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ABSTRACT  

   

Travel time is the main transportation system performance measure used by the planning 

community to evaluate the impacts of traffic congestion on infrastructure investment 

projects and policy development plans. Planners rely on the travel demand model tool 

estimates for the selection and prioritization of critical and sensitive projects to meet the 

fiscally constraint requirements imposed by the Federal Highway Administration (FHWA) 

on their transportation improvement programs (TIP). While travel demand model estimates 

have been successfully implemented in the evaluation of project scenarios or alternatives, 

the application of the methods used in the travel demand model to generate these estimates 

continues to present a critical challenge, particularly to modelers who have to produce a 

validated model upon which traffic predictions can be made. The various volume-delay 

functions (VDFs) including the Bureau of Public Roads (BPR) function, used in the travel 

demand model to relate traffic volume to travel time, are developed based on system-wide 

attributes. BPR function in its polynomial form is computationally efficient and simple for 

implementation in a transport planning software. The planning community has long 

recognized that the BPR function cannot capture traffic flow dynamics and queue evolution 

processes. Besides, it has difficulties in using the average travel time measure to describe 

an oversaturated bottleneck with high density but low throughput.  

This dissertation aims to propose a simplified and yet effective point-queue based modeling 

approach built on the cumulative vehicle arrival concept, and the polynomial equation 

formula, based on Newell’s method, to estimate travel time at a corridor level using real 

world speed and count measurements. A traffic state estimation (TSE) method is also 



ii 

proposed to characterize data into various states, such as congested state and uncongested 

state, using Markov Chain to capture current traffic pattern and Bayesian Classifier to infer 

congestion effects. As the test bed for the case study, the research selects the Phoenix 

freeway corridor with year-round traffic data collected from embedded traffic loop 

detectors. The results and effectiveness of the proposed methods are discussed to shed light 

on the calibration of link performance function, which is an analytical building block for 

system-wide performance evaluation.  
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CHAPTER 1  

INTRODUCTION 

1.1 Motivation 

Transportation agencies rely on transportation planning to address the transportation 

problems of the state, region, or communities they serve and to satisfy federal requirements.  

Transportation planning process involves the development of performance measures, the 

collection of data to be used in the analysis methods, the evaluation of the impacts and 

benefits of project alternatives, identification of projects, identification of studies such as 

corridor studies, and the development of federally mandated plans and policies. 

Transportation problems faced by communities can be grouped into different major 

categories that include economic development, land use, accessibility, and congestion. 

Clearly, all these issues are directly connected to transportation system that is impacted by 

continuous population growth, evolving economic markets, and changing travel patterns.  

Travel demand models aim to provide an analytical tool to support the transportation 

planning process. Among the many performance measures produced by the travel demand 

model, travel time can be considered as the most significant output. In particular, ravel time 

and other correlated performance measures such as vehicle mile traveled (VMT) and 

vehicle hour traveled (VHT) are used in planning and decision-making process to evaluate 

traffic conditions such as mobility, accessibility, and congestion in transportation systems, 

and the economic benefits and environmental impacts of improvement projects as freeway 

expansion projects.  
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Various methods exist to perform the travel demand modeling. They consist of a series of 

mathematical formulations that use such variables as population, land use, employment, 

and transportation networks to perform specific tasks. Transportation networks represent 

the supply side and population, land use, and employment constitute the demand side of 

the model. The widely used travel demand model is called the four-step model. This 

designation is the result of the model that considerably reduces the convoluted operation 

of data requirement and processing by aggregating these formulations into four sequential 

steps that are referred to as trip generation, trip distribution, mode choice, and trip 

assignment.  

The trip assignment step is most computationally involving building block of the travel 

demand model. In the trip assignment step, the relationship between the demand side and 

the supply side of the model is established as the performance measure function that 

computes travel time on the transportation system from the assigned demand. The 

performance measure function is referred to as volume-delay function (VDF) and satisfies 

certain conditions. One important condition, which is referred to as the equilibrium 

assignment, is that all the routes from an origin to a destination must have the same travel 

time. This property is Wardrop’s first principle of equilibrium (Wardrop, 1952). Another 

important condition is that congestion occurs when an assigned demand to the network 

exceeds the capacity of the network.  
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The planning community has long recognized that the static BPR function cannot capture 

traffic flow dynamics and queue evolution processes, particularly related to the queue 

formation, propagation, and dissipation. Besides, it has difficulties in using the average 

travel time measure to describe an oversaturated bottleneck with high density but low 

throughput. Compared to the STA model, the dynamic traffic assignment (DTA) model 

aims to embed a queueing model or other types of dynamic traffic flow models to capture 

the evolution processes of traffic congestion. With discretized time and space dimensions 

(such as the cell transmission model and link transmission model), DTA models have to 

address many computational challenges due to the introduced finer resolution 

In practice, the VDF function tends to underestimate the congested link travel time. Some 

possible reasons could be stated below: 

(1) VDF function considers each link individually and the link congested travel time is 

estimated without considering the possible impact of congestion from a 

downstream link. Any bottleneck on the downstream link can result in queue 

propagation from downstream link to the current link further increasing any 

congestion duration,     

(2) Inconsistency in scale between VDF parameters and variables. Parameters are 

estimated at the area type and facility type level whereas the speed and capacity are 

estimated at the link level,  

(3) VDF parameters are not sensitive to time of day traffic conditions.  
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Related to system performance functions, many practitioners have the following specific 

important questions: 1) where are those coefficients of alpha and beta in the VDF function 

coming from? 2) how to use observed traffic dynamics data to calibrate these coefficients? 

In addition, from a traffic state estimation perspective, there are a number of pressing 

questions to be addressed: 

1. How to derive traffic flow characteristics from collected traffic data? 

2. How to develop a new traffic state estimation method that infers traffic propagation 

impacts between connected traffic locations?  

How to determine bottleneck conditions from collected traffic data? 

3. How to estimate queue evolution process (formation, propagation, and dissipation) and 

its parameters? 

4. How to compute congested traffic demand used in VDF from collected traffic data? 

To develop a new generation of travel time performance model, we also need to have the 

following considerations for system-wide performance evaluation. 

1) What mathematical function/curve best fits traffic flow distribution/theory?  

2) How to derive relationships between queue characteristics and mathematical function?  

3) How to express the mathematical function in a format standard to a volume-delay 

function (VDF)?  

4) Does the proposed mathematical function satisfy all the requirements of a VDF to be 

used in the trip assignment step of the travel demand model to compute the link travel 

time? 
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The focus of this dissertation is how to find a new form of VDF in the traffic assignment 

of the travel demand model, and how to estimate waiting times under congestion conditions 

using link-level data such as traffic data collected from freeway detectors. The broader 

impact of this research could lead to an improved and reliable analytical tool, which allows 

planners and decision-makers to evaluate the financial magnitudes of their decisions on 

infrastructure development projects. This is particularly important for solving their 

community problems including the changing demand patterns and increasing congestion. 

1.2 Goal and Objectives 

The main goal of the dissertation is to propose a new method of estimating the travel time 

at the link level under congestion conditions that can be incorporated in the trip assignment 

step of the travel demand model. The new method presents an important research 

improvement over the existing link performance measure functions or volume-delay 

functions (VDFs). Its parameters are estimated directly from the link collected data and, 

hence, make its travel time estimation more reliable. 

 The development of the new method requires an integration of traffic flow theory 

knowledge and a solid background in applied mathematics to achieve the goal’s objectives 

listed below. Objectives 1 through 5 involves traffic flow characteristics analysis whereas 

objectives 6 through 8 include derivation and integral operations in calculus. 

This study can be viewed as a combination of two research approaches:  

 The first approach is the traffic state estimation method focusing on objectives 1-5 

that estimates the link congested traffic state variables using the link observed 

traffic data. 
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 The second approach is the derived mathematical function related objectives 6-8 

that estimates the congested travel time at the link level using the observed traffic 

data. 

1. Calibrate traffic flow characteristics from collected traffic data using Newell’s 

kinematic wave method. 

2. Perform traffic state estimation (TSE) using the proposed method to determine 

congestion conditions 

3. Identify the bottleneck location using speed profile or heat map diagram 

4. Calibrate parameters for queue evolution process (formation, propagation, and 

dissipation) 

5. Compute congested traffic demand from collected traffic data 

6. Select the mathematical function for queue-based traffic flow function and determine 

its parameters 

7. Derive polynomial relationships between queue characteristics and travel time function 

parameters  

8. Validate that the proposed mathematical function satisfies all the requirements of a VDF.  

A detailed discussion of the above objectives is given below. 

In detail, the first objective is to calibrate traffic flow parameters from collected traffic 

data using Newell’s kinematic wave method. There are several methods that can calibrate 

traffic flow parameters. These methods are mathematical expressions that combine traffic 
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variables based on predefined assumptions. These relationships between traffic variables 

including speed, density, and flow, are represented in the fundamental diagram (FD), which 

constitutes the foundation of traffic flow theory.  

In addition to inherent limitations, these single-regime models developed over the past 

decades also represent the flow-density (q-k) relationship as a non-linear curve. This 

assumption makes the traffic data variable estimation challenging.  Because of the non-

linear relationship, there can be many different speeds on the q-k curve. Newell’s kinematic 

wave method is a representative method that simplifies the calculation of speeds into 

uncongested speed and congested speed that are referred to as forward speed and backward 

speed. These speeds are used as input data in the second objective for the traffic state 

estimation process.  

The second objective is to develop a new method that performs traffic state estimation 

(TSE) on one location and update the estimation with congested speed waves from 

upstream and downstream locations. A traffic state is composed of flow and density. The 

traffic data can be grouped into many different numbers of clusters that represent different 

numbers of states. One important characteristics of a cluster is that all traffic data within 

that cluster have the same speed, thanks to Newell’s simplified method mentioned in the 

objective 1.  The traffic state is estimated at one location using the Markov Chain (MC) 

Model and then the forward and backward waves from the upstream and downstream 

locations are transferred to the current location using the Bayesian Classifier (BC) 

approach. Given that every traffic record represents a traffic state, the new method can be 

used to simplify the various number of states by grouping them, for analysis purpose, into 
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two states: uncongested state and congested state. The change from uncongested state to 

congested state, caused by capacity reductions at freeway on-ramp merges, lane drop, or 

weaving sections, may result in the propagation of congestion upstream from a traffic 

bottleneck in a form of a shock wave.  

Since traffic flow restricted by a downstream bottleneck may cause congestion, the third 

objective consists in identifying possible recurring bottleneck locations from the traffic 

data. Two methods considered in this study to identify bottleneck are based on speed profile 

and heat map diagram developed from the traffic data. The speed profile method is straight-

forward in that it consists in very simple steps of traffic data processing. Using traffic data, 

the speed-flow diagram is plotted to illustrate the relationship between speed and flow. The 

speed-flow curve is important in that it sets up the boundary conditions that define traffic 

flow parameters such as free-flow speed, capacity, and critical speed that represents the 

limit between uncongested state and uncongested state. The next step is to draw the speed 

time series, also called the speed profile, and identify the critical speed. There is evidence 

of a bottleneck when the speed profile first drops below the critical speed and then rises up 

above the critical speed. Heat map is another method of visually identifying the location of 

a bottleneck.  

Once the congestion has been located, the next objective, which is the objective four, is 

then to define the formation, the propagation, and the dissipation of the resulting 

queue. The speed data is plotted against time to produce the speed profile which will be 

used to identify the duration of the queue. The time that corresponds to the speed profile 

falling below the critical speed constitutes the start time of the queue. It is the beginning of 
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the queue formation. The time when the speed profile exceeds the critical speed profile 

indicates the end time of the queue. The difference between the end time and the start time 

represents the queue duration. A similar procedure can be followed to estimate the queue 

intensity. The density data is plotted against time to produce the density profile plot. The 

density on the plot that corresponds to the start time of the queue represents the queue 

length. It is important to note that the same density would have been obtained if the end 

time of the queue had been used instead of the start time of the queue. This is the 

consequence of the linear relationship between the speed and the density.   

The same procedure above that has been used on the speed and on the density to determine 

the queue duration and the queue extension, respectively, does not apply to determine the 

queue intensity. Objective No 5 is to use the traffic volume data and the queue start time 

and queue end time to compute congested traffic demand. Traffic volumes are 

accumulated from the queue start time until the queue end time. Otherwise stated, arriving 

vehicles to the queue from the beginning of the queue to the end of the queue are counted 

and the total count represents the cumulated congested demand.  

The objective six is to select an analytic polynomial model that represents the traffic 

condition where the congestion is caused by a bottleneck (objective three) and the 

congested demand represents the number of vehicles arriving on the link during the 

congested time (objective five). One such a model will include the Poisson distribution 

which can be used to predict the probability of the arrival flow rate at bottleneck. To predict 

travel time during a congestion period, the arrival flow rate can be approximated by a 

polynomial function.  
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After the selection of the polynomial function, the objective seven is to substitute the 

function variables with the corresponding queue characteristics and their boundary 

conditions. The substitution process mainly involves the application of mathematical 

calculus properties. Certain terms in the polynomial function that refer to the slope of the 

curve or the area under the curve are substituted by corresponding values from derivatives 

or integrals, respectively.  

The objective eight is to express the variables and parameters of the final derived queueing-

theoretic function in a structure similar to a volume-delay function (VDF), namely BPR 

function. 

The final objective is to validate that the proposed mathematical function satisfies all the 

requirements of a VDF and hence can potentially be used in the trip assignment step of the 

travel demand model.  

1.3 Contributions 

The main contributions of these approaches can be summarized as follows: 

The modified traffic state method can comprehensively update the current link state 

estimation with the upstream link and downstream link congestion propagation effects by 

combining two methods, Markov Chain (MC) model and Bayesian Classifier (BC) method. 

MC model is used to capture current traffic state and BC serves to transfer forward 

congestion wave from upstream location/link and backward congestion wave from 

downstream location/link to the current location/link.  
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Based on continuous and polynomial-based approximation, the proposed model 

explicitly establishes a coherent connection between the average performance relationship 

and the deterministic dynamic queuing model during a single oversaturated period. 

The derived polynomial function combines the principles of fluid dynamics, traffic flow 

theory, and queue evolution process to estimate link congested travel time. Traffic flow 

characteristics and queue formation, propagation, and dissipation characteristics equivalent 

to fluid dynamics characteristics are substituted in the quadratic polynomial equation to 

result in a function that computes travel time. Because this derived function satisfies all the 

requirements of a volume-delay function (VDF), it can potentially be incorporated in the 

trip assignment step of the travel demand model and produce travel time estimates that are 

more reliable and more consistent than those produced by the existing VDF functions.  

