cryptography hardware papers as an alternative Gaussian sampling method.

Rejection sampling for Lattice-based Cryptography takes a uniformly random

distribution and removes samples that fall outside of the range (−τσ, τσ), bounds

calculated using the tail cut value and standard deviation of a Gaussian distribution.

For arbitrary probability distributions X and Y and respective probability density

functions X(x) and Y (x), the distribution of Y can be generated by sampling X and

throwing out samples with a probability Y (x)/MX(x) where M ≥ 1 and Y (x) ≤
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MX(x). M is generally thought of as the number of times the rejection will occur and

the number of times sampling will need to be repeated. When the above conditions

are true for all x, the exact distribution of Y will be produced and when they are true

for only some x, the distribution will be statistically near to Y . Rejection sampling

is inefficient because sampling needs to be repeated every time a sample is rejected

and current algorithms may take multiple trials on average to accept a sample. More

information on rejection sampling for lattice-based cryptography can be found in [39].

Knuth-Yao Gaussian sampling is performed by generating a binary tree based on

arbitrarily chosen draw probabilities for each element of a set. With the probabilities

of each draw written in binary and moving from most significant bit to least significant

bit, terminating tree arms are drawn for binary places with a 1. At each new bit, the

next layer of the tree is generated. It can be seen that with uniform probability of

traversing the branching options at each tier and with the most significant binary

bits being earlier in the tree, the probability of ending at any one element in the

set can be accurately achieved via a uniform sampling regardless of the set’s true

probability distribution. The Knuth-Yao algorithm is beneficial because it takes a

minimal number of initial random bits. The disadvantage of this method is that

storage of the discrete distribution generating tree (DDG) requires ROM storage. For

more information see [40], where a Knuth-Yao hardware design is proposed.

The Bernoulli sampler is a form of rejection sampling that does not rely on

calculating the exponential function or performing a large number of repeat samples.

Bernoulli was first implemented for lattice-based cryptography in [5] where the digital

signature scheme BLISS was introduced. To avoid computing the exponential function,

the authors produce samples of e−x/f using precomputed exponentials of powers of

two exp(−2i/f ). They additionally replace the uniform distribution used in standard
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rejection sampling with a discrete Gaussian, lowering the rejection rate from an average

of 10 times per accepted sample to 1.5.

In [39], a bimodal distribution is used for lattice-based cryptography which achieved

reduced table sizes from linear to logarithmic at the expense of longer execution time.

The authors present three different rejection sampling methods where all are performed

without using floating point arithmetic and where one method relies on no tables and

two methods rely on small tables. A core algorithm in the paper is in generating a

Bernoulli random variable with the probability of drawing a 1 equal to 2−z/k
2 where

z and k are integers and z < k2 using no floating-point exponential calculation. For

more information on Bernoulli sampling, see [5].

Ziggurat sampling is a form of rejection sampling that divides the area under a

Gaussian curve into rectangular areas that are equal in size. Increasing the number of

rectangles lowers the probability of a sample being rejected. The method essentially

optimizes rejection sampling using a uniform distribution. Ziggurat has been reported

as unsuitable for hardware implementation by [2] in 2017 and does not have any

hardware implementation. However in March 2018, a discrete Ziggurat hardware

design is proposed with an architecture diagram in [40].

The Cumulative Distribution Table sampler (CDT) uses a lookup table filled

with the discrete Gaussian cumulative distribution to perform Gaussian sampling

using a uniformly random distribution. To converge on a value in the table, each

iteration of the sampling algorithm removes half of the possible options. Given that

the distribution is symmetric, the lookup table can be half as large. In [40], a CDT

hardware design is the chosen sampler out of several hardware implementations,

achieving 59.4 million samples per second for encryption and 16.3 million samples per

second for signatures with minimal hardware resources. Algorithmic and hardware
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improvements include hashing the most significant bits of the search space to make

the lookup table smaller, reducing the standard deviation of the CDT, and using

floating point numbers with a changing mantissa size.

While Gaussian number sampling is another bottleneck of Lattice Cryptography,

the focus of this thesis is chosen to be polynomial multiplication using the NTT. For

more information on sampling methods, see [3], [5], [6], [41], [42], [43], [44], and [45].

2.5.2 Modular Polynomial Multiplication

Polynomial multiplication is the primary bottleneck in lattice-based schemes and

is the focus in this thesis. The multiplication between polynomials A and B with

coefficients ai and bi in the form

A(x) = a0 + a1x+ ...+ an−1x
n−1

B(x) = b0 + b1x+ ...+ bn−1x
n−1

results in the product polynomial C with coefficients ci:

C = A(x)B(x) = c0 + c1x+ ...+ c2n−2x
2n−2

Polynomials are used as private and public keys and random numbers used for

intermittent decryption/encryption steps are often times in the form of polynomials.

Matrix multiplication is associated with standard lattices and makes computation slow

and storage requirements high. Polynomials are associated with ideal lattices and are

chosen over matrix multiplication when a ring-based scheme is used. This is beneficial

because polynomials are generally more efficient and have lower space requirements

from n2 to n log n elements. Polynomial multipliers include integer multipliers and

their complexities are measured treating n as the number of digits in the multiplicands.
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The multiplication of two polynomials can be interpreted as the convolution

between the polynomial coefficients. This is relevant in methods such as the FFT

method, which make use of transforms to avoid the classical approach of convolution.

A hardware and software survey of Lattice-based Cryptography in [2] gives a broad

outline of the possible algorithms for modular polynomial multiplication. In order of

descending computational complexity, these include the School Book, Comba, 3-way

Toom-Cook, k-way Toom-Cook, Furer, Karatsuba, Schonhage-strassen, and FFT

algorithms.

Polynomial multiplication =



School Book: O(n2)

3-way Toom-Cook:O(n1.58)

k-way Toom-Cook: O(nlog (2k−1)/ log k))

Furer: O(n log n ∗ 2logn)

Comba:O(n2)

Karatsuba:O(n1.58)

Schonhage-strassen:O(n log(n) log (log(n))

FFT: O(n log n)

A hardware analysis of modular multiplication in [4] and [46] directly compares

these methods, with some of the results written below.

2.5.2.1 School Book Multiplication

The schoolbook polynomial multiplication algorithm has complexity O(n2) and is

based on multiplying the coefficients of A and B directly using convolution. The new
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product polynomial C with coefficients ci is found by multiplying each coefficient in

ai by every bj and is written as:

C =
n−1∑
i=0

n−1∑
j=0

aibjx
i+j (2.5)

At the lowest level, the schoolbook algorithm for integer multiplication can be

accomplished with just shift and additions. Starting with two n-bit integers, one of the

binary-represented integers is shifted 2i times and added to an accumulator for each

ith bit of the other integer that equals 1. The process for polynomial multiplication is

given in Algorithm 1.

Algorithm 1: Schoolbook Convolution Polynomial Multiplication
Input :Polynomials A,B ∈ ZM [x]/(xn + 1) of length n.

1 C = 0
2 for i = 0 to n− 1 do
3 for j = 0 to i− 1 do
4 sign = (−1)b(i+j)/nc

5 index = (i+ j) mod n
6 coef = aibi mod M
7 cindex = int(cindex + sign× coef) mod M

Output :C = {c0, c1, ...cn} = A×B

Despite the algorithm’s high computational complexity, the schoolbook algorithm

has been chosen in hardware design papers such as [23] over more efficient polynomial

multiplication algorithms because of it’s simplicity when implemented using systolic

arrays. The authors create both a convolution and NTT based systolic multiplier

and achieve performance gains over the standard sequential NTT implementation

of a polynomial multiplier. The systolic convolution was performed using a series

of processors that contained multiply-accumulators (MACs) in combination with

modular reduction blocks. Using n MAC and n reduction processing blocks resulted in
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complexity lowering from O(n2) to O(n). The systolic schoolbook algorithm was able

to finish processing a polynomial multiplication several times faster than the systolic

NTT and sequential NTT, at the expense of significantly more energy expenditure

and more DSP, FF, and LUT blocks. For future projects, it would be logical to look

at other overlooked polynomial multiplication algorithms other than the NTT for

hardware acceleration in the same way as the schoolbook algorithm was looked at and

implemented.

2.5.2.2 Comba Multiplication

Comba is a scheduling multiplication algorithm with computational complexity

of O(n2) similarly to the schoolbook algorithm and improves on it by reordering

the partial products encountered in the multiplication [47]. The algorithm has been

looked at for cryptographic hardware applications because it requires fewer resources

when compared to the schoolbook algorithm and reduces the amount of read and

write operations by using DSP blocks on FPGAs. Analysis on the architecture in [47]

reveals that the number of DSP blocks increases linearly with the binary length of

the multiplied numbers but also shows that the structure of Comba multiplication

does not allow for pipelining when designed in hardware. When two integers of length

n words are multiplied, Comba requires 2n − 1 partial products. Diagrams in [47]

provide the multiplier architecture for the Comba multiplier, as well as the Karatsuba

multiplier and could form the basis for hardware improvements.
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2.5.2.3 k-way Toom-Cook Multiplication

Toom-Cook is the general name for an integer multiplication algorithm which splits

a multiplication’s operands into k smaller integers to perform smaller operations on

each and to reduce complexity. 3-way Toom-Cook is the Toom-Cook algorithm when

k = 3 and has complexity O(n1.46). The algorithm was introduced in 1963 by Toom

[48] and revisited in 1969 by Cook [49] to produce an improved version of the algorithm.

Toom-Cook is a generalized version of Karatsuba, in which the integers are split into

two parts. This means the hardware for both algorithms looks similar, however the

Toom-Cook methods requires more memory for intermediate values making Karatsuba

the chosen polynomial multiplication algorithm over Toom-Cook in several papers

despite having slightly higher computational complexity over 3-way Toom-Cook.

2.5.2.4 Karatsuba Multiplication

Karatsuba was introduced in 1962 in [50] and has complexity O(n1.58). It is a

special instance of the k-way Toom-Cook algorithm where the two multiplied integers

are separated into two parts. Karatsuba is based off of the idea that an integer of

length n-bits can be represented by the addition of it’s least significant bits and it’s

most significant bits multiplied by a base 2n/2 (i.e. shifted by n/2 bits). Given two

integers that are split between the upper and lower bits in this fashion, the algorithm

for Karasuba multiplication is given in Algorithm 2.

Karatsuba has found success when it’s operands are of 32 bits or more. Karatsuba

works by breaking down the large initial multiplication into several n/2-bit multipli-
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Algorithm 2: Karatsuba Polynomial Multiplication
Input :n-bit integers A and B, split into l least significant bits A0, B0 and

n− l most significant bits A1, B1

1 1. Determine (A1, A0) and (B1, B0) where A = A1 × 2l + A0 and
B = B1 × 2l +B0

2 2. t =
(
t0 t1 t2 t3

)
=
(
A0B0, A1B1, A1 + A0, B1 +B0

)
3 3. m = (t2 × t3)− t0 − t1
4 4. C = t0 +m× 2l + t1 × 22l

Output :C = A×B

cations and several additions and subtractions. When considering the multiples of

powers of two as shifts, the algorithm runs using only three multiplications. Karatsuba

is a computationally efficient multiplication algorithm and is applied in many hardware

level designs of lattice-based cryptosystems. Diagrams in [47] show the architecture of

a Karatsuba multiplier with Comba multiplier units as sub-units and could show the

basis for further hardware acceleration.

2.5.2.5 Schönhage-Strassen Multiplication

The Schönage-Strassen integer multiplication algorithm [51] was introduced in

1971 and found computational complexity improvements over Toom-Cook with a

complexity of O(n log n log log n) when dealing with several thousand decimal digit

numbers. It is used in the established GNU Multiple Precision Arithmetic Library

(GMP), one of the most commonly used libraries for handling large integers and

floating point numbers without limitations to precision. Schönage-Strassen is an

FFT-based integer multiplication algorithm which uses the NTT. It is generally not

chosen over Karatsuba unless numbers being used are significantly large. A result

which provides an upper bound to the Schönhage-Strassen multiplication method is

seen in [52].
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2.5.2.6 Fürer Multiplication

The Fürer integer multiplication method was introduced in 2007 and is an asymp-

totically faster algorithm than the Schönhage-Strassen algorithm but only for very

large numbers. While it uses complex numbers to achieve fast multiplication, ideas

from it were taken and used to create a modular polynomial multiplication algorithm

in [53]. The core idea of Fürer is to reduce a large multiplication to many exponentially

smaller multiplications that are then performed recursively. While the algorithm is

well researched and the inspiration for many variants, the Fürer polynomial multi-

plication method is rarely the chosen algorithm for lattice-based schemes due to it’s

impracticality and ineffectiveness on small numbers.

2.5.2.7 FFT Multiplication

In this thesis, the FFT polynomial multiplication method is realized using NTT.

This method is chosen because of its flexibility, lowest computational complexity,

extensions into hardware, and established foothold in existing literature. The RNS-

based NTT utilizes the same algorithm as the NTT but replaces arithmetic with RNS

operations by distributing the original workload among k parallel channels. The NTT

is discussed in detail in Section 3.5.
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Chapter 3

DESIGN OF THE RNS-BASED NTT POLYNOMIAL MULTIPLIER

This thesis focuses on an RNS-based NTT polynomial multiplier for accelerating

lattice-based and FHE schemes. Development of the NTT modular polynomial

multiplier unit is broken into two components; a software implementation in C++ and

hardware implementation in Verilog 1. The software design is a proof-of-concept of the

entire system an the algorithmic level and is also used to produce initialization files for

the FPGA design. The hardware design is the realization of the algorithmic system

and used to report on area, power, and timing expectations for the optimized system.

Both are scalable to varying polynomial lengths, ring sizes, and channel widths. The

following is a review of the system’s parameters, modular functions, RNS application,

NTT computation, and outer negative wrapped convolution algorithm.

3.1 Parameter Sets

A table including popular parameter sets for lattice and FHE schemes is provided

in Table 4. The chosen target to approximately match this polynomial multiplier

design’s parameter set is [19] and [54]. For FHE schemes, the design targets polynomial

length n = 4096, modulus bitwidth w = 128, RNS channels k = 4, and channel width

wch = 32. For lattice schemes, this can be lowered to n = 1024, modulus bitwidth

w = 32, RNS channels k = 4, and channel width wch = 8.

