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ABSTRACT 

The accurate monitoring of the bulk transmission system of the electric power grid by 

sensors, such as Remote Terminal Units (RTUs) and Phasor Measurement Units (PMUs), 

is essential for maintaining the reliability of the modern power system. One of the primary 

objectives of power system monitoring is the identification of the snapshots of the system 

at regular intervals by performing state estimation using the available measurements from 

the sensors. The process of state estimation corresponds to the estimation of the complex 

voltages at all buses of the system. PMU measurements play an important role in this 

regard, because of the time-synchronized nature of these measurements as well as the faster 

rates at which they are produced. However, a model-based linear state estimator created 

using PMU-only data requires complete observability of the system by PMUs for its 

continuous functioning. The conventional model-based techniques also make certain 

assumptions in the modeling of the physical system, such as the constant values of the line 

parameters. The measurement error models in the conventional state estimators are also 

assumed to follow a Gaussian distribution.  

In this research, a data mining technique using Deep Neural Networks (DNNs) is proposed 

for performing a high-speed, time-synchronized state estimation of the transmission system 

of the power system. The proposed technique uses historical data to identify the correlation 

between the measurements and the system states as opposed to directly using the physical 

model of the system. Therefore, the highlight of the proposed technique is its ability to 

provide an accurate, fast, time-synchronized estimate of the system states even in the 

absence of complete system observability by PMUs.  
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The state estimator is formulated for the IEEE 118-bus system and its reliable performance 

is demonstrated in the presence of redundant observability, complete observability, and 

incomplete observability. The robustness of the state estimator is also demonstrated by 

performing the estimation in presence of Non-Gaussian measurement errors and varying 

line parameters. The consistency of the DNN state estimator is demonstrated by performing 

state estimation for an entire day. 
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CHAPTER 1 

INTRODUCTION 

The rise in the technological advancements of the modern world has been reflected 

proportionately in the increase in demand for electricity, so much so that the requirement 

of a continuous and reliable power supply has become a basic need. At the same time, the 

outages in the power system have also seen an unfortunate rise in recent times. For instance, 

the state of California has been experiencing rolling outages in 2020, the biggest happening 

in the state since 2001 [1] . These power outages can be avoided by building a resilient 

power system which encompasses a multitude of sensors for its protection and control. The 

power system protection and controls required for a resilient power grid can only be 

achieved by monitoring the system in real-time.  

1.1 Power System Monitoring 

The technological advancements made in power system monitoring can be dated back to 

the 1960s with the introduction of the Supervisory Control and Data Acquisition (SCADA) 

systems. A Remote Terminal Unit (RTU) made using microprocessors, interfaced with the 

devices in the physical world and converted them into signals that were transferred to the 

SCADA control center. However, the 1965 blackout that occurred in the North Eastern US 

and portions of Canada affecting over 30,000,000 customers, amongst other outages, made 

power engineers realize the need for improved coordination among different utilities for 

reliable power system operations and planning [2] . Eventually in 1970, Fred Schweppe 

came up with the idea of power system state estimation [3] , the most important component 

of power system monitoring. The states of the system were the complex voltages (voltage 
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magnitudes and voltage angles) of all the buses present in the system. The power system 

state estimation corresponds to the formulation of a methodology to estimate the states of 

the system from the available measurements. The estimated states of the system are 

essential for numerous power system operations and planning applications [4] . Fig 1.1 

given below demonstrates the functioning of a modern real-time Energy Management 

System (EMS). 

 

Figure 1.1: Functioning of an EMS [5]   

It can be observed that state estimation is the primary step in the operation of an EMS as 

the estimated system states are utilized for performing Real-Time Contingency Analysis 

(RTCA) and Security Constrained Economic Dispatch (SCED). RTCA involves checking 

and calculating violations in different quantities (voltages, power flows) that could 

potentially cause outages in the power systems. SCED involves identification of the power 

dispatch of different generators in the system [6] . Both of these applications (RTCA and 

SCED) rely on the SCADA-based state estimator for their reliable operation. The SCADA 



 

  3 

measurements comprise the real and reactive power flows on either side of the branches, 

real and reactive power injections, and voltage magnitude measurements. However, these 

measurements are not time stamped and the voltage angles are not measured directly.  

A more recent device that has completely revolutionized power system monitoring is the 

Phasor Measurement Unit (PMU). It is a device that can measure the complex voltages of 

a bus and the currents in the branches coming out of the bus in a time synchronized manner. 

The internal architecture of a PMU is shown in Fig 1.2 below. 

 

Figure 1.2: Architecture of PMU [7]  

Traditionally, a PMU makes use of a Recursive DFT algorithm to calculate the phasor 

values of the voltage and the current [8] , [9] . The calculated phasor is mathematically 

defined by: 

𝑋𝑁̅̅ ̅̅ =  𝑋𝑁−1 +  
√2

𝑁
 [ 𝑥(𝑁)𝑒−𝑗∗2𝜋𝑁𝜃 − 𝑥(0)] (1.1) 
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where 

𝑋𝑁̅̅ ̅̅ − 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑝ℎ𝑎𝑠𝑜𝑟 

𝑋𝑁−1 − 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑝ℎ𝑎𝑠𝑜𝑟 

𝑁 − 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝐴𝐷𝐶 𝑖𝑛 𝑡ℎ𝑒 𝑃𝑀𝑈 

𝑥(𝑁) − 𝑊𝑎𝑣𝑒𝑓𝑜𝑟𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 

𝜃 − 𝑃ℎ𝑎𝑠𝑒 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑎𝑚𝑝𝑙𝑒, 𝑤ℎ𝑒𝑟𝑒 𝜃 =  
2𝜋

𝑁
 

The PMU-based synchrophasor technology takes inputs from voltage and current 

transformers (instrument transformers) which step down the voltages and currents to levels 

that the PMU’s electronic circuits can safely handle [10] . The PMU device consists of an 

A/D converter that can produce discrete samples and the produced samples are fed to the 

microcontroller which performs the phasor estimation algorithm (such as recursive DFT). 

The PMU device also has a sampling clock which ensures that the measurements are time 

stamped using the Global Positioning System (GPS).  

The measurements from the PMU are highly reliable because of the time synchronized 

nature of the measurements (unlike the RTU measurements) and the high accuracy of the 

state estimates (PMUs measure the states directly). The PMU measurements are typically 

available at the rate of 30 samples per second unlike the SCADA measurements which are 

available once every 2-4 seconds. Therefore, an estimator formulated with PMU 

measurements as its inputs will be more accurate and can provide more frequent 
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information about the power system operation by estimating the system states at a much 

faster rate than the traditional estimators which utilize RTU data.  

1.2 Objective of the Work: 

The applications of data analytics in the power industry has grown tremendously over the 

last two years with the advancements in Artificial Intelligence and increased capabilities 

of handling Big Data [11] , [12] . The biggest source of Big Data in the power systems are 

the PMUs because of the higher speeds at which they produce outputs. The formulation of 

state estimation relies on the availability of measurements/data, and hence data analytics 

can be easily deployed for this application. 

A PMU placed at a bus can observe that bus as well as one or more neighboring buses as 

it can measure the voltage at that bus and currents in one or more branches connected to 

that bus. Thus, topological observability of the complete system can be obtained by placing 

PMUs at selected bus locations given by an appropriate PMU placement formulation, such 

as [13] . There are many model-based linear/hybrid state estimator formulations utilizing 

the linear dependency of the states with the PMU measurements of the system [14] , [15] . 

For instance, [14]  discusses two methodologies for performing hybrid state estimation 

using SCADA and PMU measurements. The first methodology involves mixing PMU 

measurements with traditional SCADA measurements for a non-linear estimation. The 

second methodology involves a formulation of an additional linear postprocessing step to 

include the PMU measurements to the output of the traditional non-linear estimator. The 

linear state estimators such as the one proposed in [16]  utilizes only the highly accurate 

time synchronized PMU measurements for state estimation. Note that a linear state 
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estimator requires complete system observability of the system by the PMUs for the states 

to be correctly estimated [17] .  However, the synchrophasor infrastructure is expensive 

and it may be cost prohibitive to ensure complete system observability of all transmission-

level substations. It was shown in [18] -[22]  that the cost of disrupting a substation to add 

a PMU is roughly 20 times the cost of the PMU device.  

In contrast, the proposed neural network formulation includes identifying the correlation 

between the measurements and the state estimates by minimizing the expected error in the 

estimate as opposed to minimizing the expected error in the model, proposed by the model-

based state estimators. A deep learning technique can therefore be used for performing an 

accurate state estimation only making use of highly accurate, reliable, time synchronized 

measurements, even in the absence of complete system observability by the PMUs.   

Moreover, the proposed data mining technique can perform state estimation without 

making any explicit assumptions regarding the physical model of the system. The model-

based approaches involve formulation of a weight matrix, which is a function of standard 

deviation of the errors. These model-based approaches assume the errors to be Gaussian 

and work best when this assumption is true. The errors in the PMU have already been 

analyzed using field data and are demonstrated to be Non-Gaussian [23] . Since, a 

methodology using a deep neural network tries to minimize the estimation error directly, it 

does not make any assumption on the error model of the measurements and will be robust 

against the error in the measurements irrespective of the distribution that they may have.  

Thus, the objective of the work is to formulate a deep neural network-based state estimator 

for the IEEE 118-bus transmission system that can estimate the states using PMU 
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measurements even if the PMUs do not completely observe the system in the topological 

sense. The robustness of the state estimator will be then tested by formulating the state 

estimator in the presence of different error models, namely, Gaussian errors, Gaussian 

Mixture Model (GMM) errors, and Laplacian errors. The robustness of the state estimator 

will also be tested in the presence of varying line parameters of the system. The consistency 

of the approach will be demonstrated by performing state estimation over the entire day. 

1.3: Overview of the Thesis: 

The rest of the thesis has been organized in the following manner: 

Chapter 2 reviews the various traditional methodologies proposed earlier for performing 

state estimation utilizing the measurements from SCADA systems and PMUs. It also 

reviews the data mining-based methodologies proposed earlier for state estimation. 

Chapter 3 describes the process of data generation that is required for training the neural 

network. An overview, formulation and working of the deep neural network-based state 

estimator is also discussed in this chapter. This chapter details the formulation of a linear 

state estimator as well. 

Chapter 4 tests the performance of the proposed state estimator under the following cases: 

(1) Estimation in the presence of limited number of sensors, (2) Performance against the 

linear state estimator (3) Robustness of the state estimator. It also demonstrates the 

performance of the state estimation over an entire day. 

Chapter 5 concludes the conducted research and outlines the different directions in which 

this work can be extended. 
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CHAPTER 2 

LITERATURE REVIEW 

The introduction of the state estimators in power systems dates back to the 1970s when 

Fred Schweppe introduced the idea of estimating the voltage magnitudes and angles of all 

the buses from the available RTU measurements [24] , [25] . The equation representing the 

relationship between the measurements Z and the states X are given by: 

𝑍 = ℎ(𝑋) + 𝑒 (2.1) 

A weighted least squares (WLS) approach was implemented to solve this state estimator, 

which corresponded to minimizing the following function. 

𝐽(𝑥) = (𝑍 − ℎ(𝑋))
𝑇
 𝑅−1 (𝑍 − ℎ(𝑋)) (2.2) 

The matrix ℎ relating the measurements and the states are a function of the operating 

system conditions and it makes the above equation non-linear. The above equation can be 

solved using an iterative Gauss Newton approach [26] , [27] . The above formulation also 

involves the computation of the error covariance matrix given by: 

𝐺(𝑥𝑘) =  𝐻𝑇(𝑥𝑘) 𝑅−1 𝐻(𝑥𝑘) (2.3) 

  where 𝐻 = 
𝑑ℎ(𝑥)

𝑑𝑥
 . The estimated states at the end of iteration is given by: 

[𝐺(𝑥𝑘)] ∆𝑥𝑘+1 = 𝐻𝑇(𝑥𝑘) 𝑅−1 (𝑧 − ℎ(𝑥𝑘)) (2.4)  

The 𝐺(𝑥𝑘) known as the Gain matrix was not always invertible and this resulted in 

difficulties in computation. This led to the introduction of fast decoupled state estimators 
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[29] . Another issue with the non-linear WLS method was the computation complexity 

involved in the formulation of the Jacobian matrix, 𝐻(𝑥), for large systems. A multi area 

state estimator [29] - [31] was formulated for larger systems where state estimation was 

performed in different areas at local level and all the estimated states were combined to 

perform state estimation at the control center level. This technique was useful in reducing 

the computation complexities arising in large systems.  

2.1 Wide Area Monitoring 

The wide area monitoring in power systems done using PMUs have a variety of 

applications [32] - [57] . PMUs can help provide a more accurate estimation of the system 

states than the traditional SCADA systems and at a much faster time scale than the SCADA 

systems. However, the cost of synchrophasor infrastructure is expensive so it is practically 

difficult to place enough PMUs for observing the entire system [18] - [22] . Several 

techniques for including the PMU measurements in a mixed WLS state estimator have been 

proposed in the past. The technique in [58]  utilized the voltage angles measured by the 

PMU to formulate a linear state estimator for the PMU observed area apart from the 

existing non-linear state estimator. The average of both the estimates were considered to 

be the final estimate.  

A hybrid state estimator consisting of a linear state estimation formulation that uses 

interpolated results from a WLS state estimator was proposed in [59] . The Jacobian matrix 

for the linear state estimator, relating the measurements and the states were updated after 

every SCADA interval. Two popular state estimation techniques incorporating PMUs 

include: A mixed hybrid state estimator and a two-stage state estimator. The former 
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methodology includes a mixture of SCADA measurements and PMU measurements in a 

single linear state estimator. This technique consists of formulating a state rotation matrix 

using which the SCADA estimated states and the PMU measurements, transformed into 

rectangular coordinates, can be used to accurately estimate the states of the system in 

cartesian form [15] , [60] . The latter includes the formulation of a two-stage fusion 

estimator [61] , [62] . The first stage consists of formulating a linear state estimator and 

estimating the PMU observed buses in a rectangular form. The rectangular PMU estimated 

states are then transformed to polar coordinates and sent to a non-linear Weighted least 

squares-based state estimator. However, both techniques utilize PMU data during the 

interval that aligns closely with the SCADA data and fails to take advantage of the high-

speed rates at which the PMU data are obtained. A technique introduced in [62] , performs 

multi-stage state estimation. The SCADA estimators and the PMU estimators function 

independently and a fusion of measurements from both the monitoring devices is 

performed in a separate stage for the final estimates. The methodology in [63] , [64]  

introduces a robust dynamic state estimator that makes use of the high-speed data rates of 

PMU for dynamic monitoring. The methodology utilizes an interpolation matrix obtained 

using a modified WLS to obtain real time estimates of the PMU unobserved area using the 

high-speed PMU measurements. A bad data detection technique along with the robustness 

of the estimates in presence of faults was also considered.  

A linear three phase state estimator was proposed in [65]  where the state estimation was 

performed in all three phases using only the synchrophasor measurements. Dominion 

Energy, a utility in Virginia implemented this three-phase linear estimators, independent 

from its existing SCADA estimator. However, such an estimator requires observability of 
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the entire system by PMUs [66] . Similarly, all the methodologies mentioned earlier rely 

on the system topology information and the system parameter knowledge. Therefore, 

although PMU measurements significantly increase the accuracy of the estimated states of 

the observed area, the estimated states in the unobserved area will be dependent on the less 

accurate SCADA measurements.  