1.4 Organization of the Dissertation 

There are three main tasks covered in the dissertation: 

The first task involves the development of an innovative approach that updates traffic state 

estimation (TSE) at local location based on captured traffic deviation from regular traffic 

state patterns at both local and nonlocal (upstream and downstream) locations caused by 

congested conditions. Chapter 3, which starts by mentioning the notations used to describe 

traffic variables followed by the definition of a traffic state, elaborates on the main parts of 

the new method that include the prediction process and the updating process.  

The prediction process, performed at the upstream, local, and downstream locations, 

includes the following steps: Calibrate traffic parameters (using Newell’s method), identify 

traffic states (using K-state clustering), development of transition matrices from historical 
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data (using space-time probabilistic graph (STPG), and estimation of regular traffic state 

patterns using the transition matrices (using Markov Chain Model).  

The updating process, mainly performed at local location, consists of the following steps: 

Capturing of traffic deviation from regular traffic state pattern at both upstream and 

downstream locations, and update estimation at local location (using Bayesian Classifier 

method).  

The final output results are produced by weighing both regular and updating traffic state 

patterns.  

The new method, therefore, updates the intensity, the extension, and the duration of the 

congested state at the local location based on the captured deviation from the upstream and 

downstream locations. 

The second task consists of deriving a novel formula that estimates congested traffic flow 

pattern caused by bottleneck conditions on highway network links equipped with loop 

detectors. Chapter 4 analyzes the characteristics and impacts of traffic queue caused by 

congestion resulting from the existence of a bottleneck. Traffic variables including speed 

and density are used to establish the boundary conditions of the queue. The congested 

demand is obtained by accumulating the traffic flows arriving in the queue until the queue 

dissipates. The traffic flow arrival rate is expressed as a quadratic polynomial mathematical 

equation. Using the derivation and integral properties combined with the queue boundary 

conditions, the quadratic polynomial expression is transformed into the final mathematical 

model that can estimate travel time as a volume-delay function (VDF). The innovation 
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from the model is that the variables and the parameters of the model are estimated from the 

link traffic data.  

The last task consists of applying the Phoenix freeway loop detector dataset to the proposed 

TSE model and the proposed VDF model. The results and conclusions of these Phoenix 

case studies are discussed and summarized in Chapter 5. Figure 1-1 shows the graphic 

representation of the chapters and their respective sections.  

 
Figure 1-1 Illustration of Model Structure with Chapters and Sections as Individual 

Modules. Numbers and Letters Represent Chapter and Section Numbers, Respectively 
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CHAPTER 2  

LITERATURE REVIEW 

2.1. Introduction 

In this chapter, the evaluation stage of the transportation planning process that includes using 

travel demand model tool to analyze a transportation issue, i.e., congestion caused by 

bottleneck, is reviewed in detail. 

The review starts with a general overview of the travel demand model in Section 2.2. In the 

planning process, the travel demand model is an important analytical tool designed to evaluate 

traffic conditions such as travel time and level of service. Since travel demand model uses four 

submodels in sequence to estimate traffic conditions, it is referred to as the four-step model. 

Among these submodels, the traffic assignment is the true model driver in that it converts the 

demand to the travel time on the roadway segments or links. Section 2.3 and Section 2.4 define 

and explain the relationship between travel time and traffic congestion, the causes and 

mitigation measures for traffic congestion. In order to estimate the link travel time, the traffic 

assignment utilizes the link performance measure called the volume-delay function (VDF). 

Section 2.5 presents all the major VDFs used in practice. The VDF variables that include speed 

and volume are considered as prior variables and can be collected in real time by traffic 

detectors. Section 2.6 introduces the traffic detectors which are loops embedded in the 

pavement of the roadway to record vehicle movements, especially vehicle counts and speeds. 

The problems related to the correct functioning of the detectors and to the data collection are 

also covered. Typically, loop detectors collect traffic data every 30 seconds for a duration 

sampling time interval of 5 minutes. This data needs to be aggregated to a 60-minute time 

interval to represent a steady-state traffic flow where dynamic fluctuations are defused in order 
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to be used in the travel demand model. The formulas for steady-state and impacts of sparse 

traffic data on steady-state are included in Section 2.7. Models such as Markov Chain that 

estimate traffic states including flow, density, and speed are important for data-driven methods 

such as the travel demand model. Section 2.8 reviews traffic state estimation (TSE) approach 

and possible limitations. Prior variables to VDF are free-flow speed, capacity and 

corresponding speed referred here as optimum speed. The optimum speed represents the speed 

limit below which the congestion starts. Section 2.9, Section 2.10, and Section 2.11 cover in 

detail the formulas, the algorithms, and the flowcharts required to estimate free-flow speed, 

capacity, and optimum speed from the traffic data (volume and speed) collected by traffic 

detectors. The volume and speed estimated from the traffic detector data can be used as input 

in the VDF formula only in the speed-flow region called hypocritical region. This is the region 

where volume is less than capacity, i.e., the region where there is no congestion. Since volume 

cannot be greater that capacity in real life, the volume and speed estimated from the traffic 

detector data that are in the hypercritical region, where there is congestion, cannot be used 

“verbatim” as input in the VDF formula. One important assumption of the traffic assignment 

process is that, under congestion, the volume can exceed capacity. This is expressed in VDF 

as volume over capacity greater than or equal to 1. Section 2.12 provides a comprehensive 

review of traffic flow conditions and traffic flow types used in VDF formula, the impact of the 

capacity on traffic flow types, the definitions of uncongested and congested conditions, and the 

congestion index. Section 2.13 reviews the methods that compute a new congested volume by 

offsetting/adding the drop in the volume to the capacity so that the new volume is greater than 

the capacity and can be used in the VDF formula. Also, another method that does not need to 

compute the new volume is reviewed. This method stipulates that while there is no one-to-one 

correspondence in the speed-flow fundamental diagram, the one-to-one correspondence exists 
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in the speed-density fundamental diagram. Therefore, instead of volume over capacity, density 

over critical density can be used in the VDF formula for both uncongested and congested 

conditions. In addition to capacity and speed variables, VDF formula such as BPR includes 

parameters that must be calibrated to reflect the local conditions. In Section 2.14, the meaning 

and values of BPR parameters are reviewed. Finally, Section 2.15 discusses the limitations of 

VDF with respect to the traffic data. The VDF parameters cannot be derived directly from the 

collected data. VDF parameters are estimated using statistical methods such as Excel Solver. 

In practice, these parameters are calibrated using area type and facility type data.    

2.2. Travel Demand Model  

2.2.1. Importance of Travel Demand model in Planning Process 

Travel demand models are computer-based analytical programs used to estimate and 

forecast traffic conditions on the transportation systems. It is designed to assist policy 

makers in general and transportation planners in particular in evaluating the impacts and 

benefits of various projects, plans, and policies.  

Typically, travel demand models use a series of mathematical formulations to perform 

regional transportation planning. In these formulations, data from demographic, travel 

survey, and transportation networks are used as input data; household characteristics, trip 

purpose, and transportation system characteristics are used to develop model parameters. 

To reduce the complexity and the data requirements of these formulations, they are grouped 

into a sequential process with four basic steps, where each step becomes inputs to the next 

step. This is known as the four-step model. 
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2.2.2. Travel Demand Model Components 

Transportation planning divides a study area into several zones that typically represent 

census tracts and geographic limits. The trip generation step/model predicts the total trips 

based on household characteristics of each zone within the study area and trip purposes. 

The trip distribution model distributes the generated trips into trip productions and trip 

attractions. The mode choice model predicts the total trips that use available modes. Finally 

the trip assignment model predicts the total trips that use various routes of the 

transportation system (Ben Akkiva, 1973).  

Based on transportation planning, a trip is made by a household, which represents a house 

and its occupants regarded as a unit. Also, a trip is characterized by its purpose, origin and 

destination, time of day, mode, and route. Finally, trips in general are made during the peak 

hours. These peak hour trips affect the transportation system performance by the resulting 

congestion (Ben Akkiva, 1973). 

The components of the four-step model and the corresponding questions they address are 

summarized in the table below (VDOT, 2014). 
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Table 2-1 Four-Step Model Components and Descriptions 

Step Description 

1. Trip Generation  How many trips will be made? 

2. Trip Distribution Where will the trips go? 

3. Mode Choice What modes of transportation will the trips use? 

4. Trip Assignment What routes will the trips take? 

Further detailed information on these steps can be found in any classical book on 

transportation planning and in some research papers. Papacostas and Prevedouros (2001) 

provide an extensive coverage of demand modeling and forecasting that includes major 

components of travel behavior. Ortuzar and Willumsen (2001) present transportation 

modeling and its practical applications in an informative manner easily understandable to 

engineers and practitioners alike. Boyce (2004) covers in detail the history of travel 

demand modeling developments in both research and practice including the origins and 

development of the sequential procedure of travel demand models.  

2.2.3. Trip Assignment Step and Its Practical Role 

Among all the steps of travel demand model, the trip assignment step is of particular 

interest to planners because it predicts the quantity or volume of trips from an origin to a 

destination during a specific time using a specific mode and  a specific route (composed of 

several links) of a transportation system. The predicted volume is then used as an input 

data in estimating the travel time on the roadway network.  
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2.3. Travel Time  

2.3.1. Definition and Importance of Travel Time 

Generally speaking, travel time refers to the time required to complete a trip or traverse a 

roadway segment. Travel time may be measured directly using field studies or can be 

estimated using empirical relationships with traffic volume and roadway characteristics, or 

computer network models. 

Travel time in planning is an important variable used in the evaluation of the transportation 

system. The speed that indicates the congestion state is derived from the travel time.  

 2.4. Congestion  

2.4.1 Definition Traffic Congestion 

FHWA (2005) states that highway congestion happens when there are more vehicles than 

available space on the road. In other words, congestion occurs when traffic demand 

approaches or exceeds the available capacity of the highway system. Congestion is 

recognized as a national issue that affects the economy, environment, and equity. 

2.4.2. Main Cause of Traffic Congestion 

The planning community recognizes that traffic congestion on urban road networks has 

been increasing for the past decades. According to FHWA (2005), the vehicle of miles 

traveled (VMT) grew by 76 percent between 1980 and 1999 while the amount of new roads 

or lanes increased only by 1.5 percent. Among the many reasons causing congestion, traffic 

bottleneck alone counts for almost half of all the causes to 40%.  
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2.4.3. Congestion Mitigation Measures 

Planners realize that effective new strategies to mitigate congestion are needed. In the past, 

the primary focus of congestion responses was oriented to adding more physical capacity: 

changing highway alignment, adding more lanes (including turning lanes at signals), and 

improving merging and weaving areas at interchanges. In other words, congestion can be 

reduced by either increasing road capacity (supply), or by reducing traffic (demand).  

In the travel demand modeling, congestion occurs when the assigned volume on a link 

exceeds the link capacity. This crucial link performance measure is computed during the 

trip assignment stage of the travel demand modeling process using the function called 

volume-delay function. 

2.5. Volume-Delay Function 

2.5.1. Definition and Categories of Volume-delay Function  

The volume-delay function (VDF) is used in the highway assignment stage of the travel 

demand model to estimate link average travel time. In the trip assignment of the travel 

demand model process, travel times are estimated as a function of traffic demand/volume. 

Such a function is called volume-delay function (VDF). Several such functions are found 

in the technical literature and the three most common volume-delay functions used in 

highway assignment are BPR, Conical, and Akcelik functions. This study only considers 

the BPR function because of its advantages over the other functions. BPR function has the 

following form: 
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                    𝑡 =   𝑡0/ (1 +  (
𝑞

𝑞𝑚𝑎𝑥
)


)                                                        (2.1)     

where t is average link travel time, to is the free-flow link travel time, q is the volume (or 

demand), qmax is the capacity, α and β are parameters to be determined. 

The chronology of these volume-delay functions can be found in the literature section of 

most of publications on travel time. From planning perspective, it does not make any 

difference which model is used in the trip assignment process. However, the selection of 

the model to use should be determined on the basis of computational efficiency and 

convenience considerations (Ben Akkiva, 1973).   

2.5.2. Predetermined Traffic Variables  

The volume-delay function (VDF) is used in the highway assignment stage of the travel 

demand model to estimate link average travel time. Among the input variables used in VDF, 

there are some that need to be known a priori (Kucharski and Drabicki, 2017). These 

variables include flow capacity and free-flow speed. In practice, a correspondence table is 

developed that includes speed and capacity values for each link type and area type. In the 

link-specific approach, these variables can be derived directly from the collected traffic 

data. The next sections cover procedures, formulas, and flowcharts that explain how 

capacity, free-flow speed, and optimum speed are identified from collected traffic data. A 

rudimentary approach has been preferred to a complex one to ensure that these procedures 

can be reproduced easily using any computer language.    
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2.6. Traffic Loop Detectors 

2.6.1. Introduction 

In order to study the growing traffic congestion problem, transportation agencies need to 

collect traffic data on transportation systems to perform such operations as traffic analysis, 

management, and pavement design. One device that is commonly used for this purpose is 

traffic loop detector. Traffic detectors are magnetic induction loops (sensors) that are 

embedded in the roadway pavement to detect and relay, within a specified time interval, 

vehicle movements to a nearby station and permit transportation agencies to 

determine traffic counts, density and vehicle speed (Transportation Defined: Loops, 2019). 

The traffic data are used by traffic planners and engineers to make better and informed 

decisions.  

2.6.2. Flow and Speed Estimation Formulas 

State transportation agencies, responsible of managing traffic on freeways, install traffic 

loop detectors on a freeway to collect and report the vehicle counts and speeds at a specific 

time interval ranging from 30 seconds to 5 minutes. Flow or volume, q, which represents 

the vehicle count, N, recorded in a given sampling time interval, t, and the vehicle speed, 

v, are computed using the following formulas (Bickel et al., 2007, p. 587).  

                    𝑞(𝑡) =
𝑁(𝑡)

𝑇
                                                                                                                                   (2.2) 

 

                 𝑣(𝑡) = 1

𝑁(𝑡)
∑ 𝑣𝑗

𝑗∈𝐽(𝑡)
                                                                                                                                    (2.3) 

https://azdot.gov/node/7418
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2.6.3. Traffic Detector and Traffic Data Issues 

Traffic detectors and collected traffic data are known to have issues that need to be 

considered in the data analysis. Jacobson et al. (1990) recognize that many detector failures 

and data errors remain undetected. De Laski et al. (1985) on the other hand list some causes 

of these detector failures that affect the data accuracy. Bickel et al. (2007) find that loop 

detectors are not easy to calibrate accurately and that the data will be biased if the 

calibration is not properly done. They also warn that bad and missing data present a 

challenge for any algorithm that uses data for analysis. Their proposed solution is simply 

to detect and discard bad data.  