1All C++ and Verilog code can be found at: <https://github.com/LoganBrist/C-Verilog_NTT_
RNS_Polymultiplier>
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name year Scheme n M w
[1] 2012 LWE 128 256 512 3329 7681 12289 12 13 14
[55] 2014 R-LWE 256 512 7681 12289 13 14
[54] 2014 R-LWE 256 512 7581 12289 13 14
[8] 2015 R-LWE 256 512 2048 65537 8383489 30
[56] 2016 R-LWE 256 512 1024 12289 32+
[57] 2017 R-LWE 256 512 7681 12289 13 14
[23] 2020 R-LWE 128 256 512 1024 - -
[13] 2014 R-LWE/SHE 256 1024 2048 221 − k, 230 − k 21 30
[14] 2015 FHE 215 232 − k 32
[15] 2015 FHE 4096 214 2w − 2k + 1 124 512
[58] 2018 FV SHE 215 21228 − k 1228
[19] 2020 FV SHE 4096 2180 − k 180

Table 2. Parameter set for R-LWE, SHE, and FHE lattice-based accelerators

The chosen parameters are highly flexible due to the nature of RNS. Lattice-based

Cryptography is of interest because it has relatively low key sizes while FHE schemes

have significantly larger coefficient widths and polynomial lengths that can better

utilize the RNS. This design targets both, to make an ideal high speed and low resource

multiplier that is flexible.

3.2 Design Components

At the algorithmic level, polynomial multiplication is accomplished using a NTT

approach. The hardware design realizes this with a single NTT unit containing 4

butterfly units. The wide range of alternative multiplication methods can be seen

in [2] as well as in Chapter 2. An NTT approach is chosen because of its flexibility

with hardware implementation and its O(n log n) complexity when implemented with

an FFT butterfly structure. At the highest system level, using the NTT means the

polynomial multiplication can be implemented using a negative wrapped convolution.

This algorithm allows input polynomials to be unchanged in size compared to the
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Figure 5. Hierarchy of Design for the RNS based NTT Polynomial Multiplier

zero padded inputs in the NTT. The NTT approach also enables the use of parallel

NTT butterfly units when implemented on an FPGA. Using p parallel units turns

complexity into a further improved O(n/p log n) and achieves significant FPGA-

enabled speed-up before any small scale hardware optimizations are made. For these

same reasons, the NTT polynomial multiplication method has been a popular choice

in other lattice-based cryptography hardware accelerators ([7], [8], [15], [22]).

At the datapath level, parallelism is achieved by completing the full NTT in an

RNS. This design chooses an RNS of k = 4 (9 channels total) with w = 32. RNS

has been used in a variety of applications ([13], [20], [59], and [60]), however few

lattice-based cryptography designs have utilized it. Employment of an RNS was

chosen because a polynomial multiplication can require modular arithmetic operations

with bit-widths ranging anywhere from < 32 bits for lattice cryptography and leveled

FHE schemes ([18] and [56]) to 180-372 bits in large FHE schemes ([19] and [61]).

An RNS can break these potentially large arithmetic operations into smaller channel
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operations and can consequently bring lower propagation delays to the repeated large

word length arithmetic that is found in the NTT butterfly. To accomplish the required

modular multiplication in RNS, an optimized RNS Montgomery multiplication with

efficient Shenoy [25] and Bajard [26] base extensions is used. RNS Montgomery is

chosen over a selection of other RNS modular multiplication methods seen in [62]

for its overall lower size when compared to Sum of Residues and higher speed when

compared to Barrett reduction.

Lastly at the computational level, all modular channel arithmetic of the RNS in

the polynomial multiplication unit is simplified and streamlined using bit select-based

32-bit modular addition, modular subtraction, and Barrett reduction. Individual RNS

channels use this optimized modular arithmetic and can additionally be improved using

properly chosen RNS moduli. With the proper reduction values, individual modular

arithmetic blocks can be simplified or turned into logic expressions. Arithmetic units

such as the base extensions and accumulators are also streamlined by being pipelined

and having internal MAC units unrolled into parallel multiplications, which allows

a fluent pipeline of the entire design. With properly placed registers, the average

throughput of one butterfly operation is one per cycle, as long as it is when all registers

are being used. The critical path in the overall design is also shortened by placing

registers intermittently, thereby increasing the maximum allowable clock frequency.

3.3 Modular Functions for Precomputations and Channel Operations

Modular functions are used to calculate all precomputed constants, channel oper-

ations, and cryptographic functions in the polynomial multiplier and are especially

prominent in precomputations in the software implementation. Modular arithmetic is
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the collection of standard integer arithmetic operations where computed results that

are greater than or equal to a modulus M are wrapped back into the range [0,M − 1]

and it is intertwined in the NTT and Residue Number System. Modular reduction is

used in all modular arithmetic and is written as

X mod M (3.1)

for some integer X and a chosen modulus M . The modular reduction is equivalent

to performing a division between X and M and only keeping the remainder (e.g.

17 mod 5 = 2, as 17/5 = 3 rem 2). A general arithmetic approach to performing a

modular reduction is

X mod M = X − bX
M
c ×M (3.2)

which achieves reduction via a floored division. Modular reduction similarly can be

thought of as arithmetic performed on a wrapped number line, where the values at

the boundary of the line wrap around to the beginning:

X = {M − 1,M,M + 1} mod M = {M − 1, 0, 1} (3.3)

Extended to any arbitrary computation resulting in X ≥M , the reduction results for

X = {nM, nM + 1, nM + 2, ..., nM + (M − 1)}

results in

X mod M = {0, 1, 2, ..., (M − 1)}

This is when provided a sufficiently large modulus M and some positive integer n.

For a negative X, the reduction wraps in the opposite direction around the circular
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number line. Expressed in the same way as addition, the reduction result for

X = {nM, nM − 1, nM − 2, ..., nM − (M − 1)}

results in wrapping to

X mod M = {0,M − 1,M − 2, ..., 1}

This again is when provided a sufficiently large modulus M and some negative

integer n. Negative modular reductions are generally not necessary in cryptographic

schemes as the schemes rely on additive and multiplicative functions and are closed

in [0,M − 1] by those operations. When not dealing with assignments such as (c =

a mod b), modular arithmetic equations often replace equalities (=) with congruences

(≡) as the computation of modular arithmetic functions result in the same value for

integer multiples of the modulus. For example, both

(5 + 4) mod 7 = 2

(5 + 11) mod 7 = 2

therefore both are congruent to each other and can be written as

5 + 4 ≡ 5 + 11 ≡ 2 (mod 7)

The equation leaves the mod at the end of the line and it is interpreted as applying

to the entire line. When written as a congruence, modM is parenthesized and is no

longer the modulus operator but an expression claiming a common modulus across

the entire equation. Modular arithmetic is vital in cryptography because operations

take place in a well defined finite sized set (finite field or ring). The wrapping nature

of modular functions makes modular reduction fitting for cryptography because it

produce results that are not easily linked back to function inputs and consequentially
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introduce difficulty in cryptographic problems. Cryptographic schemes rely on fields

Zq and rings Zqprime
and consequently modular arithmetic is a natural way to realize

a field combined with easy mathematical properties.

Modular functions used in the design include:

• Montgomery Multiplication - To achieve reduction in the RNS-based NTT unit

• Barrett Reduction - To achieve reduction on individual RNS channels

• Modular inverse - To precalculate n-th root/Base Extension Inverses (in software)

• Modular square root - To precalculate NTT twiddle factors (in software)

• Modular n-th root - To find n-th root of unity for NTT (in software)

3.3.1 Montgomery Multiplication

Montgomery multiplication [63] is a modular multiplication scheme which uses

a Montgomery constant R in replacement of a modulus M to achieve fast modular

reduction. Montgomery multiplication is important in this RNS-based NTT polynomial

multiplier as fast modular multiplication is necessary to perform an efficient NTT.

The classical Montgomery multiplication algorithm is described in Algorithm 3.

Algorithm 3: Classical Montgomery Multiplication
Input: A,B
Data: R co-prime to M and R > M , M ′ and R−1 such that R−1 < M and

M̄ < R and RR−1 −MM̄ = 1.
1 X = A×B
2 m = X mod R
3 n = m× M̄ mod R
4 t = (X +mM)/R
5 if M ≤ t then
6 t = t−M
Output: t = ABR−1 mod M
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For computational efficiency, the Montgomery constant R ideally is a power of 2

as it allows the reduction’s division to be replaced by bitshifts. The calculation of

constants makes Montgomery multiplication not efficient for single multiplications,

however it is highly efficient when repeated and the initial conversion is unneeded.

A Montgomery Multiplication result is not a full reduction as it comes in the form

ABR−1 mod M . As given in Equation 3.4, the Montgomery Multiplication can be

adjusted to produce a fully reduced result AB mod M by multiplying both input

values by R2.

Z = ABR−1 ×R2 ×R−1 mod M (3.4)

= AB mod M (3.5)

Montgomery Multiplication is the chosen modular multiplication method in the

RNS-based NTT polynomial multiplier. It is realized as an RNS Montgomery mul-

tiplication in the NTT unit (NTT discussed in Section 3.5). The adjustments that

are needed to perform it include two base extensions. These changes are detailed in

Section 3.4.3.

3.3.2 Barrett Reduction

Barrett Reduction [64] is a fast modular reduction technique that works by esti-

mating the floor function of the standard modular reduction (Equation 3.2) without

division. Barrett relies on two precomputed values L an K. K is chosen to be the

smallest value that makes 1/M − (b2K/Mc/2K) < 1/M2 true. Then one can solve

L = b2K/Mc. The Barrett multiplication algorithm is presented in Algorithm 4.
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Algorithm 4: Barrett Modular Multiplication for channel multiplications
Input: A, B
Data: Smallest K such that 1/M − (b2K/Mc/2K) < 1/M2 , L = b2K/Mc

1 Z = A×B
2 T = Z × L >> K
3 Z = Z − (T ×M)
4 if Z ≥M then
5 Z = Z −M
Output: Z = AB mod M

Barrett reduction is the reduction method used in this design for channel reductions

on the individual RNS channels. As opposed to the RNS-based NTT’s modular

multiplication, it is chosen over the Montgomery method because of its flexibility

with channel moduli of varying size and varying mathematical properties. To ensure

the conditions on K are met for arbitrary M , this design’s hardware implementation

assumes K = 2dlog2(M)e. The software implementation calculates them precisely for

the chosen moduli set. The hardware results for Barrett reduction units are given in

Section 4.7.1.

3.3.3 Modular Inverse

Modular inverse is used to calculate variables such as ω−1n , φ−1, and D−1i in the

pre-computation stage of the software polynomial multiplier design. The modular

inverse of A is X if

A×X ≡ 1 mod M. (3.6)

The software design of the polynomial multiplier utilizes the modular inverse

function in the BigInteger Library [65] which furthermore utilizes the Euclidean
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algorithm. The constants calculated from modular inverse are provided in Section

3.4.2.

3.3.4 Modular Square Root

Modular square root is used to calculate φ2 = ωn in the software design. There

are multiple ways to perform the calculation including Tonelli-Shank’s algorithm [66].

Depending on whether the modular square root exists or not, the equivalency can have

two or zero solutions. The square relationship between A and B can be represented as

A2 ≡ B(modM) (3.7)

In the software implementation, this value is discovered by repeated trials of the

modular exponentiation function in [65]. The variable associated with this is discussed

in Section 3.4.2.

3.3.5 Modular n-th Root

The modular n-th root is the conceptual relation behind this design’s NTT root of

unity. It is expressed as

An ≡ B(modM) (3.8)

The modular n-th root is not calculated directly in the software implementation.

It is determined via generator functions that narrow the search for the root. Finding

the n-th root is given in Section 3.5.3.
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3.4 Using the Residue Number System

The Residue Number System (RNS) is the primary means of accelerating the

polynomial multiplier at the datapath level. The polynomial multiplier design embeds

RNS in it’s variable storage, the NTT unit’s addition/subtraction/reductions, and

the NTT’s computationally expensive modular multiplication.

3.4.1 RNS Operation

RNS is an arithmetic scheme where mathematical computations on large bit-width

numbers is divided into smaller independent modular operations on multiple thinner

channels. RNS is the chosen method to optimize the NTT polynomial multiplier on a

datapath level because of its parallelization, lack of carry arithmetic, and division of

workload for large arithmetic. An RNS is defined by a chosen base of k relatively co-

prime moduli (m1,m2, ...,mk). For each of these values, the RNS has an independent

channel performing arithmetic over its corresponding channel modulus that contributes

to the overall correct computation. The dynamic range of a specific RNS system is

the product of its channels D =
∏k

i=1mi. Representing an integer in RNS is done by

keeping the remainders of an integer after it is divided by each channel modulus. For

an integer X, the RNS representation consists of as a set of residues written as

XRNS = [x1, x2, ...xk] = X mod mi for i ∈ [1, k]

where X is guaranteed to have unique representation in RNS form for as long as

0 ≤ X < D by the Chinese Remainder Theorem (CRT) [67]. The CRT states that if
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p, q are co-prime, the following set of equations

x = a mod p

x = b mod q

have only one unique solution for x mod pq. With this scheme of representation in

place, one can perform further operations on RNS numbers and retrieve integer values

after those results are complete.

Addition, subtraction, and multiplication are straightforward in an RNS. The

arithmetic x = a⊕ b between two RNS integers and where ⊕ is one of the operators

[+,−, x] can be performed as

XRNS = [x1, x2, ... xk] = [a1 ⊕ b1, a2 ⊕ b2, ... aN ⊕ bk] (3.9)

This set of operations can be performed exclusively and in parallel within each

individual channel to produce another RNS number that is the correct result as long

as the resulting computation still falls within the range [0, D − 1]. If an operation

returns a value outside of this range, the value will wrap with D and result in an

overflow. Taking advantage of overflow is initially appealing to achieve free modular

arithmetic within an RNS, however any prime modulus will not be representable as

the wrapping value because the dynamic range is a product. Signed representation

and arithmetic with these operations is possible. To include signed values, one must

assign a fraction of the dynamic range to cover negative numbers and shift all output

values. This is similar way to the wrapping of binary 2’s complement.

