
Efficient Schrödinger-Poisson Solvers for Quasi 1D Systems That Utilize PETSc and

SLEPc

by

Pranay Kumar Reddy Baikadi

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved November 2020 by the
Graduate Supervisory Committee:

Dragica Vasileska, Chair
Mykhailo Povolotskyi

Stephen Goodnick

ARIZONA STATE UNIVERSITY

December 2020

ABSTRACT

The quest to find efficient algorithms to numerically solve differential equations is

ubiquitous in all branches of computational science. A natural approach to address

this problem is to try all possible algorithms to solve the differential equation and

choose the one that is satisfactory to one’s needs. However, the vast variety of al-

gorithms in place makes this an extremely time consuming task. Additionally, even

after choosing the algorithm to be used, the style of programming is not guaranteed

to result in the most efficient algorithm. This thesis attempts to address the same

problem but pertinent to the field of computational nanoelectronics, by using PETSc

linear solver and SLEPc eigenvalue solver packages to efficiently solve Schrödinger

and Poisson equations self-consistently.

In this work, quasi 1D nanowire fabricated in the GaN material system is consid-

ered as a prototypical example. Special attention is placed on the proper description

of the heterostructure device, the polarization charges and accurate treatment of the

free surfaces. Simulation results are presented for the conduction band profiles, the

electron density and the energy eigenvalues/eigenvectors of the occupied sub-bands

for this quasi 1D nanowire. The simulation results suggest that the solver is very

efficient and can be successfully used for the analysis of any device with two dimen-

sional confinement. The tool is ported on www.nanoHUB.org and as such is freely

available.

i

Dedicated to my parents and teachers

ii

ACKNOWLEDGEMENTS

I would like to first express my deep gratitude to my advisor Professor Dragica

Vasileska for introducing me the rich field of Computational Electronics and admitting

me to her research group. She has been a constant source of guidance throughout

my Masters studies here at Arizona State University. Her unparalleled patience and

encouragement helped me to overcome many roadblocks and this work would not be

possible without her support. I am highly indebted to Dr. Michael Povolotskyi for

his invaluable help and suggestions during the meetings, which shaped the course of

this project. I would like to extend my sincere thanks to Professor Stephen Goodnick

for being my thesis committee member. His EEE 539 course helped me immensely

in solidifying my understanding of semiconductor physics.

I would like to thank my group members, Viswanathan Naveen for all the insights

and discussions during the project and Izak Baranowski, Ziyi Wang for creating a

great research environment in the group. I always learnt something new from their

research in the weekly group meetings.

Finally, I thank my parents B.Janardhan Reddy, K.Vinodha Kumari for their eternal

support and for taking the right decisions at the right times which ultimately shaped

my career.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

1.1 PETSc and SLEPc: Building Effective Computational Electronics

Tools . 1

1.2 Need for Efficient Two Dimensional Schrödinger-Poisson Solvers for

Lateral GaN FETs . 3

1.3 Outline of the Thesis . 4

2 PETSC AND THE POISSON SOLVER . 5

2.1 Polarization in III-V Nitrides . 6

2.1.1 The Generalized Hooke’s Law . 6

2.1.2 Piezoelectric Polarization . 10

2.2 The Band Parameter Approach for Heterostructures 16

2.2.1 The Local Vacuum Level . 16

2.2.2 Equations for Band parameters . 18

2.2.3 Equations for Electron and Hole Concentrations 22

2.2.4 Boundary Conditions for Poisson Equation 24

2.3 Linearization and Discretization of the Poisson Equation 26

2.4 Portable, Extensible Toolkit for Scientific Computation (PETSc) . . . 27

2.4.1 Preconditioning in PETSc . 28

2.4.2 PETSc Linear Solvers . 32

2.4.3 PETSc Nonlinear Solvers . 33

2.4.4 Important PETSc Routines for Linear and Nonlinear Solvers 35

iv

CHAPTER Page

2.5 Comparison of Results Between Silvaco-ATLAS and Petsc Poisson

Solver . 43

3 SLEPC AND THE SCHRÖDINGER SOLVER . 46

3.1 Finite Volume Discretization of a Linear PDE . 46

3.2 The SLEPc Eigenvalue Solver Package . 52

3.3 Results from the Schrödinger Solver . 54

4 THE SCHRÖDINGER-POISSON SOLVER . 59

4.1 Electron Density in a Quasi 1D System. 59

4.2 Jacobian Linearization of the Quantum Poisson Solver 61

4.3 Implementation of the Schrödinger-Poisson Solver 64

4.4 Results from the Schrödinger-Poisson Solver . 65

5 CONCLUSIONS AND FUTURE WORKS . 70

REFERENCES . 72

v

LIST OF TABLES

Table Page

2.1 Experimental Values of Piezoelectric Constants and Elastic Moduli of

III-V Nitrides. 14

2.2 Partial List of Preconditioners in PETSc. 31

2.3 Partial List of Available Krylov Methods. 41

2.4 Partial List of Available Newton Methods. 41

vi

LIST OF FIGURES

Figure Page

2.1 Spontaneous and Piezoelectric Polarizations in Psuedomorphically Grown

Ga-face AlGaN-AlN-GaN Heterostructure System. 15

2.2 Energy Band Diagram of a Hypothetical Device with Position Depen-

dent Parameters. El Denotes the Local Vacuum Level and Ec, Ev

Denote the Conduction and Valence Bands Respectively. 16

2.3 Metal-Semiconductor Contact at Equilibrium . 25

2.4 Flow of PETSc Program Based on Krylov Solvers . 36

2.5 Flow of PETSc Program Based on Newton Method. 37

2.6 Device Structures Used to Establish the Validity of the Poisson Solver. 44

2.7 Comparison of Conduction Band Profile and Potential Profile along

the Y-cutline Between the Gates for the Device Without AlN Layer. . . . 44

2.8 Comparison of Conduction Band Profile and Potential Profile along

the Y-cutline Between the Gates for the Device with AlN Layer. 45

2.9 Convergence of the PETSc based Poisson Solver. 45

3.1 Representation of Control Volume and Octants about a Mesh Point . . . 47

3.2 The Five Point Stencil of the Finite Volume Method. 50

3.3 Flow of a Typical SLEPc Program . 53

3.4 Probability Density |ψ(x)|2 of the Third Eigenstate and the Eigen En-

ergy Levels for a Square Potential Profile. 54

3.5 Probability Density |ψ(x)|2 of the Third Eigenstate and the First Ten

Eigen Energy Levels for a Parabolic Potential Profile. 55

3.6 Probability Density |ψ(x)|2 of the Third Eigenstate and the First Ten

Eigen Energy Levels for a Triangular Potential Profile. 56

vii

Figure Page

3.7 Probability Density |ψ(x)|2 of the Third Eigenstate and the First Ten

Eigen Energy Levels for a V-shaped Potential Profile. 56

3.8 Potential Well Used for the 2D Schrödinger Solver. 57

3.9 Surface Plot and Heat Map of |ψ(x, y)|2 of First, Fourth and Seventh

Eigen States. 58

4.1 Device Structure Used for the Schrödinger-Poisson Solver. 60

4.2 Simulation Space Indicating the Schrödinger Domain 64

4.3 Flow Chart of the Schrödinger-Poisson Solver . 65

4.4 Comparison of Potential Profiles Between Self-Consistent Schrödinger-

Poisson Solver and Standalone Poisson Solver Along the Y-direction.

for the Structure Shown In Figure (4.2). 66

4.5 Comparison of Conduction Band Profiles Between Self-Consistent Schrödinger-

Poisson Solver and Standalone Poisson Solver Along the Y-direction. . . 67

4.6 Probability Density |ψ(x, y)|2 for the First Energy Eigenstate. 68

4.7 Probability Density |ψ(x, y)|2 for the Fourth Energy Eigenstate. 68

4.8 Self-Consistent Quantum Mechanical Electron Density In the Nanowire

Region. 69

4.9 Convergence of the Schrödinger-Poisson Solver. 69

viii

Chapter 1

INTRODUCTION

1.1 PETSc and SLEPc: Building Effective Computational Electronics Tools

The continuous effort to keep pace with the predictions of the Moore’s Law has

resulted in the computer resources becoming considerably cheaper. This has resulted

in many branches of basic sciences adopting computational tools to bridge the gap

between theory and experiment. This has been especially true in the semiconductor

industry, where the constant device scaling has introduced new technologies accom-

panied by new phenomena. For example, as the transistor feature size of the current

generation of transistors is well into the nanometer regime [1, 2], the de-Broglie wave-

length of the electron is comparable to the device dimensions and quantum mechanical

effects start to play a critical role in the operation of these devices. Fabrication of

nanoscale devices is accompanied by an increasingly intricate and time-consuming

manufacturing process which is extremely expensive. Computational tools, validated

with experiments, offer a cost-effective alternative to tackle this problem, as they

accurately capture the underlying physics of these devices. Thus they became an in-

dispensable tool to the semiconductor industry. They also provide the ability to test

and predict the behaviour of hypothetical structures, before they can be fabricated

at high volume.

To be able to reliably use these tools, the numerical engines on which they are based

should be efficient and robust in solving the differential equations describing the phe-

nomena. This problem of finding the best algorithms to numerically solve differential

equations at hand is prevalent in all branches of computational science. One trivial

1

approach would be to experiment with various algorithms and choose the one that

satisfies a set of predetermined criteria, such as the error tolerance, computational

time etc. However, this approach would naturally be a highly time consuming en-

deavour. Moreover, it also demands thorough understanding and expertise in subtle

nuances of many fields tangential to one’s area of research. With the vast variety

of numerical methods already in place, combined with the increasing pace at which

new methods are added to the existing framework, it becomes very difficult to make

an accurate choice of the numerical algorithm. In this work, an attempt is made to

address a problem specific to the field of computational nanoelectronics, using the

PETSc [3] linear solver and SLEPc eigenvalue solver packages [4]. The Portable,

Extensible Toolkit for Scientific Computation (PETSc), developed by Argonne Na-

tional Laboratory, is a collection of data structures and numerical routines for solving

various partial differential equations describing scientific phenomena. It provides the

user with a vast collection of efficiently programmed, ready-to-use numerical meth-

ods and preconditioners, thus offering the user enormous flexibility in experimenting

with various algorithms to solve a system of linear equations. Developed on similar

lines by researchers from Universitat Politècnica de València, the Scalable Library

for Eigenvalue Problem Computation (SLEPc), is a software package for the solution

of large sparse eigenvalue problems. SLEPc is built on top of PETSc and is often

considered as an extension of PETSc, using the same programming paradigm. Over

the years, both PETSc and SLEPc have been successfully used in a number of sci-

entific applications in various fields such as geological sciences, computational fluid

dynamics, medical biology [5, 6, 7], etc.

2

1.2 Need for Efficient Two Dimensional Schrödinger-Poisson Solvers for Lateral

GaN FETs

Nitride semiconductors have emerged as a strong candidate for high power, high

temperature and high frequency applications in the recent years [8, 9, 10]. Even

though the effective mass of gallium nitride is three times larger than gallium ar-

senide and therefore results in low low-field mobility of bulk gallium nitride, large

band gaps, high peak velocity, large saturation velocity and high thermal stability

make them ideal material for channel in microwave devices. The strongest feature

of III-V materials is the heterostructure technology it can support - quantum well,

modulation doped hetero interface, and heterojunction structure can all be made in

this material system.

Two dimensional electron densities in the order of 1013 cm−3 or higher can be achieved

in GaN HEMTs owing to its large piezoelectric polarization charge that arises due to

strain of the top layers. The polarization charge in these devices is about five times

larger in comparison to GaAs HEMT structures. In addition, the spontaneous polar-

ization, which is an inherent property of the material, is very high for GaN and AlN

material systems. The electric fields produced by these charges are in the order of 2-5

MV/cm. These high electric fields are responsible for the very high two-dimensional

electron densities in these devices [11].

Similar to today’s Si processor technology, 3D GaN FETs offer multi-gate struc-

tures that provide excellent electrostatic control over the channel and enable very low

subthreshold swing values close to the theoretical limit [12]. Various concepts have

been demonstrated, including both lateral and vertical devices with GaN nanowire

(NW) or nanofin (NF) geometries [13]. Outstanding transport properties were achieved

3

with laterally contacted NWs that were grown in a bottom-up approach and trans-

ferred onto an insulating substrate [12]. For higher power application, vertical FETs

based on regular arrays of GaN nanostructures are particularly promising due to

their parallel integration capability and large sidewall surfaces, which can be uti-

lized as channel area. In GaN nanowire FETs two dimensional confinement plays

a significant role on the operation of the transistors fabricated in this technology.

Therefore, there is a need for development of efficient two dimensional Schrödinger-

Poisson solvers for these material systems. For that purpose, PETSc and SLEPc are

used in this work to develop two dimensional Schrödinger-Poisson solver for lateral

GaN nanowire FETs.