2.2 Data Mining Techniques 

The data mining techniques aim at discovering relevant patterns in large datasets to extract 

useful information from the data. The patterns of historical measurements and the 

corresponding state labels can be used for identifying the underlying relationship between 

the measurements and the states. The data mining techniques can estimate the states 

without utilizing the physical model of the network. A methodology demonstrated in [67] 

, [68]  uses a kernel ridge regression to perform state estimation, data cleaning, and bad 

data analysis using historical data. A power system state estimator using neural networks 

was developed in [69] , [70]  where it was shown that the use of neural networks for state 

estimation in the presence of SCADA data gave better results than the traditional Kalman 

filter approach [71] .   

A neural network state estimator utilizing the synchrophasor measurements was 

demonstrated for distribution and transmission systems in [72]  and [73] , respectively. 

However, they did not discuss the formulation and performance of the state estimator under 

different system conditions (such as non-Gaussian noise and varying line parameters).   
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CHAPTER 3 

STATE ESTIMATOR FORMULATION 

Any analysis performed using a supervised learning technique1 requires a set of features 

and the known corresponding labels for the features to be fed as inputs. The supervised 

learning block then tries to learn the unknown mapping existing between the features and 

the labels using various samples of feature, label pair. Once the supervised learning block 

learns and identifies the mapping using the various samples that are fed as inputs, it will be 

capable of predicting the corresponding label for any new set of features. A sample is 

defined as a set of features, labels data pair. The samples of data supplied for the supervised 

learning block can be divided into training and validation samples. The training samples, 

huge in number, are used to identify the mapping between the features and labels and the 

validation samples are used to authenticate the mapping that the supervised learning block 

learnt using the training samples. The learnt supervised learning block can then predict the 

labels when tested for any new set of features.  

The features of the neural network, which does supervised learning for the analysis done 

in this thesis, will be the PMU measurements of the power system and the labels will be 

the states of the system corresponding to the measurements. Fig 3.1 below demonstrates 

an overview of this formulation. The green arrow indicates the learning of the neural 

network by the identification of bidirectional mapping existing between the known samples 

of measurements, states pair. The yellow arrow indicates the transition to a trained neural 

network after the completion of training and validation. 

 
1 Supervised learning is one type of machine learning 



 

  13 

 

Figure 3.1: Overview of the Neural Network State Estimator 

3.1 Data Generation Overview 

The first step for performing state estimation will be to generate the data set required for 

the neural network. The neural network requires various samples of the measurements and 

the corresponding states for the training and the validation of the network. The 

measurements to the network will be the fast time scale, high-speed time-synchronized 

PMU measurements. A PMU can be placed in two different ways [19] , [22] , [74] : 

1) A bus-type PMU placed on a bus, measuring the complex voltage of the bus and 

complex currents in all the branches connected to the bus. 

2) A dual used line relay (DULR) PMU placed on a branch, measuring the complex 

current of the branch and the voltage of the nearby bus to which the branch is 

connected. A DULR functions both as a relay and a PMU. 
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The input features to the neural network are the complex voltages and the currents that a 

PMU can measure. The data required for the training and validation can be obtained from 

the historical data. Historical PMU data can be directly used as the features of the neural 

network if they are available. However, it is not highly likely that the “true” states of the 

system corresponding to the historical measurements will also be available. Also, if any 

additional PMUs were added to the system, it could result in an absence of historical data 

for the newly added PMUs. Therefore, synthetic PMU data can be used for the training 

and the validation of neural networks, while the testing can be done using a stream of 

available real-time PMU data. 

The synthetic PMU data will be generated with the help of available historical load data. 

The load data is often publicly available for every hour of every day. A load pattern is 

generated using the available historical load data and a Probability Density Function (PDF) 

of the load pattern is obtained. Once a PDF of the load pattern is obtained for each load in 

the system, random load data points are sampled from distribution for the training and 

validation load data. An ACOPF solution of the sampled points from the load data gives 

the true voltage values of the system. The true current values of the system are then 

obtained using the true voltages and the line parameter information. The errors are then 

added to the true voltage values and current values to obtain the measurements, which are 

the features of the neural network. The true voltage values generated correspond to the 

labels of the neural network. The neural network then tries to identify the associated 

mapping function given by the joint probability distribution of the feature, label pair. Fig 

3.2 below summarizes the sequence of steps required for obtaining the data for the neural 

network from the historical load data. 
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Figure 3.2: Steps for Synthetic PMU Data Generation 

3.2 Probability Distribution: 

An event refers to the set of outcomes that are possible in an experiment. An event in an 

experiment can be a continuous event or a discrete event. A probability of an outcome in a 

discrete event is defined as the number of times an outcome occurred in an event over the 

total number of possible outcomes. The probability of an outcome X in an event x is defined 

by: 

𝑃(𝑥 = 𝑋) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑋 ℎ𝑎𝑝𝑝𝑒𝑛𝑠 𝑖𝑛 𝑎𝑛 𝑒𝑣𝑒𝑛𝑡 𝑥

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝑋
 (3.1) 

However, power system events are not discrete. For example, there can be an extremely 

large number of hourly load values that are possible. Thus, if a continuous event has a 

density function 𝑓(𝑥), the continuous probability distribution of an outcome x in the range 

𝑎 to 𝑏 is defined as [75] : 

𝑃(𝑎 ≤ 𝑥 ≤ 𝑏) =  ∫ 𝑓(𝑥) 𝑑𝑥
𝑏

𝑎

 (3.2) 



 

  16 

Thus, the hourly load data points can be fitted into a distribution using a density function 

and the PDF over a range can be calculated.  

The IEEE 118-bus system is chosen to demonstrate the proposed supervised learning-based 

approach adopted to perform state estimation. The hourly load data for this system is not 

available online. However, an hourly load data of the synthetic 2000-bus Texas system 

along with their static power flow information is available online [76] . A load matching 

approach is adopted which identifies the loads of the synthetic 2000-bus Texas system that 

resembles closely with the loads of the IEEE 118-bus system. Therefore, by employing this 

load matching, the available hourly load data of the synthetic 2000-bus Texas system is 

used to generate hourly load data for the IEEE 118-bus system.   

The load demand may be different in a day during different periods of time. For instance, 

the industrial loads would be very high during the period around afternoon compared to a 

period during the night. Therefore, an hourly load data during a particular 1-hour interval 

throughout the year is chosen for obtaining the load distribution and training the neural 

network for that hour. In the present study, a set of 365 points of load data at 7:00 AM was 

chosen and neural network was trained and validated for estimating the states during that 

hour. Fig 3.3 below displays a step plot of the real power of the load over the year and Fig 

3.4 below represents a step plot of the reactive power of the load over the year at 7:00 AM.  

It can be seen that the plot below represents only a discrete set of data points and the points 

have to be fitted with a suitable distribution to identify the PDF. The distribution that can 

be fitted for a discrete set of data points can be classified into two types: 
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Figure 3.3: Discrete Data Points of Real Load Data at 7:00 AM throughout the Year 

 

 

Figure 3.4: Discrete data points of Real Load Data at 7:00 AM throughout the Year 
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1) Parametric distribution: The probability distribution fitting the set of data points 

can defined using a set of fixed parameters. Examples of parametric distribution 

include: 

a) Gaussian (Normal) distribution: The distribution fitting the set of data points is 

characterized by fixed mean (𝜇) and standard deviation (𝜎). The pdf of the 

Gaussian distribution for a data point 𝑥 is given by [77] :  

𝑃𝐷𝐹 =
1

𝜎 ∗ 2𝜋
 𝑒−

1
2
 (

𝑥−𝜇
𝜎

)
2

 (3.3)  

b) Weibull distribution: The distribution fitting the set of data points is 

characterized by fixed shape parameter (𝑘) and a scale parameter (𝜆). The pdf 

of the Weibull distribution for a data point 𝑥 is given by [78] : 

𝑃𝐷𝐹 = {
𝑘

𝜆
 (

𝑥

𝜆
)
𝑘−1

 𝑒−(𝑥 𝜆⁄ )
𝑘

, 𝑥 ≥ 0

0, 𝑥 < 0
 (3.4) 

c) Lognormal distribution: The distribution fitting the set of data points natural 

logarithm is characterized by fixed mean (𝜇) and standard deviation (𝜎).The 

pdf of the Lognormal distribution for a data point 𝑥 is given by [79] : 

2) Non-parametric distribution: The distribution fitting the set of data points will be a 

function of a variable parameter. Examples of non-parametric distribution include: 

d) Histogram: A plot that denotes the frequency distribution of the data points over 

different bins of values. The frequency distribution changes if the width of the 

bin is varied. 

e) Kernel density estimation: A Kernel density estimator identifies the PDF by a 

data smoothing approach. The PDF in a kernel estimator is sensitive to the 
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bandwidth of the estimator. If 𝐾ℎ is a kernel function (Uniform, normal, 

triangular, epanechikov) and ℎ is the bandwidth of the estimator, the PDF of 

data point 𝑥 in the distribution is given by [80] : 

𝑃𝐷𝐹 = 
1

𝑛
 ∑𝐾ℎ  

(𝑥 − 𝑥𝑖)

ℎ

𝑛

𝑖=1

 (3.6) 

where {𝑥1, 𝑥2, 𝑥3, … . , 𝑥𝑛}  denotes the 𝑛 discrete data points. 

The kernel density estimator is the preferred approach for distribution fitting for discrete 

load data because of the ability to adjust the distribution to a preferred shape by changing 

the bandwidth. The hourly real load data points shown above in Fig 3.3 and Fig 3.4 is fitted 

using both the parametric methods and the non-parametric methods and the result is shown 

in Fig 3.5 below. 

 

Figure 3.5: PDF of Different Distributions of the Discrete Hourly Load Data 
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The discrete hourly load data for a particular load of the synthetic 2000-bus Texas system 

is fitted with Normal, Weibull, Lognormal (parametric) and Kernel (non-parametric) 

distribution. The parameters of the above fitted distribution are found to be: 

Table 3.1: Values of Parameters for Different Fitted Distributions 

Distribution Parameters 

Kernel (Default bandwidth) Bandwidth = 4.5844 

Normal 𝜇 = 50.0959, 𝜎 = 11.0525 

Weibull k = 54.5639, 𝜆 = 5.1822 

Lognormal 𝜇 = 50.0959, 𝜎 = 11.0525 

Kernel (Bandwidth = 1.5) Bandwidth = 1.5 

 

It can be observed that the Kernel density estimator with a bandwidth of 1.5 can fit the 

discrete real load data points more accurately than a parametric estimator. If the bandwidth 

is reduced even further, a more accurate representation of the distribution fitting the data 

points can be obtained. 

Now, the goodness of a distribution fitting a set of data points can be ascertained using 

goodness of fit tests. The goodness of fit tests can again be parametric or non-parametric. 

3.3 Parametric Goodness of Fit Test: 

The goodness of fit tests returns a parameter p. If the parameter p is greater than a chosen 

significance level, it implies that the null hypothesis will not be rejected [81] . The rejection 



 

  21 

of null hypothesis implies that it is unlikely that the distribution was consistent with the set 

of data points.  

{
𝑝 ≥  𝛼, 𝑁𝑢𝑙𝑙 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝑖𝑠 𝑛𝑜𝑡 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑
𝑝 <  𝛼, 𝑁𝑢𝑙𝑙 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝑖𝑠 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑

 (3.7) 

The significance level is conventionally chosen to be 95%. Therefore, if the 𝑝 value is 

greater than the 0.5, it indicates that the distribution is a good fit of the given set of data 

points. A distribution fitting a set of data points better will also have a higher 𝑝 value. 

Examples of parametric tests include Chi-square test, Anderson-Darling test, Shapirov-

Wilk test, etc. Table 3.2 below demonstrates the calculated 𝑝 value using the Anderson-

Darling test for the 5 distributions mentioned in Fig 3.5. It can be observed that the null 

hypothesis is rejected for all the parametric distributions. 

Table 3.2: p Values of Different Fitted Distributions 

Distribution p value 

Kernel (Default bandwidth) 0.2542 

Normal 0.0245 

Weibull 0.0338 

Lognormal 0.0041 

Kernel (Bandwidth = 1.5) 1.0000 

 

3.4 Non-Parametric Goodness of Fit test: 

In a non-parametric good of fit test, the value of the variable parameter which is a measure 

of the goodness of fit is completely decided by the user. The Dworketsky-Kiefer-
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Wolfowitz (DKW) inequality is an example of a non-parametric goodness of fit test [82] . 

The Cumulative Distribution Function (CDF), 𝐹(𝑥), at a data value 𝑋 is defined as the 

probability that the value 𝑥 will be lesser than or equal to 𝑋. The CDF 𝐹(𝑥) at a data value 

𝑋 for a continuously varying function with PDF 𝑓𝑛(𝑥)  is defined as: 

𝐹(𝑋) =  ∫ 𝑓(𝑋) 𝑑𝑥
𝑋

−∞

 (3.8) 

An empirical distribution function, 𝐹�̂�, is defined as the CDF that puts an equal mass at 

each data point 𝑋 in a set of discrete samples with 𝑛 values. 

𝐹�̂�(𝑥) =  
∑ 𝐼 (𝑋𝑖  ≤ 𝑥)𝑛

𝑖=1

𝑛
 (3.9) 

where  

𝐼 (𝑋𝑖  ≤ 𝑥) =  {
1,    𝑖𝑓 𝑋𝑖  ≤ 𝑥 
0,    𝑖𝑓 𝑋𝑖  ≥ 𝑥

 (3.10) 

Let lower bound 𝐿(𝑥) and upper bound 𝑈(𝑥) be defined by: 

𝐿(𝑥) = max{𝐹�̂�(𝑥) − ∈𝑛, 0}  (3.11) 

𝑈(𝑥) = min{𝐹�̂�(𝑥) + ∈𝑛, 1} (3.12) 

where 

∈𝑛= √
1

2𝑛
log (

2

𝛼
) (3.13) 

The 𝛼 denotes the confidence interval and it is a variable parameter whose desired value 

must be decided by the user. 
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A fitted distribution is considered to be a good fit if the following condition is satisfied: 

𝑃(𝐿(𝑥)  ≤ 𝐹(𝑥) ≤ 𝑈(𝑥) ) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ≥ (1 −  𝛼)𝑛 (3.14)  

The confidence interval 𝛼 is generally considered to be 95%. The above condition implies 

that the CDF, 𝐹(𝑥), can violate the lower and upper bounds for only 5% of the samples. 

Fig 3.6 below demonstrates the plot of the CDF, lower bound and upper bound obtained 

using a KDE of bandwidth 1.5 for the discrete data points shown in Fig 3.3. 

 

Figure 3.6: Demonstration of DKW Inequality for Sampled Discrete Load Data Points 

 

 3.5: Load Matching Methodology: 

The discrete data points of both real and imaginary loads of the synthetic Texas 2000-bus 

system can be fitted into a distribution using the KDE. The default bandwidth of the KDE 

(given by MATLAB) is chosen to be the initial value. The bandwidth is increased in a loop 



 

  24 

in every iteration and is finally stopped if the lower bound conditions of both the parametric 

and non-parametric tests are satisfied. However, the distribution of loads is required only 

for the IEEE 118-bus system (since that is the test system) and there is no requirement to 

identify the distribution of all loads of the synthetic Texas system. Moreover, the loads of 

the synthetic Texas system should also be chosen in a way that it closely resembles the 

loads of the IEEE 118-bus system. The load matching is done in the following manner: 

Let 𝑃𝑚𝑒𝑎𝑛𝑖, 𝑄𝑚𝑒𝑎𝑛𝑖 denote the mean of the discrete load data of bus 𝑖 obtained for the 

Texas system. The data for the IEEE 118-bus system is obtained using MATPOWER [83] 

. Let 𝑃𝑘, 𝑄𝑘 denote the real and reactive load values of the bus 𝑘 in IEEE 118-bus system 

given in the MATPOWER.  The algorithm for the load matching is described below: 

STEP 1: The mean value 𝑃𝑚𝑒𝑎𝑛𝑖, 𝑄𝑚𝑒𝑎𝑛𝑖  of the discrete load data points of all the loads 

of the synthetic Texas system is calculated. 

