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ABSTRACT

Traditionally, allostery is perceived as the response of a catalytic pocket to per-

turbations induced by binding at another distal site through the interaction network

in a protein, usually associated with a conformational change responsible for func-

tional regulation. Here, I utilize dynamics-based metrics, Dynamic Flexibility Index

and Dynamic Coupling Index to provide insight into how 3D network of interactions

wire communications within a protein and give rise to the long-range dynamic cou-

pling, thus regulating key allosteric interactions. Furthermore, I investigate its role

in modulating protein function through mutations in evolution. I use Thioredoxin

and β-lactamase enzymes as model systems, and show that nature exploits “hinge-

shift” mechanism, where the loss in rigidity of certain residue positions of a protein

is compensated by reduced flexibility of other positions, for functional evolution. I

also developed a novel approach based on this principle to computationally engineer

new mutants of the promiscuous ancestral β-lactamase (i.e., degrading both penicillin

and cephatoxime) to exhibit specificity only towards penicillin with a better catalytic

efficiency through population shift in its native ensemble.

I investigate how allosteric interactions in a protein can regulate protein interac-

tions in a cell, particularly focusing on E. coli ribosome. I describe how mutations in

a ribosome can allosterically change its associating with magnesium ions, which was

further shown by my collaborators to distally impact the number of biologically ac-

tive Adenosine Triphosphate molecules in a cell, thereby, impacting cell growth. This

allosteric modulation via magnesium ion concentrations is coined, “ionic allostery”. I

also describe, the role played by allosteric interactions to regulate information among

proteins using a simplistic toy model of an allosteric enzyme. It shows how allostery

can provide a mechanism to efficiently transmit information in a signaling pathway

in a cell while up/down regulating an enzyme’s activity.
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The results discussed here suggest a deeper embedding of the role of allosteric

interactions in a protein’s function at cellular level. Therefore, bridging the molecular

impact of allosteric regulation with its role in communication in cellular signaling can

provide further mechanistic insights of cellular function and disease development, and

allow design of novel drugs regulating cellular functions.
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Chapter 1

INTRODUCTION

Proteins are biological machines employed as workhorses of a cell. These were first

described by the Dutch chemist Gerardus Johannes Mulder and the term Protein was

coined by the Swedish chemist Jöns Jacob Berzelius in 1838 (Hartley, 1951; Leyde.,

1838). The term ‘protein’ was derived from the Greek word proteios which means

‘the first of rank’. These are the single most important class of macro-molecules

in living organisms which perform nearly all the functions necessary for the organ-

ism’s survival. This includes regulating and facilitating cell growth (Sablowski and

Carnier Dornelas, 2014; Nijhout, 2003), catalyzing metabolic reactions in the cell

(Zhao et al., 2010), transport through cell membrane (Alexander et al., 2011), pro-

viding stimuli to the ambient environment (Hernández-Garćıa and Rosenbaum, 2014;

Peña et al., 2005; Chockalingam et al., 2007), aiding in cell division (Kim et al., 2016)

or apoptosis (Stewart, 1994; Reed, 2000) and many more. In order to perform such

a large variety of tasks, each cell in every living organism consists of a large number

of various different types of proteins. For example, the E. coli bacterium consists of

approximately 4300 protein coding genes, totaling up to 3 × 106 individual protein

molecules in a cell (Milo, 2013). Apart from these features, proteins are also one of

the very few biological machines which possess the capability to evolve (through a

genetic drift (Lynch, 2010)) and regulate their biological function with time (Soskine

and Tawfik, 2010). This unique property helps the organism adapt and survive the

changes in the environmental conditions like varying temperatures, pH, availability

of resources, etc. Clearly, given their importance and ubiquitous presence, proteins

are becoming increasingly favored targets for discovering new and novel drugs (SAL,
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2010), and also for disease intervention (PEN, 2009). As a first step towards achieving

these goals, it is very important to gain mechanistic insight into the functions of the

proteins.

1.1 Interactions in Proteins

Each protein is composed of repeating units of different amino acids. Amino

acids are simple organic compounds containing a carboxyl and an amino group (see

Figure 1.1A). In addition, each amino acid also contains a side chain giving it a

unique property. About 500 different naturally occurring amino acids are known to

us, though only 20 more commonly appear in the genetic code (Wagner and Musso,

1983) for proteins. These can be classified based on the location of the side chain

group, or on the physical properties of the side chain. For the 20 naturally occurring

amino acids found in the genetic code, these are classified depending on whether

the side chain is charged or uncharged and also based on the hydrophobic nature of

the side chain (Vella, 1998). In a protein chain, an amino acid is connected to its

neighboring amino acids via a planar (C-N) peptide bond between the carbon of one

carboxyl group and the nitrogen of neighboring amide (see Figure 1.1B).

The sequence specific combination of amino-acids in this polypeptide chain leads

to local and non-local interactions between amino acids give that the protein a unique

3D structure. This brings us to a “sequence–structure–function” paradigm according

to which, the unique 3D structure of a protein is encoded within the 1D primary

sequence of the polypeptide chain. The resultant structure of the protein facilitates

its function which might involve recognition of a ligand for catalysis and/or binding

of the protein with another protein, etc. This sequence-structure-function paradigm

led to a significant push in development of experimental and theoretical techniques

which helped categorize the interactions between amino acids, imaging structures,
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and more (Halabi et al., 2009; Sethi et al., 2005; Socolich et al., 2005; Moult, 2008;

Neuwald, 2007; Harms and Thornton, 2013a; Bergg̊ard et al., 2007).

A)

B)

Figure 1.1: Peptide bonds connecting amino acids (i − 1,i and i + 1) in a protein
chain. It is a bond between the carbon of one carboxyl group and the nitrogen of
the neighboring amide (A). The peptide bond is a planar bond such that the bonds
Cα
i−1−Ci−1, Ci−1−Ni and Ni−Cα

i are co-planar. Therefore, atoms Cα
i−1, Ci−1, Ni and

Cα
i are all in one single plane such that the dotted line connecting the neighboring

Cα atoms lies on the plane (B). (Adapted from (Urbanc, 2017))

However, with advances in structural studies and other experimental techniques,

many phenomena have been observed which cannot be explained by the sequence-

structure-function paradigm. For example, multiple protein families exist which have

widely varying sequence and function but a highly conserved structure. Disease caus-

ing mutations is another such example where mutations (i.e., the substitutions of

an amino acid with another, or deletion/insertion in the sequence) have shown to

conserve the structure but deteriorate or alter the function of the protein. CATH

(Knudsen and Wiuf, 2010) and SCOP (Murzin et al., 1995) are two such datasets

which describe a series of secondary and tertiary structures which are commonly

found across a large variety of proteins found in the protein data bank (Berman

et al., 2000). These datasets show that proteins with very little sequence similarity
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and diverging functions can adopt a very similar fold due to the spatial constraints

enforced by certain type of amino acid combinations in the backbone. Osadchy and

Kolodny (2011) also describes the relative diversity in the functional space and the

structural space of proteins (e.g., about 1200 folds are categorized in SCOP dataset).

They focus their analysis on the structures and functions for the proteins available

in the protein data bank. Their study describes how proteins closer to each other in

their 3D structure can be very divergent in sequences as well as function. In addi-

tion, a lack of unique 3D structure can be a strategy a protein can exploit in order to

function. One such class of proteins is intrinsically disordered proteins (IDP). These

proteins do not exhibit a fixed or an ordered 3D structure. The disorder in these can

range from being completely unstructured or partially structured. However, despite

this, these perform a variety of functions critical for organisms survival, e.g., partic-

ipating in cellular signaling networks, aiding as flexible linkers between interacting

domains, etc. (Oldfield and Dunker, 2014; Wright and Dyson, 2014).

These observations suggests that beyond the study of structure and sequence,

another major underlying factor which plays a key role in describing the mechanism

of a protein’s function is an ensemble of conformation within the 3D network of

interactions. These interactions range from direct interactions (i.e., between a pair of

atoms) like covalent bonds, electrostatic interactions, hydrogen bonds, van der waal

forces, etc. to indirect interactions which are cascaded over much larger distances via a

chain of residues between two amino acids which are not in each other’s coordination

shell (i.e., their distance is typically much greater than 7Å). Perturbations in the

structure, induced by factors such as binding of a ligand, mutations, etc. which

utilize such distal indirect interactions to alter the function of the protein are called

allosteric interactions.
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1.2 Allosteric Interactions

The concept of allostery was first introduced in 1961 in a summary article for

the Cold Spring Harbor Symposium on Cellular Regulatory Mechanisms by Jacques

Monod and Francois Jacob (Monod and Jacob, 1961) as a phenomenon to explain the

anomalous binding behaviour observed in the inhibition of the enzyme L-threonine

deaminase (Changeux, 1961). Although the term was first introduced in 1961, the

phenomenon was first foreshadowed about 25 years earlier (in 1935) by Pauling who

proposed a long distance intramolecular control in hemoglobin to explain the positive

cooperativity observed in the binding of oxygen molecules (Pauling, 1935). Monod

was so much overwhelmed by the ubiquitous and rousing implications of allosteric

interactions in proteins that he called it the “The second secret of Life” (Ullmann,

2011), the first being the double helical structure of the DNA.

Clearly, the study of allosteric interactions is the key factor in order to under-

stand protein functions. Several models have been proposed which provide insights

into the kinetics of allostery and resulting cooperative binding. One of the most

widely accepted models is the Monod-Wyman-Changeux model (MWC model or the

Concerted model) (Monod et al., 1965).

The MWC model proposed in 1965, was inspired by the binding behaviour of oxy-

gen with the hemoglobin and the role played by haem-haem interactions in it. In the

study, Monod et al. (1965) describe allostery as– “. . . indirect interactions between

distinct binding sites (allosteric effects) . . . these interactions are mediated by some

kind of molecular transition (allosteric transition) which is induced or stabilized by

the protein when it binds an allosteric ligand.”. The model postulates that– allosteric

interactions are present in symmetric oligomeric proteins, and the allosteric effect is

induced by binding of a ligand to one of the subunit (a protomer) that leads to a
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change in its conformation. This change has a cascading effect which trickles down

to the whole oligomer in order to preserve the symmetry between subunits.

They described a model of an allosteric oligomeric protein which can exist in two

states R and T (see Figure 1.2). These two states can differ in their bond networks

and hence have different energies. The two states in their unbound form exist in an

equilibrium where the equilibrium constant depends on the energy differences between

the two states. In addition, each subunit in the oligomer is interacting with every

other subunit such that its conformation is constrained by its association with the

other subunits. This implies that each subunit in the state R or T of the oligomer

is restricted to share a common conformation. Therefore, if one of the protomer

subunits undergoes a conformation change, it forces the rest of the subunits to follow

the change in their conformation such that the symmetry of the oligomer is conserved.

Furthermore, the model also specifies that the binding of a ligand to a protomer is

stereo specific, i.e., the binding affinity depends whether the oligomer is in state R or

T. However, the affinity for the ligand to bind with a protomer, given the oligomeric

state, does not depend on how many ligands are already bound to the oligomer. As a

result, when the oligomer undergoes a transition from one state to another, it changes

the the affinity of all the protomeric subunits towards the corresponding ligand. This

model is schematically represented for an enzyme with two protomers in Figure 1.2.

Monod et al. (1965) also generalized the model to allow the study of cooperativity in

homotropic (i.e., binding of the oligomeric protein with the same ligand) as well as

heterotropic (i.e., when the oligomeric protein binds with different types of ligands)

effects of ligand binding.

Through the model, Monod et al. (1965) were able to describe the binding be-

haviour of several oligomeric systems like Deoxythymidine kinase from E. coli, dCMP

deaminaae from ass spleen, etc. which displayed cooperativity. However, this model
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KRT

KR+ S

KR
+ S

KT+ S

KT+ S

R T

Figure 1.2: A schematic diagram of homotropic allosteric interactions in a dimeric
protein following MWC model. According to the model, the enzyme can exist in two
states R and T with an equilibrium constant of KRT between them. The equilibrium
constant for binding of ligand molecule (S) to the enzyme depends on whether it is
in state R (KR) or state T (KT ). Once the ligand has attached itself to any of the
binding sites on the enzyme, the state of the enzyme is locked. Afterwards, subsequent
binding events between the enzyme and the ligand have the same equilibrium constant
depending on which state the enzyme is locked in.

suffers from a major disadvantage due to its historic inspiration from the allostery in

the symmetric hemoglobin. The assumption of the model that ligands show similar

binding affinities with each of the protomeric subunits in the oligomer does not allow

for the model to exhibit negative cooperativity as shown by Kister et al. (1987). How-

ever, a modified version of the MWC model was also proposed (Kister et al., 1987)

which accounts for the change in the binding affinities of the ligand to bind with a

subunit depending on how many bound subunits exist in the oligomer. This allows the

intra-molecular interactions between subunits to be more efficiently included in the

model and using such modifications, MWC model can be tinkered to show negative

cooperativity.

Another well recognized model for allostery is the Koshland-Némethy-Filmer model

(KNF model or the Sequential model) (Koshland et al., 1966). This model was in-

spired from an earlier work of Pauling (Pauling, 1935) (the model is also known as

Pauling-Koshland model). As opposed to the symmetry restrictions posed by the
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MWC model, namely the interlocking of each protomeric subunit into a common

conformation, here each subunit is free to change its conformation independently

(between R and T, see Figure 1.3). However, similar to the previous model, the bind-

ing affinity of the ligand is stereo specific, i.e., it depends on whether the subunit is

in state R or T. Further on, the interactions between the subunits in the oligomer

are geometry dependent, i.e., whether the oligomer has its subunits in a tetrameric

or square or some other arrangement. As a result, the equilibrium constant for tran-

sition of a subunit from R to T or vice versa depends on the relative orientation of

the subunit and also on whether other neighboring subunits are already creating a

complex with the ligand or not (Figure 1.3).

K1+ S + S
K2

Figure 1.3: A schematic diagram of homotropic allosteric interactions in a dimeric
protein following KNF model. In this model, the enzyme has two subunits which
can exist in two states, R and T. However, the transition of the catalytic site in one
subunit is independent of another. Also, the transition from R to T is initiated by
binding of the ligand (S). The equilibrium constant for the first ligand to bind with
the enzyme (K1) is independent of the subunit to which it binds. For all subsequent
binding events, the equilibrium constant depends on how many ligands are bound to
the enzyme and also the relative orientation of the bound and unbound subunits.

Through this model, Koshland et al. (1966) were not only able to reproduce the

cooperative behaviour shown by the MWC model, but were also able to exhibit neg-

ative cooperativity. In addition, they also brought forward an important result that

several different arrangements of the oligomeric system can fit the same experimental

data with a reasonable accuracy for the right choice of parameters (binding affinities

of the ligand and the strength of interaction between the subunits).

This brings forward an interesting outlook towards these models. Both the MWC

and KNF models are phenomenological in nature. These do not provide any sig-

nificant mechanistic insight into how the structure facilitates allosteric interaction
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between subunits (with the exception of KNF model which does show a dependence

of cooperativity on the relative arrangement of subunits around each other, but with-

out commenting on the nature of those interactions). This issue can be partially

resolved by the incorporation of statistical physics into the picture. Several stud-

ies (Cooper and Dryden, 1984; Phillips et al., 2008; Komorowski and Tawfik, 2019;

McLeish et al., 2013; Wodak et al., 2019a) have been performed where allosteric in-

teractions between two distant sites (this time not restricted to only oligomers) are

given a thermodynamic and statistical treatment while not restricting themselves to

a kinetic perspective.

This can be understood from a very simple toy model (adapted from Phillips et al.

(2008) and Marzen et al. (2013)). Let us consider an enzyme E (not necessarily an

oligomer). This enzyme can exist in two different states R and T such that this

enzyme can only function while being in state R (this function can be binding with

another ligand, etc.). These states differ from each other in their free energy by ε.

As a result, the probability of finding the enzyme in state R (PR) can be given as:

PR =
1

1 + e−βε
(1.1)

Now, let us consider interaction of this enzyme with a ligand which acts as an

allosteric regulator of the enzyme. The binding of the ligand alters (allosterically)

the free energies of the two states (R and T) differently, such that, the new free energy

of state R is −lR and that of state T is ε− lT . Due to this change, the new modified

probability of finding the enzyme in state R (P ∗R) can be given as:

P ∗R =
eβlR

eβlR + e−β(ε−lT )
(1.2)

Dividing Eq. 1.2 with Eq. 1.1 describes the shift in the probability (hence, population)
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of the enzyme’s state R as follows:

P ∗R
PR

=
eβlR + e−β(ε−lR)

eβlR + e−β(ε−lT )
(1.3)

P ∗R
PR

=
1 + e−βε

1 + e−β(ε−∆l)
(1.4)

where, ∆l = lT − lR. According to this, when lR 6= lT , then the population of state R

is shifted and this impacts the function of the enzyme (because as assumed earlier,

only state R is functional). The impact on the function depends on the direction

of the shift (i.e., whether it increases or decreases the population of state R). In

this case, we observe an allosteric effect. On the other hand, when lR = lT , then

the net population shift is cancelled out (from Eq. 1.4) and no allosteric effect is

observed. Several different versions of this model have been proposed and used with

varying degrees of success (Marzen et al., 2013; Porter et al., 2020). This approach

has a benefit of providing a deeper mechanistic insight into the origin of allostery

by describing how to link the degree of allosteric effect explicitly with the energetic

differences created due to the binding of the allosteric regulator ligand as shown by

Eq. 1.4.

Approaching the problem of allostery with the tools borrowed from statistical

physics allows us to analyze the problem from another perspective as shown by (Cooper

and Dryden, 1984). Cooper and Dryden (1984) also gave an allosteric enzyme a sta-

tistical mechanics treatment by focusing on the changes induced by ligand binding

on the ensemble describing the enzyme. They showed that the net free energy dif-

ference upon multiple ligand bindings in an allosteric enzyme is a function of the

partition function which describes the ensemble of states accessible to the enzyme

after binding with subsequent ligands. The partition function of the enzyme can be

further decomposed into its different constituents– vibrational and configurational

components. For example, for an unbound enzyme E (with a partition function QE),
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free ligand L (with a partition function QL) creating a bound complex EL (with a

partition function QEL, the change in free energy can be expressed as:

∆G = ∆ε− kT ln
QEQL

QEL

(1.5)

where, ∆ε is the difference in the ground state energy upon binding. Here, the

partition function contains the contribution of vibrational, conformational, rotational

and other forms of energy stored in the molecule. Therefore, if binding of ligand L

has an impact on any of the factors contributing towards the partition function of the

enzyme E, then: QEL 6= QE.QL, and binding will alter the ensemble describing the

enzyme. This implies that allosteric effects can be induced not only by the changes in

the conformational ensemble of the enzyme (as discussed in MWC or KNF model),

but also by changes in the vibrational ensemble. This includes subtle changes in the

normal modes describing the motion of the enzyme. These correspond to changes in

the thermal fluctuations about the equilibrium position of atoms in the enzyme which

are typically not easily captured through crystallographic experiments. However,

these models still provide only an incomplete picture of the system. For example, these

typically assume a finite number of states for the enzyme. This biases the calculations

of rate constants for substrate binding and catalysis. For accurate calculations of rate

kinetics, an intimate knowledge of transition pathways is primarily important which

is very hard to obtain either via computational analysis or by experiments, though

significant progress has been made in this direction (Doron et al., 2014; Wigner, 1937;

Hänggi et al., 1990; Eyring, 1935; Truhlar et al., 1983; Wang et al., 2016).

Therefore, in order to explore a mechanistic picture of allostery, a deeper insight

into the network of interactions in a protein, which includes a way to quantify their

strength is needed. This also allow us to discuss the implications and the role of

allostery in a more general way which is not restricted to only binding induced changes
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but also highlight how these long distance indirect interactions impact the dynamics

of a protein and its function. Here we will be focusing on some of these implications

of allosteric interactions described below.

1.3 The Role of Allosteric Interactions

In the thesis we begin by studying the role played by allosteric interactions in pro-

tein evolution. Protein evolution is another example of a phenomenon, where a vio-

lation of “sequence-structure-function” paradigm is observed. Life is believed to have

evolved on earth over a period of around 4 billion years. Several theories suggest that

cells with all its constituents like membranes, proteins, etc. have evolved from a pri-

mordial soup of organic molecules of carbon, nitrogen, hydrogen and oxygen (Fuchs,

2011). The steps taken by nature to evolve life in its current form has been an open

problem captivating the interests of biologists, chemists and physicists alike for cen-

turies (Schrödinger, 1944). This branch has been contributed significantly by progress

in information theory and more accurate sequencing techniques (Agozzino and Dill,

2018; Copp et al., 2019; Finnigan et al., 2012; Ingles-Prieto et al., 2013; Risso and

Sanchez-Ruiz, 2017; Wang et al., 2019). With advances in computational and mathe-

matical techniques, attempts have been made to estimate the amino acid sequences of

the ancestral counterparts of proteins (Risso et al., 2013; Trudeau et al., 2016; Risso

et al., 2014). These ancestral sequences are then resurrected in vitro where their

functions and physical properties can be evaluated. From such studies, it has been

observed that, proteins have evolved through amino-acid substitutions (in some case

more than 50% positions are substituted (Copp et al., 2019; Wang et al., 2019; Risso

et al., 2015)) to develop a new function or modify their activity while conserving their

fold. This clearly is in contrast to the typical sequence-structure-function paradigm.

Here, we study an alternate dynamics-function paradigm where, as opposed to con-
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centrating on a static structure, we focus on the ensemble of structures available to

the protein in its native state. By analyzing the equilibrium dynamics of a protein we

aim to elucidate the relationship between a protein and its function/activity. These

dynamics incorporate the effect of the previously discussed direct as well as indi-

rect interactions between amino acids as dictated by the bio-chemistry of the type of

amino acids. For this, we use molecular dynamics simulations to sample the protein

dynamics (through covariance in fluctuations between different residues). From the

covariance obtained, we use in-house developed tools, namely Dynamic Flexibility

Index (DFI) and Dynamic Coupling Index (DCI) to quantify the residue flexibility

and the strength of pairwise residue coupling in proteins respectively. The details of

the tools used here are described in chapter 2.

Using these tools, in chapter 3, we first focus on the role played by native state

dynamics and allosteric interactions in the evolution of Thioredoxin proteins (Modi

et al., 2018). For the analysis we used the molecular dynamics simulation trajectories

for the reconstructed ancestral and extant Thioredoxin proteins from bacterial, eu-

karyota and archea branches in the phylogeny. These molecular dynamic simulations

were performed by our collaborators while we used this data to obtain the dynamics

and thus flexibility profiles of each protein. The results obtained showed overwhelm-

ing evidence of how substitutions during evolution have modified the flexibility profile

of the proteins and also how dynamic coupling of each residue with the catalytic site

has evolved. It further describes the general mechanism used by nature to fine tune

the function by a hinge-shift mechanism, where enhancement in the flexibility of a

rigid part in the protein is compensated by a loss in the flexibility of another region

in the protein.

Afterwards, in chapter 4, we direct our attention to analyze how the dynamics and

allosteric interactions between residues impact the evolution of modern proteins. For

13



this, we studied the emergence of antibiotic resistance in extant TEM-1 β-lactamase.

β-lactamases are the bacteria’s defense to β-lactam antibiotics. They confer resis-

tance to penicillin and, third generation antibiotics, cephalosporins. We used the

data compiled by Salverda et al. (2010) which describes antibiotic resistant variants

of TEM-1 β-lactamase from clinical and laboratory isolates. First, a majority of

the mutations in these variants are located at amino acid positions distal from the

catalytic site. Second, through molecular dynamic simulations of these variants, we

perform the DFI analysis, and observed that these distal substitutions particularly

alter the dynamics of the the catalytic site. Furthermore, using the data from ex-

haustive mutagenesis experiments on TEM-1 β-lactamase performed by Stiffler et al.

(2015), we also attempted to decipher how the flexibility and the allosteric coupling of

a residue position with the catalytic sites can pre-determine its evolvability towards

emergence of antibiotic resistance.

With the knowledge gained from the last two studies about the general princi-

ples involved in the emergence of a new function through mutations in evolution,

we designed a dynamics-based computational protocol to engineer mutations in an

ancestral enzyme such that it mimics the flexibility profile (and hence, the function)

of a target enzyme. We use this computational approach in chapter 5 to propose mu-

tations in the sequence of ancestral GNCA β-lactamase to alter its function from a

promiscuous enzyme with moderate degrading activity towards cefotaxime and peni-

cillin to a penicillin specific enzyme, catalyzing penicillin with a much higher activity,

while showing a very low activity towards cefotaxime. Our computational approach

was further biophysically characterized by our collaborators in the study.

Motivated by our understanding of the role played by the generalized view of

allostery in protein evolution (or emergence of a new function), we turned our atten-

tion to study the implications of allostery in a protein at cellular level. Proteins in a
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cell do not function in isolation. Typically, these are cogs in a much more elaborate

machinery where communication between different proteins in a cell is established

indirectly, either via ions (or a common substrate shared by several proteins) or via

the product molecules generated by one which is used by the other.

In chapter 6, we study the first mechanism of allostery at a cellular level by analyz-

ing the dynamics of E. coli ribosome. Ribosomes require a large amount of magnesium

ions for the stability and functionality to neutralize the electrostatic repulsion and to

spatially coordinate rRNA functional groups. We focused on the impact of a muta-

tion in the L22 protein in E. coli ribosome (called L22* variant) on the association of

magnesium ions with the ribosome. Other studies on the impact of mutation suggests

that the variant is responsible for providing antibiotic resistance to the bacteria, for

example, against aminoglycosides (Sharrock et al., 1981; Thorbjarnardóttir et al.,

1978; Buckel et al., 1977; Nessar et al., 2011; Criswell et al., 2006). However, despite

the added benefit of antibiotic resistance, the L22* variant of ribosome has not es-

tablished itself as the “wild type”. In order to understand the reason why, we used

coarse grained elastic network models to study differences in the dynamics of the two

ribosomes through the DFI analysis. We observed that the mutation enhances the

association of magnesium ions with the ribosome. The magnesium ions in a cell are

also important for biologically activating the ATP molecules by binding with them.

The altered association of magnesium ions with the L22* variant disrupts the del-

icate balance between the magnesium ions bound to the ribosome and to the ATP

molecules in the cell, which has an impact on the cell growth. The disruption of the

balance is further shown by the kinetic model proposed by our collaborator which

also confirms that an increase in association of magnesium ions with the ribosome

will reduce the concentration of ATP molecules bound to magnesium ions in the cell.

These results are further verified by our collaborators where L22* variant impacts the
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concentration of magnesium bound ATP molecules in the cell, hence impairing the

growth rate of bacteria. This also provides a possible mechanism for the reason why

the L22* mutation is not dominant in nature, as under low extracellular magnesium

ion concentration, they exhibit a reduced growth and thereby the cell has to pay

a higher physiological cost due to increased sensitivity to environmental conditions.

Therefore, in this study, we observed how magnesium interactions within a ribosome

are allosterically linked to the distal ATP molecules via cellular magnesium ions. This

phenomenon is coined “Ionic Allostery”.

We further address how allosteric interactions in a signaling pathway can modulate

information among proteins using a simplistic toy model in chapter 7. In the model,

an allosterically regulated enzyme generates product molecules which interact with

another protein downstream in the signaling pathway. This protein acts as a receiver

for the signal transmitted by product molecules. We describe how this type of a

system can be reduced to a two state model under the conditions of detail balance,

which can be further reduced to a hidden markov model by discretizing time. We

also calculate the mutual information (MI) between the state of the enzyme (i.e., its

allosteric states) and the state of the receiver protein (i.e., whether it is bound to the

product molecule or not). Here MI provides a measure of the strength of regulation

the enzyme has on the state of the receiver protein. Therefore, an MI value of zero

would imply that the state of the enzyme do not carry any influence over the state of

the receiver protein. Using this analysis, we observed that the strength of regulation

(MI) depends on the time signature of the product arrivals at the receiver proteins

which can be altered with the changes in the kinetics of allosteric regulation. In

addition, a positive value of MI is observed when the product formation rate is up-

regulated as well as down-regulated. This observation is counter-intuitive as it shows

that down-regulation can be a strategy used by nature to efficiently regulate the

16



signaling pathway.

Finally, in Chapter 8, the results described in the thesis are summarized where we

have discussed the success of the computational tools we have used, to characterize the

role of allosteric interactions in protein function and how this influences its evolution.

We have also addressed the key role played by these interactions in regulating the

other molecules in a cell, thereby, showing the ubiquitous influence of allostery in

regulation protein functions and cellular mechanisms.
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Chapter 2

STUDYING PROTEIN DYNAMICS

2.1 Modeling Interactions in a Protein

As discussed in the previous chapter, in contrast to the sequence-structure-function

paradigm, the function of a protein relies on its dynamics. To be more specific, the

function is dictated by not only a static native 3D structure of the protein, but also by

the ensemble of conformations accessible the protein while it is in its native state. A

first step towards studying this ensemble perspective is to quantify the type of interac-

tions between various amino acids in a protein sequence. A variety of in silico models

have been proposed over time with varying level of complexities and details to model

these interactions. These can be broadly classified as all-atom and coarse-grained

models.

2.1.1 All-Atom Models.

All-atom models for interactions in proteins make use of semi-classical force-fields

where the interaction potential between every pair of atoms is taken into account. In

order to reduce the order of complexity, a typical force-field uses a semi-empirical po-

tential where bonded interactions and interaction between bond planes and dihedral

angles are represented by harmonic potentials. For showing non-bonded electrostatic

and Van der Waal interactions, coulombic and Lenard-Jones potentials are used re-

spectively (Levitt, 1983; Brooks et al., 1983; Weiner et al., 1984). These can be shown
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as:

U =
∑
bonded

Kb(b− bo)2 +
∑
Angles

Kθ(θ − θo)2 +
∑

dihedral

Kφ(1 + cos(nφ− δ))2

+
∑

non−bonded

(
A

r12
− B

r6
+
q1q2

Dr
). (2.1)

These force-fields are usually parameterized by comparing the free parameters against

some other model where experimentally obtained data, in either gas phase or solid

phase, is available or through ab initio calculations involving quantum mechanical

potentials. In the first three harmonic terms, the information of bond lengths, bond

angles and dihedral angles is obtained through the crystallographic data. The force

constants on the other hand are typically estimated with the help of experimental

studies like infrared or Raman spectroscopy (González, M.A., 2011). The parame-

ters for dihedral angles are usually derived through ab initio calculations and further

refined using experimental data such as molecular geometries or vibrational spectra.

The non-bonded term in Eq. 2.1 involves contribution from Van der Waal interactions

and electrostatic interactions. Several models exist for representing Van der Waal in-

teractions, e.g., the 12-6 Lennard-Jones (LJ) potential (Jones and Chapman, 1924),

Buckingham potential (Buckingham and Lennard-Jones, 1938), etc. For electrostatic

interactions a coulomb potential is used, which depends on the molecular electronic

density which are not trivial to calculate. Therefore, partial charges are assigned to

each atom which are derived from a fit using fitting methods such as RESP (Bayly

et al., 1993) and CHELPG (Breneman and Wiberg, 1990) or using ab initio calcula-

tions and then deriving them from the quantum mechanical potential. For these, a

number of computational tools are available which provide data from electronic struc-

ture calculations, e.g., the Merck Molecular Force Field (Halgren, 1996), or quantum

mechanical force field (Ewig et al., 2001). Given the desired level of detail, these

models also allow the protein to be submerged in a water box where each molecule of
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water is allowed to interact with the protein and also with itself (Price and Brooks,

2004), or a field based approach can be used where an implicit field of water is ap-

plied in order to replicate some of the properties of water (e.g., the dielectric constant,

etc.) (Still et al., 1990). The combined system of protein submerged in water typically

known as the simulation box. Using the potential energy terms obtained from force-

fields, the equations of motion can be solved providing a time series of coordinates

of atoms in the protein at equilibrium, or under an applied force. Generally, this

involves solving the equations of motion such as Langevin equation (Van Kampen,

2007). It is a stochastic differential equation which includes the Newton’s equation of

motion (F=ma) along with the contribution of thermal noise, pressure, dissipation,

memory effects, etc. Thermal noise and pressure accounts for the presence of an

external bath which regulates the temperature and pressure of the simulation box.

These are accounted for by the help of specialized algorithms called Thermostats (e.g.,

Nose-Hoover (Nosé, 1984; Hoover, 1985), Anderson (Andersen, 1980), Langevin, etc.)

and Barostats (e.g., Anderson (Andersen, 1980), Berendsen (Berendsen et al., 1984))

respectively. These are stochastic processes which perform the crucial job of coupling

a bath to the simulation box, thereby, regulating the pumping in or draining out of

the energy from the box. Thus making sure that the temperature and pressure of the

simulation box remains constant at a fixed value (thus, coupled to an external bath).

Due to the immense complexities and the size of these differential equations, spe-

cialized software packages are used for solving these, e.g., AMBER (Pearlman et al.,

1995; Case et al., 2014), etc.

For all the analysis performed in the thesis, we have used AMBER molecular

dynamics package (Pearlman et al., 1995; Case et al., 2014) for performing equilibrium

simulations of the proteins. For each protein, the initial structure was obtained from

the protein data bank. If a mutant need to be synthesized, then PyMol’s mutagenesis
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package (Schrödinger, LLC, 2015) was used to introduce substitutions in silico on the

initial structure making sure that the initial rotamer with least steric hindrance was

selected.

Afterwards, the H++ web server was used to predict the protonation state of

the charged side chains (Anandakrishnan et al., 2012; Myers et al., 2006; Gordon

et al., 2005). The refined structure was then loaded into TLEAP using the ff14SB

force field (Maier et al., 2015). Protein hydrogens were then added and a 9.0 Å

cubic box of TIP3P surrounding water atoms was added, followed by neutralizing

ions (Jorgensen et al., 1983; Neria et al., 1996; Joung and Cheatham, 2008). The

system was then energy-minimized using the SANDER module of AMBER 14 (Case

et al., 2014; Pearlman et al., 1995; Salomon-Ferrer et al., 2013). The first cycle of

minimization reduced the energy and steric clashes of the solvent while the protein

is restricted using harmonic restraints. The second cycle of minimization was then

performed without the harmonic restraints, so the entire solution could adjust to the

local minimum.

Heating, density equilibration and production were all then run using the GPU-

accelerated PMEMD module of AMBER 14 (Salomon-Ferrer et al., 2013). These

simulations were performed with periodic boundary conditions and the bond lengths

of all covalent hydrogen bonds were constrained using SHAKE (Pearlman et al.,

1995). Direct-sum, non-bonded interactions were cut off at 9.0 Å, and long-range

electrostatics was calculated using the particle mesh Ewald method (Darden et al.,

1993; Essmann et al., 1995; Hockney and Eastwood, 1988). The heating phase ran

over 100 ps from 0 to 300 K. The density of the system was then allowed to equilibrate

over 5 ns at constant temperature and pressure. All production simulations were run

using the Langevin thermostat and Berendsen barostat (Berendsen et al., 1984) to

keep temperature and pressure, respectively, constant. A time step of 2 fs was used
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and structural conformations were saved every 10 ps.

2.1.2 Coarse-Grained Models.

On the other side of the complexity spectrum, coarse-grained approaches can be

used to model interactions in a protein, but with a significantly diminished level of

detail. These are designed to capture the salient features of their motion under quasi-

static equilibrium conditions. In these models, the atoms in a protein are segregated

into several group where each group can be represented by a single node at their

center of mass or at the cartesian coordinate of a representative atom in the group

(typically the α-carbon (Cα) atom in each amino acid). These atom groups can be

constructed depending on a number of factors, such as the amino acid identity, shared

dynamics of the participating atoms, etc. The set of nodes obtained subsequently,

comprised of the whole protein (with or without water and other atoms around it),

are then connected to each other with energy potentials representing the physics of

their interaction. One of the most commonly used model to represent proteins in this

manner is the Elastic Network Model (ENM), where harmonic springs are used to

connect these nodes in a protein. The application of this model was demonstrated

by the pioneering work of Tirion (1996), who showed that in order to observe the

motion under equilibrium conditions, the far too complex terms in Eq. 2.1 can be

approximated by a simple Hookean potential between each pair of atoms as:

U =
1

2

∑
ij

Kij(~ri − ~rj)
2 (2.2)

where, Kij is the force constant depicting the interaction between i− j pair of nodes

and ~ri represents the coordinate vector for ith node in the protein. Through this, one

can perform the normal mode analysis (Goldstein et al., 2002) on the protein structure

in order to calculate the eigenvectors and their corresponding eigenvalues describing
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their motion. This analysis assumes that the protein lies deep inside a harmonic

potential minima and that there are no net external forces acting on the system.

Under these assumptions, for a system with N interacting nodes, the potential energy

function in Eq. 2.2 can be rewritten for the system close to equilibrium conditions as

(using Taylor’s expansion):

U =
3N∑
i=1

U(xoi ) +
1

2!

∑
i,j

δ2U

δxiδxj

∣∣∣∣∣
xi=xoi xj=xoj

∆xoi∆x
o
j + ... (2.3)

In this expression, xoi represents the equilibrium position of xi. Therefore, the first

expression can be ignored as it represents the ground state reference energy of the

interacting nodes (thereby, taking it as zero). Ignoring higher order terms (considering

that their contribution will be of the order of ∆x3 and higher, hence too small), we

get:

U =
1

2!