RNS is advantageous for this design because channel operations are smaller, carry-

free, and independent of one another compared to a standard NTT. The operations

needed in the system are also RNS-friendly as the butterfly operation involves mainly
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addition and subtraction. These operations are low level arithmetic on large bit-width

values and can be repeated without converting out of RNS. In traditional systems,

core arithmetic functions like multiplication have a high propagation delay due to

the carry’s involved in adding multiple partial products. RNS spreads this load over

multiple smaller multiplications and in parallel among fewer bits, only to be converted

back into integer (binary) form later for a usable answer.

With these benefits acknowledged, it should be noted that conversions to, and

especially from the RNS system are not efficient as they require several full resolution

multiplies, accumulates, and modular reductions. To make the system efficient, it

is important to remain in RNS form for an entire polynomial multiplication. The

treatment of RNS values when being converted conversion is discussed in Section

3.4.6. Additionally, arithmetic such as division, rounding, magnitude comparison,

and modular reduction are not straightforward in an RNS system so to retain RNS

form throughout a multiplier’s modular multiplication, an intelligent RNS modular

multiplication unit needs investigated.

Choosing the RNS moduli is also an important aspect of the hardware design for

the individual channel arithmetic. Properly chosen values turn many of the modular

operations into simplified logic. Enabling these improvements by selecting appropriate

moduli is discussed in Section 4.1. A review of the RNS system and its datapath

applications can also be found at [68].
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3.4.2 System RNS Initialization

Before usage, run-time for base extensions and RNS conversion can be decreased if

a few constants are derived from the moduli set mi = {m1,m2, ...mk} at instantiation.

The first of these constants are the dynamic range

D =
k∏
i=1

mi (3.10)

the dynamic range divided by each channel modulus

Di =
D

mi

(3.11)

and the modular inverse of that result with respect to each channel moduli mi.

D−1i = modinverse(Di,mi) (3.12)

These three constants are used in the convert-to-integer weight calculation for a

simple RNS. Using RNS in the NTT additionally requires the use of a Montgomery

reduction as explained in Section 3.4.3.

Ext. Constants =



∣∣D−1i ∣∣i = modinverse( D
mi
,mi)

|Di|j = D
mi

mod mj∣∣∣D̂−1j ∣∣∣
j

= modinverse( D̂
mj
,mj)∣∣∣D̂j

∣∣∣
r

= D̂
mj

mod mr∣∣∣D̂−1j ∣∣∣
r

= modinverse( D̂
mj
,mr)∣∣∣D̂j

∣∣∣
i

= D̂
mj

mod mi∣∣∣D̂∣∣∣
i

= D̂ mod mi

The above are found for i = {1, 2, ...k} and j = {k+ 1, k+ 2, ...2k}. The precomputed

constants from the Bajard extension include: |D−1i |i and |Di|j. For the Shenoy
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extension these are: |D̂−1j |, |D̂j|r, |D̂−1j |r, |D̂j|i, and |D̂|i. In the hardware design,

these values are saved in local memory at each base extension.

The software implementation of the RNS-based NTT polynomial multiplier finds

all of the above constants in the precomputation step of the program. They are then

saved as text files and used as parameters in the hardware implementation.

3.4.3 RNS Montgomery Multiplication in the NTT

RNS Montgomery Multiplication is used in the design’s RNS NTT to perform

reduced multiplication. There are multiple known methods to perform modular

reduction in RNS ( [60], [62], [69]) which include the core function classical modular

multiplication, the short word length modular multiplication using the look-up table

method, the RNS Barrett Reduction, the Sum of Residues method, and the RNS

Montgomery Multiplication. The modular multiplication utilized in the NTT is chosen

to be an RNS Montgomery Multiplication. Each of these methods are carried over from

a standard positional number system, with appropriate adjustments made to make

them RNS applicable. The look-up table method uses tables to reduce computational

requirements, however it is found to be slow and hardly implementable for larger

word lengths given the significant storage space making it a non-realizable choice.

The classical core function method attempts to execute the traditional reduction in

Equation 3.2 by solving for bX
M
c using the core function.

Unfortunately, the floor function requires knowing the relative magnitude of

numbers in RNS which is difficult and consequently requires the core function to

computationally intensive. For long word length RNS operations, the core function

method was found to be infeasible compared to the Barrett, Montgomery, and Sum
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of Residue methods. RNS Barrett reduction is performed by similarly finding the

reduction with Algorithm 4. While most of the operations can be simply performed

in RNS, it was found that delay for RNS Barrett is higher than RNS Montgomery

for larger than 20-bit width RNS modular multiplication. Sum of Residues worked

to find a partially reduced result that can then have bounds placed on it to achieve

optimization. An improvement to the Sum of Residues method can be found in [62]

and [70]. The algorithm was found to be the most competitive to RNS Montgomery

Multiplication in terms of speed, however it was highly inefficient in space for little

speed improvement. For these reasons, RNS Montgomery Multiplication was found to

be the most optimal with regard to speed and size. A detailed review of each method

can be found in [62].

3.4.3.1 Chosen Reduction Method

RNS reduction is performed in the software and hardware design using an RNS-

adjusted version of the Montgomery Multiplication with Bajard and Shenoy extensions.

It is based on the proposed algorithm by Bajard in [26], who created the approximated

base extension that is utilized in the algorithm. In the algorithm, the Montgomery

constant R is chosen to be the dynamic range, D, to achieve reduction. This comes

at the expense of not being able to express D in base 1, and therefore a second base is

needed. To allow conversion to a second RNS base in Montgomery multiplication, an

additional set of coprime moduli

m̂ = {mk+1,mk+2, ...m2k} (3.13)

and one redundant modulus mr needs to be chosen. To distinguish between bases,

the original moduli is referred to as base 1 and uses the i index while the additional
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moduli is referred to as base 2 and uses the j index as well as hats on variables.

Montgomery reduction requires two base extensions to be performed. These include

pre-computable constants that are explained in Section 3.4.2. The RNS Montgomery

Multiplication algorithm is described in Algorithm 5.

Algorithm 5: RNS Montgomery Multiplication algorithm
Input: A, B

1 X = A×B ; . in parallel for {m1,m2, ...mk}
2 Q = X ×−M−1 ; . in parallel for {m1,m2, ...mk}
3 Q̂ = baseExtension(Q)
4 Ẑ = (X̂ + Q̂M̂)D̂−1 ; . in parallel for {mk+1,mk+2, ...m2k,mr}
5 Z = baseExtension(Ẑ)
Output: Z = ABD−1 mod M

As seen in [62], RNS Montgomery reduction requires 4k + 2 multiplications and

k + 1 additions on the outside of the base extensions. RNS Montgomery reduction is

speed and size efficient for larger channels when compared to Barrett reduction and

Sum of Residues but at the cost of requiring arithmetic in an additional base. This

necessitates the use of an efficient base extension.

The simplest method of base extension is integer conversion, where a value is

reverse converted to integer form and forward converted to a new base. This is highly

inefficient. The Shenoy base extension and Bajard base extension are efficient means

of achieving extension without leaving RNS form. Shenoy [25] is an exact extension

which produces an RNS result of the true integer value when converted out of the

system. Bajard [26] is an estimated extension which produces an RNS representation

that is valid for future computation but offset by a certain calculable multiple of the

dynamic range. As seen later, a pairing of estimated and exact base extensions can be

used together to balance speed and resource consumption if that offset is changed to an

offset of the modulus. Other applications of RNS Montgomery multiplication can be
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found in [69] where a new algorithm and VLSI design for Montgomery multiplication

in RNS was suggested. The design also came with improved forward and reverse

conversion units. RNS Montgomery multiplication is also used in [71] where the

objective is to perform Modular exponentiation. The well documented report obtains

significant acceleration.

3.4.4 Bajard Base Extension from Base 1 to Base 2

The Bajard base extension [26] is used as the first extension in this design’s RNS

Montgomery multiplication and achieves increased speed and lower space by ignoring

the need for an exact extension. It is also seen in extension papers [59] and [72]. As

long as initial conditions are met, a slight offset α is allowed to appear in the output.

This falls within a certain integer multiple of the modulus and can be corrected in

the Shenoy base extension or at the end of repeated Montgomery multiplication. As

seen in [71] and Equation 3.14, a value of Q base extended using the Bajard extension

produced a result of Q̂.

Q̂ =

∣∣∣∣∣
k∑
i=1

∣∣qiD−1i ∣∣i |Di|j

∣∣∣∣∣
j

= Q+ αD (3.14)

Here Di is equal to D divided by moduli i and ||i is a reduction by channel i.

The calculation that occurs in between base extensions in the RNS Montgomery

multiplication changes this offset by a factor of the dynamic range to an offset of

solely a scaled modulus. Inclusion of the offset factor is expressed as the following.
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Z = (X +Q′M)D−1 (3.15)

= (X +QM + αDM)D−1 (3.16)

= (X +QM)D−1 + αM (3.17)

Now that the offset is a multiple of the system modulus the calculation can

continue with congruence. However, an exact extension is needed on the back end of

the Montgomery multiplication because the offset turns into a multiple of D in the

second base and that removes congruence when only dealing with a system modulus

M . The algorithm for the Bajard base extension is the following:

Algorithm 6: Bajard base extension algorithm
Input: Ai in {m1,m2, ...mk}

1 σi = Ai × |D−1i |i ; . in parallel for {m1,m2, ...mk}
2 t = 0
3 for i = 1,...k do
4 t = (t+ σi × |Di|j) ; . in parallel for {mk+1,mk+2, ...m2k,mr}
5 Aj = t

Output: Aj in {mk+1,mk+2, ...m2k} and mr

Bajard takes k2+2k multiplications and k2+k additions. The initial conditions for

Bajard are that (k+2)2M < D and (k+2)M < D̂. The output is then Z < (k+2)M ,

a certain multiple of the modulus no greater than the number of moduli + 2.

3.4.5 Shenoy Base Extension from Base 2 to Base 1

The Shenoy base extension is used as the second extension in this design’s RNS

Montgomery multiplication algorithm and was presented in [25] by Shenoy and

Kumaresan. It utilizes an extra moduli in the original base to produce an exact
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extension into the new base. When used in combination with the Bajard extension,

the extra moduli produced in the forward extension can be used as the redundant

moduli required in the Shenoy extension. It obtains slightly less efficient performance as

the Bajard extension but ensures a usable result on the output of the RNS Montgomery

Multiplication unit. The Shenoy unit is similar to the Bajard unit in that it relies on

the Chinese Remainder Theorem, except the offset α is fully calculated so it can be

removed.

Algorithm 7: Shenoy base extension algorithm
Input: Aj in {mk+1,mk+2, ...m2k} and mr

1 Ej = Aj × |D̂−1j |j ; . in parallel for {mk+1,mk+2, ...m2k}
2 t = 0
3 for j = k + 1, k + 2, ...2k do
4 t = t+ Ej × |D̂j|r
5 β = |D̂−1|r × (t− Aj[2k]) mod mr

6 t = 0
7 for j = k + 1, k + 2, ..2k do
8 t = t+ Ej × |D̂j|i ; . in parallel for {m1,m2, ...mk}
9 ti = t

10 Ai = (ti +mi)− (β × |D̂|i) mod mi ; . in parallel for {m1,m2, ...mk}
Output: Ai in {m1,m2, ...mn}

Shenoy takes k2 + 3k+ 1 multiplications and k2 + 2k+ 1 additions. The redundant

moduli mr must be ≥ n and similarly coprime to the remaining moduli in the two

bases. The output of the algorithm is then the exact conversion from the input base

to output base.
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3.4.6 RNS Forward and Reverse Conversion

RNS conversion is a functional block on the outside of this design’s RNS-based

NTT unit which is needed to perform the conversion to and from RNS before and after

the negative wrapped convolution begins. As mentioned in earlier sections, forward

conversion from a binary integer X to XRNS is performed as

xi = X mod mi (3.18)

This reduction has the benefit of being implementable in parallel over k channels

and is reduced only by an wch-wide modulus mi, however it still suffers in overhead

because X is the size of the original non-RNS polynomial elements and consequently

of size dlog2Me. To compare to the standard channel modular multiplication in

RNS, RNS operations only take a 2dlog2mie bit input and reduces it by a dlogmie

bit channel modulus. To decode an RNS value XRNS from RNS representation

{x1, x2, ...xk} via the Chinese Remainder theorem, Equation 3.19 is used.

X =

∣∣∣∣∣
k∑
i=1

Di|D−1i |i × xi

∣∣∣∣∣
D

(3.19)

This computation includes several large multiplications and a summation. This can

be simplified by precomputing conversion weights for each channel. These weights can

be interpreted as the i integer values found when setting the RNS system to 1|0|0|...,

0|1|0|... and up to ...0|0|1.

Wi = (Di × |D−1i |i) mod D (3.20)

Now replacing the precomputed constants in the reverse conversion equation, we have

X =

∣∣∣∣∣
k∑
i=1

Wi × xi

∣∣∣∣∣
D

(3.21)
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These steps offer small precomputation and simplification, however reverse con-

version still introduced significant overhead into RNS-based designs because of the

log2(D) × log2(D) multiplication repeated nk times for one polynomial. There are

efforts to perform this deconverison efficiently [73]. These offer speed improvements

but often rely on specific moduli which limits flexibility.

This design uses the RNS conversion before and after the negative wrapped

convolution to convert the RNS polynomial to and from integer form. By maintaining

RNS throughout the computations, this design avoids performing forward and reverse

conversion in the multiplication algorithm. To accomplish this, memory is initialized

with RNS values via the RNS conversion unit. After the algorithm has been completed,

the values are deconverted using values of Wi that are precomputed in the software

version of the design.

3.5 Processing with the Number Theoretic Transform

The core computational instrument in this design of an RNS-based polynomial

multiplier is the Number Theoretic Transform (NTT). The NTT is a linear transform

function that maps an input integer vector A ∈ ZnM to another similar vector Z ∈ ZnM

according to the following equation:

Z[i] =
n−1∑
j=0

A[j]ωijn mod M (3.22)

for i = 0, 1, ...n− 1. The NTT is equivalent to an integer version of the Discrete

Fourier Transform (DFT), with the complex exponential basis function e−i2π/n being

replaced by the integer-valued n-th root of unity ωn and with values kept in the range

{0,M − 1} via a modular reduction. In number theory, this is equivalent to saying
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the DFT is taken over the field of complex numbers while all results of the NTT

remains in a ring of integers ZM . This is beneficial in hardware and cryptography

because it removes the need for complex and floating point arithmetic and prevents

rounding errors. Setting up the NTT relies on three parameters: input vector length,

the modulus, and the n-th root of unity.