1.3 Outline of the Thesis

The organization of the thesis is as follows.

1. Chapter 2 discusses the PETSc linear solver package and a two dimensional

Poisson solver is developed. The equilibrium potential profiles for AlGaN-GaN

and AlGaN-AlN-GaN heterostructures are compared with Silvaco-ATLAS.

2. Chapter 3 discusses the SLEPc eigenvalue solver package and the results from

the two dimensional Schrödinger solver are presented.

3. In Chpater 4, the Schrödinger and Poisson solver are coupled self-consistently

and the energy eigenvalues/eigenvectors, electron density profile are shown.

4. Lastly, conclusions and future directions of research are presented in Chapter

5.

4

Chapter 2

PETSC AND THE POISSON SOLVER

The Poisson equation, given by Eq.(2.1), is a second order elliptic partial differential

equation, which establishes the relationship of electric field and electric charges in

the device. The quantity ρ is the total charge density, which is sum of free charge

density(ρf) and the bound charge density(ρb), at a point r in the system.

∇.(ε(r)∇V (r)) = ρ(r) (2.1)

Solving the Poisson equation is a crucial part of any device simulation. It provides the

electrostatic potential profile in the device at a given time, which might be used later

in the device simulation process. For example, for a Monte Carlo based transport

simulation of a device, the Poisson solver would be called after each time step for the

entire simulation time scale. An inefficient Poisson solver can, thus, lead to a severe

computational bottleneck in terms of the runtime of the simulation. This chapter in-

troduces the PETSc linear solver package, which allows the user to experiment with

a vast variety of preprogrammed algorithms, thus giving the flexibility to choose an

algorithm which best meets ones needs.

Since the purpose of this work is development of Schrödginer-Poisson solvers for

GaN based semiconductor devices, this chapter starts with a discussion on the polar-

ization charges in III-V Nitrides. This is next followed by a section on band parameter

approach for heterostructures. Next, linearization and discretization of the Poisson

equation is presented. Then the PETSc linear solver package is introduced detailing

a few important subroutines useful for programming in PETSc. Finally, the results

5

from PETSc Poisson solver are compared with Silvaco-ATLAS, establishing the va-

lidity of the Poisson solver developed as part of this work.

2.1 Polarization in III-V Nitrides

2.1.1 The Generalized Hooke’s Law

To understand the Piezoelectric polarization in a material, one has to first un-

derstand the stress-strain tensors and the generalized Hooke’s law. In 3D, the state

of stress at any point in a solid is given by a rank-2 tensor called the Cauchy stress

tensor(σij) shown below.

σ =

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 (2.2)

In general, the element σij can be interpreted as the stress acting on the surface at a

point with unit normal along the êi due to the component Fj of the force F. Under

mechanical equilibrium, the stress tensor is symmetric. Then in Eq.(2.2) σxy = σyx,

σxz = σzx and σyz = σzy. Thus, the state of stress at point in a solid can be represented

by 6 independent components.

The strain at any point is representative of the deformation of the solid at that point

and is the rate of change of displacement with distance. If the effect of rotation is

neglected, the strain tensor ε in 3D can be represented as a symmetric part of the

deformation tensor as given below.

ε =

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 (2.3)

In the above equation εij = 1
2
(eij + eji) where eij = ∂ui

∂xj
. Then in Eq.(2.3) εxy = εyx,

εxz = εzx and εyz = εzy and thus, the state of strain at a point in a solid can also be

6

represented by 6 independent components. In the strain tensor, εxx, εyy, εzz represent

the extensions per unit length parallel to the x,y and z axes respectively. exy is

the rotation about the z axis towards the x axis of a line element parallel to the y

axis. Other components can be interpreted similarly. Using Eq.(2.2) and Eq.(2.3) the

generalized Hooke’s law is given as follows.

σij = Cijklεkl (2.4)

where i,j,k,l ∈ {x,y,z}. The quantity Cijkl is a rank-4 tensor and is called the stiffness

tensor. It is clear that the stiffness tensor in general has 81 components. However,

following the symmetry arguments outlined below, the number of independent com-

ponents can be reduced.

1. Symmetry of the Stress Tensor:

The stress tensor, as mentioned above, is symmetric under mechanical equilib-

rium. Thus σij = σji and hence Cijkl = Cjikl. The number of independent

components in now reduced to 54(=6*3*3).

2. Symmetry of Strain Tensor:

The strain tensor is also symmetric by definition. Thus εij = εji and hence

Cijkl = Cijlk. The number of independent components in now reduced to

36(=6*6).

3. Equivalence of Mixed Partials: To further reduce the number of indepen-

dent components, it is useful to remind oneself that for a given value of strain,

the strain energy density is given as:

∆ =
1

2
Cijklεijεkl

Then the stress tensor can be represented as

σij =
∂∆

∂εij
= Cijklεkl (2.5)

7

Differentiating Eq.(2.5) with respect to εmn gives:

∂2∆

∂εij∂εmn
=

∂

∂εmn

(
∂∆

∂εij

)
=

∂

∂εmn
(Cijklεkl)

= Cijkl
∂εkl
∂εmn

= Cijklδkmδln

= Cijmn

(2.6)

If the differentiation is carried out with respect to εmn first, we get:

∂2∆

∂εij∂εmn
=

∂

∂εij

(
∂∆

∂εmn

)
=

∂

∂εij

(
Cijklεkl

∂εij
∂εmn

)
= Cijklδkiδljδimδjn

= δkiδlj (Cijklδimδjn)

= δkiδljCmnkl

= Cmnij

(2.7)

Thus with the use of equivalence of mixed partials, it is clear that Cijkl = Cklij.

This further brings down the total number of independent components of Cijkl

to 21.

With 6 independent stress and strain tensor components, the matrix formulation of

the generalized Hooke’s law is represented below with the independent components

8

of the stiffness tensor labelled in blue.

σxx

σyy

σzz

σyz

σxz

σxy

=

Cxxxx Cxxyy Cxxzz Cxxyz Cxxxz Cxxxy

Cyyxx Cyyyy Cyyzz Cyyyz Cyyxz Cyyxy

Czzxx Czzyy Czzzz Czzyz Czzxz Czzxy

Cyzxx Cyzyy Cyzzz Cyzyz Cyzxz Cyzxy

Cxzxx Cxzyy Cxzzz Cxzyz Cxzxz Cxzxy

Cxyxx Cxyyy Cxyzz Cxyyz Cxyxz Cxyxy

εxx

εyy

εzz

2εyz

2εxz

2εxy

(2.8)

An alternative matrix notation of the Hooke’s law represented below, called the Voigt

notation, is more frequently used in the literature.

σ1

σ2

σ3

σ4

σ5

σ6

=

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

ε1

ε2

ε3

2ε4

2ε5

2ε6

(2.9)

The Voigt notation uses the following representation of the indices:

1→ xx

2→ yy

3→ zz

4→ yz

5→ xz

6→ xy

The number of independent components of the stiffness tensor can be further reduced

by utilizing the inherent symmetries of the solid. The III-V nitrides belong to the

9

C6v crystallographic point group [14] and the corresponding stiffness tensor is given

as follows:

C =

C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 1
2
(C11 − C12)

(2.10)

2.1.2 Piezoelectric Polarization

If stress is applied to certain crystal, they develop a dipole moment which is

proportional to the applied stress as given below:

P pz = dσ (2.11)

The constant d is called the piezoelectric modulus and is a rank-3 tensor in 3D with

dijk = dikj. When a general stress σjk is applied to the crystal, the component Pi of

the piezoelectric polarization is given as,

P pz
i = dijkσjk (2.12)

For example, if a uniaxial tensile stress is applied along the x-direction (σxx), the

components of the piezoelectric polarization can be written as,

P pz
x = dxxxσxx, P pz

y = dyxxσxx, P pz
z = dzxxσxx

A rank-3 tensor in general will have 27 independent components. However, if the j

and k symmetry of the dijk tensor is taken into account, the number of independent

10

components reduces to 18. Following the Voigt notation described in the previously,

the matrix representation of the piezoelectric modulus tensor is given as follows:

d =

d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

 (2.13)

Similar to the stiffness tensor, internal crystal symmetries reduce the number of in-

dependent components of the piezoelectric modulus. For the C6v point group, the d

matrix has the following form.

d =

0 0 0 0 d15 0

0 0 0 d24(= d15) 0 0

d31 d32(= d31) d33 0 0 0

 (2.14)

The piezoelectric polarization given in Eq.(2.12) can also be written in terms of strain

as shown below.

P pz
i = dijkσjk i, j, k ∈ {1, 2, 3}

= dijkCjklmεlm i, j, k, l,m ∈ {1, 2, 3}

= dijCjkεk i ∈ {1, 2, 3}; j, k ∈ 1, 2, 3, 4, 5, 6

= eikεk

(2.15)

where eik = dijCjk in the Voigt notation. The constants eik are called the piezoelectric

constants and more often than the stress formulation, this strain formulation of the

piezoelectric polarization is used in the literature. The definition of piezoelectric

11

polarization in Eq.(2.12) can be written as follows.

P pz
1 = d11σ1 + d12σ2 + d13σ3 + d14σ4 + d15σ5 + d16σ6

= d15σ5

P pz
2 = d21σ1 + d22σ2 + d23σ3 + d24σ4 + d25σ5 + d26σ6

= d24σ4

= d15σ4

P pz
3 = d31σ1 + d32σ2 + d33σ3 + d34σ4 + d35σ5 + d36σ6

= d31σ1 + d32σ2 + d33σ3

= d31(σ1 + σ2) + d33σ3

(2.16)

For the case of III-V nitrides, the growth direction is generally along [0001]. The

crystal does not experience any stress in the growth direction and the shear stresses

are negligible. Thus σ1 = σ2, σ3 = 0 and σ4 = σ5. Thus the piezoelectric polarization

will have a component only along the growth direction as given below.

P pz
3 = 2d31σ1 (2.17)

To calculate σ1 in the above equation, it is useful to observe that since σ3 is zero, we

have the following result from Eq.(2.10).

C31ε1 + C32ε2 + C33ε3 + C34ε4 + C35ε5 + C36ε6 = 0

2C13ε1 + C33ε3 = 0

ε3 = −2
C13

C33

ε1

(2.18)

Now using Hooke’s law and Eq.(2.18), σ1 can be expanded as follows:

σ1 = C11ε1 + C12ε2 + C13ε3 + C14ε4 + C15ε5 + C16ε6

= ε1(C11 + C12) + C13ε3

= ε1

(
C11 + C12 − 2

C2
13

C33

) (2.19)

12

Similar to the piezoelectric moduli, the piezoelectric constants also have the same set

of independent indices and they are related to the piezoelectric moduli using Eq.(2.15)

as given below.

e15 = d11C15 + d12C25 + d13C35 + d14C45 + d15C55 + d16C65

= d15C44

e24 = d21C14 + d22C24 + d23C34 + d24C44 + d25C54 + d26C64

= d24C44

= d15C44 = e15

e31 = d31C11 + d32C21 + d33C31 + d34C41 + d35C51 + d36C61

= d31(C11 + C12) + d33C13

e32 = d31C12 + d32C22 + d33C32 + d34C42 + d35C52 + d36C62

= d31(C12 + C11) + d33C13 = e31

e33 = d31C13 + d32C23 + d33C33 + d34C43 + d35C53 + d36C63

= 2d31C13 + d33C33

(2.20)

Using the strain formulation of the Piezoelectric polarization in Eq.(2.15) and Eq.(2.18),

we have:

P pz
3 = e31ε1 + e32ε2 + e33ε3 + e34ε4 + e35ε5 + e36ε6

= 2e31ε1 + e33ε3

= 2ε1

(
e31 − e33

C13

C33

) (2.21)

The piezoelectric constants and elastic moduli for Group III-nitrides is given in the

Table (2.1)[15].

13

Parameter AlN GaN InN

Psp (C
m2) -0.081 -0.029 -0.032

e33 (C
m2) 1.46 0.73 0.97

e31 (C
m2) -0.60 -0.49 -0.57

C13 (GPa) 120 70 1

C33 (GPa) 395 379 182

Table 2.1: Experimental Values of Piezoelectric Constants and Elastic Moduli of III-V

Nitrides.

Along with the piezoelectric polarization, the III-V nitrides also exhibit spon-

taneous polarization, which is attributed to the fact that the geometric centers of

negative and positive charges along the [0001] axis do not coincide due to the ionic

nature of Ga(Al)-N bond. The positive direction of spontaneous polarization is al-

ways in the direction from Ga(Al) to N, and the negative values of the spontaneous

polarizations for all III-V nitrides signifies that the dipole associated with the polar-

ization is from N to Ga(Al) atom. The direction of piezoelectric polarization depends

on whether the material under consideration is under tensile or compressive strain.