STEP 2: For a load 𝑘 in the IEEE 118-bus system, the orthogonal difference between the 

load values of bus 𝑘 and the non-zero load values of the synthetic Texas system are 

calculated for all loads of the synthetic Texas system. The difference 𝑑𝑖𝑓𝑓𝑘𝑖 is given by: 

𝑑𝑖𝑓𝑓𝑘𝑖 = √(𝑃𝑚𝑒𝑎𝑛𝑖 − 𝑃𝑘)2 + (𝑄𝑚𝑒𝑎𝑛𝑖 − 𝑄𝑘)2 (3.15) 

STEP 3: The load distribution of bus 𝑖 of the IEEE 118-bus system is matched with load 𝑘 

of the synthetic Texas system with the least 𝑑𝑖𝑓𝑓𝑘𝑖. 

STEP 4: The load pattern for a bus 𝑘 is obtained by shifting the pdf of the matched load 𝑖 

of the synthetic Texas system by a value of 𝑃𝑘 − 𝑃𝑚𝑒𝑎𝑛𝑖 for real loads and 𝑄𝑘 − 𝑄𝑚𝑒𝑎𝑛𝑖 

for reactive loads. 
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STEP 5: The required number of random points can now be sampled from the distribution 

to obtain the discrete load values of the IEEE 118-bus system. 

Table 3.3 represents the loads of the synthetic Texas system that are matched with the 

corresponding load of the IEEE 118-bus system. 

Table 3.3: Load Matching Results of IEEE 118-Bus System with 2000-Bus Synthetic 

Texas System 

Load 

Index 

IEEE 

118-Bus 

system 

bus 

number 

Real load 

of IEEE 

118 bus 

system 

(MW) 

Reactive 

load of 

IEEE 

118 bus 

system 

(MVAR) 

Texas 

system 

bus 

number 

Mean 

Real load 

of Texas 

system 

(MW) 

Mean 

Reactive 

load of 

Texas 

system 

(MVAR) 

 

 

 

Orthogonal 

Difference 

(MW) 

1 1 51 27 1125 54.2957 15.3851 12.07336 

2 2 20 9 1262 20.8388 5.9055 3.206109 

3 3 39 10 478 38.8108 10.992 1.010525 

4 4 39 12 1225 39.2294 11.117 0.912154 

5 6 52 22 796 53.9196 15.2790 6.989716 

6 7 19 2 850 18.1935 5.1547 3.256169 

7 8 28 0 728 26.1117 7.3895 7.627032 

8 11 70 23 542 70.9834 20.168 2.997899 

9 12 47 10 1092 46.1347 13.0729 3.192411 

10 13 34 16 629 35.7463 10.1321 6.122152 
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Load 

Index 

IEEE 

118-Bus 

system 

bus 

number 

Real load 

of IEEE 

118 bus 

system 

(MW) 

Reactive 

load of 

IEEE 

118 bus 

system 

(MVAR) 

Texas 

system 

bus 

number 

Mean 

Real load 

of Texas 

system 

(MW) 

Mean 

Reactive 

load of 

Texas 

system 

(MVAR) 

 

 

 

Orthogonal 

Difference 

(MW) 

11 14 14 1 156 13.2778 3.7597 2.852647 

12 15 90 30 1088 91.1413 25.8227 4.330349 

13 16 25 10 762 25.8251 7.3194 2.804699 

14 17 11 3 987 11.0073 3.1107 0.111019 

15 18 60 34 381 63.4198 18.0132 16.34846 

16 19 45 25 464 48.8899 13.9379 11.72609 

17 20 18 3 590 17.3915 4.9252 2.019082 

18 21 14 8 294 14.9588 4.2394 3.880843 

19 22 10 5 905 10.789 3.0742 2.081081 

20 23 7 3 1292 7.22466 2.0472 0.978904 

21 24 13 0 98 12.0059 3.3984 3.54081 

22 27 71 13 908 69.4256 19.6671 6.850562 

23 28 17 7 1321 17.5553 4.9749 2.099836 

24 29 24 4 407 23.3147 6.6042 2.692891 

25 31 43 27 978 46.7610 13.2561 14.24913 

26 32 59 23 1158 60.5819 17.1681 6.042598 
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Load 

Index 

IEEE 

118-Bus 

system 

bus 

number 

Real load 

of IEEE 

118 bus 

system 

(MW) 

Reactive 

load of 

IEEE 

118 bus 

system 

(MVAR) 

Texas 

system 

bus 

number 

Mean 

Real load 

of Texas 

system 

(MW) 

Mean 

Reactive 

load of 

Texas 

system 

(MVAR) 

 

 

 

Orthogonal 

Difference 

(MW) 

27 33 23 9 328 23.5907 6.6854 2.388738 

28 34 59 26 1019 61.5085 17.427 8.932256 

29 35 33 9 825 32.9767 9.2945 0.295503 

30 36 31 17 1209 33.0487 9.3667 7.903436 

31 39 27 11 1083 27.8511 7.8936 3.220887 

32 40 66 23 717 66.8014 18.931 4.147033 

33 41 37 10 706 36.9012 10.4499 0.460708 

34 42 96 23 1077 95.5490 27.0730 4.097985 

35 43 18 7 858 18.5881 5.2691 1.828009 

36 44 16 8 829 16.8980 4.7962 3.327236 

37 45 53 22 1220 54.8055 15.5306 6.716604 

38 46 28 10 207 28.4210 8.0526 1.992299 

39 47 34 0 141 31.6466 8.9645 9.268361 

40 48 20 11 199 21.4250 6.0735 5.128423 

41 49 87 30 317 87.9708 24.9284 5.16364 

42 50 17 4 341 16.8321 4.7686 0.786752 
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Load 

Index 

IEEE 

118-Bus 

system 

bus 

number 

Real load 

of IEEE 

118 bus 

system 

(MW) 

Reactive 

load of 

IEEE 

118 bus 

system 

(MVAR) 

Texas 

system 

bus 

number 

Mean 

Real load 

of Texas 

system 

(MW) 

Mean 

Reactive 

load of 

Texas 

system 

(MVAR) 

 

 

 

Orthogonal 

Difference 

(MW) 

43 51 17 8 324 17.8279 5.0536 3.060445 

44 52 18 5 852 18.0200 5.1094 0.110043 

45 53 23 11 71 24.05745 6.8189 4.31274 

46 54 113 32 444 113.0483 32.0317 0.057844 

47 55 63 22 667 64.241 18.1983 3.999103 

48 56 84 18 1002 82.2678 23.3067 5.582281 

49 57 12 3 1248 11.9240 3.37663 0.384219 

50 58 12 3 1248 11.9240 3.37662 0.384219 

51 59 277 113 1113 174.2157 49.3634 120.8893 

52 60 78 3 1005 72.9071 20.6542 18.37416 

53 62 77 14 569 74.9292 21.2244 7.51535 

54 66 39 18 502 40.7289 11.5539 6.673905 

55 67 28 7 840 27.7156 7.8521 0.898304 

56 70 66 20 301 66.2442 18.7669 1.257022 

57 72 12 0 830 11.0218 3.1127 3.262867 

58 73 6 0 924 5.4557 1.5344 1.628094 
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Load 

Index 

IEEE 

118-Bus 

system 

bus 

number 

Real load 

of IEEE 

118 bus 

system 

(MW) 

Reactive 

load of 

IEEE 

118 bus 

system 

(MVAR) 

Texas 

system 

bus 

number 

Mean 

Real load 

of Texas 

system 

(MW) 

Mean 

Reactive 

load of 

Texas 

system 

(MVAR) 

 

 

 

Orthogonal 

Difference 

(MW) 

59 74 68 27 1028 70.0792 19.8583 7.43813 

60 75 47 11 628 46.3809 13.1409 2.22864 

61 76 68 36 792 72.6737 20.6375 16.05765 

62 77 61 28 381 63.4198 18.0132 10.27576 

63 78 71 26 792 72.6737 20.6375 5.617564 

64 79 39 32 909 44.2945 12.5607 20.14735 

65 80 130 26 1043 127.237 36.0498 10.42268 

66 82 54 27 771 56.3149 16.0245 11.2169 

67 83 20 10 1208 21.0805 5.9737 4.168672 

68 84 11 7 702 12.0405 3.4119 3.735922 

69 85 24 15 885 26.4375 7.4996 7.886471 

70 86 21 10 564 22.1497 6.2774 3.896028 

71 88 48 10 892 47.2730 13.3758 3.453223 

72 90 163 42 283 162.6423 46.0853 4.10098 

73 91 10 0 881 9.5266 2.65173 2.693659 

74 92 65 10 1129 62.5012 17.7083 8.103255 
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Load 

Index 

IEEE 

118-Bus 

system 

bus 

number 

Real load 

of IEEE 

118 bus 

system 

(MW) 

Reactive 

load of 

IEEE 

118 bus 

system 

(MVAR) 

Texas 

system 

bus 

number 

Mean 

Real load 

of Texas 

system 

(MW) 

Mean 

Reactive 

load of 

Texas 

system 

(MVAR) 

 

 

 

Orthogonal 

Difference 

(MW) 

75 93 12 7 887 12.9437 3.6720 3.459157 

76 94 30 16 1184 31.898 9.0398 7.214255 

77 95 42 31 978 46.7610 13.2562 18.37145 

78 96 38 15 1225 39.2294 11.1171 4.072819 

79 97 15 9 984 16.2099 4.6056 4.557849 

80 98 34 8 285 33.5045 9.4930 1.573082 

81 99 42 0 478 38.8108 10.9926 11.44594 

82 100 37 18 623 38.8607 11.0107 7.232703 

83 101 22 15 608 24.6084 6.9824 8.431155 

84 102 5 3 601 5.4522 1.5495 1.519284 

85 103 23 16 349 25.6015 7.2550 9.123684 

86 104 38 25 531 41.9577 11.917 13.66853 

87 105 31 26 465 34.5231 9.8637 16.51639 

88 106 43 16 688 43.9733 12.4581 3.673194 

89 107 50 12 433 49.5594 13.9735 2.022099 

90 108 2 1 48 2.09208 0.5946 0.415661 
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Load 

Index 

IEEE 

118-Bus 

system 

bus 

number 

Real load 

of IEEE 

118 bus 

system 

(MW) 

Reactive 

load of 

IEEE 

118 bus 

system 

(MVAR) 

Texas 

system 

bus 

number 

Mean 

Real load 

of Texas 

system 

(MW) 

Mean 

Reactive 

load of 

Texas 

system 

(MVAR) 

 

 

 

Orthogonal 

Difference 

(MW) 

91 109 8 3 1324 8.2236 2.3315 0.704903 

92 110 39 30 909 44.2945 12.5607 18.22523 

93 112 68 13 301 66.2442 18.7669 6.028287 

94 113 6 0 924 5.4557 1.5344 1.628094 

95 114 8 3 1324 8.2236 2.3315 0.704903 

96 115 22 7 564 22.1497 6.2774 0.737868 

97 116 184 0 1016 170.285 48.2441 50.15552 

98 117 20 8 741 20.6832 5.8643 2.24232 

99 118 33 15 465 34.5231 9.8637 5.357329 

 

Therefore, the distribution of the load pattern for the real and reactive loads for the IEEE 

118-bus system can be obtained by matching the loads of the IEEE 118-bus system with 

the synthetic 2000-bus Texas system and shifting the distribution of the loads of the 

synthetic Texas system by the respective differences in means. 

The load data points are now sampled from the obtained distribution of IEEE 118-bus 

system loads. These sampled load data points are fed into MATPOWER to obtain the 
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ACOPF solution for different discrete load values. To perform state estimation for a real 

system, the measurements for training and validation are generated using historical load 

data and the data for testing can be the real time PMU measurements. However, since the 

real time measurements for the IEEE 118-bus system are not available, the load data 

samples required for the training, validation and testing will all be obtained from the same 

load distribution. 

Due to shifting of the load distribution from the loads of synthetic Texas system, the 

sampled points of the load of the IEEE 118-bus system might be negative. The load data 

set with negative load values (predominantly reactive load) are neglected for the data 

generation process. These sampled and filtered load data points are fed into MATPOWER 

to obtain the ACOPF solution for different discrete load values.  The ACOPF solution gives 

the true voltage values of the IEEE 118-bus system. The true current values can be 

generated using the true voltage values and the line parameters of the system. 

3.6 Generation of Currents: 

The lines in the transmission system can be modelled using a pi-model [84] . A 

transmission line connecting two nodes with a line series impedance of 𝑅 + 𝑗𝑋 and a 

susceptance value of 𝑗2𝐵 will be modeled as shown in Fig 3.7. 
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Figure 3.7: A Pi-Model Equivalent Circuit of a Transmission Line 

The node 𝑘 denotes the sending end node and 𝑚 denotes the receiving end node. The true 

voltage values at both the nodes are already obtained and the values of 𝑅, 𝑋 and 𝐵 for IEEE 

118-bus system are available in the MATPOWER. A PMU placed at bus 𝑘 measures the 

line current leaving out of node 𝑘 towards the series branch and the shunt component. The 

line current leaving node 𝑘 will be sum of the currents in the series branch with impedance 

𝑅 +  𝑗𝑋 and the current in the shunt branch 𝑗𝐵. If 𝑉𝑘 and 𝑉𝑚 are the true voltages at nodes 

𝑘 and 𝑚, respectively, then the current 𝐼𝑘𝑚 leaving the node 𝑘 towards the branch 𝑘𝑚 is: 

𝐼𝑘𝑚 =
(𝑉𝑘 − 𝑉𝑚)

(𝑅 + 𝑗𝑋)
+ (𝑉𝑘) ∗ 𝑗𝐵 (3.16)  

Similarly, a PMU placed at bus 𝑚 will measure the difference of the current entering the 

node 𝑚 from the series branch 𝑘𝑚 and the corresponding shunt branch. If 𝐼𝑚𝑘 denotes the 

current entering node 𝑚 from node 𝑘,  

𝐼𝑚𝑘 =
(𝑉𝑘 − 𝑉𝑚)

(𝑅 + 𝑗𝑋)
− ( 𝑉𝑚) ∗ 𝑗𝐵 (3.17) 

Using the above two formulas, the current entering the node towards all the branches or 

leaving the node using all the branches can be calculated. 
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Two buses in an IEEE 118-bus system can also be connected by a transformer. The pi 

model equivalent circuit for two buses connected by a transformer having turns ratio 𝑎 is 

given by: 

 

Figure 3.8: A Pi-Model Equivalent Circuit of a Transformer 

The currents flowing into and out of the transformers can be calculated by modifying 3.16 

and 3.17, appropriately. 

Therefore, the true values of voltages and currents of the entire network can be obtained 

using the available hourly load data. The neural network formulation in this thesis is 

performed using the training, validation and testing samples obtained from the same 

distribution. The number of samples obtained for the different types of data after solving 

the ACOPF are as follows: 

Table 3.4: Number of Data Samples for Different Datasets 

Type of Data Number of Samples 

Training 8500 

Validation 2700 

Testing 1000 
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Therefore, the data generation for the neural network consists of generating many samples 

of true values of voltage magnitude and angle of all buses and true values of currents 

entering or leaving all the branches in the network. The errors can then be added to these 

true values to obtain the measurements for the neural network. 