To perform the inverse NTT (INTT), only slight variation to the equation needs to

be made as seen in Equation 3.23. In the INTT, the powers of the n-th root of unity

need to be changed to its modular inverse and the output needs uniformly scaled by

the modular inverse of the transform size. This is generally produced by a Hadamard

product.

A[i] = n−1
n−1∑
j=0

Z[j]ω−ijn mod M (3.23)

for i = 0, 1, ...n−1. With these two equations in consideration, the general classical

algorithm for the NTT and INTT is given in Algorithm 8. The only changes between

the NTT and INTT are in the input data and final Hadamard product with n−1,

which are both preset once the NTT parameters are known.

While the classical NTT function serves as a reference for other NTT algorithms,

it includes two loops that iterate through the entire input vector and is consequently

computed in O(n2) time and is not efficient enough for large transform sizes. The

classical algorithm needs to be used when the size of transform is composite. To

improve upon the classical algorithm, a radix-2 butterfly NTT with RNS arithmetic is

adopted in this design. This butterfly structure can be utilized to achieve O(n log n)

complexity as long as the NTT input length is a power of 2. The algorithm is presented

in Algorithm 9.
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Algorithm 8: Classical NTT and INTT algorithm
Input: vector A = {A1, A2..., An} ∈ ZnM
Output: vector Z = {A1, A2, ..., An} ∈ ZnM
Data: modulus M ∈ Zprime, vector length n ∈ Z, root of unity ω = ωn if

NTT or ω = ω−1n for INTT, arithmetic performed mod M
1 for i = 0; i < n; i = i+ 1 do
2 sum = 0 ;
3 for j = 0; j < n; j = j + 1 do
4 sum+ = ωij × A[j]

5 Z[i] = sum ;

6 Z = bitreverse(Z) ;
7 if INTT then
8 Z = n−1Z

A ?log2(M)?

Twid ?log2(M)?
2?log2(M)?

+
?log2(M)?mod M

Y?log2(M)?

Z?log2(M)?-
x

B ?log2(M)?

Figure 6. NTT butterfly for a standard NTT

There are three core loops in the butterfly structure which are the stage, step

size, and block number. The NTT is broken into log(n) stages. In the first stage,

the data is broken into groups of 2 and the butterfly operation is performed on each

group (on data that is spread by 1). In the next stage, the group size and spread

is doubled, grouping every 4 values of data with the butterfly now being performed

twice per group (on the data that’s spread by 2). By repeating this with group sizes

of increasing powers of two, by the log(n)-th stage there will be a single group of size

n that performs the butterfly on elements that are n/2 apart and will produce the
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Algorithm 9: Radix 2 butterfly NTT and INTT algorithm
Input: vector A = {A1, A2..., An} where Ai = {a1, a2, ...ak} ∈ Zkmi

in RNS
Data: modulus M ∈ Zprime, vector length n ∈ 2Z,root of unity ω = ωn if

NTT or ω = ω−1n for INTT, arithmetic performed mod M
1 if INTT then
2 ω = ω−1n
3 else
4 ω = ωn

5 A = bitReverse(A) ; . via index reversal algorithm
6 size = 2
7 count = 0
8 while size <= n do
9 halfsize = size/2

10 tablestep = n/size
11 for i = 0; i < n; i+ = size do
12 k = 0
13 for start = i; start < i+ halfsize; start + + do
14 end = start + halfsize
15 L = A[start]
16 R = (A[end]× powtable[k]) mod M ; . via RNS ModMult
17 A[start] = (L+R) mod M ; . via RNS ModAdd
18 A[end] = (L+M −R) mod M ; . via RNS ModSub
19 k+ = tablestep

20 size = size× 2

21 Z = A
22 if INTT then
23 Z = n−1Z ; . via RNS Hadamard

Output: Z = NTT (A) where Zi = {z1, z2, ...zk} ∈ Zkmi
in RNS

final NTT result. Summing up the number of butterfly operations on the diagram,

it is clear that from a consistent n/2 butterflies per stage and log n stages with a

butterfly that contains a sequential multiplication and addition, the final complexity

is O(n log n).

The radix-2 butterfly NTT is used in this design to perform the NTT and INTT

with butterfly units. It is combined with RNS arithmetic in its addition, subtraction,
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and modular multiplication blocks and it is used inside the design’s RNS negative

wrapped convolution to produce a full RNS-based polynomial multiplication.

3.5.0.1 Polynomial Multiplication with NTT

The NTT-based polynomial multiplication algorithm in this design makes use

of two NTTs and one INTT to multiply polynomials in O(n log n) time. Given two

polynomials A and B, both polynomials are first zero padded and then the NTT of

each are taken and the corresponding point-by-point terms are multiplied. The INTT

of the resulting vector is then taken, producing the polynomial multiplication result

and skipping the need for a longer convolutional multiplication.

A~B = INTT (NTT (A)×NTT (B)) (3.24)

The NTT multiplication approach is comparable to the FFT multiplication method,

however standard polynomial multiplication algorithms in lattice-based schemes use

the Number theoretic transform (NTT) instead of the FFT. In [61], cryptography and

FHE multiplication methods for large integers are tested on an FPGA platform and

it was found that an NTT-Karatsuba-Schoolbook variant is best for large integers.

Modular multiplication and modular exponentiation tests in hardware are performed

in [46] show similar NTT success for large bit operands.

The NTT based multiplication method is the most popular hardware implementa-

tion due to it’s minimal computational complexity. In 2012, the first full hardware

implementation of a LWE-based cryptosystem was designed and their paper includes

efficient modules for performing both the NTT and discrete Gaussian sampling in

hardware [1]. To speed up polynomial reduction, the authors choose a cyclotomic

polynomial in the form f(x) = xn + 1 with n being a power of 2. Their hardware
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improvements are able to be extended to numerous encryption and signature schemes.

They were able to obtain speed gains of 200 and 70 times for encryption and decryption

using a 0.5 KB secret key and 1 KB public key polynomials. The authors argue

that they chose the NTT instead of other listed polynomial multiplication methods

because the algorithm was able to be parallelized and could make use of the form of

polynomial, but they also claim that other multiplication algorithms may be faster if

given practical parameters.

The proposed design applies the above procedure and improves upon it by applying

the Negative Wrapped Convolution as in [21]. While NTT multiplication is highly

efficient, the doubling of input size as a result of zero padding requires space. Negative

Wrapped Convolution allows the initial polynomial size to remain at their original

size leading to less memory access and faster execution. This is discussed in detail in

Section 3.6.1.

3.5.1 System NTT Initialization

The proposed design performs NTT initialization in the software implementation

to validate and find input parameters. The NTT relies on input parameters of the

polynomial length n and the minimum operating modulus Mmin. The length n is

generally a power of two for lattice-based schemes and is necessarily so for a radix-2

butterfly structure. The operating modulus has several criteria it must follow and

is discussed in Section 3.5.2. The n-th root of unity also has criteria and needs

precomputed as discussed in Section 3.5.3. Both parameters remain constant for any

one system but are allowed to vary based on the cryptographic scheme being used.
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3.5.2 Modulus Validation

At the NTT’s instantiation in this design’s software implementation, the minimum

modulus is validated to ensure it meets the conditions to be the working modulus. To

be valid, the working modulus M must be prime, larger than Mmin, and one higher

than some integer multiple k of the vector length n:

M ≥Mmin (3.25)

factorize(M) = {1,M} (3.26)

M = kn+ 1 (3.27)

For example, attempting to use a minimum modulus ofMmin = 23 and a vector length

of n = 8, a new working modulus will need to be generated to satisfy all conditions.

Testing for primes that are near multiples of the vector length, the next usable prime

modulus M = 41 must be used as M = kn+ 1 for k = 5.

The proposed design performs modulus validation in the precomputation stage

of the software implementation of the RNS-based NTT polynomial multiplier. The

program is provided with a minimum modulus and via the validation conditions,

either finds a new valid modulus or accepts the given minimum modulus as working

modulus. This is performed at parameter initialization and before any polynomial

multiplication is performed.

3.5.3 Finding n-th Root of Unity

After verifying the modulus conditions, the proposed design’s modular n-th root

of unity ωn is found in the software implementation using the polynomial length and
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working modulus. This is also when the n-th root’s modular square root φ2 = ωn

and their corresponding modular inverses with respect to the working modulus are

found and saved in a table of the NTT’s twiddle factors of increasing powers of ωn

and φ. The n-th root of unity’s distinctive quality is that when raised to powers of

{1, 2...n}, it wraps through n values in ZM and has the result ωnn = 1 mod M at the

last index. This can be paralleled to the DFT, where its n-th root of unity e−i2πm/n

moves through the unit circle and wraps to 1 upon reaching m = n. This can also be

thought of as a value where:

ωmn = 1 (mod M) for m = n

ωmn 6= 1 (mod M) for 0 ≤ m < n

For an n-th root of unity to be used in the NTT, it must also be a primitive root.

A primitive root r mod M is an integer where every number a that is relatively prime

to M has a solution g in the equation rg = a (mod M). In the case of a prime M

and in the case of the NTT, this means that all values in ZM will be hit with some

power of r (despite possibly being hit out of order). Finding a primitive root is not

simple, however it can be shown that all prime numbers can be guaranteed to have an

existing primitive root. A primitive root r of the ring ZM will be an n-th root and

valid candidate for ωn as long as M = bn+ 1 for some integer b. This is by virtue of

the equation:

aM−1 = 1 (mod M) (3.28)

which holds for all integers a because M is assumed to be prime and M − 1 is

consequently a multiple of 2. Setting M − 1 = n, we have

an = 1 (mod M) (3.29)
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and we automatically see that a will consequently be both an n-th root and a primitive

root on the condition that the prime modulus M (minus one) is a multiple of the

transform size n. As an example of a primitive n-th root of unity, assume values of

n = 4 and M = 5. With a guess of ωn = 2, powers of ωn cover all relative primes to

M as

20 ≡ 1, 21 ≡ 2, 23 ≡ 3, 22 ≡ 4 (mod 5) (3.30)

and ωn is therefore a primitive root. As M and n were chosen to satisfy Equation

3.28, it is also the case that

ωnn ≡ 24 ≡ 1 (mod 5) (3.31)

so ωn is therefore a valid primitive n-th root of unity. The n-th root can be found by

using a generator integer Θ. The generator must satisfy two conditions that purely

rely on the working modulus:

Θx ≡ 1 (mod M)

Θx/y 6≡ 1 (mod M)

Here x = M − 1 and y ∈ {prime factors of x}. A usable generator is solved by

guessing at values of Θ until its modular exponentiation is the only power congruent

to one and its factors are not congruent. The n-th root of unity is then found simply

with the equation ωn = Θ
x
n .

The implementation of the above n-th root of unity solver is found in the software

precomputation component of this thesis. The resulting value for ωn is used for

the remaining RNS-based NTT polynomial multiplication in both the software and

hardware implementation.
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3.5.3.1 Example: Solving for n-th Root of Unity

As an example in solving for ωn, assume the following NTT parameters of vector

length n = 4 and modulus M = 13.

First assign values to x and y:

x = M − 1 = 12

y = factor(x) = {2, 6}

Guess values of Θ. Here we try Θ = 2 on the two conditions involving x and y:

Θx = 212 = 4096 ≡ 1 (mod 13)

Θy1 = 22 = 4 6≡ 1 (mod 13)

Θy2 = 26 = 64 6≡ 1 (mod 13)

These conditions are true so use equation for n-th root to solve:

ωn = Θ
x
n

= 212/4 = 9

For more information on the NTT or on its parameters, see [74] and [75].

3.6 Outer Layer Control

The proposed design combines the mentioned modular functions, RNS, NTT, and

system initialization in an outer layer algorithm to complete the RNS-based NTT

polynomial multiplier. A negative wrapped convolution block is used to multiply the

two input polynomials. RNS conversion is responsible for converting values to and from
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RNS before and after negative wrapped convolution is performed. Lastly, a memory

unit is in charge of storing the input polynomials, negative wrapped convolution

twiddle factors, and RNS conversion weights. The negative wrapped convolution is

explained here, while the RNS conversion is discussed in Section 3.4.6 and memory is

discussed in Section 4.8.

3.6.1 Negative Wrapped Convolution Procedure

Negative wrapped convolution [13] (NWC) is used in this thesis as the outer

algorithm to control multiplying two polynomials A and B. Such an approach is

beneficial because it prevents NTT input polynomials from needing zero padding. The

equation for the NWC is given in Equation 3.32.

ci =
i∑

j=0

ajbi−j −
n−1∑
j=i+1

ajbn+i−j (3.32)

In the NWC, the NTT is called three times with Hadamard products being performed

on intermediate results and scaling factors. A designer can choose whether to use

a single NTT unit or two NTT units to perform the convolution. If two units are

chosen, the two forward NTTs found in the NWC can be performed in parallel and

will significantly cut back timing at the expense of doubling the space taken on the

FPGA and having one unit underutilized for the inverse NTT.

Choosing one unit means all NTTs will need to be sequential. For the sake of

hardware space and easier comparison/testing, the hardware implementation of the

polynomial multiplication is an individual NTT unit. The algorithm for the NWC is

given in Algorithm 10.