As is evident from the Table (2.1), the term (e31 − e33
C13

C33
) is always negative, the

direction of piezoelectric polarization would be parallel to spontaneous polarization

if the material is under tensile strain and anti-parallel to spontaneous polarization if

the material is under compressive strain.

The total polarization in GaN based materials is represented in general, as a sum of

the spontaneous and piezoelectric polarization charge densities. Due to the difference

of the values of the spontaneous and piezoelectric polarization charges in the two

materials, net sheet polarization charge density occurs at the hetero interfaces, which

14

has to be accounted for via the charge density term of the Poisson equation. For

example, at the GaN-AlGaN hetero interface, the net polarization charge density σ

is given by

σ = Pbot.n̂−Ptop.n̂

= P bot
sp + P bot

pz − P top
sp − P top

pz

(2.22)

If the material is relaxed, then the piezoelectric polarization charge density is zero. An

example of the total polarization charge density at the hetero interface in a AlGaN-

AlN-GaN material system is shown in the Figure (2.1).

[0
00
1]

GaN

AlN

Al0.2Ga0.8N

σ = −PGaN
sp

σ = PGaN
sp − (PAlN

sp + PAl0.2Ga0.8N
sp)

σ = (PAlN
sp + PAlN

pz)− (PAl0.2Ga0.8N
sp + PAl0.2Ga0.8N

sp)

σ = PAl0.2Ga0.8N
sp + PAl0.2Ga0.8N

pz

PGaNsp

PAlNsp

PAl0.2Ga0.8Nsp

PAlNpz

PAl0.2Ga0.8Npz

Figure 2.1: Spontaneous and Piezoelectric Polarizations in Psuedomorphically Grown

Ga-face AlGaN-AlN-GaN Heterostructure System.

15

2.2 The Band Parameter Approach for Heterostructures

2.2.1 The Local Vacuum Level

Prior to the thorough investigations on heterostructure devices, the intrinsic level

Ei was thought of as a correct measure to track the potential in the device [16]. How-

ever, this identification is incorrect and leads to erroneous conclusions when applied

to heterostructures, as pointed out by Marshak [17]. Instead, an energy level called

the local vacuum level El is constructed as shown in the Figure 2.2.

x

E

Position

E
n

er
g
y

Eo

El

Ec

Ev

Eg(x)

χ(x)

qφ(x)

Figure 2.2: Energy Band Diagram of a Hypothetical Device with Position Dependent

Parameters. El Denotes the Local Vacuum Level and Ec, Ev Denote the Conduction

and Valence Bands Respectively.

The Local Vacuum Level El at a point is defined as the energy of an electron if it

were at rest and free from the influence of the crystal potential. It is important to

recognize that the local vacuum level El is different from the vacuum level at infinity,

E∞vac, which is the reference energy of the electron at rest when situated far away from

the semiconductor, so that it is completely unaware of the existence of the semicon-

16

ductor. In contrast, when the electron is at the local vacuum level, it is free from the

influence of the microscopic crystal potential, but not from the potentials due to the

electrostatic field.

The concept of local vacuum level becomes intuitive when one considers the exam-

ple of electron liberation in a hypothetical P-N homojunction. Assuming that the

surfaces are ideal, when the electrons are liberated from the conduction band into

vacuum, there must be a difference in energies of the two electrons. This is because,

the electron on the N-side of the homojunction has a energy which is lower by qVbi as

compared to the electron on the P-side. Hence, it is apparent that the local vacuum

level must follow the electrostatic potential in the device. Thus from the Figure (2.2),

El(x) = Eo − qV (x) (2.23)

where Eo is any reference level. The conduction band profile Ec(x) and the valence

band profile Ev(x) are consequently given by

Ec(x) = El(x)− χ(x)

= Eo − qV (x)− χ(x)

Ev(x) = Ec(x)− Eg(x)

= Eo − qV (x)− χ(x)− Eg(x)

(2.24)

Using Eq.(2.24) and the general expression for the intrinsic level Ei(x), one arrives

at the following result:

Ei(x) =
Ec(x) + Ev(x)

2
+
kbT

2
ln

(
Nv(x)

Nc(x)

)
= Eo − χ(x)− qV (x)− Eg(x)

2
+
kbT

2
ln

(
Nv(x)

Nc(x)

) (2.25)

Analysing the result given in Eq.(2.25), it is evident that Ei(x) is in general not

parallel to V (x) and hence is not an appropriate measure for the electrostatic potential

17

in the devices with position dependent material parameters. Except for the case of

a homostructure, the intrinsic Fermi level Ei would be discontinuous at the interface

between two different materials.

2.2.2 Equations for Band parameters

The appropriate theory for analysing heterostructures comes from the analysis of

heavily doped semiconductors [18][19]. In a heavily doped semiconductor, the dopant

atoms are close enough to one another and the wavefunctions of the neighbouring

atoms overlap and the impurity levels broaden into a band that merges with the

conduction or valence band [19]. This naturally alters the band structure of the

semiconductor. As the semiconductor is heavily doped, Fermi-Dirac statistics must

be used. The electron concentration n is then given by the following expression.

n =

∫ Ectop

Ec

gc(E − Ec, x)fFD(E,Efn)dE (2.26)

where Efn is the electron quasi Fermi level. It can further be shown that the electron

concentration n at a given temperature T depends on the position x and the parameter

ηc defined as

ηc =
Efn − Ec
kbT

(2.27)

The electron concentration n can thus be written as follows:

n = n(x, ηc) (2.28)

Using chain rule, the above equation becomes

∇n = ∇ηcn+
∂n

∂ηc
∇ηc

= ∇ηcn+
∂n

∂ηc
∇
(
Efn − Ec
kbT

) (2.29)

18

where ∇ηcn is the gradient of electron concentration with ηc held constant. From

Eq.(2.29), it follows that the gradient of the electron quasi Fermi level is

∇Efn = kbT

(
∇n−∇ηcn

∂n
∂ηc

)
+∇Ec (2.30)

The gradient of the electron quasi Fermi level is related to the electron current density

as,

Jn = nµn∇Efn

= nµnkbT

(
∇n
∂n
∂ηc

)
− nµnkbT

(
∇ηcn
∂n
∂ηc

)
+ nµn∇Ec

= qDn∇n− nµnkbT

(
∇ηcn
∂n
∂ηc

)
+ nµn∇Ec

(2.31)

where generalized Einstein relation is used to arrive at the final result shown in

Eq.(2.31). In Eq.(2.29), the first term accounts for the position dependence of density

of states. Hence, a new parameter Γn is defined as

∇Γn = kbT

(
∇ηcn
∂n
∂ηc

)
(2.32)

The electron current density can then be rewritten as

Jn = qDn∇n− nµn∇Γn + nµn∇Ec

= nµn∇(Ec − Γn) + qDn∇n
(2.33)

The first term on the RHS of Eq.(2.33) takes into account the position dependence of

the density of states. The effect of Fermi-Dirac statistics is accounted for by modifying

the second term of Eq.(2.31) by using Einstein relation as

qDn∇n = kbTµn

(
n
∂n
∂ηc

− 1 + 1

)
∇n

= kbTµn

(
n
∂n
∂ηc

− 1

)
∇n+ kbTµn∇n

(2.34)

19

In Eq.(2.34), the first term accounts for dependence of electron concentration on

Fermi-Dirac statistics. Now, a single parameter θn is defined which takes into account

the effects of both Fermi-Dirac statistics and position dependence of density of states

function.

∇θn = ∇Γn −
1

nµn
kbTµn

(
n
∂n
∂ηc

− 1

)
∇n

= ∇Γn −
1

nµn
(qDn − kbTµn)∇n

(2.35)

The expression for the current density equation can then be rewritten as follows.

Jn = nµn∇(Ec − θn) + kbTµn∇n

= nµn∇(Eo − qV (x)− χ(x)− θn(x)) + kbTµn∇n

= −qnµn∇
(
V (x) +

χ(x) + θn(x)

q

)
+ kbTµn∇n

(2.36)

One can arrive at the expression for θn(x) by substituting Eq.(2.32) into Eq.(2.35).

This gives

∇θn = kbT

(
∇ηcn
∂n
∂ηc

)
− 1

nµn
kbTµn

(
n
∂n
∂ηc

− 1

)
∇n

= kbT

(
∇ηcn
∂n
∂ηc

)
− kbT

∂n
∂ηc

∇n+ kbT
∇n
n

= kbT

(
∇n− ∂n

∂ηc
∇ηc

∂n
∂ηc

)
− kbT

∂n
∂ηc

∇n+ kbT
∇n
n

= kbT
∇n
n
− kbT∇ηc

(2.37)

Integrating Eq.(2.37) on both sides gives,

θn(x)− θrefn = kbT ln

(
n(x)

nref

)
− kbT (ηc − ηrefc) (2.38)

where ref is a reference point in a non-degenerate material, which is a natural con-

sequence of integrating Eq.(2.37). For non-degenerate material, the effect of Fermi-

Dirac statistics and of non-uniform band structure is absent and hence θn is taken as

20

zero. Hence, θrefn is also zero. In addition, nref = N ref
c exp(ηrefc) since the reference

material is assumed to be non-degenerate. This gives,

θn(x) = kbT ln

(
Nc(x)F 1

2
(ηc)

N ref
c exp(ηrefc)

)
− kbT (ηc − ηrefc)

= kbT ln

(
Nc(x)

N ref
c

)
+ kbT ln

(
F 1

2
(ηc)

exp(ηrefc)

)
− kbT (ln(exp(ηc))− ηrefc)

= kbT ln

(
Nc(x)

N ref
c

)
+ kbT ln

(
F 1

2
(ηc)

exp(ηc)

) (2.39)

The electron affinity χ(x) in Eq.(2.36) can be combined with θn(x) and a new quantity

Vn(x) is defined as,

∇Vn(x) = ∇(χ(x) + θn(x)) (2.40)

Integrating Eq.(2.40) on both sides gives,

Vn(x)− V ref
n = χ(x)− χref + θn(x)− θrefn (x) (2.41)

Since the reference material is assumed to non-degenerate, V ref
n and θrefn are both set

to zero. This gives,

Vn(x) =
χ(x)− χref

q
+
θn(x)

q

=
kbT

q
ln

(
Nc(x)

N ref
c

)
+
kbT

q
ln

(
F 1

2
(ηc)

exp(ηc)

)
+
χ(x)− χref

q

(2.42)

Similar analysis done for the hole quasi Fermi energy level leads to the parameter Vp

given by,

Vp(x) =
kbT

q
ln

(
Nv(x)

N ref
v

)
+
kbT

q
ln

(
F 1

2
(ηv)

exp(ηv)

)
− χ(x)− χref

q
−
Eg(x)− Eref

g

q
(2.43)

These two quantities, Vp and Vn, are referred to as band parameters in the literature.

It can be observed from Eq.(2.42) and Eq.(2.43) that Vn(x) and Vp(x) depend only on

material parameters if the material is non-degenerate, as Boltzmann approximation

21

can be used to eliminate the second term of Eq.(2.42) and Eq.(2.43). When Fermi-

Dirac statistics are assumed, Vn(x) and Vp(x) both depend on electron and hole

concentrations respectively. It must be emphasized that although the above equations

are derived based on the assumption that the variation in the material parameters is

slow, the formulation can also be used for abrupt heterostructures and the deviations

of the estimated potential from the exact results are minimal [20].

2.2.3 Equations for Electron and Hole Concentrations

Once the band parameters Vn(x) and Vp(x) are defined, the electron and hole

concentrations are calculated from by rewriting, for example, the result given in

Eq.(2.39) for the electrons as,

θn(x) = kT ln

(
n(x)

N ref
c

)
− kbTηc (2.44)

Rearranging the terms leads to:

n(x) = N ref
c exp

(
θn(x) + Efn − Ec

kbT

)
= nrefi exp

(
ln

(
N ref
c

nrefi

))
exp

(
θn(x) + Efn − Ec

kbT

)

= nrefi exp

θn(x) + Efn − Ec + kbT ln
(
Nref

c

nref
i

)
kbT

(2.45)

22

Now, Eq.(2.41) and Eq.(2.24) are used to change the band parameter variable from

θn to Vn to get:

n(x) = nrefi exp

qVn(x)− χ(x) + χref + Efn − Eo + qV + χ(x) + kbT ln
(
Nref

c

nref
i

)
kbT

= nrefi exp

qVn(x) + χref + EF − qφn − Eo + qV + kbT ln
(
Nref

c

nref
i

)
kbT

= nrefi exp

(
qV + qVn(x)− qφn

kbT

)
exp

χref + EF + kT ln
(
Nref

c

nref
i

)
− Eo

kbT

(2.46)

Since Eo is a reference energy, it can be chosen such that the second exponential of

the result given in Eq.(2.46) is one. This results in

Eo = χref + EF + kbT ln

(
N ref
c

nrefi

)
(2.47)

The physical meaning of the choice of Eo becomes apparent when one considers the

case of the reference material being intrinsic. Then,

Eref
c − EF = kbT ln

(
N ref
c

nrefi

)
(2.48)

Substituting Eq.(2.48) into Eq.(2.47) gives

Eo = χref + EF + Eref
c − EF

= χref + Eo − qV − χref
(2.49)

Hence, the choice of reference potential energy Eo is such that it makes V = 0 in the

reference material if it is intrinsic. Thus the electron concentration n(x) is given by

n(x) = nrefi exp

(
qV (x) + qVn(x)− qφn(x)

kbT

)
(2.50)

Similar analysis for the holes gives the hole concentration p(x) as

p(x) = nrefi exp

(
−qV (x) + qVp(x) + qφp(x)

kbT

)
(2.51)

23

It is important to emphasize the necessary assumptions and conditions under which

the equations derived above are valid.