2.7. Steady-state Flow Analysis 

2.7.1. Introduction 

As already mentioned in the previous section, traffic volume (or flow) and speed data 

collected by traffic detectors are recorded and reported at time interval ranging from 30 

seconds to 5 minutes. Based on Branston’s (1976) observations, 5-minute sampling time 

interval can be sufficient to capture almost any immediate change in flow and speed. Such 

a small sampling is therefore appropriate for dynamic traffic analysis.  

For the static assignment procedure, the variations of any time dependent effects on speed 

and flow on a link are smoothed over. This implies measuring speeds during periods when 

flow on a link is almost balanced or “steady”.  
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A steady-state flow can be approximated by having a long sampling time interval, as 

experiments conducted by Rothrock and Keefer (1957) revealed. They conducted 

experiments to predict the shape of the speed-flow curve under different sampling time 

intervals. They have observed that the apex of the curve becomes smaller as the sampling 

time interval increases, almost disappearing completely with the 60 minute sampling 

(Figure 2-1). In other words, a “steady-state” is achieved by increasing the sampling time 

interval to 60-minutes.  

 

Figure 2-1 Travel Time-Flow Relationships for Several Sampling Time-Interval 

Durations, by Rothrock and Keefer, 1957 

 

Since the mathematical formulation of the assignment procedure only applies to steady-

state conditions, it is important to develop simple methods that aggregate traffic data from 

5-minute time interval to 60-minute time interval. The next section presents the proposed 

formula, flowchart, and pseudocode developed to perform these aggregation operations.  
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2.7.2. Formulas for Estimating Steady-state Traffic Flow 

Equation 2.9 represents the general formula for estimating volume for different sampling 

time intervals, including steady-state conditions.  

𝑞𝑖𝑗 = ∑ 𝑞 𝑖𝑗 

𝜑𝑗

𝜑𝑗−(𝜑−1)

           ∀𝑖 = 1,2,… ,𝑁       ∀𝑗 = 1,2,… , 𝑇/𝜑        ∀𝑡 = 1,2,… , 𝑇                  (2.4) 

where 𝜑 is the ratio of the new time interval to 5-minute interval. For example, 𝜑 = 3 for 

15-minute time interval, and 𝜑 = 12 for 60-minute time interval. 

Figure 2-2 depicts the necessary steps involved in the procedure.  
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Figure 2-2 Flowchart for Estimating “Steady-state” Volume (from 5-minute Time 

Interval) 
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2.7.3. Sparse Traffic Data Impact on Steady-state Flow Analysis 

The impact analysis for an actual link of sampling time intervals on speed-flow curve has 

revealed that steady flow conditions are achieved with the 60-minute sampling interval 

(Rothrock and Keefer, 1957).  Given 5-minute traffic database, steady-state flow is 

obtained by aggregating 5-minute flows to  

60-minute ones. Steady flow database has therefore fewer data than the original database. 

This makes the speed-flow curve-fitting challenging for steady flow analysis, especially 

given that the database will most likely be further reduced because of inherent problems 

with traffic detectors.  

2.8. Traffic State Estimation (TSE) 

2.8.1. Introduction 

Based on traffic detector issues mentioned above, it can be expected to have missing or 

bad data in the collected traffic data. The proposed solution of deleting bad data will further 

reduce the database size.  A method that would estimate traffic data for missing or bad data 

will prevent the situation where the traffic data is so sparse that performing steady-flow 

traffic analysis become a challenge.   

2.8.2. Definition of Traffic State Estimation (TSE)  

Typically, traffic state estimation (TSE) is defined as the process of estimating and 

predicting the spatiotemporal evolution of three state variables, individually: flow 𝑞(𝑥, 𝑡) 

(veh/h), density 𝑘(𝑥, 𝑡) (veh/mile), and speed 𝑣(𝑥, 𝑡) (mile/h) on location 𝑥 and time 𝑡, 

according to observed traffic data.  
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2.8.3. Background 

Substantial research efforts have been devoted to the TSE problems. The classic kinematic 

wave (KW) model developed by Lighthill, Whitham and Richards, uses a partial 

differential equation (PDE) to express traffic states. Fundamental diagrams (FDs) are used 

to capture the relationship among the traffic state variables. FDs also contain important 

info about traffic characteristics, e.g. free-flow speed, backward wave, capacity, and jam 

density (Immers and Logghe, 2002). Moreover, the Cell Transmission Model (CTM) is 

developed as a numerical method to solve the PDE (Daganzo, 1994). Recently, many TSE 

approaches are derived based on the KW model or CTM model using different state 

representations (Muñoz et al., 2003). Newell G.F. (1993) proposed a KW model based on 

the simplified triangular flow-density FDs. The model provides a solution for the three-

detector problem that is an important TSE problem to estimate the traffic states at 

intermediate locations, provided vehicle counts of upstream and downstream detectors. 

The method selects cumulative flow counts as the representation of traffic states. One can 

simply get the cumulative flow curve of any intermediate location by forward/backward 

propagating the upstream/downstream cumulative counts. Despite that, the Newell’s 

approach highly depends on deterministic boundary inputs. Although Deng et al. (2013) 

developed the model under stochastic boundary conditions, it is founded on the assumption 

of following Gaussian distribution. 

In the existing literature, data-driven models become more important with the widespread 

traffic sensor technologies (Lv, Y. et al. 2015). This kind of models rely more on statistical 

and machine learning technologies, instead of traffic flow theories. The methods usually 
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extract probabilistic dependence between observable/latent variables from historical data 

and predict the future traffic state based on the updated streaming data (Seo et al. 2017). 

For example, the Markov Chain (MC) models are applied to accomplish data-driven 

estimation and prediction on freeways (Yeon et al. 2008; Ramezani and Geroliminis, 2012; 

Antoniou et al. 2013).  

2.8.4. Summary 

Several models used in traffic state estimation (TSE) have been reviewed. The kinematic 

wave (KW) model, proposed by Newell and based on the simplified triangular flow-density 

fundamental diagrams (FDs), is the most important one because it estimates the traffic 

states (speed and flow) at an intermediate detector location, based on vehicle counts of 

upstream and downstream detectors. 

One challenge in data-driven approaches is how to develop an explainable framework to 

reflect the underlying phenomenon in traffic flow dynamics.  
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2.9. Capacity Estimation 

HCM (2010) defines capacity as the maximum possible expected throughput of the facility 

type under consideration. There are several methods and guidelines for estimating capacity 

of various facility types, including the breakdown method, which is used in traffic 

operation applications. However, only the two most commonly used methods in planning 

applications are considered in this study.  

In the fundamental diagram curve fitting approach, the observed speed data are plotted 

against observed flow or volume data, and a curve is then fitted to these data points. The 

volume at the apex of this curve is considered as the capacity, which represents the 

maximum throughput of the facility under consideration.  

The second method, called the maximum observed value method, is based on the fact that 

the capacity of a facility at a given location can be easily identified as the maximum volume 

from the observed data measured over a given time interval (Li and Laurence, 2015). The 

maximum observed value method is the easier method, from a computational perspective, 

for estimating capacity from empirical data. Based on this approach, the proposed 

mathematical formulation for identifying capacity can be generalized as:  

𝑞𝑐
𝑖 = 𝑚𝑎𝑥 𝑞 

𝑡
𝑖     ∀𝑡 = 1,2, … , 𝑇  ∀𝑖 = 1,2, … , 𝑁                                                                                             (2.5)       

where qc
i , q 

t
i , i, t, N, and T denote capacity, observed volume, detector number, sampling 

time interval, number of detectors that collect traffic data, and number of sampling time 

intervals in a given period, respectively. As an example, for time interval t of 5 minutes, 
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15 minutes, or 1 hour, the number of sampling time intervals T is 288, 96, or 24, 

respectively. Figure 2-3 depicts the proposed flow chart that underlines this approach.  

Start

sum=0

i=1,2, ,N

sum=  t

t=1,2, ,T

 t <= T

  t>=sum

Yes
Yes

  c
i =sumNo  i<= NNext i

Yes

Next t

EndNo

No

     
 Figure 2-3 Flow Chart for Capacity Estimation (Based on Collected Data from 

Detectors) 

 

It is worth stressing, as Boyles et al. (2019) have recently published, that capacities are 

measured with respect to the entire time interval. A 60-minute interval capacity, for 

example, is the sum of all the 5-minute interval capacities included in that 60-minute 

interval.  In practice where capacity is generally given per hour, a three-hour peak period 

capacity can be computed as one-hour capacity times 3.  
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2.10. Free-flow Speed Estimation 

The HCM (2010) manual defines free-flow speed as the theoretical speed when density 

and flow rates on a facility are both zero. Similar to capacity mentioned in the previous 

section, free-flow speed can also be obtained from the same two planning applications 

methods used to estimate capacity.  

For the fundamental diagram curve fitting approach, the observed speed data are plotted 

against observed flow or volume data, and a curve is then fitted to these data points. The 

speed at the upper base/end of the curve represents the free-flow speed.  

For the maximum observed value method, the free-flow speed can simply be considered as 

the maximum speed recorded for the facility. Figure 2-4 illustrates the steps involved in 

the procedure. The proposed mathematical formulation can simply be expressed as:  

𝑣𝑓
𝑖 = 𝑚𝑎𝑥 𝑣 𝑡

𝑖     ∀𝑡 = 1,2, … , 𝑇  ∀𝑖 = 1,2, … , 𝑁                (2.6) 
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Figure 2-4 Flow Chart for Free-flow Speed Estimation (Based on Collected Data from 

Detectors) 

 

2.11. Estimation of Optimum Speed at Capacity 

It is important to clearly identify the speed that corresponds to the maximum flow or 

capacity. Mtoi et al. (2013) refer to such as speed as optimum speed at capacity. Optimum 

speed can be easily identified from the collected data by using either the curve-fitting 

method or the maximum value method. The proposed formula for optimum speed or cutoff 

speed is expressed as: 

𝑣𝑐
𝑖 = 𝑣 𝑡

𝑖   such that  𝑞𝑐
𝑖 = 𝑚𝑎𝑥 𝑞 

𝑡
𝑖     ∀𝑡 = 1,2, … , 𝑇  ∀𝑖 = 1,2, … , 𝑁                (2.7) 

The algorithm involved in identifying the optimum speed is illustrated in the Figure 2-5 

below. 
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Figure 2-5 Flow Chart for Optimum Speed Estimation (Based on Collected Data from 

Detectors) 
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2.12. Traffic Flow Conditions and Types Used in Volume-delay Function 

2.12.1. Introduction 

Determining the fundamental traffic data variables provides the framework for the analysis 

of collected traffic data before they can be used in the volume-delay function (VDF). The 

next sections explain how these variables are used to perform such operations as classifying 

traffic conditions and flow types.  

2.12.2. Definitions of Uncongested State and Congested Conditions 

The optimum speed previously defined mainly serves as a borderline to classify the traffic 

conditions.  Traffic data set with speeds less than optimum speed constitutes congested 

state, whereas traffic data set with speeds above optimum speed forms uncongested set 

(Elefteriadou and Lertworawanich, 2003).  

2.12.3. Definitions of Traffic Flow Types 

There are several types of traffic flow depending on the flow sources and conditions.  

A demand flow in the basic traffic assignment problem is the total flow that has been 

allowed (or authorized) to the link and there are no explicit upper bounds imposed on link 

flows (Boyles et al., 2019). A flow greater than the capacity can simply be interpreted as 

the demand for travel on the link exceeds the capacity, and this results in queue formation. 

A macroscopic (or assigned) flow represents the demand flow that has been supplied to the 

network, whereas a measured (or physical) flow is the actual flow that has been collected 

by a traffic detector device. As mentioned in several travel demand modeling courses 
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including the NHI training course (2012), assigned flows are compared to measured flows 

(or ground counts) for model validation. 

2.12.4. Impact of Capacity on Traffic Flow Types 

Kucharski and Drabicki (2017) mentioned the distinction between the macroscopic 

assigned flow and measured flow. Both of these flows are different and have different 

physical interpretations with respect to demand and capacity.  

The assigned flow continuously grows with the demand (i.e., the higher the demand is, the 

greater the assigned flow is) and, therefore, may exceed the capacity. The assigned flow 

can get severely delayed but in general is allowed.  

Measured flow, on the other hand, grows with the demand too but drops down when the 

demand flow exceeds the capacity limit. This corresponds to reality of the actual flow 

pattern.   

2.12.5. Traffic Flow Types and Congestion Index 

As mentioned in the previous section, the main difference between measured flow and 

assigned flow with respect to the demand flow is that measured flow drops when it reaches 

capacity, whereas the assigned flow exceeds the capacity limit. Therefore, since capacity 

is the borderline between uncongested state and congested state (Mtoi et al., 2013), it can 

be expected that measured flows and assigned flows will display the same pattern under 

uncongested state, but that they will present a different behavior under congested state. For 

example, the volume (or flow) over capacity (v/c) ratio is used in the volume-delay function 

to account for the effects of congestion on highway network (Huntsinger and Rouphail, 
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2011). A v/c ratio greater than one indicates congestion has occurred. Under assigned flows, 

this congestion index can have values greater than one as assigned flows continue to grow 

with demand past capacity. However, under measured flows, this congestion index never 

gets greater than one as measured flow does not exceed capacity. This does not mean 

congestion does not occur under measured flows. The challenge, therefore, remains which 

index to use that will reflect correctly congestion both under measured flows and under 

assigned flows in the volume-delay function.   

2.13. Alternatives to Volume over Capacity Ratio as Congestion Index  

Conceptually, the congestion notion is the same under measured flows as well as under 

assigned flows. These two flows actually experience the same speeds. The challenges 

reside in the understanding and interpretations of traffic data with respect to the demand in 

computing the congestion index. There are several solutions proposed in the literature that 

can be divided into two groups based on variables used in congestion index. In the first 

group, only the volume in the congestion index (v/c) is replaced by the demand. However, 

in the second group, both the volume and the capacity are replaced by density and optimum 

density, respectively; optimum density represents the density that corresponds to capacity. 

The formulas for these two groups are provided in the next sections. 

2.13.1. Estimations of Demand Beyond Capacity  

In reality, an assigned volume on a roadway cannot exceed its capacity. This explains why 

the v/c ratio of the HCM speed-flow curve does not exceed 1. However, for planning 

purpose, the assigned volume must exceed the capacity to accommodate the demand. There 
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exists a couple of methods based on queueing analysis that can estimate speeds for v/c that 

exceeds 1. 