The NWC of two vectors can be shown to be equivalent to a polynomial multi-
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Algorithm 10: NTT polynomial multiplication via negative wrapped convo-
lution
Input: vectors A = {a1, a2..., an}, B = {b1, b2..., bn}
Data: modulus M , vector length n. Precomputed: φ = ω2

n and φ−1 with
respect to M

1 for (i = 0; i < n; i = i+ 1) do
2 āi = aiφ

i mod M
3 b̄i = biφ

i mod M

4 Ā = NTT (ā)
5 B̄ = NTT (b̄)
6 for (i = 0; i < n; i = i+ 1) do
7 Z̄i = ĀB̄ mod M

8 z̄ = INTT (Z̄)
9 for (i = 0; i < n; i = i+ 1) do

10 Z = z̄iφ
−i mod M

Output: vector Z = {z1, z2..., zn} = A×B mod (xn + 1)

plication in the xn − 1 ring, meaning it gets modular reduction for free. It requires

two NTT’s and one inverse NTT, with the input and output vectors scaled by powers

of φ = ω2
n and a Hadamard product between the forward and reverse NTT’s. As in

this design, Pöppelmann looked to use the NWC in [7] to minimize hardware costs on

a lattice accelerator. Using the NWC saves many operations compared to the zero

padding NTT multiplication. By automatically getting reduction in the algorithm, it

saves a final reduction by mod(xn + 1) that’s needed in the zero padded version. As

seen in Table 3, the number addition and subtractions is more than halved along with

great reductions in the number of multiplies and general reductions by M .

Operation Zero Padding Negative wrapped convolution
Add/subtract 6n log2 2n 3n log2 n

Multiply 32n log2 2n+ 4n (3/2)n log2 n+ 5n
modM 9n log2 2n+ 4n (9/2)n log2 n+ 5n

Table 3. Polynomial multiplication operation count comparison between zero padding
and negative wrapped convolution with data from [13].
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3.7 Proposed Design

The full RNS-based NTT polynomial multiplier design is presented in Figure 7

with the corresponding algorithm in Algorithm 11. Starting with a binary represented

polynomial loaded into memory, the polynomial is first converted to RNS in the

forward converter in n cycles. This converts the polynomial into RNS representation

in Base 1, Base 2, and the redundant modulus. After this conversion, the RNS

Negative Wrapped Convolution begins and performs the combination of Hadamard

products and RNS-based NTTs. This results in the full polynomial multiplication in

RNS form. this can then be recovered from RNS form with the reverse converter and

saved back into memory. The flow diagram highlights the critical components in the

software design. The hardware implementation would handle the same structure but

run all computations through a single NTT unit, Hadamard unit, and conversion unit.

Forward 
Converter

RNS Negative Wrapped Convolution

Hadamard 
Product x 2

NTT x 2 

Hadamard 
Product

INTT 

Hadamard 
Product

Reverse 
Converter

Memory

Figure 7. Full RNS-based NTT polynomial multiplication procedure via negative
wrapped convolution.

For FHE schemes, the proposed design targets polynomial length n = 4096,
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Algorithm 11: RNS-based NTT polynomial multiplication via negative
wrapped convolution
Input: vectors A = {a1, a2..., an}, B = {b1, b2..., bn}
Data: modulus M , vector length n. Precomputed: φ = ω2

n and φ−1 with
respect to M , Bajard and Shenoy constants

1 A = RNSforwardConverter(A)
2 for (i = 0; i < n; i = i+ 1) do
3 āi = aiφ

i mod M ; . via RNS Hadamard
4 b̄i = biφ

i mod M ; . via RNS Hadamard

5 Ā = NTT (ā) ; . via RNS NTT
6 B̄ = NTT (b̄) ; . via RNS NTT
7 for (i = 0; i < n; i = i+ 1) do
8 Z̄i = ĀB̄ mod M ; . via RNS Hadamard

9 z̄ = INTT (Z̄) ; . via RNS INTT
10 for (i = 0; i < n; i = i+ 1) do
11 Z = z̄iφ

−i mod M ; . via RNS Hadamard

12 Z = RNSreverseConverter(Z)
Output: vector Z = {z1, z2..., zn} = A×B mod (xn + 1)

modulus bitwidth w = 128, RNS channels k = 4, and channel width wch = 32. For

lattice schemes, this can be lowered to polynomial length n = 1024, modulus bitwidth

w = 32, RNS channels k = 4, and channel width wch = 8. These are given in Table 4.

Scheme Polynomial Length Coefficient size RNS channels Channel width
Lattice 1024 coefficients 32 bits 4 8 bits
FHE 4096 coefficients 128 bits 4 32 bits

Table 4. System parameters for the proposed RNS-based NTT polynomial multiplier.

3.7.1 Computational Complexity

Four Hadamard products takes a total of 4nk multiplications. Three NTTs take

3n/2 log(n) cycles to complete so the butterfly addition and subtraction will require
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a total of 2k × 3n/2 log(n) operations. The RNS Montgomery Multiplication takes

five k channel multiplications, two k channel additions/subtractions, and 2k2 + 5k + 1

multiplications and k2 + 3k + 1 additions for the Bajard and Shenoy extensions

respectively. The INTT requires an extra nk channel Hadamard product. The

total multiplications in the RNS-based NTT polynomial multiplication is therefore

3n/2 log(n)(2k2 + 10k+ 1) + 4nk multiplications with the total additions/subtractions

being 3n/2 log(n)(k2+7k+1). For these estimates, keep in mind that the RNS channel

width k is generally very small while the polynomial length n is large (k = 4, n = 4096

in this design). Also keep in mind that RNS operations are ran in parallel and the RNS

butterfly elements are pipelined and ran simultaneously, making the target number of

cycles to complete an NTT closer to
∑m

i=0 2i for an m = nstages = log2(n) sequential

butterfly system as seen in Equation 4.1 in Section 4.2.1.

With this established RNS-based NTT polynomial multiplier design and targeted

parameters, Chapter 4 will discuss the hardware implementation of the NTT unit and

the FGPA implementation results.
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Chapter 4

HARDWARE IMPLEMENTATION

Hardware implementation of the RNS based NTT polynomial multiplier is impor-

tant as commercial processors can not support the high throughput that is required

in lattice-based cryptography and FHE schemes. Systems in cloud computing and

Internet-of-Things (IoT) require an optimized hardware approach that offers ad-

justable, low latency, energy efficient, and tamper resistant security. Cloud computing

requires ASIC-like speed and power efficiency to be achieved on large cloud computers

to encrypt and decrypt for large amounts of data at a reasonable cost. IoT devices, on

the other hand, generally operate on scaled-back hardware and consequentially have

restrictions on energy and cost that make achieving speed with larger key sizes difficult.

In this chapter, details of hardware implementation of the RNS-based polynomial

multiplication is explained. The hardware building blocks and integrated design are

implemented on a Xilinx Artix-7 (xc7a200tlffg1156-2L) for estimated timing, power,

and sizing. The device contains 1156 IO, 500 IOB, 134600 LUT, 269200 FF, 365

BRAM, 740 DSP.

4.1 Choosing Hardware-friendly Moduli

There are multiple valid primes and co-primes to use when determining RNS

moduli and the choice of them varies the core channel hardware in an RNS system.

Choosing moduli based on bit-width [68] is an option that allows equally distributed

channel widths in the RNS. This is more flexible and leads to easier design of RNS

64



cores. Choosing moduli on either side of powers of 2 (2w, 2w + 1, and 2w − 1) is an

option suggested in papers such as [26]. This has the advantage of nice mathematical

properties for hardware reductions and conversion as reductions modulo {2w, 2w +

1, 2w − 1} can be realized with bit-shifts and simplified logic operations that are

optimized for specific moduli sets ([76], [77], [78], [79], [80], [81] ). This thesis uses a

moduli set of 9 channels with moduli of size wch. The original RNS base (Base 1) uses

the first 4 of these moduli, with the extended base (Base 2) and redundant modulus

that are needed for the RNS Montgomery Multiplication using the remaining 4 and 1

moduli respectively.

Chosen RNS moduli =



m1: 4294967291 base 1

m2: 4294967279 base 1

m3: 4294967231 base 1

m4: 4294967197 base 1

m5: 4294967189 base 2

m6: 4294967161 base 2

m7: 4294967143 base 2

m8: 4294967111 base 2

mr: 4294967087 redundant modulus

These moduli are chosen in the form 2w − k as to select the bit-width of each

channel by setting w = wch and to adjust to the nearest prime with an offset k. An

advantage of taking these primes is that they offer the largest dynamic range by sitting

close to the max binary value of an w-bit channel while not requiring a channel of

(w + 1)-bits. They also allow a design to include a large number of moduli if needed,

as the set {2w, 2w + 1, and 2w − 1} only offers speed advantages when all parallel
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channels achieve the optimizations of a 2w bit-shift. Primes with this structure can

either be generated for low n or found at [82] where w, k for less-than-power-of-two

primes of < 400 bits are listed.

4.2 RNS-based NTT unit

The RNS-based NTT unit is based on the RNS-based NTT described in Section

3.5. It contains m = 4 daisy chained butterfly units, operating in parallel with data

loaded serially at each clock cycle. The unit additionally has twiddle factor memory

routing factors to each unit and an intermediate buffer to capture the intermediate

NTT result after every four stages. Data is stored in both RNS bases because the

RNS Montgomery Multiplication requires inputs in both bases. This results in a

total datapath width of wD = 9wch for all arithmetic and memory outside of the

modmult_RNS unit. Connected to the first input and output of each butterfly unit is

a FIFO which stores varying block sizes of the single stream of input values. The use

of FIFO’s accomplishes the three loop functionality of the radix-2 algorithm while

only loading one value into the butterfly at a time. When the transform size is larger

than m, multiple passes through the butterfly network are needed and the FIFO

lengths are adjusted to the next power of 2 lower until the computation finishes. This

structure benefits from a decimation in frequency approach as it allows the first FIFO

to start with a size n/2.

Each butterfly unit is responsible for one stage of the NTT by adjusting the FIFO

length and controlling input twiddle factors. The hardware architecture in Figure 8

can calculate the NTT in sets of 4 stages. If the NTT length is not a multiple of 4,

remaining data can be bypassed at the cost of several clock cycles. For any number of
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Figure 8. RNS-based NTT unit. Contains four chained butterfly units with bypass
FIFOs and polynomial buffer to hold intermediate NTT result.

stages over 4, the buffer holds all data until the butterflies have completed processing

for that set. This prevents errors due to data being bypassed too early. The size of

the buffer is equal to the length of the initial polynomial. The polynomial memory

block can not be used as a buffer because bypasses allow the fourth and final butterfly

to begin calculation before the first butterfly ends calculation and values may be

overwritten early.

4.2.1 FIFO and Buffer Sizes

Since the NTT butterfly computation units often have to be mapped to a small

number of hardware NTT butterfly units, computation using a variable number of

sequentially chained butterfly units and changing FIFO sizes should be understood.

Every RNS-NTT butterfly has a corresponding FIFO of size `i = 2i for some stage

0 ≤ i ≤ nstages − 1, where the number of stages in the size n RNS-based NTT is

nstages = log2(n). The sequential butterfly operation performs three stages until input

data is no longer available. These are the bypass, computing data, and final bypass

and take `i cycles for each stage each time they’re performed. The butterflies use the
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first `i cycles to fill all of the FIFO with half of the input vector. This is followed by `i

cycles to calculate the butterfly between all of the FIFO data and the second half of

the input data, loading YRNS into the FIFO again and ZRNS into the next butterfly.

This is followed by a final `i cycles to bypass the saved computed data to the next

butterfly for processing. In this cycle, input data is either bypassed to the FIFO again

if the previous butterfly still has data to pass to it or the butterfly finishes operating.

Butterfly 1
buffer: n/2

Butterfly 2
buffer: n/4

Butterfly 3
buffer: n/8

Butterfly 4
buffer: n/16

n + n/2

3n/2

Cycle 7n/4

15n/8

31n/16

  0

butterfly 1 butterfly 2 butterfly 3 butterfly 4

Computing Idle

n/8

n/16

n/4

Figure 9. Timing diagram for a sequential 4-butterfly NTT unit. Each butterfly
performs a bypass-compute-bypass routine taking `i cycles for each of the three steps.
When a butterfly is finished, the following butterfly has `i cycles to complete before
finishing.

If the FPGA is very large, a size n NTT that uses m = nstages butterflies to

complete the NTT in one pass can be housed. In that case, no extra buffer would be

required and returning values can be sent directly to the polynomial memory. The

total number of cycles taken by the sequential RNS-NTT with m = nstages butterflies

takes can be found by looking at the clock delay between the first value loaded into

the first FIFO and the final FIFO bypassing the final value. It can be seen that when

the first sequential butterfly finishes its last bypass-calculate-bypass cycles, the next
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butterfly only has its last `i bypass cycles to finish before similarly being finished.

Therefore, the total cycles it takes for an m = nstages = log2(n) sequential butterfly

system to complete an n sized NTT with buffer sizes `i is given as

n+
m−1∑
i=0

`i =
m∑
i=0

2i (4.1)

For a transform size of n = 4096, this equals 8191 cycles beating the standard

processor complexity of n log(n) = 49152. This experiences some extra cycles compared

to the estimated n/m log(n) = 4096 cycles for m parallel butterfly units that aren’t

serially chained due to the bypassing of FIFO values.

m `a, `b First Storage Cycle First FIFO Availability Required Buffer size

1 `, `/2 ` 2`+ `/2 `+ `/2
2 `, `/4 `+ `/2 2`+ 3`/4 `+ `/4
3 `, `/8 `+ `/2 + `/4 2`+ 7`/8 `+ `/8
... ... ... ... ...
m `, `/2m c =

∑m
i=1 1/(2i−1)` 3`− c/2 3`− 3c/2

Table 5. FIFO buffer sizes for large NTT systems (m < nstages) where a butterfly
needs reused. Found for m butterflies, first and second pass FIFO lengths `a, `b, the
cycle count when buffer storage is needed, cycle count where the FIFO becomes
available again, and the corresponding buffer size.