1. The equation (2.37) for ∇θn is valid in general for any device with position

dependent density of states.

2. The equation (2.42), which forms the basis for defining band parameter Vn(x)

is valid when the reference material is non-degenerate.

2.2.4 Boundary Conditions for Poisson Equation

A) Schottky Boundary Condition:

At the interface, the intrinsic level is:

EI(x) = Eo − qV (x)− χ(x)− Eg(x)

2
+
kbT

2
ln

(
Nv(x)

Nc(x)

)
= EF + (χref − χ(x))− Eg(x)

2
+ kbT ln

(
N ref
c

nrefi

)

+
kbT

2
ln

(
Nv(x)

Nc(x)

)
− qV (x)

(2.52)

EF − EI(x) at the interface can also be written as:

EF − EI(x) = EF − Ec(x) + Ec − EI(x)

= −φbo +
Eg(x)

2
− kbT

2
ln

(
Nv(x)

Nc(x)

) (2.53)

Substituting Eq.(2.52) into Eq.(2.53) we have:

−Eg(x)

2
+
kbT

2
ln

(
Nv(x)

Nc(x)

)
+ φbo = (χref − χ(x))− Eg(x)

2
+ kbT ln

(
N ref
c

nrefi

)
+

kbT

2
ln

(
Nv(x)

Nc(x)

)
− qV (x)

(2.54)

qV (x) = −φbo + (χref − χ(x)) + kbT ln

(
N ref
c

nrefi

)
(2.55)

24

Metal Semiconductor

Ec

EF

Ev

EI

El
φm

χs

φb0

Figure 2.3: Metal-Semiconductor Contact at Equilibrium

i.e.:

qV (x) = −φbo + (χref − χ(x)) + kbT ln(N ref
c)− kbT

2
ln(N ref

c N ref
v) +

Eref
g

2

= −φbo + (χref − χ(x)) +
Eref
g

2
+
kbT

2
ln

(
N ref
c

N ref
v

) (2.56)

B) Ohmic Boundary Condition: To evaluate the ohmic boundary conditions, space-

charge neutrality is invoked and the contact is assumed to be at equilibrium. Using

Eq.(2.50) and Eq.(2.51) in the charge neutrality equation gives,

p− n+ (Nd −Na) = 0

nrefi exp

(
−qV (x) + qVp(x)

kbT

)
− nrefi exp

(
qV (x) + qVn(x)

kbT

)
+ (Nd −Na) = 0

It is clear that the above equation is a quadratic in exp(qV (x)
kT

). Solving the equation

25

gives the ohmic boundary condition for V(x), of the form:

V (x) =
Vp(x)− Vn(x)

2
+ sgn(D)

kbT

q

ln

(∣∣∣∣D2
∣∣∣∣ e(−q(Vp(x)+Vn(x)

2kbT

)
+

√
1

4
D2e

(
−q(Vp(x)+Vn(x)

2kT

)
+ 1

) (2.57)

where sgn(D) is the sign of the doping and D = Nd−Na

nir
.

2.3 Linearization and Discretization of the Poisson Equation

To solve any differential equation numerically, first the equation has to be lin-

earized. Linearization converts a given differential equation into a finite set of linear

equations which can then be solved using numerical algorithms. To linearize the

Poisson equation, the Eq.(2.1) is rewritten as follows.

∇ · (ε∇V k+1) =
−q
εo

(
pk+1 − nk+1 +DOP

)
= f(V k+1) (2.58)

In the above equation, k + 1 is the iteration number, nk+1 and pk+1 are the electron

and hole concentrations in the (k + 1)th iteration and DOP is the net doping density

at any point. Using V k+1 = V k + δk+1, the above equation can be written as:

∇ · (ε∇δk+1) = f(V k+1)−∇ · (ε∇V k) (2.59)

The first term on the right hand side of Eq.(2.59), f(V k+1), can be approximated

using Taylor Series expansion around V k. This gives,

f(V k+1) = f(V k) +
∂f(V k+1)

∂V k+1

∣∣∣∣
V k

(δk+1) (2.60)

Using Eq.(2.50) and Eq.(2.51) under equilibrium conditions, ∂f(V k+1)
∂V k+1

∣∣∣∣
V k

can be writ-

ten as,

∂f

∂V k+1

∣∣∣∣
V k

=
q

ε0KBT

(
nk + pk

)
(2.61)

26

The final differential equation to solve then becomes

∇ · (ε∇δk+1)−
q
(
nk + pk

)
ε0KBT

δk+1 = f(V k)−∇ · (ε∇V k) (2.62)

The above equation can now be discretized using any of the standard discretization

schemes. For this work, a five point stencil version of the finite volume discretization

is used. The resultant coefficients are listed below:

Ei,j =
εi−1,j + εi,j

(Xi,j+1 −Xi,j)(Xi,j+1 −Xi,j−1)

Wi,j =
εi−1,j−1 + εi,j−1

(Xi,j −Xi,j−1)(Xi,j+1 −Xi,j−1)

Ni,j =
εi−1,j−1 + εi−1,j

(Yi,j − Yi−1,j)(Yi+1,j − Yi−1,j)

Si,j =
εi,j−1 + εi,j

(Yi+1,j − Yi,j)(Yi+1,j − Yi−1,j)

C1i,j = −(Ei,j +Wi,j +Ni,j + Si,j)

Ck
i,j = C1i,j −

q(eki,j + hki,j)

ε0Vt

(2.63)

The forcing function given by the following equation.

Fi,j =
−q(eki,j + hki,j +DOPi,j)

ε0Vt
− (Ni,jV

k
i−1,j +Wi,jV

k
i,j−1

+ C1i,jV
k
i,j + Ei,jV

k
i,j+1 + Si,jV

k
i+1,j)

(2.64)

2.4 Portable, Extensible Toolkit for Scientific Computation (PETSc)

The problem of choosing the most efficient algorithm to numerically solve the

differential equation at hand prevails in all branches of computational science. The

most natural approach would be to try all possible algorithms and choose the one

that is satisfactory to one’s needs. However, the vast variety of numerical algorithms

already in place, together with their ever expanding variations makes it an extremely

time consuming endeavour. Moreover, even after the choice of an algorithm is made,

27

the style of programming is not guaranteed to result in an efficient algorithm.

The Portable, Extensible Toolkit for Scientific Computation(PETSc)[3] addresses this

problem by providing the user with a vast collection of efficiently programmed algo-

rithms, enabling enormous flexibility to the user. Along with a rich collection of linear

and nonlinear, PETSc also provides algorithms for many preconditioners, allowing for

easy comparison and use of different algorithms. In this chapter, a brief discussion

on the Krylov subspace methods and Newton methods which form the core of the

PETSc linear and nonlinear solvers respectively is provided. This is followed by a

section discussing some important PETSc subroutines employed in almost all PETSc

programs.

2.4.1 Preconditioning in PETSc

Consider a linear system defined by the relation Ax = b, where A is a non-singular

matrix. Let a small perturbation be applied to the system, as is done by any iterative

method, such that A matrix changes to A + εE, b vector changes to b + εe and the

solution of the new linear system is x(ε). The perturbed system can be written as

(A+ εE)x(ε) = b+ εe (2.65)

Expanding x(ε) using the Taylor series gives,

δ(ε) = x(ε)− x+O(ε2) (2.66)

28

The above equation, to the first order, can be rewritten as,

δ(ε) = x(ε)− x

(A+ εE)δ(ε) = (A+ εE)x(ε)− (A+ εE)x

= (b+ εe)− (A+ εE)x

= ε(e− Ex)

δ(ε) = ε(A+ εE)−1(e− Ex)

(2.67)

The derivative of x(ε) is indicative of the sensitivity of the solution to a perturbation.

This is given as

∂x(ε)

∂ε

∣∣∣∣
ε=0

= lim
ε→0

δ(ε)

ε

= A−1(e− Ex)

(2.68)

Using Eq.(2.68), the relative variation in the solution can be written as

||x(ε)− x||
||x||

=
||x′(0)ε||
||x||

+O(ε2)

≤ ε
||A−1|| ||e− Ex||

||x||
+O(ε2)

≤ ε||A−1||
(
||e||+ ||Ex||
||x||

)
+O(ε2)

≤ ε||A−1||
(
||e||
||x||

+ ||E||
)

+O(ε2)

≤ ε||A−1||||A||
(
||e||
||b||

+
||E||
||A||

)
+O(ε2)

(2.69)

From Eq.(2.69), it is evident that the for a given ε, the sensitivity of the solu-

tion to perturbation, and thus the rate of convergence, are dependent on the factor

||A−1||||A||. This parameter is called the condition number, κ(A), of the linear system

and is relative to a norm. For the case of 2-norm, the condition number is given as

κ(A) =
σmax(A)

σmin(A)
(2.70)

29

where σmax(A) and σmin(A) are the highest and the lowest eigenvalues of the A

matrix. If condition number is small, then the eigenvalues are closely spaced and

the system is said to be well conditioned. On the other hand, if condition number

is large, the eigenvalues of the system would be spread out and the system is said

to be ill-conditioned. The purpose of preconditioning a system is to convert an ill-

conditioned system to a well-conditioned system. This is accomplished by defining a

preconditioning matrix M and rewriting the linear system as,

(M−1A)x = (M−1b) (2.71)

Thus the linear system to solve now is given by Eq.(2.71), which has better spectrum

than the unconditioned linear system. The problem of solving the linear system

Ax = b is now shifted to finding an appropriate preconditioner such that Eq.(2.71)

can be solved in fewer iterations.

Although there are a vast variety of preconditioners available, the choice of a good

preconditioner for a problem is not always intuitive and depends on the problem at

hand. PETSc offers the user with more than a dozen preconditioners, a few of which

are listed in the Table (2.2). The user can experiment with different preconditioners

and choose the one that works best for the problem at hand.

30

Method PCType Options Database Name

Jacobi PCJACOBI jacobi

Incomplete LU PCILU ilu

Algebraic Multigrid PCGAMG gamg

SOR PCSOR sor

No preconditioning PCNONE none

Additive Schwarz PCASM asm

Cholesky PCCHOLESKY cholesky

Table 2.2: Partial List of Preconditioners in PETSc.

For the current work, Incomplete LU (ILU) factorization method, specifically

ILU(0), is used as a preconditioner. The ILU method involves performing Gaus-

sian elimination and dropping some elements in predetermined nondiagonal positions.

This can be done by defining a static zero pattern set P such that P ⊂ {(i, j)|i 6=

j; 1 ≤ i, j ≤ n}. The algorithm of generalized ILU factorization is as follows [21].

1) For i = 2, ..., n Do :

2) For k = 1, ..., i− 1and if (i, k) /∈ P Do :

3) aik = aik/akk

4) For j = k + 1, ..., nand if (i, j) /∈ P Do :

5) aij = aij − aikakj

If the zero pattern P is taken to be precisely the zero pattern of A, one arrives at the

Incomplete LU factorization technique with no fill-in, denoted by ILU(0).

31

2.4.2 PETSc Linear Solvers

For a given system of linear equations Ax = b, direct methods always give the

unique solution of the system. However, as the size of the A matrix increases, per-

forming n3 calculations to arrive at the solution becomes computationally expensive.

In contrast to the direct methods, the aim of the iterative methods is to progress

closer towards the true solution of a system of linear equations in each iteration. The

governing equation of a basic iterative method is given as:

xk+1 = xk + αM−1rk (2.72)

where α is a relaxation parameter, rk is the residual after the kth iteration. If the

matrix M is the identity matrix I, one arrives at the Successive Over Relaxation(SOR)

method. Without loss of generality, if α = 1 and M = I, then the first few iterations

of the basic iterative methods are given by:

x0 = 0

x1 = x0 + r0 = r0

x2 = x1 + r1 = 2r0 − Ar0

x3 = (3r0 − 3Ar0 + A2r0

(2.73)

It is evident from the first three iterations that the solution vector xk after k iterations

is such that xkε span{r0, Ar0, A2r0, ..., Ak−1r0}. This space spanned by the vectors

{r0, Ar0, A2r0, ..., Ak−1r0} is called the Krylov subspace, denoted by Kk(r0, A). In

each iteration, the linear solvers based on Krylov subspace find the optimal solution

xk in this space where the optimality is such that A-norm, ||x−xk||A, is minimal for

a certain αk.