Huntsinger and Rouphail (2011) show that the demand beyond capacity can be estimated 

by performing bottleneck and queue analysis using collected traffic data. At the end of their 

research, they proposed the following equation: 

 demand = capacity + queue length                                                                 (2-8)                 

The obvious problem with this approach is that the queue length computation requires 

additional exogenous information such as the area of influence for detector under 

consideration.   

Moses and Mtoi (2013), on the other hand, propose a straight-forward method of 

computing the demand above capacity with the simple formula: 

   demand = capacity + (capacity – measured flow)                                         (2-9)         

This method simply means that the demand is equal to the capacity plus the drop that the 

measured flow experiences after reaching the capacity limit. The convenience of this 

method is that all the required data are readily available. 

Dowling et al. (2016) refer to the extra demand as carry-over demand, which indicates the 

presence of a queue at a specific location. 
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2.13.2. Density over Optimum Density Ratio as Congestion Index 

Kucharski and Drabicki (2017) propose a completely different approach that consists in 

estimating the volume-delay function by using density instead of flow. As mentioned 

previously, measured flow grows with the demand and then decreases after capacity is 

reached. This results in a speed-flow relationship where, for a given flow, there are two 

different speed values: one speed in the uncongested state and another speed in the 

congested state. This is an evidence that there is no unique functional relation between 

speed and flow.  

One observation made by the authors is that density behaves the same way as the 

macroscopic (assigned) flow. Density grows with the demand past capacity limit until it 

reaches its maximum value. The density at capacity and the maximum density are denoted 

as critical density and jam density, respectively.  

This one-to-one relationship between density and macroscopic (assigned) flow has led the 

authors to reformulate the volume-delay function. Instead of the volume over capacity ratio, 

the authors use density over critical density ratio. This formula can be used for both 

uncongested and congested conditions to compute travel times from observed data. 

2.13.3. Summary 

Traffic data collected by detectors include such variables as traffic volume (or traffic flow) 

and speed. Capacity represents the maximum flow and is used to determine the optimum 

speed. Uncongested and congested traffic conditions are defined relative to the optimum 

speed. Different types of flow definitions are presented and the relationships between these 

flows and capacity limit with respect to the demand are considered. Demand formulas 
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based on different interpretations of overcapacity demand are presented. And a proposed 

new congestion index that represents the density over critical density ratio rather that 

volume over capacity ratio is also discussed.  

2.14. Parameters Used in Volume-Delay Function 

2.14.1. Introduction 

Like all functions, VDFs are composed of variables and parameters. The input variables 

common to all VDFs have been covered in the above sections. It has been shown that 

variables such as free-flow speed, optimum speed, and capacity can be derived from 

collected traffic data. Parameters differ from function to function. Since Arizona Travel 

Demand model (AZTDM) results will be used in the case study and this model uses BPR 

function as VDF, the discussions in the next sections will be based on BPR parameters 

only. However, the final conclusions will be valid for parameters from other VDFs as well. 

The next sections cover the practical meanings of BPR parameters, their values and ranges.  

2.14.2. Meaning of BPR Parameters 

The original BPR function was based on the relationships found in the 1965 Highway 

Capacity Manual (HCM) (Papacostas and Prevedouros, 2001). The general meaning of 

BPR parameters, according to the NCHRP Report 387 (1997), can be summarized as 

follows. The parameter  determines the ratio of free-flow speed to the speed at capacity. 

The parameter , on the other hand, determines how abruptly the BPR curve drops from 

the free-flow speed. The higher the value of , the more abrupt the speed drops after 

reaching capacity.    
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2.14.3. BPR Parameter Values and Ranges 

Actually, the formula for  parameter can be derived directly from the BPR formula below 

                    𝑣 =   𝑣𝑓/ (1 +  (
𝑞

𝑞𝑚𝑎𝑥
)


)                                                                            (2.10)     

In the maximum observed value method, the capacity, 𝑞𝑚𝑎𝑥 , corresponds to the optimum 

speed, 𝑣𝑐. After substituting these values in the above equation, the expression becomes 

                    𝑣𝑐 =  𝑣𝑓/ (1 +  (
𝑞𝑚𝑎𝑥

𝑞𝑚𝑎𝑥
)


)                                                                                (2.11) 

After rearranging,  parameter can be estimated as                                                          

                   = 𝑣𝑓/ 𝑣𝑐 − 1                                                                                   (2.12) 

Regarding  parameter, there is no such substitution mechanism. In other words, unlike , 

the parameter  cannot be estimated from the collected traffic data. 

However, the original values for BPR parameters  and  are 0.15 and 4, respectively, but 

the data from which they were obtained were not shown in the original report (Branston, 

1976). These parameters have since been modified by researchers and transportation 

agencies to be consistent with more recent data. Researchers suggest different values based 

on their studies, whereas transportation agencies prefer to propose range of values to use 

on different facility types. 

Zhao and Kockelman (2001) suggests values of 0.84 and 5.5 for α and β, respectively, 

which have originally been reported by NCHRP Report 365 (Martin 1998).  
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VDOT (2014) proposes values that range between 0 and 2 for  and between 2 and 10 for 

. Hansen (2011), referring to the Danish road system, suggests a broader range of values 

between 0.5 and 2 for α, 1.4 and 11 for β. Table (2-1) summarizes different  and  values 

as proposed by researchers and transportation agencies.   

Table 2-2 BPR Parameter Values for Freeway Used in Research and in Practice 

Parameter Standard 

value 

Zhao Danish 

Road 

System 

Virginia 

DOT 

Arizona 

DOT 

SCAG 

California 

 0.15 0.84 0.5-2 0-2 0.1-0.8 0.60 

 4.00 5.5 1.4-11 2-10 2-5 8.0 

 

2.14.4. Summary 

Fitting a function curve into traffic data is not a straight-forward procedure. It requires 

adjusting the function curve parameters to match the traffic data. In the above sections, the 

meanings of BPR parameters and the ranges of their values have been discussed.  

2.15. Summary 

In order to estimate travel time from collected traffic data, fundamental variables used in 

the volume-delay function (VDF) must be determined a priori. Speed and volume data are 

collected from detectors in 5-minute time interval. Since by definition static models do not 

consider temporal variations in traffic conditions and consequently assume a steady-state 

condition, these data have been aggregated to 60-minute time interval that has been proven 

to correspond to the traffic steady-state condition. The concept and importance of steady-

state flow in static assignment procedure have been explained. Then formulas, flowcharts, 
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and algorithms needed to derive steady-state flow and fundamental variables such as 

capacity, free-flow speed, and optimum speed have been presented.  

2.16. Limitations 

It has been demonstrated, in the above sections, that not all of the BPR function 

components can be estimated using the collected traffic data. Variables such as free-flow 

speed, capacity, optimum speed, and congestion index can be estimated by using simple or 

simplified formulas or algorithms derived from data collected by detectors at the link level. 

On the other hand, BPR parameters  and  required advanced methods and exogenous 

data to calibrate their values to better fit the shape of speed-flow curve to the data making 

the process challenging.  

The following compiled citations from the literature clearly indicate the limitations of 

volume-delay function in general and of BPR function in particular.    

 Although the standard BPR curve was developed in the late 1960s by BPR 

(predecessor to the Federal Highway Administration (FHWA)) by fitting a 

polynomial equation to the freeway speed-flow curves in the 1965 HCM, its 

parameters were not link-specific. 

 In practice, these parameters are estimated as a function of both area type and 

facility type.  

 In addition to other limitations of static assignment models in their paper, Saw et 

al. (2015) mention the difficulty in determining the efficient values of BPR 

parameters  and . 
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 Establishing proper values for the function parameters, which vary from region to 

region, is critical. 

 Practitioners have noted that the BPR function leads to an overestimation of speeds 

for V/C ratios of greater than 1.0 and an underestimation of volumes for V/C ratios 

of less than 1.  

 Another inherent drawback is that early assignment iterations by use of the BPR 

function can lead to extreme values for the link travel time that can slow the 

convergence process. 

 Whereas Montezo et al. (2013) indicate that, even though the values for the BPR 

parameters are pre-defined based on assumptions and practice, they have inherent 

uncertainty which originates partly from the stochastic behavior of the parameters. 

 The BPR curve does not account for the effects of queueing on travel speeds and 

demand. Planning models consequently will significantly overestimate speeds of 

facilities near, at, or over capacity. 

 In the conclusion from his popular paper on VDF, Spiess (1989) provides the best 

possible recommendation regarding the estimation of these parameters. He 

recognizes that “further research would be needed to develop statistical methods 

for directly estimating the parameters of the conical functions, using observed 

speeds and volumes”. 
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CHAPTER 3  

TRAFFIC STATE ESTIMATION USING STATE TRANSITION PROCESSES 

3.1. Introduction 

Chapter 3 uses the state transition process to capture the traffic deviation patterns and to 

update the evolution of traffic states by integrating traffic flow fundamentals and local 

traffic data.    

In Section 3.2, the notations and indexes for traffic variables used in this chapter are clearly 

described, traffic flow variables used to define a traffic state are specified, traffic state 

variables are represented as discretized states on fundamental diagrams, and traffic 

parameters are calibrated using triangular flow-density fundamental diagram from 

Newell’s method. 

Section 3.3 describes shock wave process using the Newell’s three-detector model 

approach where upstream, local, and downstream locations are represented in space-time 

graph. The shock wave boundary divides the graph into two distinct areas composed of 

free-flow/uncongested area and congested area. The free-flow area includes forward wave 

that originates from the upstream location to the local location. The congested area, on the 

other hand, encompasses the backward wave that propagates from the downstream location 

to the local location. Also represented on the graph are the cumulative traffic flow counts 

at the upstream, local, and downstream locations. 

Section 3.4 covers functions and probability concepts as they apply to state transitions at 

all locations and kinematic wave impacts from upstream and downstream locations. 

Emission function is used to determine the state representations of the observed traffic data 
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by using the aggregated technique K-cluster approach. This technique groups flow-density 

pairs with similar characteristics that can be represented by centroids into states on the 

fundamental diagram (FD). Since a state sequence at a location satisfies the condition that 

the current state is independent of all other states but the previous one, Markov Chain (MC) 

is used as the transition function. This dependence structure is described using the 

probabilistic graph (PG). To describe the impacts of kinematic waves in a corridor, PG is 

extended to the space-time probabilistic graph (STPG). The conditional probabilities from 

upstream and downstream locations are estimated using the Bayesian Classifier (BC). The 

state update is performed by applying the weight average model to the combination of the 

MC model and the BC model. 

3.2. Problem Statement and Overall Framework 

Table 3-1 lists the notations used to represent all the variables in the traffic state (TSE) 

estimation formulation. Consider a traffic database that can provide every-5-minutes speed 

profiles and flow counts on several locations in a traffic network over any time period of 

days. Furthermore, real-time traffic information is also frequently updated to enable on-

line traffic analyses. The framework proposed in this study attempts to undertake the 

following four tasks:  
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Table 3-1 Notations and Input Data 

Indexes and sets 

𝑥, 𝑥′ Indexes of locations 

𝑥𝑑 Downstream sections of location 𝑥 

𝑥𝑢 Upstream sections of location 𝑥 

1,2, … . , 𝑇, t, t’ Indexes of timestamps  

𝑠 Indexes of samples 

(𝑥, 𝑡) Space-time vertexes 

𝑴 Set of discrete states 

𝑵 Set of sections 

Observations 

q̅(𝑥, 𝑡) Observed flow at location 𝑥 time 𝑡 

k̅(𝑥, 𝑡) Observed density at location 𝑥 time 𝑡 

v̅(𝑥, 𝑡) Observed speed at location 𝑥 time 𝑡 

o̅𝑥,𝑡 Observed density-flow pair (k̅(𝑥, 𝑡), q̅(𝑥, 𝑡)) 

Variables 

𝑞(𝑥, 𝑡) Estimated flow at location 𝑥 time 𝑡 

𝑘(𝑥, 𝑡) Estimated density at location 𝑥 time 𝑡 

𝑣(𝑥, 𝑡) Estimated speed at location 𝑥 time 𝑡 

𝑚𝑥,𝑡 Estimated state at location 𝑥 time 𝑡 

𝑛(𝑥, 𝑡) Cumulative counts at location 𝑥 time 𝑡 

𝑣𝑓 Free-flow speed 

𝑣𝑐 Congested/critical speed 

𝐵𝑊𝑇𝑇(𝑥, 𝑥𝑑) Travel time from a downstream location 𝑥𝑑 to 𝑥 with speed 𝑤𝑏 

𝐹𝐹𝑇𝑇(𝑥𝑢, 𝑥) Travel time from an upstream location 𝑥𝑢 to 𝑥 with speed 𝑣𝑓 

𝐿(𝑥, 𝑥′) Distance from location 𝑥 to  𝑥′ 

 

 



 

48 

 

(i) define traffic states considering the coupling of different types of state variables on FDs 

(see Figure 3-1); (ii) develop the transition matrices considering how the traffic states of 

local, upstream, and downstream locations change and interact from one time to another 

(see Figure 3-2); (iii) estimate regular pattern of traffic states of each location using the 

historical data; (iv) update the estimates using real-time observations, and developed 

transition matrices.  

The fundamental diagram relationship states that the flow q is proportional to both the 

density k and the speed v, as expressed in the equation below. 

𝑞 = 𝑘 𝑣                                                                                                                                                     (3-1) 

Figure 3-1 and the above equation show that a traffic state, mx,t, can be defined using a 

pair of flow and density. 

  𝑚𝑥,𝑡 = (𝑞(𝑥, 𝑡), 𝑘(𝑥, 𝑡)) = (𝑞(𝑥, 𝑡),
𝑞(𝑥,𝑡)

𝑣(𝑥,𝑡)
)                                                                                           (3-2) 

And traffic state variable at location 𝑥 is [

(𝑞(𝑥,1),𝑘(𝑥,1))

(𝑞(𝑥,2),𝑘(𝑥,2))
…

(𝑞(𝑥,𝑇),𝑘(𝑥,𝑇))

] 
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Figure 3-1 Triangular Flow-density Fundamental Diagram 

 
Figure 3-2 An illustration Describing a Deterministic Three-detector Model Adapted 

from Deng et al. (2013) 
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The proposed framework is a two-step process including predicting and updating, similar 

to  Kalman Filter (KF) (Wang et al. 2007). During the predicting step, historical data (e.g. 

flow and speed) are used to (A) calibrate the coefficients of Newell’s KW model, as shown 

in Figure 3-2 and (B) identify discretize traffic states using clustering analyses on FDs. (C) 

The state transition matrices are then constructed to represent the spatiotemporal 

correlations based on a space-time probabilistic graph (STPG). The spatiotemporal 

correlations underlined in the forward and backward waves of the three-detector problem 

are expressed in the STPG (See Figure 3.2). (D) An MC model is used to estimate the 

historical patterns of the evolution of traffic states. During the updating step, (E) real-time 

observations are applied to update the estimates based on Bayesian Classifier (Friedman et 

al. 1997). (F) The final outputs are produced by weighing both regular state patterns and 

real-time updating. The overall framework and tasks achieved by the 6 modules are shown 

in Figure 3-3. 