∑
i,j

δ2U

δxiδxj
|xi=xoi xj=xoj

∆xoi∆x
o
j . (2.4)

This can be rewritten conveniently using matrix notations as:

U = ∆ ~XH∆ ~XT (2.5)

where, ~X is the 3N×1 dimensional vector representing the coordinates of the network,

and H is the Hessian of the network of interactions which is defined as an operator

of second order derivatives of their potential energy.

H =
1

2

∑
i,j

δ2U

δxiδxj
. (2.6)

Performing eigenvalue decomposition of Hessian reveals the normal modes of oscil-

lations of nodes within the network of interactions. These normal modes reveal in-

formation regarding the direction and amplitude of oscillations in each node in the

network (Goldstein et al., 2002).
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Through this simplistic model, Tirion (1996) was able to show that with the

help of a single-parameter potential, it is possible to accurately reproduce the low

frequency dynamics of the globular proteins otherwise obtained from a significantly

more computationally expensive all-atom MD simulations. In addition, the model

was also able to accurately predict the x-ray crystallographic temperature factors

which are otherwise obtained through much more expensive calculations using a multi-

parameter potential (Weiner et al., 1984; Brooks et al., 1983; Levitt, 1983).

Several different variations of ENM exist, one of the prominent models is the

Anisotropic Network Model (ANM) (Atilgan et al., 2001; Tama and Sanejouand,

2001). In this model, the Elastic Network Model used by Tirion is further reduced

in its complexity by using only Cα atoms instead of all the atoms for representing

a protein. Here a uniform spring constant is used for joining all residues which are

within a cutoff distance from each other (typically 12 to 15 Å (Eyal et al., 2006; Tama

and Sanejouand, 2001; Atilgan et al., 2001; Tama and Sanejouand, 2001)) in the native

structure of the protein. In their native structure, it can be shown that most proteins

can be described by using only a few degrees of freedom– usually those associated with

the Cα atoms on the backbone on the protein chain (Tama and Sanejouand, 2001).

This is because, using only Cα atoms provides a basis set for the conformational

representation of the protein which can not only show the complete spatial extent of

fluctuations in a protein but can also be used to re-normalize out the other degrees of

freedom in the structure (Thorpe, 2007). This can be further shown by observing the

small frequency-dependence of the force-constants for the interaction between these

Cα atoms, and hence the success of ANM for predicting the global dynamics of the

proteins. This enables the force-constants to be treated as invariable parameters in

the low frequency regime, dominating the global motions in a protein, and can be

subsequently fitted to experimental variables like Debye-Weller B factors determined
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from x-ray diffraction (Thorpe, 2007; Bahar et al., 1997; Tirion, 1996) with a large

degree of agreement. Other versions of coarse-grained Elastic Network Models include

Gaussian Network model (GNM), Born Model, etc. (Thorpe, 2007; Bahar et al., 1997;

Born and Huang, 1998).

Despite the huge success of the coarse-grained ENM on predicting global motions

in proteins and their relatively lower computational costs, these suffer from a major

drawback. These rely heavily on the information contained in the static native struc-

ture in order to build the potential energy function of the protein. It does not account

for the biochemical composition of the amino acid sequence of the protein. As a re-

sult, it cannot capture the shift in the native conformational ensemble of the protein

upon mutations (i.e., substitution, insertion or deletion). Therefore, we utilized MD

simulations in order to observe the differences created by the impact of mutations in

the amino acid sequence of a protein.

2.2 Metrics for Quantifying the Dynamics of Residues in a Protein

The previous section gave a brief description of several models available to model

the potential energy of interactions between atoms in a protein. It also demonstrated

how to perform normal mode analysis starting from the potential energy function in

order to calculate the eigenvectors and eigenvalues describing the motions in a protein.

This type of analysis can provide information regarding the type of motion involved

with several domains in a protein (e.g., as shown by the normal mode analysis of a

protein (Bahar et al., 2010; Zhang et al., 2019)). Other notable methods to quantify

the dynamics of motion of residues in a protein are described below.
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2.2.1 Root Mean Square Fluctuations (RMSF).

RMSF, as the name suggests, is the square root of the mean of squared fluctuations

in the atomic coordinates of an atom or a group of atoms in a protein structure around

their equilibrium position. For an atom or a node i representing group of atoms, the

RMSF can be calculated as:

RMSFi =
√
〈|δri|2〉t. (2.7)

Here, δri = (ri − 〈ri〉) is the displacement of node i around its equilibrium position.

For the calculation of RMSF, δri is averaged over a time window of duration t. RMSF

is one of the most commonly used metrics to depict the magnitude of motions due to

thermal fluctuation. (Keskin et al., 2000; Maguid et al., 2006; Papaleo et al., 2006).

The calculation of RMSF typically restricts itself to the fluctuations in Cα atoms in

the backbone of the protein chain. These can be readily calculated using any ensemble

of protein conformations obtained by methods like MD simulations or Monte-Carlo

(MC) simulations of protein structure. However, calculation of RMSF comes with

a major limitation. As one would imagine, it depends heavily on the choice of the

equilibrium coordinates. Therefore, the type of sampling and its frequency used to

generate conformational ensembles can sway the results dramatically. Moreover, for

the calculation of the equilibrium coordinates, the global translational and rotational

motions are eliminated by fitting each structure with a reference frame (typically the

first frame of the trajectory). This is typically performed by choosing a set of atoms

for fitting. As a result, the outcome of fitting can also depend on the choice of the

subset of atoms for coordinate fitting.

Furthermore, from the ensemble of conformations, one can also calculate the co-
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variance between the fluctuations of Cα atoms in a protein as:

Gij = 〈(ri − 〈ri〉).(rj − 〈rj〉)〉,

Gij = 〈δri.δrj〉. (2.8)

Here, δri is the fluctuation in coordinate ri around its equilibrium mean position.

Therefore, if these calculations are performed for a protein with N residues, using

only their Cα atoms, then i goes from 1 to 3N and G would be a matrix of dimensions

3N × 3N . Using Eq. 2.8 one can clearly observe that the RMSF score of residue i

can be calculated with the help of the diagonal elements of the covariance matrix as:

RMSFi =
√
〈|δri|2〉t

=
√
〈|δrxi|2〉t + 〈|δryi|2〉t + 〈|δrzi|2〉t

=
√
G3i,3i +G(3i+1),(3i+1) +G(3i+2),(3i+2). (2.9)

In addition, one can also perform the principal component analysis (Balsera et al.,

1996) on the ensemble of conformations sampled and calculate the contribution of

specific modes to the RMSF of Cα atoms in a protein. In order to do so, the covariance

matrix can be written by expressing it in terms of its principal components as:

G3N×3N = U3N×3NW3N×3NV3N×3N (2.10)

where, U and V are the left and right singular vectors, and W is a diagonal ma-

trix with singular values. Using this, one can reduce the rank of covariance matrix

by incorporating the contribution of only a specific set of normal modes (principal

components) as:

G∗3N×3N = U∗3N×pW
∗
p×pV

∗
p×3N (2.11)

where, p are the number of normal modes used in the reduced rank, U*, V* and W*

matrices contain only the respective p normal modes and singular values. G* is the
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covariance matrix with reduced rank. Finally, Eq. 2.11 can be once again used to

calculate the RMSF from the reduced covariance matrix including the contribution

of the selected normal modes. However, as Eq. 2.7 suggests, the accuracy of the

prediction of fluctuations by this metric relies heavily on the number of conformations

sampled by the protein and also on the convergence of the sampling method employed.

As a result, the calculation of RMSF which can predict the dynamics of a protein with

a reasonable accuracy is computationally very expensive (Tirion, 1996; Fuglebakk

et al., 2012; Echave and Fernández, 2010; Maguid et al., 2006).

In order to avoid the computational cost, one can also utilize the slowest global

normal modes obtained through static structure through coarse-grained models like

ENM, ANM, etc. Using Eq. 2.6, these models can be used to calculate the Hessian

describing the potential energy of interactions between various Cα atoms in residues

in the protein. Furthermore, under the conditions of quasi-static equilibrium it can

be shown that:

G3N×3N ∝ H−1
3N×3N . (2.12)

with the proportionality constant depending on physiological parameters like the tem-

perature and the spring constant used for the ANM (Bahar et al., 2010). Afterwards,

the steps described in Eq. 2.11 can be followed to reduce the covariance matrix while

retaining only the required normal modes and calculate the RMSF profile of the

residues in the protein. Several studies performed on coarse-grained and all-atom

models of proteins have shown the success of RMSF to predict the x-ray crystallo-

graphic B-factors with remarkable accuracy (Tirion, 1996; Echave and Fernández,

2010; Bahar et al., 1998, 2010). However, since the calculation of RMSF is based

on capturing the response of stochastic thermal forces on the protein, it lacks the

resolution of observing the response to forces at the level of individual residues in

a protein chain. For this purpose, Perturbation Response Scanning (Gerek et al.,
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2009; Nevin Gerek et al., 2013; Gerek and Ozkan, 2010; Atilgan et al., 2010) is uti-

lized which provides the required resolution in observation of response to forces as

described in the next section.

2.2.2 Dynamic Flexibility Index (DFI).

Dynamic Flexibility Index (DFI) is a novel metric which is related to the vibra-

tional entropy of residues by calculating the relative resilience each residue experiences

to force perturbations in a protein (this is true for coarse-grained ENM, however, if

data from MD simulation is used, then it is related to the conformational entropy

instead). Computation of DFI utilizes a Perturbation Response Scanning (PRS) tech-

nique (Gerek et al., 2009; Nevin Gerek et al., 2013; Gerek and Ozkan, 2010; Atilgan

et al., 2010), using unit perturbative forces as probes to sample the local vibrational

ensemble of each residue in the protein. Here, the protein is coarse-grained into a

network of interacting amino acids represented by nodes at their Cα atoms using

ANM. For a protein under overdamped conditions (i.e., net average acceleration is

zero), the equation of motion for a node i of mass mi in a protein under an external

force F can be written as:

mi
d2xi
dt2

= −∂U
∂xi

+ F = 0

F = −∂U
∂xi

. (2.13)

Here, U is the potential energy describing the interaction between different nodes of

the protein. Therefore, using Eq. 2.6,

F =
∂

∂xi

[
1

2

∑
i,j

∂2U

∂xi∂xj
∂xi∂xj

]

F =

[
1

2

∑
i,j

∂2U

∂xi∂xj
∂xj

]
. (2.14)
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This can be rewritten using convenient matrix notations as:

F = H∆R (2.15)

∆R3N×1 = H−1
3N×3N

F3N×1. (2.16)

Here, ∆R is the response vector of residues due to the external perturbative force F .

Eq. 2.16 expresses the linear dependence of a response upon an external perturba-

tion under equilibrium condition. This back-of-the-envelope calculation describes the

basic principle involved in the Linear Response Theory (LRT) (Gerek et al., 2009;

Nevin Gerek et al., 2013; Gerek and Ozkan, 2010; Ikeguchi et al., 2005).

Using Eq. 2.16, we can calculate the response of each residue in a protein when

unit random Brownian kicks are applied to each individual residue. In order to obtain

an isotropic response profile of the protein, several unit random Brownian kicks,

distributed uniformly in all directions in space are used, see Figure 2.1. Finally, the

average response of every residue upon random perturbations at each residue position

can be stored in the Perturbation Response matrix, A as:

A =


|∆R1|1 · · · |∆R1|N

...
. . .

...

|∆RN |1 · · · |∆RN |N

 . (2.17)

Here, |∆Rj|i =
√
〈(∆Rj

i )
2〉 is the magnitude of fluctuation response at site i

due to the perturbations at site j averaged over a large number of random unit

perturbations in different directions. Therefore, the sum of each column along a row

i of the perturbation matrix gives the net average displacement of the residue i from

its equilibrium position when each individual residue is perturbed by an isotropic unit

force one at a time. The DFI score of a residue position i is defined as the ratio of

its net response as all the residues in the protein chain are perturbed one by one in a
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Figure 2.1: The interactions in TEM-1 β-lactamase (shown in cartoon representa-
tion on left) are being modeled using harmonic springs in the Elastic Network Model
(right). Further on, random Brownian kicks are being applied on Cα atoms (i, k and
m) in the network to probe its response profile using Perturbation Response Scanning.

sequential manner and the net displacement of all the residues when each residue is

perturbed one by one in a sequential manner. It can be described as:

DFIi =

∑N
j=1 |∆Rj|i∑N

i=1

∑N
j=1 |∆Rj|i

. (2.18)

Therefore, a residue with a higher DFI score, is more susceptible to random per-

turbations in the protein and samples the local conformation space more freely, hence

is labeled as a “flexible” residue. On the other hand, residues with a lower DFI score,

are more resilient to motions in the protein, and are therefore called “rigid” residues.

As discussed earlier, ENM based coarse-grained models are able to accurately

capture the global dynamics of the protein (Tirion, 1996; Thorpe, 2007; Zhang et al.,

2019). However, as the use of the Hessian matrix suggests, this technique is limited

by the use of harmonic approximation on a static three-dimensional structure. As

a result, it fails to incorporate the changes in the dynamics of the protein upon

changes in the chemistry of the protein by residue substitutions. Therefore, in order

to predict the dynamics of the point mutations on the wild type proteins all-atom MD

simulations need to be performed. The simulations provide the pairwise correlations
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in the fluctuations of alpha carbon atoms in the protein in the form of a covariance

matrix (G) which using Eq. 2.12 can replace the Hessian (H) in Eq. 2.16 as:

∆R3N×1 ∝ G−1
3N×3N

F3N×1. (2.19)

As earlier, the proportionality constant is a function of the force-constants used in

the model and temperature. Therefore, it can be treated as a constant for a given

network. This enable us to calculate the DFI scores using Eq. 2.18. Since DFI

is a relative metric which measures the relative responses only, the proportionality

constant is canceled out.

Further on, the metric DFI provides some crucial advantages over the metric dis-

cussed earlier– RMSF. As described, RMSF provides the average response of a residue

to thermal fluctuations. This implies that the metric is highly susceptible to falling

into the trap of insufficient sampling. On the other hand, the use of a perturbative

force as a probe reduces that dependency on sampling as it will always capture a

given response of perturbations as long as the normal mode corresponding to it is

sampled. This provides a better resolution in DFI profile as compared to root mean

square profiles. This implies that, while RMSF profile and DFI profile for a protein

might share some common features, DFI profile should provide a deeper insight into

the dynamics of the protein via relative flexibilities. It should also be noted that, as

discussed earlier, since covariance matrices are obtained from MD simulations, these

are susceptible to sampling or fitting related artifacts. Since DFI also uses covariance

matrices, one must be careful while calculating DFI profiles. In order to ensure that

DFI profile is sampled from a well converged energy minima without fitting related

defects or sampling defects, we check for convergence of dynamics as discussed in the

section below.

Earlier we described how the DFI analysis quantifies the flexibility of each po-
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sition through equilibrium dynamics which is related to the conformational (in the

case of all-atom MD or vibrational while using coarse-grained ENM) entropy of each

residue position in a protein. It is also important to compare the DFI values of

each positions with the experimentally measured equilibrium dynamics. Experimen-

tal techniques like Nuclear Magnetic Resonance (NMR) (Rabi et al., 1938), Infrared

(IR) Spectroscopy (Skoff and Zanni, 2013), etc. can aid in exploring the dynamics

of protein motion (i.e., quantifying time scales of fluctuations in bond lengths, twist-

ing/rolling of bonds, etc.). However, the analysis through these depends on the time

scales and the type of interactions being explored. Here, we will be describing how

NMR technique can be used to provide details on dynamics of protein residues.

For proteins, NMR exploits the magnetic properties of the (called NMR-active iso-

topes) spin 1/2 isotopes 1H, 13C, 15N and 31P which exhibit magnetic dipole moments,

and the spin 1 isotope 2H, which exhibits both magnetic dipole and quadrupole mo-

ments (Levitt, 2013; Cavanagh et al., 1995; Rule and Hitchens, 2006). These isotopes

can be introduced at specific locations in the protein and used as non-perturbative

probes to explore local structure and dynamics (Ohki and Kainosho, 2008). For NMR

(specifically solution NMR), a solution containing protein is put under a strong exter-

nal magnetic field, Bo which aligns the magnetic moment of the NMR-active isotopes

in the protein sample. Afterwards, another magnetic field is then applied orthogo-

nally to create perturbations in the magnetic moment of the sample, which undergoes

Larmor precession about Bo (Levitt, 2013). The precession rate depends on the local

structure and dynamics around the NMR-active isotope. The precessing nuclei in the

sample induces a time dependent current which can be detected in the receiver coil of

the instrument. The Fourier transform of this current is called free induction decay

(FID). The rate of decay of FID can be obtained by fitting it with mono-exponential

functions to give the transverse relaxation rate (R2) as I(t) = exp(−R2t). This
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provides information regarding the backbone dynamic of the protein. In addition,

the peak in the frequency spectrum of the signal provides information regarding the

chemical shift (δ) which reports on the local structure of the protein.

Using NMR, one can also measure the nuclear Overhauser effect (NOE) which

describes the degree of cross-relaxation in the structure by quantifying the trans-

fer of nuclear spin polarization from one NMR-active isotope to another (typically

1H-15N along a protein backbone) (Overhauser, 1953). This provides a 2D represen-

tation of the chemical shifts of the isotopes resonating. The number of resonances

observed, peak resolution and intensity heterogeneity, together, provide information

regarding the dynamics of the residues in a protein. In a well-structured and rigid

protein, the number of resonances is related to the number of residues (because of

relaxation through the backbone). Therefore, a decrease in the number of peaks is

an indicator of a more flexible protein. Similarly, a poor chemical shift peak resolu-

tion also suggests an enhancement in the flexibility of the protein (Jaudzems et al.,

2010). Using these approaches, several different variations of NMR exist depending

of the time scale explored, type of perturbative field applied, observable detected,

etc. These are– real-time NMR (time scale > 1s)(Zeeb and Balbach, 2004), exchange

spectroscopy (time scale≈10-5000ms) (Jeener et al., 1979), lineshape analysis (time

scale ≈ 10-100ms) (McConnell, 1958), Carr-Purcess Meiboom-Gill relaxation dis-

persion (CPMG-RD) (time scape≈0.3-10ms) (Palmer 3rd et al., 2001), nuclear spin

relaxation (time scale in ps-ns) (Jarymowycz and Stone, 2006), etc.

Of these, CPMG-RD in particular is a very powerful technique to quantify confor-

mational dynamics of a protein. It help explore the dynamic processes with exchange

time scales ranging from 0.3 to 10 ms, which include side chain reorientation, loop

motion, secondary structure changes and hinged domain movements (Vallurupalli

and Kay, 2006; Fraser et al., 2009). In CPMG-RD, a series of perturbative pulses
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are applied to the sample containing NMR-active isotope and the observable (FID)

is measured as a function of the frequency of these pulses (νCPMG). Using this, an

effective relaxation rate (REFF (νCPMG)), quantifying the decay of the signal, can be

calculated (assuming mono-exponential decay) as a function of νCPMG. REFF (νCPMG)

depends (in a nonlinear fashion) on the exchange rates between the ground and ex-

cited state of the NMR-active isotope, which is influenced by local structure and

dynamics (Meiboom and Gill, 1958; Carr and Purcell, 1954).

2.2.3 Checking for Convergence of Dynamics.

As described by Eq. 2.16, when a Hessian is used to calculate the response of a

perturbative force, we are restricting ourselves to a harmonic potential. Therefore,

as we sample data from a simulation trajectory in order to calculate the covariance

matrix, we are essentially assuming that the data is sampled from a gaussian distri-

bution (because of harmonic potential). In order to achieve appropriate sampling,

two of the basic conditions discussed in the sections above have to be met– (i) All

conformations sampled must belong to the same distribution. Otherwise, the po-

tential energy well underlying the distribution is different for different configurations

in our sample. (ii) The covariance matrix thus obtained, should be independent of

the choice of the subset of atoms used for fitting coordinates (in order to find the

equilibrium coordinates and eliminate global motions). In order to ensure that these

two criteria are met following steps are taken.

1. The trajectory is divided into smaller time windows with different starting

points separated by a time lag (25ns for the analysis shown in the thesis). Here

different window-sizes are used, corresponding to 25ns, 50ns and 75ns. For each

window, we calculate a covariance matrix by fitting all the configurations in the

window with its first frame. For fitting, we use only the heavy atoms along the
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backbone of the protein chain. It should be specified that, for the analysis, the

first 100 to 150 ns of the trajectory is rejected to avoid relaxation artifacts.

2. For each window size separately, we obtain the average DFI profile. The average

DFI profile for each window size is then compared with other to see if they

exhibit common features (namely, location of low flexibility and high flexibility

regions). If all the window-sizes are sampled from the same potential energy

minima, then the final average DFI profile should be independent of the window-

size, i.e., averaging of DFI profile from 25ns, 50ns and 75ns window size will

give similar flexibility profiles. As a result, a consensus profile observed from

all different window sizes suggest us consistent and converged dynamics. In

addition, this will also ensure that the final resultant DFI profile is independent

of the choice of subset of atoms for fitting as the initial coordinates for fitting

is different for each time window.

If the condition described above is not satisfied, then we consider the trajectory

as not converged and extend the simulation till above described convergence criterion

is achieved (see Figure 2.2).

2.2.4 Dynamic Coupling Index (DCI).

Dynamic Coupling Index (DCI) (Butler et al., 2018, 2015; Gerek and Ozkan, 2011;

Kumar et al., 2015b; Modi and Ozkan, 2018; Campitelli et al., 2020; Modi et al., 2018),

as the name suggests, is a novel metric designed to quantify the strength of coupling

between residues in a protein. Similar to DFI it utilizes the principles like PRS

and LRT in order to probe the coupling of a residue i with another residue j with

functional importance. The DCI score of a residue i with another residue j is defined

as the ratio of the total displacement at i when the Cα at residue j is perturbed by
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Figure 2.2: Convergence of DFI in a protein from MD simulation. Here, a 1000 ns
simulation of a protein (engineered mutant of GNCA β-lactamase) is used to obtain
covariance matrices of window size 25ns, 50ns and 75ns. These are obtained by
analyzing the trajectory data from 100 ns to 1000 ns. Using covariance matrices of
each window size, the DFI profile for the protein is obtained and averaged. These
are then compared with each other. Here, we observe that consensus results are
obtained for low flexibility and high flexibility regions in the profile, i.e., the results
are independent of the selection of window size. Hence the trajectory is considered
to be converged.

random unit Brownian kicks, to the average displacement of residue i when all the

residues in the protein chain are perturbed by random unit Brownian kicks. It is

expressed as:

DCIji =
|∆Rj|i∑N

j=1 |∆Rj|i/N
. (2.20)

As earlier, |∆Rj|i is the response fluctuation profile of residue i upon perturbation

of residue j. According to Eq. 2.20, a higher DCI score of a residue with another

functional sites would imply that perturbation at functionally important sites have

a larger impact at that residue as compared to the rest of the protein indicating a

higher coupling between the two. On the other hand, a lower DCI score would mean

the opposite.

These techniques described above enables us to explore the dynamics-function

paradigm introduced earlier. The DFI profile of the protein gives insight into the

relative fluctuations along with the DCI score which can quantify the strength of
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long-distance allosteric interactions in a protein giving us an edge in understanding

the fundamental principles involved in the evolution. This analysis can also benefit

from a convergence check to minimize sampling artifacts.

2.2.5 Clustering DFI/DCI Profiles Using Principal Component Analysis.

In order to compare the dynamical differences between three or more proteins,

it is important to define a metric which can quantify the magnitude of difference

between the dynamic of the proteins. For this, we compare the percentile rankings

of the DFI score of each protein by performing principal component analysis. This

analysis is used to represent the data in reduced dimensions. This allow us to focus

on key parameters (corresponding to highest principal components) which contribute

to largest differences between protein.

In this process, firstly, the proteins being compared are aligned according to their

multiple sequence alignment. This is an important step if we are comparing the DFI

profiles of proteins with unequal number of residues. Therefore, performing sequence

alignment ensures that gaps or insertions into the sequence are accounted for and

equal number of residues from each protein are considered into the comparison. Af-

terwards, the DFI profile from all the protein are concatenated into a data matrix

X such that each row represents a different protein. Afterwards, Singular value de-

composition (SVD), is used to factorize the data into the orthonormal basis, which

represents the vector space containing data. The data matrix X is of dimensions

(m × n). Here m is the number of different proteins being clustered together, each

having n number of attributes (i.e., the number of residues after multiple sequence

alignment). On performing SVD, X is decomposed as follows:

[X]m×n = [U ]m×m[Σ]m×n[V ]n×n. (2.21)
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Here, U and V are the unitary matrices with orthonormal columns and are called

the left singular vectors and right singular vectors, respectively. Σ is a diagonal

matrix with elements known as the singular values of X. The singular values of X, by

convention, are arranged in a decreasing order of their magnitude. These are σ = σi

which represents the variances in the corresponding left and right singular vectors.

The set of highest singular values representing the largest variance in the orthonor-

mal singular vectors can be interpreted to show the characteristics in the data X and

the right singular vectors can be used to create the orthonormal basis which spans

the vector space representing the data. The left singular vectors contain weights

indicating the significance of each attribute in the dataset as:

wi =
r∑

k=1

σk|uik|. (2.22)

Here, we use the r largest singular values and corresponding left singular vectors to

obtain these weights. Using these features of the decomposed singular vectors, one

can create another matrix X∗ with a reduced dimension r. Using only the highest r

singular values ensures that the data is described by only the most prominent and

fundamental features in the dataset (thereby, increasing the noise to signal ratio by

eliminating less important features). This is performed as:

[X∗]m×r = [U∗]m×r[Σ
∗]r×r. (2.23)

Here, Σ∗ is a diagonal matrix containing only largest r singular values and U∗ contains

the corresponding left singular vectors.

Initially, for a pair of proteins in the data (say, k and l), the distance between

them in the original form of data (before dimensional reduction) was given by:

dkl =

√√√√ n∑
i=1

(Xk
i −X l

i)
2. (2.24)
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This equation can now be rewritten to accommodate the reduced dimensional form

of data as:

d∗kl =

√√√√ r∑
i=1

(X∗ki −X∗li )2. (2.25)

where, d∗kl represents the distance between proteins k and l in reduced dimensions.

In addition to above, the data can be clustered hierarchically based on the pair-

wise distance between different proteins in the reconstructed DFI data with reduced

dimensions.
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Chapter 3

NATURE ALTERS THE NATIVE STATE ENSEMBLE TO EVOLVE FUNCTION

This chapter is adapted from “Modi, T., Huihui, J., Ghosh, K. & Ozkan, S. B.

Ancient thioredoxins evolved to modern-day stability–function requirement by

altering native state ensemble. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170184

(2018)”

In chapter 1, we provided a general perspective of allosteric interactions in an

enzyme which regulate its conformational dynamics to modulate substrate binding

affinity and/or its catalytic activity. We reviewed how binding at a distal site, can

alter catalytic activity of an enzyme through modulation of dynamics upon change

in local network of interactions at the distal binding site. Here, we aim to generalize

the concept of allostery by studying how mutations distal from the catalytic site

in an enzyme can impact their function through the similar mechanism. Thus, we

analyze how such mutations rewires the network of interactions in the enzyme which

has a global effect on the dynamics of the catalytic site. In this chapter, we focus

on the evolution of Thioredoxin proteins through the lens of allosteric regulations.

We examine the equilibrium dynamics of several ancestral and extant Thioredoxin

proteins using their flexibility profiles calculated through Dynamic Flexibility Index

analysis. Particularly, we analyze how the flexibility profiles evolve with time and also

how this impacts the network of interactions in the enzyme by studying the changes

in the dynamic coupling of the catalytic site with the rest of the enzyme through

Dynamic Coupling Index.

These analyses shed light onto the complex relationship between the native state

41



ensemble and the stability-function of the enzymes giving an insight into how they

adapt to ambient conditions and alter their function. Furthermore, the results sug-

gest that nature sculpts the native ensemble by substituting the residues with medium

flexibilities to adapt and alter the function. Comparison of how the flexibility pro-

file of the residues differs between ancestral and extant proteins provides a plausible

molecular mechanism– hinge-shift mechanism where the increased flexibility of spe-

cific regions (e.g., α3 helix in LBCA Thioredoxin) is compensated by the decreased

flexibility of another distal region (e.g., α4 helix in E. coli Thioredoxin). For the

analysis, the dynamics of Thioredoxin proteins were obtained via all-atom molecular

dynamic simulations performed by our collaborator.

3.1 Abstract

Thioredoxins (Thrx) — small globular proteins that reduce other proteins — are

ubiquitous in all forms of life, from Archaea to mammals. Although ancestral Thrx

share sequential and structural similarity with the modern-day (extant) homologues,

they exhibit significantly different functional activity and stability. We investigate

this puzzle by comparative studies of their (ancient and modern-day Thrxs) native

state ensemble, as quantified by the dynamic flexibility index (DFI), a metric for

the relative resilience of an amino acid to perturbations in the rest of the protein.

Clustering proteins using DFI profiles strongly resemble an alternative classification

scheme based on their activity and stability. The DFI profiles of the extant proteins

are substantially different around the α3, α4 helices and catalytic regions. Likewise,

allosteric coupling of the active site with the rest of the protein is different between

ancient and extant Thrxs, possibly explaining the decreased catalytic activity at low

pH with evolution. At a global level, we note that the population of low-flexibility

(called hinges) and high-flexibility sites increases with evolution. The heterogeneity
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(quantified by the variance) in DFI distribution increases with the decrease in the

melting temperature typically associated with the evolution of ancient proteins to

their modern-day counterparts.

3.2 Introduction

Proteins are one of the unique biological machines which have the ability to un-

dergo evolution with time. These evolve to adapt to the ever-changing ambient condi-

tions to ensure the survival of the organism. It involves fine-tuning their pre-existing

functional activity or developing new ones altogether. Clearly, the mechanism of the

underlying evolutionary process is an interesting question which begs to be answered.

From the observation of evolutionary trajectories of proteins and their func-

tions (Zou et al., 2015; Risso et al., 2014, 2013; Risso and Sanchez-Ruiz, 2017; Ingles-

Prieto et al., 2013; Harms and Thornton, 2013b), it can be inferred that the modern

proteins have evolved through a series of small changes from ancient times. Much

of this information is encoded in protein classes from different species in the three

kingdoms of life (Bacteria, Archaea and Eukarya). With advances in the phyloge-

netics and DNA-synthesis techniques, various ancient genes, including those from

the last common ancestors of bacteria, bilaterian animals and vertebrates, have been

resurrected in the laboratories. These studies have provided crucial insights on the

environmental adaptations and the evolution of functions (Carroll et al., 2008; Or-

tlund et al., 2007; Perez-Jimenez et al., 2011; Wilson et al., 2015; Bar-Rogovsky et al.,

2013; Smith et al., 2013; Boucher et al., 2014; Ingles-Prieto et al., 2013): (i) ancestral

proteins are more robust, showing high thermal and chemical stability (Trudeau et al.,

2016; Akanuma et al., 2013; Hart et al., 2014; Zou et al., 2015; Risso et al., 2015) and,

more interestingly, (ii) the protein structures are highly conserved, much more than

the protein sequences throughout the molecular evolution (Zou et al., 2015; Risso
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et al., 2015; Bridgham et al., 2009; Choi and Kim, 2006). Thus, the current challenge

in molecular evolution is to understand the molecular mechanism of how nature al-

ters the function and biophysical properties through amino acid substitutions, while

conserving the 3D structure.

Several biophysical studies exploring the nature of interactions in a protein (Tirion,

1996; Thorpe, 2007) have revealed that all the residue positions in a protein are dy-

namically linked to each other, thereby creating a network of interactions, where the

strength of each link varies across the protein. This network of interactions leads to

intrinsic fluctuations in the network due to a combination of the stochastic nature

of thermal noise and the external forces originating from the protein molecule’s in-

teractions with solvent and other solute molecules. These fluctuations are encoded

in the structure of the protein as well as the sequence —that govern the protein’s

function (Wilson et al., 2015; McLeish et al., 2015; Bahar et al., 2010, 2007; Boehr

et al., 2006; Tobi and Bahar, 2005; Mazal et al., 2017; Kar et al., 2010; Tsai and

Nussinov, 2014; Tokuriki and Tawfik, 2009a; Henzler-Wildman et al., 2007; Zheng

et al., 2006; Dima and Thirumalai, 2006; Liu et al., 2007; Gruber and Horovitz, 2016;

Buchenberg et al., 2017; Sawle et al., 2017). Therefore, it is pertinent to account

for the contribution of these fluctuations in the protein’s structure while studying its

function. As a result, the obsolete view of the single native protein structure has long

been replaced by ‘an ensemble of sub-states’ that – as a whole – accurately represents

the dynamics of the native state (Tokuriki and Tawfik, 2009a). To further shed light

onto the mechanism of evolution and study how evolution shapes the native ensemble,

we utilize Dynamic Flexibility Index (DFI) analysis (Nevin Gerek et al., 2013).

The DFI is a position-specific metric that quantifies the resilience of a given residue

(amino acid) to the perturbations occurring at various parts of the protein using

linear response theory (Nevin Gerek et al., 2013). Thereby, it mimics the multi-
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dimensional response of the protein when it’s conformational space is probed upon

interaction with small molecules or other cellular constituents. The DFI is related to

a residue’s relative contribution to the conformational entropy of the protein. Since

it is a position-specific metric, it can also be used to quantify the change in flexibil-

ity per residue position throughout evolution. The DFI identifies flexible and rigid

residue positions (or sites) within the 3D interaction network of the protein struc-

ture. The low DFI sites are labelled as rigid sites (i.e., hinge sites) and are robust

to perturbations owing to their interactions to other residue positions within the

3D structure. They efficiently transfer the force due to perturbations to the rest of

the protein chain, similar to joints in a skeleton. Thus, they play a critical role in

the conformational dynamics, and usually correspond to the functionally critical and

conserved residue positions in a protein (Nevin Gerek et al., 2013). On the other

hand, high DFI sites are flexible in nature, thus mutation on these highly flexible

sites are typically more acceptable or neutral for the function. A previous study of

the DFI analysis on over 100 human proteins has shown that there is a strong posi-

tive correlation between the DFI score of each residue position and their evolutionary

rates (Nevin Gerek et al., 2013). This demonstrates that the rigid residue positions

are more conserved, while the highly evolving residue positions corresponds to sites

with high flexibility (Nevin Gerek et al., 2013). The DFI analysis of evolution of

different protein families including GFP proteins (Kim et al., 2015), β-lactamase in-

hibitors (Zou et al., 2015) and nuclear receptors (Glembo et al., 2012) has shown that

manipulations in the conformational dynamics of the catalytic region in the protein

either through substitutions in nearby region or through distal allosteric regulations

leads to functional changes in the protein. Furthermore, we also utilized another site-

specific and dynamics-based metric, Dynamic Coupling Index (DCI) which quantifies

the strength of coupling between two different residue positions. It is used to analyse
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the dynamically coupled residues, which form an allosteric communication network

with the active sites, thereby, regulating the enzymatic function. It has been ob-

served that evolution uses substitutions at such residues to regulate the dynamics of

the active sites and/or the binding interface (Kim et al., 2015; Kumar et al., 2015a).

In this study, we focused on the evolution of Thioredoxins (Thrx). Thrxs are

versatile, small globular protein molecules comprising about 108 amino acid residues.

They belong to a class of oxidoreductase enzymes present in all living organisms from

Archae-bacteria to humans. These are labelled as the ultimate moonlighting proteins

with functions as ubiquitous as being a reducing agent for other proteins in biological

reactions (Holmgren, 1985; Romero-Romero et al., 2016).

Thrx proteins from Archaea to humans share about 27–69% sequence similarities

and a common 3D fold with a central β-sheet core surrounded by four α-helices (Risso

et al., 2015; Romero-Romero et al., 2016). The structure of the reduced and oxidized

states of Thrx has been studied extensively over the last few decades. Their structures

contain a highly conserved functional site comprising of two neighbouring redox-active

cystines, Cys-Gly-Pro-Cys (CGPC) (Eklund et al., 1991; Weichsel et al., 1996). These

functional cystines play a key role in Thrx function by participating in the redox

reactions. In the reduced state, these two cystines exist with a “thiol” group attached

to each. This reduced state is maintained using another class of reducing agents

called thioredoxin reductases like nicotinamide adenine dinucleotide phosphate, flavin

adenine dinucleotide (FAD), etc. (Mustacich and Powis, 2000; Eklund et al., 1991;

Arnér and Holmgren, 2000). The reduced state of Thrx facilitates the reduction of

the target protein while turning itself into an oxidized state with the cystines reduced

to create a “disulfide” bond between its two functional cystines by losing an electron.

Although, the oxidized state and the reduced state of the protein are very sim-

ilar to each other in their fold (with most of the differences localized around the
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disulfide active site), the chemical denaturation (Chakrabarti et al., 1999) and ther-

mal (Ladbury et al., 1994; Godoy-Ruiz et al., 2004) unfolding experiments suggest

that Thrxs are more stable in their oxidized state. The mutagenesis analyses of Thrxs

have shown that the C-terminal α-helix, α4, is known to play a critical role in the

folding kinetics of the protein (Vazquez et al., 2015). A shorter helix, α3, has been

identified as important for the thermal stability of the fold, having several stabilizing

mutations (Cabrera et al., 2017). The central core with β-strand β5 acts like a bridge

for interaction between the two α-helices (Cabrera et al., 2017) (see Figure 3.1).

α3

α4

β5

Figure 3.1: The cartoon representation of Archea Common ancestor Thrx (AECA).
The active sites, CGPC, are shown in stick representation; the β-strand, β5, is shown
in purple; and the α-helices, α3 in orange and α4 in blue.