An m butterfly system where m < nstages requires a buffer to store data before

the first FIFO can begin calculating. The generalization for buffer size can be seen

in Table 5. The first storage requirement comes when the last butterfly finishes its

first bypass and starts computing. This occurs after data has traversed through each

preceding butterfly via their first length `i bypass cycles. The FIFO is available for

reuse after it has space for data and will provide it with no more delay than `b, the

second FIFO size. This means its available for loading after it has spent `a − `b cycles

of its last bypass, hence the second value in the First FIFO available column. The
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buffer size is then the difference in clock cycles between the first storage requirement

and first FIFO availability. The generalized buffer size can be given by the equation

B = 3`− 3/2
m∑
i=1

1/(2i−1)` (4.2)

= 3/2`× (2−
m∑
i=1

1/2i−1) (4.3)

where ` = n/2 is the length of the first FIFO and m butterflies are used in an NTT

system where m < nstages. In this design, FHE parameters ` = 2048 and m = 4

suggesting an optimal buffer size of

B =
3

16
` = 384 (4.4)

The total FHE buffer space can then be found using the RNS channel width wch and

channel count k to be

B × wch × k = (384)(32)(9) = 108Kb (4.5)

Summing the largest butterfly FIFOs of sizes 1/2, 1/4, 1/8, and 1/16 as ratios of n,

the total required FIFO space is found to be

(
∑

sizes)× n× wch × k = (.9375)(4096)(32)(9) = 1.055Mb (4.6)

For lattice parameters we have ` = 512 and m = 4 suggesting an optimal buffer size of

B =
3

16
` = 96 (4.7)

The total lattice buffer space required is then

B × wch × k = (96)(8)(9) = 6.75Kb (4.8)

Summing the FIFOs and applying parameters from lattice schemes sets the required

FIFO space to be

(
∑

sizes)× n× wch × k = (.9375)(1024)(8)(9) = 67.5Kb (4.9)
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4.3 RNS Butterfly Unit

The RNS-based NTT butterfly unit is based on the radix-2 NTT butterfly unit in

Section 3.5 and shown in Figure 10. It holds the modular multiplication unit realized

with the RNS Montgomery Multiplication and the butterfly addition and subtraction

units realized with RNS arithmetic. Details of the RNS Montgomery Multiplication

unit are included in Section 4.4.

ARNS

BRNS

twidRNS

ZRNS

YRNS

modmult_RNS

Add_RNS

Sub_RNS

SR

Figure 10. NTT butterfly unit. Contains the modmult_RNS unit, Add_RNS unit,
Sub_RNS unit, intermediate registers, and the bypass line.

Method k wch d (ns) f (Mhz) P (W) LUT FF DSP

Fully pipelined 9 32 21.257 47.043 0.639 13239 4010 330

Table 6. RNS butterfly implementation results for fully pipelined unit for k RNS
channels with channel bitwidth wch, propagation delay d, operating frequency f,
power P, and LUT/FF/DSP FPGA resources. Implemented on Artix-7
(xc7a200tlffg1156-2L)

The RNS addition and RNS subtraction subtraction units is shown in Figure 11.

These contain the k parallel channel operations that perform an RNS addition or

subtraction. This design uses channel counts of k = {4, 5, 9} to support arithmetic

in base 1, base 2 with mr, and all bases. The addition units are realized as wch-bit
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adders, where wch is again the bitwidth of each RNS channel. In the case of the chosen

design, wch = 32 bits. The result of the channel additions produce a wch + 1-bit result

which is then reduced back to w-bit by the constant modulus blocks. The reduction

units for each moduli can be individually optimized according to methods in Section

4.7. The subtraction unit first uses channel additions to add the channel moduli to

input ARNS. This ensures the subtraction is positive and will result in an accurate

result for CRNS as the channel is reduced by the channel moduli before a final result

is produced.
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Figure 11. Hardware implementation of Add_RNS and Sub_RNS units. Contains k
modular arithmetic channels performing independent 32-bit arithmetic.

The butterfly unit includes intermediate registers that are placed in between critical

elements to shorten the critical path through the butterfly unit. The add_RNS and

sub_RNS blocks are relatively fast compared to the modmult_RNS which contains the

highly expensive base extensions and several addition, subtraction, and multiplication
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blocks. To reduce this critical path through the modmult_RNS block, another set of

t intermediate registers needs to be placed inside the module. These internal registers

need accounted for on the datapaths that run parallel to the modmult_RNS block to

ensure data arrives at the add_RNS and sub_RNS units at the same clock cycle. A

parallel delay to the modmult_RNS block can be realized as either a shift register or

a memory block with additional control such as a FIFO. Here it is represented as a

shift register with t delays to match the t registers found in modmult_RNS.

Unique to the hardware implementation, the top of the NTT butterfly unit runs a

parallel bypass line that directly connect inputs ARNS and BRNS to outputs ZRNS and

YRNS respectively. The external FIFO and next sequential butterfly then alternate

between receiving bypassed data and calculated data. When bypass occurs, the

internal clock that routes to internal computational elements can also be disabled.

This limits data from unnecessarily moving through the butterfly and ideally saves

power. As discussed in detail in Section 4.2.1, this bypass is ideally controlled by an

external finite state machine.

4.4 RNS Montgomery Multiplication Unit

The RNS Montgomery Multiplication unit is the most complex block present

in each RNS-based NTT butterfly unit. It is based on the algorithm level design

in Section 3.4.3. The unit consists of four RNS multiplications, one RNS addition,

one RNS subtraction, and two base extensions. The module takes inputs A and B

represented in both RNS bases, performs the necessary arithmetic with precomputed

constants, converts an intermediate value Q to and from and produces the Montgomery

73



result Z = ABD−1 mod M where D is the RNS Base 1 dynamic range and M is the

system modulus.

RNS_mult 
base i + j

SR

RNS_mult 
base i

XiX

RNS_sub 
base i

BAJARD 
EXTENSION

Qi

RNS_mult 
base j

Qj RNS_add 
base j

RNS_mult 
base j

SHENOY 
EXTENSION

BASE 1

M_INV_RED_I
M_RED_J

A

B Xj
Xj

D1_INV_RED_J

Zj Zi Z

SR

Zj

Figure 12. RNS Montgomery reduction unit. Obtains Z = ABD−1 mod M via the
Bajard extension, Shenoy extension, and intermediate arithmetic utilizing
precomputable constants. Inputs A,B and output Z are represented in both bases.

Method k wch d (ns) f (Mhz) P (W) LUT FF DSP

non-pipelined 9 32 173.968 5.748 0.576 10829 288 328
Fully pipelined 9 32 21.642 46.206 0.627 12094 3488 330

Table 7. Montgomery Multiplication implementation results for a non-pipelined unit
and a fully pipelined unit. Implemented on Artix-7 (xc7a200tlffg1156-2L)

The hardware realization uses memory blocks for the constants BASE 1,

M_INV_RED_I, M_RED_J, and D1_INV_RED_J. As these are generally single

values, they can also be stored in RTL memory as registers. The constant BASE

1 is the set of original moduli and takes wch × kbase1 bits of storage for a total of

32 × 4 = 128 bits. M_INV_RED_I, M_RED_J, and D1_INV_RED_J are the

precomputed constants that depend on system modulus M and dynamic range D.

Constants that are i-labeled are computed for each channel in base 1 and those that

are j-labeled are computed for each channel in base 2 and mr. This results in the

i-labeled constant taking wch × k bits of storage and the j-labeled constants taking

wch × (k + 1) bits. The redundant modulus is only included in base 2 calculations
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for the final Bajard calculation (Section 3.4.4) and the intermediate Montgomery

computation between base extensions (Section 3.4.3). The Shenoy extension keeps

the redundant modulus separate and finds the correction factor in parallel to the base

2 calculations (Figure 14). The Montgomery multiplication module requires internal

registers between the core functional blocks to minimize the critical path delay. For

clarity, these are not shown in Figure 12. Similar to the delays found in the butterfly

units, shift registers are placed in parallel datapaths to the two base extensions to

account for internal registers in those modules.

4.5 Bajard Base Extension Unit

The Bajard base extension unit (Section 3.4.4) is responsible for converting RNS

values from base 1 to base 2 in the RNS Montgomery multiplication unit. It contains

an RNS multiplication on input values by a constant D1_I_INV_I and an RNS

MAC operation for each outbound channel. The Bajard result is one channel greater

than base 1 because the Shenoy extension requires a redundant modulus, which is

easily generated by appending an additional MAC unit. If saving space is a necessary

consideration, an alternative method when implementing Bajard is to take k cycles

to perform the RNS MAC once per outbound channel. However, this results in

a pipelining difficulty and is not chosen in an attempt to maintain high levels of

pipelining availability.

As seen in Table 8, implementation results for the Bajard unit for non-pipelined,

sub-pipelined, and fully pipelined results are presented. The non-pipelined version

does not contain any intermediate registers in the Bajard module, as well as in the

multipliers or MAC units below. The partially-pipelined version has the lower modules
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pipelined only. The fully pipelined version has registers added in between each critical

element.

A i RNS_mult 
base i

D1_I_INV_I

RNS 
MACD1_I_INV_J1

RNS 
MACD1_I_INV_J2

RNS 
MACD1_I_INV_Jk

? i ? i

? i

? i

For each j

ak

A ja1

a2

Figure 13. Bajard base extension unit including RNS MAC units for each output
channel and precomputed constants D1_I_INV_I and D1_I_INV_J.

Method k wch d (ns) f (Mhz) P (W) LUT FF DSP

Non-pipelined 4/5 32 35.337 28.299 0.257 3599 160 96
Partially-pipelined 4/5 32 20.111 49.724 0.254 3599 160 96
Fully pipelined 4/5 32 14.914 67.051 0.252 3424 800 96

Table 8. Bajard Extension implementation results for a non-pipelined unit, a
sub-pipelined unit where only sub-modules are pipelined, and a fully pipelined unit.
Implemented on Artix-7 (xc7a200tlffg1156-2L)
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4.6 Shenoy Base Extension Unit

The Shenoy base extension (Section 3.4.5) is the second base extension in the RNS

Montgomery multiplication responsible for converting RNS values from base 2 to base

1. The hardware unit is presented in Figure 14. The module contains two critical

elements; one being the conversion logic executed on k channel RNS arithmetic and

the other being a calculation of a correction factor β. The channel β is calculated on

is a single channel width. The constant is used at the end of the Shenoy unit and

ensures a fully reduced output.

A j RNS_mult 
base j

D2_J_INV_J

RNS 
MACD2_J_RED_I1

RNS 
MACD2_J_RED_I2

RNS 
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Ej

Ej

Ej

Ej

Ej

RNS_sub 
base i

RNS_mult 
base i D2_RED_I

t1

tk Zi

mr

Figure 14. Shenoy base extension unit.

Table 9 presents the implementation results of the Shenoy unit. Like the Bajard

unit, it is simulated for a non-pipelined version, sub-pipelined version, and a fully

pipelined version. Due to the calculation of β, the sizing in terms of LUT, FF, and

DSP are all slightly greater than the Bajard unit. The unit is also the bottleneck in
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the RNS Montgomery multiplication unit. The critical path has a delay of 20.8 ns

and corresponding frequency of 47.9 MHz.

RNS 
MACD1_I_INV_Jr

Ej

t

D2_I_INV_Jr

x ?

A j[2n]

Mod mr
?

Figure 15. Calculating Beta for Shenoy extension.

Method k wch d (ns) f (Mhz) P (W) LUT FF DSP

Non-pipelined 5/4 32 73.76 13.557 0.305 4735 128 140
Partially-pipelined 5/4 32 27.142 36.843 0.303 4178 768 116
Fully pipelined 5/4 32 20.858 47.943 0.302 4168 1120 116

Table 9. Shenoy Extension implementation results for a non-pipelined unit, a
sub-pipelined unit where only sub-modules are pipelined, and a fully pipelined unit.
Implemented on Artix-7 (xc7a200tlffg1156-2L)

4.7 Arithmetic Optimizations

The third stage of optimization mentioned in Chapter 3 is computational op-

timization of the core modular arithmetic units of the hardware system. As the

individual RNS channels perform a standard 32-bit modular arithmetic, they each can

be optimized via effective hardware acceleration techniques for low level arithmetic.

Modular addition, subtraction, modular multiplication, and modular MAC operations

are the key focuses of this optimization. A general survey of high level synthesis
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systems can be found at [83] and can help guide optimization. The basis for relevant

modular arithmetic is also discussed in Section 3.3.

4.7.1 Modular Adder

The design of the 32-bit modular addition unit is given in Figure 16. Implementa-

tion results for the channel modular adder is given in Table 10. The standard method

is found using system tools to infer a modular addition. Reductions via the VHDL

modulo operator were generally found to be highly inefficient. To optimize these

modular additions, a hardware optimizing technique utilizing a magnitude comparison

and conditional subtraction was first applied. The last attempted method is found is

Sapphire [10], which replaces the inferred reduction with one addition, one subtraction,

and a logic-based select bit to send one of the signals through. This was found to be

most optimal and hardware friendly and was the chosen channel addition technique.