The PMU device is generally very accurate and are required to be calibrated to produce an 

error of less than 1% Total Vector Error (TVE) under steady-state conditions. The TVE 

defined in the IEEE C37.118.1 [85]  standard is mathematically defined as: 

𝑇𝑉𝐸 =  √
(𝑉𝑟 − 𝑉�̂�)

2
+ (𝑉𝑖 − 𝑉�̂�)

2

𝑉�̂�
2
+ 𝑉�̂�

2  (3.18) 

The operation of the neural network-based state estimator is demonstrated initially with the 

measurements obtained by adding error values chosen randomly from a Gaussian 

distribution. The parameters of the Gaussian distribution chosen for the error are mentioned 

in Table 3.5 below. 
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Table 3.5: Gaussian Error Measurement Parameters 

Measurement type Error Mean Error Standard Deviation 

Magnitude (voltages and 

currents) 

0 1/3 %  

Angle (voltages and 

currents) 

0 0.573°/3 

 

Fig 3.9 shows the PDF of a Gaussian distribution. If the Gaussian distribution is plotted, it 

can be observed that a random value chosen from the distribution has a probability of 

99.7% to lie in the range ±3𝜎.   

 

Figure 3.9: PDF of a Gaussian Distribution 

Thus, the standard deviation of 1/3% corresponds to the maximum 3𝜎 error in magnitude 

measurement when the angle measurement is error free for a 1% TVE. Similarly, the 

standard deviation of 0.573°/3 corresponds to the maximum 3𝜎 error in angle measurement 
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when the magnitude measurement is error free for a 1% TVE. Additionally, the TVE is 

calculated after choosing the random error values from the Gaussian distribution. If the 

TVE exceeds the 1% criteria, these error values are discarded, and new error values are 

randomly chosen from the distribution. This process is repeated until the TVE condition is 

satisfied. 

3.7: Neural Network Overview: 

The equation relating an error induced measurement (𝑧 = 𝐻𝑥 + 𝑒) and the state (x) of a 

system is given by: 

𝑧 = 𝑊𝑥 + 𝑏 (3.19)  

The neural network can identify the weights 𝑊 and bias 𝑏 mapping the measurements and 

the states using various samples of features, label data pair obtained from the distributions 

of hourly load data in the training and the validation phase. The states for any new set of 

measurements in the testing data can be predicted using the estimated 𝑊 and 𝑏. Fig 3.10 

below demonstrates a simple representation of a multi layered neural network (MLNN). 

 

Figure 3.10: Demonstration of a Multi Layered Neural Network 
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Consider a neural network with one output and no hidden layers as shown in the figure 

below. 

 

Figure 3.11: Neural Network with No Hidden Layers 

Let 𝑍 = {𝑧1, 𝑧2, … . 𝑧𝑛} correspond to the features of the neural network and 𝑊 =

{𝑤1, 𝑤2, … . 𝑤𝑛}  represent the weights of the edges connecting the input to the output. The 

𝑏 corresponds to the bias, which can also be modeled as one of the neural network inputs 

connected to the next layer with weight 1. 

The output 𝑥 is given by: 

𝑥 = 𝑔(𝑤1𝑧1 + 𝑤2𝑧2 + 𝑤3𝑧3 + ⋯+ 𝑤𝑛𝑧𝑛 + 𝑏) (3.20) 
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The output 𝑥 is the weighted sum of inputs of the neural network applied over an activation 

function, which is mostly non-linear. Some of the predominantly used activation functions 

include Sigmoid, tanh, ReLU, etc. This process of computing the values of nodes in a layer 

with the values of nodes in the previous layer is called forward propagation. 

The same concept is applicable in case of neural network with multiple hidden layers too. 

Consider a neural network with 3 input nodes, 4 nodes in the hidden layer and 2 outputs as 

shown in the Fig 3.12 below: 

 

Figure 3.12: Neural Network with One Hidden Layer 
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Let 𝑊1 = [

𝑤111 𝑤112 𝑤113

𝑤121 𝑤122 𝑤123

𝑤131 𝑤132 𝑤133

𝑤141 𝑤142 𝑤143

] denote the elements of the weight matrix connecting 

the input layer (𝑙0) with features 𝑍 = [𝑧1 𝑧2 𝑧3] and the hidden layer (𝑙1) with nodes ℎ1 =

[ℎ11 ℎ12 ℎ13 ℎ14]. Let 𝑊2 = [
𝑤211 𝑤212

𝑤221 𝑤222
    

𝑤213 𝑤214

𝑤223 𝑤224
  ] denote the elements of the 

weight matrix connecting the hidden layer (𝑙1) and the output layer (𝑙2) with nodes 𝑋 =

[𝑥1 𝑥2].  The biases 𝐵1 = [𝑏11 𝑏12    𝑏13 𝑏14] and 𝐵2 = [𝑏21 𝑏22    𝑏23 𝑏24] 

can be assumed to be connected to all the nodes of the next layer  with weights value of 1. 

The equations for forward propagation of the neural network is given by: 

ℎ11 = 𝑔1(𝑧1𝑤111 + 𝑧2𝑤112 + 𝑧3𝑤113 + 𝑏111) (3.21) 

ℎ12 = 𝑔1(𝑧1𝑤121 + 𝑧2𝑤122 + 𝑧3𝑤123 + 𝑏121) (3.22) 

ℎ13 = 𝑔1(𝑧1𝑤131 + 𝑧2𝑤132 + 𝑧3𝑤133 + 𝑏131) (3.23) 

ℎ14 = 𝑔1(𝑧1𝑤141 + 𝑧2𝑤142 + 𝑧3𝑤143 + 𝑏141) (3.24) 

Once the values of the hidden layers are calculated, the values in the output layer is given 

by: 

𝑥1 = 𝑔2(ℎ11𝑤211 + ℎ12𝑤212 + ℎ13𝑤213 + ℎ14𝑤214 + 𝑏211) =  𝑔2 (𝑎21) (3.25)  

𝑥2 = 𝑔2(ℎ11𝑤221 + ℎ12𝑤222 + ℎ13𝑤223 + ℎ14𝑤224 + 𝑏221) =  𝑔2 (𝑎22) (3.26) 

where 𝑔1 denotes the activation function of the nodes in the hidden layer and 𝑔2 denotes 

the activation function of the nodes in the output layer. 
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The values of input matrix are known values. Initially, the weights and bias vectors are 

assigned with a random value. The value of the nodes in the hidden layers and output layer 

will be computed.  

The computed output will be very different from the labeled output with the weights being 

assigned a random value. However, the output predicted by the neural network must 

become as close as possible to the labeled output for an accurate estimation. This prediction 

error of the neural network can be modeled using a loss function. Some of the commonly 

used loss functions for the regression problems include mean absolute error (MAE), mean 

square error (RMSE), mean absolute percentage error (MAPE), etc. For instance, the mean 

square error loss function for the neural network shown in Fig 3.12 is given by: 

𝐿(𝑥) =  
1

2
  |(𝑥1 − 𝑥1𝑝)2 + (𝑥2 − 𝑥2𝑝)2| (3.27) 

This loss function will be a function of weight and bias of the neural network. This loss 

function can be minimized using an iterative gradient descent algorithm (or other 

sophisticated algorithms). 

𝑊1 ∶=  𝑊10 −  𝛼 
𝑑𝐿

𝑑𝑊1
  (3.28)   

𝑊2 ∶=  𝑊20 −  𝛼 
𝑑𝐿

𝑑𝑊2
 (3.29) 

𝐵1 ∶=  𝐵10 −  𝛽 
𝑑𝐿

𝑑𝐵1
 (3.30)   

𝐵2 ∶=  𝐵20 −  𝛽 
𝑑𝐿

𝑑𝐵2
 (3.31) 



 

  42 

The variables 𝑊10,𝑊20, 𝐵10, 𝐵20 denote the weight matrices and bias vectors during the 

previous iteration and W1, W2, B1 and B2 denotes the computed weights and biases in the 

current iteration after backpropogation. 𝛼 and 𝛽 denote the learning rates which will be 

decided by the user. 

The derivative of the loss function with respect to the weights can be calculated in the 

following manner: 

𝑑𝐿

𝑑𝑎21
= 

𝑑𝐿

𝑑𝑥1
∗  

𝑑𝑥1

𝑑𝑎21
=

𝑑𝐿

𝑑𝑥1
∗  𝑔2

′  (3.32) 

𝑑𝐿

𝑑𝑎22
= 

𝑑𝐿

𝑑𝑥2
∗  

𝑑𝑥2

𝑑𝑎22
=

𝑑𝐿

𝑑𝑥2
∗  𝑔2

′  (3.33) 

The derivatives with respect to the loss function will be a term dependent on the loss 

function. 

[
𝑑𝐿

𝑑𝑊2
] =

[
 
 
 

𝑑𝐿

𝑑𝑎21

𝑑𝐿

𝑑𝑎22]
 
 
 

∗  [ℎ11    ℎ12     ℎ13     ℎ14]  =  
𝑑𝐿

𝑑𝑎2
∗ ℎ1𝑇  (3.34) 

[
𝑑𝐿

𝑑𝐵2
] =

[
 
 
 

𝑑𝐿

𝑑𝑎21

𝑑𝐿

𝑑𝑎22]
 
 
 

 =  
𝑑𝐿

𝑑𝑎2
 (3.35) 

Similarly, the slope of the weights and bias vectors connecting the input and the hidden 

layer are:  
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[
𝑑𝐿

𝑑𝑊1
] =

[
 
 
 
 
 
 
 
 

𝑑𝐿

𝑑𝑎11

𝑑𝐿

𝑑𝑎12

𝑑𝐿

𝑑𝑎13

𝑑𝐿

𝑑𝑎14]
 
 
 
 
 
 
 
 

∗  [𝑧1    𝑧2     𝑧3]  =  
𝑑𝐿

𝑑𝑎1
∗ 𝑍𝑇 (3.36) 

[
𝑑𝐿

𝑑𝐵1
] =

[
 
 
 
 
 
 

𝑑𝐿

𝑑𝑎11

𝑑𝐿

𝑑𝑎12

𝑑𝐿

𝑑𝑎13]
 
 
 
 
 
 

 =  
𝑑𝐿

𝑑𝑎1
 (3.37) 

This can be extended to a MLNN with 𝑙 hidden layers. The gradient of the weights 𝑊𝑙 and 

bias vectors 𝐵𝑙 connecting any two layers 𝑙 and 𝑙 + 1 is given by:  

[
𝑑(𝐿)

𝑑(𝑊𝑙)
] = =  

𝑑(𝐿)

𝑑(𝑎𝑙)
∗ (ℎ𝑙−1)

𝑇 (3.38) 

[
𝑑(𝐿)

𝑑(𝐵𝑙)
] = =  

𝑑(𝐿)

𝑑(𝑎𝑙)
 (3.39) 

where 𝑎𝑙 and ℎ𝑙−1 are vectors in layer 𝑙 and 𝑙 − 1 related in the following manner: 

𝑎𝑙 =  𝑊𝑙 ∗ ℎ𝑙−1  +   𝐵𝑙 (3.40) 

Therefore, an initial output of the neural network is computed using forward propagation 

using randomly chosen values of weights and biases. The error in the neural network 

prediction is modeled using a loss function. The neural network predicts the best results 

when the computed value of the loss function is minimal. The error computed by the loss 

function is then backpropagated to readjust the weights. This process of forward and back 
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propagation is continued iteratively until a certain number of iterations are reached or the 

absolute change in the values computed by the loss function is lesser than a certain 

threshold. The set of weight matrices and bias vectors obtained at the end of this process 

computes the output closest to the labeled output. Therefore, this set of weight matrices 

and bias vectors obtained at the end of this process represents the mapping between the 

features (measurements) and the labels (states) of the network. 

 

Figure 3.13: Graph of Loss Function Versus Weight 

The graph in Fig 3.13 above is a generic representation of the loss function as a function 

of a weight of a neural network. A lower learning rate 𝛼 chosen for the neural network, 

will take more time for weights to converge. A higher learning rate 𝛼 chosen for the neural 
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network will take less time for weights to converge, however it runs into the problem of 

the loss function not reaching a global minimum, and possibly resulting even in divergence. 

Thus, there is a trade-off between the time taken for training and the accuracy of training, 

while choosing the value of the learning rate. The value chosen for the learning rate controls 

the training process and hence it is termed as a hyperparameter. Choosing the value of 

hyperparameters is an extremely crucial task in training and testing the neural network. 

3.8: Neural Network Implementation for the IEEE 118-Bus System: 

The neural network is capable of identifying the joint probability distribution between any 

set of measurements and the corresponding true values of the system. This joint probability 

distribution represents the relationship between the measurements and the states of the 

system. The feature, label pair data sets for training, validation and testing required for the 

neural network is already obtained using the procedure discussed earlier. The next step is 

identifying the architecture of the neural network to be used for the application. 

Fig 3.14 below shows the architecture of the neural network that can be used for identifying 

the mapping determining the relationship between the measurements and the states. All the 

buses and branches are assumed to be completely observed by PMUs for the current set-

up resulting in a system that has redundant observability. The working of the neural 

network-based state estimation in case of a partial observability will be discussed 

afterwards. The input measurements corresponding to the features of this neural network 

are the complex voltage measurements of all buses and the complex current measurements 

of all the branches. The topology of the IEEE 118-bus system is obtained from 
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MATPOWER. The IEEE 118-bus system has 118 buses and 186 branches (including the 

connections between a bus and a transformer). 

 

Figure 3.14: Architecture of the Proposed Neural Network for State Estimation 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠

= 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠

+ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑏𝑟𝑎𝑛𝑐ℎ

+ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑙𝑒𝑎𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑏𝑟𝑎𝑛𝑐ℎ

= (118 ∗ 2) + (186 ∗ 2) + (186 ∗ 2) = 980 

A complex measurement corresponds to a magnitude and an angle measurement. The size 

of the input data will be [𝑚, 980] where 𝑚 corresponds to the number of samples of input. 
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The value of 𝑚 will be different for the training, validation, and testing datasets. Therefore, 

each row of the data corresponds to different samples of a feature and each column 

corresponds to different input features for the neural network. 

The next step is to choose the number of hidden layers and the size of each layer. The 

number of hidden layers and size of each layer are also hyperparameters which controls 

the training of data by the neural network. 

Hidden Layer Dimensions: A deep neural network with 5 hidden layers are chosen. There 

are no particular best values to choose for the number of nodes in each hidden layer. 

However, the number of nodes preferred for the hidden layer are roughly two-thirds the 

size of the input layer plus the size of the output layer [86] . The number of features (input) 

and labels (output) respectively are 980 and 236. Therefore, 5 hidden layers with 890 nodes 

in each hidden layer are chosen for the neural network architecture. 

Activation function: The next hyperparameter to be decided is the activation function to 

be used for each hidden layer. Some of the commonly used activation functions include: 

sigmoid, tanh, ReLU, etc. The sigmoid and tanh activation functions are primarily used for 

neural network classification problems as they return a value in the range [−1 1]. The 

commonly used activation function for neural network regression problems is the Rectified 

Linear Unit (ReLU) function. The ReLU activation function for an input 𝑥 is given by: 

𝑔(𝑥) =  {
𝑥,   𝑤ℎ𝑒𝑛 𝑥 ≥ 0
0,   𝑤ℎ𝑒𝑛 𝑥 < 0

 (3.41) 
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The plot of the ReLU function is shown in Fig 3.15 below. The value of output will be 

same as input if the sum of the weighted inputs at the node turns out to be positive. It will 

be zero if the sum of weighted inputs turns out to be negative. 