Despite a significant difference in the sequences between the ancestral and extant

Thrxs, the ancestral Thrxs, which existed almost 4 billion years ago, display the

canonical Thrx fold with only minimal structural changes (Romero-Romero et al.,
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2016; Risso et al., 2014; Perez-Jimenez et al., 2011). However, during 4 billion years

of evolution, the stability of Thrxs has decreased in order to adapt to the cooling

temperatures of the Earth (in mesophilic lineage). Moreover, the catalytic rates of

ancestral Thrxs at low pH are different from those of extant one (Romero-Romero

et al., 2016).

In summary, Thrxs achieved adaptation to a cooler and less acidic Earth by al-

tering their stability and changing their catalytic rates while maintaining the same

3D fold. Therefore, in order to provide a deeper insight into how variations in the

sequence alters the stability and the function while conserving the 3D structure, we

explore how the native state ensemble of Thrx has evolved throughout evolution. To

this aim, we performed 1 µs long molecular dynamics simulations for all ancestral

and extant Thrxs, and using these obtained their DFI profiles. Comparison of the

DFI profiles between ancestral and extant Thrxs on each branch shows a common

pattern. The α3 helix, which contributes the most to stability, exhibits enhanced flex-

ibility in modern Thrxs, correlating with the decrease in stability observed in modern

enzymes. The increased flexibility of α3 was also associated with increased rigidity

in the α4 helix along with conserved rigidity of the β-sheet core. This may have

helped the protein to maintain the 3D fold through the evolution of Thrxs. Further

on, The clustering of the DFI profiles of all nine Thrxs and mapping them onto a

two-dimensional landscape of experimentally measured stability and catalytic rates

suggest that the native ensemble of Thrxs holds the clue to adaptation at a cooler

ambient temperature and lower acidic environment.

3.3 Methods for Modelling Interactions and Obtaining Protein Dynamics

All starting structures for Thrx proteins were taken from the Protein Data Bank

using the respective accession numbers for the oxidized form of the proteins– Last
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Bacterial Common Ancestor (LBCA) Thrx (PDB id: 4BA7), Archaea-Eukaryotes

Common Ancestor (AECA) Thrx (PDB id: 3ZIV), Last Animal and Fungi Com-

mon Ancestor (LAFCA) Thrx (PDB id: 2YPM), Last Eukaryotes Common Ancestor

(LECA) Thrx (PDB id: 2YOI), Last Archaea Common Ancestor (LACA) Thrx (PDB

id: 2YNX), Last Gamma- Proteo-bacteria Common Ancestor (LGPCA) Thrx (PDB

id:2YN1), Last Common Ancestor of the cyano-bacterial, deinococcus, and thermus

groups (LPBCA) Thrx (PDB id: 2YJ7), Escherichia coli (E. coli) Thrx (PDB id:

2TRX) and Human Thrx (PDB id: 1ERU) (Risso et al., 2013; Katti et al., 1990;

Capitani et al., 1998). Afterwards, 1µs long MD simulations are performed following

the protocol described in section 2.1.1.

Following the molecular dynamics simulations, the flexibility profiles of each pro-

tein was obtained by calculating their DFI profiles following the method described

in section 2.2.2, making sure that converged dynamics are obtained in accordance

to section 2.2.3. In addition, we also obtained the coupling of each residue with the

catalytic sites by calculating the DCI profiles of each protein with respect to the cat-

alytic site residues (described by residues “CXXC”) following the method described

in section 2.2.4. For this analysis, we used 50ns windows for covariance matrices

sampled from 500ns - 1000ns time slot of the trajectory.

3.4 Results and Discussion

3.4.1 The Change in Dynamic Flexibility Index Profiles Provides Insight on

Decrease in Melting Temperatures During Evolution of Thioredoxins.

Comparing the DFI profiles of the ancestral and extant Thrxs, marked differences

between the flexibility profiles are observed. Particularly, in the flexibilities of helices

α3 and α4. Through mutagenesis analysis, it has been shown that disruption of α3
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impacts the overall stability of the Thrxs (Cabrera et al., 2017). Interestingly, the

enhancement in the flexibility of α3 in E. coli Thrx as compared to the flexibility

profile of LBCA Thrx (see Figure 3.2) shows the flexibility–rigidity compensation

between the α3 helix and the α4 helix. Specifically, the α3 helix in E. coli has

substantially higher DFI values when compared with LBCA, while the opposite is

seen in the α4 helix. However, the core region of the β-sheet does not show any

noticeable alteration in flexibility between E. coli and LBCA apart from a slight

enhancement in rigidity of the β5 β-strand.

α3 α3

α4
α4

β5 β5

LBCA Thrx E. coli Thrx
Less 

Flexible

More
Flexible

Figure 3.2: The Cartoon representations of ancestral and extant Thrxs from bacte-
rial thioredoxins LBCA and E. coli, respectively, colour coded with their DFI profiles.
Red sites are the most flexible and blue sites are the least flexible (i.e., rigid). A shift
in the flexibility profiles of the helices α3 and α4 is observed through evolution ow-
ing to changes in the thermal stability. By contrast, the β-sheet core remains rigid
throughout evolution, highlighting its importance in mediating the interaction be-
tween α3 and α4 helices necessary for the Thrx fold.

These observations can be further correlated with the measured differences in

the stability due to differences in amino acids in these regions. After performing a

sequence alignment between E. coli, LBCA and LPBCA Thrx, it is noted that the

ancestral protein LPBCA Thrx (a close homologue of LBCA Thrx) has a critical
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mutation, P68A (E. coli Thrx position 68 versus the LPBCA Thrx aligned position),

in the α3 helix region when compared with E. coli Thrx. This substitution is typically

stabilizing (Cabrera et al., 2017). In the context of two other critical mutations, G74S

and K90 L, seen in LPBCA Thrx, it has been hypothesized that the α3 helix may tilt

towards arginine (R) 89 (another mutation in LPBCA Thrx), allowing for a stronger

charge–dipole interaction (Cabrera et al., 2017). However, E. coli Thrx does not allow

such favourable interactions owing to the different amino acids in these positions.

Particularly, 89 is threonine (T) instead of arginine (R) in E. coli Thrx. Thus, the

loss of this favourable interaction may explain the lowered stability of E. coli Thrx

and the enhanced flexibility of the α3 helix as evident from their DFI profiles. This

hypothesis was also tested in the context of LBCA Thrx. Similar to LPBCA Thrx,

we note that LBCA Thrx also has all the three critical mutations, i.e., P68A, G74S

and K90L. Furthermore, after alignment, it was also observed that position 89 has a

positively charged amino acid, lysine, in LBCA Thrx.

Motivated by these similarities between LBCA and LPBCA Thrx, we further

analysed the relative orientation between the α3 helix dipole and the side chain of

lysine (K) (at the equivalent of position 89, after considering sequence alignment) in

LBCA. It was observed that the relative orientation between the α3 helix dipole and

K87 is more rigid in LBCA Thrx, whereas T, at position 89 in E. coli Thrx, has a

fluctuating orientation with the α3 helix (see Figure 3.3). This difference indicates

that a favourable interaction between the charge and the dipole (of the α3 helix) may

be operative in LBCA Thrx, similar to LPBCA Thrx and responsible for the higher

stability of LBCA Thrx and also the rigidity of its α3 helix when compared with E.

coli Thrx.

Turning the attention to the α4 helix, guided by mutagenesis experiments (Cabr-

era et al., 2017), a set of key substitutions between E. coli and LPBCA Thrx were
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Figure 3.3: The time evolution plot of the angle (y-axis) between the specific position
in β-strand β5 and the α3 helix dipole over the course of the simulation (x-axis) for
E. coli Thrx (in blue) and LBCA Thrx (in red). This position is K87 in LBCA Thrx
which creates a stable charge-dipole interaction, leading to a stable helix for LBCA
Thrx. Same position based on alignment corresponds to T89 in E. coli Thrx, thus
substitution from Lysine to Threonine leads to more flexible α3 helix as shown by
high fluctuation of the angle between dipole moment of α3 helix and the position T89
in E. coli Thrx.

observed which were responsible for the folding stability differences between the two

proteins. For example, S95P and Q98A—both occurring near the end of the α4 helix

in LPBCA Thrx—cause a reduction in stability. It has been hypothesized that both

the serine (S) and glutamine (Q) in E. coli Thrx may be responsible for stabilizing

the loop connecting the α4 helix and the β5 β-strand by possibly using dipole–dipole

interactions. However, upon mutating to alanine (A) (for Q98A) and proline (P) (for

S95P) in LPBCA Thrx, these dipolar interactions are lost, thereby causing a decrease

in their stability and consequently creating high flexibility regions. A second set of

mutations, L94Q and F102R (also present in the α4 helix region), in LPBCA Thrx

have been further implicated for lowering the melting temperature by possibly desta-

bilizing the hydrophobic network of interactions between the α4 helix and the β5
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β-strand (Cabrera et al., 2017). All these mutations are also present in LBCA Thrx,

after taking the sequence alignment into consideration, apart from L94R, present in

LBCA Thrx as opposed to L94Q in LPBCA Thrx. This suggests that the same act-

ing physical principles, i.e., loss of charge–dipole or dipole–dipole interaction and/or

disruption of the hydrophobic network, may be responsible for the higher flexibility of

the α4 helix in LBCA Thrx compared with E. coli Thrx, as observed by DFI analysis

(Figure 3.2).

Similar changes, particularly the compensation for the change in DFI profiles of

the α3 and α4 helices, have also been observed in the evolutionary branch of hu-

man Thrxs when the DFI profiles of AECA Thrx and the extant human Thrx were

compared (Cabrera et al., 2017) (Figure 3.4). Overall, based on the mutagenesis

analysis (Cabrera et al., 2017) and DFI comparison between ancestral and extant

Thrxs, a plausible mechanism of how Thrx has evolved to a lower stability is sug-

gested. While the increased flexibility of the α3 helical region achieved a decrease

in stability to adapt to cooler ambient temperatures, the rigidity conservation of the

core and increased rigidity in helix α4 ensured conservation of the canonical Thrx

fold throughout evolution. The proposed mechanism should be further verified with

experimental analysis in the future.

3.4.2 Dynamic Coupling of the Active Site Changes Throughout Evolution.

When the catalytic rates of the last ancestral Thrx and their extant variant are

compared on each branch in phylogeny, it shows that the kinetic rates of disulfide

bond reduction has decreased during the evolution at pH 5 (Perez-Jimenez et al.,

2011). Particularly, in the human branch, there is an approximately six-fold decrease

in the kinetic rates between its first ancestor, AECA Thrx, and the modern-day extant

Human Thrx. Earlier work on protein evolution shows that nature uses distal sites
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Figure 3.4: The Cartoon representations of ancestral and extant Thrxs from Human
branch AECA and Human Thrx respectively, color coded with their DFI profiles, red
being the most flexible sites and blue as the least flexible (i.e., rigid) sites. Through
evolution, we observe a change in the flexibility profiles of α helices α3 and α4 owing
to changes in thermal stability and kinetics. However, the β-sheet core, particularly
β5, remains rigid.

that are dynamically coupled with the active sites to allosterically control the active

site’s dynamics (Larrimore et al., 2017; Kumar et al., 2015b; Butler et al., 2018).

Therefore, the DCI analysis was used to observe how the coupling of the active site

with the rest of the protein changed during Thrx evolution.

Interestingly, it was observed that the dynamic coupling of the α3 helix with the

active site had decreased drastically between the ancestral and extant Thrxs in the

human branch (Figure 3.5). A similar difference between the ancestral and extant

Thrxs in the bacterial branch (Figure 3.6) was observed. Previous studies have also

shown that the α3 helix is part of the substrate-binding region and the change in

dynamics of this binding region plays a critical role in the catalytic activity of the

protein (Perez-Jimenez et al., 2009). Thus, the decrease in the allosteric dynamic

coupling of the α3 helix region with the catalytic site may be linked with the lowered
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activity observed in modern-day Thrxs. However, careful mutagenesis experiment is

needed to conclusively prove or disprove this hypothesis.

α3 α3

Residue Index

%
D

C
I

Lower
Coupling

Higher
Coupling

AECA Thrx Human Thrx

A

B

Figure 3.5: Comparison of the coupling of catalytic sites (CGPC) in ancestral
(AECA) with extant Human Thrx using a percentile ranking of the dynamic cou-
pling index (%DCI) (A). A striking difference in the couplings of the α3 region in the
respective proteins with their corresponding active sites is observed. In KBCA Thrx,
the helix α3 is highly coupled to the catalytic site with %DCI>0.8 and on the other
hand, it is not coupled to the catalytic site in E. coli Thrx with %DCI<0.8. This
suggests the role of coupling of α3 helix in altering the catalytic rates. This difference
can also be visualized on the cartoon representations (B) of AECA and Human Thrxs
where red represents sites highly coupled to the active sites, CGPC (grey spheres)
and blue as sites with no significant coupling.

3.4.3 The Variance in Dynamic Flexibility Index Profile Distribution Correlates

With Change in Melting Temperatures.

The DFI analysis of an ancestral versus extant Thrxs in the E. coli and human

branches provides an insight on how the ‘fine-tuning’ of flexibility profiles of some
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Figure 3.6: Comparison of the coupling of catalytic sites (CGPC) in ancestral
(LBCA) with extant E. coli Thrx using a percentile ranking of the dynamic cou-
pling index (%DCI) (A). A striking difference in the couplings of the α3 region in
the respective proteins with their corresponding active sites is observed, suggesting
their role in altering the catalytic rates. This difference can also be visualized on the
cartoon representations (B) of LBCA and E. coli Thrxs where red represents sites
highly coupled to the active sites, CGPC (grey spheres) and blue as sites with no
significant coupling.

functionally important structural features is used during evolution. Comparing the

distribution of flexibility of various residue positions in ancestral Thrxs with the ex-

tant ones can additionally reveal information about the change in their native land-

scape through evolution. The distribution of the flexibility of residues in each Thrx

protein is obtained by binning the residues according to their DFI scores (Figure 3.7).

Interestingly, in the case of evolution of Thrx proteins in the bacterial branch

of the phylogenic tree, it is observed that the distribution of the DFI profile for

the 4-Gyr-old Thrx (from LBCA) differs from that of extant Thrx (from E. coli)
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Figure 3.7: The distributions of DFI profiles in the ancestral and extant Thrx
proteins belonging to the ancestor of the bacterial branch, LBCA (A), evolving to E.
coli (B), and the ancestor of the human branch, AECA (C), evolving to extant human
Thrx (D). It is observed that through evolution more residues populate low-flexibility
and high-flexibility regions in the distribution, making it wider. The fraction of
residues populating high-flexibility (DFI greater than 0.02) regions increased in E.
coli from 0% to approximately 4% and in humans from 1% to 4%.

(Figure 3.7A,B). The high flexibility tail region of the distribution (i.e., high DFI)

has a higher population in modern Thrxs. Likewise, the probability density of the low

flexibility regions (low DFI) has also witnessed an increase in the Thrxs of modern

organisms, representing a gain of high-flexibility and low-flexibility regions during

evolution. This behaviour was observed not only in the bacterial but also in the

human branch of Thrx’s evolutionary tree (Figure 3.7C,D). The redistribution of

flexible sites in Thrx structures is a mechanism which helps the protein ‘fine-tune’ its

activity (or function) in accordance with the functional requirement.

The observation of the characteristic pattern of the increase in the ‘width’ of the
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distributions of flexibility with evolution is further supported by the high correlation

between the variance of the DFI distributions of Thrx proteins and their correspond-

ing melting temperatures (correlation, R = −0.86 and p = 3.2×10−3) (Figure 3.8A).

In addition, since the decreasing melting temperature should also correlate with the

time duration in evolution (because of in general decreasing ambient temperature of

the earth), a significant correlation between the evolution time of Thrx proteins and

their variance in DFI distributions is also observed (correlation, R = 0.77 and p =

1.6× 10−2) (Figure 3.8B).
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Figure 3.8: (A) The variance in distribution of the flexibility profiles in ancestral and
modern-day Thrx proteins is observed to correlate strongly with their time of evolu-
tion (Romero-Romero et al., 2016) (R=0.77). (B) The variance in DFI distributions
is also observed to correlated with the melting temperatures the proteins (Romero-
Romero et al., 2016) (R=-0.86), indicating the implication of flexibility profiles in
their thermo-stability.

Overall, these results are in agreement with the previously observations (Kim

et al., 2015; Zou et al., 2015) that concludes that evolution shapes the conformational

landscape of the native state. From the observations shown above, two major changes

in the distribution of DFI profiles can be consistently seen in all the phylogenetic

branches of Thrx. Firstly, the DFI profiles change as the sequences evolve. Second,

the probability distributions at the beginning (ancestral sequences) are more compact,

having a higher propensity towards medium DFI values. This type of distribution
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ensures an evolvability in the sequence through mutations of various flexible positions

in the protein. This is because, the flexible sites are typically more robust to mutations

and generally correspond to highly evolving residues (Glembo et al., 2012; Gerek et al.,

2009; Nevin Gerek et al., 2013). On the other hand, as we get closer to the modern

extant protein, the distribution widens up. There is an increase in the population

density of the low DFI region along with a longer tail corresponding to higher DFI

values. In other words, a well-distributed set of very rigid and very flexible sites

could be an evolutionary mechanism to adapt to low temperature and/or adjust to

the functional needs of the protein.

3.4.4 Dynamic Flexibility Index Captures the Functional Evolution in Thioredoxin.

In order to further test how the DFI profiles of the nine ancestral and extant

Thrxs capture the change in function throughout evolution, their DFI profiles were

clustered using Principal Component Analysis (PCA). This analysis is used to un-

derstand the structure of the data or to increase the signal-to-noise ratio in data by

eliminating the redundant dimensions and mapping them on to a lower-dimensional

space. Further on, clustering by PCA acts as an effective noise filter by isolating the

highest variances among data points in the top principal vectors. Consequently, the

remaining insignificant singular vectors can be omitted from the reconstruction.

For this, the percentile rankings of the DFI score of each protein was used. Firstly,

the proteins were aligned according to their multiple sequence alignment and were

concatenated into a data matrix X. Afterwards, Singular value decomposition (SVD),

is used to reduce the dimensions of the data following the method described in sec-

tion 2.2.5. Here we used the largest three largest principal components to reconstruct

the data matrix.

After dimensional reduction, the data can now be clustered hierarchically based on
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the pairwise distance between different proteins in the reconstructed DFI data with

reduced dimensions. The pairwise distance between each protein after dimensional

reduction was calculated using Eq. 2.25.

Finally, a bottom-up approach was used for hierarchically clustering the Thrx

proteins, where initially each protein is assigned its own cluster and then, in successive

iterations, closest clusters are merged together to create a new common cluster. In

this approach, the distance between the clusters obtained was defined by the average

pairwise distance between each of their components (average linkage clustering (Day

and Edelsbrunner, 1984). In the end, the clusters were represented hierarchically

using a dendrogram, where the vertical axis denotes the euclidean distance between

various clusters and also among their sub-clusters. The horizontal axis carries no

significance whatsoever, other than representing the cluster names.

The Thrxs are clustered together in accordance with the similarities in their flex-

ibility profiles (Figure 3.9). Figure 3.9 also shows that the Thrxs in a same cluster

also exhibit similar rate constants for disulfide bond reduction obtained from single-

molecule experiments (Perez-Jimenez et al., 2011). For example, ancestral Thrxs

LACA and AECA, belonging to the Archaea branch, have very high rate constants

for disulfide bond reduction. This is in consistency with the clustering based on DFI

scores which arranges them in the same group. On the other hand, LBCA Thrx,

from the bacterial branch, which had evolved around the same period as AECA Thrx

(around 4 billion years ago), is cluster differently along with LPBCA and LGPCA

Thrxs. LBCA, LPBCA and LGPCA Thrxs all share a much lower rates for disul-

fide bond reduction than those of LACA and AECA Thrxs. Interestingly, human,

LAFCA and LECA Thrx, all grouped together in a common cluster, share similar

kinetic rates of disulfide bond reduction. It is also noted that E. coli Thrx, having

the lowest reduction rate of all other Thrx proteins, was clustered in a separate group
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(Figure 3.9A).
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Figure 3.9: The clustering of the ancestral and extant Thrxs based on their DFI
profiles (A). The nine Thrx proteins, mapped on a 2D landscape based on their
experimental rate constants of disulfide bond reduction, kcat(M

−1s−1) (Tzul et al.,
2017) and the change in free energy of folding, ∆G(kT) (Tzul et al., 2017) (B). The
two different maps one using a clustering criteria based on computational analysis
and the other using experimental characteristics give similar results as they segregate
the nine Thrx proteins based on their activities and thermal stability.

While the argument given above clearly explains the segregation of Thrx proteins

into sub-classes, the clustering also raises a question about merging these different

sub-classes together. For example, what is the rationalization behind the grouping

of the LACA–AECA Thrx dyad (red) with the triad LGPCA-LPBCA–LBCA Thrx

(also red) in spite of the two subclasses having widely different catalytic rates (Fig-

ure 3.9B)? Interestingly, it is also noted that LACA, AECA, LGPCA, LPBCA and

LBCA Thrxs are all highly stable when compared with the triad LAFCA, human and

LECA Thrxs.

Therefore, in order to understand the DFI-based classification it is important to

take into consideration both– the catalytic rates (kcat) (Perez-Jimenez et al., 2011)

and the free energy of folding (Tzul et al., 2017). It is interesting to note that

although DFI solely uses the native state ensemble, it is successfully able to sculpt
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the landscape in these two coordinates (Figure 3.9B) based on stability and catalytic

activity. Thereby, Thrxs can be grouped into three broad categories: (i) highly stable

proteins (AECA and LACA Thrxs with high activity; LBCA, LPBCA and LGPCA

Thrxs with low activity), (ii) moderately stable proteins (human, LAFCA and LECA

Thrxs) with moderate catalytic activity and (iii) marginally stable protein with low

catalytic activity (E. coli Thrx) (Figure 3.9B).

In summary, clustering solely based on DFI profiles successfully captures the clus-

tering based on catalytic rates and stability. This suggests that evolution has shaped

the native state ensemble of Thrxs in order to adapt and function at cooler temper-

atures and lower acidic ambient conditions. It is also in agreement with previous

studies on protein evolution (Kumar et al., 2015a; Zou et al., 2015), highlighting that

evolution exploits native state conformational dynamics to alter function.

3.5 Conclusion

Despite the significant structural similarities between ancestral and extant Thrxs,

these have evolved towards a lower stability and kinetic turnover rates. In order to

gain insights into the underlying molecular mechanism of evolution, we have explored

how changes in the native state ensemble might have impacted the evolution of Thrx

proteins. To study this, the difference in the DFI profiles of ancestral and extant

Thrx proteins are compared with each other. The enhanced flexibility of the α3 helix

in the extant proteins, compared with their ancestral counterparts, was observed

to be compensated by the decrease in flexibility of the α4 helix. This mechanism

might be responsible for lowering the stability of Thrx proteins which was used to

adapt to cooler ambient temperatures, while keeping the fold conserved (since the

lower flexibility of the β-sheets was found to be preserved). It was further noted

that the dynamic coupling of important positions with the catalytic site has changed
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during evolution. Particularly, the decrease in the allosteric dynamic coupling of

the α3 helical region, critical in substrate binding, with the catalytic site in extant

Thrxs may be associated with the decrease in their catalytic activity at lower acidic

conditions.

Furthermore, comparison of the distribution of the flexibility of residues between

ancestral and extant proteins revealed that the population density of high- and low-

flexibility residues increased as they evolve. These common features observed in evo-

lution suggest a ‘fine-tuning’ of their native ensemble to adjust to ambient conditions

in accordance with the evolution in their function. The high correlation between the

variance of flexibility distribution of proteins and their melting temperature quanti-

tatively supports this hypothesis.

In addition, clustering these proteins based on their flexibility profiles (through

DFI) closely matches the grouping obtained using their kinetic rates of disulfide bond

reduction and thermal stability. These observations, in agreement with previous

results, highlight that nature uses native state conformational dynamics to adapt and

evolve by altering the protein dynamics (hence flexibilities) and the dynamic allosteric

interactions in the protein.
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Chapter 4

MUTATIONS UTILIZE DYNAMIC ALLOSTERY TO CONFER RESISTANCE

IN TEM-1 β-LACTAMASE

This chapter is adapted from “Modi, T. & Ozkan, S. B. Mutations Utilize Dynamic

Allostery to Confer Resistance in TEM-1 β-lactamase. Int. J. Mol. Sci. 19,

(2018).”

Chapter 3 presents how nature shapes the native state ensemble of Thioredoxin to

modify its function and stability during evolution by comparative dynamics studies of

ancestrally resurrected proteins with their modern homolog. In this chapter, we ex-

plore whether the observed modulation of dynamics through allosteric interactions is

also a general mechanism for the evolution of modern proteins. Thus, we explore the

role of protein dynamics in functional evolution of the extant TEM-1 β-lactamases.

They are bacteria’s defense to β-lactam antibiotics. They confer resistance to peni-

cillin and, third generation antibiotics, cephalosporins. Moreover, they also exhibit

functional plasticity in response to the introduction of novel drugs derived from these

antibiotics. Over 170 variants of TEM-1 β-lactamase have been isolated in hospitals

and clinics. Their high evolvability also made them one of the most studied enzymes

through laboratory evolution experiments in an effort to understand the natural evo-

lution of resistance and also to predict resistance driving mutations.

Here we have particularly focused on the allosteric mutations which are distal

from the active site, but still play crucial role in emergence of resistances using our

conformational dynamics-based approach. Our analysis revealed that these distal

mutations remotely alter the flexibility of the active site to accommodate the hydrol-
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ysis of newer antibiotics. In addition, we also performed the dynamical analysis of

an exhaustive set of 5000 mutations in TEM-1 β-lactamase. It has shown that the

sites exhibiting medium flexibility and high dynamic coupling with the active site

contribute most to the evolvability towards emergence of resistance.

4.1 Abstract

β-lactamases are enzymes produced by bacteria to hydrolyze β-lactam antibiotics

as a common mechanism of resistance. Evolution in such enzymes has been rendering

a wide variety of antibiotics impotent, therefore posing a major threat. Clinical and

in vitro studies of evolution in TEM-1 β-lactamase have revealed a large number of

single point mutations that are responsible for driving resistance to antibiotics and/or

inhibitors. The distal locations of these mutations from the active sites suggest that

these allosterically modulate the antibiotic resistance. We investigated the effects of

resistance driver mutations on the conformational dynamics of the enzyme to provide

insights about the mechanism of their long-distance interactions. Through all-atom

molecular dynamics (MD) simulations, we obtained the dynamic flexibility profiles

of the variants and compared those with that of the wild type TEM-1. While the

mutational sites in the variants did not have any direct van der Waals interactions

with the active site position S70 and E166, we observed a change in the flexibility of

these sites, which play a very critical role in hydrolysis. Such long distance dynamic

interactions were further confirmed by dynamic coupling index (DCI) analysis as the

sites involved in resistance driving mutations exhibited high dynamic coupling with

the active sites. A more exhaustive dynamic analysis, using a selection pressure for

ampicillin and cefotaxime resistance on all possible types of substitutions in the amino

acid sequence of TEM-1, further demonstrated the observed mechanism. Mutational

positions that play a crucial role for the emergence of resistance to new antibiotics
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exhibited high dynamic coupling with the active site irrespective of their locations.

These dynamically coupled positions were neither particularly rigid nor particularly

flexible, making them more evolvable positions. Nature utilizes these sites to modu-

late the dynamics of the catalytic sites instead of mutating the highly rigid positions

around the catalytic site.

4.2 Introduction

β-lactamases are enzymes produced by bacteria to hydrolyze β-lactam antibiotics

as a common mechanism to provide resistance. Since the introduction of penicillin

in the 1940s, β-lactam antibiotics are the most popular antibiotic agents, accounting

for about 65% of all antibiotic consumption across the world (Appelbaum, 2012).

β-lactam antibiotics target enzymes that synthesize the bacterial cell wall. They

constitute an effective low-cost method to treat infections. As a protective mea-

sure, TEM-1 β-lactamase enzymes synthesized in bacteria cleave the β-lactam ring

in β-lactam antibiotics through hydrolysis, thereby rendering the antibiotic inactive.

As a result, β-lactamases constitute a major defense mechanism bacteria uses for

survival against β-lactam based antibiotics, particularly for Gram-negative bacte-

ria (Appelbaum, 2012; Risso et al., 2013). It confers resistance to penicillin and early

cephalosporins and has been shown to exhibit functional plasticity in response to the

introduction of novel drugs derived from these antibiotics. Since its discovery in the

early 1960s, over 170 variants of TEM-1 β-lactamase have been isolated in hospitals

and clinics (Salverda et al., 2010). Their high evolvability has also made them one

of the highly studied enzymes through laboratory evolution experiments in an effort

to understand the natural evolution of resistance as well as predict resistance driving

mutations (Zou et al., 2015; Risso et al., 2013; Salverda et al., 2010; Ingles-Prieto

et al., 2013; Weinreich et al., 2006).
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Upon comparison of the amino acid substitutions found in all known clinical TEM-

1 β-lactamase isolates with those found in the in vitro or in vivo laboratory evolu-

tionary experiments of TEM-1 revealed that, the substitutions found with a high fre-

quency in clinical isolates overlapped with the resistance driving mutations observed

in laboratory experiments (i.e., E104K, R164C, R164H, R164S, A237T, G238S and

E240K) (Salverda et al., 2010). However, there are a significant number of mutations

that have been observed in the laboratory evolution experiments, but have not been

found in clinical isolates. Moreover, the structure alone did not help explain the molec-

ular mechanism by which these mutations contribute to antibiotic resistance. Indeed,

the mutational landscape that drives β-lactamase enzymes toward more specific func-

tions is extremely complex. It is a multi-dimensional landscape which incorporates a

large number of neutral, deleterious, and beneficial mutations distributed throughout

the sequence space of the enzymes (Raynes et al., 2018; Weinreich et al., 2013; Knies

et al., 2017; Tan et al., 2011). While several of these mutations are found close to

the active site in the 3D structure having direct interactions with the active site,

many of the mutations that contribute to resistance are distally located, and thereby

imposing an effect on the function allosterically. A number of studies have been per-

formed on clinical and laboratory isolates of mutations which exhibited how allosteric

mutations modulated the degradation of antibiotics and binding of inhibitors (Bow-

man and Geissler, 2012; Zimmerman et al., 2017; Cortina and Kasson, 2016, 2018;

Bowman et al., 2015; Horn and Shoichet, 2004).

However, despite these studies, the general mechanism by which these mutations

allosterically modulate the activity is still elusive. In particular, predicting the mu-

tational residue positions beforehand that could be observed in clinical isolates for

developing drug resistance is still posing a great challenge. It is essential to un-

derstand the highly complex relationship between mutations and the active sites in

67



β-lactamase enzymes to design more efficient and effective antibiotic therapeutics. In

order to answer the question of whether there are generalized molecular mechanisms

for the positions that contribute to resistance, we explored the role of conformational

dynamics.

Through the analysis of laboratory-resurrected ancestral β-lactamases it is re-

vealed that these were also resistant to antibiotics. In fact, these could not only

degrade the first-generation antibiotics (e.g., penicillin), but also the later generation

ones with the same efficiency (Ingles-Prieto et al., 2013). Furthermore, a compari-

son of the conformational dynamics of ancestral β-lactamases with penicillin-specific

extant TEM-1 β-lactamase has shown that the ancestral proteins have an increased

conformational diversity to degrade a variety of antibiotics (Zou et al., 2015). Indeed,

in other resurrected ancestral protein studies, it has been observed that nature fine-

tunes the native state ensemble in order to evolve to a new function-requirement or

to adapt to a new environment (Zou et al., 2015; Kim et al., 2015; Modi et al., 2018).

In this study, we have focused on comparing the conformational dynamics and the

role of dynamic allostery in resistance driving mutations that have been frequently

observed in both the clinical isolates and laboratory evolution experiments (Salverda

et al., 2010). In addition, we have also investigated whether the similar principle of

“fine-tuning” of conformational dynamics, observed in the previous chapter, dictates

the positions that are substituted for resistance. To achieve these goals, we apply

the Dynamic Coupling Index (DCI) and Dynamic Flexibility Index analysis (DFI)

analysis to TEM-1 β-lactamase. As described earlier, the DFI is a position-specific

metric which qualitatively measures the relative conformational entropy (flexibility)

of a residue position with respect to the rest of the protein chain. The DCI is another

position specific metric which gives a quantitative score of the strength of the long

range dynamic communication between a given position and the active site. Here we
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are particularly interested in the DCI profiles of the positions that are observed as

being frequently mutated in the clinical isolates.

It was observed that a majority of single point mutations found in clinical isolates

and laboratory evolution experiments (Salverda et al., 2010) exhibit higher coupling

with the active site residues (a higher DCI score). In addition, many of these sites

were found to impact the dynamics of the active sites allosterically by modulating

their flexibility. Moreover, in order to test the completeness of the approach, the

data from an exhaustive study was also examined (Stiffler et al., 2015) that provides

description of the fitness landscape of TEM-1 β-lactamase enzyme. The data incorpo-

rates the information of surviving populations of bacteria under a selection pressure of

different concentrations of the antibiotics ampicillin and cefotaxime upon performing

all possible single point substitutions. After applying the dynamics-based metrics on

this dataset, we observed a pattern where the mutations with a higher impact on the

fitness also exhibit a higher DCI score with the active site. Thus, indicating that the

positions contributing to resistance indeed have a long range allosteric dynamic cou-

pling with the active sites. In addition, these positions also belong to regions in the

enzyme with a medium to a higher flexibility that allow them to be more robust (i.e.,

accepting to the perturbative impact) to mutations. Moreover, deleterious mutations

are typically located at positions with low flexibility, and high flexibility regions house

neutral mutations. A similar pattern of impact of mutations at low flexibility region

and high flexibility region was also observed in other proteins (Glembo et al., 2012;

Kim et al., 2015; Nevin Gerek et al., 2013; Butler et al., 2015). Overall, a generic

behavior was recorded in evolution (Modi et al., 2018) of TEM-1 β-lactamase where

mutations were more frequently observed in regions exhibiting medium flexibility and

high dynamic coupling with the active site to fine-tune the dynamics of the active

site, thereby modulating the function.
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4.3 Methods for Modelling Interactions and Obtaining Protein Dynamics

In order to analyze the impact of single point mutations, all-atom MD simulations

of the wild type and its variants were used. The starting structure of the wild type

TEM-1 β-lactamase was obtained from the protein data bank (PDB id: 1BTL (Jelsch

et al., 1993)). Subsequent variants were created using the mutagenesis tool of Py-

Mol (Schrödinger, LLC, 2015) by replacing the wild type amino acid with the mutant

amino acid template where the initial rotameric state was selected in order to have

minimum steric hinderance. Afterwards, 600ns MD simulations were performed for

the wild type and mutant protein following the protocol described in section 2.1.1.

After the MD simulations, the flexibility profiles of the wild type TEM-1 β-

lactamase and its variants were obtained by calculating their DFI profiles following

the method described in section 2.2.2 and making sure that converged dynamics are

obtained in accordance to section 2.2.3. For the analysis, 50ns window size was used

for calculating the covariance matrix sampled over a time slot of 100ns to 600ns from

the MD trajectories. In addition, we also obtained the coupling of each residue in

wild type TEM-1 β-lactamase with the catalytic site by calculating the DCI profile

with respect to the catalytic site residues– 70, 130, 132, 166 and 234 following the

method described in section 2.2.4.

4.4 Results and Discussion

The single point mutations that have been most frequently observed in a large

number of both clinical and laboratory isolates of evolution experiments on TEM-1

β-lactamase, compiled by Salverda et al. (2010) (Table 2 in (Salverda et al., 2010)),

were obtained. These mutations modulate the binding of inhibitor and/or β-lactam

antibiotics and give rise to antibiotic resistance (Mart́ınez et al., 2007). While these
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alter the function of TEM-1 β-lactamase to degrade different antibiotics, the exper-

imental biophysical characterization of these antibiotic resistant variants has shown

that these mutations do not alter the 3D structure of the enzyme and also yield sim-

ilar protein expression levels (Salverda et al., 2010; Ingles-Prieto et al., 2013). These

observations lead to the question that, how does these mutations alter the function

of the TEM-1 β-lactamase while conserving its 3D fold.

4.4.1 A Majority of the Resistance Driving Mutations are Distal to the Active Site.

As a first step to study the impact of the resistance driving mutations on the dy-

namics and activity of the TEM-1 β-lactamase enzyme, the locations of the mutations

were mapped on the 3D structure of the enzyme. Through this, a radial distribution

of the location of each mutational position from the center of the catalytic region

(S70, S130, N132, E166, and K234) was calculated.

Interestingly, it was observed that the majority of these mutations lie farther than

10 Åfrom the catalytic site (Figure 4.1), which is significantly beyond the first coor-

dination shell for creating a direct contact with the active sites. This indicates that

these mutations must alter the function by allosterically modulating the network of

interactions in the protein chain. This suggested mechanism of antibiotic resistance

driven by single point mutations is in agreement with the previous work on the func-

tional evolution of GFP proteins (Kim et al., 2015), Thioredoxins (Modi et al., 2018),

β-lactamases (Zou et al., 2015), etc. (Nevin Gerek et al., 2013; Gerek et al., 2009).