 

51 

 

 
Figure 3-3 Overall TSE and Prediction Framework 

 

3.3. Describing Traffic Shockwave Using Newell’s Three-Detector Problem 

A simplifying assumption of Newell’s KW model is that the derivatives of the FD are 

discontinuous and correspond to the pacing of two types of kinematic waves. By using the 

linear regression, we calibrate the parameters of the FDs in Figure 3-1, and Table 3-2 

(Module A in Figure 3-3). For densities 𝑘 < 𝑘𝑐, the wave speed is free-flow speed 𝑣𝑓. For 

densities 𝑘 > 𝑘𝑐, the wave speed is backward wave speed 𝑤𝑏. The traffic flow equation 

can then be expressed as  

 

A. Calibrate 

parameters  

(Newell s KW  

model) 

Data

C. Express State 

Transition Matrices on 

STPG (Local, upstream, 

and downstream) 

E. Identify the deviations 

from regular pattern 

using upstream and 

downstream transition 

matrices

(Bayesian Classifier)

F. Update the 

estimates

R
ea

l-
ti

m
e 

da
ta

P
redictio

n

D. Estimate regular 

pattern of traffic state 

using local transition 

matrices (Markov 

Chain)

B. Clustering 

observations

(Traffic State 

definition) 

U
pd

atin
g

Historical data

  



 

52 

 

𝑞 = {
𝑣𝑓𝑘                                 𝑖𝑓 𝑘 < 𝑘𝑐

𝑞𝑐 − 
𝑘−𝑘𝑐

𝑘𝑗−𝑘𝑐
𝑞𝑐              𝑖𝑓  𝑘 ≥ 𝑘𝑐 

                                                                                                                      (3-3)                               

Since the wave characteristics changes only at boundaries between uncongested and 

congested states, the cumulative flow counts 𝑛(𝑥, 𝑡) of any intermediate point can be 

derived from the cumulative flow counts at the upstream and downstream.  

Table 3-2 Traffic Flow Model Parameters 

𝑣𝑓 Free-flow speed in the free-flow state 

𝑤𝑏 Backward wave speed in the congestion state 

𝑞𝑐 Capacity of a road or the maximum flow rate 

𝑘𝑐 Density associated with the maximum flow rate 

𝑘𝑗 Jam density where the flow rate reduces to zero 

 

As illustrated in Figure 3-2, the space-time domain is divided into two sub-areas by the 

shock wave boundary. In the area of the uncongested state, 𝑛(𝑥, 𝑡) can be determined by 

𝑛(𝑥𝑢, 𝑡 − 𝐹𝐹𝑇𝑇(𝑥𝑢, 𝑥)) . Figure 3-4 illustrates the relationship between 𝑛(𝑥𝑢, 𝑡)  and 

𝑛(𝑥, 𝑡). It is  that a vehicle v passes location 𝑥𝑢 at time 𝑡0 − 𝐹𝐹𝑇𝑇(𝑥𝑢, 𝑥), and arrives at 

location 𝑥 at 𝑡0.  

𝑛(𝑥, 𝑡0) = 𝑛(𝑥𝑢, 𝑡0 − 𝐹𝐹𝑇𝑇(𝑥𝑢, 𝑥))                                                                          (3-4)   

In the subarea of congested states, the traffic flow is restricted by a downstream bottleneck.  

Figure 3-4 displays the relationship between 𝑛(𝑥𝑑, 𝑡) and 𝑛(𝑥, 𝑡). As the total number of 

vehicles that can be stored between 𝐿(𝑥, 𝑥𝑑) is 𝑘𝑗 × 𝐿(𝑥, 𝑥𝑑), then 
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                    𝑛(𝑥, 𝑡2) = 𝑛(𝑥𝑑 , 𝑡2 − 𝐵𝑊𝑇𝑇(𝑥, 𝑥𝑑)) + 𝑘𝑗 × 𝐿(𝑥, 𝑥𝑑)                                                                  (3-5)                                                                                                                                                               

  

 

Newell’s method uses the smaller value of the above two values to determine the shock 

wave boundary. As shown in Figure 3-4, at location 𝑥, the characteristics is changed at 

time 𝑡0 which divides the curve 𝑛(𝑥, 𝑡) into two parts. Except for the discontinuous point 

at time 𝑡1, the left part of curve 𝑛(𝑥, 𝑡) is translated from the green curve 𝑛(𝑥𝑢, 𝑡). The 

right part of curve 𝑛(𝑥, 𝑡) is translated from the curve 𝑛(𝑥𝑑 , 𝑡) (i.e. “moving coordinate” 

(Newell, 1993)). Newell’s method provides a simple way to describe the state transitions 

on freeways. From the function 𝑛(𝑥, 𝑡), the flow, density, and speed can be calculated 

directly from the derivatives of 𝑛(𝑥, 𝑡). It implies that the traffic states at location 𝑥 equal 

to the traffic states of the upstream location along the forward wave, when 𝑡 < 𝑡1. Location 

𝑥 has the same traffic state to the downstream location along the backward wave, when 

𝑡 > 𝑡1 until the state of congestion ends (Hurdle and Son, 2000). 
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Figure 3-4 Forward and Backward Propagation on Cumulative Curves Adapted from 

Hurdle and Son (2000) 

 

3.4. Describing State Transition on the Space-Time Probabilistic Graph 

A probabilistic graph (PG) describes dependence structures between random variables. It 

can be also viewed as a generalized expression of MCs or linear state-space model (usually 

solved by standard KF).  

 State Representation Assignment 

Denoting the observation vector as {𝑜 𝑥,1, … , 𝑜 𝑥,𝑇}, each 𝑜 𝑥,𝑡 is generated by an emission 

function whose input is state 𝑚𝑥,𝑡 at location 𝑥 time 𝑡:  

𝑜 𝑥,𝑡 = 𝑔(𝑚𝑥,𝑡)  ∀ 𝑡 = 1,2, …𝑇 (3.6) 

The emission function, 𝑔, determines the state representation of the observation 𝑜 𝑥,𝑡. In a 

Hidden Markov Chain (HMC) model, 𝑔 is a probability density function. In a Kalman 
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Filter (KF) model, 𝑔 is a linear function with Gaussian noises. In travel demand model, 𝑔 

is a volume-delay function (VDF).  

Table 3-3 Emission Function Interpretation from Typical Models 

 Model Emission function, 𝑔 

Hidden Markov Chain Probability density function (PDF) 

Kalman Filter Linear function with Gaussian noises 

Travel Demand Volume-delay function (VDF) 

 

 In this research, the emission function is assumed by directly clustering the flow-density 

pairs on the FDs. K-means clustering is applied to classify the observation 𝑜 𝑥,𝑡 into traffic 

states with similar characteristics (Module B in Figure 3.3). Readers can refer to Antoniou 

et al. (2013) to learn more on other clustering algorithms applied in TSE problems.  

 Local State Transitions 

For each location 𝑥, {𝑚𝑥,1, … ,𝑚𝑥,𝑇} is defined as a state sequence satisfying the first order 

Markov property, which implies that current state 𝑚𝑥,𝑡 is independent of all other states 

except 𝑚𝑥,𝑡−1 . Then, the MC model, Eq. (4), means that the joint distribution 

𝑃(𝑚𝑥,1, … ,𝑚𝑥,𝑡′) is calculated by: 

                          𝑃(𝑚𝑥,1)∏ 𝑃(𝑚𝑥,𝑡|𝑚𝑥,𝑡−1)
𝑡=𝑡′
𝑡=2 ∀ 𝑡′ = 2…𝑇          (3-7) 

The MC model becomes a state-space model when the transition probability 

𝑃(𝑚𝑥,𝑡|𝑚𝑥,𝑡−1) is expressed by: 

                                             𝑚𝑥,𝑡 = 𝑓𝑡(𝑚𝑥,𝑡−1)    ∀ 𝑡 = 1,2, …𝑇           (3-8) 

If the transition function 𝑓𝑡 is a linear function with Gaussian noises, then the equation 

expresses the predicting process in KF. 
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Figure 3-5 (A) illustrates a PG to express the MC model. The vertexes represent random 

variables. The directed edge from a vertex to vertex indicates that the head vertex is 

conditioned by the tail vertex. For each edge, the corresponding conditional probability is 

labeled (Ghahramani, 2001). The MC model (Eq. 4) is utilized to estimate the historical 

sequence of traffic states from vertex (𝑥, 1) to  (𝑥, 𝑇) for the following model (Module C 

and D in Figure 3.3).  

Given 𝑚𝑥,1,𝑚𝑥,2, …𝑚𝑥,𝑡−1, the regular state 𝑚𝑥,𝑡 can be estimated as  

M1: argmax
𝑚𝑥,𝑡

 {𝑃(𝑚𝑥,𝑡|𝑚𝑥,𝑡−1)𝑃(𝑚𝑥,1, 𝑚𝑥,2, … ,𝑚𝑥,𝑡−1)} (3-9) 

  

 Upstream and Downstream State Transitions 

To describe the impact of kinematic waves in a corridor, we extend the PG to an STPG. The 

spatiotemporal correlations are expressed by space-time edges in the STPG. As illustrated 

in Figure 3-5 (B), the traffic state of vertex (𝑥, 3) is conditioned by two parent vertexes 

labeled by two conditional probabilities:  

a) Backward wave state transition: 𝑃(𝑚𝑥,3|𝑚𝑥𝑑,1)  

b) Forward wave state transition 𝑃(𝑚𝑥,3|𝑚𝑥𝑢,2)  

 Bayesian Classifier 

Now considering the case of the real-time data input. For example, the traffic states 

(evidence) of two vertexes (as shown in Figure 3-5 (B)) are already know: 𝑚𝑥𝑑,1 = 𝑜 𝑥𝑑,1  

and 𝑚𝑥𝑢,2 = 𝑜 𝑥𝑢,2  .Then, the conditional probabilities can be calculated using a (naïve) 

Bayesian classifier (Friedman et al. 1997) (Module E in Figure 3-3) based on forwarding 

and backward waves in the figure:  
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a) 𝑃(𝑚𝑥,3|𝑚𝑑,1) = 𝑃(𝑚𝑥,3|𝑜 𝑥𝑑,1) ∝  𝑃(𝑚𝑥,3)𝑃(𝑜 𝑥𝑑,1|𝑚𝑥,3)  

b) 𝑃(𝑚𝑥,3|𝑚𝑥𝑢,2) = 𝑃(𝑚𝑥,3|𝑜 𝑥𝑢,2) ∝  𝑃(𝑚𝑥,3)𝑃(𝑜 𝑥𝑢,2|𝑚𝑥,3)  

Generally, we have   

𝑃(𝑚𝑥,𝑡|𝑜 𝑥𝑑,𝑡−𝐵𝑊𝑇𝑇(𝑥,𝑥𝑑)) ∝ 𝑃(𝑚𝑥,𝑡)𝑃(𝑜 𝑥𝑑,𝑡−𝐵𝑊𝑇𝑇(𝑥,𝑥𝑑)|𝑚𝑥,𝑡)  

𝑃(𝑚𝑥,𝑡|𝑜 𝑥𝑢,𝑡−𝐹𝐹𝑇𝑇(𝑥𝑢,𝑥)) ∝ 𝑃(𝑚𝑥,𝑡)𝑃(𝑜 𝑥𝑢,𝑡−𝐹𝐹𝑇𝑇(𝑥𝑢,𝑥)|𝑚𝑥,𝑡)  

 

 
Figure 3-5 An Illustrative Example of STPG 
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 Update the Prediction 

In this study, real-time data is introduced to update the regular pattern of traffic states 

(Module F in Figure 3-3). If the state 𝑚𝑥,𝑡 is updated using observations from the upstream 

and downstream locations, the weight average model to combine Bayesian Classifier and 

the MC model will be applied to estimate 𝑚𝑥,𝑡 for each 𝑥 ∈ 𝑵 and 𝑡 = 1,2, …𝑇: 

𝐌𝟐: argmax
𝑚𝑥,𝑡∈𝑴

{W𝑢 × 𝑃(𝑚𝑥,𝑡|𝑜 𝑥𝑢,𝑡−𝐹𝐹𝑇𝑇(𝑥𝑢,𝑥)) +W𝑑 ×

𝑃(𝑚𝑥,𝑡|𝑜 𝑥𝑑,𝑡−𝐵𝑊𝑇𝑇(𝑥𝑑,𝑥)) +W× 𝑃(𝑚𝑥,𝑡|𝑚𝑥,𝑡−1)𝑃(𝑚𝑥,1, 𝑚𝑥,2, … ,𝑚𝑥,𝑡−1)}  
(3-10) 

W𝑢: Weight of the impact from upstream locations  

W𝑑: Weight of the impact from downstream locations  

W: Weight of the historical pattern (set to W=1) 

The three conditional probabilities in Eq. (3.10) (M2) are shown in Figure 3-5 (B). In the 

basis of the Newell’s method for the three-detector problem, the weights of the transition 

matrices in M2 can be determined (See Appendix for details). After the states at each vertex 

are estimated, the density, speed, and flow at the vertex (𝑥, 𝑡) can be estimated using the 

centroids generated by the K-means clustering algorithm. It should be noted that, to avoid 

fluctuation of the estimates and prediction, any digital filter can be used for smoothing the 

data. 

  

https://en.wikipedia.org/wiki/Digital_filter
https://en.wikipedia.org/wiki/Smoothing
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3.5. Summary 

Traffic data collected from detectors can be plotted and calibrated on a fundamental 

diagram (FD). However, in order to analyze the traffic impacts of these data on a corridor, 

they must undergo a series of mathematical procedures. This chapter has provided the 

necessary framework for observed traffic to be used to predict and update traffic states at 

a location using kinematic waves from upstream and downstream locations. In the 

prediction stage, emission function K-clustering has been used to group flow-density pairs 

with similar characteristics and determine their state estimation. Markov Chain (MC) 

model and the probability graph (PG) have been used to capture the state dependences and 

transitions. PG has been extended to spatiotemporal probability graph (STPG) to infer the 

impacts of the kinematic waves in a corridor using Bayesian Classifier (BC) method.  The 

updating stage included the application of weight average model to the combined MC and 

BC models for the updated state estimation at the current location. 
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CHAPTER 4  

TRAVEL TIME DERIVATION FROM QUEUEING AND POLYNOMIAL MODELS 

4.1. Introduction 

Among the many other causes of congestion, a physical bottleneck is with capacity 

constraints considered in this research because it happens fairly regularly and results in the 

formation of a queue while other factors such as traffic incidents vary in occurrence and 

characteristics. The research report from FHWA (2005) estimates that 40 percent of all 

congestion nationwide can be attributed to road bottlenecks, as shown in the pie chart 

below. 