 

Figure 3.15: Demonstration of ReLU Activation Function 

The ReLU function is used as the activation function for the all the connections between 

the input layer and the first hidden layer and also between any two hidden layers. A linear 

function is used as the activation function for the connections between the final hidden 

layer and the output layer. The linear activation function for an input x is given by: 

𝑔(𝑥) = 𝑥 

 The plot of a linear activation function is shown in the Fig 3.16 given below: 
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Figure 3.16: Demonstration of Linear Activation Function 

Loss function: The loss function that will be used for this application is also the commonly 

used loss function for the neural network regression applications. The difference between 

the predicted output and the labelled output at the end of each iteration is modeled using a 

mean squared error (MSE) loss function. For a neural network with 𝑚 samples predicting 

𝑛 outputs of the output layer, the mean squared error is given by: 

𝐿(𝑥) =  
1

𝑚𝑛
 ∑ ((𝑥𝑖1

𝑝 − 𝑥𝑖1)
2
+ (𝑥𝑖2

𝑝 − 𝑥𝑖2)
2
+ ⋯+ (𝑥𝑖𝑛

𝑝 − 𝑥𝑖𝑛)
2
)𝑚

𝑖=1  (3.42)

The values 𝑥𝑖𝑗
𝑝

 and 𝑥𝑖𝑗 denotes the predicted value of the 𝑖𝑡ℎ sample, 𝑗𝑡ℎ output and the 

labeled true value, respectively. The training and validation loss will be calculated at the 

end of each iteration. 



 

  50 

Optimization algorithm: The adjustment of weights and bias vectors in each iteration 

using a gradient descent algorithm was demonstrated earlier. The formula used for 

calculating the weights W and biases B using an iterative gradient descent algorithm is 

given by: 

𝑊𝑡 ∶=  𝑊𝑡−1 −  𝛼 
𝑑𝐿

𝑑𝑊
 (3.43) 

𝐵𝑡 ∶=  𝐵𝑡−1 −  𝛽 
𝑑𝐿

𝑑𝐵
 (3.44)   

The optimization algorithm used for this application is Adam, which is a modification of 

the gradient descent algorithm. The Adam optimization tries to modify the learning rate 

adaptively to increase the computational speed of the neural network [87] .  

Number of Epochs: The number of epochs refer to the number of times the weights of the 

neural network are updated during the training and validation process. The formulated 

neural network was run for 120 epochs. The training and the validation loss value, given 

by the loss function are calculated for each epoch and both the losses are plotted as a 

function of epoch number.  

Early Stopping: An early stopping is introduced into the neural network training process 

which allows the stopping of the neural network training if the validation loss does not 

keep on decreasing beyond a specified patience. The neural network is monitored after 

each epoch and a model of the neural network is saved whenever the validation loss reaches 

its lowest value. The saved neural network model denotes the weights and bias vectors 

mapping the features and the labels calculated in the epoch when the validation loss is at 

its lowest. The patience value refers to the number of epochs up to which the neural 



 

  51 

network continues its training without the validation loss going less than the value in the 

saved model. The neural network was formulated to run for 120 epochs and the number of 

epochs chosen as the patience was 50. The hyperparameters of the neural network 

architecture and the values chosen for the different hyperparameters are summarized in the 

table below: 

Table 3.6: Different Hyperparameter Values of the Formulated Neural Network 

Hyperparameters Values 

Number of hidden layers 5 

Number of neurons in the hidden layers 890 

Activation Function ReLU function for all connections between 

the input and the hidden layer and between 

2 hidden layers 

Linear function for all connections 

between the final hidden layer and the 

output layer 

Loss Function Mean Squared Error (MSE) 

Optimization algorithm Adam’s Optimization 

Learning rate Adaptive learning rate calculated during 

the Adam’s Optimization 

Number of epochs 120 

Early Stopping Monitored Quantity – Validation Loss 

Patience = 50 
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A neural network state estimator is formulated with the architecture and the set of 

hyperparameters described earlier using the inbuilt Python packages, Keras version 2.2.4-

tf [88] , Tensorflow version 2.0.0 [89] , and Pandas version 0.25.3 [90] . These packages 

are integrated using Python version 3.7.7. Four CSV files were fed into the neural network 

framework for training and validation, while two CSV files were fed into the neural 

network for testing.  

Table 3.7: Dimensions of Different Neural Network Inputs 

Input file Matrix Dimensions 

Training measurements (NN features) 8500*980 

Training states (NN labels) 8500*236 

Validation measurements (NN features) 2700*980 

Validation states (NN labels) 2700*236 

Testing measurements (NN new features) 1000*980 

Testing states (NN expected output) 1000*236 

 

The neural network is run for 120 epochs and the training and validation loss obtained from 

the saved model are: 

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐿𝑜𝑠𝑠 =  5.1122𝑒 − 6 

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠 =  4.3374𝑒 − 6 

Fig 3.17 below represents the plot of the training loss and validation loss obtained after 

each epoch. 
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Figure 3.17: Plot of Neural Network Training and Validation Loss 

3.9 Error Metrics: 

The results of the neural network-based state estimator will be analyzed using the following 

metrics: 

a) Voltage Magnitude by Mean Absolute Error (MAE): The Voltage Magnitude MAE 

calculates the absolute difference between the predicted and labeled voltage 

magnitude values and calculates the average of all the calculated absolute 

differences. If  𝑉𝑖𝑗𝑚 and 𝑉𝑖𝑗𝑚
𝑝

 denotes the labeled and the average estimated values 

of all samples, respectively, of the 𝑖𝑡ℎ output, 𝑗𝑡ℎ sample among 𝑛 total outputs and 

𝑘 samples, the voltage magnitude MAE is given by: 

𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑀𝐴𝐸 = 
1

𝑚𝑛
 ∑∑|𝑉𝑖𝑗𝑚  − 𝑉𝑖𝑗𝑚

𝑝 |

𝑘

𝑗=1

𝑛

𝑖=1

 (3.45) 
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b) Voltage Angle by Mean Absolute Error (MAE): The Voltage Angle MAE 

calculates the absolute difference between the predicted and labeled voltage angle 

values and calculates the average of all the calculated absolute differences. If  𝑉𝑖𝑎 

and 𝑉𝑖𝑎
𝑝

 denotes the labeled and estimated values of all samples, respectively, of the 

𝑖𝑡ℎ output, 𝑗𝑡ℎ sample among 𝑛 total outputs and 𝑘 samples, the Voltage Angle 

MAE is given by: 

𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑎𝑛𝑔𝑙𝑒 𝑀𝐴𝐸 =  
1

𝑚𝑛
 ∑∑|𝑉𝑖𝑗𝑎  −  𝑉𝑖𝑗𝑎

𝑝 |

𝑘

𝑗=1

𝑛

𝑖=1

 (3.46) 

c) Voltage by Root Mean Squared Error (RMSE):  The Voltage RMSE calculates the 

square of the difference between the predicted and the labeled states. The states 

correspond to the complex voltage magnitudes and angles. If  𝑉𝑖𝑗𝑚, 𝑉𝑖𝑗𝑎  and 

𝑉𝑖𝑗𝑚
𝑝  , 𝑉𝑖𝑗𝑎

𝑝
 denotes the labeled and estimated magnitude and angle values, 

respectively, of the 𝑖𝑡ℎ output, 𝑗𝑡ℎ sample among 𝑛 total outputs and 𝑘 samples, the 

Voltage RMSE is given by: 

𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑅𝑀𝑆𝐸 = 
1

2𝑚𝑛
 ∑∑|(𝑉𝑖𝑚  −  𝑉𝑖𝑚

𝑝 )
2
+ (𝑉𝑖𝑎  −  𝑉𝑖𝑎

𝑝)
2
|

𝑘

𝑗=1

𝑛

𝑖=1

 (3.47) 

The formulated neural network is then tested with the new set of measurements and the 

predicted state values are obtained. The different error metrics calculated for the above 

obtained mapping function is shown in the table below. 
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Table 3.8: Values of Different Metrics of Estimated States with Redundant Observability 

for Normal Data Set 

Voltage magnitude MAE: 9.9609e-04 pu 

Voltage angle MAE: 0.1037 degrees 

Voltage RMSE: 0.0020 

 

The Voltage magnitude absolute difference and angle absolute difference obtained for 

different buses averaged across all samples is plotted below:  

 

Figure 3.18: Voltage Magnitude Mean Absolute Difference of Estimated and True Values 

for Different Buses in IEEE 118-Bus System in the Presence of 118 PMUs 
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Figure 3.19: Voltage Angle Mean Absolute Difference of Estimated and True Values for 

Different Buses of IEEE 118-Bus System in the Presence of 118 PMUs 

Also, the plot of the estimated complex voltages and the true complex voltages for the first 

test sample is shown below. 
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Figure 3.20: Estimated and True Voltage Magnitudes of First Sample for Different Buses 

of IEEE 118-Bus System in the Presence of 118 PMUs 

 

Figure 3.21: Estimated and True Voltage Angles of First Sample for Different Buses of 

IEEE 118-Bus System in the Presence of 118 PMUs 
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Next, the neural network state estimator was trained and validated using the same number 

of input measurements; however, a very large number of training and validation samples 

were used. The testing was also done for a larger number of samples than the number of 

samples used for testing earlier. The new dimensions of training, validation, and testing 

data are given in Table 3.9. 

Table 3.9: Dimensions of Large Data Set used as Neural Network Inputs 

Input file Matrix Dimensions 

Training measurements (NN features) 340000*980 

Training states (NN labels) 340000*236 

Validation measurements (NN features) 90000*980 

Validation states (NN labels) 90000*236 

Testing measurements (NN new features) 10000*980 

Testing states (NN expected output) 10000*236 

 

The neural network formulation remains unchanged except for the change in the datasets 

fed into the neural network and the batch size used by the Adam optimizer. The batch size 

was increased to 64 from 8 previously, to reduce the total time taken for the training and 

validation of the network. The different error metrics calculated after the testing of the 

neural network are mentioned in Table 3.10 below. 
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Table 3.10: Values of Different Metrics of Estimated States with Redundant 

Observability for Large Data Set 

Voltage Magnitude MAE: 8.70 * 10-4 pu 

Voltage Angle MAE: 0.07908 degrees 

Voltage RMSE: 0.0018 

 

It can be observed that the use of a large data set did not result in any significant 

improvement in the state estimates. 

3.10 Linear State Estimation: 

The conventional state estimation approach utilizes the topology and line parameter 

information of the system to estimate the states of the system from the obtained 

measurements and known models. 

The equation relating the erroneous measurements 𝑍 with error 𝑒 and the true voltages 𝑋 

of the system are given by: 

𝑍 = 𝐻𝑋 + 𝑒 (3.48) 

The matrix 𝐻 is known as the Jacobian matrix that relates the measurements and the states. 

The vector 𝑍 consists of simulated PMU measurements, the voltages and the currents of 

the system.  

𝑍 =

[
 
 
 
 
𝑉𝑟𝑒𝑎𝑙

𝑒

𝑉𝑖𝑚𝑎𝑔
𝑒

𝐼𝑟𝑒𝑎𝑙
𝑒

𝐼𝑖𝑚𝑎𝑔
𝑒

]
 
 
 
 

=  [

1′ 0
0 1′

𝐶11 𝐶12

𝐶21 𝐶22

] [
𝑉𝑟𝑒𝑎𝑙

𝑉𝑖𝑚𝑎𝑔
] +  𝑒 = 𝐻𝑋 + 𝑒 (3.49)  
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The values 𝑉𝑟𝑒𝑎𝑙
𝑒 , 𝑉𝑖𝑚𝑎𝑔

𝑒 , 𝐼𝑟𝑒𝑎𝑙
𝑒 , 𝐼𝑖𝑚𝑎𝑔

𝑒  corresponds to the PMU voltage measurements in the 

cartesian form. The values 𝑉𝑟𝑒𝑎𝑙, 𝑉𝑖𝑚𝑎𝑔 corresponds to the states of the system to be 

estimated. 

 The element 1′ corresponds to the unity matrix element when a PMU is placed at a bus 

and it corresponds to 0 matrix if a PMU is not placed at a bus.  The matrices 𝐶11, 𝐶12, 𝐶21, 

𝐶22 models the relationship between the current measurements and the states of the system 

and are a function of the line parameters of the system. Therefore, the matrix 𝐻 is only 

dependent on the line parameters and topology of the system and is constant for a given 

topology of the system, making the mapping between the measurements and the states 

linear. The states of the system �̂� can be solved by minimizing the sum of squares of the 

errors in the measurement.     

|𝑒|2 =
(𝑍 − 𝐻�̂�)

𝑇
(𝑍 − 𝐻�̂�)

𝑊𝑅
 (3.50) 

In order for |𝑒|2 to be minimum, 

𝑑|𝑒|2

𝑑�̂�
= 0 =

𝑑 (𝑍𝑇𝑊𝑅
−1𝑍 − 𝑍𝑇𝑊𝑅

−1𝐻�̂� − (𝐻�̂�)
𝑇
𝑊𝑅

−1𝑍 + 𝐻𝑇𝐻𝑊𝑅
−1�̂�𝑇�̂�)

𝑑�̂�
 (3.51) 

Solving this equation results in: 

�̂� = (𝐻𝑇𝑊𝑅
−1𝐻)−1𝐻𝑇𝑊𝑅

−1𝑍 (3.52) 

The 𝑊𝑅 matrix is given by: 

𝑊𝑅 = 𝑅 𝑊𝑅𝑇 (3.53) 
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The weight matrix W is a diagonal matrix with diagonal elements equal to the variance 

(𝜎2) of the measurements. The matrix R represents the state rotation matrix used for 

transforming the weight matrix from polar to the rectangular coordinates. For example, a 

small change in the measurements of the system from polar (∆𝑉𝑝𝑜𝑙𝑎𝑟 , ∆𝐼𝑝𝑜𝑙𝑎𝑟) to 

rectangular coordinates (∆𝑉𝑟𝑒𝑐𝑡, ∆𝐼𝑟𝑒𝑐𝑡) are obtained in the following manner. 

[
∆𝑉𝑟𝑒𝑐𝑡

∆𝐼𝑟𝑒𝑐𝑡
] = 𝑅 [

∆𝑉𝑝𝑜𝑙𝑎𝑟

∆𝐼𝑝𝑜𝑙𝑎𝑟
]  (3.54) 

The state rotation matrix R for a system with n buses is given by [14] : 

𝑅 =  

[
 
 
 
 
 
 
 cos 𝜃1 0

0 cos 𝜃2.           .
.           .

    

.         0

.         0

.          0

. cos 𝜃𝑛

   

−|𝐸1| sin 𝜃1 0

0 −|𝐸2| sin 𝜃2.                   .
.                   .

      

.                 0

.                 0
.                  0
. −|𝐸𝑛| sin 𝜃𝑛

sin 𝜃1 0
0 sin 𝜃2.           .
.           .

      

.         0

.         0

.          0

. sin 𝜃𝑛

   

|𝐸1| cos 𝜃1 0

0 |𝐸2| cos 𝜃2.                   .
.                   .

      

.                 0

.                 0
.                  0
. |𝐸𝑛| cos 𝜃𝑛 ]

 
 
 
 
 
 
 

     (3.55) 

The transmission lines of the system can be modeled using a pi-model. The diagram shown 

in Fig 3.22 represents the pi model of a transmission line connecting nodes 𝑘 and 𝑚 with 

a series impedance 𝑅 + 𝑗𝑋 and shunt admittances 𝐵𝑘0 and 𝐵𝑚0, respectively. 