32

2.4.3 PETSc Nonlinear Solvers

Along with the linear solvers, PETSc also includes many algorithms to solve a

system of nonlinear equations of the form

F(x) = 0 (2.74)

where F : Rn → Rn. For the Poisson equation without the defect correction formula-

tion, the variable x in Eq.(2.74) is the potential in the system and Eq.(2.74) can be

written as

F(V k+1) = ∇ · (ε∇V k+1)− f(V k+1) (2.75)

where f(V k+1) = −q
εo

(
pk+1 − nk+1 +DOP

)
. After discretization, the above equation

reduces to a set of linear equations:

F k
ij = NijV

k
i−1,j +WijV

k
i,j−1 + CijV

k
i,j + EijV

k
i,j+1 + SijV

k
i+1,j − f(V k

i,j) (2.76)

The nonlinear solvers in PETSc, for solving Eq.(2.74), are based on the Newton

method. The general form of a n-dimensional Newton’s method is given as,

xk+1 = xk − J(xk)−1F(xk), k = 0, 1, 2... (2.77)

33

In Eq.(2.77), J(xk) is the Jacobian of the system evaluated at xk. Using Eq.(2.76),

the Jacobian of the Poisson system can be written as,

J(V k) =

∂Fk
1,1

∂V k
1,1

∂Fk
1,1

∂V k
1,2

...
∂Fk

1,1

∂V k
N,N−1

∂Fk
1,1

∂V k
N,N

∂Fk
1,2

∂V k
1,1

∂Fk
1,2

∂V k
1,2

...
∂Fk

1,2

∂V k
N,N−1

∂Fk
1,2

∂V k
N,N

.

.

.

∂Fk
i,j

∂V k
1,1

∂Fk
i,j

∂V k
1,2

...
∂Fk

i,j

∂V k
N,N−1

∂Fk
i,j

∂V k
N,N

.

.

.

∂Fk
N,N−1

∂V k
1,1

∂Fk
N,N−1

∂V k
1,2

...
∂Fk

N,N−1

∂V k
N,N−1

∂Fk
N,N−1

∂V k
N,N

∂Fk
N,N

∂V k
1,1

∂Fk
N,N

∂V k
1,2

...
∂Fk

N,N

∂V k
N,N−1

∂Fk
N,N

∂V k
N,N

(2.78)

To form the Jacobian, one has to assume that the potentials V k
i,j are continuous and

thus
∂Fk

i,j

∂V k
i,j

exists. It is also evident from Eq.(2.76) that the Jacobian would be a sparse

matrix and the nonzero entries are given as,

∂F k
ij

∂V k
i−1,j

= Ni,j

∂F k
ij

∂V k
i,j−1

= Wi,j

∂F k
ij

∂V k
i,j+1

= Ei,j

∂F k
ij

∂V k
i+1,j

= Si,j

∂F k
ij

∂V k
i,j

= Ci,j −
∂f(Vi,j)

∂Vi,j

(2.79)

34

In practice, the Newton method is implemented in the following two steps:

1) Solve J(xk)∆xk = −F(xk)

2) Update xk+1 = xk + ∆xk

The necessary routines to be used and the procedure for implementation of a nonlinear

solver is discussed in the next section.

2.4.4 Important PETSc Routines for Linear and Nonlinear Solvers

The program flow of a typical PETSc linear and nonlinear solvers are depicted

in Figure (2.4) and Figure (2.5) respectively. The various subroutines that comprise

each block are discussed below. All the PETSc routines return an integer error

code, denoted by the variable ierr, which is set to be nonzero if an error is detected.

CHKERRQ(ierr) is a PETSc macro that checks the value of ierr and calls the PETSc

error handler if ierr is nonzero. CHKERRQ(ierr) should be used after every PETSc

routine to ensure that successful execution of a routine.

Adding PETSc Header Files

To successfully compile any PETSc program, one has to first include all the neces-

sary header files required by the program. For the case of linear solvers in PETSc,

the header file to be included is petscksp.h. This defines the interface functions for

the Krylov subspace accelerators. If the programming language is Fortran, then ap-

propriate module should also be added at the beginning of the program. These are

achieved using the following statements.

35

Start

Add PETSc header files

Declare PETSc variables

call PetscInitialize()

Create and setup A

matrix and b vector of

the Ax=b linear system

Fill A matrix and b vector

Create solver context

Create precon-

ditioner context

Solve the sys-

tem of equations

Check the solution

Destroy the created objects

call PetscFinalize()

Stop

Figure 2.4: Flow of PETSc Program Based on Krylov Solvers

#include 〈petsc/finclude/petscksp.h〉
use petscksp

PetscInitialize

All the PETSc programs must call PetscInitialize() at the beginning of the program

using the following statement.

PetscInitialize(PETSC NULL CHARACTER,ierr)

36

Start

Add PETSc header files

Declare PETSc variables

call PetscInitialize()

Create and setup the Jaco-

bian matrix and function

vector of F(x)=0 system

Create SNES nonlin-

ear solver context

call SNESSetFunction

and SNESSetJacobian to

fill the function vector

and the Jacobian matrix

Create precon-

ditioner context

Solve the sys-

tem of equations

Check the solution

Destroy the created objects

call PetscFinalize()

Stop

Figure 2.5: Flow of PETSc Program Based on Newton Method

Creating and Setting up Matrix and Vector Objects

After PETSc is initialized, the next step is to create the matrix A and the vector b

of the equation Ax = b. To create a matrix, one has to call the following routines.

MatCreate(PETSC COMM WORLD,A,ierr)

After the matrix is created, the next step is to set the size and type of the matrix by

calling the following routines.

MatSetSizes(A,PETSC DECIDE,PETSC DECIDE,NUM,NUM,ierr)
MatSetType(A,MATSEQAIJ,ierr)

37

By default, the MatCreate routine creates a sequential sparse matrix based on

compressed sparse row format. PETSc has more than 50 different types of matrices

and the MatSetType() routine allows the user to build a matrix of a certain type.

The next step is to preallocate the memory needed for the sparse matrix. In general,

allocating memory dynamically is extremely expensive and in order to obtain a good

performance, one has to always preallocate memory for the sparse matrix. This is

achieved using the following command.

MatSeqAIJSetPreallocation(A,PETSC DEFAULT INTEGER,nnz,ierr)

The variable nnz in the above command is an integer array which indicates the number

of nonzeros in each row of the A matrix. If the number of nonzeros is roughly the

same in each row, one has to use a scalar nz to specify the number of nonzeros. If

nnz is specified then nz is ignored. This is followed by setting up the matrix A using

the MatSetUp() routine. This sets up the internal matrix data structures for later

use.

MatSetUp(A,ierr)

Once the matrix is setup, the next step is to add values into the matrix. PETSc

allows the user to set single entry or a block of values to the matrix using the following

routines.

MatSetValues0(A,m,idxm[],n,idxn[],v[],InsertMode,ierr)

The variable m is the number of rows to be filled, idxm[] is the index of rows to be

filled, n is the number of columns to be filled, idxn[] is the index of the columns to be

filled and v[] is a logical 2D array of size mXn containing the values to be entered in

38

the matrix. The InsertMode argument allows the user to either overwrite the existing

values in the matrix or to put values into a location that previously has no value. To

set single entry instead of an array of values, one can call the MatSetValue() routine

as follows.

MatSetValue(A,m,n,v,InsertMode,ierr)

The final step before the matrix is ready to use is to assemble the matrix. This is

accomplished using the routines mentioned below.

MatAssemblyBegin(A,MAT FINAL ASSEMBLY,ierr)

MatAssemblyEnd(A,MAT FINAL ASSEMBLY,ierr)

Similar routines are available to create, setup and assemble a vector object. These

are listed below.

VecCreate(PETSC COMM SELF,x,ierr)

VecSetType(x,VECSEQ,ierr)

VecSetValues(x,n,ix[],y[],InsertMode,ierr)

VecAssemblyBegin(x,ierr)

VecAssemblyEnd(x,ierr)

If the nonlinear solvers are to be used, then the user has to define two subroutines,

one to calculate the Jacobian matrix and another to calculate the forcing function,

which are defined as follows.

39

FormJacobian(snes,x,jac,prec,ctx,ierr)

FormFunction(snes,x,f,ctx,ierr)

In the first routine, the variables snes, x and ctx are the input variables and jac,

prec, ierr are the output variables. x is the solution vector at the kth iteration, jac

is jacobian matrix, prec is the preconditioning matrix and ctx is an optional user

defined context. In the second routine snes, x and ctx are the input variables and

f is the output variable that stores the value of the function. These subroutines are

then given as inputs to two PETSc routines which enable the formation of jacobian

matrix and evaluate function F. These two routines are defined as follows.

SNESSetFunction(snes,f,FormFunction(),ctx,ierr)

SNESSetJacobian(snes,Amat,Pmat,FormJacobian(),ctx,ierr)

Creating Solver and Preconditioner Contexts

Once the A matrix and the b vector are formed, the next step is to create the solver

context and set the type of Krylov method or the Newton method using the following

routines.

KSPCreate(PETSC COMM WORLD,ksp,ierr)

KSPSetType(ksp,KSPBCGS,ierr)

SNESCreate(PETSC COMM WORLD,snes,ierr)

SNESSetType(snes,SNESNEWTONLS,ierr)

40

The second argument of the routine KSPSetType and SNESSetType is the type of

the solver, where the user can choose from among more than thirty Krylov methods

and dozen Newton methods, partial list of which is shown in Table 2.3 and Table 2.4

respectively. PETSc also allows user to set the tolerance in the form of a real number

or in terms of maximum number of iterations to use with the following routine.

Method KSPType Options Database Name

Richardson KSPRICHARDSON richardson

BiCGSTAB KSPBCGS bcgs

Generalized Minimal Residual KSPGMRES gmres

Conjugate Gradient KSPCG cg

Chebyshev KSPCHEBYSHEV chebyshev

Table 2.3: Partial List of Available Krylov Methods.

Method SNESType Options Database Name

Line Search Newton SNESNEWTONLS newtonls

Nonlinear GMRES SNESNGMRES ngmres

Nonlinear Gauss-Seidel SNESNGS ngs

Anderson Mixing SNESANDERSON anderson

Table 2.4: Partial List of Available Newton Methods.

KSPSetTolerances(ksp,rtol,abstol,dtol,maxits,ierr)

After setting the tolerances, the user needs to specify the matrix associated with the

linear system to SLEPc, by calling the following routine.

41

KSPSetOperators(ksp,Amat,Pmat,ierr)

The argument Pmat in the above routine is a matrix that is used in constructing the

preconditioner. This is usually same as Amat. To experiment with other precondi-

tioners available in PETSc, one has to first get the preconditioner context followed

by setting the preconditioner type. This is achieved using the following routines.

KSPGetPC(ksp,pc,ierr)

PCSetType(pc,PCJACOBI,ierr)

The second argument of the PCSetType() routine allows the user to choose from

among more than dozen preconditioners offered by PETSc. Once the solver and

preconditioner contexts are set, the next step is to solve the system of equations.

This is achieved in a single command given below depending the solver context .

KSPSolve(ksp,b,x,ierr)

SNESSolve(snes,b,x,ierr)

The argument b in the above routine is the right hand side vector in the equation

Ax = b and x is the solution vector.

Checking the Solution and Cleanup

To check if the solver converged, one has to call the following routine.

KSPGetConvergedReason(ksp,reason,ierr)

42

In the above routine, reason is of integer type varying from -11 to 8, where negative

values indicate that the solver has not converged. Once the solver is converged, one

must destroy all the objects that are created such as the matrices, vector, the solver

and the preconditioner objects, followed by a call to PetscFinalize() as mentioned

below.

VecDestroy(x,ierr)

MatDestroy(A,ierr)

KSPDestroy(ksp,ierr)

PCDestroy(ksp,ierr)

PetscFinalize(ierr)

2.5 Comparison of Results Between Silvaco-ATLAS and Petsc Poisson Solver

To validate the Poisson solver built using PETSc, the results of the PETSc solver

and Silvaco-ATLAS are compared for two device structures shown in Figure (2.6).

In Silvaco-ATLAS [22], the interface statement is used to add polarization charges

at the Al0.2Ga0.8N-GaN interface and at the region between the gates on the surface.