 
Figure 4-1 Common Causes of Congestion 

Source:http://www.ops.fhwa.dot.gov/aboutus/opstory.htm 

 

Chapter 4 aims to analyze the analytical computing procedures involved in the various 

factors involved in a queue caused by the existence of a bottleneck, ranging from 

congestion location and overall demand supply relationships.   
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Section 4.2 presents a method of identifying (1) spatial bottleneck locations based on 

integrated speed heat map and speed profile diagrams, and (2) the temporal congested 

period during the analysis horizon. In section 4.3, the cumulated vehicle arrival counts are 

integrated along the congested period to estimate the time-dependent queue length. Other 

queue characteristics, such as time-dependent queue waiting time and total waiting time, 

are also derived. Section 4.4 demonstrates that the fluid dynamic equation can be used to 

approximate the traffic queue length formation and dissipation (with physical queue length) 

since the traffic flow patterns can be viewed as similar to those of a fluid with specific 

characteristics. This section adopts and extends the fluid approximation approach by 

Newell (1993) to a spatially distributed queue model. It specifically discusses the selection 

and estimation of parameters of a polynomial equation that represents the complex spatial 

queue profile. Finally, Section 4.5 examines the derivation steps to convert the final 

mathematical expression to a BPR-like formula that computes the spatial queue-based 

transportation system performance measures. The flow chart in Figure 4-2 shows the 

descriptions and relationships of individual modules representing sections of Chapter 4.  
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Figure 4-2 Module Descriptions and Representations of Sections from Chapter 4   
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The variables used in this chapter are summarized in Table 4-1 below. 

Table 4.1 Variables and Their Definitions 

Variables Description 

𝑣𝑓  Free-flow speed 

𝑣𝑐  Critical speed 

𝑡0 Start time of congestion period 

𝑡1 Time index with maximum inflow rate 

𝑡2 Time index with maximum queue length 

𝑡3 End time of congestion period 

𝜆(𝑡) Arrival rate function at time t 

𝜇 Capacity (or discharge rate, assumed constant) 

𝐷 Total demand during congested period 

𝑃 Congestion period, P=t3-t0 

𝑤̄ Average delay during congested period 

𝑊 Total delay during congested period 

𝑄(𝑡) Queue length at time t 

𝐴(𝑡) Cumulative arrival curve at time t 

𝐷(𝑡) Cumulative departure curve at time t 

𝜌 Parameter for the quadratic form of inflow rates 

𝑡𝑡 Average travel time during congested period 

 

4.2. Bottleneck Identification Using Integrated Heat Map Space-Time Speed Profile 

The cumulative traffic count at the shockwave boundary created by the downstream 

bottleneck has been described in section 3 of Chapter 3. This section presents the methods 

used to identify the downstream bottleneck based on heat map technique or space-time 

speed profile.  
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Figure 4-3 depicts a configuration of vehicles traveling on a roadway network link 

equipped with loop detector that experience a bottleneck at a downstream location and 

vehicle trajectories on a space-time diagram. The space-time vehicle trajectory domain is 

divided into two sub-areas by the shock wave boundary that represents the physical queue 

boundary caused by a bottleneck at a downstream location.  

A typical vehicle trajectory, shown in green line, indicates a vehicle traveling the free-flow 

sub-area at the free-flow speed of 𝑣𝑓 until it reaches the back of the queue caused by the 

downstream bottleneck. The vehicle then enters the queue in the congested sub-area and 

reduces its speed to the congested speed of  𝑣𝑐.   

 
Figure 4-3 Illustration of a Roadway Configuration with Loop Detectors and Vehicle 

Trajectories on a Space-time Diagram and the Queue Extent Along a Single Bottleneck 

 

It is clear from the figure that a bottleneck can be identified by analyzing speed data in a 

space-time plane. The heat map is a technique that can represent speed data values as 

different colors with color intensity varying with speed value magnitude.  This technique 

can therefore be used to visually represent the change in speed data of a vehicle trajectory. 
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Figure 4-4 below clearly illustrates the presence of a bottleneck along a freeway corridor 

and the congested period. 

 
Figure 4-4 Bottleneck Location (from Speed Heat Map of a Freeway Corridor over One 

Day) 

 

The bottleneck occurs at detector 137 from 3 PM to 7 PM where the speed is below 45. 

Any region with red color is in congested state. The bottleneck has, therefore, created a 

physical queue that extends from detector 137 (downstream) to detector 139 (upstream).A 

speed-time plot showing the same information is also plotted in Figure 4-5 below.  
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Figure 4-5 Bottleneck Location (from Speed Profile of a Freeway Corridor over One 

Day) 

 

4.3. Computation of Key Queue System Parameters 

 (1) Traffic Demand During Congestion Period 

The integrated heat map and speed profile technique can be used to visually show the 

location of the bottleneck and the beginning and the end of the congestion duration. An 

additional technique that uses critical density check can also be used. Once the congested 

period and the densities are identified, the cumulative vehicle counts within the congested 

period can be easily computed by using the formula:  

𝑁(𝑡) = 𝑁(𝑡 − 1) + 𝑞(𝑡)     𝑓𝑜𝑟 𝑡0 ≤ 𝑡 ≤ 𝑡3                                                                  (4-1) 

A typical curve for cumulative vehicle count, N, within congested period, P, is shown in 

Figure 4-6. For simplicity, no vehicle count is shown outside of the congested period. 
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Figure 4-6 A Typical Cumulative Flow Curve (in Blue Line) Representing Cumulative 

Vehicle Count Within Congested Period 

 

To derive the overall demand-supply analytical form, the total congested demand, D, 

during congested period, P, can be computed as the difference between the cumulative 

vehicle count at the end of congestion, 𝑡3 , and the cumulative vehicle count at the 

beginning of congestion, 𝑡0, as  

  𝐷 = 𝑁(𝑡3) − 𝑁(𝑡0)                                                                                                       (4-2) 

Accordingly, the assumed constant discharge rate, , is computed as the ratio of the total 

demand, D, and the congested period, P, as expressed in Equation 4.3 below. It is 

represented in Figure 4-6 by the red line beneath the blue cumulative curve. The red line is 

actually drawn tangent to the blue curve.  
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     = 𝐷/𝑃                                                                                                                     (4-3) 

The cumulative flow curve, the discharge rate line, N, D, and P create the boundary 

conditions of a cumulative vehicle count process. These variables constitute the 

prerequisite variables for calibration of the spatial queue parameters. 

 (2) Cumulative Flow Curves for Total Demand and Assumed Constant Discharge 

Rates 

Figure 4-7 indicates the total demand, D, from the cumulative curve, and the queue 

parameters that can be derived from the cumulative vehicle count parameters. Using the 

spatial queue theory terminology, the cumulative input and output vehicle curves are 

referred to as the cumulative arrival curve, A(t), and the discharge rate line with the 

assumed constant slope  is denoted as the cumulative departure curve, D(t).  

 
Figure 4-7 Illustration of Queue Parameters Within the Cumulative Curve Concept 
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The queue length at time t, Q(t), in the congested period, P, is equal to the vertical 

difference between the cumulative arrival curve, A(t), and the cumulative departure curve, 

D(t). It can be computed as the difference between the cumulative vehicle arrival count, 

N(t), and , A(t), and the cumulative vehicle departure count, N’(t),  expressed as 

𝑄(𝑡) = 𝑁(𝑡) −  𝑁′(𝑡)                                                                                                             (4.4) 

The waiting time at time t, w(t), can easily be estimated as the ratio of the queue length and  

the constant slope , as 

𝑤(𝑡) = 𝑄(𝑡)/                                                                                                              (4-5) 

The total waiting time in the queue, W, is the ratio of total queue length, Q, over the 

congested period, P, as  

𝑊 = 𝑄/𝑃                                                                                                                         (4.6) 

These queue parameters can also be expressed mathematically using the cumulative arrival 

curve A(t) and the cumulative departure curve D(t). The tilted area inside A(t) and D(t) 

(Figure 4-8 (a)) can be aligned horizontally, as shown in Figure 4-8 (b).  
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Figure 4-8 Queue Length Curve (b) Derived from Cumulative Curve (a). The Maximum 

Queue Length Occurs at Time t2 

   

Figure 4-8 clearly shows that the queue length evolution curve, Q(t), follows a quadratic 

distribution. There are a few important boundary conditions to be highlighted along the 

time horizon. The queue formation process starts at time t0 and grows exponentially to 

reach the maximum at time t2. Then the queue dissipation process follows from time t2 to 

time t3 where the queue decreases gradually until it disappears at time t3.  
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4.4. Key Assumption of Quadratic Polynomial Function Using Queue Parameters 

The key assumption is that the queue length evolution pattern can be reasonably 

approximated by the general polynomial function shown in Figure 4-9 below.   

 
Figure 4-9 Quadratic Polynomial Approximation of Queue Length 

 

The queue length at time t, Q(t), corresponds to the area under the curve (t). The queue 

length starts to build up as the area under the curve (t) increases gradually from time t0 

and the queue reaches its maximum length, Q(t2), at time t2 when (t)=. The queue then 

starts to decrease until time t3 when the area between (t) and  from time t2 to time t3 is 

equal to the area from time t0 to time t2.  

Mathematically, the queue length at time t can be expressed as 

𝑄(𝑡) = 𝐴(𝑡) − 𝐷(𝑡) = ∫ [𝜆(𝑡) − 𝜇]
𝑡

𝑡0
𝑑𝑡                                                                          (4.7)                                      

It is also noted that, various scholars such as William Vickrey, Arnott, De Palma, Lindsey, 

Kenneth Small have used constant or linear arrival rates in the classical bottleneck model 

and a recent survey paper on the bottleneck model is offered by Li, Huang and Yang (2020). 
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Newell (1982) assumes that virtual arrival flow (t) can be approximated by a quadratic 

function as 

𝜆(𝑡) = 𝜆(𝑡1) + 𝜆′(𝑡1)(𝑡 − 𝑡1) +
1

2
𝜆″(𝑡1)(𝑡 − 𝑡1)

2                                                             (4.8)    

The quadratic polynomial curve presents some important characteristics that can reduce its 

expression and also the expressions of its two roots, t0 and t2. If a corridor is covered with 

detectors, then the virtual arrival rate (t) can be directly estimated based on the proposed 

three-detector model presented in Chapter 3. If sensor data are only available for individual 

locations that cover part of the congested corridor, observed speed or density from the loop 

detector needs to be used to first estimate the waiting time/queue length along the corridor. 

The quality of waiting time estimate can be improved if third party data providers such as 

HERE or INRIX also have speed measures on the same segment, but the actual end-to-end 

travel time and queue length should be observed from very detailed trajectory data.  At the 

second step of TSE in this chapter, we will use the estimated waiting time or queue length 

to further estimate the (unobserved virtual arrival rates (t)), while the flow rates at a single 

location are used directly to derive the constant departure rate . It is important to recognize 

the complexity of the traffic state estimation for the proposed analytical formula, as only a 

subset of queue system parameters are observable under the current sensor technology. On 

the other hand, this analysis also indicates our proposed parsimonious model with has its 

own advantages in TSE compared to numerically complex models with finite difference 

form.  
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First, the inflow rate is at its maximum at time t1. Hence,  𝜆′(𝑡1) = 0.  

Second, the concave form of the polynomial curve means that the inflow rate will start to 

decrease after time t1. Hence, the shape parameter 𝜌 = −
1

2
𝜆″(𝑡1). Eq. (4.8) would then be 

reduced to 

𝜆(𝑡) = 𝜆(𝑡1) − 𝜌(𝑡 − 𝑡1)
2                                                                                             (4-9) 

Third, the inflow rate and the discharge rate are equal at time t0 and time t2, i.e.,  

𝜆(𝑡0) = 𝜇  = 𝜆(𝑡1) − 𝜌(𝑡1 − 𝑡0)
2                                                                               (4-10) 

𝜆(𝑡2) = 𝜇  = 𝜆(𝑡1) − 𝜌(𝑡2 − 𝑡1)
2                                                                               (4-11) 

The two roots 𝑡0 and 𝑡2 can then be expressed as follows: 

𝑡0 = 𝑡1 − [
𝜆(𝑡1)−𝜇

𝜌
]

1

2
                                                                                                       (4-12) 

𝑡2 = 𝑡1 + [
𝜆(𝑡1)−𝜇

𝜌
]

1

2
                                                                                                                 (4-13) 

Since the queue length, Q(t), is zero at these two roots 𝑡0 and 𝑡2, the expression 𝜆(𝑡) − 𝜇 

can be written in a factored form that includes both roots, as follows: 

𝜆(𝑡) − 𝜇 = 𝜌(𝑡 − 𝑡0)(𝑡2 − 𝑡)                                                                                              (4-14) 

After substituting Eq. (4-14) into Eq. (4-7), Q(t) can be expressed in terms of 𝑡0, 𝑡2 and 𝜌 

𝑄(𝑡) = ∫ [𝜆(𝑡) − 𝜇]
𝑡

𝑡0
𝑑𝑡 = ∫ [𝜌(𝑡 − 𝑡0)(𝑡2 − 𝑡)]

𝑡

𝑡0
𝑑𝑡                                                      (4-15)        
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Setting 𝑢 = 𝑡 − 𝑡0 into the equation yields the general expression of Q(t) as  

𝑄(𝑡) = ∫ [𝜌(𝑡 − 𝑡0)(𝑡2 − 𝑡)]
𝑡

𝑡0

𝑑𝑡 

         = ∫ [𝜌𝑢(𝑡2 − 𝑡0 − 𝑢)]
𝑡−𝑡0

0

𝑑𝑢 

         = 𝜌 [−
1

3
𝑢3 +

1

2
(𝑡2 − 𝑡0)𝑢

2]|
𝑢=0

𝑢=𝑡−𝑡0

 

 𝑄(𝑡) = 𝜌(𝑡 − 𝑡0)
2 [

𝑡2−𝑡0

2
−

𝑡−𝑡0

3
]                                                                                        (4-16) 

When the queue reaches its maximum length at time 𝑡2, the expression becomes 

𝑄(𝑡2) =
𝜌

6
(𝑡2 − 𝑡0)