The series admittance is given by: 

𝑌 =  
1

𝑅 + 𝑗𝑋
= 𝑔𝑘𝑚 + 𝑗𝑏𝑘𝑚 (3.56) 
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Figure 3.22: Representation of Pi-Model for a Transmission Line 

The relationship between the voltages and currents in cartesian form and the voltages in 

polar form at a node 𝑘 is given by: 

[
 
 
 
(𝑉𝑘)𝑟

(𝑉𝑘)𝑖

(𝐼𝑘𝑚)𝑟

(𝐼𝑘𝑚)𝑖 ]
 
 
 

=

[
 
 
 

|𝑉𝑘| 𝑐𝑜𝑠𝜃𝑘

|𝑉𝑘|𝑠𝑖𝑛 𝜃𝑘

(|𝑉𝑘| 𝑐𝑜𝑠𝜃𝑘 − |𝑉𝑚| 𝑐𝑜𝑠𝜃𝑚)𝑔𝑘𝑚 − (|𝑉𝑘| 𝑠𝑖𝑛𝜃𝑘 − |𝑉𝑚| 𝑠𝑖𝑛𝜃𝑚)𝑏𝑘𝑚 − 𝑏𝑘0|𝑉𝑘| 𝑠𝑖𝑛𝜃𝑘

(|𝑉𝑘| 𝑐𝑜𝑠𝜃𝑘 − |𝑉𝑚| 𝑐𝑜𝑠𝜃𝑚)𝑏𝑘𝑚 − (|𝑉𝑘| 𝑠𝑖𝑛𝜃𝑘 − |𝑉𝑚| 𝑠𝑖𝑛𝜃𝑚)𝑔𝑘𝑚 + 𝑏𝑘0|𝑉𝑘| 𝑐𝑜𝑠𝜃𝑘]
 
 
 

 

                                                                                                                                                       (3.57)

 

This equation can be used to obtain the relationship between the current measurements in 

cartesian form and the states of the system in the cartesian form, which is given by: 

[
𝐼(𝑘𝑚)𝑟

𝐼(𝑘𝑚)𝑖

] =  [
𝑔𝑘𝑚 −𝑔𝑘𝑚

𝑏𝑘𝑚 + 𝑏𝑘0 −𝑏𝑘𝑚
       

−𝑏𝑘𝑚 − 𝑏𝑘0 𝑏𝑘𝑚

𝑏𝑘𝑚 −𝑔𝑘𝑚
] ∗  

[
 
 
 
(𝑉𝑘)𝑟

(𝑉𝑚)𝑟

(𝑉𝑘)𝑖

(𝑉𝑚)𝑖 ]
 
 
 

 (3.58)  

Similarly, the relationship between the current measurements in cartesian form flowing 

through a transformer and the system states can also be obtained using the equivalent pi-



 

  63 

model described in Fig 3.8.  The matrices 𝐶11, 𝐶12, 𝐶21, 𝐶22 which are a function of line 

parameters of the system can be obtained using the above equation. 

Since, the matrix 𝐻 is dependent only on the topology and line parameters and are 

independent of the system conditions, 3.41 is linear and non-iterative.  

Therefore, the linear state estimation formulation involves formulating the Jacobian matrix 

𝐻 and the weight matrix (if the errors are Gaussian). Once the two matrices are formulated, 

the states can be identified by solving the linear equation for a given set of measurements. 
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CHAPTER 4 

STATE ESTIMATION RESULTS 

A neural network-based state estimator requires the identification of the mapping function 

using historical data that represents the joint probability distribution of the corresponding 

states of the system for a given measurement set. The procedure for identifying the 

mapping function and the estimated real-time states using the mapping function for an 

IEEE 118-bus system was demonstrated in the previous chapter for a system which was 

redundantly monitored by PMUs. However, the synchrophasor infrastructure is expensive 

and it is neither practical nor necessary to place PMUs at every bus of the system. Also, 

the state estimation demonstrated earlier was in the presence of measurements with errors 

assumed to have come from a Gaussian distribution. This chapter will demonstrate the 

formulation of state estimation in the presence of limited sensor measurements, different 

measurement characteristics, varying system conditions, thereby highlighting the 

advantages of the proposed methodology over the conventional methodologies. 

4.1 Estimation with Limited Number of Sensors: 

The primary requirement for performing state estimation is data. The major source of data 

in power systems are the PMUs. The PMUs need not be placed at all buses for the complete 

observability of the system because of their capabilities to measure voltages and currents. 

For instance, for an IEEE 14 bus system, 4 PMUs are sufficient to be placed for complete 

system observability [91] . The number of PMUs placed in the power grid are increasing 

continuously [92] , however, not enough PMUs are placed on the grid for a complete 

observability of all voltage levels of the transmission system. 
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The biggest advantage that a deep learning-based state estimator offers is its ability to 

identify the mapping between the states and the input measurements. The deep learning-

based state estimation performed for the IEEE 118-bus system for the following two 

configurations of PMU placement are demonstrated below: 

1) Minimum number of PMUs placed for complete observability of the system 

(Complete Observability): The PMU placement optimization problem discussed 

in Appendix A is solved and it is identified that 32 PMUs placed can provide 

complete system observability (basic observability with no redundancy). The bus 

locations of the PMUs for this placement configuration are given in Table 4.1. 

Table 4.1: Location of PMUs for Complete Observability 

Number of PMUs Location of PMUs 

32 3, 5, 9, 12, 15, 17, 21, 25, 29, 34, 37, 40, 

45, 52, 56, 62, 64, 68, 70, 71, 76, 78, 85, 

86, 89, 92, 96, 100, 105, 110, 114 

  

2) Placement of PMUs at only the highest voltage buses of the system (Partial 

Observability): There are 11 high voltage buses in the IEEE 118-bus system and 

the locations of these buses are given by Table 4.2 [93] . 

Table 4.2: Location of High Voltage Buses for PMU Placement 

Number of PMUs Location of PMUs 

11 8, 9, 10, 26, 30, 38, 63, 64, 65, 68, 81 
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4.1.1 State Estimation in the Presence of Complete Observability: 

The first step is to generate the data corresponding to the features and labels of the neural 

network for the training and validation. The data for the IEEE 118-bus system is generated 

by solving the ACOPF for the chosen discrete load data points obtained from the generated 

hourly load pattern. A Gaussian error having parameters mentioned in Table 4.3 are added 

to create the measurements. The TVE of the error added to the measurements are ensured 

to be lesser than 1%. 

Table 4.3: Parameters of the Gaussian Error Added to the Measurements 

Measurement type Error Mean Error Standard Deviation 

Magnitude (voltages and 

currents) 

0 1/3 % 

Angle (voltages and 

currents) 

0 0.573/3° 

  

The testing measurements and the expected outputs are also obtained from the distribution 

used for creating the training and validation datasets. The measurements will be the 

complex voltages of the 32 buses where the PMUs are placed, and the complex currents of 

the branches connected to these buses. The dimensions of the training, validation, and 

testing data are given below. 
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Table 4.4: Dimensions of the Different Input Files for Performing State Estimation in 

Presence of Complete Observability with Normal Data Set 

Input file Matrix Dimensions 

Training measurements (NN features) 8500*342 

Training states (NN labels) 8500*236 

Validation measurements (NN features) 2700*342 

Validation states (NN labels) 2700*236 

Testing measurements (NN new features) 1000*342 

Testing states (NN expected output) 1000*236 

 

The same neural network architecture mentioned in Table 3.6 will be used for this 

application. The number of nodes in the hidden layer was changed to two thirds of the 

number of inputs added to the total number of outputs, which equals 464.  

The neural network was also trained, validated, and tested with a large dataset containing 

many more samples. The dimensions of the datasets fed to the neural network are 

mentioned below (Table 4.5). The neural network architecture used for estimating the 

states of the system had the same hyperparameters as the ones mentioned in Table 3.6. The 

state estimation was performed, and the values of the different error matrices calculated for 

the normal dataset case and the large dataset case are shown in Table 4.6 below. 
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Table 4.5: Dimensions of the Different Input Files for Performing State Estimation in 

Presence of Complete Observability with Large Data Set 

Input file Matrix Dimensions 

Training measurements (NN features) 340000*342 

Training states (NN labels) 340000*236 

Validation measurements (NN features) 90000*342 

Validation states (NN labels) 90000*236 

Testing measurements (NN new features) 10000*342 

Testing states (NN expected output) 10000*236 

 

Table 4.6: Error Metrics of the Estimated Outputs in the Presence of 32 PMUs 

Normal data set Large data set 

Voltage Magnitude MAE: 0.0010 pu 

Voltage Angle MAE: 0.1171 degrees 

Voltage RMSE: 0.0022 

Voltage Magnitude MAE: 8.99e-04 pu 

Voltage Angle MAE: 0.0928 degrees 

Voltage RMSE: 0.0019 

 

It can be seen again that a size of a data set size similar to a normal data set can accurately 

estimate the states of the system. Fig 4.1 and Fig 4.2 shown below display bar plot of the 

calculated Voltage magnitude absolute difference and Voltage angle absolute difference 

averaged across all samples, respectively, for all the buses in the system. Fig 4.3 and Fig 

4.4 shown below displays the true and estimated voltage magnitude and angle of the first 

testing sample for all buses. 
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Figure 4.1: Voltage Magnitude Mean Absolute Difference of Estimated and True Values 

for Different Buses of IEEE 118-Bus System in the Presence of 32 PMUs 

 

Figure 4.2: Voltage Angle Mean Absolute Difference of Estimated and True Values for 

Different Buses of IEEE 118-Bus System in the Presence of 32 PMUs 
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Figure 4.3: Estimated and True Voltage Magnitudes of First Sample for Different Buses 

of IEEE 118-Bus System in the Presence of 32 PMUs 

 

Figure 4.4: Estimated and True Voltage Angles of First Sample for Different Buses in 

IEEE 118-Bus System in the Presence of 32 PMUs 
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4.1.2 State Estimation in the Presence of Partial Observability: 

The generation of true values from the hourly load distributions and the Gaussian error 

characteristics used for adding errors to obtain the measurements remains the same as 

mentioned in Chapter 4.1.1. Furthermore, the state estimation is performed in the presence 

of a ‘normal data set’ and a ‘large data set’. The dimensions of the different data sets fed 

into the neural network for both the cases are mentioned below (Tables 4.7 and 4.8). 

Table 4.7: Dimensions of the Different Input Files for Performing State Estimation in 

presence of Partial Observability with Normal Data Set 

Input file Matrix Dimensions 

Training measurements (NN features) 8500*82 

Training states (NN labels) 8500*236 

Validation measurements (NN features) 2700*82 

Validation states (NN labels) 2700*236 

Testing measurements (NN new features) 1000*82 

Testing states (NN expected output) 1000*236 

 

The neural network architecture used for the state estimation in the presence of 32 PMUs 

is used for this application too. The number of nodes in hidden layers alone was changed 

to 290. The different error metrics calculated for state estimation in the presence of 11 

PMUs was tabulated as shown in Table 4.9. 
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Table 4.8: Dimensions of the Different Input Files for Performing State Estimation in 

Presence of Partial Observability with Large Data Set 

Input file Matrix Dimensions 

Training measurements (NN features) 340000*82 

Training states (NN labels) 340000*236 

Validation measurements (NN features) 90000*82 

Validation states (NN labels) 90000*236 

Testing measurements (NN new features) 10000*82 

Testing states (NN expected output) 10000*236 

 

Table 4.9: Error Metrics of the Estimated Outputs in the Presence of 11 PMUs 

Normal data set Large data set 

Voltage Magnitude MAE: 0.0013 pu 

Voltage Angle MAE: 0.2683 degrees 

Voltage RMSE: 0.0057 

Voltage Magnitude MAE: 0.0011 pu 

Voltage Angle MAE: 0.2419 degrees 

Voltage RMSE:0.0055 

 

It can be observed that the highlight of the neural network state estimator is its ability to 

predict the states of the system accurately even if the available set of measurements in the 

system does not ensure complete topological observability. The bar plot of the absolute 

voltage magnitude and angle averaged across all samples for all buses in the presence of 

11 PMUs is shown in Fig 4.5 and Fig 4.6. The estimated voltage magnitude and angle true 

values of all buses for the first sample is shown in Fig 4.7 and Fig 4.8.   
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Figure 4.5: Voltage Magnitude Mean Absolute Difference Between Estimated and True 

Values for Different Buses of IEEE 118-Bus System in the Presence of 11 PMUs 

 

Figure 4.6: Voltage Angle Mean Absolute Difference Between Estimated and True 

Values for Different Buses of IEEE 118-Bus System in the Presence of 11 PMUs 
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Figure 4.7: Estimated and True Voltage Magnitudes of First Sample for Different Buses 

of IEEE 118-Bus System in the Presence of 11 PMUs 

 

Figure 4.8: Estimated and True Voltage Angles of First Sample for Different Buses of 

IEEE 118-Bus System in the Presence of 11 PMUs 
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To summarize, the states of the neural network state estimator were predicted in the 

presence of redundant measurement set, complete measurement set required for topological 

observability, and a measurement set not ensuring topological observability of the IEEE 

118-bus system. The variation in the error metrics calculated in all three cases is plotted in 

the graph below in Fig. 4.9 and Fig. 4.10.  

 

 

Figure 4.9: Voltage Magnitude MAE of Estimated States for an IEEE 118-Bus System in 

the Presence of Different Number of PMUs 
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Figure 4.10: Voltage Angle MAE of Estimated States for an IEEE 118-Bus System in the 

Presence of Different Number of PMUs 

4.2 Performance against Linear State Estimator: 

The linear state estimator uses a model-based approach, calculating the Jacobian matrix 

using the topology and line parameter information of the system. This Jacobian matrix 

represents the relationship between cartesian measurement data and the cartesian states of 

the system. Additionally, a linear state estimator involves calculation of a Weight matrix, 

which is a function of the standard deviation of the Gaussian errors present in the 

measurements.  

4.2.1 Error Model of the Synchrophasor Infrastructure: 

The errors in the measurements of the PMU can be divided into 2 components: 
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➢ Errors in the instrumentation channel: The biggest source of error in the 

measurements arise as a result of errors in the instrumentation channel before it 

reaches the PMU device. The instrumentation channel comprises of the voltage 

transformer, current transformer, burdens, cables, and attenuators [94] . 

➢ Error in the device: The PMU device receives an erroneous input from the 

instrumentation channel. The device adds an additional random error and the 

computed phasors by the device will be different from the erroneous input that it 

received. 

The figure below shows the two error components that will be caused by the different 

components of the synchrophasor infrastructure [95]  .  

 

Figure 4.11: Different Error Components of the Synchrophasor Infrastructure 



 

  78 

 

The nature of the instrumentation error was studied in details in [96]  and it was shown that 

the errors of the instrumentation channel is Non-Gaussian and it can be represented best 

using a 3-component Gaussian Mixture Model (GMM). The minimum and maximum error 

values that can be introduced by the instrumentation channel on the true voltage and current 

values mentioned in the IEEE C57.13- 2016 [94]  standards are displayed in the table 

below: 

Table 4.10: Error Range of the Instrumentation Channel 

Type of Measurement Error Range 

Voltage Magnitude ± 1.2 % 

Voltage Angle ± 1° 

Current Magnitude ± 2.4 % 

Current Angle ± 2° 

 

The parameters of the 3-component GMM are chosen using values from Table 4.10 in the 

following manner: 

• Mean: Three equidistant points between the minimum and the maximum values are 

chosen to be the 3 different mean values of the GMM. The mean value of the second 

component turns out to be 0 for all GMM measurement errors.  

• Standard Deviation: If the value 𝜎 corresponds to the standard deviation, it is given 

by: 

𝜎 =
𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 2 𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒 𝑚𝑒𝑎𝑛 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

3
 (4.1) 
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The same value of 𝜎 is chosen to be the standard deviation for all 3 components. 

• Weighing coefficients: A weighing coefficient of components [1/6 2/3 1/6] are 

chosen for all the GMM measurement errors. Thus, a higher weight is assigned to 

the errors with a mean component of 0, as the perfectly calibrated PMUs are not 

expected to have mean errors. 

Therefore, the different parameters of the 3 component GMM computed for the voltage 

magnitude, voltage angle, current magnitude, current angle are mentioned in Tables 4.11- 

4.14 given below. 