Thereby showing that the mutations critical for the emergence of a new function,

or those which alter pre-xisting functions (or catalytic activity) are usually situated

farther away from the active site. These allosterically manipulate the function by

fine-tuning the native state ensemble while conserving the 3D fold of the native state.

With the contribution from other studies, it is now well established that the muta-
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tions endowing an enzyme with a novel function are generally destabilizing (Tokuriki

et al., 2008). Therefore, it was suggested that the enzymes adapting to new novel

functions should require mutations which are both functionally beneficial but are also

thermodynamically destabilizing mutations while being accompanied with compen-

satory stabilizing mutations. This type of non-additive interaction between groups

of single point mutations (i.e., when the net affect of two point mutations is differ-

ent from the sum of the effect of the two mutations individually) is called Epista-

sis (Weinreich et al., 2018, 2013; Miton and Tokuriki, 2016). This complex epistatic

relationship among the resistance driving mutations allows for the emergence of novel

functions. Several studies involving in vitro laboratory evolution (Levin-Reisman

et al., 2017; Barbosa et al., 2017) and computational techniques employing the use

of Markov state models (Bowman et al., 2015; Zimmerman et al., 2017), statistical

models (Figliuzzi et al., 2016; Weinreich et al., 2006; Raynes et al., 2018; Weinreich

et al., 2013), structure-based (Cusack et al., 2007), and dynamics-based (Modi et al.,

2018) models have been performed where the epistatic effects of pairs of mutations

in evolutionary pathways have been explored and the role of allosteric mutations has

been emphasized in different protein systems including β-lactamases (Bowman et al.,

2015; Zimmerman et al., 2017; Cortina and Kasson, 2016, 2018; Bowman et al., 2015)

and other enzymes (Otten et al., 2018; Bershtein et al., 2006; Miton et al., 2018;

Keedy et al., 2018). In particular, it has been shown that the thermodynamic ef-

fects of beneficial mutations are uncorrelated with cefotaxime resistance in TEM-1

β-lactamase (Knies et al., 2017). The molecular mechanism by which these single

point mutations are modulating the resistance of antibiotic resistance of TEM-1 β-

lactamase while keeping the 3D fold conserved is now explored through the analysis

of conformational dynamics.
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Figure 4.1: (A) Distribution of the distance of mutational sites in single point
mutations observed in clinical isolates and laboratory evolution experiments in wild
type TEM-1 β-lactamase around the active site. It was observed that the majority
of the mutations were distal to the active site (i.e., >10 Å, shown in red) and hence
impacted the function via allosteric interactions. On the other hand, a very small
number of variants were observed where mutational sites were closer to the active
site (in blue). (B) Cartoon representation of TEM-1 β-lactamase with active sites
in black spheres and the mutational sites studied in colored spheres, where the color
depends on their distance from the centroid of the catalytic region.

4.4.2 Antibiotic Resistance Driving Single Point Mutations Alter the Flexibility

Profile of TEM-1 β-lactamase.

The dataset of distal single point resistance driving mutations was divided into two

parts based on their modus operandi: (i) the mutations that drive inhibitor resistance,

namely: N276D, R244C, R244S, R275L, R275Q, and S268G; and (ii) the mutations

that drive the resistance of β-lactam antibiotics, E240K, I173V and Q39K. These

mutants were synthesized in silico and their dynamics were obtained as described in

the section 4.3.

As described earlier, the DFI is a position specific metric which gives the measure

of relative resilience of an amino acid to random force perturbations, thereby, mim-

icking the natural environment of a protein in a crowded cell. Comparing the DFI

profiles upon mutation gives an estimate of the impact of the mutation on the equi-

librium dynamics of the protein. It also provides insight into the acting mechanism
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of the mutation by focussing on the region with the largest change in their DFI score.

Therefore, we compare the DFI profile of the wild type TEM-1 β-lactamase with

the averaged DFI profile of two sets of mutants (Figure 4.2A,B). Both types of re-

sistance driving mutations exhibited a similar mechanistic behavior. These increased

the flexibility of the low DFI hinge regions (i.e., rigid sites), particularly around the

catalytic sites S70 and E166, despite that fact that the mutations did not have any

direct interaction with the active sites.

A)

B)

Figure 4.2: The comparison of the conformational dynamics of the wild type TEM-
1 β-lactamase (black) using the average %DFI profile (y-axis) of the single point
variants (red), distal from the catalytic region (blue diamonds). It was observed
that the mutants, despite being distal to the active region (Figure 4.1) impacted the
dynamics of the active sites, particularly around S70 and E166. This behavior was
observed in the single point variants providing resistance to β-lactam antibiotics (A)
as well as in the mutants impacting the resistance through inhibitors (B). Here, in
each plot, the error bars in grey represent the standard error of mean obtained from
comparing the DFI profile of all the mutants.

The residue positions exhibiting low DFI scores typically play a crucial role in

the dynamics of the protein. These participate in the transfer of forces through the
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protein’s network of interactions, like hinges in a door frame (i.e., facilitating an

application of torque without actually moving themselves). Therefore, such residue

positions are necessary for mediating the collective motion dynamics, which are key

for the protein to function. Studies on other protein systems using DFI like on the

evolution of Thioredoxin (Modi et al., 2018), GFP (Kim et al., 2015), etc. Nevin Gerek

et al. (2013) have revealed that, (i) the mutations that alter the flexibility of hinge

regions lead to changes in the protein’s dynamics and hence function, and (ii) nature

fine-tunes the flexibility of hinge regions through mutations leading to the emergence

of new functions. Other studies have also shown that mutations which alter the

conformational dynamics of a protein play a key role in its evolution to a new func-

tion (Campbell et al., 2018). In alignment with the above-mentioned studies, it was

interesting to see a change in the flexibility (DFI values) of the hinge site S70. S70

plays a critical role in the catalytic mechanism by serving as the nucleophile for attack

on the carbonyl carbon of the amide bond. The change in DFI profile of S70 suggested

that these allosteric mutations fine-tune the flexibility of the catalytic positions by al-

tering their conformational dynamics for the hydrolysis of new antibiotics. Likewise,

the same mechanism (i.e., the change in the flexibility of active sites which play a

major role in binding and catalysis) was also observed for the other set of mutations,

which are known for driving the resistance through inhibitors (Figure 4.2).

These observations were further consolidated by calculating the change in the

flexibility profile of TEM-1 β-lactamase post mutations. The change in DFI profile

(∆DFI) was obtained by comparing the averaged DFI profiles of the mutants with

that of the wild type. In particular, a significant change was observed on the posi-

tions that exhibited a large change in DFI, i.e., more than one standard deviation of

change than the average change in DFI (Figure 4.3). Interestingly, this analysis re-

vealed that while the DFI score of most of the residue positions being mutated in the
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present work (orange diamonds) did not change significantly. However, mutations at

those positions triggered changes in the DFI scores of the distal positions, particularly

near the active site (blue diamonds, of note S70 and E166). Furthermore, it was also

discovered that some of the positions that exhibited significant change upon resis-

tance driving mutations from clinical isolates corresponded to the mutational points

that had already been observed in the laboratory evolution of TEM-1 β-lactamase

(Figure 4.3A,B green diamonds). However, further mutational analysis is required

to understand the underlying mechanistic details governing the antibiotic resistance

emerging from these mutations.

4.4.3 Dynamic Coupling Index (DCI) Gives an Insight Into the Internal Network

of Interactions in TEM-1 β-lactamase.

In the section above, it has been observed that the analyzed mutations providing

antibiotic resistance to TEM-1 β-lactamase, allosterically modulated the flexibility

of the active sites. Buoyed by this analysis, we measured the long-distance dynamic

interactions of the mutation sites with the active sites using the DCI analysis (Kumar

et al., 2015b; Butler et al., 2015; Larrimore et al., 2017). As described earlier, the DCI

score quantifies the strength of the coupling interaction between any pair of residues

or between a residue and a region (e.g., active sites). This analysis helps identify the

Dynamic Allosteric Residue Coupling (DARC) spots (Butler et al., 2015; Larrimore

et al., 2017). These are the residue positions that are distal from active sites but

are capable of remotely regulating the active site by modulating the flexibility of

functionally critical sites. This type of allosteric coupling, regardless of the distance

of separation, is also likely to contribute to the function.

Through the DCI analysis, it was observed that irrespective of the distance of

separation between the mutational sites and the active sites (Figure 4.1) most of the
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B)

A)

Figure 4.3: Comparison of the conformational dynamics of the wild type TEM-1
β-lactamase with the average DFI profile of the single point variants, distal from the
catalytic region (blue diamonds), by calculating the difference in their %DFI profiles
(∆%DFI, y-axis) of the mutants impacting the hydrolysis of β-lactam antibiotics
(A) and the mutations driving resistance through inhibitors (B). The red and blue
dash line represents ±1.0 times the standard deviation around mean (black dash line)
of the differences between the profiles. It was observed that the mutations (orange
diamonds) impacted the dynamics of the catalytic region particularly around S70
and E166. In addition, it was also observed that many of the single point mutations
explored in laboratory evolution experiments were found in regions with significant
differences in their conformational dynamics when compared to the wild type (green
diamonds) (Salverda et al., 2010). This hints towards their possible contribution to
the dynamics of the catalytic region.

resistance driving mutations studied here were dynamically coupled with the active

sites as shown by their overall higher DCI scores (Figure 4.4, color-coded where

darker spots exhibit high DCI values). Apart from being highly coupled to the active

sites, the mutational sites also exhibit a medium range of flexibilities (i.e., neither too

flexible nor rigid, inside the gray shaded region in Figure 4.4). The medium flexibility

of these sites make them more robust to the perturbative impact of mutations, while

the high dynamic coupling of these residues with the actives site ensures their ability

77



to remotely modulate the active site flexibility. This observed mechanistic picture is

also in agreement with other studies of missense variants, where the disease associated

mutations on the DARC spots were found to regulate the flexibility and dynamics

of functionally critical sites from a distance leading to a loss or gain in the protein

function (Butler et al., 2018; Kumar et al., 2015a).

Figure 4.4: A distribution of flexibility of various residue locations in TEM-1 β-
lactamase given by their DFI score (y-axis) with their distance from the catalytic
region (x-axis). The residues are colored in accordance to the strength of their cou-
pling with the active sites using their %DCI score with red being most coupled (%DCI
= 1) to white without any coupling (%DCI = 0). We observed that a large number
of the mutations analyzed in clinical isolates and laboratory evolution experiments of
TEM-1 β-lactamase had a strong coupling (represented by bigger circles) regardless
of being distal to the active sites. Moreover, these mutations, along with many other
residue positions coupled to the active site, lay in a region of medium flexibility in
the protein.

Moreover, upon observing the DCI scores of all of the residue locations in TEM-1

β-lactamase (Figure 4.4) we noticed that, in addition to the mutational sites found in

clinical and laboratory isolates, there were a large number of other residue locations in

TEM-1 β-lactamase with a high DCI coupling score with the active site (> 0.7). Many
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of these highly coupled residue locations were distal from the active sites and also

lie in a region of medium flexibility (gray region in Figure 4.4). Studies of dynamics

of positions mutated in other protein systems using DFI and DCI analysis suggest

that mutations at residue positions that exhibit higher coupling to the active site

and are also situated distally with a medium flexibility generally serve as allosteric

modulators for the function without compromising the fold or stability while making

subtle changes in the dynamics of active sites (Nevin Gerek et al., 2013; Butler et al.,

2015). Therefore, there is a need to perform an exhaustive mutagenesis scan of all

possible mutations at each residue location in TEM-1 β-lactamase in order to analyze

the impact of mutations at these sites on the activity of the protein. Doing such an

analysis will enable us to verify if DCI analysis can be used as a predictor for functional

impact upon mutation, i.e., substitutions at residue positions with high DCI typically

lead to functional changes in the protein dynamics.

Similar in vivo experiments were performed by Stiffler et al. (2015), where they

investigated the impact of all possible single point mutations (4997 mutations) in

TEM-1 β-lactamase on the organism’s fitness under the selection pressure for varying

concentrations of antibiotic ampicillin resistance (i.e., the wild type function) and ce-

fotaxime (CTX) resistance (i.e., evolving a new function) (see Figure 4.5). After the

fitness data is mapped over the DCI profile of the protein, it was observed that a sig-

nificant number of residues with mutations with a positive effect on the fitness for the

CTX antibiotic were highly coupled to the active sites (%DCI > 0.7) (Figure 4.5B).

This observation was in agreement with the analysis shown in the previous section

(Figure 4.4) where the mutations that drive resistance to an antibiotic should exhibit

high dynamic coupling with the active sites, irrespective of their distal location with

the active sites.

This pattern can be further analysed by considering a hypothesis that residue
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Figure 4.5: The Dynamic Coupling Index and flexibility of a residue position de-
termines emergence of new function upon substitution. (A) Relative fitness values
for all mutations under ampicillin (625 µg/mL (x-axis) versus CTX selection (0.15
µg/mL; y-axis) showed that most mutations conferring significant CTX resistance
were mostly neutral (red), but some were deleterious (green) in ampicillin resistance,
while the color grey shows the variants with no effect on CTX resistance. (B) Change
in the relative fitness of the organism upon various mutations as a function of their
%DCI couplings with the active site. We observed that a majority of the muta-
tions with positive fitness in CTX were highly coupled to the active region (%DCI >
0.7). (C) Observed to expected ratio of TEM-1 β-lactamase variants based on their
flexibility category.

positions which a larger impact on the CTX fitness of the enzyme should predomi-

nantly belong to a group with medium flexibility. Hence, for this, a null hypothesis

of no effect can be created according to which, the ratio of the observed to expected

numbers of residue positions hosting variants with increasing CTX fitness should be

close to 1.0. While the null hypothesis was observed to be true for the ampicillin
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and CTX neutral mutations, it was completely rejected for the CTX positive variants

(Figure 4.5C). It was observed that CTX-positive and ampicillin deleterious variants

were over abundant at rigid sites (ratio = 1.86), which is in agreement with the ear-

lier studies where mutations at rigid sites were more deleterious when compared to

wild type for the function (in this case ampicillin resistance) (Butler et al., 2015;

Kumar et al., 2015a). Moreover, in consensus with another previous human pro-

teome wide study (Nevin Gerek et al., 2013), it was witnessed that CTX-positive and

ampicillin-neutral variants were over abundant at positions exhibiting medium flexi-

bility (ratio = 1.21) (Figure 4.5C). Medium flexibility at these sites usually provides

conformational freedom to accommodate the change in their interaction upon amino

acid substitution. Furthermore, these also exhibit a higher dynamic coupling with

the active sites as compared to the dynamic coupling between the active site and the

sites with higher flexibility. Therefore, the mutations at these residue will be usually

neutral for ampicillin degradation, but they help the enzyme to evolve a new function

(or alter activity) which is CTX degradation in this case.

Similar conclusions were drawn in a more detailed analysis on the evolution of

Thioredoxins (Modi et al., 2018) which also indicated that evolution utilizes the

residues belonging to mid-flexibility regions in proteins (0.002 ≤ DFI < 0.005) to

introduce mutations and adapt to the new environments to function at higher pH

and cooler temperatures. In that study it was observed that the population of low

flexibility rigid region (DFI < 0.002) and high flexibility regions (0.005 ≤ DFI) in-

creased with time, and that of the medium flexibility region decreased. The same

mechanism was found to be operational for the mutations driving CTX resistance in

this large dataset, as shown by the observed to expected ratios (Figure 4.5C) of the

population of low, mid, and high flexibility residues in TEM-1 β-lactamase enzymes.
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4.5 Conclusion

In this study, the impact of resistance driving single point mutations in TEM-1

β-lactamase enzyme was investigated. These mutations were observed in multiple

clinical isolates of TEM-1 β-lactamase and also in in vitro laboratory evolution ex-

periments compiled in (Salverda et al., 2010). These mutations are responsible for

providing antibiotic resistance to TEM-1 β-lactamase by either altering their ac-

tivity with β-lactams or with inhibitors like β-lactam–inhibitor combination ampi-

cillin–clavulanate (Vakulenko et al., 1998), etc. Mapping the locations of mutational

sites onto a 3D structure of TEM-1 β-lactamase revealed that a large number of these

mutations are distal to the active site region (Figure 4.1) and hence these might be ex-

ploiting allosteric regulations in order to alter the activity of the TEM-1 β-lactamase

remotely.

Moreover, analyzing the DFI profiles of the mutants and comparing them with

that of the wild type TEM-1 β-lactamase revealed that the mutations altered the

flexibility of the rigid parts of the protein. Particularly around the active site S70,

which plays a key role in the activity of the protein (Figure 4.2 and Figure 4.3). While

the flexibility of the positions near the mutational sites did not change significantly, it

was observed that the mutations remotely modulated the network of interactions near

the active sites. This fine-tuning of the active site dynamics in TEM-1 β-lactamase

can be a possible mechanism responsible for the degradation of a novel substrate.

This remote modulation between the allosteric mutational site and the active sites is

actualized via long distance dynamic coupling as indicated by the observation that

a majority of the resistance driving mutation sites exhibited high dynamic coupling

(DCI) with the active sites (Figure 4.4).

These findings were further consolidated through an analysis of the dynamic cou-
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pling and the flexibility of all the residue positions in TEM-1 β-lactamase. Each

residue position in TEM-1 β-lactamase were characterized in another study by Stiffler

et al. (2015) where all possible single point mutations were performed in the sequence

of TEM-1 β-lactamase (4997 in total). The fitness score of each mutant thus created

was further quantified based on their survivability under a selection pressure of CTX

and ampicillin antibiotic. Upon mapping the DCI values of the mutational sites onto

their fitness scores, it was observed that, in agreement with analysis above, the muta-

tions that altered the activity to a new function (activity with CTX in this case) were

found to be dynamically coupled to the active sites (Figure 4.5B). In addition, upon

analyzing the flexibility of the mutating amino acid positions, it was also observed

that the mutations belonging to the medium flexibility region led to the evolution of a

new function (as seen from the observed to expected ratios, Figure 4.5C). On the other

hand, mutations in low flexibility regions of the protein were generally deleterious for

ampicillin resistance.

These results are in complete agreement with the investigation performed on the

underlying mechanism of evolution of new function in Thioredoxins (Modi et al.,

2018). This indicates that there is a principal mechanism in play– evolution may

utilize residues with medium flexibility to perform substitutions to fine-tune the flex-

ibility of lowly and highly flexible residue positions in order to evolve a new function

(or simply alter the activity). In the process of doing so, it can exploit allosteric

interactions in the network to change flexibilities remotely and compensate for the

damaging effects of deleterious mutations by performing other mutations (Modi et al.,

2018; McLeish et al., 2015).
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Chapter 5

HINGE-SHIFT MECHANISM: A PROTEIN DESIGN PRINCIPLE FOR THE

EVOLUTION OF β-LACTAMASE FROM SUBSTRATE PROMISCUITY TO

SPECIFICITY

This chapter is adapted from “Modi, T., Risso, V. A., Martinez-Rodriguez, S.,

Gavira, J. A., Mebrat, M. D., Horn, W. D. V., Ruiz, J. M. S.,& Ozkan, S. B.

Hinge-Shift Mechanism: A Protein design principle for the evolution of β-lactamase

from substrate promiscuity to specificity. Under review at Nature Communication.”

Chapters 3 and 4 provide evidence of how nature alters the native state ensemble

of a protein to evolve new functions. It describes how proteins adapt to a new envi-

ronment or enhance enzymatic activity through a hinge shift mechanism where, the

flexibility profile associated with function alters through substitutions. Particularly,

loss in flexibility of some sites are compensated by enhancement in flexibility of other

distal rigid sites. Here, we develop a novel conformational dynamics-based compu-

tational design approach which rationally molds the protein flexibility profile on the

basis of a hinge-shift mechanism, then deliberately weigh and alter the conformational

dynamics of engineered enzyme towards desired function.

In this study, we tested our method on ancestral Precambrian β-lactamase, a

moderately efficient promiscuous enzyme capable of degrading a diversity of β-lactam

antibiotics in contrast with the modern TEM-1 β-lactamase, that degrades only peni-

cillin with higher efficiency. This generalist to specialist enzyme evolution has involved

more than 100 mutational changes. Using our dynamics-based approach, we compu-

tationally designed an “engineered specialist Precambrian β-lactamase”. With only

84



21 mutations identified by the flexibility profile, we not only convert a generalist

Precambrian β-lactamase to a specific enzyme with better efficiency of degrading

penicillin (i.e., mimicking the extant TEM-1 β-lactamase). This is further biophysi-

cally characterized by our collaborators at Ruiz lab . In addition, they also obtained

the X-ray crystal structure of the engineered Precambrian β-lactamase and compar-

ing it with the wild type β-lactamases also suggests that we have managed to keep the

3D fold conserved. More importantly, the NMR analysis performed by Van Horn Lab

also validates the design approach such that the engineered Precambrian β-lactamase

exhibits different dynamics despite sharing an identical 3D fold. These findings high-

light the key role played by, computationally designed, distal allosteric mutations in

fine-tuning the dynamics of the enzyme to evolve function.

5.1 Introduction

Proteins are cellular biomolecular machines with the capacity to participate in a

wide variety of functions with remarkable efficiencies and specificities. Apart from

being the efficient worker bees of the cell, proteins evolve and develop new func-

tions over time, this process is critical for the evolution and survival of the organism.

Proteins owe this remarkable capability to their 3D network of atomic interactions,

which orchestrates the communication between different parts of the protein chain

in order to accomplish their designated functions. A complete understanding of the

“blueprint” of their functional behavior (i.e., the relationship between their sequence,

structure, dynamics and function) and how it evolves with time could dramatically ex-

pand our ability to develop novel protein-based catalysts with potentially far-reaching

applications to fields including chemistry, biotechnology and medicine.

As described in the previous chapter, TEM-1 β-lactamase is a popular target for

evolutionary studies. These aid bacteria in their fight against antibiotics by hydrolyz-
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ing β-lactam antibiotics like penicillin, cefotaxime, etc., rendering the antibiotic use-

less. In an attempt to understand the molecular mechanism of antibiotic resistance in

bacteria, particularly how variations at sequence level impact function, these enzymes

have been a target of a variety of evolutionary studies (Allen et al., 2009; Atanasov

et al., 2000; Bradford, 2001; Cortina and Kasson, 2016; Figliuzzi et al., 2016; Fisher

et al., 2005; Livermore, 1995; Medeiros, 1997; Modi and Ozkan, 2018; Zou et al.,

2015). After its discovery in 1963 (Ruiz, 2018), around 170 other variants of TEM-1

β-lactamase have been isolated, making it one of the best understood and investi-

gated enzymes from an evolutionary perspective (Allen et al., 2009; Livermore, 1995;

Medeiros, 1997; Modi and Ozkan, 2018; Zou et al., 2015; Ruiz, 2018; Risso et al.,

2018; Salverda et al., 2010; Stiffler et al., 2015; Risso et al., 2013).

Through a Bayesian approach in a phylogenetic framework, the Precambrian

nodes in the evolution of class-A β-lactamases have been resurrected (Risso et al.,

2013). This study provided us with the sequences and structures of enterobacte-

ria (ENCA), the last common ancestor of various Gram-negative bacteria (GNCA),

and the last common ancestor of gram-positive and gram-negative bacteria (PNCA)

β-lactamases. Based on the estimates of divergence times, these enzymes existed

about 1 Ga (ENCA), 1.5 Ga (GPBCA), 2 Ga (GNCA), and 3 Ga (PNCA). Compar-

ison of ancestral β-lactamase enzymes with the extant TEM-1 β-lactamase revealed

that these share several physical features— X-ray structures show that they share a

common 3D fold (root mean square deviation (RMSD) 0.585Å); pairwise sequence

alignment between the sequences of GNCA and TEM-1 β-lactamases indicates about

50% conservation in their amino acid sequence (see Figure 5.2). In addition, they

also shared the same composition and the shape of their catalytic pocket (Modi and

Ozkan, 2018; Zou et al., 2015). Despite these striking similarities, these have very

divergent catalytic activity. The resurrected Precambrian β-lactamases were found
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to degrade both penicillin and third-generation antibiotics (such as cefotaxime) with

moderate catalytic efficiency. Of course, third generation antibiotics are a human

invention and did not exist in the Precambrian. The results, however, supports that

Precambrian β-lactamases were moderately efficient promiscuous enzymes capable of

degrading a diversity of β-lactam antibiotics. However, with time, these have evolved

into highly specific enzymes that selectively degrade penicillin with about two mag-

nitudes of higher activity (Zou et al., 2015; Risso et al., 2013). These results are

in stark contrast to the common “structure-function” paradigm where the structure

has a one-to-one relationship with function. However, this anomalous property of

violation of “structure-function” paradigm is not unique to β-lactamases only as sug-

gested by Osadchy and Kolodny (2011) where they describe the relative diversity in

the functional space and the structural space of proteins. They focus their analysis on

the structures and functions for the proteins available in the protein data bank and

show how proteins closer to each other in their 3D structure can be very divergent in

sequences as well as function.

In all the resurrected ancestral protein studies, it has been observed that the evolu-

tion of a new function and/or adaptation to a new environment is always accomplished

while preserving the 3D structure (Risso et al., 2018; Khersonsky and Tawfik, 2010;

Khersonsky et al., 2006; Tokuriki and Tawfik, 2009b; Harms and Thornton, 2013b;

Ingles-Prieto et al., 2013; Babtie et al., 2010; Gerlt and Babbitt, 2009; Nguyen et al.,

2017). Our previous studies identify similar trends in other enzymes and proteins,

including Thioredoxins (Modi et al., 2018), GFP (Kim et al., 2015), and others (Modi

and Ozkan, 2018; Zou et al., 2015; Campitelli et al., 2020) which highlight the impor-

tant role played by the conformational dynamics in the evolution of an enzyme where

the structure-function model of the protein activity is replaced by the “ensemble

model” (Modi and Ozkan, 2018; Campitelli et al., 2020; Modi et al., 2018; Kim et al.,
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2015; Zou et al., 2015). In this model, the native state of a protein is represented by a

collection of different conformations visited by the protein. The protein then samples

these conformations through a broad range of motions from atomic fluctuations and

side-chain rotations to collective domain movements. Therefore, in this model, the

function of a protein is governed by the dynamics of sampling through this ensemble

as opposed to merely a dominant structure.

The ensemble model of protein dynamics also fits very well with protein evolu-

tion as it explains the emergence of a new function or modulation of a pre-existing

function for adaptation to a new environment while conserving the dominant struc-

ture. Nature modulates function by performing a series of subtle modifications in

the ensemble of the protein conformations such that the structure remains conserved,

but the dynamics of the protein are now different by restricting the sampling of a

group of conformers while allowing others. Indeed, studies on protein design through

directed evolution have also highlighted the importance of conformational dynam-

ics (Romero and Arnold, 2009; Wu et al., 2019; Lane and Seelig, 2014; Otten et al.,

2018; Taylor et al., 2015; Bloom et al., 2006). However, the underlying molecular

mechanism for evolution, particularly, which position to substitute in order to modu-

late the conformational dynamics of the protein still presents a major challenge. This

challenge also addresses the issue that the activities of rationally designed enzymes

are almost always universally lower efficiency than their naturally occurring counter-

parts by a couple of orders of magnitude (Wilding et al., 2019; Mak and Siegel, 2014;

Bar-Even et al., 2011). Albeit, recent efforts in the designed enzyme methods have

enabled the successful engineering of proteins with novel catalytic functions (Gerlt

and Babbitt, 2009; Otten et al., 2018; Mak and Siegel, 2014; Bar-Even et al., 2011;

Khersonsky et al., 2010). A rigorous comparison shows that natural and engineered

enzymes have essentially equivalent substrate-binding affinity, yet drastic differences
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in catalytic rates. These low catalytic rates could only slightly be increased after

rounds of directed evolution experiments that allows distal mutations (Khersonsky

et al., 2010). Therefore, the lack of fundamental knowledge of which mutations will

modulate the conformational dynamics towards targeted functions currently prevents

rational engineering of novel enzymes with catalytic efficiency that mirrors that of

the native ones.

In our previous computational studies (Modi and Ozkan, 2018; Modi et al., 2018;

Zou et al., 2015; Kim et al., 2015) we have identified a common underlying “hinge-

shift” mechanism that accounts for many functional features during protein evolution.

Here, “hinges” are the regions in a protein with relatively lower flexibility, that help

coordinate the motions in higher flexibility regions. These computational studies

suggest that an enzyme evolves with subtle changes in dynamics, and concurrently

its function, through a series of hinge-shift mutations by interchanging and altering

distinct, flexible positions with rigid positions. In doing so, evolution exploits an

allosteric network of interactions that can modulate the active site by making distal

substitutions. Several other studies have also validated the critical role played by

allosteric interactions for evolutionary trajectories of enzyme function (Saavedra et al.,

2018; Hadzipasic et al., 2020; Kamp et al., 2018; Wodak et al., 2019b,b; Sinha and

Nussinov, 2001).

In an effort to further validate the hinge-shift mechanism, we have engineered

the minimum number of necessary substitutions in the ancestral GNCA β-lactamase,

such that, the designed mutant is closer, in its activity, to that of the specialist extant

TEM-1 β-lactamase. In order to do so, we use Dynamic Flexibility Index (DFI) (Modi

et al., 2018; Modi and Ozkan, 2018; Campitelli et al., 2020; Kim et al., 2015; Zou et al.,

2015; Nevin Gerek et al., 2013; Glembo et al., 2012) and DCI (Modi and Ozkan, 2018;

Campitelli et al., 2020; Kim et al., 2015; Butler et al., 2015; Larrimore et al., 2017;
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Kumar et al., 2015b) as the metrics for quantifying the flexibility profile and the

coupling profile of various residue positions in GNCA and TEM-1 β-lactamase. We

propose a detailed mechanism, according to which, selected substitution mutations

are applied to GNCA β-lactamase. These gradually drives its dynamics towards that

of TEM-1 β-lactamase. This change in dynamics should cascaded further to a change

in the activity of the designed mutant. This is then tested and validated by functional

assays, where we observed that, as predicted by our analysis, the activity of the de-

signed mutant to degrade benzylpenicillin increased by 3 fold; whereas, the activity

for degrading cefotaxime showed a remarkable decrease of 10,000-fold. These results

indicate that through mutations predicted by the hinge-shift mechanism, we have ra-

tionally engineered the promiscuous GNCA β-lactamase into a specialist enzyme that

mimics TEM-1 β-lactamase. These results further highlight the significant role that

allostery and conformational dynamics play in the functional evolution of enzymes.

5.2 Results and Discussion

5.2.1 Evolution Conserves the Three-Dimensional Structure of β-lactamase While

Changing the Dynamics.

As the first step, to explain the functional differences between the ancestral and

extant β-lactamases, we employ a comparatively recent and less explored dynam-

ics–function paradigm which helps relate protein function with dynamics. We use

all-atom molecular dynamics (MD) simulations (See section 2.1.1) to obtain 400ns of

equilibrium dynamics of ancestral (GNCA, PDB id: 4B88 (Risso et al., 2013)) and

extant (TEM-1, PDB id: 1BTL (Jelsch et al., 1993)) β-lactamases. Thereafter, using

a covariance matrix of size 50ns sampled from a time slot of 100ns to 400ns from

the trajectory, we compute the residue-specific flexibility profiles of the two proteins
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using DFI analysis (see sections 2.2.2 and 2.2.3).

Several computational studies have been performed which predicts the relation-

ship between the function and the flexibility of protein chains (Modi et al., 2018;

Nevin Gerek et al., 2013; Gerek et al., 2009; Gerek and Ozkan, 2011; Glembo et al.,

2012). Flexibility analysis using DFI reveals regions of low flexibility and high flexi-

bility in a protein. Furthermore, the residues belonging to low flexibility region in a

protein, called “hinges”, have been shown to play a critical role in coordinating the

collective dynamics of the protein. These typically act as hubs for communication

between different parts of the protein (Kim et al., 2015; Campitelli et al., 2018; Li

et al., 2015; Khade et al., 2020; Wriggers and Schulten, 1997). Various evolutionary

studies on the flexibility profiles of proteins have revealed that residues with low flex-

ibility have a higher propensity to be conserved in evolution and mutations in such

low flexibility regions usually prove to be deleterious for the function, particularly

when it comes to pathogenic mutations (Nevin Gerek et al., 2013; Butler et al., 2015;

Glembo et al., 2012; Kumar et al., 2015b). On the other hand, residues found in

the higher flexibility regions in a protein have a higher conformational/vibrational

entropy and are able to sample the conformational landscape with a relative ease.

Therefore, these participate in functions demanding a higher mobility such as ligand

recognition, etc. Such regions are observed to be more prone to neutral or compen-

satory mutations throughout evolution and are more forgiving to the effects of amino

acid substitutions.

Upon comparing the DFI profiles of the ancestral β-lactamase, GNCA with the

extant TEM-1 β-lactamase, we identify various differences in their predicted flexi-

bilities (see Figure 5.1). This result is in agreement with our previous DFI analysis,

where we provided insights about the puzzling question of how ancestral β-lactamases

can degrade a variety of antibiotics, exhibiting promiscuity, unlike the specific modern
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homologs that can only inhibit penicillin, while maintaining the same structure (Modi

and Ozkan, 2018; Zou et al., 2015). The special structural dynamics associated with

substrate promiscuity of ancestral β-lactamases was revealed by patterns of high DFI

values in regions close to the active site, illuminating the flexibility required for the

binding and catalysis of different ligands (Modi et al., 2018; Zou et al., 2015). Furhter

on, we carefully examine the differences in the DFI profiles of GNCA and TEM-1 β-

lactamases by comparing their percentile rankings (%DFI). The percentile ranking

gives an idea for the relative ranking of each residue, i.e., a residue with a %DFI

score of 0.1 would imply that the residue is among the 10% least flexible residues.

Comparing these, we observe a number of low flexibility residues in GNCA and TEM-

1 β-lactamases, (i.e., hinges exhibiting <0.2 %DFI) which retained their flexibility

through evolution. We label these residues as common hinges. On the other hand,

we also identified many hinge positions between GNCA and TEM-1 β-lactamases,

which underwent a significant change in their flexibility by increased dynamics or

enhanced rigidity through evolution. We label such residues as non-common hinges

(see Figure 5.2).

5.2.2 Mimicking the Dynamics of TEM-1 β-lactamase by Introducing Hinge Shifts

in GNCA β-lactamase.

In our previous analysis on various protein system like Thioredoxins (Modi et al.,

2018), β-lactamase (Modi and Ozkan, 2018), GFP proteins (Kim et al., 2015), etc.

we have shown that changes in the flexibility profile of a protein, through DFI, is able

to accurately capture the changes in function of the protein. Through computational

studies, we have observed that during evolution, nature manipulates the dynamics

of the protein by shifting its hinge residues—the hinge-shift mechanism, where some

flexible residues become more rigid evolving into hinges, on the other hand, other

92



Figure 5.1: Comparison of the flexibility profile of ancestral β-lactamase (GNCA,
blue) with the modern β-lactamase (TEM-1, red). We identify several regions focused
around residues 166, 205, 223 and 280 where key differences (highlighted, black circles)
in the dynamics of GNCA and TEM-1 β-lactamases, are observed. Typically, residues
with the percentile rank of their DFI score (%DFI) less than 0.2 are deemed as rigid
hinges. These residues have been observed to play a critical role in the functional
dynamics of the protein.

rigid hinge positions give up their rigidity to become more flexible, leading to change

in dynamics to adapt to a new environment or to evolve a new function (Modi and

Ozkan, 2018; Modi et al., 2018; Campitelli et al., 2020; Kim et al., 2015). In order to

perform these hinge-shifts without sacrificing the 3D fold, the residues with moderate

flexibility are usually substituted making them rigid. This process is accompanied by

a loss of rigid regions in the ancestral proteins in the form of compensation in order

to preserve the fold and stability of the protein. Here we attempt to manipulate the

dynamics of the ancestral β-lactamase (GNCA) such that it emulates the dynamics

and function of a modern β-lactamase (TEM-1). To achieve this, we target a mini-

mum number of substitutions for the positions involved in hinge-shifts. This is done

first in-silico and then computational predictions are characterized experimentally in

order to validate and gain a deeper understanding of the underlying mechanism of

evolution for modulation of the function from exhibiting promiscuous activity towards

antibiotics to becoming a specialist.
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Sequentially Conserved Hinges

Sequentially Non-Conserved Hinges

GNCA Hinges TEM-1 Hinges

258T
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Figure 5.2: A Venn diagram showing the conservation of amino acids in the common
and non-common hinges in GNCA and TEM-1 β-lactamase. The circles schemati-
cally (not to scale) represent residues in GNCA and TEM-1 β-lactamase with or
without amino acid substitutions. In the amino acid sequence of TEM-1 and GNCA
β-lactamases shown above, the letter codes are colored based on their DFI scores
with blue being rigid and red as flexible. We observe several residue positions which
have preserved their rigidity through evolution (common hinges, 41 in total) and
also some with shifts in hinges (non-common hinges, 10 in GNCA and 11 in TEM-1
β-lactamase). Many of these residue positions have conserved the identity of their
amino acids (i.e., sequentially conserved), while many have evolved into a different
amino acid (hence, sequentially non-conserved). The residue positions which have
maintained their rigidity without conserving their amino acid identity are highlighted
by a green asterisk. The residues where flexibility increased or decreased beyond 0.2
(non-common hinges) along with a substitution are highlighted with a pink asterisk.