ADD

A wch

B wch

SUB
M wch

MUX

0

1

Zwch

Figure 16. Channel modular adder unit.
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Method k wch d (ns) f (Mhz) P (W) LUT FF

Standard 9 32 8.753 114.246 0.133 743 864
Comparison 9 32 7.727 129.416 0.132 599 864

Optimized Carry 9 32 2.645 135.962 0.129 590 864
Standard 5 32 8.430 118.623 0.290 417 480

Comparison 5 32 7.029 142.268 0.120 375 480
Optimized Carry 5 32 2.566 134.517 0.120 325 480

Standard 4 32 8.611 116.131 0.256 397 384
Comparison 4 32 7.434 134.517 0.118 300 384

Optimized Carry 4 32 3.177 146.563 0.118 258 384

Table 10. Channel Modular Adder on Artix-7 (xc7a200tlffg1156-2L) using standard
inferred reduction, modular addition with a magnitude comparator-based subtraction,
and modular addition utilizing a carry select bit from Saphire

4.7.2 Modular Subtractor

The design of the 32-bit modular subtraction unit is given in Figure 17. Table 11

shows the modular subtractor implementation results obtained using a variant of the

optimized modular addition hardware design discussed in Section 4.7.1. It benefits

from requiring only one select line from the subtraction.
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B wch

ADD
M wch
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wch

wch

0
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Zwch

Figure 17. Channel modular subtractor unit.
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Method k wch d (ns) f (Mhz) P (W) LUT FF

Optimized Select 9 32 2.747 137.873 0.128 569 864
Optimized Select 5 32 2.666 136.351 0.119 315 480
Optimized Select 4 32 2.379 131.216 0.117 255 384

Table 11. Channel Modular Subtractor on Artix-7 (xc7a200tlffg1156-2L) using the
subtractor select bit method from Saphire

4.7.3 Modular Multiplier via Barrett Reduction

The design of the 32-bit modular multiplication unit is given in Figure 18. In

Table 12, a comparison of modular multiplication is given. It compares the FPGA

tool’s inferred channel modular multiplication to an optimized Barrett multiplication

(Section 3.3.2). There is a great improvement in delay and area due to difficulties the

tools face in implementing the reduction portion of the modular multiplication. Barrett

relies on an adjustment factor β. For maximum flexibility and testing purposes, this

values is assumed to be maximum in the design. This should eventually be lowered

when the channel modulus for the Barrett reduction is ensured to be static and

remaining for the design.
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Figure 18. Channel modular multiplier via Barrett Reduction.
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Method k wch d (ns) f (Mhz) P (W) LUT FF DSP

Inferred 9 32 205.713 4.861 0.454 18481 288 36
Barrett 9 32 12.949 77.226 0.156 1022 288 36
Inferred 5 32 205.857 4.858 0.303 10348 160 20
Barrett 5 32 12.899 77.525 0.136 565 160 20
Inferred 4 32 205.00 4.878 0.265 8297 128 16
Barrett 4 32 12.964 77.136 0.120 450 128 16

Table 12. Channel modular multiplier on Artix-7 (xc7a200tlffg1156-2L) using
standard inferred modular reduction and modular multiplication using a flexible
Barrett reduction

4.7.4 Modular MAC
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Figure 19. Unrolled RNS MAC operation.

The modular MAC design is presented in Figure 19. The MAC unit found in

the base extension units has two different approaches to optimal realization. For an

area sensitive design, an accumulation register approach can be implemented along
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side a multiplication unit. This comes at the expense of multiple clock cycles for a

single summation. The second option is to unroll the MAC operation and pipeline

at the intermediate additions. This enables a higher throughput at the expense of

more resources on the FPGA. The unrolled MAC is chosen in this design and has

implementation results provided in Table 13.

Method k wch d (ns) f (Mhz) P (W) LUT FF DSP

Mod Adder 9 32 46.09 21.696 0.142 447 32 27
Barrett 9 32 14.07 71.073 0.139 314 32 27
Pipelined 9 32 9.742 102.648 0.142 263 320 27
Mod Adder 5 32 27.467 36.407 0.128 251 32 15
Barrett 5 32 13.079 76.458 0.126 164 32 15
Pipelined 5 32 9.737 102.701 0.128 139 192 15
Mod Adder 4 32 22.791 43.876 0.124 197 32 12
Barrett 4 32 12.112 82.562 0.124 164 32 12
Pipelined 4 32 9.676 103.348 0.124 151 160 12

Table 13. Unrolled channel MAC unit on Artix-7 (xc7a200tlffg1156-2L) using
standard multiplier and modular addition units, using a final Barrett reduction to
replace the modular adders, and a pipelined version of the barrett MAC unit

4.8 On-chip Memory

The two input polynomials of size n and bitwidth w = dlog2Me are stored in

on-chip memory. Due to the polynomials being stored in both bases, the total storage

requirements of both polynomials combined is 2× n× k×wch bits for k = 9 channels.

For lattice schemes using a parameter set {k = 9, wch = 8, n = 1024}, a single

polynomial size is 72 Kb with 144 Kb the total space for two input polynomials. For

FHE schemes using a parameter set {k = 9, wch = 32, n = 4096}, a single polynomial

size is 1.125 Mb with 2.25 Mb total for two polynomials. When dealing with a single
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NTT unit of sequential butterfly units, one input and one output value per cycle via

a dual port BRAM is acceptable. This is by virtue of the butterflies operating in a

chained fashion and passing half of its input values into a FIFO before processing

occurs.

Scheme n w FIFO Polynomial Twid. Factors RNS Weights

Lattice 1024 32 67.5 Kb 72 Kb 72 Kb 2.53 Kb
FHE 4096 128 1.055 Mb 1.125 Mb 1.125 Mb 648 bits

Table 14. Memory requirements for butterfly FIFO, input polynomials, twiddle
factors and RNS conversion weights given targeted schemes’ NTT size n and
coefficient width w.

In an alternate hardware setup where the butterflies are not chained and looped

from FIFO buffers, two memory banks of size n/2× dlog2Me can be used. This is

due to the butterfly algorithm’s use of alternating indices, by which the even and

odd Hamming weights of the indices’ binary values can be grouped together and will

always be fed into the butterfly along with one element from the other group. If the

negative wrapped convolution uses two NTT units in parallel, the two full sized input

polynomials will also need to be stored in separate memory banks.

The on-chip memory also stores the negative wrapped convolution twiddle factors

and RNS conversion weights. The convolution twiddle factors are powers of φ, where

φ2 = ωn mod M . As these constants have been reduced by the system modulus M ,

they consequently have sizes of n× dlog2Me for n different powers of φ in a standard

setup and a size n× k × wch for an RNS system. Under certain memory constraints,

certain powers of φ and ωn can be saved in the same address given the modular square

root relationship. The k RNS conversion weights are also included in memory and are

values that fall somewhere within the dynamic range of the RNS moduli. The total

memory requirement for n twiddle factors is therefore 1.125 Mb and 72 Kb for the
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FHE and lattice parameter set, respectively. The k conversion weights then require

2.53 Kb and 648 bits for the FHE and lattice parameter set, respectively.

4.9 Full Design

The diagram for the proposed hardware implementation of the RNS-based NTT

multiplier containing four RNS-based butterfly units can be seen in Figure 20. Encircled

in the red box is the RNS-based NTT processing unit which performs the RNS-based

NTT and INTT computations in the negative wrapped convolution. The RNS-based

NTT unit contains 4 sequential RNS butterflies, FIFOs of size 2048, 1024, 512, and 256,

a buffer to hold intermediate NTT results, a twiddle factor bank, and a polynomial

memory block connected to on-chip memory. Inside each RNS-based butterfly unit is

the RNS Montgomery Multiplication unit, Bajard Base extension unit, Shenoy Base

Extension unit, and RNS MAC/Barrett/Adder/Subtractor operations.

The negative wrapped convolution is achieved with this design by preparing

input polynomials via the RNS Conversion unit and RNS-Hadamard unit and then

calling on the NTT block multiple times to perform the RNS-based NTTs on both

input polynomials and an RNS-based INTT on the resulting RNS-Hadamard product

between the polynomials. The RNS-based NTT processing unit has implementation

results for final sizing and operational frequencies of different parameters given in

Table 15.
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UNIT

MAIN MEMORY

RNS CONVERSION 
UNIT

Figure 20. Full Proposed hardware design for RNS-based NTT multiplier with the
Hadamard unit, RNS conversion unit, main memory, and encircled RNS-based NTT
unit which has implementation results.

Name k wch f (Mhz) LUT FF DSP

RNS Butterfly 9 32 47.043 13239 4010 330
RNS Modmult 9 32 48.206 12094 3488 330

Shenoy Extension 5/4 32 47.943 4168 1120 116
Bajard Extension 4/5 32 67.051 3424 800 96

RNS MAC 4 32 103.348 151 160 12
RNS Barrett 9 32 77.226 1022 288 36

RNS Subtractor 9 32 131.216 255 384 0
RNS Adder 9 32 135.962 590 864 0

Table 15. RNS-based NTT polynomial multiplier hardware blocks on Artix-7
(xc7a200tlffg1156-2L) final implementation results.
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Chapter 5

CONCLUSION

5.1 Summary

In this thesis, a pipelined and optimized RNS-based NTT polynomial multiplier

is designed with the intention of accelerating Lattice-based cryptography and FHE

polynomial multiplication. The thesis begins with research into Lattice-based Cryp-

tography and FHE to find the most time-critical operations that are frequently used in

lattice and FHE schemes. After determining that this is modular polynomial multipli-

cation, the candidates for performing efficient polynomial multiplication in hardware

such as Karatsuba, Schoolbook, and FFT were analyzed for their computational

complexity and applicability in hardware. An NTT based approach to polynomial

multiplication was chosen for its efficient radix-2 butterfly hardware implementation

and use of the negative wrapped convolution. An RNS was then chosen as the primary

means of obtaining datapath-level optimization in the polynomial multiplier due to

how it takes advantage of hardware parallelism. All operations in the NTT and NWC

were translated into RNS equivalents, thereby breaking large bitwidth computations

into smaller independent operations on the RNS channels. Introduction of the RNS

brought complexity to the design via the RNS Montgomery Multiplication, which relies

on the Bajard and Shenoy base extensions to perform a Montgomery computation in

a second RNS base.

The final RNS-based NTT polynomial multiplier design is implemented in software

for algorithm validation and the RNS-based NTT unit is implemented in hardware
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to obtain circuit size and timing results on a Xilinx Artix-7 FPGA. The software

implementation is written in C++ and contains the Negative Wrapped Convolution,

the RNS-based NTT, RNS Montgomery reduction with Bajard and Shenoy extensions,

parameter generation, and test functions to accomplish the full RNS polynomial

multiplication. The hardware implementation includes a pipelined and optimized

RNS-based NTT unit implemented on the Xilinx Artix-7 FPGA(xc7a200tlffg1156-2L)

for size and delay estimates. The design includes the RNS-based NTT unit with four

RNS butterflies and FIFOs, the Montgomery multiplication unit, the Bajard Base

Extension unit, the Shenoy Base Extension unit, parameterizable channel sizes and

base extension constants, and optimized optimized modular 32-bit channel arithmetic

for nine RNS channels including Barrett reduction and carry-based modular addition

and subtraction.

For an NTT system with parameter set of nine 32-bit moduli that supports a system

modulus dlog2Me < 128 bits and pipelining on either side of the base extension units,

a maximum frequency of 47.043 MHz is achieved with space requirements totaling

13239 LUT’s, 4010 FF’s, and 330 DSP blocks. With these sizes, the individual butterfly

unit can flexibly be implemented multiple times for higher parallelism depending on

FGPA size constraints.

5.2 Future Considerations

Extra considerations for extensions to this project include utilizing new systems

in RNS. An extension of the RNS system can be realized with hierarchical residue

number systems (HRNS) [84]. HRNS is beneficial because it allows values outside

of an RNS dynamic range to still be represented in its hierarchical number system.
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This is accomplished by having a lower level RNS and higher level RNS working in

combination. Further optimization to the existing design may also be found in memory

access improvements. Multi-ported memory is an alternative memory access scheme

that allows for more than single read/write access per cycle. In [85], multi-ported

memories out of BRAM are introduced which allow for many read/writes at the

expense of potential read/write misses. Implementing this on an FPGA for polynomial

multiplication would lead to more restrictive design, however it has potential to

greatly increase the throughput of the RNS-based NTT polynomial multiplier if the

read/write count per cycle goes higher than 1. A final consideration is to map the

computations onto multiple NTT units. Utilization of a single unit is usage efficient,

however time-critical needs would benefit from performing multiple RNS-based NTT’s

in parallel.

89



REFERENCES

[1] Norman Göttert et al. “On the design of hardware building blocks for modern
lattice-based encryption schemes”. In: International Workshop on Cryptographic
Hardware and Embedded Systems. Springer. 2012, pp. 512–529.

[2] Hamid Nejatollahi et al. “Software and Hardware Implementation of Lattice-
based Cryptography Schemes”. In: Center for Embedded Cyber-Physical Systems.
Nov. 2017, pp. 1–43.

[3] Chris Peikert. “An efficient and parallel Gaussian sampler for lattices”. In: Annual
Cryptology Conference. Springer. 2010, pp. 80–97.

[4] Murat Cenk et al. “Efficient big integer multiplication in cryptography”. In:
International Journal of Information Security Science 6.4 (2017), pp. 70–78.

[5] Léo Ducas et al. “Lattice signatures and bimodal Gaussians”. In: Annual Cryp-
tology Conference. Springer. 2013, pp. 40–56.

[6] Nagarjun C Dwarakanath and Steven D Galbraith. “Sampling from discrete
Gaussians for lattice-based cryptography on a constrained device”. In: Applicable
Algebra in Engineering, Communication and Computing 25.3 (2014), pp. 159–
180.

[7] Thomas Pöppelmann and Tim Güneysu. “Towards efficient arithmetic for lattice-
based cryptography on reconfigurable hardware”. In: International Conference on
Cryptology and Information Security in Latin America. Springer. 2012, pp. 139–
158.

[8] Thomas Pöppelmann. “Efficient implementation of ideal lattice-based cryptog-
raphy”. In: IT-Information Technology 59.6 (2017), pp. 305–309.

[9] James Howe et al. “Lattice-based encryption over standard lattices in hardware”.
In: 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE.
2016, pp. 1–6.

[10] U. Banerjee, T. Ukyab, and A. Chandrakasan. “Sapphire: A Configurable Crypto-
Processor for Post-Quantum Lattice-based Protocols”. In: IACR Cryptol. 2019
(2019), p. 1140.

[11] Eric Crockett and Chris Peikert. “LOL: Functional Lattice Cryptography”. In:
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations security. CCS ’16. Vienna, Austria, 2016, pp. 993–1005.

90



[12] Chris Peikert. “A decade of lattice cryptography”. In: Foundations and Trends®
in Theoretical Computer Science 10.4 (2016), pp. 283–424.

[13] Donald Donglong Chen et al. “High-speed polynomial multiplication architecture
for ring-LWE and SHE cryptosystems”. In: IEEE Transactions on Circuits and
Systems I: Regular Papers 62.1 (2014), pp. 157–166.

[14] Yarkin Doröz et al. “Accelerating LTV Based Homomorphic Encryption in
Reconfigurable Hardware”. In: CHES. 2015.

[15] T. Pöppelmann et al. “Accelerating Homomorphic Evaluation on Reconfigurable
Hardware”. In: IACR Cryptol. ePrint Arch. 2015 (2015), p. 631.

[16] D. B. Cousins, K. Rohloff, and D. Sumorok. “Designing an FPGA-Accelerated
Homomorphic Encryption Co-Processor”. In: IEEE Transactions on Emerging
Topics in Computing 5.2 (2017), pp. 193–206.

[17] Hamid Nejatollahi et al. “Domain-specific Accelerators for Ideal Lattice-based
Public Key Protocols”. In: IACR Cryptol. ePrint Arch. 2018 (2018), p. 608.