For the interface statement at the Al0.2Ga0.8N-GaN interface, one has to add the S.S

option to specify the application of interface models pertinent to the semiconductor-

semiconductor interface. And for the interface statement at the top surface, one has

to add the S.X option to specify the application of interface models pertinent to the

interfaces with the outside domain. The results of the comparison are shown in the

figures below.

As seen in conduction band profile of Figure (2.7), 2DEG is formed at the Al0.2Ga0.8N-

GaN interface. The Silvaco results match perfectly with PETSc Poisson solver. The

43

GaN

Al0.2Ga0.8N

Gate Gate

100 nm 100 nm

87 nm

15
n
m

20
0

n
m

GaN

AlN

Al0.2Ga0.8N

Gate Gate

100 nm 100 nm

87 nm

15
nm

8
nm

20
0

nm
Figure 2.6: Device Structures Used to Establish the Validity of the Poisson Solver.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250

C
on

d
u
ct

io
n

B
an

d
E

n
er

gy
(e

V
)

Position (nm)

PETSc
Silvaco-ATLAS

0.6

0.8

1

1.2

1.4

1.6

1.8

0 50 100 150 200 250

P
ot

en
ti

al
E

n
er

gy
(e

V
)

Position (nm)

PETSc
Silvaco-ATLAS

Figure 2.7: Comparison of Conduction Band Profile and Potential Profile along the

Y-cutline Between the Gates for the Device Without AlN Layer.

results for the device with an AlN layer is shown in Figure (2.8). The 2DEG is form at

the AlN-GaN interface and the results here match perfectly with the Silvaco-ATLAS.

Lastly, the convergence profile of the Poisson solver is shown in Figure (2.9) .

44

-1

0

1

2

3

4

5

6

7

0 50 100 150 200 250

C
on

d
u
ct

io
n

B
an

d
E

n
er

gy
(e

V
)

Position (nm)

PETSc
Silvaco-ATLAS

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 50 100 150 200 250

P
ot

en
ti

al
E

n
er

gy
(e

V
)

Position (nm)

PETSc
Silvaco-ATLAS

Figure 2.8: Comparison of Conduction Band Profile and Potential Profile along the

Y-cutline Between the Gates for the Device with AlN Layer.

1e-10

1e-08

1e-06

0.0001

0.01

1

100

10000

0 2 4 6 8 10 12

||n
or
m
|| ∞

Iteration Number

Figure 2.9: Convergence of the PETSc based Poisson Solver.

45

Chapter 3

SLEPC AND THE SCHRÖDINGER SOLVER

3.1 Finite Volume Discretization of a Linear PDE

The aim of any discretization scheme is to convert given partial differential equa-

tion into a system of linear equations which can then be solved using standard numeri-

cal algorithms. Various discretization schemes are available, the commonly used ones

being the Finite Difference Method(FDM), the Finite Element Method(FEM) and

the Finite Volume Method(FVM). This section discusses the FVM using the method

of octants, as described in [23]. The general form of a linear differential operator of

order n is

Ln(~r) = an(x)D̂n(~r) + . . .+ a1(x)D̂1(~r) + a0(x)D̂0(~r) (3.1)

where ai(x), i = 0, . . . , n represents an arbitrary differentiable function and D̂i(~r), i =

0, . . . , n represents the ith order differential operator. For the case of the Schrödinger

equation and the linearized Poisson equation, i takes the values of 0 and 2. Hence

this work focuses on the discretizing the operators D̂2(~r) and D̂0(~r).

The FV discretization scheme starts with generation of a mesh over the entire simula-

tion domain. Then a control volume of size Ω, shown by dotted lines in Figure (3.1),

is constructed by connecting the midpoints of the neighbouring boxes. The control

volume is further divided into N octants, where N = 2d, d being the dimensionality

of the simulation domain.

A general second order differential operator in 2D is of the form

D̂(2)φ(~r) =
∑

i,jε{x,y}

∂iαij(~r)∂jφ(~r) (3.2)

46

(i-1,j-1) (i-1,j) (i-1,j+1)

(i,j-1) (i,j) (i,j+1)

(i+1,j-1) (i+1,j) (i+1,j+1)

1 2

34

Ω

Figure 3.1: Representation of Control Volume and Octants about a Mesh Point

where αij(~r) is a rank-2 tensor as shown below.

α =

αxx αxy αxz

αyx αyy αyz

αzx αzy αzz

 (3.3)

The differential form is converted to the integral form at each grid point by integrating

over the control volume Ω. This gives,

I2 =

∫
Ω

∑
i,jε{x,y}

∂iαij(~r)∂jφ(~r)dV (3.4)

=

∫
Ω

∑
iε{x,y}

∂i

 ∑
jε{x,y}

αij(~r)∂jφ(~r)

 dV (3.5)

It is easy to recognize that the integrand is of the form ∇.F where the flux F =(∑
i,jε{x,y} αij(~r)∂jφ(~r)ê0

i

)
. Thus, Eq.(3.4) can be written as

I2 =

∫
Ω

(∇.F)dV (3.6)

Applying the divergence theorem, I2 can be converted from a volume integral to a

47

surface integral as

I2 =

∫
S

F.ds (3.7)

=

∫
S

∑
i,jε{x,y}

αij(~r)∂jφ(~r)ê0
i .ds (3.8)

This surface integral can be written as the summation of N surface integrals where

N = 2d is the number of octants.

I2 =
2d∑
n=1

∫
Sn

∑
i,jε{x,y}

α
(n)
ij (~r)[∂jφ(~r)]nê0

i .dsn (3.9)

Furthermore, the surface integral over each octant can be written as a summation

of surface integrals over each surface of an octant. The number of surfaces for an

octant is p = d, where d is the dimensionality of the system under consideration.

Thus, I2 can be written as,

I2 =
2d∑
n=1

d∑
p=1

∫
Sn
p

∑
i,jε{x,y}

α
(n)
ij (~r)[∂jφ(~r)]np (ê0

i .ê
n
p)dsnp (3.10)

where ênp is the unit normal vector of the the pth surface of the nth octant. Using

basis orthonormality,

ê0
i .ê

n
p = δipê

n
p (p) (3.11)

where ênp (p) is the pth element of the ênp column vector, and substituting this back

gives

I2 =
2d∑
n=1

d∑
p=1

∫
Sn
p

∑
i,jε{x,y}

α
(n)
ij (~r)[∂jφ(~r)]npδipê

n
p (p)dsnp (3.12)

The Kronecker delta allows one to eliminate the summation on p which leads to

I2 =
2d∑
n=1

∑
i,jε{x,y}

∫
Sn
i

α
(n)
ij (~r)[∂jφ(~r)]ni e

n
i (i)dsni

=
2d∑
n=1

∑
i,jε{x,y}

α
(n)
ij (~r)[∂jφ(~r)]ni e

n
i (i)Sni

(3.13)

48

where [∂jφ(~r)]ni is the discrete approximation of differential change in φ in the jth

direction on the ith surface of the nth octant of the control volume around the point

at ~r. The term [∂jφ(~r)]ni is discretized as

[∂jφ(~r)]ni =

φ(∆n

j ê
n
j)−φ(~r)

∆n
j

enj (j), i = j

1
2
(
φ(∆n

j ê
n
j)−φ(~r)

∆n
j

− φ(∆n
j ê

n
j +∆n

i ê
n
i)−φ(∆n

i ê
n
i)

∆n
j

)enj (j), i 6= j

(3.14)

where ∆n
i is the mesh spacing along ith direction. If the parameter α. which is 1

m∗

for the case of Schrödinger equation, is assumed to be isotropic, then i = j . Thus,

I2 =
2d∑
n=1

∑
i,jε{x,y}

α
(n)
ij (~r)[∂iφ(~r)]ni S

n
i

=
2d∑
n=1

∑
i,jε{x,y}

α
(n)
ij (~r)

(
φ(∆n

i ê
n
i)− φ(~r)

∆n
i

)
Sni

(3.15)

From (3.15) it is clear that one can associate five coefficients to any node as shown

in Figure (3.2).

I2 = α(1)(~r)

(
(φ(w)− φ(c))

∆1
1

S1
1 +

(φ(s)− φ(c))

∆1
2

S1
2

)

+ α(2)(~r)

(
(φ(e)− φ(c))

∆2
1

S2
1 +

(φ(s)− φ(c))

∆2
2

S2
2

)

+ α(3)(~r)

(
(φ(e)− φ(c))

∆3
1

S3
1 +

(φ(n)− φ(c))

∆3
2

S3
2

)

+ α(4)(~r)

(
(φ(w)− φ(c))

∆4
1

S4
1 +

(φ(n)− φ(c))

∆4
2

S4
2

)
(3.16)

The discretization of zeroth order operator D̂0(~r) is trivial. The integral form of

the operator is written as,

I0 =

∫
Ω

φ(~r)γ(~r)

= φ(~r)
4∑

n=1

γnvoln
(3.17)

49

i,j i,j+1i,j-1

i+1,j

i-1,j

ci,j

wi,j ei,j

n
i,
j

s i
,j

Figure 3.2: The Five Point Stencil of the Finite Volume Method

where voln is the volume of the nth octant. Using equations (3.16) and (3.17), the

north, east, west and south coefficients are given as :

ei,j =
α(2)(Yi+1,j − Yi,j)
2(Xi,j+1 −Xi,j)

+
α(3)(Yi,j − Yi−1,j)

2(Xi,j+1 −Xi,j)

wi,j =
α(1)(Yi+1,j − Yi,j)
2(Xi,j −Xi,j−1)

+
α(4)(Yi,j − Yi−1,j)

2(Xi,j −Xi,j−1)

ni,j =
α(4)(Xi,j −Xi,j−1)

2(Yi,j − Yi−1,j)
+
α(3)(Xi,j+1 −Xi,j)

2(Yi,j − Yi−1,j)

si,j =
α(1)(Xi,j −Xi,j−1)

2(Yi+1,j − Yi,j)
+
α(2)(Xi,j+1 −Xi,j)

2(Yi+1,j − Yi,j)

(3.18)

50

The central coefficient is given as :

ci,j =−
(
ei,j + wi,j + ni,j + si,j)

+ γ(1)(~r)
(Xi,j −Xi,j−1)

2

(Yi+1,j − Yi,j)
2

+ γ(2)(~r)
(Xi,j+1 −Xi,j)

2

(Yi+1,j − Yi,j)
2

+ γ(3)(~r)
(Xi,j −Xi,j−1)

2

(Yi,j − Yi−1,j)

2

+ γ(4)(~r)
(Xi,j+1 −Xi,j)

2

(Yi,j − Yi−1,j)

2

(3.19)

This discretization scheme leads to an eigenvalue problem of the form

HΨ = ESΨ (3.20)

where HN×N is the Hamiltonian matrix, ΨN×N is the collection of wavefunctions, E

is the diagonal matrix of energy eigenvalues and S is the diagonal matrix containing

the volume of each control volume. For a non-uniform mesh, the Hamiltonian matrix

is not Hermitian. To convert H to a Hermitian matrix, the steps mentioned below

are followed:

HΨ = ESΨ

S−0.5HΨ = S−0.5ESΨ

= S0.5EΨ

S−0.5HS−0.5S0.5Ψ = S0.5ES−0.5S0.5Ψ

= ES0.5Ψ

HnewΨnew = EΨnew

(3.21)

where Hnew = S−0.5HS−0.5 and Ψnew = S0.5Ψ. Now, this new system of linear

equations is solved with the SLEPc eigenvalue package mentioned in the next section.

It can be observed from Eq.(3.21) that although the eigenvalues of the new system

remain the same, Ψnew, however, should be pre-multiplied by S−0.5 to get the true

wavefunction.

51

3.2 The SLEPc Eigenvalue Solver Package

Similar to the PETSc linear solver package described in Chapter 2, the Scalable

Library for Eigenvalue Problem Computations (SLEPc) is a software package for the

solution of large sparse eigenproblems [4]. A variety of problem classes such as the

linear eigenvalue problem, polynomial eigenvalue problem, nonlinear eigenvalue prob-

lem, etc., are supported by SLEPc. SLEPc is built on top of PETSc and is considered

as an extension of PETSc, providing the functionality for solution of eigenvalue prob-

lems.

There is a significant overlap between the routines used for solving an eigenvalue

problem and a linear system. For example, both systems require forming the A ma-

trix and, hence, the routines needed would be exactly the same. Since these routines

are already discussed in Chapter 2, this section discusses only the routines which

are exclusive to the SLEPc package. The implementation flow of a typical SLEPc

program is shown in Figure (3.3).

Similar to setting linear/nonlinear solver contexts in PETSc, one has to set eigen-

value solver context and describe the problem type, the eigenpairs to be computed.

This is achieved using the following routines described with the example of a Hermi-

tian eigenvalue problem type and calculating the smallest eigenpairs.