We first focus on the critical role played by hinges (i.e., low flexibility residue

positions) in GNCA and TEM-1 β-lactamases. With the help of flexibility profile

obtained by DFI, we have identified several hinge positions in ancestral, GNCA and

the extant, TEM-1 β-lactamase which have preserved their low dynamic flexibility

(common hinges) and also identified the positions that exhibit low-flexibility either

in GNCA or TEM-1 β-lactamase, (non-common hinges) as shown in Figure 5.2.
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In order to shift the dynamics of GNCA towards TEM-1 β-lactamase, we aim to

use a rational design principle of the hinge-shift mechanism where we attempt to re-

produce the shift in hinge locations made through evolution. We therefore substitute

the positions of the residues in GNCA with the corresponding amino acids identified

in TEM-1 β-lactamase in the following two sets:

• Non-common hinges and sequentially non-conserved residue positions (Set X):

Here, we identify residue positions in GNCA β-lactamase which have been sub-

stituted in TEM-1 β-lactamase while becoming either flexible (hinge loss) or

rigid (hinge gain) (residues highlighted with a pink asterisk in Figure 5.2). As

discussed earlier, such residue positions are expected to play an important role

in describing the functional landscape of the protein, and typically substitu-

tions there lead to the modulation of dynamics and hence, the function (the

hinge-shift mechanism for evolution (Modi and Ozkan, 2018; Kim et al., 2015;

Modi et al., 2018; Zou et al., 2015)). We follow this mechanism by considering

sequentially non-conserved hinge residues in GNCA and TEM-1 β-lactamases

for substitutions. In order to identify the minimum set of such hinges to repli-

cate the desired change where it would shift the DFI profile of GNCA towards

that of TEM-1 β-lactamase, we select only those non-common hinges in GNCA

β-lactamase which are dynamically coupled with other non-common hinges in

TEM-1 β-lactamase. The strength of coupling of a residue with another residue

is quantified using DCI analysis, where we select only those residues which have

a %DCI score of higher than a coupling threshold of 0.8 (Figure 5.3). Here,

%DCI represents the percentile ranking of the DCI score of residues. Therefore,

a residue with a %DCI score of greater than 0.8 would imply that its score is

among the 20% of residues with the highest score. Further on, in the DCI anal-

ysis, similar to the calculation of DFI, the coupling between different residues of
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GNCA and those of TEM-1 β-lactamase are calculated using covariance of fluc-

tuations between pairs of residues obtained with the help of MD simulations (see

section 2.2.4). For the analysis, we perturbed the sequentially non-conserved

and non-common hinge positions and probed the coupling of the rest of the pro-

tein with these residues (see section 2.2.4). These selected residues in GNCA

β-lactamase are then substituted with the amino acids at corresponding residue

identities of TEM-1 β-lactamase. These residues are shown in Figure 5.4A.

• Common hinges and sequentially non-conserved residue positions (Set Y): As

shown in Figure 5.1 and 5.2, there are a large number of residues which main-

tained their low flexibility, (i.e., remained as hinges) during the evolution from

GNCA to TEM-1 β-lactamase (residues highlighted with a green asterisk in

Figure 5.2). However, many of these positions are substituted in TEM-1 β-

lactamase as we call them sequentially non-conserved common hinges. This

suggests that these common hinges are crucial for the dynamics underlying the

function, therefore, these positions must exhibit long distance communications

with other non-common hinges within the 3D network of interactions. Because

of the shifts in hinges in other part of the protein, some of these dynamically

conserved positions (aka common hinges) need to be substituted in order to

compensate the change in flexibility of the hinge-shift substitutions in other

parts. Hence, we identify the sequentially non-conserved and common hinges

in GNCA and TEM-1 β-lactamase which exhibit high dynamic coupling to the

other sequentially non-conserved and non-common hinge positions obtained us-

ing the DCI analysis. In this case, we perturb the sequentially non-conserved

and common hinges in GNCA and TEM-1 β-lactamase in order to calculate

the DCI score of the rest of the chain with respect to these residues. From
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the analysis, highly coupled residues are selected which exhibit a high %DCI

score with a threshold value of 0.8 (Figure 5.3B). Afterwards, we substitute

the residue positions selected in mutation set Y in GNCA β-lactamase with

the amino acids in the corresponding residue ids in TEM-1 β-lactamase. These

residues are shown in Figure 5.4B. Further details of residues selected in the

Set Y are provided in the Figure A.1 in Appendix A.

Highly 
Coupled

Not 
Coupled

A) B)

Figure 5.3: Criteria for selecting substituting residues in sets X and Y. The coupling
of the selected common and sequentially non-conserved hinges comprising (A) X
mutation set in GNCA and TEM-1 with other Non-common and sequentially non-
conserved hinges in GNCA and TEM-1 β-lactamase, and (B) Y mutation set in
GNCA and TEM-1 with other Non-common and sequentially non-conserved hinges
in GNCA and TEM-1 β-lactamase. The hinge residues selected for the two sets are
strongly coupled (%DCI > 0.8) to other such non-common and non-conserved hinge
residues in both GNCA and TEM-1.

We analyzed the impact of the substitutions from set X and set Y on the flexibility

profiles of GNCA β-lactamase. In order to do so, we synthesized the mutants in silico

using PyMol (Schrödinger, LLC, 2015). The mutant containing substitutions from

set X is called GNCA-X and the one with substitutions from set Y is called GNCA-

Y. Afterwards, we performed MD simulations of the mutants (see section 2.1.1) to

obtain 400ns of equilibrium dynamics. Thereafter, using a covariance matrix of size

50ns sampled from a time slot of 100ns to 400ns from the trajectory, we compute the

residue-specific flexibility profiles of the two proteins using DFI (see sections 2.2.2

and 2.2.3).
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Figure 5.4: DFI scores of residues selected for substitution in sets X and Y. (A)
Non-common and sequentially non-conserved residues substituted in set X shown as
sticks on the cartoon representation of GNCA and TEM-1 β-lactamase. (B) Common
and sequentially non-conserved residues substituted in set Y shown as sticks on the
cartoon representation of GNCA and TEM-1 β-lactamase. The substituting residues
are colored based on their DFI profile where blue sticks represent residues with low
DFI (hinge) and the red sticks represents residues with high DFI (flexible/non-hinge).
The catalytic positions are shown in dark gray.

We observe that, substitutions from set X has impacted the dynamics of GNCA

such that a few of its residues share their dynamic flexibility with TEM-1 β-lactamase,

creating hinge shifts particularly around residues 185 (see Figure 5.5). In addition,

the critical role played by the dynamical coupling between the hinges selected in

set X and the rest of the non-common and non-conserved can also be observed by

performing substitutions at all the non-common and non-conserved hinge positions

(see Figure A.3 in Appendix A). Mutating all the non-common and non-conserved
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hinges in GNCA (forming the mutant GNCA-AllNN) have a major impact on the

dynamics of the catalytic pocket of GNCA β-lactamase, driving the flexibility profile

away from either of the wild types. On the other hand, performing the substitutions at

residues from the set Y has changed the flexibility profile of GNCA quite significantly

and as a result, GNCA-Y no longer shares the dynamic similarities with either of the

two enzymes (see Figure A.2 in Appendix A).

A)

B)

GNCA GNCA-X TEM-1
Flexible %DFI=1Rigid %DFI=0

Figure 5.5: Impact of substitutions from set X on the flexibility profile of GNCA
β-lactamase. (A) This is shown by comparison of their cartoon representations color
coded with the flexibility profile. These are also shown on (B) where the %DFI profile
of the mutant GNCA-X is compared with the wild types GNCA (blue) and TEM-
1 (red) β-lactamase. The regions where GNCA-X mimics the flexibility profile of
TEM-1 are highlighted.

Further on, the substitutions from set X and Y can be combined into one set (set

XY) to create another mutant (GNCA-XY). We synthesized the mutant in silico and

performed all atom equilibrium MD simulation (see section 2.1.1 to obtain 600ns of

simulation data. Thereafter, using a covariance matrix of size 50ns sampled from

a time slot of 200ns to 600ns from the trajectory, we compute the residue-specific
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flexibility profiles of the two proteins using DFI analysis (see sections 2.2.2 and 2.2.3).

Combining the substitutions from set X and Y brought the dynamics of GNCA closer

to TEM-1 β-lactamase, Figure 5.6A,C. Particularly, set XY mutations was able to

induce hinge-shifts in the GNCA β-lactamase around residues 220 and 280, that bring

the flexibility profile XY mutant closer to TEM-1 β-lactamase.

A better approach to evaluate the degree of impact of these mutations on the dy-

namical flexibility is with the help of principal component analysis (PCA). For this,

we align and arrange the %DFI profiles of the mutants along with those of GNCA

and TEM-1 β-lactamase such that each protein can be represented by a vector of

dimension N, where N represents the total number of residues in each protein after

alignment. This data can be stored in a matrix which can be decomposed to give

its principal components (the details of this method are described in section 2.2.5).

Thereafter, we compare the projection of the vectors representing proteins along low-

est principal components in the vector space in order to observe the salient features

differentiating them. Comparing the lowest two principal components of the flexi-

bility profiles of the proteins showed that, as expected, GNCA-XY is indeed closer

to that of TEM-1 β-lactamase (Figure 5.6B) suggesting that these substitutions may

make the designed ancestral enzyme more specific. In addition, this analysis also

indicates that the mutations from set X and set Y have a non-additive impact on

the dynamical landscape of GNCA β-lactamase. This points towards a possible role

of epistasis (Romero and Arnold, 2009; Wu et al., 2019; Miton and Tokuriki, 2016;

Zhang et al., 2012; Weinreich et al., 2018) between the substitutions from sets X and

Y on the background of GNCA β-lactamase.

Even though the PCA analysis showed similarities between the flexibility profiles

of the designed mutant and wild type TEM-1 β-lactamase, we still see that there are

some significant differences between the hinges of TEM-1 β-lactamase and mutant
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GNCA-XY
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TEM-1
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Flexible %DFI=1Rigid %DFI=0

Figure 5.6: Comparing the flexibility profile of wild type GNCA and TEM-1 β-
lactamase with the GNCA mutant created by performing mutations from sets X
and Y together (GNCA-XY) using principal component analysis (B). It is observed
that GNCA-XY mimics the flexibility profile of TEM-1 β-lactamase more closely as
compared to the mutants created by mutation sets X and Y alone, particularly around
residues 220 and 280 (highlighted) (C), also seen in their cartoon representations (A)
color coded with the flexibility profile of their residues, red being flexible and blue
rigid.

GNCA-XY. Especially in some regions around residues 203-215, 180-190 and the C

terminal of the protein, the mutant was not able to replicate the flexibility profile of

TEM-1 β-lactamase. Particularly, some of these positions where mutations failed to

recapitulate flexibility profiles of TEM-1 β-lactamase correspond to the non-common

hinges which are also conserved between GNCA and TEM-1 β-lactamases, hence we

could not simply introduce substitutions by inferring the sequence variations between

the ancestral and the extant β-lactamases as we did for the other non-conserved

and non-common hinges. Therefore, in an attempt to bring the GNCA-XY mutant

even closer to TEM-1 β-lactamase, we now focus on the flexible sites that exhibit

allosteric dynamic coupling interactions with the catalytic site. These distal sites
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which are highly coupled to the catalytic sites through an allosteric network of dy-

namic interactions are called Dynamic Allosteric Coupling (DARC) spots. These play

a critical role in the evolution of protein dynamics towards new function (Modi and

Ozkan, 2018; Campitelli et al., 2020; Butler et al., 2018; Kumar et al., 2015b).

5.2.3 Role of Allostery Through Non-Invasive DARC Spots (Set Z) Brings Mutant

GNCA-XY Closer to TEM-1 β-lactamase.

Through our previous ancestral studies, we have observed that nature introduces

substitutions at the DARC spots that are distal from the active site, where these

mutations act as small perturbative changes, and modulate the dynamics of the

protein/catalytic site in order to evolve a new function or adapt to new environ-

ment (Modi and Ozkan, 2018; Modi et al., 2018; Campitelli et al., 2020). Indeed, this

is also true for β-lactamases. First, we observed that a large fraction of the mutations

(the clinically isolated mutations or those that emerged from directed evolution) are

far from the active site, yet they modulate the equilibrium dynamics of the protein

to confer resistance to antibiotics (Modi and Ozkan, 2018; Campitelli et al., 2020).

Furthermore, the DFI and DCI analysis of the exhaustive set of 5000 mutations in

TEM-1 β-lactamase (Stiffler et al., 2015) have shown that the sites exhibiting mid-

range flexibility and high dynamic coupling with the active site contribute most to

the emergence of degrading different antibiotics (Modi and Ozkan, 2018; Modi et al.,

2018; Campitelli et al., 2020). Therefore, in order to emulate nature, we also identify

mid-flexible residues that are allosterically coupled to the active site (i.e., are DARC

spots (Modi and Ozkan, 2018; Campitelli et al., 2020; Butler et al., 2018; Kumar

et al., 2015b)). Since the active site positions are the rigid sites exhibiting low DFI

throughout the evolution, they are the part of the sequentially conserved and com-

mon hinges. However, by introducing substitution at the DARC spots, we also aim
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to induce hinge shifts at non-common hinges, which are also sequentially conserved.

Hence, we only select the DARC spot residues that are not only distal (i.e., they are

more than 8Åaway from the catalytic pocket) but also exhibit high dynamic coupling

(i.e., %DCI > 0.8) with such non-common and sequentially conserved hinge sites (see

Figure 5.7). These steps were taken in order to minimize the deleterious impact of

the substitutions on the thermal stability and the kinetic activity of the protein. The

residues closer to the active sites typically exhibits higher dynamic coupling with the

active sites as they are directly interacting; however, the substitutions at those sites

are typically more invasive, most likely impact the dynamics and hence, the function.

Therefore, selecting DARC spots reduces the perturbative impact of mutations as

they are relatively more flexible, which agrees with our earlier proteome wide analy-

sis showing that evolving sites are usually flexible sites. Due to their high flexibility,

they can compensate for changes upon substitution (Campitelli et al., 2020; Butler

et al., 2015; Kumar et al., 2015b). However, these DARC spots are not only flexible,

but they also exhibit high dynamic coupling with the active or functionally important

hinges sites. Therefore, the dynamics of the protein can tolerate the effect of substitu-

tions at such residues allowing us to make fine changes by modulating the dynamics of

the other functional sites (Modi and Ozkan, 2018; Modi et al., 2018; Campitelli et al.,

2020; Nevin Gerek et al., 2013). Furthermore, the fact that these DARC spots exhibit

high dynamic coupling with the non-common and sequentially conserved hinges allow

us to exploit their compensatory network interactions to modulate the flexibility of

these hinges.

Thereafter, we performed MD simulations of the mutant generated by performing

mutations from set Z on GNCA-XY mutant (GNCA-XYZ) following the protocol

described in section 2.1.1. Using this, 1µs of equilibrium simulation trajectory was

obtained. Thereafter, using a covariance matrix of size 50ns sampled from a time
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Figure 5.7: Criteria for selecting residues for substitution in Set Z. (A) The coupling
of residues selected for substitutions in set Z with the non-common and sequentially
non-conserved hinges. We have selected these as they exhibit higher coupling (%DCI
> 0.8) with the non-common and sequentially non-conserved hinges. Apart from this,
these residues also have a medium flexibility and are distally located from the active
site (> 8Å). (B) In addition, the residues in set Z are also coupled to the active site
as shown by the cartoon representation of GNCA β-lactamase where each residue is
color coded with the %DCI score with respect to the active site. Red colored residues
are the most coupled (%DCI=1) and white are the least coupled (%DCI = 0). The
residues in set Z are shown as sticks. We can observe that these also show a high
coupling with the active site (%DCI > 0.8).

slot of 300ns to 1000ns from the trajectory, we compute the residue-specific flexibility

profiles of the two proteins using DFI (see sections 2.2.2 and 2.2.3).
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Afterwards, we analyzed the impact of the substitutions from set X, Y and Z

together by clustering this DFI profile with the DFI profiles of the wild type GNCA

and TEM-1 β-lactamase and those of other mutants, as shown in Figure 5.8. The

comparison of the flexibility profiles of the GNCA mutant with mutations from set

XY and set Z together and the wild type GNCA and TEM-1 β-lactamases (Fig-

ure 5.8A,C) shows that the mutant successfully recapitulates the dynamics of TEM-1

β-lactamase. It is able to strengthen the shortcomings of GNCA-XY mutant in regions

close to 180-190, 203-215 and 153-157. This is also indicated by the PCA analysis

of the mutants from sets X, XY and XYZ with the wild type proteins by comparing

their first two principal components, Figure 5.8C. We observe that, as expected, the

mutant GNCA-XYZ lies very close to the wild type TEM-1 β-lactamase, which is

an improvement over mutants with mutations from set X and XY suggesting that

the ancestral variant GNCA-XYZ with merely 21 substitutions should degrade only

penicillin with better efficiency than GNCA β-lactamase, mimicking the catalytic ac-

tivity of TEM-1 β-lactamase. Therefore, using these 21 substitutions, we are able

to dynamically replicate the effect of a total of 119 substitutions observed between

GNCA and TEM-1 β-lactamase.

5.2.4 Experimental Characterization Confirms Antibiotic Specificity of

GNCA-XYZ

Based on the mutation sets discussed in the last sections, the mutants GNCA-

X, GNCA-XY and GNCA-XYZ were synthesized. Further on, the activity of the

synthesized mutants against the antibiotics cefotaxime (CTX) and benzyl-penicillin

(BZ) was also characterized (see Appendix A). The experimental characterization

of wild type ancestral and extant β-lactamases shows that, as shown by previous

studies (Risso et al., 2013), GNCA β-lactamase is promiscuous in its activity towards
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Rigid %DFI=0 Flexible %DFI=1

Figure 5.8: (A and B) Comparing the flexibility profile of wild type GNCA and
TEM-1 β-lactamase with the GNCA mutants created by performing mutations from
set Z over GNCA-XY (GNCA-XY). It is observed that GNCA-XYZ very closely
mimics the flexibility profile of TEM-1 β-lactamase, particularly around 185, 155,
210, and the C-Terminus (highlighted regions in B). The cartoon representations
are color-coded with the flexibility profile of their residues, red being flexible and
blue being rigid. This can also be observed from the comparison of their lowest two
principal components (C)

antibiotics BZ and CTX by not showing any selective preference towards any of them

(with turnover rates of 0.3s−1µM−1 and 1.2s−1µM−1 respectively). On the other

hand, evolution has turned TEM-1 β-lactamase into a specialist which preferentially

catalyzes only BZ with a higher turnover rate (26s−1µM−1) in contrast with CTX

(2.6× 10−3s−1µM−1).

The mutants proposed here through our computational analysis by performing

substitutions from set X (GNCA-X) reduced the turnover rates for CTX (2.5 ×

10−4s−1µM−1). However, it has also rendered it ineffective towards BZ by reducing its

turnover rate by a factor of ten (0.03s−1µM−1). We did not perform an experimental

characterization of GNCA-Y as it was rejected as a standalone in our initial round of
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computational analysis. The turnover rates of the mutant with the combined muta-

tions from X and Y (GNCA-XY) showed an improvement over the GNCA-X (as pre-

dicted to be slightly closer to TEM-1 β-lactamase), where its turnover rate for BZ did

not show appreciable change (0.22s−1µM−1). The mutant however showed a remark-

able decrease in its turnover rate for CTX (2.6× 10−5s−1µM−1), thus agreeing with

the predicted analysis that introduced substitutions slowly drives GNCA β-lactamase

from promiscuity to specificity, by reducing the catalysis of CTX while preserving the

turnover rate for catalysis of BZ. Interestingly, with the addition of substitutions at

DARC spots from set Z, the mutant GNCA-XYZ becomes more specific in its activity

towards BZ by a three-fold increase in its turnover rate (0.9s−1µM−1). Moreover, its

turnover rate towards CTX also showed a significant reduction (< 1×10−4s−1µM−1)

making it more preferential towards BZ which is a functional characteristic property

of TEM-1 β-lactamase. This data is shown in more detail in Table 5.1 and the method

is described in more detail in Appendix A.

As a control, we also wanted to check if the substitutions that drove GNCA to-

wards being a specific enzyme with enhanced degradation rate for BZ are due to the

ones that are closer to the active site. Therefore, we also studied the specific mutants

with substitutions in X, Y and Z which lie with relatively closer to the catalytic site

in β-lactamase enzymes (T235S, T237A, T243S in GNCAT235S T237A T243S and T235S,

T237A, T243S, C69M in GNCAT235S T237A T243S C69M). Upon experimental character-

ization of the activity of these new mutants, we observe that these mutations alone

have rendered the mutant ineffective to catalyze both BZ as well as CTX as shown

by their turnover rates (Table 5.1). This emphasizes the importance of allosteric

interactions in modulating the function of an enzyme and the key part they play in

evolution. It is also interesting to point out the turnover rates of GNCA-AllNN where

again as predicted, we observe a striking reduction in the turnover rates for catalysis
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Table 5.1: Experimental characterization of wild type β-lactamase GNCA and TEM-
1, and the mutants created by mutation sets X, Y and Z by calculating their turnover
rates for catalysis of antibiotics benzyl-penicillin (BZ) and cefotaxime (CTX) (all
values are in s−1µM−1).

Protein BZ (kcat/kM) CTX (kcat/kM)

TEM-1 26± 4.7 2.6× 10−3 ± 1× 10−3

GNCA 0.3± 0.1 1.2± 0.3

GNCA-X 0.03± 0.01 2.5× 10−4 ± 5× 10−5

GNCA-XY 0.22± 0.1 < 1× 10−4

GNCA-XYZ 0.9± 0.3 1× 10−4

GNCAT235S T237A T243S 0.03± 0.01 3.2× 10−4 ± 1× 10−4

GNCAT235S T237A T243S C69M 0.05± 0.01 3.0× 10−4 ± 1× 10−4

GNCA-AllNN 0.03± 0.006 1.7× 10−4 ± 1.7× 10−5

of BZ as well as CTX.

Subsequently, we also obtained the crystal structure of the final engineered en-

zyme, GNCA-XYZ (see Appendix A for crystallographic details). We observed that

the substitutions from mutation set X, Y and Z has preserved the three-dimensional

fold of the enzyme (RMSD < 1 Å) (Figure 5.9A). We computationally characterized

the flexibility profile of the mutant by obtaining its dynamics through an MD simu-

lation using the new crystal structure as the starting point and then calculating the

DFI flexibility profile (GNCA-XYZ(X-ray)). Afterward, we compared this flexibility

profile with the DFI profile predicted earlier of the mutant and that of wild type

TEM-1 β-lactamase, (Figure 5.9B). We observe that, as predicted, the flexibility pro-

file of the engineered mutant is very similar to the DFI profile of the wild type TEM-1

β-lactamase.
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A)

B)

Figure 5.9: Comparing the structure and flexibility profile obtained from x-ray
crystallography of the synthesized mutant GNCA-XYZ with the predicted flexibil-
ity profile. (A) Superimposing the cartoon representation of the crystal structure of
GNCA-XYZ (blue) obtained from X-ray crystallography over the wild types GNCA
(green) and TEM-1 β-lactamase (red) shows that it shares the same 3D fold as the
wild type protein (RMSD < 1Å). (B) Comparing the DFI profile of the mutant
GNCA-XYZ calculated using MD simulation starting from the crystal structure ob-
tained by X-ray crystallography (black broken line) with the DFI profile of the wild
type TEM-1 β-lactamase (red). We observe that the mutant, as predicted (blue),
is able to successfully mimic the rigid regions of TEM-1 β-lactamase, and also its
flexible regions with remarkable accuracy. Moreover, the DFI profile of the mutant
calculated using the structure obtained through X-ray crystallography also matches
with our prediction obtained through in silico mutations.

5.2.5 NMR Analysis Shows Dynamical Differences between Wild Type GNCA And

Mutant GNCA-XYZ

In the previous sections, we have computationally designed GNCA-XYZ function

through attempts to modulate its dynamics by substituting hinge positions and re-
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gions coupled to hinge positions with the goal of shifting dynamic flexibility profile of

GNCA towards that of TEM-1 β-lactamase, (Figure 5.8). As DFI profiles have been

shown to correlate with functional outcomes (Modi et al., 2018; Campitelli et al.,

2020), our hypothesis, that the function of the engineered mutant (GNCA-XYZ)

should behave more like TEM-1 β-lactamase, with regards to the specificity and cat-

alytic activity. We have shown that the experimental characterization of GNCA-XYZ

supports the hypothesis as we observe a significant difference in the turnover rates

of GNCA-XYZ with antibiotics CTZ and BZ as compared to ancestral and extant

enzymes (Table 5.1). Moreover, the GNCA-XYZ structure from X-ray crystallogra-

phy confirms that the 3D structure is preserved, indicating that the engineered 21

substitutions have introduced changes only in dynamics. In order to further validate

the computational predictions that the changes in dynamics govern the function of

GNCA-XYZ, we performed solution NMR experiments. A standard protein NMR ex-

periment couples amide proton and nitrogen atoms giving “probes” throughout the

protein backbone, which results in a fingerprint type identifying 2D spectrum. These

HSQC-based (heteronuclear single quantum coherence) experiments allow for a qual-

itative assay of the folded state and structural ensemble of a given protein in solution.

One attribute of HSQC data is the proton dimension dispersion, consistent with the

X-ray crystallography data, both GNCA and GNCA-XYZ have broad proton disper-

sion indicating that both proteins are well-folded in solution. A qualitative assessment

of dynamics can also be gleaned by these experiments. For a well-structured rigid

protein, there is nearly a one-to-one correlation between the number of NMR spectral

resonances and the number of residues, which arises naturally as the HN bond is a

de facto probe and gives rise to a discreet resonance. In the context of a protein with

increased dynamics (which is GNCA-XYZ in this case), the correlation between the

resonance number and residue number can diverge away from parity depending on
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the timescales associated with conformational fluctuations between states. Consistent

with a well-folded and relatively rigid protein, the HSQC data from GNCA identifies

over 90% (253 resonances) of the expected number of resonances, which is consistent

with GNCA being rigid. GNCA-XYZ, on the other hand, shows about 60% (158

resonances) of the expected resonances, which is consistent with protein dynamics on

the intermediate NMR timescale (Jaudzems et al., 2010) (see Figure 5.10).

Beyond resonance number and proton dispersion, the HSQC peak resolution and

intensity heterogeneity can also serve as qualitative measures of protein dynamics.

Comparatively, GNCA-XYZ has lower peak resolution and increased peak intensity

heterogeneity, which is consistent with it having increased backbone dynamics over

the relatively rigid GNCA protein. Taken together, the NMR data complement the

crystallography by showing that GNCA-XYZ is well structured in solution. Similarly,

the data support the computational predictions that GNCA-XYZ has increased dy-

namics compared to GNCA due to the loss of hinges after substitutions from the XYZ

set as observed from the comparison of the DFI profile of the mutant with the wild

type GNCA β-lactamase (see Fig. 3). This offer validation to the computationally

predicted hypothesis of protein dynamics contributing to the regulation of protein

function. The method is described in more detail in Appendix A.

5.3 Conclusion

In this study, we developed a design principle to evolve the antibiotic activity of

ancestral β-lactamase (GNCA) to mimic the activity o its extant counterpart (TEM-1

β-lactamase) by focusing only on the differences in their dynamics obtained through

DFI profiles. It has been observed that the two proteins share relatively high sequence

identity (about 50%) as well as a common 3D structure (Zou et al., 2015; Risso et al.,

2013). However, despite having these similarities, they are functionally divergent.
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Figure 5.10: HSQC NMR data indicate that GNCA-XYZ is more dynamic than
GNCA β-lactamase. An overlay of GNCA-XYZ (black) and GNCA (blue) 15N-HSQC
spectra. Both proteins are well-structured as noted in the >3 ppm proton dispersion
and consistent with the X-ray structures of a mixed α-helix and β-sheet structure.
However, GNCA-XYZ shows spectral features consistent with increased protein dy-
namics. Specifically, GNCA-XYZ shows fewer resonances, less peak resolution, and
increased peak intensity heterogeneity; all are markers of increased protein dynamics
relative to GNCA. Data were collected at 850 MHz 1H frequency and 30 ◦C.

Specifically, ancestral β-lactamase exhibits promiscuity towards the catalysis of the

two types of antibiotics (CTX and BZ) by having their turnover rates in the proximity

of each other. On the other hand, extant β-lactamase shows more specificity towards

its choice of antibiotic by having a 10000-fold difference in its turnover rate for CTX

and BZ (Risso et al., 2013).

As shown by our previous studies (Modi and Ozkan, 2018; Modi et al., 2018;

Campitelli et al., 2020; Glembo et al., 2012; Nevin Gerek et al., 2013; Butler et al.,

2018; Kumar et al., 2015a; Kim et al., 2015), such functional diversity between an-

cestral and extant enzymes can be explained by focusing on the convergent as well
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as divergent features in the flexibility profile of their residues obtained through our

computational analysis (DFI). The flexibility profiles were obtained through DFI by

performing molecular dynamic simulations of the enzymes. Through DFI, the enzyme

residues are separated into rigid and flexible zones, and it was observed that the evolu-

tion has manipulated the catalytic activity of the enzyme by performing subtle shifts

in the hinge regions of their DFI profiles. This mechanism of hinge-shift was also

observed in the evolutionary history of other protein systems like Thioredoxin (Modi

et al., 2018) and GFP (Kim et al., 2015). Following this, the hinges in GNCA and

TEM-1 β-lactamase, were classified based on whether they are substituted between

the two enzymes and if their rigidity is maintained through evolution.

In order to mimic the shift in hinges, we first focused on a subset of hinges that

have altered their dynamics by gaining flexibility. On the other hand, some other flex-

ible sites were rigidified and turned to hinges through substitutions (set X). Through

this, we were able to successfully emulate hinge-shifts in several regions of the protein

(see Figure 5.5). Second, we turned our attention to hinges, which have retained their

rigidity despite having substitutions. This indicates the critical role played by these

residues in the enzyme’s 3D network of interactions to mediate dynamics. However,

these common hinges need to be substituted to compensate for the new hinge forma-

tions observed by substitution in X set. Thus, we identified Y set substitutions by

measuring the long-range dynamic interaction with the X set positions through our

DCI metric. Substitutions from set Y, on their own, had a deteriorating impact on

the dynamics of the protein (see Figure A.2). However, together with set X (called

set XY), these substitutions compensate the impact of the previous substitutions and

bring the flexibility profile of the mutant very close to the target profile of TEM-1

β-lactamase (see Figure 5.6).

Lastly, we emphasized on the critical role of dynamic allosteric interactions in
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fine-tuning the function of the enzyme. We focused on the residues with medium

flexibility (due to their less-invasive nature upon substitution (Modi and Ozkan, 2018;

Butler et al., 2015; Kumar et al., 2015b)), which also exhibit high dynamic coupling

with the catalytic sites (DARC spots) obtained through DCI. Of these, a subset was

selected that show stronger coupling with other non-common hinge residues that are

not substituted during evolution (set Z). This was the key step in our design strategy

as it allowed us to distally modulate the flexibility of these hinge positions without

directly mutating them. Adding substitutions in set Z with the previous substitutions

(set XYZ), we managed to shift DFI profile of the engineered mutant to that of

TEM-1 β-lactamase. Particularly bringing changes in certain hinge positions that

were missing in the mutant with Set XY substitutions (see Figure 5.8). Experimental

characterization of the mutant also corroborates with our prediction as we are able

to introduce a 10000-fold disparity in the turnover rates for antibiotics by enhancing

its turnover rate catalyzing BZ (by an order of 3, a much harder goal to achieve)

and, at the same time suppressing its turnover rate for CTX (by an order of 104) (see

Table 5.1). Thus, showing the success of the hinge-shift mechanism for engineering

the desired functional activity.

Overall, we used an approach motivated by conformational dynamics to rationally

designing a promiscuous enzyme, GNCA, toward an enzyme with better efficiency to

a specific substrate similar to TEM-1 β-lactamase. First, our dynamics approach

uses the hinge-shift mechanism, presented in our earlier studies (Modi and Ozkan,

2018; Modi et al., 2018; Kim et al., 2015; Campitelli et al., 2018) highlighting how

compensation of enhanced flexibility of rigid (hinge) sites with rigidification of flexible

sites modulate the conformational dynamics toward the desired function. Second, our

approach uses the protein flexibility profiles as an optimization criterion towards the

desired function such that it checks whether the substitutions shift the flexibility pro-
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file of the mutant from that of wild type to the flexibility profile of the enzyme with the

desired function. The success of our dynamics-based design approach brings to light

the importance of protein dynamics and allosteric interactions in engineering new dy-

namics for an enzyme which is a current Achilles’ heel in enzyme design (Khersonsky

et al., 2006; Khersonsky and Tawfik, 2010; Tokuriki and Tawfik, 2009b; Bar-Even

et al., 2011; Khersonsky et al., 2010). It also opens up novel computational design

principles to enhance or fine-tune the activity of enzymes which is in stark difference

from any other computational enzyme design that optimizes the interaction within a

3D structure near catalytic site (Romero and Arnold, 2009; Otten et al., 2018).
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Chapter 6

ION COMPETITION REDUCES THE FITNESS OF AN

ANTIBIOTIC-RESISTANT RIBOSOME VARIANT

This chapter is adapted from “Moon, E. C., Modi, T., Dong-yeon, D. L.,

Gracia-Ojalvo, J., Ozkan, S. B & Süel, G. M. A magnesium tug-of-war impedes

bacterial antibiotic resistance. Under writing process.”

In previous chapters, we have explored protein evolution through the lens of al-

losteric regulations. Allostery, generally, is considered to be a phenomenon at the level

of a protein. However, proteins do not function in isolation. They are part of a more

elaborate machinery at a cellular level. Therefore, a question which begs to be an-

swered is—do allosteric interactions in a protein also impact the function/activity of

other molecules in the cell and if so how? Here, we address this question by studying

the dynamics of ribosome molecule in an E. coli.

Ribosomes require a large amount of magnesium ions for the stability and func-

tionality to neutralize the electrostatic repulsion and to spatially coordinate rRNA

functional groups. In this study, we focus on the L22* variant of the ribosome which

is responsible for providing antibiotic resistance to the bacteria. However, despite

this advantage, the antibiotic-resistant ribosome variant has not established itself as

the “wild type” form. We explore this by modeling the interactions within a wild

type ribosome and its variant (L22*) using elastic network models. The dynamics of

the two ribosomes through the Dynamic Flexibility Index analysis presents a stark

difference in their flexibility profiles, particularly suggesting that L22* enhances the

association of magnesium ions within the ribosome. This in turn disrupts the delicate

116



balance of binding between magnesium ions with ribosomes and with ATP molecules

(as active ATP molecules also need to be complex with magnesium ions). It is further

experimentally verified by our collaborators at Süel Lab that increased magnesium as-

sociation with the L22* ribosome reduce the concentration of free magnesium ions in

the cell, which may in turn constitute a physiological cost for the antibiotic-resistant

ribosome variant. We thus introduce here the concept of Ionic Allostery, where ions

transmit the effect of ribosome association to distant ATP molecules, allowing for

long-range regulation of activity. This is also described with the help of a toy model

of kinetics of the competition between ribosome and ATP molecules in a cell for

magnesium ions by our collaborator Jordi Garcia-Ojalvo.

6.1 Introduction

Ribosomes are essential components of all living cells and are required for protein

synthesis, cellular growth, and replication. These are also a major target for antibiotic

drugs to control bacterial growth. Interestingly, studies have identified the sponta-

neous emergence of natural ribosome variants in bacteria that confer resistance to

antibiotics, such as aminoglycosides (Sharrock et al., 1981; Thorbjarnardóttir et al.,

1978; Buckel et al., 1977; Nessar et al., 2011; Criswell et al., 2006). For example, in

Bacillus subtilis, a spontaneously arising ribosome variant (L22*) has a sequence ex-

tension of the short loop comprising its L22 subunit. This L22* variant is associated

with conferring resistance to erythromycin and aminoglycoside antibiotics (Criswell

et al., 2006). Given that such antibiotics are natural products, and antibiotic resis-

tance confers a well-documented fitness advantage (Davies, 2010), it remains unclear

why such ribosome variants are not the dominant form in nature, the so-called “wild

type” (WT). One possibility is that the spontaneously arising ribosome variants carry

some fitness cost that counters the benefit of antibiotic resistance (Andersson and
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Hughes, 2010; Andersson, 2003). Therefore, understanding the balance between the

cost and benefit of a given ribosome variant may reveal fundamental insights not only

into ribosomes but also bacterial physiology.

However, the study of ribosomes is complex due to their necessary association with

cations. These cations, such as magnesium ions are important for the stability of ribo-

somes and they also play a critical role in their function. Ribosomes require cations

such as magnesium ions to neutralize the electrostatic repulsion and to spatially

coordinate the interactions among rRNA (Ribosomal Ribonucleic acid) and other

proteins. High-resolution crystal structures of bacterial ribosomes have revealed that

each complex contains more than 170 structural magnesium ions (Schuwirth et al.,

2005), which are an integral part of the ribosome complex (Knight et al., 2013).