[18] Y. Su et al. “FPGA-Based Hardware Accelerator for Leveled Ring-LWE Fully
Homomorphic Encryption”. In: IEEE Access 8 (2020), pp. 168008–168025.

[19] F. Turan, S. S. Roy, and I. Verbauwhede. “HEAWS: An Accelerator for Homo-
morphic Encryption on the Amazon AWS FPGA”. In: IEEE Transactions on
Computers 69.8 (2020), pp. 1185–1196.

[20] Joël Cathébras et al. “Data flow oriented hardware design of RNS-based polyno-
mial multiplication for SHE acceleration”. In: IACR Transactions on Crypto-
graphic Hardware and Embedded Systems (2018), pp. 69–88.

[21] X. Feng and S. Li. “Accelerating an FHE Integer Multiplier Using Negative
Wrapped Convolution and Ping-Pong FFT”. In: IEEE Transactions on Circuits
and Systems II: Express Briefs 66.1 (2019), pp. 121–125.

[22] A. C. Mert, E. Öztürk, and E. Savaş. “Design and Implementation of a Fast
and Scalable NTT-Based Polynomial Multiplier Architecture”. In: 2019 22nd
Euromicro Conference on Digital System Design (DSD). 2019, pp. 253–260.

[23] Hamid Nejatollahi et al. “Exploring energy efficient quantum-resistant signal
processing using array processors”. In: ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2020,
pp. 1539–1543.

91



[24] L. Sousa, S. Antao, and P. Martins. “Combining Residue Arithmetic to Design
Efficient Cryptographic Circuits and Systems”. In: IEEE Circuits and Systems
Magazine 16.4 (2016), pp. 6–32.

[25] A. P. Shenoy and R. Kumaresan. “Fast base extension using a redundant modulus
in RNS”. In: IEEE Transactions on Computers 38.2 (1989), pp. 292–297.

[26] J.Bajard, L.Didier, and P. Kornerup. “Modular multiplication and base exten-
sions in residue number systems”. In: Proceedings 15th IEEE Symposium on
Computer Arithmetic. ARITH-15 2001. 2001, pp. 59–65.

[27] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer”. In: SIAM Journal on Computing
26.5 (Oct. 1997), pp. 1484–1509.

[28] Miklós Ajtai. “Generating hard instances of lattice problems”. In: Proceedings
of the twenty-eighth annual ACM symposium on Theory of computing. 1996,
pp. 99–108.

[29] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. “NTRU: A ring-based pub-
lic key cryptosystem”. In: International Algorithmic Number Theory Symposium.
Springer. 1998, pp. 267–288.

[30] Damien Stehlé and Ron Steinfeld. “Making NTRU as secure as worst-case
problems over ideal lattices”. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer. 2011, pp. 27–47.

[31] Vadim Lyubashevsky and Gregor Seiler. “NTTRU: truly fast NTRU using NTT”.
In: IACR Transactions on Cryptographic Hardware and Embedded Systems
(2019), pp. 180–201.

[32] Oded Regev. “On lattices, learning with errors, random linear codes, and cryp-
tography”. In: Journal of the ACM (JACM) 56.6 (2009), pp. 1–40.

[33] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On ideal lattices and
learning with errors over rings”. In: Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer. 2010, pp. 1–23.

[34] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On ideal lattices and
learning with errors over rings”. In: Journal of the ACM (JACM) 60.6 (2013),
pp. 1–35.

92



[35] Zvika Brakerski and Vinod Vaikuntanathan. “Fully homomorphic encryption
from ring-LWE and security for key dependent messages”. In: Annual Cryptology
Conference. Springer. 2011, pp. 505–524.

[36] Phong Nguyen. “Cryptanalysis of the Goldreich-Goldwasser-Halevi cryptosystem
from crypto’97”. In: Annual International Cryptology Conference. Springer. 1999,
pp. 288–304.

[37] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. “Trapdoors for hard
lattices and new cryptographic constructions”. In: Proceedings of the fortieth
annual ACM symposium on Theory of computing. 2008, pp. 197–206.

[38] Craig Gentry and Dan Boneh. A fully homomorphic encryption scheme. Stanford
university Stanford, 2009.

[39] Yusong Du and Baodian Wei. “On Rejection Sampling Algorithms for Centered
Discrete Gaussian Distribution over Integers.” In: IACR Cryptol. ePrint Arch.
2017 (2017), p. 988.

[40] James Howe et al. “On practical discrete Gaussian samplers for lattice-based
cryptography”. In: IEEE Transactions on Computers 67.3 (2016), pp. 322–334.

[41] Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede. “High precision
discrete Gaussian sampling on FPGAs”. In: International Conference on Selected
Areas in Cryptography. Springer. 2013, pp. 383–401.

[42] J. Howe et al. “On Practical Discrete Gaussian Samplers for Lattice-Based
Cryptography”. In: IEEE Transactions on Computers 67.3 (2018), pp. 322–334.

[43] Yusong Du and Baodian Wei. “On Rejection Sampling Algorithms for Centered
Discrete Gaussian Distribution over Integers.” In: IACR Cryptol. ePrint Arch.
2017 (2017), p. 988.

[44] Léo Ducas and Phong Q Nguyen. “Faster Gaussian lattice sampling using
lazy floating-point arithmetic”. In: International Conference on the Theory and
Application of Cryptology and Information Security. Springer. 2012, pp. 415–432.

[45] Chaohui Du and Guoqiang Ba. “High-performance software implementation of
discrete Gaussian sampling for lattice-based cryptography”. In: 2016 IEEE Infor-
mation Technology, Networking, Electronic and Automation Control Conference.
IEEE. 2016, pp. 220–224.

93



[46] Jean Pierre David, Kassem Kalach, and Nicolas Tittley. “Hardware complex-
ity of modular multiplication and exponentiation”. In: IEEE Transactions on
Computers 56.10 (2007), pp. 1308–1319.

[47] Ciara Rafferty, Máire O’Neill, and Neil Hanley. “Evaluation of large integer
multiplication methods on hardware”. In: IEEE Transactions on Computers
66.8 (2017), pp. 1369–1382.

[48] Andrei L Toom. “The complexity of a scheme of functional elements realizing
the multiplication of integers”. In: Soviet Mathematics-Doklady.

[49] Stephen A Cook and Stål O Aanderaa. “On the minimum computation time of
functions”. In: Transactions of the American Mathematical Society 142 (1969),
pp. 291–314.

[50] Anatolii Karatsuba and Yu Ofman. “Multiplication of Multidigit Numbers on
Automata”. In: Soviet Physics Doklady 7 (Dec. 1962), p. 595.

[51] Arnold Schönhage and Volker Strassen. “Schnelle multiplikation grosser zahlen”.
In: Computing 7.3-4 (1971), pp. 281–292.

[52] David Harvey and Joris Van Der Hoeven. “Integer multiplication in time O (n
log n)”. In: (2019).

[53] Anindya De et al. “Fast integer multiplication using modular arithmetic”. In:
Proceedings of the fortieth annual ACM symposium on Theory of computing.
2008, pp. 499–506.

[54] Thomas Pöppelmann and Tim Güneysu. “Towards practical lattice-based public-
key encryption on reconfigurable hardware”. In: International Conference on
Selected Areas in Cryptography. Springer. 2013, pp. 68–85.

[55] Sujoy Sinha Roy et al. “Compact ring-LWE cryptoprocessor”. In: International
Workshop on Cryptographic Hardware and Embedded Systems. Springer. 2014,
pp. 371–391.

[56] Patrick Longa and Michael Naehrig. “Speeding up the Number Theoretic Trans-
form for Faster Ideal Lattice-Based Cryptography”. In: (2016).

[57] Claudia Patricia Renterıa-Mejıa and Jaime Velasco-Medina. “High-throughput
ring-LWE cryptoprocessors”. In: IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems 25.8 (2017), pp. 2332–2345.

94



[58] S. Sinha Roy et al. “HEPCloud: An FPGA-Based Multicore Processor for
FV Somewhat Homomorphic Function Evaluation”. In: IEEE Transactions on
Computers 67.11 (2018), pp. 1637–1650.

[59] J-C Bajard and Laurent Imbert. “A full RNS implementation of RSA”. In: IEEE
Transactions on Computers 53.6 (2004), pp. 769–774.

[60] M. Esmaeildoust et al. “Efficient RNS Implementation of Elliptic Curve Point
Multiplication Over GF (p)”. In: IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems 21.8 (2013), pp. 1545–1549.

[61] Sujoy Sinha Roy et al. “FPGA-based high-performance parallel architecture
for homomorphic computing on encrypted data”. In: 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE. 2019,
pp. 387–398.

[62] Yinan Kong. “Modular multiplication in the residue number system”. PhD thesis.
2009.

[63] Peter L Montgomery. “Modular multiplication without trial division”. In: Math-
ematics of computation 44.170 (1985), pp. 519–521.

[64] Paul Barrett. “Implementing the Rivest Shamir and Adleman public key encryp-
tion algorithm on a standard digital signal processor”. In: Conference on the
Theory and Application of Cryptographic Techniques. Springer. 1986, pp. 311–
323.

[65] Matt Mccutchen. C++ Big Integer Library. 2020. url: <https://mattmccutchen.
net/bigint/>.

[66] D. Shanks. “Five number-theoretic algorithms”. In: Proceedings of the Second
Manitoba Conference on Numerical Mathematics. 1973.

[67] Ben Lynn. The Chinese Remainder Theorem. 2020. url: <https://crypto.
stanford.edu/pbc/notes/numbertheory/crt.html>.

[68] C. Chang et al. “Residue Number Systems: A New Paradigm to Datapath
Optimization for Low-Power and High-Performance Digital Signal Processing
Applications”. In: IEEE Circuits and Systems Magazine 15.4 (2015), pp. 26–44.

[69] D. Schinianakis and T. Stouraitis. “A RNS Montgomery multiplication architec-
ture”. In: 2011 IEEE International Symposium of Circuits and Systems (ISCAS).
2011, pp. 1167–1170.

95

https://mattmccutchen.net/bigint/
https://mattmccutchen.net/bigint/
https://crypto.stanford.edu/pbc/notes/numbertheory/crt.html
https://crypto.stanford.edu/pbc/notes/numbertheory/crt.html


[70] Mohamad Ali Mehrabi. “Improved Sum of Residues Modular Multiplication
Algorithm”. In: Cryptography 3.2 (2019), p. 14.

[71] Leon Noordam. “VHDL Implementation of 4096-bit RNS Montgomery Modular
Exponentiation for RSA Encryption”. 2019.

[72] Filippo Gandino et al. “A general approach for improving RNS Montgomery ex-
ponentiation using pre-processing”. In: 2011 IEEE 20th Symposium on Computer
Arithmetic. IEEE. 2011, pp. 195–204.

[73] Hector Pettenghi, Ricardo Chaves, and Leonel Sousa. “RNS Reverse Converters
for Moduli Sets With Dynamic Ranges up to-bit”. In: IEEE TRANSACTIONS
ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS 60.6 (2013), p. 1487.

[74] Julius Smith. 2020. url: <https://ccrma.stanford.edu/~jos/mdft/Number_
Theoretic_Transform.html>.

[75] Project Nayuki. 2017. url: <https://www.nayuki.io/page/number-theoretic-
transform-integer-dft>.

[76] P. M. Matutino et al. “RNS Arithmetic Units for Modulo 2n +−k”. In: 2012
15th Euromicro Conference on Digital System Design. 2012, pp. 795–802.

[77] Piotr Patronik and Stanisław J. Piestrak. “Design of Reverse Converters for a
New Flexible RNS Five-Moduli Set { 2k, 2n−1, 2n+1, 2n+1−1, 2n−1−1}{2k, 2n−
1, 2n+ 1, 2n+ 1− 1, 2n− 1− 1} (n Even)”. In: Circuits, Systems, and Signal
Processing 36 (2017), pp. 4593–4614.

[78] R. Muralidharan and C. Chang. “Area-Power Efficient Modulo 2n−1 and Modulo
2n + 1 Multipliers for {2n − 1, 2n, 2n + 1} Based RNS”. In: IEEE Transactions
on Circuits and Systems I: Regular Papers 59.10 (2012), pp. 2263–2274.

[79] L. Sousa and R. Chaves. “A universal architecture for designing efficient modulo
2/sup n/+1 multipliers”. In: IEEE Transactions on Circuits and Systems I:
Regular Papers 52 (2005), pp. 1166–1178.

[80] Evangelos Vassalos, Dimitris Bakalis, and Haridimos T Vergos. “On the design
of modulo 2 n±1 subtractors and adders/subtractors”. In: Circuits, Systems,
and Signal Processing 30.6 (2011), pp. 1445–1461.

[81] Gavin Xiaoxu Yao et al. “Novel RNS parameter selection for fast modular
multiplication”. In: IEEE Transactions on Computers 63.8 (2013), pp. 2099–
2105.

96

https://ccrma.stanford.edu/~jos/mdft/Number_Theoretic_Transform.html
https://ccrma.stanford.edu/~jos/mdft/Number_Theoretic_Transform.html
https://www.nayuki.io/page/number-theoretic-transform-integer-dft
https://www.nayuki.io/page/number-theoretic-transform-integer-dft


[82] Chris K. Caldwell. 2020. url: <https://primes.utm.edu/lists/2small/>.

[83] Robert A Walker and Raul Camposano. A survey of high-level synthesis systems.
Vol. 135. Springer Science & Business Media, 2012.

[84] Tadeusz Tomczak. “Hierarchical residue number systems with small moduli
and simple converters”. In: International Journal of Applied Mathematics and
Computer Science 21.1 (2011), pp. 173–192.

[85] Ameer Abdelhadi. “Architecture of block-RAM-based massively parallel memory
structures: multi-ported memories and content-addressable memories”. PhD
thesis. University of British Columbia, 2016.

97

https://primes.utm.edu/lists/2small/

	Table of Contents
	List of Tables
	List of Figures
	Definitions
	Chapter
	1 INTRODUCTION
	2 BACKGROUND
	3 Design of the RNS-based NTT Polynomial multiplier
	4 HARDWARE IMPLEMENTATION
	5 CONCLUSION

	References