EPSCreate(PETSC COMM WORLD,eps,ierr)

EPSSetOperators(eps,ham,PETSC NULL MAT,ierr)

EPSSetProblemType(eps,EPS HEP,ierr)

EPSSetWhichEigenpairs(eps,EPS SMALLEST REAL,ierr)

After the problem type is set, one can specifiy the number of eigenvalues to be

computed using the following routine.

52

Start

Add SLEPc header files

Declare SLEPc variables

call SlepcInitialize()

Create and setup A matrix

corresponding to Aψ = λψ

eigenvalue problem

Fill A matrix

Create solver context

Create precon-

ditioner context

Solve the sys-

tem of equations

Check the solution

Destroy the created objects

call SlepcFinalize()

Stop

Figure 3.3: Flow of a Typical SLEPc Program

EPSSetDimensions(eps,nev,ncv,mpd,ierr)

where nev is the number of eigenvalues to be computed. The next step is to solve

the eigenvalue problem to get the eigenvalues and eigenvectors using the following

routine.

EPSSolve(eps,ierr)

One can check the reason for convergence of the SLEPc solver using the routine

mentioned below.

EPSConvergedReason(eps,reason,ierr)

53

As in the case of PETSc, one has to destroy all the objects created and the program

must end with a call to the SlepcFinalize() routine.

3.3 Results from the Schrödinger Solver

In this work, the SLEPc eigenvalue package was used to develop both 1D and

2D Schrödinger solvers. Both 1D and 2D Schrödinger solvers are designed in such

a way as to accept any arbitrary potential profile as input and evaluate the eigen

energies and wavefunctions for the system. For the case of 1D Schrödinger solver, a

front end graphical user interface is built using Rapid APPlication infrastrucTURE

(Rappture) toolkit [24] and the 1D Schrödinger solver is hosted as a tool on nanoHUB,

titled ”Bound States Calculation Lab” [25]. The tool accepts four different confining

potentials: square, parabolic, triangular and v-shaped. The results from the tool are

shown below.

D i s t a n c e (n m)

 2 0 0 2 0

M
a

g

S
q

r
d

W

a
v

e
f

u
n

(

a
r

b

u
n

i
t

)

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

D i s t a n c e (n m)

 2 0 0 2 0

E
n

e
r

g
y

(

e
V

)

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

Figure 3.4: Probability Density |ψ(x)|2 of the Third Eigenstate and the Eigen Energy

Levels for a Square Potential Profile.

The results for a square well potential profile with a depth of 0.5eV, well width of

54

10nm and electron effective mass of 0.067 are shown in Figure 3.4.

Figure 3.5 shows the results for a parabolic potential profile with oscillator energy

of 0.03eV and electron effective mass of 0.067. The energy levels are equidistant as

excepted for a parabolic potential profile.

D i s t a n c e (n m)

 4 0 2 0 0 2 0 4 0

M
a

g

W
a

v
e

f
u

n

S
q

r
d

(

a
r

b

u
n

i
t

)

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

D i s t a n c e (n m)

 2 0 0 2 0

E
n

e
r

g
y

(

e
V

)

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

Figure 3.5: Probability Density |ψ(x)|2 of the Third Eigenstate and the First Ten

Eigen Energy Levels for a Parabolic Potential Profile.

Figure 3.6 shows the results for a triangular potential profile with an electric field

of 106 V/m and electron effective mass of 0.067. The separation between the energy

levels can be seen to be decreasing for higher eigenstates as expected.

55

D i s t a n c e (n m)

0 5 0 1 0 0 1 5 0

M
a

g

W
a

v
e

f
u

n

S
q

r
d

(

a
r

b

u
n

i
t

)

0

0 . 1

0 . 2

D i s t a n c e (n m)

0 5 0 1 0 0 1 5 0

E
n

e
r

g
y

(

e
V

)

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

Figure 3.6: Probability Density |ψ(x)|2 of the Third Eigenstate and the First Ten

Eigen Energy Levels for a Triangular Potential Profile.

Figure 3.7 shows the results for a v-shaped potential profile with an electric field

of 106 V/m and electron effective mass of 0.067. The separation between the energy

levels can be seen to be decreasing for higher eigenstates as expected.

D i s t a n c e (n m)

 1 0 0 0 1 0 0

M
a

g

W
a

v
e

f
u

n

S
q

r
d

(

a
r

b

u
n

i
t

)

0

0 . 0 5

0 . 1

D i s t a n c e (n m)

 1 0 0 0 1 0 0

E
n

e
r

g
y

(

e
V

)

0

0 . 0 5

0 . 1

Figure 3.7: Probability Density |ψ(x)|2 of the Third Eigenstate and the First Ten

Eigen Energy Levels for a V-shaped Potential Profile.

The 1D Schrödinger solver is extended to 2D and a square well potential profile

shown in Figure 3.8 is simulated. The electron effective mass in the barrier is taken

56

as 0.24 and as 0.067 in the well and the well depth is taken as 0.5 eV . The length

and the width of the square well are 3 nm each, with an offset of 1 nm on all four

directions.

0
10

20
30

40
50

600
10

20
30

40
50

60

0

0.1

0.2

0.3

0.4

0.5

P
ot

en
ti

al
E

n
er

gy
(e

V
)

X-Position (Å) Y
-P

os
iti

on
(Å

)

P
ot

en
ti

al
E

n
er

gy
(e

V
)

Figure 3.8: Potential Well Used for the 2D Schrödinger Solver.

The results from the 2D Schrödinger solver are given in Figure 3.9 where |ψ(x, y)|2

of a few arbitrary eigen states are shown.

57

0
10

20
30

40
500

10

20

30

40

50

0
0.0005
0.001

0.0015
0.002

0.0025
0.003

0.0035
0.004

0.0045
|ψ

(x
,y

)|2
(a

rb
un

it
s)

X-Position (nm) Y-P
os

iti
on

(n
m

)

|ψ
(x
,y

)|2
(a

rb
un

it
s)

0 10 20 30 40 50

X-Position (nm)

0

10

20

30

40

50

Y
-P

o
si

ti
o
n

(n
m

)

0
10

20
30

40
500

10

20

30

40

50

0
0.0005
0.001

0.0015
0.002

0.0025
0.003

0.0035
0.004

0.0045

|ψ
(x
,y

)|2
(a

rb
un

it
s)

X-Position (nm) Y-P
os

iti
on

(n
m

)

|ψ
(x
,y

)|2
(a

rb
un

it
s)

0 10 20 30 40 50

X-Position (nm)

0

10

20

30

40

50

Y
-P

o
si

ti
o
n

(n
m

)

0
10

20
30

40
500

10

20

30

40

50

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007

|ψ
(x
,y

)|2
(a

rb
un

it
s)

X-Position (nm) Y-P
os

iti
on

(n
m

)

|ψ
(x
,y

)|2
(a

rb
un

it
s)

0 10 20 30 40 50

X-Position (nm)

0

10

20

30

40

50

Y
-P

o
si

ti
o
n

(n
m

)

Figure 3.9: Surface Plot and Heat Map of |ψ(x, y)|2 of First, Fourth and Seventh

Eigen States.

58

Chapter 4

THE SCHRÖDINGER-POISSON SOLVER

Having developed Schrödinger and Poisson equation solvers individually, the next and

final step is to couple the two solvers self-consistently. The conduction band profile

from the Poisson solver is given as an input to the Schrödinger solver which then

calculates the electron wavefunctions and energies. The wavefunctions are next used

to evaluate the electron densities at each mesh point. The calculated electron densities

are used back in the Poisson equation solver to calculate the updated conduction band

profile, and this process is repeated until convergence is achieved.

This chapter starts with the description of the calculation of the electron density in

a quasi-1D system quantum-mechanically. Next, the Jacobian linearization of the

Quantum Poisson equation is discussed. This is followed by a section discussing

the implementation flow of the Schrödinger-Poisson solver. At the end we show

representative simulation results for a GaN nanowire.

4.1 Electron Density in a Quasi 1D System

For the device structure shown in of Chapter 2, which is shown here again in

Figure 4.1 for completeness, the electrons are confined along the y direction due to

the triangular like confinement at the Al0.2Ga0.8N-GaN interface and the confinement

in the x direction is due to the negative bias applied to the gates on the surface of the

device. The electrons are, thus, free to move only in z direction, leading to a quasi

1D system.

59

GaN

Al0.2Ga0.8N

Gate Gate

100 nm 100 nm

87 nm

15
nm

20
0

nm

Figure 4.1: Device Structure Used for the Schrödinger-Poisson Solver.

For a 1D system, the density of states per unit volume is given by the following

equation.

g(E) =

√
2m∗

π~
1√

E − Emin
c

(4.1)

For a quasi 1D system, the spatial confinement in the x and y direction leads to the

formation of sub-bands in the conduction band. Eq.(4.1) is then modified as follows:

g(E) =

√
2m∗

π~
1√

E − Ep
c

H(E − Ep
c) (4.2)

where H is the Heaviside step function and Ei
c is the energy of the pth sub-band in

the conduction band. Using the Fermi-Dirac statistics, the electron density in the pth

sub-band can be calculated as,

np =

√
2m∗

π~

∫ ∞
Ep

c

1√
E − Ep

c

1

1 + e
E−EF
KbT

dE

=

√
2m∗KbT

π~

∫ ∞
0

ε
−1
2

1 + eε−ηp
dE

=

√
2m∗KbT

π~
F−1/2(ηp)

(4.3)

60

where ηp = EF−Ep
c

KbT
. The total electron density at a mesh point can be written as,

n(i, j) =
Max∑
p=1

np|ψp(i, j)|2 (4.4)

In the above equation, Max is a sub-band number chosen in a manner such that the

probability of finding the electron with energy greater than EMax
c can be taken to be

zero.

4.2 Jacobian Linearization of the Quantum Poisson Solver

The Poisson equation is discussed in Chapter 2 and is given by:

∇ · (ε∇V k+1) =
−q
εo

(
pk+1 − nk+1 +DOP

)
= f(V k+1) (4.5)

In the classical case, the electron density n is calculated either from the Boltzmann

approximation of the Fermi-Dirac statistics or by using Fermi-Dirac statistics directly.

For the case of Quantum Poisson solver, the electron density n is calculated as shown

in Section 4.1. Following a similar procedure to Chapter 2, Eq.(4.5) can be written

in terms of the update δ as

∇ · (ε∇δk+1) = f(V k+1)−∇ · (ε∇V k) (4.6)

Using the Taylor series expansion around V k, f(V k+1) can be approximated to first

order as,

f(V k+1) = f(V k) +
∂f(V k+1)

∂V k+1

∣∣∣∣
V k

(δk+1) (4.7)

Using Eq.(4.5), ∂f(V k+1)
∂V k+1

∣∣∣∣
V k

can be written as,

∂f(V k+1)

∂V k+1

∣∣∣∣
V k

= − q
εo

(
− pk

KBT
− ∂nk+1

∂V k+1

∣∣∣∣
V k

)
(4.8)

61

To evaluate Eq.(4.8), one has to calculate ∂nk+1

∂V k+1

∣∣∣∣
V k

. This can be rewritten as,

∂nk+1

∂V k+1

∣∣∣∣
V k

=

(
∂nk+1

∂ηk+1
p

) ∣∣∣∣
V k

(
∂ηk+1

p

∂V k+1

)∣∣∣∣
V k

(4.9)

To evaluate ∂nk+1

∂ηk+1
p

∣∣∣∣
V k

, one assumes that the wavefunction has no explicit dependence

on the potential V . This gives,

∂nk+1

∂ηk+1
p

∣∣∣∣
V k

=

√
2m∗KBT

π~

Max∑
p=1

∂F− 1
2
(ηk+1
p)

∂ηk+1
p

∣∣∣∣
V k

|ψk+1
m |2 (4.10)

Using the standard properties of Fermi-Dirac integrals, Eq.(4.10) can be rewritten as,

∂nk+1

∂ηk+1
p

∣∣∣∣
V k

=

√
2m∗KBT

π~

Max∑
p=1

Γ(1/2)

Γ(−1/2)
F− 3

2
(ηkp)|ψk+1

p |2 (4.11)

Hence, in order to calculate ∂nk+1

∂ηk+1
p

∣∣∣∣
V k

, one has to compute F− 3
2
(ηk+1
p). Note that

analytical approximations are not available for the evaluation of the Fermi-Dirac

integrals of order −3
2

. Hence, one needs to evaluate the integral numerically, but

this would add a significant computational overhead to the solver. This problem is

overcome by using standard definition of a derivative as shown below:

∂F− 1
2
(ηk+1
p)

∂ηk+1
p

∣∣∣∣
V k

≈
F− 1

2
(ηkp + h)− F− 1

2
(ηkp)

h
, (4.12)

where h is taken to be
ηip
100

. Thus, Eq.(4.10) can be rewritten as,

∂nk+1

∂ηk+1
p

∣∣∣∣
V k

=

√
2m∗KBT

π~

Max∑
p=1

F− 1
2
(ηkp + h)− F− 1

2
(ηkp)

h
|ψk+1
p |2 (4.13)