Therefore, a deep and comprehensive understanding of ribosomes can only emerge

if we take into account the dynamic of its interactions with magnesium ions. How-

ever, these interactions have proven very difficult to measure, and thus, the interplay

between magnesium (Mg) ions and ribosomes has remained elusive. To investigate

and compare the functional dynamics of the WT and L22* ribosomes, we utilized a

coarse-grained Elastic Network Model (ENM). ENM has been utilized in the past to

successfully study the dynamics of inter-domain motions in ribosome (Chang et al.,

2015; Wang et al., 2004; Kurkcuoglu et al., 2016; Zimmerman et al., 2016; Tama

et al., 2003). This approach is based on a simplified mechanical model of particles

connected by springs (Ikeguchi et al., 2005; Tirion, 1996; Bahar et al., 2010). In the

ENM, the dynamics of any molecular complex is dictated by a network of intra- and

inter-molecular interactions among domains and subunits, and the intrinsic thermal

fluctuations of atomic positions. ENM has proven effective in elucidating and predict-

ing the biologically relevant motions of intra- and inter-molecular interactions that

describe the structure-encoded dynamics of bio-molecules. By applying this modeling

118



approach to the ribosome complex that includes structural magnesium ions, we were

able to study the dynamics between the ribosome and its Mg ions.

6.2 Extracting the Dynamic Flexibility Index (DFI) Profile of Ribosome Using

ENM

DFI (Nevin Gerek et al., 2013; Gerek et al., 2009; Campitelli et al., 2020; Modi

et al., 2018; Modi and Ozkan, 2018; Zou et al., 2015) is a novel metric which quan-

tifies the relative vibrational entropy of residues by calculating the resilience each

residue experiences to perturbations in the molecule. Computation of DFI utilizes

Perturbation Response Scanning (PRS) (Atilgan et al., 2010) technique using random

perturbative forces as probes to sample the local vibrational ensemble of each residue.

These perturbative forces emulate the effect of stochastic nature of forces which exists

in proteins due to its interaction with the thermal bath, solvent molecules and other

small molecules in a cell. In order to investigate the association of the ribosome and

its structural Mg ions, we utilized the coarse-grained ENM, which takes into account

the interactions between different components of ribosome by incorporating all the Cα

atoms from the protein chains, phosphorus atoms from the ribosomal nucleotides, and

also the structural Mg ions. Specifically, atoms are modeled as nodes and interactions

as springs connecting them. The interactions represented by harmonic springs have

force constants which inversely scales with the 6th power of the pairwise distance be-

tween them (i.e., k ∝ 1/r−6) (Nevin Gerek et al., 2013; Gerek et al., 2009). Therefore,

the positions that are very far away from each other have a very small interaction

energy between them and vice versa. Therefore, using this model, we calculate the

Hessian matrix. This is then used to calculate the responses of the network of nodes

to unit perturbations using the Linear response theory as described in section 2.2.2.

However, this poses a problem. The dimensions of the Hessian matrix for a ribosome
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will be 3N × 3N , where N are the total number of nodes in the ENM. For the E. coli

ribosome we used (PDB id: 4v56 (Borovinskaya et al., 2007)), N=10380. This makes

the Hessian matrix very large (31140 x 31140) and expensive to store in the memory

(nearly 40 GB if using float32). In addition, performing eigenvalue decomposition for

inversion of such large matrices is not possible given the architecture of most high

memory machines. Therefore, we used ARPACK (Lehoucq et al., 1998) which is de-

signed to compute a set of eigenvalues and corresponding eigenvectors numerically for

a sparse matrix, which a Hessian is (see Appendix C.1 for the sub-routine used). It

uses a method called Implicitly Restarted Lanczos Method (Calvetti et al., 1994) to

recursively estimate the largest 20 eigenvalues and corresponding eigenvectors within

a lowest possible tolerance (based on machine precision). These are then used to

estimate the inverse of the Hessian matrix. Following this, the protocol described

in section 2.2.2 can be used to obtain the DFI score for each node in the ribosome

(Figure 6.1).

Figure 6.1: The cartoon representation of wild type ribosome color coded with
Dynamic Flexibility Index score.
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6.2.1 The Coarse-Grained Computational ENM Model Captures the Essence of

All-Atom Molecular Dynamics (MD) Simulation.

In order to test the validity of our method, we compared the percentile scores

of the root mean square fluctuations (RMSF) in the Cα and phosphorus atoms of

the ribosome predicted by our coarse-grained ENM model with that observed in an

all-atom MD simulation. For this, we used the data from MD trajectories calculated

in a study by Warias et al. (2020). In the study, the authors have used the cryo-

EM structure of an E. coli ribosome in complex with tRNAs, EF-Tu, and GTP

as the starting structure for the MD simulation (PDB id: 5uym (Loveland et al.,

2017)). The simulations borrowed the force field parameters from amber99sb force

field (Hornak et al., 2006) and the SPC/E water model (Poole et al., 1992). Two

2µs long independent simulations were ran initialized from the same initial structure

(see (Warias et al., 2020) for further details regarding the MD simulation).

Using the last 1µs of the two trajectories, we calculated the RMSF of each Cα

and phosphorus atoms in the ribosome. These are then compared with the RMSF

predicted by modelling the interactions in the structure from the same ribosome

using the coarse-grained ENM network as described above (RMSF from MD and

ENM are calculated following the method described in section 2.2.1). Through the

coarse-grained ENM model, we are able to capture the salient features of the RMSF

profile from MD. Particularly, we focused our attention on the following regions in

the ribosomal assembly: EF-Tu Domain D3, and proteins L22 and L4. These were

selected as the study (Warias et al., 2020) provided the RMSF profile of domain D3,

therefore, it can be used as a test of our approach. In addition, the proteins L22

and L4 constitute a part of the exit tunnel, hence, are critical for ribosomal function.

Comparing the RMSF profile obtained from all-atom MD and our course-grained
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ENM approach showed that we were able to accurately predict the rigid regions

in these proteins (i.e., with the lowest RMSF). Out of the two independent MD

trajectories, our approach was able to accurately predict the rigid regions observed

in at least one of the them (see Figure 6.2). It should be noted that, despite these

similarities, the RMSF profile obtained from ENM cannot capture all the features in

RMSF obtained using the MD trajectories (highlighted in Figure 6.2). This indicates

that ENM misses some rigid features possibly emanating from motions with longer

time scales or bio-chemical specific interactions only sampled in MD.

6.2.2 Modelling the Dynamics of L22* Mutant Ribosome.

The mutant L22* contains an insertion of 7 residues in the L22 protein. L22

protein is a globular protein which is embedded on the surface of the large ribosomal

subunit (see Figure 6.3A). The L22 protein comprises of a loop which penetrates a

cavity in the core of the ribosome. The insertion doubles the number of residues in

this loop. Prior to insertion, the loop lies in a cavity inside the ribosome such that

the radial distribution of the number of contacts (i.e., the number of contacts made

within a cutoff distance) of this loop in the WT ribosome is significantly lower as

compared to any other proteins in the core of the ribosome. After insertion in this

extended loop, the radial distribution of the number of its interactions is hypothesized

to increase as doubling the loop size should enhance its interactions. Therefore, in

order to emulate the impact of this insertion that reflects the direct interaction of

the loop with neighboring positions in the 3D structure, we scale up the interactions

of the residues in L22 protein with insertion (between 80-100 residues), such that

the new radial distribution of contacts follow the trend shown by any other protein

in the core of the ribosome. Here, we used the protein L34 as a reference for these

calculations (see Figure 6.3B). It should be noted that, here we have used this crude
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A)

B)

C)

Figure 6.2: Comparing the percentile ranking of root mean square fluctuations
(RMSF) obtained from two independent all-atom MD simulations of a ribosome (or-
ange, MD1; green, MD2) with that predicted by a coarse-grained ENM model (blue).
Here, as an example, we focus our comparison on three different regions of the ri-
bosome, namely—(A) EF-Tu Domain D3, (B) protein L22 and (C) the protein L4.
We observe that through ENM, we are able to accurately predict most of the rigid
regions observed in at least one of the MD simulation. We also observe (highlighted)
some disparities between RMSF from MD simulations and ENM.
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approximation to emulate the effect of insertion at L22 protein as the structure of

the mutant is not available and modelling the mutant by incorporating insertions in

the sequence is computationally expensive and models typically used for this purpose

(e.g. (Fiser et al., 2000)) are not optimized for ribosomal proteins.

A) B)

Figure 6.3: Modeling of radial distribution of contacts to emulate amino acid in-
sertion in L22* variant. (A) L22 protein (shown in blue sphere) is embedded on
the surface of ribosome (shown as cartoon representation in grey). (B) The radial
distribution of contacts from the loop residues in L22 with insertion (80-100) in the
ribosome (black solid line) and that of another protein buried in the core of ribosome,
L34 (blue, solid). The interactions for these residues in L22 are scaled up such that
the radial distribution emulates that of the proteins in bulk (black, broken). With this
scaling factor, the extended loop in L22 with insertion now emulates the interaction
energy of any other protein buried in the core of the ribosome.

6.3 Results and Discussion

6.3.1 L22* Mutations Changes the Association of Mg Ions With the Ribosome

DFI as described earlier, is the net displacement of a given position relative to

the net response of the whole complex when every node is individually perturbed.

Therefore, the DFI score of a node can be interpreted as relative mobility upon

physical perturbations (such as inter-molecular forces or stochastic thermal noise).

Therefore, nodes with a lower DFI score have lower mobility, thereby suggesting a

higher association with the network. Whereas, nodes with a higher DFI score would
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be more susceptible to fluctuations, suggesting a lower association and higher mobility.

Through these results, we observe that the Mg ions near the center of a ribosome have

lower mobility, compared with those toward the edge (Figure 6.4). Consequently, DFI

reveals the relative association strength (i.e., binding free energy) of Mg ions with

the rest of the ribosome and makes it possible to map this data onto the ribosome’s

structure.

Figure 6.4: Cartoon representation of ribosome color coded with the DFI scores
of magnesium ions in wild type (left) and L22* variant (right). We observe that the
mutation causes a change in the mobility of magnesium ions.

Utilizing the DFI maps, we examined whether the ribosomal association with Mg

ions differs between WT and the mutant L22* ribosomes. DFI analysis of the L22*

ribosome reveals changes in the DFI values for all the structural Mg ions (Figure 6.4).

To determine how the L22* ribosome variant affects its interaction with Mg ions, we

subtracted the DFI of Mg ions in the WT ribosome from those in the L22* ribosome.

We find a net loss in the mobility of the Mg ions in the mutant strain Figure 6.5A. As

a control, when the same DFI analysis is done on carbon and phosphorus atoms, the

change in the fraction of those nodes is much smaller in comparison (see Figure 6.5B).

This demonstrates that the L22* mutation has a higher effect on the dynamics of

Mg ions, compared to the rest of the ribosomal components. Specifically, rigid ions
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become more rigid, while ions with medium mobility become more mobile upon L22*

mutation Figure 6.5A. It is also notable that the increase in rigidity is larger than the

gain in mobility. In other words, there is an overall increase in the association of Mg

ions in the L22* ribosome. The increase in rigidity of Mg ions is particularly striking

in the region surrounding the L22 protein. We find that 45.2% of Mg ions residing

within a 50Åradius around the mutated L22 subunit have high rigidity, compared

to only 32.1% of Mg ions that exhibit rigidity in the WT ribosome, Figure 6.5C.

These results were consistent when we analyzed other ribosome structures Figure 6.6.

Together, these data suggest that the L22* mutation increases the association of Mg

ions with the ribosome. It should be noted that, this increased association of Mg

ions is linked to the cascading effect of increased number of interactions due to the

residues inserted in L22 protein.

Inspired by the results above, we hypothesized that the increased association of

the Mg ions with the L22* ribosome would reduce the concentration of free Mg

ions in the cell, which may in turn constitute a physiological cost (Figure 6.7A). To

experimentally test this hypothesis, we set out to measure intra-cellular free Mg in

the live bacterium. Specifically, we generated a genetic fluorescent reporter utilizing

a previously characterized B. subtilis native M-box riboswitch that is sensitive to

the free Mg levels in the cell (Figure 6.7B). The M-box riboswitch is part of the

promoter region of the mgtE gene, which codes for a Mg importer, and its function

is to reduce mgtE expression upon binding of free Mg ions. In this way, the M-

box riboswitch enables cells to express the Mg transporter MgtE only when needed.

By fusing the mgtE promoter region with a yfp gene, we created a reporter that

indicates a shortage of free Mg ions in cells. As a control, we used the M-box with

the previously characterized M3 mutation (Dann et al., 2007) in the aptamer domain,

which is known to make the riboswitch independent of the Mg levels by disabling its
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Figure 6.5: Change in the mobility of magnesium ions in E. coli ribosome upon
L22* mutation. (A) Cartoon representation of ribosome where each magnesium ion
is color coded with the differences of DFI upon L22* mutation. A color bar shared
with panel on the right where the change in the mobility of magnesium ions is plotted
by the distance from L22 ribosomal protein. Each data point is colored based on the
WT DFI value. (B) Fractional change in the number of nodes from the low mobility,
medium mobility, and high mobility groups upon L22* mutation in whole ribosome
(gray) and only magnesium ions (black). Higher fraction of magnesium ions have
undergone either an increase or decrease in the mobility compared to the rest of the
ribosome containing the protein and rRNA components. (C) Pie chart illustration of
the percentage of low and high mobility magnesium ions within 50Åof L22 ribosomal
subunit in WT ribosome (left) and L22* variant (right). A threshold value for low
and high mobility is 4× 10−5. The insertion at L22 protein has reduced the mobility
of magnesium ions in the L22* variant ribosome.
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Figure 6.6: Change in the mobility of magnesium ions calculated from other bac-
terial ribosome structures mapped onto cartoon representations (A) PDB id: 4V4H
and (B) PDB id: 4V4Q from E. coli.

binding to the riboswitch. As expected, YFP expression in the M3 control remained

high, regardless of extracellular Mg concentrations. Consequently, the riboswitch-

based reporter provides a means to measure relative changes in intra-cellular free Mg

concentrations.

Using this riboswitch-based reporter described above, we then tested our hypoth-

esis that free intra-cellular Mg levels would be lower in the L22* strain, relative

to WT. In particular, we measured the activity of the reporter in the WT, L22*,

and M3 strains at different extracellular Mg concentrations. Bacteria were grown in

minimal defined media (MSgg) and then imaged on MSgg-agar pads with single-cell

resolution (Figure 6.7C). As expected, we found that the L22* strain is deficient in

maintaining free intra-cellular Mg at low extracellular Mg levels, when compared to

WT. Specifically, when we reduced extracellular Mg concentrations from 0.2 to 0.02

mM, we observed a clear increase in the YFP signal from L22* cells (Figure 6.7C),

which indicates a reduction in intra-cellular free Mg concentrations (Figure 6.7D). No

such obvious trend was observed in WT cells, which displayed a similar YFP signal

with increasing extracellular Mg concentrations. Furthermore, as expected, no clear
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Figure 6.7: The L22* ribosome reduces free magnesium pool in a cell. (A) Car-
toon representation of the hypothesis that L22* strain has less free magnesium ions
compared to WT strain due to stronger magnesium ion association in L22* ribosome.
(B) Schematic of M-box riboswitch-based reporter used in this study. A cell will
turn on yfp gene when it experiences low intracellular free magnesium concentration.
(C) Representative snapshots of YFP expression at different extracellular magnesium
concentrations. Each cell is outlined in gray based on the corresponding phase im-
age. WT means PmgtE-yfp (intact M-box riboswitch) expressed in WT Bacillus
subtilis, L22* means the same promoter-reporter in L22* B. subtilis strain, and M3
means PmgtEM3-yfp (M-box mutant expresses YFP independent of the intracellular
magnesium level) expressed in WT B. subtilis. Scale bar, 2 µm. (D) Intracellular
free magnesium concentrations of each strain are plotted for different extracellular
magnesium concentrations (mean ± 95% confidence interval; n ≥ 4 images from 3
experiments, ≥ 10 cells analyzed from each image). The values are inversed and
normalized by mean M3 YFP signals.

trends in the YFP signal were observed in the M3 control. We quantified the fluores-

cence signal and normalized the values according to the M3 control strain to account

for potential experimental variability (Figure B.1). In other words, while the WT
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strain is robust and able to maintain free Mg levels despite changes in extracellular

Mg concentrations, the L22* strain exhibits quantifiable sensitivity to low extracel-

lular Mg levels. These data imply that the increased association of Mg ions with

L22* ribosomes comes at the expense of the ability to maintain free intra-cellular

Mg concentrations under diminishing extracellular Mg levels. This leads us to the

question, what consequences would arise if cells could not maintain a sufficient free

Mg concentrations in the cell.

6.3.2 Ribosome Competes With ATP to Bind With Intra-Cellular Mg Ions.

Mg ions serve as counter-ions for ATP, the energy currency of cells. In fact, Mg-

bound ATP is the only biologically active form of ATP. Together with ribosomes,

ATP constitutes the largest intra-cellular store of chelated Mg ions (Pontes et al.,

2015). We hypothesized that reduced free Mg levels would reduce the availability

of Mg-ATP, the biologically active form of ATP (Figure 6.8A). To formulate our

hypothesis more precisely and generate concrete testable predictions, we constructed

a simple mathematical steady-state model described below.

We consider three potential states in which Mg ions can reside within B. subtilis :

free, bound to ribosomes, and bound to ATPs. The corresponding chemical reactions

are:

Mg + Ri

krbi−−⇀↽−−
krui

Ri+1 (6.1)

Mg + ATP
kab−−⇀↽−−
kau

Mg ·ATP · (6.2)

Here reaction 6.1 runs for i = 0, 1, . . . , N − 1, with Ri representing the ribosome

bound to i Mg ions. Given the indistinguishable nature of the Mg binding sites, the

combinatorics of this reaction dictates that

krbi = (N − i)krb, krui = (i+ 1)kru , (6.3)
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Figure 6.8: The L22* ribosome reduces Mg-ATP availability. (A) Cartoon descrip-
tion of the hypothesis that L22* ribosome reduces the availability of Mg-ATP due to
reduced availability of free magnesium ions. (B) Simple mathematical model equation
and prediction results based on the free magnesium level in WT and L22* strain. (C)
Schematic of bioluminescence-based assay used in this study to determine Mg-ATP
level. (D) Intracellular Mg-ATP concentrations of each strain at different extracellu-
lar magnesium concentrations (mean ± 95% confidence interval; n = 5 experiments,
each experiment consisting of at least 2 samples). The values are calculated using the
standard curve shown in Figure B.2

where N is the maximum number of Mg ions that the ribosome can hold, and we

have defined krb and kru as basal binding and unbinding rates between ribosomes and

Mg ions.

In what follows, we will use M to represent the concentration of free Mg inside

the cell, with a denoting the concentration of free ATP, and A the concentration of
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ATP bound to Mg. The following conservation laws must hold:

a+ A = At (6.4)
N∑
i=0

Ri = Rt (6.5)

M + A+
N∑
i=1

iRi = Mt (6.6)

Our goal is to determine how the total Mg in the cell is distributed among the three

different pools listed above, which correspond to the three terms in the left-hand

side of Eq. 6.6. In particular, we aim to determine how these three terms depend

on the total Mg concentration in the cell, and eventually on the extracellular Mg

concentration (which we can control experimentally).

We first note that the dynamics of the system can be described by means of the

following set of coupled ordinary differential equations:

dA

dt
= kabM(At − A)− kauA (6.7)

dR0

dt
= −krb0MR0 + kru0R1 (6.8)

dRi

dt
= −krbiMRi + kruiRi+1 + krb(i−1)MR(i−1) (6.9)

−kru(i−1)Ri, i = 0, 1, . . . , N − 1 (6.10)

dRN

dt
= krb(N−1)MRN−1 − kru(N−1)RN (6.11)

Solving these equations in the steady state leads to:

Ā =
AtM̄

kad + M̄
(6.12)

R̄i+1 =
M̄R̄i

krdi
(6.13)

where kad ≡ kau/kab, while the expressions of krbi and krui given in Eq. 6.3 lead to

krdi ≡ krd(i+ 1)/(N − i) with krd ≡ kru/krb. With this, Eq. 6.13 transforms into:

Ri+1 =
M

krd
Ri
N − i
i+ 1

=⇒ Ri =

(
M

krd

)i
R0

(
N

i

)
(6.14)
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where we have dropped the bars that denote steady state for simplicity. Introducing

this expression forRi into the conservation law Eq. 6.5 and using the binomial theorem

leads to the following expression for the concentration of naked ribosomes as a function

of the total ribosome and free Mg concentrations:

R0 =
Rt

(1 +M/krd)
N

(6.15)

Eqs. 6.14 and 6.15 allow us to determine the concentration of Mg that is bound to

ribosomes in the cell:

N∑
i=1

iRi =
Rt

(1 +M/krd)
N

N∑
i=1

i

(
M

krd

)i(
N

i

)
(6.16)

The sum in this expression can be computed through the moment-generating function

of the binomial distribution, resulting in

N∑
i=1

i

(
M

krd

)i(
N

i

)
= N

M

krd

(
1 +

M

krd

)N−1

(6.17)

Introducing Eq. 6.17 into Eq. 6.16 leads to the final expression of the concentration

of Mg bound to ribosomes:
N∑
i=1

iRi =
NRtM

krd +M
(6.18)

Using Eqs. 6.12 and 6.18, the Mg conservation law, Eq. 6.6 transforms into the final

balance equation for the three Mg pools in the cell:

Mt = M +
AtM

kad +M
+

NRtM

krd +M
, (6.19)

where, the first pool represents the free Mg ions in the cell, the second represents the

concentration of Mg bound to ATP (Mg-ATP) and finally the third pool represents

the ribosome bound Mg.

Our aim is to solve Eq. 6.19 to determine how Mg is distributed among these three

different pools as a function of extracellular concentration. First we need to model
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how the total intra-cellular Mg concentration Mt depends on the extracellular Mg

concentration ME. We assume a hyperbolic dependence between the two quantities

due to the transport of extracellular Mg ions inside the cell, corresponding to a

Michaelis-Menten-like kinetics that eventually saturates:

Mt =
αME

Km +ME

(6.20)

Using Eq. 6.20 we can solve numerically Eq. 6.19 to obtain the Mg-ATP as a function

of extracellular Mg concentration, which we can then compare with the experimental

observation, as shown in Figure 6.8B,D. Results are plotted for both the wild type

and the L22* mutation. The effect of the mutation is to increase the affinity between

Mg and ribosomes by two orders of magnitude, and the concentration of ribosomes

4-fold (see parameters in Table 6.1). It should be noted that the parameters are not

fitted to the experiment, but are chosen to describe the relative behaviour between

the concentration of Mg.ATP complex and extracellular Mg concentration. As long

as krd for L22* variant is lower than that of WT, a lower concentration of Mg.ATP

complex is observed.

According to this model, we predict a decrease in Mg-ATP upon reducing the

extracellular Mg in the L22* strain, but not for WT (Figure 6.8B). Further on, we

can also compute the energetic differences between the binding of Mg ions with ATP

and ribosome at steady state conditions described in the model above. It can be

expressed as:

∆∆GRi−ATP = −kT ln
kad
krdi

, (6.21)

and using Eq. 6.3:

∆∆GRi−ATP == −kT ln
[kad
krd

(N − i)
(i+ 1)

]
. (6.22)

Here, we have used the Arrhenius rate law to describe the relationship between the

free energies and the respective rate constants. This can be calculated for the WT
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Table 6.1: Parameters used for the magnesium ion pooling model describing the
competition between the binding of free magnesium ions with ribosome and ATP.

Parameter Description Value

At Total ATP concentration 4 mM

Rt Total ribosome concentration 50 µM (WT), 200 µM (L22*)

kad Mg-ATP Dissociation constant 0.1 mM

krd
Mg-Ribosome Dissociation con-

stant
10 µM (WT), 0.1 µM (L22*)

N
Maximum number of Mg per Ri-

bosome
200

α
Intra-cellular Mg concentration at

saturation
42 mM

Km

Michaelis-Menton constant of Mg

import
0.8 µM

ribosome as well as the mutant L22* (Figure 6.9). Using the values for the parameters

used earlier (see Table. 6.1), we observe that the binding of Mg ions is always more

favorable to the mutant L22* as compared to the WT ribosome regardless of the

number of Mg ions already bound to the ribosome. Moreover, we also observe that

in the case of WT ribosome, there is a saturation limit of the number of Mg ions,

which can be favourably bound to the ribosome. Beyond that, it is more favorable

for those Mg ions to bind to ATP. However, this limit does not exist for the mutant

L22*. It binds Mg ions more favorably than ATP even when the ribosome is already

bound to a large number of Mg ions.

In other words, a free Mg ion that is introduced to the cell is more likely to

associate with the L22* ribosome rather than an ATP molecule, even if the L22*
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Figure 6.9: Variation of the free energy difference between the binding of magne-
sium ions with the WT ribosome and the ATP with the number of magnesium ions
already bound to ribosome. (A) The WT ribosome (orange) and the L22* mutant
(blue). We observe that in the case of the mutant, it is always more favorable to bind
more magnesium ions to it as compared to ATP regardless of how many magnesium
ions are already bound to it.

ribosome is fully occupied with Mg ions. This is not the case for WT ribosomes,

which can only outcompete ATP molecules if less than 90% of their Mg sites are

occupied (Figure 6.9). The model demonstrates that, at least for a simplified system

considering three potential pools of Mg, changes in the affinity of ribosomes impact

the levels of the other states of Mg in the cell, including Mg-ATP.

To experimentally test our modeling prediction that the L22* strain would have

reduced Mg-ATP levels, we used a bioluminescence-based assay to quantify Mg-ATP

in L22* and WT strains. The assay utilizes the Mg-ATP dependency of luciferase that

catalyzes the oxidation of luciferin along with the emission of green light. Cell lysates

containing Mg-ATP were exposed to the reaction, and the resulting light emission was

quantitatively measured (Figure 6.8C and B.2). In agreement with our expectations,

we find that the L22* strain has a lower Mg-ATP concentration when extracellular
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Mg availability is low (Figure 6.8D). In particular, consistent with our model pre-

diction, Mg-ATP levels drop significantly in the L22* strain when extracellular Mg

concentrations are reduced from 0.2 mM to 0.02 mM. This increased sensitivity of

ATP levels in the L22* strain to a reduction in extracellular Mg levels is consistent

with reduced free levels of Mg ions (Figure 6.7D and 6.8D). In other words, we ob-

serve that both intra-cellular free Mg and Mg-ATP levels are low when cells with

L22* ribosomes experience extracellular Mg limitation. From these multiple lines of

evidence, we conclude that the higher association of the L22* ribosome variant with

Mg ions constitutes a physiological cost to the L22* strain by increasing its depen-

dence on extracellular Mg concentrations. Concurrently, our results also show that

the WT ribosome allows cells to maintain a relatively stable level of both free Mg

and active ATP across a broad range of extracellular Mg concentrations.

To more directly determine the physiological impact of the L22* ribosome variant,

we investigated the growth of WT and L22* strains across a range of extracellular

Mg concentrations. Cellular growth requires both ribosomes and Mg-ATP. This sets

up the interesting question of whether the computationally predicted tighter associ-

ation of the L22* ribosome with stabilizing Mg ions provides a growth advantage, or

whether the ability of cells with WT ribosomes to maintain intra-cellular Mg-ATP

levels would be more beneficial. To address this question, we tracked single cells

over time and measured cell elongation to determine the growth rate (Figure B.3A).

We find that both L22* and WT cells grow at similar rates with high extracellular

Mg concentrations. However, for low extracellular Mg concentrations, the L22* cells

exhibit reduced growth while the WT cells grow largely unaffected (Figure 6.10A).

Notably, the concentration range of extracellular Mg over which the elongation rate

of the L22* cells drops corresponds to the region where we also observe a drop in free

Mg and Mg-ATP levels (compare Figure 6.8D and 6.10A ). Therefore, when com-
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pared to L22*, the growth of cells with WT ribosomes is more robust to changes in

extracellular Mg concentrations. This result reveals a physiological cost for cells with

L22* ribosomes in terms of their sensitivity to environmental conditions.

Given the environment-dependent growth cost of cells with the L22* ribosome,

we next examined how the antibiotic resilience of WT and L22* strains compare over

a range of extracellular Mg concentrations. We grew both strains on agar plates con-

taining varying extracellular Mg concentrations and in the presence of commercially

available antibiotic strips that contain a range of precisely defined concentrations of

the aminoglycoside spectinomycin (Figure B.3B). The Maximum Inhibitory Concen-

tration (MIC) was then determined by identifying the antibiotic concentration at

which the growth of bacteria was cleared. We find that the specific value of MIC, and

thus antibiotic tolerance, for both WT and L22* cells depends on extracellular Mg

concentrations. More importantly, the MIC of cells with the L22* ribosome is never

lower than WT for any tested Mg concentrations (Figure 6.10B). This data confirms

the previously reported higher antibiotic tolerance of L22* ribosomes compared to

WT ribosomes.

Quantifying the growth and antibiotic tolerance of cells with WT, or L22* ri-

bosomes over the same range of extracellular Mg concentrations allows for a direct

and comprehensive comparison. We generated a fitness phase diagram by plotting

the growth robustness of each strain against its antibiotic tolerance (Figure 6.10C).

The resulting plot visualizes the benefit provided to cells containing either the WT

or L22* ribosomes. Cells with the L22* ribosome have a higher antibiotic tolerance,

while cells with WT ribosomes are better at maintaining their growth rate. This

results in each strain localizing in opposite corners of the fitness phase diagram. Con-

sequently, antibiotic tolerance and robust growth appear to be competing benefits due

to their shared dependence on Mg ions. This insight provides a possible answer to
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Figure 6.10: Environmental robustness and antibiotic tolerance reveal a cost-
benefit metric for L22* strain. (A) Growth (elongation rate) of individual cells are
monitored and quantified at various extracellular magnesium concentrations (mean
± 5% confidence interval; n ≥ 5 images from 3 experiments, at least 8 cells ana-
lyzed from each image). Asterisks indicate statistical significance (Student’s t-test;
*P < 0.05; **P < 0.01; ***P < 0.001). (B) Spec MIC test results of WT and L22*
strains at various extracellular magnesium concentrations. A spectinomycin antibi-
otic strip is used for each plate (mean ± 5% confidence interval; n ≥ 8 plates from
at least 2 experiments). Asterisks indicate statistical significance (Student’s t-test;
*P<0.05; **P<0.01; ***P<0.001). (C) A fitness phase diagram of the growth robust-
ness against antibiotic tolerance (error bars, ± 95% confidence interval). Each metric
is normalized by WT value. L22* strain (orange shading) has increased ribosome-
magnesium ion association, likely attributing to higher antibiotic tolerance compared
to WT strain (purple shading). L22* strain cannot maintain free and ATP-bound
magnesium levels, likely attributing to deficiency in growth robustness.
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the question of why L22* ribosomes have not been selected to become the dominant,

or WT variant. Appendix B contains further details on the materials and methods

used in the study.

6.4 Conclusion

Taken together, the results obtained in this study suggest that the tighter associa-

tion of L22* ribosomes with Mg ions reduces the intra-cellular free Mg concentrations

and thus Mg-ATP levels in cells. We have identified a physiological cost associated

with the L22* ribosome variant. With this discovery, we can begin addressing the

fundamental biological question as to why a spontaneously emerging natural ribo-

some variant that provides antibiotic resistance has not established itself as the “wild

type”. The relatively weak association of WT ribosomes with Mg ions allows bet-

ter buffering of intra-cellular Mg levels, making cells more robust against changes

in extracellular Mg concentrations. In this way, the benefit of antibiotic resistance

provided by the L22* ribosome is pitted against the environmental robustness pro-

vided by the WT ribosome. Actual selection pressures that have shaped evolutionary

history remain obscure, but our data suggest that bacteria such as B. subtilis may

be more likely to face environmental changes in Mg levels, compared to naturally

occurring antibiotics that target ribosomes. Therefore, the benefit of coping with

variable Mg concentrations in the environment may outweigh the benefit of antibiotic

resistance.

Ribosomes have been studied in great detail for many decades. However, studies

have typically focused on the protein subunits and RNA components, and far less

is known about the interactions with Mg ions. Furthermore, crystal structures of

the ribosome are typically only available for wild type variants. Our coarse-grained

modeling approach quantifies the association strengths for all structural Mg ions and
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also allows us to model ribosome mutations and variants. For example, by modulat-

ing spring constants between nodes that represent residues and atoms, we can use

Newton’s laws to provide concrete testable predictions for how any given mutation

can alter the biophysical properties of the ribosome. Additionally, our method is

independent of the valency of ions, since we are not explicitly modeling electrochem-

ical interactions. Consequently, our modeling approach circumvents the difficulty in

capturing ion valency in simulations. The modeling framework presented here thus

makes it possible to model and study interactions of structural ions within wild type

and mutant ribosomes. This advance provides an important step forward in the quest

to more broadly study and understand ionic interactions in cells, which have been

referred to as “the dark matter of biology” (Ross, 2016).

It is well known that inorganic alkaline metal ions such as Mg are essential for

life on our planet. However, the difficulty of measuring ions in cells has hindered our

ability to understand the diverse roles these charged particles play in cell physiology.

Here we integrated atomic-scale mathematical models with experimental measure-

ments of ion concentrations and single-cell resolution physiological metrics to gain

insight into the functional role of Mg ions. Our work indicates that Mg ions are

not merely counter-ions for phosphate groups and charged amino acids but can also

function as signaling molecules that directly regulate and coordinate between two of

the most fundamental components of any living cell, namely ribosomes and ATP.

There is an emerging understanding that ions can serve as signaling molecules, such

as calcium ions acting as second messengers (Dominguez, 2004), and potassium ions

enabling cell-to-cell signaling among bacteria in biofilms (Prindle et al., 2015; Liu

et al., 2015). Here we show that Mg ions can relay intra-cellular information about

the state of ribosomes. This points to the possibility that other ions that are also

shared between different molecules and processes, could also function for coordinat-
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ing signals. We therefore, propose here the concept of “Ionic Allostery”, where ions

transmit the effect of their association with one molecule (here, ribosome) to other

distant molecules in the cell (here, ATP), thereby, allowing for a long-range regula-

tion of activity. Our work is therefore likely to inspire future research to explore this

concept in detail and the associated signaling roles for the many inorganic ions that

are present in all cells.
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Chapter 7

INFORMATION PROPAGATION IN TIME THROUGH ALLOSTERIC

SIGNALING

This chapter is adapted from “Modi, T., Ozkan, S. B. & Pressé, S. Information

propagation in time through allosteric signaling. Phys. Rev. Research 2, (2020).”

In the previous chapter, we observed the impact of allostery in ribosome, mediated

throughout the cell via concentration of magnesium ions. Motivated by our findings,

we now would like to explore the role of allosteric interactions in cell signalling path-

ways. For this purpose, we propose a toy model where the product of an enzyme

activates another protein downstream in the signaling pathway. Using this model, we

study how allosteric regulation alters the product formation rates and, thus, modu-

lates the communication between the enzyme and the receiver protein via product

molecules. We demonstrate that, the amount of information encoded downstream by

an allosterically regulated protein depends on not only the kinetics of product gener-

ation and the binding kinetics of receiver, but also on the transition kinetics between

allosterically regulated states of the sender.

7.1 Abstract

Naively, one expects the information communicated by an enzyme downstream

within a signaling network, in which the enzyme is embedded, to grow monotonically

with the enzyme’s rate of product formation. However, here we observe that this does

not necessarily hold true for allosterically regulated enzymes, often observed in signal-

ing networks. In particular, we find that the mutual information between the catalytic
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sites of an allosterically regulated enzyme and a receiver protein downstream in the

signaling pathway depends on the transition kinetics between the different allosteri-

cally regulated states of the enzyme and their respective rates of product formation.

Surprisingly, our work implies that allosteric down-regulation of an enzyme’s rate

of product formation may not only be used as a way to silence itself, as one would

normally expect. Rather, down-regulation may also be used to increase the informa-

tion communicated by this enzyme to a receiver protein downstream in a signaling

pathway.

7.2 Introduction

Despite the fact that only a small fraction of a cell is composed of proteins

(e.g., proteins constitute 17% of E. Coli (Milo, 2013)), proteins not only mediate

the key processes in cells, but also give rise to spatio-temporal signaling to control a

cell’s response to its local environment underlying all critical decision-making (Wodak

et al., 2019a) such as a cell’s development and metabolism (Link et al., 2014), motil-

ity (Tafoya and Bustamante, 2018), immunity and cell-death (apoptosis) (Herr, 2018)

and many more.

These spatio-temporally coordinated events are often achieved by proteins ex-

hibiting allostery– a phenomenon by which the binding of a molecule at one site of

a protein changes the binding affinity or catalytic activity at another distant site.

Several models of allostery have previously been explored to study how allosteric

interactions within one enzyme (i.e., proteins which act as catalysts) modulate its

activity (Monod et al., 1965; Cooper and Dryden, 1984; Koshland et al., 1966). How-

ever, allostery goes beyond just remote modulation. It also provides the “circuit

components” from which nature builds up complex signaling networks in enzymes.

Here we employ an information theoretic framework to quantify how the impact of
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allosteric interactions in an enzyme propagates downstream through protein signaling

pathways in order to modulate cellular response.

Information theory has already been proven useful in studying various biologi-

cal phenomena such as modeling protein interaction networks (Lenaerts et al., 2008;

LeVine and Weinstein, 2014; Voliotis et al., 2014), evolution (Adami, 2012; de Vladar

and Barton, 2011; Weiss et al., 2000) and single molecule experiments (Turkcan and

Masson, 2013; Tavakoli et al., 2017). Moreover, it has also been instrumental in

studying the effect of allostery on the transfer of information between the allosteric

regulator and the catalytic site of allosteric proteins, particularly enzymes (Ko-

morowski and Tawfik, 2019; Marzen et al., 2013). However, these studies primarily

explored the thermodynamics of substrate binding through allostery, focusing solely

on the concentration of products generated. On the other hand, the activity of the

receiver protein varies in time according to the availability and on/off binding of the

product produced by the enzyme. Therefore, information conveyed is encoded not

only in the total concentration of the enzymatic product generated by the “sender

enzyme”, but also in its time varying activity. Here, we apply information theory

to quantify the role of allostery in a sender enzyme while it communicates with a

receiver protein (a protein downstream in the signaling pathway which binds to the

product molecules generated by the sender enzyme).