Table 4.11: 3-component GMM Parameters of Voltage Magnitude Error 

Weighing Coefficients [1/6  2/3  1/6] 

Mean (pu) [-0.006 0 0.006] 

Standard Deviation (pu)  [0.002 0.002 0.002] 

  

Table 4.12: 3-component GMM parameters of Voltage Angle Error 

Weighing Coefficients [1/6  2/3  1/6] 

Mean (Degrees) [-0.5 0 0.5] 

Standard Deviation (Degrees)  [0.5/3 0.5/3 0.5/3] 

 

Table 4.13: 3-component GMM parameters of Current Magnitude Error 

Weighing Coefficients [1/6  2/3  1/6] 

Mean (pu) [-0.012 0 0.012] 

Standard Deviation (pu)  [0.004 0.004 0.004] 

 

Table 4.14: 3-component GMM parameters of Current Angle Error 

Weighing Coefficients [1/6  2/3  1/6] 

Mean (Degrees) [-1 0 1] 

Standard Deviation (Degrees)  [1/3 1/3 1/3] 
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The error values are picked randomly from this distribution and the erroneous values fed 

to the PMU device as the input are obtained using the equations mentioned below: 

𝑣𝑒𝑚 = 𝑣𝑡𝑚 ∗ (1 + 𝑒1𝑣𝑚) (4.2) 

𝑣𝑒𝑎 = 𝑣𝑡𝑎 + 𝑒1𝑣𝑎 (4.3) 

𝑐𝑒𝑚 = 𝑐𝑡𝑚 ∗ (1 + 𝑒1𝑐𝑚) (4.4) 

𝑐𝑒𝑎 = 𝑐𝑡𝑎 + 𝑒1𝑐𝑎 (4.5) 

The values 𝑣𝑒𝑚, 𝑣𝑒𝑎, 𝑐𝑒𝑚, 𝑐𝑒𝑎 corresponds to the erroneous voltage magnitudes, voltage 

angles, current magnitudes and current angles fed to the PMU device and the values 𝑣𝑡𝑚, 

𝑣𝑡𝑎, 𝑐𝑡𝑚, 𝑐𝑡𝑎 refer to the corresponding true values. The values 𝑒1𝑣𝑚, 𝑒1𝑣𝑎, 𝑒1𝑐𝑚, 𝑒1𝑐𝑎 

that are added to the true values refer to the error values chosen from the 3-component 

GMM. 

The error component due to the device is modeled as a Gaussian error with the error 

parameters mentioned in the table below. 

Table 4.15: Parameters of the Gaussian Error 

Measurement type Error Mean Error Standard Deviation 

Magnitude (voltages and 

currents) 

0 1/3 % 

Angle (voltages and 

currents) 

0 0.573/3° 
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The error values of Table 4.15 are chosen in a manner that the TVE was less than or equal 

to 1%.  If 𝑒2𝑣𝑚, 𝑒2𝑣𝑎, 𝑒2𝑐𝑚, 𝑒2𝑐𝑎 correspond to the error values in the voltage magnitudes, 

voltage angles, current magnitudes and current angles chosen from the Gaussian 

distribution, the output measurements of the PMU 𝑣𝑚, 𝑣𝑎, 𝑐𝑚, 𝑐𝑎 are given by: 

𝑣𝑚 = 𝑣𝑒𝑚 ∗ (1 + 𝑒2𝑣𝑚) (4.6) 

𝑣𝑎 = 𝑣𝑒𝑎 + 𝑒2𝑣𝑎 (4.7) 

𝑐𝑚 = 𝑐𝑒𝑚 ∗ (1 + 𝑒2𝑐𝑚) (4.8) 

𝑐𝑎 = 𝑐𝑒𝑎 + 𝑒2𝑐𝑎 (4.9) 

The neural network state estimator is now formulated in the presence of measurements 

from 32 PMUs, but by adding errors from a 3 component GMM and a Gaussian 

distribution. The training, validation and testing outputs would be the true values of the 

complex voltages for all the buses. This neural network-based state estimator has the same 

architecture as the one mentioned in Table 3.6. 

Similarly, a linear state estimator is also formulated in the presence of 32 PMUs using 

measurements obtained by adding a 3 component GMM and Gaussian errors to the true 

values. The voltage magnitude, angle mean absolute differences obtained using the neural 

network state estimator and the linear state estimator in the presence of 32 PMUs for 

different buses are plotted in Figs. 4.12-4.15. 
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Fig 4.12: Voltage Magnitude Mean Absolute Difference Plot for Neural Network State 

Estimator with Errors from GMM and Gaussian Distribution in the Presence of 32 PMUs 

 

Fig 4.13: Voltage Angle Mean Absolute Difference Plot for Neural Network State 

Estimator with Errors from GMM and Gaussian Distribution in the Presence of 32 PMUs 
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Fig 4.14: Voltage Magnitude Mean Absolute Difference Plot for Linear State Estimator 

with Errors from GMM and Gaussian Distribution in the Presence of 32 PMUs 

 

Fig 4.15: Voltage Angle Mean Absolute Difference Plot for Linear State Estimator with 

Errors from GMM and Gaussian distribution in the Presence of 32 PMUs 
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The values of different metrics obtained using both the techniques are displayed in Table 

4.16 below. 

Table 4.16: Error Metrics of Estimated States with GMM and Gaussian Error in 

Measurements in the Presence of 32 PMUs 

NN State Estimator Linear State Estimator 

Voltage Magnitude MAE: 0.0011 pu 

Voltage Angle MAE: 0.1194 degrees 

Voltage RMSE: 0.0022 

Voltage Magnitude MAE: 0.0021 pu 

Voltage Angle MAE: 0.1431 degrees 

Voltage RMSE: 0.0033 

 

It can be observed that a neural network state estimator performs better than a linear state 

estimator in the presence of a 3-component GMM and Gaussian errors in a system even 

when it is completely observed by PMUs. 

Now, a neural network state estimator is formulated in the presence of measurements from 

11 PMUs. The training, validation and testing features for the neural network are obtained 

for a normal data set in the presence of 11 PMUs by adding errors from a 3 component 

GMM and a Gaussian distribution. The training, validation, and testing outputs would be 

the true values of the complex voltages for all the buses. This neural network based state 

estimator also has the same architecture as the one mentioned in Table 3.6 and Chapter 4.1. 

The plots of the voltage magnitude and angle absolute differences obtained are shown in 

Fig. 4.16 and Fig. 4.17. 
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Fig 4.16: Voltage Magnitude Mean Absolute Difference Plot for Neural Network State 

Estimator with Errors from GMM and Gaussian Distribution in the Presence of 11 PMUs 

 

Fig 4.17: Voltage Angle Mean Absolute Difference Plot for Neural Network State 

Estimator with Errors from GMM and Gaussian Distribution in the Presence of 11 PMUs 
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The error metrics obtained after performing state estimation are displayed in Table 4.17. 

Table 4.17: Error Metrics of Estimated States with GMM and Gaussian Error in 

Measurements in the Presence of 11 PMUs 

Voltage Magnitude MAE: 0.0014 pu 

Voltage Angle MAE: 0.2829 degrees 

Voltage RMSE: 0.0058 

 

The biggest advantage of a neural network state estimator over LSE is its ability to perform 

an accurate state estimation in the presence of 3 component GMM errors and Gaussian 

errors even when the system is incompletely observed by PMUs. In contrast, the linear 

state estimator will not be able to estimate the states of all buses when PMUs do not 

completely observe the system. 

4.2.2 State Estimation in Presence of Laplacian Errors: 

The combined effect of the errors due to the instrumentation channel and the device results 

in the errors of the synchrophasor infrastructure to be Non-Gaussian. The two commonly 

used non-Gaussian error models are the Gaussian Mixture Models and the thick tailed 

Laplacian noise models. The performance of the neural network state estimator and the 

linear state estimator using a 3 component GMM was discussed in Chapter 4.2.1; in this 

section, we will analyze their performance in presence of Laplacian noise in the 

measurements. 

The PDF of a Laplacian distribution characterized by the location parameter (𝜇) and the 

scaling parameter (𝑏) for a value x is given by:  
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𝑓(𝑥 |𝜇, 𝑏) =  
1

2𝑏
 𝑒(−

|𝑥− 𝜇|

𝑏
) 

                                                     (4.10) 

𝑓(𝑥 |𝜇, 𝑏) =   
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)       𝑖𝑓 𝑥 ≥ 𝜇 
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𝑏
)       𝑖𝑓 𝑥 ≥ 𝜇 

                                             (4.11) 

 The PDF corresponding to a Laplacian distribution was generated by using a location 

parameter of 0 and scaling parameter of 0.001 as mentioned in [97] . The errors for the 

measurements were chosen randomly from the generated Laplacian distribution PDF.  

A neural network state estimator is now formulated in the presence of measurements from 

32 PMUs by adding errors from the Laplacian distribution. The training, validation, and 

testing outputs would be the true values of the complex voltages for all the buses. This 

neural network-based state estimator has the same architecture as the one mentioned in 

Table 3.6 and explained in Chapter 4.1. 

A linear state estimator is also formulated with measurement errors from Laplacian 

distribution in the presence of 32 PMUs. The voltage magnitude and angle mean absolute 

differences observed in case of both the state estimators for all the buses is shown in Figs. 

4.18-4.21. 
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Fig 4.18: Voltage Magnitude Mean Absolute Difference Plot for Neural Network State 

Estimator with Errors from Laplacian Distribution in the Presence of 32 PMUs 

 

Fig 4.19: Voltage Angle Mean Absolute Difference Plot for Neural Network State 

Estimator with Errors from Laplacian Distribution in the Presence of 32 PMUs 
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Fig 4.20: Voltage Magnitude Mean Absolute Difference Plot for Linear State Estimator 

with Errors from Laplacian Distribution in the Presence of 32 PMUs 

 

Fig 4.21: Voltage Angle Mean Absolute Difference Plot for Linear State Estimator with 

Errors from Laplacian Distribution in the Presence of 32 PMUs 
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The values of different metrics obtained using both the techniques are displayed in Table 

4.18 below. 

Table 4.18: Error Metrics of Estimated States with Error in Measurements from a 

Laplacian Distribution in the presence of 32 PMUs 

NN State Estimator Linear State Estimator 

Voltage Magnitude MAE: 0.0010 pu 

Voltage Angle MAE: 0.1178 degrees 

Voltage RMSE: 0.0022 

Voltage Magnitude MAE: 0.0016 pu 

Voltage Angle MAE: 0.1613 degrees 

Voltage RMSE: 0.0029 

 

It can be observed that a Neural Network State Estimator performs better than a Linear 

State Estimator in the presence of Laplacian errors even in a completely observed system. 

Now, a neural network state estimator is formulated with help of measurements from 11 

PMUs placed at high voltage buses. The measurements for the neural network training, 

validation, and testing are obtained by adding errors to the true values, sampled from 

Laplacian distribution parameter values mentioned earlier. The states corresponding to the 

measurements of the training and validation data are the true voltages of the system. This 

neural network-based state estimator has the same architecture as the one mentioned in 

Table 3.6 and Chapter 4.1. The plot of the voltage magnitude and angle mean absolute 

difference is shown below in Figs. 4.22-4.23. 
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Fig 4.22: Voltage Magnitude Mean Absolute Difference Plot for Neural Network State 

Estimator with Errors from Laplacian Distribution in the Presence of 11 PMUs 

 

Fig 4.23: Voltage Angle Mean Absolute Difference Plot for Neural Network State 

Estimator with Errors from Laplacian distribution in the Presence of 11 PMUs 
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The error metrics obtained after performing the state estimation are given by: 

Table 4.19: Error Metrics of Estimated States with Laplacian Error in Measurements in 

the Presence of 11 PMUs 

Voltage Magnitude MAE: 0.0013 pu 

Voltage Angle MAE: 0.2659 degrees 

Voltage RMSE: 0.0056 

 

The results obtained above prove that the neural network-based state estimator formulated 

in presence of errors in measurements from Laplacian distribution can estimate the states 

accurately for a topologically unobserved system. A linear state estimator cannot estimate 

the states of all the buses for a topologically unobservable system. 

4.3 Robustness of the State Estimator 

The formulation of state estimator primarily depends on the measurements and the model 

of the power system. Even though the neural network state estimation formulation is 

independent of the physical power system model, the ACOPF used to obtain the data during 

the offline training and validation uses the topology and line parameter information of the 

system. The line parameters of the transmission system are dependent on the external 

environmental conditions and vary dynamically [98] . Also, it was earlier mentioned that 

the characteristics of error in the measurements are non-Gaussian. The performance of the 

state estimator in the presence of different error characteristics and varying line parameters 

will be demonstrated below. 
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4.3.1 Performance of the state estimator against different characteristics of error in 

the measurements: 

The true values of the voltages and currents of the IEEE 118-bus system were obtained 

from the ACOPF solution of the discrete load data points obtained from the load patterns 

of the synthetic Texas system. The state estimator was formulated using the architectures 

explained in Table 3.6 and Chapter 4.1. The performance to the state estimator was 

analyzed using the measurements obtained by adding errors from the Gaussian 

distributions, a combination of 3-component GMM and Gaussian distributions and 

Laplacian distributions. The error metrics obtained for the cases with measurement 

generation from 3 different distributions are tabulated for the systems with redundant 

observability (118 PMUs), complete observability (32 PMUs), and partial observability 

(11 PMUs) in Tables 4.20-4.22. 

Table 4.20: Error Metrics of Estimated States using Measurements with Different Error 

Distributions in the Presence of 118 PMUs 

Errors from Gaussian 

distribution 

Errors from 3-component 

GMM and Gaussian 

distribution 

Errors from Laplacian 

distribution 

Voltage Magnitude MAE: 

9.9609e-04 pu 

Voltage Angle MAE: 

0.1037 degrees 

Voltage RMSE: 0.0020 

Voltage Magnitude MAE: 

9.9987e-04 pu 

Voltage Angle MAE: 

0.1077 degrees 

Voltage RMSE: 0.0022 

Voltage Magnitude MAE: 

9.3479e-04 pu 

Voltage Angle MAE: 

0.1062 degrees 

Voltage RMSE: 0.0020 
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Table 4.21: Error Metrics of Estimated States using Measurements with Different Error 

Distributions in the Presence of 32 PMUs 

Errors from Gaussian 

distribution 

Errors from 3-component 

GMM and Gaussian 

distribution 

Errors from Laplacian 

distribution 

Voltage Magnitude MAE: 

0.0010 pu 

Voltage Angle MAE: 

0.1171 degrees 

Voltage RMSE: 0.0022 

Voltage Magnitude MAE: 

0.0011 pu 

Voltage Angle MAE: 

0.1194 degrees 

Voltage RMSE: 0.0022 

Voltage Magnitude MAE: 

0.0010 pu 

Voltage Angle MAE: 

0.1178 degrees 

Voltage RMSE: 0.0022 

 

Table 4.22: Error Metrics of Estimated States using Measurements with Different Error 

Distributions in the Presence of 11 PMUs 

Errors from Gaussian 

distribution 

Errors from 3-component 

GMM and Gaussian 

distribution 

Errors from Laplacian 

distribution 

Voltage Magnitude MAE: 

0.0013 pu 

Voltage Angle MAE: 

0.2683 degrees 

Voltage RMSE: 0.0057 

Voltage Magnitude MAE: 

0.0014 pu 

Voltage Angle MAE: 

0.2829 degrees 

Voltage RMSE: 0.0058 

Voltage Magnitude MAE: 

0.0013 pu 

Voltage Angle MAE: 

0.2659 degrees 

Voltage RMSE: 0.0056 

 

It can be observed that the estimates have similar ranges of error for the measurements 

from the 3 different error distributions. This trend of estimates is also observed to be true 
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for the systems with different number of PMUs installed. Therefore, it can be concluded 

that the proposed neural network state estimator is robust to the distributions followed by 

the errors in the measurements. 