To compute the second term of Eq.(4.9), an assumption is made that the eigenenergies

of the (k + 1)th iteration follow the potential update δk+1 as,

Ek+1
p = Ek

p − δk+1. (4.14)

62

The above equation can be rewritten in terms of ηp as,

ηk+1
p = ηkp +

V k+1 − V k

KBT
(4.15)

Then,
∂ηk+1

p

∂V k+1

∣∣∣∣
V k

is given by

∂ηk+1
p

∂V k+1

∣∣∣∣
V k

=
1

KBT
(4.16)

Using Eqs. (4.9), (4.10) and (4.16), Eq.(4.8) reduces to,

∂f(V k+1)

∂V k+1

∣∣∣∣
V k

=
q

KbT
(pk + nkQ) (4.17)

where nkQ =
√

2m∗KbT
π~

∑Max
p=1

(
F− 1

2
(ηkp+h)−F− 1

2
(ηkp)

h

)
|ψkp |2. Substituting Eq.(4.17) into

Eq.(4.7), the differential equation to solve becomes:

∇ · (ε∇δk+1)− q

KbT

(
pk + nkQ

)
δk+1 = f(V k)−∇ · (ε∇V k) (4.18)

63

4.3 Implementation of the Schrödinger-Poisson Solver

To solve the differential equation given in Eq.(4.18), first a section of the simulation

space is identified as the Schrödinger domain. This is shown in Figure 4.2, where the

dotted region is the Schrödinger domain. The Schrödinger equation is solved for

GaN

Al0.2Ga0.8N

Gate Gate

100 nm 100 nm

87 nm
15

nm
20

0
nm

Figure 4.2: Simulation Space Indicating the Schrödinger Domain

the system in the highlighted domain and the wavefunctions generated are used to

evaluate the electron density in this domain. To evaluate the electron density, it is

evident from Eq.(4.13) that one has to evaluate Fermi-Dirac integral of order -1/2,

which is accomplished using standard analytical approximations [26]. The calculated

electron density is used back in the Poisson solver to generate updated conduction

band profiles. This process is repeated until convergence is achieved. The complete

implementation of the Schrödinger-Poisson solver is outlined in Figure 4.3.

64

Start

Form the Mesh

Initialize

potential using

charge neutrality

Calculate poisson co-

efficients and forcing

function using the

initialized potential

Solve Poisson

Potential Profiles

Solve the schrödinger equa-

tion using potential profile

Wavefunctions and Energies

Calculate nkQ(i, j)

Update central coefficient

and forcing function of

grid points in schrödinger

domain. For all other

points, use potential

from previous iteration

Solve Poisson

Converged?

Stop

no

yes

Figure 4.3: Flow Chart of the Schrödinger-Poisson Solver

4.4 Results from the Schrödinger-Poisson Solver

In this section, the results from the Schrödinger-Poisson solver are presented for

the device structure shown in Figure 4.2. The self-consistent potential profile, electron

concentration and the eigen wavefunctions in the device are shown, along with the

convergence properties of the solver.

65

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 50 100 150 200 250

C
on

d
u

ct
io

n
B

an
d

E
n

er
gy

(e
V

)

Y-Position (nm)

Poisson
Schroedinger-Poisson

Figure 4.4: Comparison of Potential Profiles Between Self-Consistent Schrödinger-

Poisson Solver and Standalone Poisson Solver Along the Y-direction. for the Structure

Shown In Figure (4.2).

66

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250

C
on

d
u

ct
io

n
B

an
d

E
n

er
gy

(e
V

)

Y-Position (nm)

Poisson
Schroedinger-Poisson

Figure 4.5: Comparison of Conduction Band Profiles Between Self-Consistent

Schrödinger-Poisson Solver and Standalone Poisson Solver Along the Y-direction.

67

0
20

40
60

80
100

120
140

1600
5

10
15

20
25

30
35

40

0

0.002

0.004

0.006

0.008

0.01

0.012

|ψ
(x
,y

)|2

X-Position (nm)

Y-P
os

iti
on

(n
m

)

|ψ
(x
,y

)|2

Figure 4.6: Probability Density |ψ(x, y)|2 for the First Energy Eigenstate.

0
20

40
60

80
100

120
140

1600
5

10
15

20
25

30
35

40

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

|ψ
(x
,y

)|2

X-Position (nm)

Y-P
os

iti
on

(n
m

)

|ψ
(x
,y

)|2

Figure 4.7: Probability Density |ψ(x, y)|2 for the Fourth Energy Eigenstate.

68

60
80

100
120

140
160

180
200

2205
10

15
20

25
30

35
40

45

0

2e+24

4e+24

6e+24

8e+24

1e+25

1.2e+25

1.4e+25

1.6e+25

E
le

ct
ro

n
C

on
ce

nt
ra

ti
on

(m
−
3)

X-Position (nm)

Y-P
os

iti
on

(n
m

)

E
le

ct
ro

n
C

on
ce

nt
ra

ti
on

(m
−
3)

Figure 4.8: Self-Consistent Quantum Mechanical Electron Density In the Nanowire

Region.

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

1 2 3 4 5 6 7 8 9 10

||n
or
m
|| ∞

Iteration Number

Figure 4.9: Convergence of the Schrödinger-Poisson Solver.

69

Chapter 5

CONCLUSIONS AND FUTURE WORKS

As the search for robust and efficient algorithms to numerically solve the differential

equation at hand continues, software tools such as PETSc and SLEPc offer the user

with a host of efficiently programmed, ready-to-use numerical methods which can be

applied to all facets of computational science. This drastically reduces the amount of

time spent on programming and debugging numerical methods, simultaneously pro-

viding enormous flexibility to the user in terms of switching between or combining

these methods.

In this work, this opportunity is exploited by using PETSc and SLEPc to develop

a two dimensional self-consistent Schrödinger-Poisson solver. Although the results

presented in this work are focussed on GaN based heterostructure systems, the

Schrödinger-Poisson solver developed here is equally applicable to other semicon-

ductor devices. The flowcharts of the PETSc and SLEPc solvers presented in this

work can serve as a blueprint if one decides to incorporate these software tools into

their research.

It is imperative to remind, however, that the functionality of PETSc and SLEPc pre-

sented in this work is not exhaustive. Both PETSc and SLPEc offer many routines for

the implementation of large-scale application codes on parallel computers, intensive

error checking and new functionality is constantly added to the existing base.

From the view point of the Schrödinger-Poisson solver developed as a part of this

work, parabolic dispersion is assumed at the Γ point. To accurately use the solver

for other materials, one has to couple a band structure program, such as the Tight

Binding model or the Empirical Pseudopotential model, with the Schrödinger-Poisson

70

solver and solve the system self-consistently.

71

REFERENCES

[1] Teja Singh, Sundar Rangarajan, Deepesh John, Carson Henrion, Shane
Southard, Hugh McIntyre, Amy Novak, Stephen Kosonocky, Ravi Jotwani, Alex
Schaefer, et al. 3.2 zen: A next-generation high-performance× 86 core. In
2017 IEEE International Solid-State Circuits Conference (ISSCC), pages 52–53.
IEEE, 2017.

[2] Eyal Fayneh, Marcelo Yuffe, Ernest Knoll, Michael Zelikson, Muhammad
Abozaed, Yair Talker, Ziv Shmuely, and Saher Abu Rahme. 4.1 14nm 6th-
generation core processor soc with low power consumption and improved perfor-
mance. In 2016 IEEE International Solid-State Circuits Conference (ISSCC),
pages 72–73. IEEE, 2016.

[3] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune,
Kris Buschelman, Lisandro Dalcin, Alp Dener, Victor Eijkhout, William D.
Gropp, Dmitry Karpeyev, Dinesh Kaushik, Matthew G. Knepley, Dave A. May,
Lois Curfman McInnes, Richard Tran Mills, Todd Munson, Karl Rupp, Patrick
Sanan, Barry F. Smith, Stefano Zampini, Hong Zhang, and Hong Zhang. PETSc
users manual. Technical Report ANL-95/11 - Revision 3.14, Argonne National
Laboratory, 2020.

[4] Jose E Roman, Carmen Campos, Eloy Romero, and Andrés Tomás. Slepc users
manual. D. Sistemes Informatics i Computació Universitat Politecnica de Va-
lencia, Valencia, Spain, Report No. DSIC-II/24/02, 2015.

[5] Manuel Valera, Mary P. Thomas, Mariangel Garcia, and Jose E. Castillo. Parallel
implementation of a PETSc-Based framework for the general curvilinear coastal
ocean model. Journal of Marine Science and Engineering, 7(6), 2019.

[6] B. H. Dennis, R. C. Eberhart, G. S. Dulikravich, and S.W. Radons. Finite-
element simulation of cooling of realistic 3-d human head and neck. J Biomech
Eng, 125(6):832–840, 2003.

[7] Belkis Erzincanli and Mehmet Sahin. The numerical simulation of the wing kine-
matics effects on near wake topology and aerodynamic performance in hovering
drosophila flight. Computers & Fluids, 122:90–110, 2015.

[8] IP Smorchkova, L Chen, T Mates, L Shen, S Heikman, B Moran, S Keller,
SP DenBaars, JS Speck, and UK Mishra. Aln/gan and (al, ga) n/aln/gan two-
dimensional electron gas structures grown by plasma-assisted molecular-beam
epitaxy. Journal of Applied Physics, 90(10):5196–5201, 2001.

[9] T Paul Chow and Ritu Tyagi. Wide bandgap compound semiconductors for su-
perior high-voltage power devices. In [1993] Proceedings of the 5th International
Symposium on Power Semiconductor Devices and ICs, pages 84–88. IEEE, 1993.

[10] Yi-Feng Wu, David Kapolnek, James P Ibbetson, Primit Parikh, Bernd P Keller,
and Umesh K Mishra. Very-high power density algan/gan hemts. IEEE Trans-
actions on Electron Devices, 48(3):586–590, 2001.

72

[11] O Ambacher, J Smart, JR Shealy, NG Weimann, K Chu, M Murphy, WJ Schaff,
LF Eastman, R Dimitrov, L Wittmer, et al. Two-dimensional electron gases
induced by spontaneous and piezoelectric polarization charges in n-and ga-face
algan/gan heterostructures. Journal of applied physics, 85(6):3222–3233, 1999.

[12] Bin Lu, Elison Matioli, and Tomas Palacios. Tri-gate normally-off gan power
misfet. IEEE Electron Device Letters, 33(3):360–362, 2012.

[13] Muhammad Fahlesa Fatahilah, Klaas Strempel, Feng Yu, Sindhuri Vodapally,
Andreas Waag, and Hutomo Suryo Wasisto. 3d gan nanoarchitecture for field-
effect transistors. Micro and Nano Engineering, 3:59–81, 2019.

[14] John Frederick Nye et al. Physical properties of crystals: their representation by
tensors and matrices. Oxford University Press, 1985.

[15] Oliver Ambacher. Growth and applications of group iii-nitrides. Journal of
physics D: Applied physics, 31(20):2653, 1998.

[16] William Shockley. Electrons and holes in semiconductors: with applications to
transistor electronics. 1953.

[17] AH Marshak. On the inappropriate use of the intrinsic level as a measure of the
electrostatic potential in semiconductor devices. IEEE Electron Device Letters,
6(3):128–129, 1985.

[18] Alan H Marshak. Transport equations for highly doped devices and heterostruc-
tures. Solid-State Electronics, 30(11):1089–1093, 1987.

[19] MS Lundstrom, RJ Schwartz, and JL Gray. Transport equations for the analysis
of heavily doped semiconductor devices. Solid-State Electronics, 24(3):195–202,
1981.

[20] Mark S Lundstrom and Robert J Schuelke. Numerical analysis of heterostructure
semiconductor devices. IEEE Transactions on Electron Devices, 30(9):1151–
1159, 1983.

[21] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[22] ATLAS User Manual ATLAS. Silvaco international. Santa Clara, CA, 2015.

[23] Mykhailo Povolotskyi. Theoretical Study of Electronic and Optical Properties
of Low-Dimensional Semiconductor Nanostructures. PhD thesis, Università di
Roma ”Tor Vergata”, 2004.

[24] M McLennan. The rappture toolkit. Article (CrossRef Link), 2004.

[25] Pranay Kumar Reddy Baikadi, Michael Povolotskyi, Viswanathan Naveen Ku-
mar Nolastname, Dragica Vasileska, Xufeng Wang, and Gerhard Klimeck. Bound
states calculation lab, April 2020.

[26] X Aymerich-Humet, F Serra-Mestres, and J Millan. A generalized approximation
of the fermi–dirac integrals. Journal of applied physics, 54(5):2850–2851, 1983.

73