3                                                                                                              (4-17) 

The shape parameter, , can then be derived as   

𝜌 =
6𝑄(𝑡2)

(𝑡2−𝑡0)3
                                                                                                                   (4-18) 

Since the queue dissipates at time 𝑡3, i.e., 𝑄(𝑡3) = 0, 𝑡3 can be expressed as: 

𝑡3 = 𝑡0 +
3

2
(𝑡2 − 𝑡0)                                                                                                              (4-19) 

Eq. (4-19) can be rearranged as follows 

1

3
(𝑡3 − 𝑡0) =

1

2
(𝑡2 − 𝑡0)                                                                                                        (4-20) 

Substituting Eq. (4-20) into Eq. (4-16) further reduces the queue length to 

 𝑄(𝑡) = 𝜌(𝑡 − 𝑡0)
2 [

𝑡3−𝑡0

3
−

𝑡−𝑡0

3
]                                                                              

𝑄(𝑡) =
𝜌

3
(𝑡 − 𝑡0)

2(t3 − t)                                                                                                   (4-21) 
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4.5 Examining Queue-Based Average Delay and Average Travel Time Functions During 

Congestion Period  

The waiting time, w(t), can  be computed as  

 𝑤(𝑡) = 𝑄(𝑡)/ =
𝜌

3
(𝑡 − 𝑡0)

2(t3 − t)                                                                      (4-22) 

The total delay between time 𝑡0 and 𝑡3, W, can be calculated by integration of Eq. (4-21) 

as follows: 

𝑊 = ∫ 𝑄(𝑡)
𝑡3

𝑡0

𝑑𝑡 

𝑊 = ∫ [
𝜌

3
(𝑡 − 𝑡0)

2(𝑡3 − 𝑡)]
𝑡3

𝑡0

𝑑𝑡 

Setting 𝑢 = 𝑡 − 𝑡0, the above equation becomes 

𝑊 =
𝜌

3
∫ 𝑢2(𝑡3 − 𝑡0 − 𝑢)𝑑𝑢
𝑡3−𝑡0

0
    

    =
𝜌

3
[
𝑡3 − 𝑡0

3
𝑢3 −

𝑢4

4
]|
𝑢=0

𝑢=𝑡3−𝑡0

 

𝑊 =
𝜌

36
(𝑡3 − 𝑡0)

4                                                                                                                  (4-23) 

Given the total delay, W, and the total congested demand, D, the average delay during the 

congestion period 𝑡0 to 𝑡3 can be computed as follows:  

𝑤̄ =
𝑊

𝐷
=

𝜌

36
⋅
(𝑡3−𝑡0)

4

𝐷
   =

𝜌

36
⋅
(𝑃)4

𝐷
                                                                           (4-24) 

The discharge rate (or capacity) can be calculated as the ratio of the total congested demand, 

D, over the congested period, P, as  
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𝜇 =
𝐷

𝑃
                                                                                                                                    (4-25) 

After substitution of Eq. (4-24) into Eq. (4-23), the average delay can now be expressed 

in terms of congested demand and capacity, as 

𝑤̄ =
𝜌

36𝜇
⋅ (

𝐷

𝜇
)
3

                                                                                                                      (4-26) 

By definition, the average travel time is equal to the sum of free-flow travel time and the 

average delay and it is expressed as   

𝑡𝑡 = 𝑡𝑓 + 𝑤̄                                                                                                                             (4-27) 

After substitution and rearranging some terms, the equation becomes 

𝑡𝑡 = 𝑡𝑓 +
𝜌

36𝜇
⋅ (

𝐷

𝜇
)
3

= 𝑡𝑓 ⋅ [1 +
𝜌

36𝜇𝑡𝑓
⋅ (

𝐷

𝜇
)
3

]                                                               (4-28) 

As a conclusion, Eq. (4-27) is derived from a quadratic polynomial equation and 

estimates the average travel time based only on queue parameters. Most importantly, it is 

similar to BPR function  𝑡𝑡 = 𝑡𝑓 ⋅ [1 +  ⋅ (
𝑉

𝐶
)


] where 

  =
𝜌

36𝜇𝑡𝑓
 , V = D, C =  , and  = 3 

The proposed average travel time formula has possibilities of being used in the trip 

assignment step of a travel demand model. It satisfies the necessary requirements of a 

volume-delay function. The most important condition is that the function must be 

monotonically increasing for the highway assignment to converge to a unique solution. 
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4.6 Summary 

This chapter analyzes the congestion caused by bottleneck conditions and suggests a few 

methods using integrated heatmap and space-time speed diagram to visually identify the 

bottleneck and the critical density to mark the congested data values. Once the congested 

period and data identify, the cumulative vehicle count method has been used to develop 

the cumulative count curve over the congested period, and to estimate the congested 

demand and the discharge rate. Using the area under the cumulative curve and the discharge 

rate line, the queue variables such as queue length, waiting time, and total delay, have been 

derived. Since the queue length distribution can be approximated by a set of polynomial 

equations, a quadratic function has been selected as a representative illustration to further 

analyze the queue characteristics.  

By extending Newell’s approach and the boundary conditions from the fluid based point 

queue theory, the quadratic function is used to approximate incoming flow rates. Further, 

real-world flow parameters are used to establish some relationships or correspondences 

between the root solutions of the quadratic function and the queue length variables. By 

substituting the demand and the discharge rate from the cumulative curve to the processed 

quadratic function, this chapter has examined the average delay estimation and the average 

travel time function development. The proposed point-queue based travel time function 

satisfies major requirements to be used as a volume-delay function in the trip assignment 

stage of a travel demand model to estimate the travel time based solely on congested traffic 

data. 
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CHAPTER 5  

EXPERIMENTS 

5.1. Introduction  

Traffic data are collected for several purposes and this chapter will focus on how to use 

different sources of measurements to study how transportation system performs. In urban 

areas in general and in central business district (CBD) in particular, where congestion is a 

major concern, loop detectors are located on major freeways to collect vehicle counts and 

speeds at time interval of 5 minutes or less. These data, that are collected all year round by 

state transportation agencies, contain important traffic information that need to be analyzed 

to understand the impacts of congestion and develop mitigation measures and plans. 

Finding a simple, easy, and direct method to interpret these big data to answer questions 

on congestion such as the formation, duration, intensity, and extend of the traffic queue, 

becomes a theoretically complex and practically important challenge.  

In this data analysis process, a visualization approach will be used to detect traffic patterns 

and characterize such data problems as outliers or missing data. Since traffic data can be 

saved in Excel spreadsheet, they can be transformed into a bar graph, pie chart, or table to 

create a data visualization. On the other hand, considering the traffic congestion 

characteristics, the most effective visualization method tends to be the heat map based on 

a space-time modeling approach. As it will be demonstrated in this chapter, the heat map 

has been very effective in quality control of data.  
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This section presents a freeway corridor equipped with loop detectors that continuously 

collect traffic volume and speed data that can be used in research studies such as traffic 

estimation and travel time estimation.  

Figure 5-1 illustrates the detector numbers and locations. The freeway corridor is a 4.59-

mile section on interstate 10 (I-10) with a combination of ramps (both entrance and exit), 

high-occupancy vehicle (HOV) lanes, and general purpose (GP) lanes located in Phoenix, 

Arizona. In this simplified case study, we only consider the HOV and GP lanes at location 

137, 84, 78 and 139 and neglect the impact of ramps. The loop detectors, installed by the 

Arizona Department of Transportation (ADOT) in this downtown corridor, recorded both 

traffic counts (q̅(𝑥, 𝑡)) and speeds (v̅(𝑥, 𝑡)) every five minutes, each week day and weekend 

from January to December 2016.   
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(a) 

 

 

 

 

 

 

 

(b) 

Figure 5-1 Freeway Corridor Lane Configuration, Loop Detector Identifications and 

Locations, and Traffic Direction 

 

Information on loop detector identification numbers and locations, types of traffic data 

collected, and traffic data collection year, months, and time interval are summarized in 

Table 5.1 and Table 5-2. 

  

78 
78 84 139 137

7
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Table 5-1  Summary of Traffic Detector Characteristics and Traffic Data Collected and 

Time Interval Period 

Detector Description 

Loop detector IDs 78, 84, 137, 139 

Locations I-10 freeway corridor, Westbound direction 

Traffic data collected Speed (mph) and volume (vph) in 5 minutes 

interval 
Traffic data collection 

period 

Year: 2016  

Months: January - December 

Interval: 5 minutes (from 00:00 to 23:55)  

 

Table 5-2 Freeway Segment Lane Configuration
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5.2. Raw Data Description and Data Processing 

In practice, vehicle count and speed data are not typically recorded in one single file system. 

Figure 5-2 and Figure 5-3 show the file format of the vehicle count data and speed data, 

respectively, collected every 5-minutes by the loop detectors. Every row in the count data 

file includes every day of the year 2016 with the 5 minute interval vehicle counts entered 

in columns from 00:00 until 23:55 for every lane of every detector in a typical freeway 

corridor, as shown in Figure 5-2.  

 
Figure 5-2 Raw Data File with Volume Data from All Detectors Collected Every 5 

Minute Interval 

 

  



 

83 

 

Every row in the speed data file includes every day of the year 2016 with the 5 minute 

interval vehicle speed data entered in columns from 00:00 until 23:55 for every lane of 

every detector in a typical freeway corridor, as depicted in Figure 5-3.  

 
Figure 5-3 Traffic Data File with Speed Data from All Detectors Collected Every 5 

Minute Interval 

 

  



 

84 

 

For the purpose of the steady-state analysis, these 5-minute interval data need to be 

extended to 1-hour interval data. This condition requires that the volume data be aggregated 

and the speed data be averaged. Figure 5-4 further shows an example of volume data 

aggregated to 1-hour interval. 

 
Figure 5-4 Traffic Data File with Volume Data Aggregated to 1 Hour Interval 
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Figure 5-5 shows an example of speed data averaged over 1-hour interval. 

 
Figure 5-5 Traffic Data File with Speed Data Averaged over 1 Hour Interval 

  



 

86 

 

5.3. Quality Control of Collected Data and General Discussion on Data Aggregation 

As it is normally the case with every data set, the collected traffic data had some issues that 

needed to be addressed before being used in the analysis. Table 5-3 identified some of the 

problems that were noticed and the actions taken to correct them.  

Table 5-3 Summary of Data Checking 

Problems Number of records Solutions 

Volume and speed data 

include weekdays and 

weekends 

 Only weekday data are 

considered 
Ramp data include only 

volume and no speed 

1421 (volume) 

entr from 16th St 

entr from 7th Ave lane 1 

entr from 7th Ave lane 2 

entr from 7th St  

Ramps not included in 

the analysis. 

Delete volume records 

Records with no data  1 (from Detector 78): 

6.11 and 6.12(volume: 

hov, lane1, lane2, lane3, 

and lane4)) 

Delete volume records 

(volume overestimated, 

speed constant)  

Missing speed data 53 (from Detector 139): 

8.9-8.14 (6 records: 

lane2) 

11.10-11.22 (13 records) 

11.24-11.26 (3 records) 

11.30-12.14 (15 records) 

12.16-12.31 (16 records) 

Delete volume records 

because there is no 

corresponding speed 

Volume=0 

Speed=0 

5,229 

645 

Density=0 

Delete volume records 
Weekend numbers not 

realistic 

2925 Delete all weekend 

records (volume and 

speed) 

 

The general rules applied in Table 5-3 can be summarized as follows.  Any data not 

applicable to the research scope, such as weekend data and data from ramps, would be 

deleted. Also, any bad or missing data would be discarded, as suggested by Bickel et al. 

(2007). Still, despite these actions, the remaining data cannot be considered accurate since 

many detector failures and data errors remain undetected (Jacobson et al., 1990). Hence, 

the accuracy of the results from the analysis would also affected.   

Traffic data collected from detectors needed to be processed before being used in the 

analysis. Since the scope included only weekday traffic along a freeway corridor, the 

weekend traffic and ramp traffic data were deleted.  
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As part of the data aggregation process, the volume and speed data are recorded by the 

detectors very 5-minute time interval every day of the year. These data were processed to 

reflect the steady-state conditions needed for the travel time estimation. The 5-minute time 

interval volume data were aggregated to produce the 1-hour interval volume data and the 

5-minute speed data were averaged to generate the 1-hour time interval speed data.  

Several studies conducted on traffic state estimation have defined a traffic state as being 

composed of flow and speed in addition to being in congested or uncongested conditions 

(Yeon, 2008). However, this research clearly defines the flow and density as the two traffic 

variables that define a traffic state both in the proposed traffic state estimation and in the 

proposed travel time estimation method.  

5.4. Traffic State Estimation (TSE) Method  

Given the scale of the problem, the data used in this proposed method are the 5-minute 

interval sample data.  

5.4.1. Definition of States Using Clustering 

A system has to be defined as the traffic states which is analyzed using a measurable 

characteristic. For the purposes of this research,  𝑚𝑥,𝑡 is defined as a pair of density and 

flow. Then, ADOT’s data can be used to perform clustering analyses. Now, K-means 

clustering can be applied to group the traffic state variables. Figure 5-6 shows the state 

representation using 8 states.  
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5.4.2. Calibration 

Here the method presented in (Dervisoglu et al. 2009) is used to calibrate the parameters 

in Newell’s model. The parameters are displayed in Figure 5-7. It can be observed that 

there is a capacity drop in the FD, which is an important problem in TSE problem. For 

simplicity, the problem of a capacity drop is not addressed in this research. 

5.4.3. State Prediction 

In this case, only the MC model (M1) is considered. Savitzky Golay filter with time-lag 3 

hours and 3 orders are used to smooth the estimates. In addition, real-time data is applied  

to update the estimates. Table 5-4 reports the root-mean-square errors (RMSE) between 

the estimates and real-time observations with different numbers of states (4, 8,16, 20, and 

30) under both M1 and M2. Generally, after updating the values of RMSE become better 

(the green numbers imply decreasing RMSE; the red numbers in Table 5-4 mean increasing 

RMSE).  

Although RMSEs are generally decreased with the increase in the number of traffic states, 

an interesting problem is how many states is needed? Table 5-4 shows that, when only M1 

is used, the best prediction appears when the number of states is 20; the best prediction of 

real-time updating appears when the number of states is 30. Then, in this case study, 30 

states might be a good choice. Table 5-5 compares the RMSEs the Markov chain (M1), 

Bayesian Classifier (M2 when W=0), and both of them (M2) are used. The outputs show 

that M2 can increase the RMSE of density, flow, and speed 2%, 0.7%, 6% respectively. 