4.3.2 Performance of the state estimator against varying line parameters: 

The line parameters vary dynamically and the exact values of the line parameters in real-

time are often unknown. Therefore, the line parameter values using which the neural 

network was trained and validated would be different from the line parameters in real-time. 

The following steps describe the process of obtaining the data to be fed into the neural 

networks while taking this phenomenon into account: 

➢ The training, validation, and test data sets are obtained from the hourly load pattern 

distributions.  

➢ The ACOPF used to obtain true values from discrete load data points is solved using 

the default line parameter values for training and validation data and a different line 

parameter value is used for the testing data. 

➢ The figure below mentioned in [99]   displays the dynamic variation of the zero-

sequence resistance and reactances of an actual transmission line. 
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Figure 4.24: Dynamic Variation of Zero Sequence Resistance of a Transmission Line 

 

Figure 4.25: Dynamic Variation of Zero Sequence Reactance of a Transmission Line 

➢ The state estimates will be the least accurate when the deviation from the original 

value of line parameters is high. Therefore, the ACOPF for obtaining testing data 

set is performed using parameter values of 120% of original resistance and 99.5% 

of original reactance. The original resistance and reactance correspond to the line 

parameter values used during training and validation. 
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➢ The true values of currents for training, validation, and testing are now generated 

with the line parameter values used in running ACOPF, respectively. 

➢ A Gaussian error of parameters mentioned in Table 4.15, ensuring lesser than 1% 

TVE is added to the true values to obtain the measurements. Similarly, a 

combination of 3-component GMM and Gaussian explained in Chapter 4.2 is also 

added to the true values to obtain another set of measurements. 

➢ The neural network architecture and dimensions of input features to the neural 

network for different sensor configurations remain the same as explained in Chapter 

3 and Chapter 4.1. 

The error metrics obtained by performing a neural network state estimation for changed 

line parameters and unchanged line parameters for a system with redundant observability, 

complete observability, and incomplete observability are displayed below in Tables 4.23-

4.25. 

 

Table 4.23: Error Metrics of the Estimated States in the Presence of 118 PMUs 

NN State Estimator for 

unchanged line 

parameters with 

Gaussian errors 

NN State Estimator for a 

change in line parameters 

with Gaussian errors 

NN State Estimator for 

a change in line 

parameters with GMM 

and Gaussian errors 

Voltage Magnitude MAE: 

9.9609e-04 pu 

Voltage Magnitude MAE: 

0.0037 pu 

Voltage Magnitude 

MAE: 0.0036 pu 
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Voltage Angle MAE: 

0.1037 degrees 

Voltage RMSE: 0.0020 

Voltage Angle MAE: 0.1422 

degrees 

Voltage RMSE: 0.0039 

Voltage Angle MAE: 

0.2152 degrees 

Voltage RMSE: 0.0039 

 

Table 4.24: Error Metrics of the Estimated States in the Presence of 32 PMUs 

NN State Estimator for 

unchanged line 

parameters with 

Gaussian errors 

NN State Estimator for a 

change in line parameters 

with Gaussian errors 

NN State Estimator for 

a change in line 

parameters with GMM 

and Gaussian errors 

Voltage Magnitude MAE: 

0.0010 pu 

Voltage Angle MAE: 

0.1171 degrees 

Voltage RMSE: 0.0022 

Voltage Magnitude MAE: 

0.0046 pu 

Voltage Angle MAE: 0.1305 

degrees 

Voltage RMSE: 0.0043 

Voltage Magnitude 

MAE: 0.0041 pu 

Voltage Angle MAE: 

0.1437 degrees 

Voltage RMSE: 0.0042 

Table 4.25: Error Metrics of the Estimated States in the Presence of 11 PMUs 

NN State Estimator for 

unchanged line 

parameters with 

Gaussian errors 

NN State Estimator for a 

change in line parameters 

with Gaussian errors 

NN State Estimator for 

a change in line 

parameters with GMM 

and Gaussian errors 

Voltage Magnitude MAE: 

0.0013 pu 

Voltage Magnitude MAE: 

0.0037 pu 

Voltage Magnitude 

MAE: 0.0031 pu 
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Voltage Angle MAE: 

0.2683 degrees 

Voltage RMSE: 0.0057 

Voltage Angle MAE: 0.3028 

degrees 

Voltage RMSE: 0.0066 

Voltage Angle MAE: 

0.3060 degrees 

Voltage RMSE: 0.0064 

 

It can be observed that the error metrics increase with the changed line parameters; 

however, the estimation in the worst case is still relatively accurate. Therefore, it can be 

concluded that the neural network state estimator is (1) not impacted by the characteristics 

of the error distribution, and (2) is robust against dynamically varying line parameters. 

4.4: State estimation for a 24-hour period 

The formulation of a state estimator using neural networks during a particular hour interval 

was discussed in the previous chapters. The performance of the methodology was 

demonstrated for the hour interval 07:00 AM-08:00 AM. Now, the states of the system can 

be estimated for the entire day by formulating a separate neural network for each hour. 

The real and reactive load patterns are trained offline for each hour using hourly data 

obtained for that hour throughout the year. The discrete load points are sampled and the 

data for neural network is generated using MATPOWER ACOPF as explained in Chapter 

3. This process is repeated, and a new neural network is formulated for each hour.  

The measurements for the neural network are obtained from the true values by adding 

errors from the 3 component GMM and Gaussian errors as explained in Chapter 4.2. The 

neural network is trained, validated, and tested for the IEEE 118-bus system using the 

measurements from PMUs placed at high voltage buses. 
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The plot with the voltage magnitude MAE and voltage angle MAE obtained during the 

different hour intervals are shown in Fig 4.26 and Fig. 4.27 below.  

 

Figure 4.26: Mean Absolute Error between the True and Estimated Voltage Magnitude 

Values at Different Time Intervals 

  

Figure 4.27: Mean Absolute Error between the True and Estimated Voltage Angle Values 

at Different Time Intervals 
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It can be realized from Figs. 4.26 and 4.27 that a neural network formulated and trained for 

each hour can perform accurate state estimation for that corresponding hour over the period 

of a day even when the system is partially observed for the entire day. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

5.1: Conclusions 

An accurate monitoring of the power system is an indispensable requirement for 

maintaining the reliability of the system. A PMU provides a high-speed, time synchronized 

complex voltage and current measurements of the buses at which they are placed and the 

branches connected to these buses. However, the infrastructure required for obtaining the 

measurements from these devices is expensive. The conventional state estimation 

techniques that have been proposed previously, which only use PMU measurements can 

provide high speed snapshots of the power system, only if the system is completely 

observed by PMUs. A machine learning based formulation using deep neural networks is 

proposed in this thesis that identifies the joint probability distribution between any number 

of measurements and the corresponding states using the historical data in an offline 

process. The highlight of the proposed technique is its ability to estimate the system states 

at high speeds using real-time synchronized measurements even when the system is not 

topologically observed by PMUs. 

The neural network-based state estimator requires a set of known features and the 

corresponding labels during the offline training and validation. A load pattern using the 

hourly load data was obtained using a Kernel Density Estimator and was verified using 

parametric and non-parametric goodness of fit tests. A procedure to obtain the data for the 

neural network using load patterns and the formulation of the neural network with different 

values of hyperparameters for a redundantly observed system was initially discussed. The 
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state estimation was then performed in the presence of complete observability and partial 

observability. A MAE of 0.0013 pu for magnitude and 0.2683 degrees for angle was 

obtained for a partially observable system with PMUs at only the highest voltage buses of 

the test system (IEEE 118-bus system). The performance of the proposed technique in the 

presence of errors from GMM and Gaussian distribution, and Laplacian distributions was 

compared with a classical linear state estimator. It was shown that the proposed estimator 

performs better even for a completely observed system and additionally it is accurate too 

for a partially observed system. The robustness of the proposed technique against errors 

from Non-Gaussian distributions and varying line parameters was also demonstrated in this 

work. Lastly, the formulation and performance of the state estimator for an entire day was 

also demonstrated. 

5.2: Future Scope of Work 

The following are some of the future scopes of work identified for the research done in this 

thesis: 

➢ The performance of the state estimator with errors in measurements from different 

distributions was discussed in this work. However, the performance of the state 

estimator in the presence of bad measurements/missing measurements was not 

discussed. One future scope of work will be the identification of bad data in the 

measurements and a methodology to replace them. The statistical techniques used 

in the identification of bad data in conventional estimators can be applied here too.  

If the real time PMU measurements are available, a Three-Sample Quadratic 

Prediction Algorithm [100]  can also be used for identifying and replacing bad data. 
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➢ The current work discusses the formulation of an estimator under an assumption 

that the system topology is known and remains unchanged. A future scope of work 

might consider the formulation and working of a neural network state estimator 

during a topology change in the system. A deep learning technique called Transfer 

Learning can be used to handle topology changes. 

➢ The present work requires the formulation of a different state estimator for each 

hour of the day. A future scope of work might involve reducing the number of state 

estimators by modeling a graph convolutional neural network with long-short term 

memory that can learn and predict the sequence of data while accounting for the 

temporal and spatial attributes of the system. 
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APPENDIX A 

PMU PLACEMENT FORMULATION 
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The PMU placement formulation for an 𝑛-bus system can be formulated as: 

min∑𝑐𝑖𝑥𝑖

𝑛

𝑖=1

 

𝑠. 𝑡.  (𝐴 ∗ 𝑋)  ≥ 1 

where 𝑐𝑖 denotes the cost of installation of PMU at bus i. Also, 

𝑥𝑖 = {
1                 𝑖𝑓 𝑡ℎ𝑒 𝑃𝑀𝑈 𝑖𝑠 𝑝𝑙𝑎𝑐𝑒𝑑 𝑎𝑡 𝑏𝑢𝑠 𝑖
 0          𝑖𝑓 𝑡ℎ𝑒 𝑃𝑀𝑈 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑙𝑎𝑐𝑒𝑑 𝑎𝑡 𝑏𝑢𝑠 𝑖

 

Let F(X) = A*X. The non-zero element of F(X) indicates that the corresponding bus is able 

to be observed using the optimally placed PMU.  

Matrix A is the binary connectivity matrix defined by: 

𝐴𝑖,𝑗 = {
1,   𝑖𝑓 𝑖 = 𝑗 𝑜𝑟 𝑖𝑓 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

If the cost of the individual PMUs to be placed are all equal, the objective function would 

be equal to minimizing the total number of PMUs to be placed in the system, to achieve 

complete system observability. 

The above Integer Linear Programming (ILP) formulation can be solved using any 

available optimization solver. Solving the optimization can lead to multiple set of PMU 

locations which can lead to minimum PMU placement. In that case, the solution which 

provides maximum observability over others would be the preferred solution. This can be 

achieved by solving another optimization problem.  

The bus observability index (BOI) 𝛽𝑖 is defined as the number of PMUs in an optimally 

placed solution that can observe a particular bus.  
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If f(X) = A*X, then  

𝛽𝑖 = 𝑓(𝑖) 

Now, we define SORI (𝛾) to be sum of observability for all the buses in the system. SORI 

is mathematically defined as: 

𝛾 =  ∑  (𝛽𝑖)

𝑛

𝑖=1

 

Let, k be the number of non-zero values of vector X (optimal number of PMUs) obtained 

from the above optimization problem. The problem can be formulated as: 

maximize  𝛾 

𝑠. 𝑡.  (𝐴 ∗ 𝑋)  ≥ 1 

∑ (𝑥𝑖) = 𝑘

𝑛

𝑖=1
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APPENDIX B 

NEURAL NETWORK FORMULATION 
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from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Activation 

from tensorflow.keras.callbacks import EarlyStopping 

from tensorflow.keras.callbacks import ModelCheckpoint 

import pandas as pd 

import numpy as np 

import h5py 

from sklearn import metrics 

from matplotlib import pyplot as plt 

from sklearn.metrics import mean_absolute_error 

from sklearn.preprocessing import normalize 

from tensorflow.keras.layers import BatchNormalization 

from tensorflow.keras.layers import Dropout 

from tensorflow.keras.models import load_model 

from tensorflow.keras import regularizers 

import tensorflow as tf 

from sklearn import preprocessing 
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# Create the Scaler object 

scaler = preprocessing.StandardScaler() 

import numpy as np 

STR = np.zeros(119) 

TL=np.zeros(79) 

VL=np.zeros(79) 

x=0 

num=1 

initializer = tf.keras.initializers.he_uniform(seed=None) 

 

X_Train = pd.read_csv(r'D:\Sem 4\New folder\T_Train8IPONN118_fm118.csv') 

Y_Train = pd.read_csv(r'D:\Sem 4\New folder\T_Train8IPONN118_o118.csv') 

y_train = Y_Train.to_numpy() 

 

x_train = X_Train.to_numpy() 

 

df = pd.DataFrame(x_train) 

df.to_csv (r'D:\Sem 4\New folder\T_dummy5file.csv', index = False, header=True) 
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X_Val1 = pd.read_csv(r'D:\Sem 4\New folder\T_Val8IPONN118_fm118.csv') 

Y_Val = pd.read_csv(r'D:\Sem 4\New folder\T_Val8IPONN118_o118.csv') 

y_val = Y_Val.to_numpy() 

 

X_Val = X_Val1.to_numpy() 

x_val=X_Val 

 

X_Test1 = pd.read_csv(r'D:\Sem 4\New folder\T_Test8IPONN118_fm118.csv') 

Y_Test = pd.read_csv(r'D:\Sem 4\New folder\T_Test8IPONN118_o118.csv') 

y_test = Y_Test.to_numpy() 

 

X_Test = X_Test1.to_numpy() 

x_test=X_Test 

 

 

print(x_train.shape) 

print(y_train.shape) 

print(x_val.shape) 
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print(y_val.shape) 

print(x_test.shape) 

print(y_test.shape) 

 

# Build the neural network 

model = Sequential() 

#model.add(BatchNormalization()) 

#model.add(Dropout(0.2)) 

model.add(Dense(890, kernel_initializer=initializer, input_dim=x_train.shape[1], 

activation='relu')) #Hidden 1 

model.add(Dense(890, kernel_initializer=initializer, activation='relu')) # Hidden 2 

model.add(Dense(890, kernel_initializer=initializer, activation='relu')) # Hidden 3 

model.add(Dense(890, kernel_initializer=initializer, activation='relu')) # Hidden 4 

model.add(Dense(890, kernel_initializer=initializer, activation='relu')) # Hidden 5 

 

model.add(Dense(236, activation='linear')) # Output 

model.compile(loss='mean_squared_error', optimizer='adam') 

es = EarlyStopping(monitor='val_loss', patience=50, verbose=1, mode='auto') 
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mc = ModelCheckpoint('T_best_model8G118.h5', monitor='val_loss', mode='min', 

verbose=1, save_best_only=True) 

history = model.fit(x_train,y_train,epochs=120, batch_size=8, validation_data=(x_val, 

y_val), callbacks=[es, mc]) 

saved_model = load_model('T_best_model8G118.h5') 

 

pred = saved_model.predict(x_test) 

score = np.sqrt(metrics.mean_squared_error(pred,y_test)) 

print(num) 

STR[num-1]=score 

#print(pred) 

print('Final score (RMSE):',score) 

print(pred) 

 

df = pd.DataFrame(pred) 

df.to_csv (r'D:\Sem 4\New folder\StateEstimates\T_Res8118.csv') 

# summarize history for loss 

plt.plot(history.history['loss']) 



 

  124 

plt.plot(history.history['val_loss']) 

plt.title('model loss') 

plt.ylabel('loss') 

plt.xlabel('epoch') 

plt.legend(['train', 'Validation'], loc='upper left') 

plt.show() 

 

df = pd.DataFrame(STR) 

df.to_csv (r'D:\Sem 4\New folder\StateEstimates\T_RMSE8118.csv', index = False, 

header=True) 

 