In order to apply the information theory, we first consider a model of an enzyme

which allows for homotropic allosteric interactions between the two binding sites.

This enzyme, labelled as ‘sender enzyme’, generates product molecules which bind

with another receiver protein downstream in the signaling pathway. Afterwards, we

construct simple master equations for this model which captures the essence of al-

lostery in the arrival times of products at the receiver protein. Next, this model is

simplified to a two state model which is studied in a discrete time domain with the
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help of Hidden Markov Models (HMM) (Rabiner and Juang, 1986; Seymore et al.,

1999). Further on, we compute the probability of observing product arrival events ac-

counting for all possible latent allosteric states (“hidden trajectories”) of the sender

enzyme. Using the probability distributions thus obtained, we then calculate the

mutual information (MI) (Cover and Thomas, 2006) over the joint probability dis-

tribution of the state of the sender enzyme and the state of receiver protein. The

joint probability distribution encodes both the allosterically induced state-switching

transitions and the product formations by the sender enzyme’s catalytic site.

Our work illustrates how allostery directly impacts the transfer of information

within signaling pathways. It shows that the communication by a sender enzyme in a

signaling pathway is not merely modulated by the number of products generated, but

also significantly depends on the time signature of product arrivals at other receiver

proteins present downstream. The analysis also suggests a broader role for allostery:

a way to increase the information communicated within signaling pathways even,

counter-intuitively, via down-regulation. This also provides a possible strategy which

can be used to engineer allosteric interactions in a protein participating in a cellular

signaling pathway in order to regulate the pathway and the associated function.

7.3 Model

We start with a minimal model of a sender enzyme with an allosteric regulator

site (Figure 7.1) inspired by the KNF (Koshland-Nmethy-Filmer) model of protein

allosteric regulation as described by Koshland et al. (1966). The model features a

sender enzyme, EAX which functions as a sender of information to another protein

downstream in the signaling pathway (a receiver protein) via product molecules gener-

ated by the sender enzyme. Here, by information, we imply the influence the sender

enzyme has on the probability of the receiver protein to be bound to the product
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molecules in time. The sender enzyme has a catalytic site X which can bind or

unbind to a substrate S to make complex EAXS
, with rate constants kX+ and kX−,

respectively. In addition, the sender enzyme also contains an allosteric regulator site

A. The sender enzyme with the bound complex at the catalytic site subsequently

degrades to generate product, P , with a rate constant of dp releasing its catalytic site

X back to its original unbound form.

When the allosteric regulator site A reversibly binds to substrate, it creates a

complex EASX with the rate constants kA+ and kA− respectively (see Figure 7.1a).

The bound complex at the allosteric regulator can exploit the sender enzyme’s net-

work of interactions to influence the activity of the catalytic site (see Figure 7.1b).

This allosteric interaction occurs between a bound allosteric regulator site and un-

bound catalytic site with a rate constant of hp. The modified catalytic site (X∗) now

performs its functions with different activity such that its rate constants for binding

and unbinding with the substrates changes to kX∗+ and kX∗− respectively. Moreover,

the rate constant of the degradation of the complex at X∗ with substrate to create

product also changes to rp (see Figure 7.1c). It should be noted that, these changes

are only localized to the catalytic site, whereas, the allosteric regulator does not show

any changes in its dynamics of interaction, i.e., the rate constants of binding and

unbinding of substrate at the allosteric regulator site does not change as the catalytic

site alters its state.

Finally, the catalytic site (X) after being allosterically modified to (X∗) can relax

back to its original state in a process with a rate constant of sp. This process can

occur regardless of the state of the allosteric regulator (i.e., whether it is bound or

unbound) (see Figure 7.1d).

The products, P , produced in processes a) and c) in the Figure 7.1 can interact

with the receiver protein Y downstream in the signaling pathway with a rate constant
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of kY . This protein acts as a receiver for the signal generated by the sender enzyme

in the signaling pathway in the form of products. During the interaction of product

P with the receiver Y , a binding event signifies a successful transfer of signal from

the allosterically regulated sender enzyme, E to the receiver protein, Y .
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Figure 7.1: Schematic diagram of the model of an allosterically regulated sender
enzyme. It shows EAX , a sender enzyme, with catalytic site X interacting with
substrates S to make product P (a) and allosteric regulator site A which can interact
with the substrates to change the state of the sender enzyme to EAX with catalytic
site X∗ (b). The catalytic site X∗ can then also interact with the substrate to make
products P however with different rate constants (c). The enzyme’s catalytic site in
its alternate state X∗ can also relax back to its original state X (d). Finally, the
products generated then bind to a receiver protein Y downstream in the signaling
pathway (e).

For illustrative purposes, the reactions described in the processes a) to d) in

Figure 7.1 can be simulated in a straightforward fashion using the Gillespie algo-

rithm (Gillespie, 1977). Here, we simulate the product arrival events described in
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Figure 7.1 with the help of a stochastic simulation for a sender enzyme in a system

with a fixed large number of substrates. It should be noted that here, we are only sim-

ulating the product formation events. Therefore, the diffusion of product molecules

is not included in the calculations. The sub-routine used for the stochastic simulation

is given in Appendix C.2.

In the case of allosterically up-regulated sender enzyme (i.e., when the rate con-

stant/s kX∗+ or/and dp is/are greater than rate constant/s kX∗+ or/and rp), we ob-

served “bursts” of higher rates of product formation events in the midst of a lower

rate of product formation, Figure 7.2. On the other hand, without any allosteric reg-

ulation, the waiting times between product arrivals are approximately exponentially

distributed (as expected). This can be shown by calculating the ratio of the mean

squared to the variance in the waiting times between product arrival events which

is ≈ 1.00, for the choice of parameters specified in the caption of Figure 7.2. This

is expected for exponentially distributed waiting times. This ratio strongly deviates

from unity (≈ 17.40) in the presence of up-allosteric regulation in the sender enzyme,

Figure 7.2.

Moreover, the stochastic simulations are also able to distinguish between the vari-

ation of product formation rates of sender enzymes with the amount of substrate

present in the presence of allosteric regulation, and its absence (see Figure 7.3). Anal-

ogous results are observed in the presence of down-regulation in sender enzymes. In

addition, our stochastic simulations also suggests that the model is able to replicate

a “bursty” product formation in the presence of both K-type (i.e., when allosteric

regulation manifests itself by modulating the catalytic site’s binding affinity with the

substrate), Figure 7.4 and V- type allosteric regulations (i.e., when allosteric regu-

lation affects the rate by which the bound complex of catalytic site reduces to give

products), Figure 7.5.
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Figure 7.2: Time series of product arrivals stochastically simulated using Gille-
spie’s algorithm from coupled chemical reactions shown in Figure 7.1 with an al-
losterically regulated (a) and unregulated (b) protein. The product arrivals are rep-
resented by vertical lines. The model with allostery exhibits a “bursty behavior”.
This behavior is not observed in the absence of allostery. Parameter values used
are: kX+ = 50s−1, kX− = 25s−1, dp = 0.9s−1, kA+ = 50s−1, kA− = 25s−1, kX∗+ =
75s−1, kX∗− = 25s−1, rp = 50s−1, sp = 70s−1, hp = 50s−1 for (a) and all the same
except hp = 0s−1 for (b). For both the simulations we have an enzyme present in an
excess of substrate (50 molecules).

The results of stochastic simulation suggest that in the presence of allosteric

up/down regulation, the time of arrival of products exhibit a more complicated behav-

ior as the catalytic site can exist in more than one type of state. Next, the products

generated in bursts may bind to the receiver protein downstream transmitting the sig-

nal. Due to the bursty product formation, the amount of information encoded in the

up-signal, propagated by the binding events between the products and the receiver
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Figure 7.3: Variation in rates of product formation with substrate concentra-
tion. We observe that the model without allosteric regulation, (a) recapitulates
the dynamics commonly observed in proteins following Michaelis-Menton Kinet-
ics. On the other hand, when allosteric regulation is present, (b) the rate of
product formation is non-linear at lower concentrations of substrate, a signature
of cooperativity due to allosteric regulation. The following parameter values were
used: kX+ = 50s−1, kX− = 25s−1, dp = 5s−1, kA+ = 50s−1, kA− = 25s−1, kX∗+ =
75s−1, kX∗− = 50s−1, rp = 10000s−1, sp = 50s−1, hp = 0s−1 for (a) with a change of hp
to hp = 100s−1 for (b). The system was simulated for 30s and rates for each substrate
concentration were averaged over 1000 independent runs. For both the simulations
we have an enzyme present in an excess of substrate (50 molecules).

protein, is a complicated function that depends on the time-dependent interaction

between the allosteric regulator site and the catalytic site of the sender enzyme.

In order to study the information encoded in the bursts of products in allosterically

regulated sender enzymes, the model in Figure 7.1 can be further simplified under

151



0 100 200 300 400 500

Pr
od

uc
t F

or
m
at
io
n 

 E
ve

nt
s

(a)

0 100 200 300 400 500
Time (s)

Pr
od

uc
t F

or
m
at
io
n 

 E
ve

nt
s

(b)

Figure 7.4: Bursts of products observed in K-type allostery. We observe that
the model with K-type allosteric regulation, (a) shows a “bursty” formation of prod-
ucts which is not observed in the model without allosteric regulation, (b). Vertical
lines represent product formation events. The following parameter values were used:
kX+ = 10000s−1, kX− = 10s−1, dp = 0.5s−1, kA+ = 1000s−1, kA− = 25s−1, kX∗+ =
0.01s−1, kX∗− = 1000s−1, rp = 0.5s−1, sp = 0.04s−1, hp = 5000s−1 for (a) and
hp = 0s−1 for (b). For both the simulations we have an enzyme present in an excess
of substrate (50 molecules).

the condition of detailed balance in steps (a) and (c) in Figure 7.1 as shown in the

section below.
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Figure 7.5: Bursts of products observed in V-type allostery. We observe that
the model with V-type allosteric regulation, (a) shows a “bursty” formation of prod-
ucts which is not observed in the model without allosteric regulation, (b). Vertical
lines represent product formation events. The following values of the parameters
were used: kX+ = 50s−1, kX− = 25s−1, dp = 0.3s−1, kA+50s−1, kA− = 25s−1, kX∗+ =
50s−1, kX∗− = 25s−1, rp = 10s−1, sp = 70s−1 and hp = 50s−1 for (a) and hp = 0s−1 for
(b). For both the simulations we have an enzyme present in an excess of substrate
(50 molecules).

7.3.1 Coupled Chemical Reactions for Allosteric Regulation Reduce to a Two

State System.

As the system reaches detailed balance, i.e., when the forward and backward reac-

tion of complex formation between substrate and the sender enzyme is at equilibrium,

the concentrations of bound complexes do not change with time. Therefore, for re-

actions in step (a) in Figure 7.1, when the rate of formation of [EAXS
] and [EASXS

],
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and their rate of degradation are equal, i.e.,:

d[EAXS
]

dt
= kX+[EAX ]eq[S]eq − kX−[EAXS

]eq

= 0, (7.1)

d[EASXS
]

dt
= kX+[EASX ]eq[S]eq − kX−[EASXS

]eq

= 0 (7.2)

respectively. Here, EAXS
represents the sender enzyme E with the unbound allosteric

site A and the catalytic site X bound to a substrate and the subscript ‘eq’ stands

for the concentration of the corresponding biochemical species in detailed balance.

Hence, we can now write:

[EAXS
]eq

[EAX ]eq[S]eq
=

kX+

kX−
[EASXS

]eq
[EASX ]eq[S]eq

=
kX+

kX−
(7.3)

Similarly, when the rate of formation of bound allosteric site, [EASX ] and [EASXS
],

and their rate of degradation are equal, we can write:

[EASX ]eq
[EAX ]eq[S]eq

=
kA+

kA−
[EASXS

]eq
[EAXS

]eq[S]eq
=

kA+

kA−
. (7.4)

Likewise, for reaction (c) in Figure 7.1 when then rate of formation of complex between

the catalytic site in its alternate state (X∗) and the substrate, i.e., [EAX∗
S
] and [EASX

∗
S
],

and their rate of degradation are equal, we can write:

[EAX∗
S
]eq

[EAX∗ ]eq[S]eq
=

kX∗+

kX∗−

[EASX
∗
S
]eq

[EASX∗ ]eq[S]eq
=

kX∗+

kX∗−
. (7.5)

Onward, for simplicity and clarity, we would refer to the sender enzymes with its

unbound catalytic site in its original state (X) as R and the sender enzyme with its
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unbound catalytic in its alternate state (X∗) as T (going by the historical representa-

tions of the two available states used by the likes of Monod et al. (1965) and Koshland

et al. (1966)). Therefore, RS and TS would represent their bound forms of the sender

enzyme with the substrate bound at the catalytic site respectively. In addition, given

the initial concentration of the sender enzyme, [E]initial, mass balance implies an

additional condition on the concentrations of the chemical species as shown below:

[E]initial = [EAX ]eq + [EAXS
]eq + [EASX ]eq + [EASXS

]eq +

[EAX∗ ]eq + [EAX∗
S
]eq + [EASX∗ ]eq + [EASX

∗
S
]eq

[E]initial = [R]eq + [RS]eq + [T ]eq + [TS]eq. (7.6)

Combining Eq. 7.6 with Eqs. 7.3, 7.4 and 7.5 with the condition that substrate is

present in excess, i.e., [S]eq ≈ [S]initial, we can reduce the model, to a two state model

as shown below:

R + S
kX+−−−⇀↽−−−
kX−

RS
dp−−→ P + R (7.7)

T + S
kX∗+−−−⇀↽−−−
kX∗−

TS
rp−−→ P + T. (7.8)

Imposing the condition of detailed balance in reaction 7.7 the rate of formation of

RS and its degradation will be equal, i.e.,:

kX+[R]eq[S]eq = kX−[RS]eq. (7.9)

Therefore,

[RS]eq =
kX+

kX−
[R]eq[S]eq. (7.10)

Also, the rate of product formation from step (a) in Figure 7.1 can be expressed using
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reaction 7.7 and Eq. 7.10 as:

d[P ]

dt
= dP [RS]eq (7.11)

d[P ]

dt
=

kX+dP
kX−

[R]eq[S]eq (7.12)

d[P ]

dt
= kR[R]eq[S]eq (7.13)

where, kR can be treated as the effective forward rate for the formation of product

molecules in reaction 7.7. Following a similar logic, reactions 7.7 and 7.8 can be

expressed in the two state system as:

R + S
kR−−→ P + R (7.14)

T + S
kT−−→ P + T (7.15)

where, kR = kX+

kX−
dp and kT =

kX∗+
kX∗−

rp are the effective product formation rate constants

for the generation of products from the sender enzyme in the two states (R and T

respectively). In addition, as shown in Figure 7.1, the switching between the states

of the sender enzyme is facilitated by processes b) and d).

7.3.2 Hidden Markov Model Representation of the Coupled Chemical Reactions.

The model described here can be further simplified with the help of HMMs. In the

language of HMMs, the state of the sender enzyme can be represented by a variable

(s) which can take any value between 1 (for state R) and 2 (for state T ). Further on,

in order to represent the state of the sender enzyme as a Markov chain, we discretize

time into intervals of δt. The time interval δt is selected to be small enough such that

only one or no product molecules can be produced in any time interval regardless of

the state of the sender enzyme. This choice of small δt also ensures that the sender

enzyme retains the state of its catalytic site during δt. This approximation is also

backed by several studies which suggest that allostery manifests itself on timescales
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varying from the order of 10ps to several nanoseconds (McDonald et al., 2013). As

a result of the approximation, the time scales pertaining to the rates of transitions

between the states of sender enzyme (i.e., R to T and T to R) are several orders

slower than the time scales involved in the formation of products in a given state (see

Figure 7.6), i.e., the waiting times of the enzyme in state R or T is much greater than

the time involved in product formation.

Therefore, the probability distribution of the states of the sender enzyme during

time interval i (P (si)) can be expressed as a function of the probability distribution

of states during the time interval i−1, and the dynamics of the catalytic site and the

allosteric site in the sender enzyme as (Kampen, 1992):

P (si|si−1) = Γi−1→i (7.16)

where, Γi−1→i represents the transition matrix whose elements describe the probability

of transition to a state si at time interval i given the state of the sender enzyme

at time interval i − 1. For a sender enzyme in state 1 (si=1), the probability of

remaining in state 1, P1→1, is proportional to [R]eq[S]eqkR from Eq. 7.14. Whereas, the

probability for switching its state from state 1 to 2, P1→2 will proportional to hp time

the probability of having a bound allosteric site, Figure 7.1b, i.e., hp
[EAX ]eq [S]eqkA+

kA−
.

On the other hand, if the sender enzyme is in state 2, the probability to remain in

the state P2→2 is proportional to [T ]eq[S]eqkT and the probability to switch, P2→1 is

proportional to sp from Figure 7.1d. Using these, the transition probabilities can be
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si-1 si si+1

ni+1

yi-1 yi yi+1

nini-1

Γi-1→i Γi→i+1

Figure 7.6: Graphical Model describing a two state system of a sender enzyme with
Poissonian emission and a receiver protein. Here the observable, ni, is the number of
products produced by a catalytic site at time level i in the hidden state si. Γi−1→i
represents the transition matrix of the states between time steps i − 1 to i and yi
shows the status of the receiver protein at time interval i.

explicitly calculated using appropriate normalization conditions as:

P1→1 =
[R]eq[S]eqkR

[R]eq[S]eqkR + hp
[EAX ]eq [S]eqkA+

kA−

P1→2 =
hp

[EAX ]eq [S]eqkA+

kA−

[R]eq[S]eqkR + hp
[EAX ]eq [S]eqkA+

kA−

P2→1 =
sp

[T ]eq[S]eqkT + sp

P2→2 =
[T ]eq[S]eqkT

[T ]eq[S]eqkT + sp
. (7.17)

Moreover, once the detailed balance is achieved in steps (a) and (c) in Figure 7.1,

the dynamics of the above described process, Eq. 7.16 becomes independent in time,

i.e., Γi+1→i = Γ: ∀i ∈ 1, 2, ...,M for M time steps where M →∞.

The HMM model in Figure 7.6 describes the dynamics of a catalytic site existing

in state si at time step i and produces products ni as described by the Poisson process
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given below:

P (ni|si) =
e−λsiλsi

ni

ni!
(7.18)

where, λsi is the average number of products generated by the sender enzyme in

state si at time interval i. This parameter is closely related to the rate constants for

chemical processes described in Figure 7.1 as:

λsi =


dp[RS]eqδt, if si = 1

rp[TS]eqδt, if si = 2.

(7.19)

Here, [RS]eq and [TS]eq are the number of bound complexes between the substrate

and the catalytic site in state 1 and 2 respectively when detailed balance exists in

steps (a) and (c) in Figure 7.1. It should be noted that here we have used number

of bound complexes as opposed to the traditional use of concentration. This change

is also reflected in the units of the rate constants. Using this HMM framework, the

probability of generating ni products during time interval i can be written as:

P (ni) =
2∑

si=1

P (ni|si)P (si). (7.20)

Finally, we must also describe how ni changes the state of the receiver protein. As

we select a time interval for the event to occur, at most one product can be produced

in any time interval by the catalytic site. Consistent with the assumptions inherent

to the Gillespie simulation, we assume that diffusion occurs on timescales vastly

exceeding the rate of any chemical reaction (including the product formation rate).

The product can then either bind to the receiver protein or disappear, by diffusing

to a sink (such as an off-pathway, receiver), but it does not accumulate. Hence, the

probability of the state of the receiver protein downstream in the signaling pathway

(i.e., whether it is in complex with the product at time interval i or not) can be given

159



as a binomial process as:

P (yi = 1|ni) =


0, if ni = 0

pY , if ni = 1

(7.21)

or,

P (yi = 0|ni) =


1, if ni = 0

1− pY , if ni = 1

(7.22)

where, the state variable yi reflects a binding event at the receiver protein during time

interval i such that if yi = 1 for a successful binding event and yi = 0 otherwise. Here,

pY is a real number less than 1 which depicts the probability of activation of receiver in

the presence of the product. It should be noted that our choice of binomial process for

activation of the receiver protein (i.e., binding with the product molecule) stems from

our need for simplicity. Much more complicated models can be used for this process

with no effect to the physics described here. In addition, for further simplicity, the

dynamics of receiver (e.g., allostery in receiver protein) are not included in the model

and is an interesting topic open for further research. Therefore, at the beginning of

each time interval, the receiver is assumed to be in a refreshed state waiting to receive

a new product. The probabilities shown above describes the dynamics of the model

which will be used for calculating the amount of information encoded by the sender

enzyme while communicating with the receiver protein downstream in the signaling

pathway.

In summery, at a time interval i, the products generated by the sender enzyme

which acts as a sender of a message in a state si are received by another receiver

protein downstream in the signaling pathway which encodes the information onto the

state yi.
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7.4 Results and Discussion

In the section above, we reduced the dynamical model of allosteric regulation of a

sender enzyme to a simplified two-state model which can be represented by an HMM

in discrete time. The model consists of a sender enzyme with a catalytic site and

an allosteric regulator site. The sender enzyme binds with substrate which leads to

the generation of products. The sender enzyme can exist in two different states as

R (when the catalytic site exists as X) and T (when the catalytic site exists as X∗).

The two states differ in their dynamics of substrate binding and the rate of product

formation by the catalytic site.

The sender enzyme communicates with a receiver protein downstream in the sig-

naling pathway with the help of products generated in time. The binding of the

product with the receiver protein represents a successful reception of the signal. Fi-

nally, we can express the dynamics of switching of states of the sender protein as a

function of allosteric interaction between the catalytic site and the allosteric regulator.

Now, exploiting tools from information theory, we quantify the amount of infor-

mation conveyed by the sender enzyme to the receiver protein downstream at time

interval i, as the mutual information (MI) (Cover and Thomas, 2006) between them.

MI =
2∑

si=1

1∑
yi=0

P (si, yi) log
P (si, yi)

P (si)P (yi)
(7.23)

where, P (si, yi) represents the joint probability distribution between si and yi at

time interval i. According to the model, MI quantifies the amount of information

encoded by the catalytic site dynamics in the form of arrival times of products which

is transferred to a receiver protein in turn binding with it. For the calculation of MI

from Eq. 7.23, the summations are performed over all the possible states of the sender

enzyme and the receiver protein, i.e., si ∈ [1, 2] and yi ∈ [0, 1].

In addition, to compute the expression above in Eq. 7.23, the joint probability
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can be further expressed analytically as:

P (si, yi) = P (yi|si)P (si)

=
1∑

ni=0

P (yi, ni|si)P (si) (7.24)

where, due to the strategic choice of δt, ni ∈ [0, 1]. Further on,

P (si, yi) =
1∑

ni=0

P (yi, ni|si)P (si)

=
[ 1∑
ni=0

P (yi|ni)P (ni|si)
]
P (si). (7.25)

Here, P (yi|ni) is the receiver process described earlier and P (ni|si) describes the

process for the formation of products. P (si) can be calculated as:

P (si) =
2∑

si−1=1

P (si|si−1)P (si−1). (7.26)

In this expression P (si|si−1) can be obtained from the switching dynamics represented

by the Markov process representing the catalytic site dynamics of the sender enzyme,

Eq. 7.16. This equation can be computed in an iterative fashion to calculate P (si)

for some given initial conditions of the active sites, i.e., P (so). Moreover,

P (yi) =
1∑

ni=0

P (yi, ni)

=
1∑

ni=0

P (yi|ni)P (ni)

=
1∑

ni=0

P (yi|ni)
[ 2∑
si=1

P (ni, si)
]

=
1∑

ni=0

P (yi|ni)
[ 2∑
si=1

P (ni|si)P (si)
]
. (7.27)

Therefore, with the help of Eqs. 7.25, 7.26 and 7.27 one can compute the MI described

by Eq. 7.23 exactly for any time interval ‘i’ and given initial conditions P (so). Here
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we choose the initial condition that the sender enzyme at time 0 is in state 1, i.e.,

so = 1 and a large value of i, i = 500, is selected to ensure that the detailed balance

is achieved in steps (a) and (c) in Figure 7.1 and that the MI no longer varies with

i (this is equivalent to observing the long time behaviour of the model to minimize

transient effects).

In the model, the modulation of the information conveyed through product arrivals

can be achieved by two different mechanisms: (i) by changing the average number of

products generated by the sender enzyme in the state R or T , and (ii) by altering the

switching probabilities between these two states.

We first investigated the effect of varying the product formation rate of the first

state R, λ1, while keeping the product formation rate of the second state T and the

switching probabilities between states constant, Figure 7.7. First, as a sanity check,

we observe that without any allosteric regulation, i.e., when the state T is never

visited by the sender enzyme (setting the transition probability of the sender enzyme

from state R to T (P1→2) as zero), the MI between the state of the sender enzyme

and the binding events at the receiver protein is zero. This is an expected result as,

in this case, the sender protein is restricted to a single state, and alternate states

can no longer influence the binding of product at the receiver protein. Therefore,

no information is conveyed by the products from the sender enzyme to the receiver

protein, regardless of the rate of product formation by the sender.

Next, when λ1 < λ2, i.e., in the case of up-regulation, the MI between the sender

enzyme and the receiver protein is higher in contrast to the case when allosteric

regulation is absent (i.e., when P1→2 = 0). However, as λ1 increases and comes closer

to the value of λ2, the difference between the product formation rates in the two

states of the sender enzyme decreases and so does the MI until it drops down to

zero when λ1 = λ2. This observation is counter-intuitive as it suggests that the MI
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between the sender enzyme and the receiver protein decreases with an increase in

the average rate of product formation. Equally counter-intuitively, the information

communicated by the sender to the receiver rises once again when λ1 > λ2, i.e., for

the case of down-regulation.

A physical interpretation of these observations lies in the implication of the mean-

ing of MI. According to Eq. 7.23, MI is proportional to the joint probability of the

state of the sender enzyme and the state of the receiver protein. For a time interval

i, this depends on the conditional probability of yi, dependent on si. As a result, MI

quantifies the influence of the state of sender enzyme over the state of the receiver

protein. Therefore, if yi does not depend on si (one of such case would be in the lack

of allosteric interactions where state si is now fixed and yi is independent of si, and

purely stochastic), the MI would be zero as shown below:

MI =
2∑

si=1

1∑
yi=0

P (si, yi) log
P (si, yi)

P (si)P (yi)

=
2∑

si=1

1∑
yi=0

P (si, yi) log
P (yi|si)P (si)

P (si)P (yi)

=
2∑

si=1

1∑
yi=0

P (si, yi) log
P (yi)P (si)

P (si)P (yi)

= 0 (7.28)

On the other hand, as the influence of si over yi increases, so does the MI. Therefore,

during up-regulation as well as down-regulation, the non-zero MI implies that the

sender enzyme is able to regulate the state of the receiver protein. This is counter-

intuitive, particularly for the case of down-regulation as it predicts that the sender

enzyme can regulate the state of the receiver protein despite generating a lower num-

ber of product molecules.

Second, we analyzed the variation of the information transmitted with allosteric

regulation by varying the probability of switching of the state of the sender enzyme
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Up-Regulated Down-Regulated

Figure 7.7: Effect of allostery, as captured by λ1, on the information communicated
by the sender enzyme. With allosteric up-regulation, i.e., when λ1 < λ2, the time
series of product arrivals encodes a larger amount of information. The dotted line
represents the value of λ1 for which λ1 = λ2 and where the benefit of allostery on the
MI vanishes. With allosteric down-regulation, i.e., when λ1 > λ2 the sender enzyme
still communicates more information than in the absence of allostery. For the case of
the allosteric sender enzyme, we used λ2 = 2 × 10−4, and the transition probability
of the sender enzyme from state R to T , P1→2 and vice versa, P2→1 as 0.2 and for the
case of non-allosteric sender enzyme, P1→2 = 0.

from R to T , i.e., P1→2, while holding other parameters (i.e., λ1, λ2, and P2→1)

fixed, Figure 7.8. Once again, as a sanity check, we first observed the amount of

information conveyed in the absence of allosteric regulation, i.e., when λ1 = λ2. As

expected (similar to the case observed above), the signal no longer carries any MI

when the effect of allostery is absent, and is also insensitive to the value of P1→2.

Which implies that the binding events at the receiver protein would be independent

of the state the sender enzyme and, as a result, there is no MI between them. On the

other hand, for up- and down-regulated proteins, the sender enzyme conveys minimum

information while being restricted to only one state (i.e., when P1→2 = 0). However,

as P1→2 grows, with up-regulation, the sender enzyme is able to access a state with

higher average production and conveys a larger amount of information to the receiver
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protein. Although, unexpectedly, with down-regulation, the sender enzyme is still

able to transmit a larger amount of information for a range of switching probabilities.

This counter-intuitive observation illustrates once more that information transmitted

is not a mere function of the amount of product available to the receiver protein

but also depends on the switching kinetics between the allosteric states of the sender

enzyme.
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Figure 7.8: Effect of changing the switching probability from state R to T , P1→2

on the information communicated by the sender enzyme for different types of al-
losteric regulations. We observe that without any allosteric regulation, the infor-
mation encoded in the product time series do not vary with switching probabilities.
However, with up-regulation, i.e., when λ1(1 × 10−4) < λ2(4 × 10−4), the sender
enzyme communicates more information as the probability of it switching to an up-
regulated state increases. Counter-intuitively, a down-regulated sender enzyme, i.e.,
when λ1(4 × 10−4) > λ2(1 × 10−4), is still able to communicate a larger amount
of information for a wide range of switching probabilities. For all plots, we fix the
transition probability from state T to R, P2→1 to 0.08.

7.5 Conclusion

Here, we investigated a minimal model of allostery and quantified the information

communicated by the catalytic site of an allosterically regulated sender enzyme to

another receiver protein further down in the signaling pathway through time-varying

product formation rates. Our choice of a two-state model is a matter of convenience;
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our formalism readily generalizes to more complex kinetic models. More importantly,

we found that an allosterically regulated enzymes may convey a larger amount of

information as compared to an enzyme with no allosteric regulation by decreasing its

net rate of product formation.

This suggests that allostery may provide the means to control the information

encoded in the time of arrival of products in a way that goes beyond the energet-

ically demanding “more product – better signal” exploitative paradigm. That is,

allostery may provide an alternate “lower signal but higher information” regime. The

possibility of parameter fine-tuning to communicate more information is especially

relevant given allostery’s key role in protein evolution (Modi et al., 2018; Nussinov

et al., 2014; Townsend et al., 2015). It also opens the possibility to study that na-

ture may fine-tune allosteric parameters (including switching rates between states as

well as production rates) to adapt/evolve its signaling pathways in response to exter-

nal stimuli warranting exploratory (high information/low signal) or exploitative (low

information/high signal) strategies (Hills et al., 2015).
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Chapter 8

FINAL REMARKS

8.1 Conclusions

The aim of this thesis was to study “the second secret of life”, allostery by expand-

ing beyond the traditional perspective where it describes how the binding of a ligand

at a non-catalytic site can influence the dynamics of the distal catalytic site on the

protein. Indeed, allostery, i.e., a distal perturbation by a ligand binding regulating the

active site’s response could take place via distal perturbation in terms of mutations.

In this thesis, we studied, how allosteric interactions among residues within a protein

influence the evolution of its function through mutations. This enabled us to describe

the mechanistic principles involved in protein evolution of protein. Particularly, emer-

gence of new functions or adaptation to a new environment. Furthermore, we also

explored the role these interactions play beyond the scope of an isolated protein and

at the level of a cell where proteins are allowed to interact with other proteins.

We approached the first problem in chapters 3 (Modi et al., 2018) and 4 (Modi

and Ozkan, 2018) where, we focused on the evolution of function in Thioredoxins and

β-lactamases respectively. Using Dynamic Flexibility Index (DFI), we quantified the

native state dynamics of ancestral and modern Thioredoxins, and showed how the

flexibility profiles capture their functional evolution. Moreover, further distinctions

in the allosteric network of interaction among residues were captured between the

ancestral and extant Thioredoxins with the help of Dynamic Coupling Index (DCI)

analysis. With the use of these metrics, a general mechanism can be observed where

nature evolve the function of Thioredoxin proteins by fine-tuning their dynamics
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through the “hinge shift” mechanism. According to this, a loss of rigidity in one part

of the protein is compensated by a decrease in the flexibility of another distal part

of the protein. Nature does so by performing mutations at residues with medium

flexibilities which exhibit high dynamic allosteric coupling with the catalytic site.

Similar conclusions were drawn while observing the dynamical differences between

the wild type TEM-1 β-lactamase and the resistance driving mutations observed from

clinical and laboratory isolates. We observed that TEM-1 β-lactamase also evolved a

new function by altering its native state dynamics, particularly through changes in the

flexibility of the catalytic site residues. In addition, we also analyzed the data from

exhaustive mutagenesis analysis performed on TEM-1 β-lactamase by Stiffler et al.

(2015) and explored how the evolvability of a residue position towards emergence

of antibiotic resistance can be described using its flexibility and allosteric dynamic

coupling with the catalytic site.

Further on, using the mechanism of hinge shift observed in chapters 3 and 4,

we developed a protein dynamics-based computational design approach to engineer

an ancestral protein mutant. Our approach introduce the mutations on the ancestral

protein sequence through the DFI and DCI profiles of ancestral and extant proteins to

mold the dynamics of the engineered ancestral protein toward that of the target pro-

tein. We applied this approach to shift (in silico) the dynamics (DFI) of promiscuous

ancestral GNCA β-lactamase, with moderate degrading activity towards cefotaxime

and penicillin, to that of modern, penicillin specific TEM-1 β-lactamase. In this pro-

tocol, we selected mutations in two steps. First, we focused on introducing hinge

shifts with the help of substitutions at residues which are not conserved between

GNCA and TEM-1 β-lactamases based on their dynamic flexibilities and dynamic

coupling with the rest of the protein. Second, we concentrated on the key role played

by allosteric interactions in β-lactamase by selecting residues which exhibit medium
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flexibilities and higher dynamic coupling with other sequentially conserved common

hinges and the catalytic sites (these are called DARC spots). With substitutions

at the residues selected in the two steps above, we were able to drive the flexibility

profile of GNCA β-lactamase towards that of TEM-1 β-lactamase. In addition, the

approach described here, was further verified experimentally by our collaborators,

showing that engineered ancestral GNCA β-lactamase has become penicillin specific.

These analyses provided an understanding of the role played by allosteric interac-

tions in regulating protein function in evolution. Afterwards, we addressed the other

goal of the thesis– exploring the implications of allosteric interactions at a cellular

level in chapters 6 and 7 (Modi et al., 2020). In chapter 6, we directed our attention

to E. coli ribosome where insertions in L22 protein of ribosome provides antibiotic

resistance to the bacteria. However, despite the added benefit, this variant of ribo-

some (L22*) is not found to be dominant in nature. We approached this question by

studying the differences in the dynamics introduced by mutations in L22 protein of an

E. coli ribosome using coarse-grained models. Particularly, we focused on the mag-

nesium ions which are critical for spatially coordinating the structure and function of

ribosome. Through DFI analysis, it was observed that, L22* variant ribosome has a

higher affinity to bind magnesium ions. Based on enhanced magnesium association

of L22*, we hypothesize that there will be depletion of free magnesium ions in the

cell, which could also diminish the amount of biologically active magnesium bound

ATP in the cell. This has an impact on the growth rate of the organism with L22*

variant. This was further verified by our experimental collaborators who showed that

the L22* variant indeed has a lower concentration of activated ATP molecules and

thus, exhibited a reduced growth rate of the cell. This provided the evidence of a

more general phenomenon named as ionic allostery– the indirect interaction between

two distinct and distal molecules in a cell which are propagated via the concentration
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of free ions in the cell.

We further studied the implications of allostery in a signaling pathway in chapter 7

by proposing a simplistic toy model of an allosterically regulated enzyme. The enzyme

communicates to a receiver protein downstream in the signaling pathway via product

molecules. This enzyme also contains an allosteric regulator site which, upon binding

to a substrate, can drive the transition of the catalytic site to another state with

different kinetics. We described, using master equations and under the conditions of

detail balance, how this enzyme can be reduced to a two state Hidden Markov Model

in discrete time. This enabled us to calculate the mutual information between the

state of enzyme’s catalytic site and the state of the receiver protein (i.e., whether it is

bound to a product molecule or not). This helps quantify the strength of control the

enzyme has on the state of the receiver protein. Using this model, we showed that

allostery efficiently regulates the time signature of the arrival of product molecules

at the receiver protein. Further on, the model also predicts that the enzyme can

effectively regulate the state of the receiver molecule not only via up-regulation, but

through down-regulation as well. This was counter intuitive, as typically a loss in the

product formation rate of enzymes is associated with a loss in the sensitivity of the

signaling pathway due to a drop in the concentration of product molecules. Thereby,

indicating a possible role played by allostery in regulating signaling pathways.

To summarize, the results we have discussed in the thesis describe the importance

of understanding allosteric interactions in order to “crack the code” which governs

the function of the protein, the role it plays in evolution and also how these inter-

actions regulate other constituents in the rest of the cell. Thereby, emphasizing the

significance of Monod’s description of allostery– “The second secret of Life”.
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8.2 Future Directions

The analyses described here explores a general mechanism of how nature exploits

allostery in proteins to evolve their function. The evolutionary principles explored

through the lens of allostery in chapters 3 and 4 provides the description of the prin-

ciple of “hinge-shift” used by Thioredoxins and extant β-lactamase to evolve their

functions. The applicability of this mechanism is further demonstrated by using it

to identify mutations in ancestral β-lactamase enzyme to design a targeted function.

This mechanism can be further applied to other protein system to study their evolu-

tion. It can also be used to motivate the design of new and novel drugs to counteract

the infections developing resistance to existing drugs (e.g., antibiotic resistance bac-

teria, etc.).

Furthermore, analyzing the implications of allostery at cellular level, provides a

platform to study the outcome of higher order interactions among different proteins in

a cell, whose prediction is still an open problem in biology. In addition, the model used

for studying the propagation of information in a pathway can be improved further by

incorporating continuous time regime as opposed to discrete time. This can allow a

better treatment of diffusion and accumulation of product molecules in the pathway.

Finally, the applicability of DFI analysis can be further expanded by incorpo-

rating time dependent dynamics in the picture. This is currently being explored by

studying the vibrational spectra of Cα atoms in a protein. This can also provide a

better mechanistic picture of how evolution alters the native state ensemble through

allosteric mutations.
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González-Ramı́rez, L. A., C. R. Ruiz-Mart́ınez, R. A. Estremera-Andújar, C. A.
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Garćıa-Ruiz, “Efficient screening methodology for protein crystallization based
on the counter-diffusion technique”, Crystal Growth & Design 17, 12, 6780–6786
(2017).

180



Gordon, J. C., J. B. Myers, T. Folta, V. Shoja, L. S. Heath and A. Onufriev, “H++:
a server for estimating pkas and adding missing hydrogens to macromolecules”,
Nucleic Acids Research 33, Web Server issue, W368–371 (2005).

Gruber, R. and A. Horovitz, “Allosteric mechanisms in chaperonin machines”, Chem-
ical Reviews 116, 11, 6588–6606 (2016).

Hadzipasic, A., C. Wilson, V. Nguyen, N. Kern, C. Kim, W. Pitsawong, J. Villali,
Y. Zheng and D. Kern, “Ancient origins of allosteric activation in a ser-thr kinase”,
Science (New York, N.Y.) 367, 6480, 912–917 (2020).

Halabi, N., O. Rivoire, S. Leibler and R. Ranganathan, “Protein Sectors: Evolution-
ary Units of Three-Dimensional Structure”, Cell 138, 4, 774–786 (2009).

Halgren, T. A., “Merck molecular force field. I. Basis, form, scope, parameterization,
and performance of MMFF94”, Journal of Computational Chemistry 17, 5-6, 490–
519 (1996).

Hänggi, P., P. Talkner and M. Borkovec, “Reaction-rate theory: fifty years after
kramers”, Rev. Mod. Phys. 62, 251–341 (1990).

Harms, M. J. and J. Thornton, “Evolutionary biochemistry: revealing the historical
and physical causes of protein properties”, Nature Reviews Genetics 14, 559–571
(2013a).

Harms, M. J. and J. W. Thornton, “Evolutionary biochemistry: revealing the his-
torical and physical causes of protein properties”, Nature Reviews. Genetics 14, 8,
559–571 (2013b).

Harris, C. R., K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cour-
napeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,
M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del R’ıo, M. Wiebe, P. Peterson,
P. G’erard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke
and T. E. Oliphant, “Array programming with NumPy”, Nature 585, 7825, 357–
362 (2020).

Hart, K. M., M. J. Harms, B. H. Schmidt, C. Elya, J. W. Thornton and S. Marqusee,
“Thermodynamic system drift in protein evolution”, PLoS biology 12, 11, e1001994
(2014).

Hartley, H., “Origin of the Word ‘Protein”’, Nature 168, 4267, 244–244 (1951).

Henzler-Wildman, K. A., M. Lei, V. Thai, S. J. Kerns, M. Karplus and D. Kern, “A
hierarchy of timescales in protein dynamics is linked to enzyme catalysis”, Nature
450, 7171, 913–916 (2007).
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Khersonsky, O., D. Röthlisberger, O. Dym, S. Albeck, C. J. Jackson, D. Baker and
D. S. Tawfik, “Evolutionary optimization of computationally designed enzymes:
Kemp eliminases of the ke07 series”, Journal of Molecular Biology 396, 4, 1025–
1042 (2010).

Khersonsky, O. and D. S. Tawfik, “Enzyme promiscuity: a mechanistic and evolu-
tionary perspective”, Annual Review of Biochemistry 79, 471–505 (2010).

Kim, H., T. Zou, C. Modi, K. Dörner, T. J. Grunkemeyer, L. Chen, R. Fromme, M. V.
Matz, S. B. Ozkan and R. M. Wachter, “A hinge migration mechanism unlocks the
evolution of green-to-red photoconversion in gfp-like proteins”, Structure (London,
England : 1993) 23, 1, 34–43 (2015).

183



Kim, H.-S., G. Fernandes and C.-W. Lee, “Protein Phosphatases Involved in Regu-
lating Mitosis: Facts and Hypotheses”, Molecules and Cells 39, 9, 654–662 (2016).

Kister, J., C. Poyart and S. Edelstein, “Oxygen-organophosphate linkage in
hemoglobin a. the double hump effect”, Biophysical Journal 52, 4, 527–535 (1987).

Knies, J. L., F. Cai and D. M. Weinreich, “Enzyme efficiency but not thermostability
drives cefotaxime resistance evolution in tem-1 β-lactamase”, Molecular Biology
and Evolution 34, 5, 1040–1054 (2017).

Knight, A. M., P. H. Culviner, N. Kurt-Yilmaz, T. Zou, S. B. Ozkan and S. Cavagnero,
“Electrostatic Effect of the Ribosomal Surface on Nascent Polypeptide Dynamics”,
ACS Chemical Biology 8, 6, 1195–1204 (2013).

Knudsen, M. and C. Wiuf, “The cath database”, Human Genomics 4, 3, 207 (2010).

Komorowski, M. and D. S. Tawfik, “The Limited Information Capacity of Cross-
Reactive Sensors Drives the Evolutionary Expansion of Signaling”, Cell Systems 8,
1, 76–85.e6 (2019).

Koshland, D. E., G. Némethy and D. Filmer, “Comparison of experimental binding
data and theoretical models in proteins containing subunits”, Biochemistry 5, 1,
365–385 (1966).

Kumar, A., B. M. Butler, S. Kumar and S. B. Ozkan, “Integration of structural
dynamics and molecular evolution via protein interaction networks: a new era
in genomic medicine”, Current Opinion in Structural Biology 35, Supplement C,
135–142 (2015a).

Kumar, A., T. J. Glembo and S. B. Ozkan, “The role of conformational dynamics
and allostery in the disease development of human ferritin”, Biophysical Journal
109, 6, 1273–1281 (2015b).

Kurkcuoglu, Z., I. Bahar and P. Doruker, “Clustenm: Enm-based sampling of essen-
tial conformational space at full atomic resolution”, J. Chem. Theory Comput 12,
9, 4549–4562 (2016).

Ladbury, J. E., N. Kishore, H. W. Hellinga, R. Wynn and J. M. Sturtevant, “Thermo-
dynamic effects of reduction of the active-site disulfide of escherichia coli thioredoxin
explored by differential scanning calorimetry”, Biochemistry 33, 12, 3688–3692
(1994).

Lane, M. D. and B. Seelig, “Advances in the directed evolution of proteins”, Current
opinion in chemical biology 0, 129–136 (2014).

Larrimore, K. E., I. C. Kazan, L. Kannan, R. P. Kendle, T. Jamal, M. Barcus,
A. Bolia, S. Brimijoin, C.-G. Zhan, S. B. Ozkan and T. S. Mor, “Plant-expressed
cocaine hydrolase variants of butyrylcholinesterase exhibit altered allosteric effects
of cholinesterase activity and increased inhibitor sensitivity”, Scientific Reports 7,
1, 1–14 (2017).

184



Lee, D.-y. D., L. Galera-Laporta, M. Bialecka-Fornal, E. C. Moon, Z. Shen, S. P.
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J. Garcia-Ojalvo and G. M. Süel, “Metabolic codependence gives rise to collective
oscillations within biofilms”, Nature 523, 7562, 550–554 (2015).

Liu, T., S. T. Whitten and V. J. Hilser, “Functional residues serve a dominant role in
mediating the cooperativity of the protein ensemble”, Proceedings of the National
Academy of Sciences of the United States of America 104, 11, 4347–4352 (2007).

Livermore, D. M., “beta-lactamases in laboratory and clinical resistance”, Clinical
Microbiology Reviews 8, 4, 557–584 (1995).

Loveland, A. B., G. Demo, N. Grigorieff and A. A. Korostelev, “Ensemble cryo-
EM elucidates the mechanism of translation fidelity”, Nature 546, 7656, 113–117
(2017).

185



Lynch, M., “Evolution of the mutation rate”, TRENDS in Genetics 26, 8, 345–352
(2010).

Maguid, S., S. Fernández-Alberti, G. Parisi and J. Echave, “Evolutionary conservation
of protein backbone flexibility”, Journal of Molecular Evolution 63, 4, 448–457
(2006).

Maier, J. A., C. Martinez, K. Kasavajhala, L. Wickstrom, K. E. Hauser and C. Sim-
merling, “ff14sb: Improving the accuracy of protein side chain and backbone param-
eters from ff99sb”, Journal of Chemical Theory and Computation 11, 8, 3696–3713
(2015).

Mak, W. S. and J. B. Siegel, “Computational enzyme design: Transitioning from
catalytic proteins to enzymes”, Current Opinion in Structural Biology 27, 87–94
(2014).

Mart́ınez, J. L., F. Baquero and D. I. Andersson, “Predicting antibiotic resistance”,
Nature Reviews Microbiology 5, 12, 958–965 (2007).

Marzen, S., H. G. Garcia and R. Phillips, “Statistical mechanics of Monod-Wyman-
Changeux (MWC) models”, Journal of Molecular Biology 425, 9, 1433–1460
(2013).

Mazal, H., H. Aviram, I. Riven and G. Haran, “Effect of ligand binding on a protein
with a complex folding landscape”, Physical Chemistry Chemical Physics (2017).

McConnell, H. M., “Reaction rates by nuclear magnetic resonance”, The Journal of
chemical physics 28, 3, 430–431 (1958).

McCoy, A. J., R. W. Grosse-Kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni and
R. J. Read, “Phaser crystallographic software”, Journal of Applied Crystallography
40, 4, 658–674 (2007).

McDonald, L. R., M. J. Whitley, J. A. Boyer and A. L. Lee, “Colocalization of fast
and slow timescale dynamics in the allosteric signaling protein chey”, Journal of
Molecular Biology 425, 13, 2372–2381 (2013).

McLeish, T. C., M. J. Cann and T. L. Rodgers, “Dynamic transmission of protein al-
lostery without structural change: Spatial pathways or global modes?”, Biophysical
Journal 109, 6, 1240–1250 (2015).

McLeish, T. C. B., T. L. Rodgers and M. R. Wilson, “Allostery without conformation
change: modelling protein dynamics at multiple scales”, Physical Biology 10, 5,
056004 (2013).

Medeiros, A. A., “Evolution and dissemination of beta-lactamases accelerated by
generations of beta-lactam antibiotics”, Clinical Infectious Diseases: An Official
Publication of the Infectious Diseases Society of America 24 Suppl 1, S19–45
(1997).

186



Meiboom, S. and D. Gill, “Modified spin-echo method for measuring nuclear relax-
ation times”, Review of scientific instruments 29, 8, 688–691 (1958).

Milo, R., “What is the total number of protein molecules per cell volume? A call
to rethink some published values”, BioEssays: News and Reviews in Molecular,
Cellular and Developmental Biology 35, 12, 1050–1055 (2013).

Miton, C. M., S. Jonas, G. Fischer, F. Duarte, M. F. Mohamed, v. B. Loo, B. Kintses,
S. C. L. Kamerlin, N. Tokuriki, M. Hyvönen and F. Hollfelder, “Evolutionary
repurposing of a sulfatase: A new michaelis complex leads to efficient transition
state charge offset”, Proceedings of the National Academy of Sciences p. 201607817
(2018).

Miton, C. M. and N. Tokuriki, “How mutational epistasis impairs predictability in
protein evolution and design”, Protein Science: A Publication of the Protein Society
25, 7, 1260–1272 (2016).

Modi, T., J. Huihui, K. Ghosh and S. Ozkan, “Ancient thioredoxins evolved to
modern- day stability – function requirement by altering native state ensemble”, B
Biol. Sci 373, 1749, 1–10 (2018).

Modi, T. and S. B. Ozkan, “Mutations utilize dynamic allostery to confer resistance
in tem-1 β-lactamase”, International Journal of Molecular Sciences 19, 12 (2018).
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Uceda, M. Ortega-Muñoz, F. Santoyo-Gonzalez, E. A. Gaucher, S. C. L. Kamerlin,
M. Bruix, J. A. Gavira and J. M. Sanchez-Ruiz, “De novo active sites for resurrected
precambrian enzymes”, Nature Communications 8, 1, 1–13 (2017).

Risso, V. A. and J. M. Sanchez-Ruiz, “Resurrected Ancestral Proteins as Scaffolds
for Protein Engineering”, in “Directed Enzyme Evolution: Advances and Appli-
cations”, edited by M. Alcalde, pp. 229–255 (Springer International Publishing,
Cham, 2017).

Risso, V. A., J. M. Sanchez-Ruiz and S. B. Ozkan, “Biotechnological and protein-
engineering implications of ancestral protein resurrection”, Current Opinion in
Structural Biology 51, 106–115 (2018).

Romero, P. A. and F. H. Arnold, “Exploring protein fitness landscapes by directed
evolution”, Nature reviews. Molecular cell biology 10, 12, 866–876 (2009).

Romero-Romero, M. L., V. A. Risso, S. Martinez-Rodriguez, B. Ibarra-Molero and
J. M. Sanchez-Ruiz, “Engineering ancestral protein hyperstability”, The Biochem-
ical Journal 473, 20, 3611–3620 (2016).

Ross, J., “The dark matter of biology”, Biophys. J 111, 5, 909–16 (2016).

190



Ruiz, J., “Etymologia: Tem”, Emerging Infectious Diseases 24, 4, 709 (2018).

Rule, G. S. and T. K. Hitchens, Fundamentals of protein NMR spectroscopy, vol. 5
(Springer Science & Business Media, 2006).

Saavedra, H. G., J. O. Wrabl, J. A. Anderson, J. Li and V. J. Hilser, “Dynamic
allostery can drive cold adaptation in enzymes”, Nature 558, 7709, 324–328 (2018).

Sablowski, R. and M. Carnier Dornelas, “Interplay between cell growth and cell cycle
in plants”, Journal of Experimental Botany 65, 10, 2703–2714 (2014).
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Thorbjarnardóttir, S., R. Á. Magnúsdóttir, G. Eggertsson, S. A. Kagan and Ó. S.
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Figure A.1: The coupling of all common and sequentially non-conserved (NC) hinges
with other non-common and sequentially non-conserved (NN) hinges in GNCA β-
lactamase. Common and sequentially non-conserved hinges which exhibit a higher
coupling (%DCI>0.8) with other non-common and sequentially non-conserved hinges
are selected for substitutions in set Y. For this analysis, we selected such residues from
each region in the protein. Therefore, out of residues 262, 263 and 265, only 262 and
263 are selected due to their high coupling with maximum number of NN hinges; out
of 244, 245 and 246, only 244 and 246 are selected, and similarly for others. However,
182 is the only NC hinge in its vicinity which showed higher coupling to few with NN
hinges (44 and 260), as a result we included in the set Y. It should be noted that the
residue 182 was found to be of importance in other studies focusing on emergence of
new function in β-lactamases (Salverda et al., 2010; Weinreich et al., 2006). We also
compared the impact of mutations from set Y excluding the residue 182 as shown in
Figure A.2

A.1 Experimental Characterization of the Mutants

Proteins studied in this work were prepared as we have previously described (Risso
et al., 2017). Briefly, genes cloned into a pET24 vector with resistance to kanamycin
were transformed into E. coli BL21(DE3) cells. Proteins were purified by NTA affinity
chromatography, taking advantage of the presence of a His-tag at the C-terminal.
Protein solutions were prepared by exhaustive dialysis against 50 mM Hepes buffer
50 mM and protein concentrations were determined spectrophotometrically using a
known value of the extinction coefficient at 280 nm.

Catalytic parameters for the hydrolysis of lactam antibiotics were determined at
25 oC, as we have previously described (Risso et al., 2013). Briefly, initial rates were
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Figure A.2: The effect of mutations from set Y with (GNCA-Y) and without the mu-
tation T182M (GNCAY wo 182) is observed by comparing their DFI profiles with the
wild types GNCA and TEM-1 β-lactamases. We observe that without the mutation
T182M, the mutant (broken black line) exhibits very different dynamics particularly
in several regions 78-110, around residue 200 and 240-260. On the other hand, the
impact of the mutation set Y on dynamics in these regions is not so severe when we
incorporate the mutation (black solid line).

Figure A.3: The comparison of the effect of mutations from set X and the mutant
created by performing mutations at all the non-common and non-conserved hinges
in GNCA and TEM-1 β-lactamase (GNCA-AllNN) by comparing their DFI profiles
with the wild types GNCA and TEM-1 β-lactamases. We observe that by performing
mutations at all the non-common and non-conserved hinges (broken black line) has a
drastic impact on the dynamics particularly in regions around the catalytic site 70, 166
and 234. On the other hand, the impact of the mutation from set X, which contains
only a select number of non-common and non-common hinges (which exhibit high
coupling with other non-common and non-conserved hinges), on dynamics in these
regions is not so severe (black solid line). This indicates the critical role played by
the coupling among these hinge residues which compensate the deleterious effect of
mutations on the catalytic pocket.

determined from the change in UV absorbance that accompanies substrate hydrolysis
and values of the Michaelis constant, turnover number and catalytic efficiency were
calculated by fitting the Michaelis–Menten equation to the profiles of rate versus
substrate concentration. In some cases, linear plots were observed, indicating a very
large value of the Michaelis constant. In those cases, only the value of the catalytic
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efficiency was calculated from the experimental profiles.
Denaturation temperatures were determined from differential scanning calorime-

try experiments, as we have previously described (Risso et al., 2013). Briefly, protein
solutions were exhaustively dialyzed and the buffer from the last dialysis step was
used as the reference solution in the calorimetric experiments. Equilibration of the
instrument was ensured by recording several baselines prior to the experiment with
the protein sample. Denaturation temperature values were determined as the tem-
perature corresponding to the maximum of the heat capacity profiles.

A.2 Crystallization, Data Collection, and Structure Determination

Crystallization of GNCA-XYZ was done by the counter diffusion technique using
the 24 conditions minimum crystallization screening kit together with the mixPEG at
pH form 4.0 to 9.077 (González-Ramı́rez et al., 2017). Protein solution, at 30 mg/ml
in 25 mM Hepes pH 7.0, was loaded in capillaries of 0.2 mm inner diameter, sealed
at the top of the capillary and confronted to the precipitant solutions. After several
days first crystals appeared at the bottom of the capillary, but crystals were let set
until data collection. Crystals were extracted from the capillary and cryo-protected
by the equilibration with 15% (v/v) glycerol or 20% PEG 200 prepared in the mother
liquid prior to flash-frozen in liquid nitrogen for transportation and data collection.
Crystals grown in several conditions, but the best diffracting crystals were obtained
in the mix of PEG at pH 9.0.

Crystals were diffracted at the beamline ID30B of the European Synchrotron Radi-
ation Facility (ESRF, France). Data were indexed and integrated with XDS (Kabsch,
2010) and scaled with SCALA (Evans, 2006) of the CCP4 program suite (Number 4,
1994). Molecular replacement was done using as the search model the coordinates of
GNCA, PDB ID. 4B88 in Phaser (McCoy et al., 2007). Refinement was initiated with
phenix.refine (Afonine et al., 2010) of the PHENIX suite (Adams et al., 2010) followed
by manual building, water inspection and ligands identification in Coot (Emsley et al.,
2010). The final refinement was assessed, including Titration-Libration-Screw (TLS)
parameterization. The model was verified with Molprobity (Chen et al., 2010) prior
deposit at the PDB (ID. 6YRS). Additional details provided in the Table A.1.

A.3 Nuclear Magnetic Resonance Spectroscopy

The GNCA and GNCA-XYZ genes were incorporated into a pET 24B (+) vector
and transformed into BL21 (DE3) E. coli cells. Starter cultures were prepared with
one colony in 5 mL LB with 38 µg/ml Kanamycin and incubated overnight at 37
oC with shaking. The starter culture was used to inoculated 1 L of minimal M9
media (12.8 g Na2HPO4.7H2O, 3.0 g KH2PO4, 0.5 g NaCl, 1g 15NH4Cl, 20 mL of
20% w/v D-Glucose, 10 mL 100× MEM vitamin solution, 1 mM MgSO4, 100 µM
CaCl2). Protein expression was induced at 0.6 OD600 nm with 400 µM IPTG at 37
oC for 3 hrs. The resulting cells were harvested at 6000 ×g for 15 min 4 oC.

The cell pellet containing over expressed GNCA-XYZ were re-suspended in 20
mL of lysis buffer (20 mM Na2HPO4, 500 mM NaCl, pH 7.4) per 1 L of cell pellet,
1 mM phenylmethanesulfonyl fluride (PMSF), 5 mM magnesium acetate, 23 µg/ml
lysozyme, 2.3 µg/ml DNase, and 2.3 µg/ml RNase. The sample was tumbled at room
temperature for 20 min followed by sonication on ice with S-4000 Ultrasonic Processor
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Table A.1: Data collection and refinement statistics. Statistics for the highest-
resolution shell are shown in parentheses.
Source ESRF ID30B
PDB ID 6YRS
Resolution range (Å) 48.73 - 1.7 (1.76 - 1.7)
Space group P 1 21 1
a, b, c (Å) 47.35, 81.40, 61.04
γ(o) 94.58
No. unique reflections 49578 (4871)
Multiplicity 3.0 (2.9)
Completeness (%) 97.68 (96.72)
Mean I/sigma(I) 12.03 (1.30)
Wilson B factor (Å2) 29.69
R-merge (%) 4.46 (77.17)
CC1/2 (%) 99.8 (58.8)
Reflections in working / test sets 49571 / 2531
R-work (%) 17.60 (30.96)
R-free (%) 20.85 (33.13)
Atoms (non-H) 4441
macromolecules 4049
ligands 136
solvent 256
Protein residues 504
RMS (bonds) (Å) 0.012
RMS (angles) (o) 1.11
Ramachandran (%)
ligands 98.19
ligands 1.81
Average B factor (Å2) 41.92
biomolecules 40.78
ligands 66.09
solvent 47.08

(Qsonica) at a 3 s on and 5 s off pulse cycle and 65% power. The resulting lysate
was centrifuged at 38,500 ×g for 20 min at 4 oC. The supernatant was collected and
was 0.45 µm filtered and loaded on to 5 ml QIAGEN Ni-NTA Superflow column at 1
mL/min rate. The column was equilibrated with 5 column volumes (CV) of binding
buffer (20 mM Na2HPO4, 500 mM NaCl, 20 mM Imidazole, pH 7.4) and washed with
2.5 CV of 8% (58.4 mM imidazole) of elution buffer (20 mM Na2HPO4, 500 mM
NaCl, 500 mM Imidazole, pH 7.4). GNCA-XYZ was eluted by a linear gradient of
the binding and elution buffers over 9 CVs and ranging from 8-70% elution buffer
concentration. Fractions were identified by SDS-PAGE and buffer exchanged into
NMR buffer (25 mM Na2HPO4, 250 mM NaCl, pH 6.7) and concentrated to 0.5 mL
using 10 kDa cutoff (Millipore Amicon Ultra-4 10K) for gel filtration chromatography
(16XK column with Superdex 200 Prep Grade Resin, GE Healthcare Life Science).
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SDS-PAGE was used to analyze fractions with high A280 readings, and selected
fractions were combined and concentrated.

The NMR sample was prepared in a 3 mm NMR tube with 2.7% D2O, 0.5 mM
EDTA, and 550 µM protein concentration in final volume of 180 µL. All 1H-15N
heteronuclear single quantum coherence (HSQC) experiments were recorded on a
Bruker Avance III HD 850 MHz spectrometer at 303.15 K and equipped with a
cryogenically cooled probe. Data were processed in NMRPipe86 and anazlyed with
CcpNMR Analysis software (Vranken et al., 2005).
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B.1 Bacterial Strains

The Bacillus subtilis strains used in this study are listed in Table B.1. SacA::
PmgtE-yfp strain is generated using the ECE174-based integration vector (ECE174-
PmgtE-yfp) to insert PmgtE-yfp into the sacA locus. It was constructed by Gibson
assembly of two PCR products. ECE174-yfp (CmR) vector was PCR amplified using
the primers GS450 and GS351. The promoter region of mgtE was PCR amplified
using the primers GS2462 and GS2463. The overlapping ends that facilitate Gibson
assembly are indicated with lower case letters. The M3 mutation in the promoter
(PmgtEM3) was created using the primers GS2465 and GS2472 (mutation site in-
dicated with lower case letters). The DNA sequences of the primers are listed in
Table B.2. The transformed strains were confirmed by sequencing.

Table B.1: Organisms and strains used in the study.
Name Source BGSC ID
Bacillus subtilis NCIB
3610 (WT)

Wade Winkler, Univer-
sity of Maryland

3A1

Bacillus subtilis NCIB
3610 rplV94 (L22*)

Lee et al. (2019) N/A

Bacillus subtilis NCIB
3610 sacA::PmgtE-yfp

This Study N/A

Bacillus subtilis
NCIB 3610 rplV94,
sacA::PmgtE-yfp

This Study N/A

Bacillus subtilis NCIB
3610 sacA::PmgtE

M3-
yfp

This Study N/A

Table B.2: Primers used to generate vectors for reporter strains.
Name Sequence Source

GS450
ATGAGCAAAGGTGAAGAACT-

GTTCACC
This Study

GS351 GTCGCTACCATTACCAGTTGGTCTGG This Study

GS2462
ccaactggtaatggtagcgacGTTTTGTTCCG-

TAATTGTGATGTAAGCGC
This Study

GS2463
aacagttcttcacctttgctCATCGGGACTCG-

TACCTCCTCTACG
This Study

GS2465
ATCGACATAAccaGATTTTTAAT-

GCAGCTGG
This Study

GS2472
GCATTAAAAATCtggTTATGTCGAT-

GATTTCTGTTGACCCATTGGCGTCT
This Study

B.2 Growth Conditions

For YFP fluorescence and growth rate measurements, desired B. subtilis strains
were streaked on a fresh LB agar plate (with 5 mg/L chloramphenicol or 5 mg/L
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erythromycin when appropriate) a day before the experiment and incubated at 37
oC overnight. A few colonies of the desired strain were used for inoculation in 2
mL MSgg media [5 mM potassium phosphate (pH 7.0), 100 mM 3-(N-morpholino)
propanesulfonic acid (pH 7.0), 700 µM CaCl2, 50 µM MnCl2, 100 µM FeCl3, 1 µM
ZnCl2, 2 µM thiamine, 0.5% glycerol, 0.5% glutamate] with indicated final MgCl2
concentration and grown at 37oC with shaking for 4.5 hours. Media were made from
stock solutions immediately before experiments, and the stock solution of glutamate
were made fresh every two days. The OD600 was adjusted to 0.02 with the same
growth media, and the culture was applied onto a 1.5% carrageenan pad made with
MSgg medium with desired final MgCl2 concentration. The pads were covered, left
to air dry for 1 hour at 30 oC, and placed into a coverslip-bottom Willco dish for
imaging.

For luciferase driven Mg-ATP measurements and Spectinomycin MIC test, a few
colonies of the desired strain were inoculated into 2 mL MSgg medium with indicated
final MgCl2 concentration and grown at 37 oC with shaking for 6 hours prior to test.

B.3 Time-Lapse Microscopy

Elongation rate and PmgtE-yfp signal of B. subtilis cells were monitored with
time-lapse fluorescence microscopy. We recorded phase-contrast and YFP fluores-
cence images at 30 oC using Olympus confocal laser scanning microscope FV3000
with a motorized stage (ASI). Single layers of cells were imaged every 20 min under
60× objective lens with 1.5× zoom. Collected images were processed with ImageJ
(National Institutes of Health, http://imagej.nih.gov/ij/).

B.4 Free Magnesium Measurements

Trainable Weka segmentation plugin from FIJI (ImageJ, (Arganda-Carreras et al.,
2017)) was used to segment cells from each phase-contrast image. Multilayer of cells,
spores, and background noise were eliminated through size filtering and screening. A
mask created for each image was obtained as ROIs and applied to the corresponding
YFP images to extract fluorescence intensity for each segmented cell. The fluorescence
intensity of cells was averaged per image. Then, the mean fluorescence intensity under
a certain condition was calculated as the average of all images for the condition. Fold
change relative to M3 control was calculated by dividing by the mean fluorescence
intensity of M3 control at a given extracellular Mg2+ concentration.

B.5 Elongation Rate Calculation

Single cells were tracked for 3 hours 20 min by custom software developed in
MATLAB (MathWorks) using time-lapse phase images. For each lineage’s time trace
of cell length, an exponential line was fitted between consecutive divisions (for each
generation). A function f(x) = aebx was used for the fitting, where b is the growth
rate of a cell. The elongation rate of cells was averaged per image. Then, the mean
elongation rate of a certain condition was calculated as the average of all images for
the condition. Statistical analysis was performed using GraphPad Prism.
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B.6 Mg-ATP Measurements

Steps described in ATP Bioluminescence Assay Kit HS II (Roche Scientific Cat
#: 11-699-709-001) protocol were followed for the sample and standard preparation.
Specifically, 5 × 105 cells were taken in a 50 µl volume to 96 well plate. 50 µl of lysis
buffer was added to each sample for room temperature incubation for 5 minutes. 100µl
of luciferase reagent was added to each sample, immediately followed by luminescence
measurements using Spark Multimode Microplate Reader (Tecan). Standard curve
was generated every experiment concurrently with samples. Luminescence intensity
of samples were converted to concentration values using the standard curve. Mg-ATP
concentration per cell was calculated with the assumption that OD600 of 1.0 is 5 ×
109 cells/ml, and that volume of a cell is 0.9 fL.

B.7 MIC Tests

A total of 5 × 108 cells was spread on MSgg-agar plate supplemented with in-
dicated final MgCl2 concentration. A single test strip of 0.064-1024 mg/L Specti-
nomycin (Liofilchem s.r.l. Cat #:920141) was placed at the center of each plates
and were incubated at 37 oC overnight. Statistical analysis was performed using
GraphPad Prism.

Figure B.1: Inversed free magnesium concentration in a cell, related to Figure. 6.9.
PmgtE-yfp signals in WT and L22* strains relative to PmgtE M3-yfp control at various
extracellular magnesium concentrations.
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Figure B.2: A standard curve for Mg-ATP measurements, related to Figure. 6.8.
Luminescence values of known Mg-ATP concentration generate a standard curve,
which then fit with data.
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Figure B.3: Elongation rate and Spec MIC, related to Figure. .6.10 (A) Rep-
resentative single-cell time trace images of WT and L22* cells for elongation rate
measurements. Only 0.002 mM extracellular magnesium condition shown for simplic-
ity. (B) Representative Spec MIC test pictures of WT and L22* strains at various
extracellular magnesium concentrations.
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APPENDIX C

SUB-ROUTINES USED IN THESIS

210



C.1 Sub-Routine to Diagonalize a Large Matrix.

Given below is a sub-routine in Python3.7 used to diagonalize the hessian gen-
erated from the elastic network model of the ribosome. For diagonalization, I used
the sub-routines from ARPACK (Lehoucq et al., 1998) implemented in the library
SciPy (Virtanen et al., 2020). Apart from that, I also used the library NumPy (Har-
ris et al., 2020) for optimizing array operations. It takes the hessian generated using
coarse grained model of the ribosome as an input.

import numpy as np
import scipy.sparse.linalg as spl
def invert_hessian_shiftinvert(hess,tol_conv,no_modes=30):

ei,evec=spl.eigsh(hess,k=no_modes,which=‘LM’,tol=tol_conv,
sigma=0)

print("Inverting the Hessian using ARPACK")
tol = 1e-6
singular = ei < tol
invw = 1/ei
invw[singular] = 0.
invHrs = np.dot(evec,np.dot(np.diag(invw),evec.transpose()

))
return invHrs

C.2 Using Gillespie Algorithm to Run a Stochastic Simulation of the Model of
Allosteric Regulation in an Enzyme.

Given below is a sub-routine in Python3.7 used to implement the Gillespie algo-
rithm to run a stochastic simulation of allosteric regulation in an enzyme. Here, I
have used the library NumPy (Harris et al., 2020) for optimizing array operations.

# Number of enzymes
N=1
# Number of substrate units present
M=100
# This function simulates stick breaking
def reac_prop(kp,km,dp,tp,tm,rp,hp,sp,Kp,Km,S,Enz):

a=[]
i=0 ### Over enzymes\
while i<N:

a1=float(S[-1]*Enz[i][0])*kp
a2=float(Enz[i][2])*km
a3=float(Enz[i][2])*dp
a4=float(S[-1]*Enz[i][4])*Kp
# In Kp and Km I am using the same variable as j
# here as n==L
a5=float(Enz[i][5])*Km
a6=float(Enz[i][1]*S[-1])*tp
a7=float(Enz[i][3])*tm
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a8=float(Enz[i][3])*rp
a9=float(Enz[i][1])*sp
a10=float(Enz[i][5]*Enz[i][0])*hp
a=np.append(a,[a1,a2,a3,a4,a5,a6,a7,a8,a9,a10])
i=i+1

return a

# This function updates the concentrations
def reaction_update(Enz,P,P_id,S,mu):

#Enzyme reacting
i=int(mu/((10)))
#Type of reaction
u=int(mu%(10))
if u==0:

S.append(S[-1]-1)
Enz[i][0]=0
Enz[i][2]=1
P.append(P[-1])
P_id.append(0)

elif u==1:
S.append(S[-1]+1)
Enz[i][0]=1
Enz[i][2]=0
P.append(P[-1])
P_id.append(0)

elif u==2:
S.append(S[-1]+1)
Enz[i][2]=0
Enz[i][0]=1
P.append(P[-1]+1)
P_id.append(1)

elif u==3:
S.append(S[-1]-1)
Enz[i][4]=0
Enz[i][5]=1
P.append(P[-1])
P_id.append(0)

elif u==4:
S.append(S[-1]+1)
Enz[i][4]=1
Enz[i][5]=0
P.append(P[-1])
P_id.append(0)
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elif u==5:
Enz[i][1]=0
P.append(P[-1])
S.append(S[-1]-1)
#maintaining equal numbers of S
Enz[i][3]=1
P_id.append(0)

elif u==6:
S.append(S[-1]+1)
Enz[i][3]=0
Enz[i][1]=1
P.append(P[-1])
P_id.append(0)

elif u==7:
S.append(S[-1]+1)
Enz[i][3]=0
Enz[i][1]=1
P.append(P[-1]+1)
P_id.append(1)

elif u==8:
S.append(S[-1])
Enz[i][1]=0
Enz[i][0]=1
P.append(P[-1])
P_id.append(0)

elif u==9:
S.append(S[-1])
Enz[i][0]=0
Enz[i][1]=1
P.append(P[-1])
P_id.append(0)

return

# Function to run the simulation
# Returns the product formation event series in time
def run_sim(T,kp,km,dp,tp,tm,rp,sp,Kp,Km,hp):

print("hp = %f"%hp)
print("Kp = %f"%Kp)
Enz=[]
S=[M]
i=0 # These are enzymes
while i<N:
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#Initialization of active sites
Enz.append([1,0,0,0,1,0])
i=i+1

P=[0]
P_id=[0]
time=[0]
while time[-1]<=T:

if ((hp==0) and (Enz[-1][1] ==1)):
print("SHOUT")

check=0
a=reac_prop(kp,km,dp,tp,tm,rp,hp,sp,Kp,Km,S,Enz)
a0=np.sum(a)
if a0 == 0:

print("Reaction died")
break

else:
for f in a:

if f <0:
print("Something Wrong")
check=1
break

if check == 1:
break

random.seed()
r1=random.uniform(0,1)
r2=random.uniform(0,1)
tau=-1*math.log(r1)/a0
time.append(time[-1]+tau)
u=1
r2a0=r2*a0
while u<=len(a):

low_lim=np.sum(a[0:u])
if low_lim>=r2a0:

mu=u-1
break

else:
if u>=len(a):

check=1
print("Something Wrong")
break

u=u+1
if check == 1:

break
reaction_update(Enz,P,P_id,S,mu)

return P_id,time
# Some sample values for the parameters
kp=float(10000)
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km=float(10)
dp=float(0.5)
tp=float(0.01)
tm=float(1000)
rp=float(0.5)
sp=float(0.04)
Kp=float(1000)
Km=float(25)
P_id_all,time_all=run_sim(T=500,kp=kp,km=km,\

dp=dp,tp=tp,tm=tm,rp=rp,sp=sp,Kp=Kp,\
Km=Km,hp=float(5000))
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The Co-Authors have granted their consent to use the published articles in chapter
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