The historical patterns obtained by M1is also important. The table shows that when W in 

M2 is set equal to 0, then the RMSE will become very bad. 
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Figure 5-6 Clustering Representation of 8 States 
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Figure 5-7 Calibration of Basic Parameters Using Collected Data 
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Table 5-4 RMSE of Estimates Obtained Using M1 and M2 under Different Number of 

States 

# of states RMSE (v) 

(mile/5 min) 

RMSE(k) 

(veh./mile) 

RMSE(q) 

(veh./5 min) 
Only Markov Chain (M1) 

4 13.28 10.92 21.57 

8 12.88 9.82 18.32 

16 11.7  9.23  18.06  

20 10.07 8.95 17.83  

30 9.19 9.04 17.88 

40 9.22 9.13 17.9 

Markov Chain + Bayesian Classifier (M2) 

4 12.07 9.87 20.14 

8 11.39 9.2 17.78 

16 9.8 9.2 17.28 

20 9.94 9.45 16.94 

30 9 8.97 16.69 

40 9.05 9.31 16.61 
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Table 5-5 RMSE Obtained Using M1, M2, and M2 (W=0) 

# of states=30 RMSER(v) 

(mile/5 min) 

RMSER(k) 

(veh./mile) 

RMSER(q) 

(veh./5min) 
M1 9.19 9.04 17.88 

M2 9 8.97 16.69 

M2(W=0) 15.41 20.32 50.54 

 

Figure 5-8 shows the benchmark of the historical flow, density, and speed. The figure 

shows the predicted data using M2 (30 states). Figure 5-9 shows the evolution of historical 

data, real-time data, and the updated estimates of section 84 using M2 (30 states). It is clear 

that the updated estimates follow closely the observations, though deviations still exist.  

Figure 5-8 and Figure 5-9 show that the estimates overestimate/ underestimate the density/ 

speed. This is caused by two reasons: (1) real-time updating, and (2) limitation of the K-

means clustering. The clustering defines fewer states when the density becomes more 

congested (Figure 5-6).   
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Figure 5-8 Comparison Between State Estimation (Using M2 with 30 States) and 

Historically Continuous Mean Values 

 

Continuous Mean Values Estimated values (After smoothing)
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Figure 5-9 Historical, Real-time Observations, and Estimates of Section 84 Updated by 

Real-time Data  (Using M2 with 30 States) 
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5.5. Average Travel Time Estimation Approach 

As already mentioned in the previous section, traffic volume and speed data collected by 

traffic detectors are recorded and reported at 5-minute time interval. While such a small 

sampling is appropriate for dynamic traffic analysis (Branston, 1976), it is not for a 

“steady-state” condition required for the average travel time estimation. A steady-state 

flow is achieved by increasing the sampling time interval to 60-minutes (Rothrock and 

Keefer, 1957). However, the 5-minute data will be used whenever the analysis requires it. 

5.5.1. Data Visualization Techniques 

The heat map visualization technique is used to determine the location of the bottleneck on 

the freeway corridor. Figure 5-10 below captures a typical scenario where bottleneck 

occurs downstream at detector 137 and as, a result, the traffic queue extends to the upstream 

at detector 139. The red contour represents the congested region where speed is less than 

45 mph on all the lanes of the link segments, and the congested period is from 3 PM to 7 

PM. The speed heat map can serve as the space-time representation of the bottleneck 

location, downstream and upstream locations, the congested period, and congested 

segments  
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Figure 5-10 Speed Heat Map Showing Bottleneck Location, Congested Segments and 

Congested Period on a Typical Day 

 

The speed profile is another method that clearly depicts how much the vehicle speeds have 

been reduced during the congested period. In Figure 5-11, it can be observed that vehicles 

entering the congested period, both at lane level (Figure 5-11(a)) and at the link level 

(Figure 5-11(b)), have experienced a speed reduction as slow as 9 mph around 6 PM.  

It is particularly important to note that the slow speed experience applies to vehicles on any 

lane (Figure 5-11(a)) including especially the HOV lane. FHWA classifies any HOV 

facility as degraded facility if the speed on HOV lane is less than 45 mph for a certain 

period of time in a year (FHWA, 2020). A HOV Speed Compliance Action Plan must be 

developed by the transportation agency responsible of managing such a facility to improve 

the speed conditions on HOV lane.  
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               (a) 

 
                (b) 

Figure 5-11 Speed Profile Showing Bottleneck and Congested Period at the Lane Level 

(a) and at the Link Level (b) on a Typical Day 

  

0

10

20

30

40

50

60

70

80

0 3 6 9 12 15 18 21 24

S
p
ee

d
 (

m
p
h
)

Time (hr)

Speed Profile (3/14/2016)
HOV (139)
Lane 1 (139)
Lane 2 (139)
Lane 3 (139)
Lane 4 (139)
Lane 5 (139)
HOV (84)
Lane 1 (84)
Lane 2 (84)
Lane 3 (84)
Lane 4 (84)
HOV (78)
Lane 1 (78)
Lane 2 (78)
Lane 3 (78)
Lane 4 (78)
HOV (137)
Lane 1 (137)
Lane 2 (137)
Lane 3 (137)

0

10

20

30

40

50

60

70

80

0 3 6 9 12 15 18 21 24

S
p
ee

d
 (

m
p
h
)

Time (hr)

Speed Profile (3/14/2016)

Link 139

Link 84

Link 78

Link 137



 

97 

 

Figure 5-12 shows the speed-density profile that clearly illustrates the relationship between 

speed and density. Where the speed plot decreases until it reaches the lowest point and start 

increasing, the density plot increase until it reaches the highest point and starts decreasing.  

In other words, the same information on the bottleneck can also be obtained from the 

density data. 

 

 
Figure 5-12 Speed-Density Profile Showing Bottleneck and Congested Period at The 

Link Level on a Typical Day 
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5.5.2. Maximum Observed Value Method 

The maximum observed value method is the easiest method, from a computational 

perspective, for estimating key traffic variables from empirical data. Following suggestions 

from Li and Laurence (2015), the maximum observed value method has been used to 

identify the maximum volume, the free-flow speed, the critical speed, and the critical 

density from a set of 5-minute interval sample and to a set of 1-hour interval sample data.  

The output results are summarized in the plots below. Programming languages such as 

Python, MathLab, or even GISDK from TransCAD, can be used to process the data and 

produce statistical results. However, Excel program is selected in this research to process 

the data and produce the results for several simple reasons. The first reason is that Excel is 

widely used especially among practitioners. Also, as suggested by Daganzo (1999), in any 

application, this research will always choose the simplest approach that can produce the 

expected results. Finally, the traffic data are saved in an Excel spreadsheet and excel can 

produce statistical results for one day data.    

 5-minute interval data set 

A one day 5-minute interval volume and speed data set from detector 78 is processed using 

Excel. Figure 5-13 shows the maximum flow and critical speed values from the 

fundamental flow-speed for both the lanes and the link of detector 78.  The link is an 

aggregation of 5 lanes including high-occupancy vehicle (HOV) lane.  
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Figure 5-13 Maximum Flow and Critical Speed for All Lanes (a) and for the Link (b) 

from the Flow-Speed Diagram of Detector 78 

 

In Figure 5-14, the maximum flow and the critical density values are depicted from the 

fundamental flow-speed for all the lanes and the link of detector 78.   

Figure 5-14 Maximum Flow and Critical Density for all Lanes (a) and for the Link (b) 

from the Flow-Speed Diagram of Detector 78 
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Among the three main variables for traffic flow theory, ADOT detectors only collect 

volume and speed data. In practice, detectors generally do not collect density. Instead, they 

collect vehicle occupancy which can then be converted into density. However, the general 

rule is that density can be computed from volume and speed. Figure 5-15 shows the 

computed density data versus the collected volume for all the lanes and the link of detector 

78.   

 
Figure 5-15 Flow-Density Relationship for all Lanes (a) and for the Link (b) of Detector 

78 
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 1-hour interval data set 

The 5-minute time interval data have been aggregated to 1-hour interval data to reflect the 

traffic steady-state conditions assumed in the static models (Rothrock and Keefer, 1957). 

Also, the lanes have been aggregated to links. This aggregation has considerably reduced 

the number of data to be analyzed. For example, the detector 78 has recorded a set of 288 

different vehicle counts in 5-minute time interval in one typical day.  After aggregating 

these vehicle counts to 1- hour time interval, the resulting set will contain only 24 different 

vehicle counts. The following figures show the fundamental traffic flow relationships 

between volume, speed, and density variables for 1-hour interval data. The congested data 

are shown in red to differentiate them from the uncongested ones. 

 

 

                                                                          (a) 
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(b) 

 
(c) 

Figure 5-16 Detector 78 Fundamental Diagrams: Link Maximum Flow and Critical 

Speed (a), Link Maximum Flow and Critical Density (b), and Speed-Density (c) 
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Table 5-6 summarizes the traffic data results from detector 78 and also highlights the 

congested period. It can be observed that all the speed data in the congested period fall 

below the FHWA (2020) recommended critical speed of 45 mph. 

Table 5-6 Traffic Data for Detector 78 
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5.5.3. Cumulative Vehicle Count Method 

Now that the congested period have been identified, the cumulative vehicle counts within 

the congested period can be easily computed by using Eq. 4-1  

𝑁(𝑡) = 𝑁(𝑡 − 1) + 𝑞(𝑡)     𝑓𝑜𝑟 𝑡0 ≤ 𝑡 ≤ 𝑡3                                                                     

The 5-minute time interval data set for detector 78 will be analyzed first, followed by the 

1-hour time interval data set.  

 5-minute interval data set 

Cumulative curve theory can be used to estimate the excess demand experienced during 

congestion by aggregating arrival vehicles in the queue. Traffic data (including volume, q, 

speed v, and density k) in Table 5-7 collected from detector 78 in 5-minute time interval 

during congested period (from 2 PM to 7 PM), are used in the estimation of cumulative 

count, N, and the queue length, Q. Highlighted in the table is the resulting maximum queue 

length. 
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Table 5-7 Cumulative Count, N, and Queue Length, Q  

(5-minute Time Interval) 

 
Detector 78 

 
t q(t) V(t) K(t) N(t)     Q(t) 

 
1400 670 63 11 670 0 

 
1405 664 61 11 1334 204 

 
1410 678 59 12 2012 423 

 
1415 659 61 11 2671 622 

 
1420 660 64 10 3331 822 

 
1425 674 60 11 4005 1036 

 
1430 689 61 11 4694 1266 

 
1435 711 56 13 5405 1517 

 
1440 368 52 7 5773 1425 

 
1445 623 45 14 6396 1588 

 
1450 626 49 13 7022 1755 

 
1455 660 53 13 7682 1955 

 … … … … … … 

 1600 559 36 16 14731 3027 

 1605 484 37 14 15215 3051 

 1610 409 23 20 15624 3001 

 1615 424 22 19 16048 2965 

 1620 304 16 22 16352 2809 

 1625 356 10 36 16708 2705 

 1630 476 21 23 17184 2722 

 1635 377 21 18 17561 2639 

 1640 329 17 21 17890 2508 

 
… … … … … … 

 
1800 314 8 47 23209 471 

 1805 371 11 34 23580 382 

 1810 359 16 22 23939 282 
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 1815 368 21 18 24307 190 

 
1820 338 15 25 24645 68 

 
1825 353 15 29 24998 0 

 
1830 436 23 21 25434 0 

 
1835 435 35 13 25869 0 

 
1840 445 31 15 26314 0 

 
1845 472 33 15 26786 0 

 
1850 446 30 17 27232 0 

 
1855 501 34 15 27733 0 

 
1900 522 41 13 28255 0 

 

The cumulative curve and the discharge rate, which is the ratio of the total demand over 

the congested period, are drawn in the Figure 5-17. The difference between the cumulative 

curve and the discharge rate represents the queue length.  

 
Figure 5-17 Cumulative Flow Curve (in Blue Line) Representing Cumulative Vehicle 

Count and Discharge Rate (in Orange) within Congested Period for 5-minute Time 

Interval 
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Figure 5-18 depicts the queue length curve derived from the cumulative curve plot.  

 
Figure 5-18 Queue Length Curve Derived from Cumulative Curve During Congested 

Period for 5-minute Time Interval 

 

 1-hour interval data set 

Traffic data for 1-hour time interval during congested period (from 2PM to 7 PM) is very 

limited but still enough to produce adequate results. Table 5-8 summarizes the volume, q, 

the cumulative vehicle arrival count, N, the cumulative vehicle departure count, N’, and 

the queue length, Q, from detector 78 in 1-hour time interval during congested period. The 

maximum queue length, Q(t2), is equal to 3,079. The total demand, D = N(19) – 

N(14)=35,829-8,096 = 27,733  
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Table 5-8 Cumulative Count, N, and Queue Length, Q  

(1-hour Time Interval) 

 
Time, t q(t) N(t) N’ (t) Q(t) 

t0 14 8096 8096 8096 0 

 
15 7682 15778 13643 2135 

t2 16 6490 22268 19189 3079 

 
17 4935 27203 24736 2467 

 
18 3788 30991 30282 709 

t3 19 4838 35829 35829 0 

 

The cumulative curve and the discharge rate, which is the ratio of the total demand over 

the congested period, are depicted in the Figure 5-19.  

 

 
Figure 5-19 Cumulative Flow Curve (in Blue Line) Representing Cumulative Vehicle 

Count and Discharge Rate (in Orange) within Congested Period for 1-hour Time Interval 
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The corresponding queue length curve, in Figure 5-20, depicts the difference between the 

cumulative curve and the discharge rate during the congested period.  

 
Figure 5-20 Queue Length Curve Derived from Cumulative Curve During Congested 

Period for 1-hour Time Interval 

 

5.5.4. Calibration of Polynomial Equation Parameters 

The polynomial function parameters, including the shape parameter  and the discharge 

rate , developed by Newel’s method will be estimated using the total demand, D, the 

congestion period, P, and maximum length, Q(t2), from the cumulative curve and queue 

length curve results.  

Using Eq. 4-18,          𝜌 =
6𝑄(𝑡2)

(𝑡2−𝑡0)3
=

6(3079)

(17−14)3
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From Eq. 4-24,          𝜇 =
𝐷
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5.5.5. Travel Time Calibration and Validation 

Two data sets from two different days are used for calibration process and for validation 

process. Considering the traffic data quality of the detectors from the freeway corridor, 

the traffic data set from 3/14/2016 and from 10/17/2016 are used in the calibration 

process of the   parameter and for the validation process of the detector 84 for the 

proposed travel time method. 

(1) Calibration 

Eqs. 4-27, 4-29, and 4-30 below are used in Table 5-9 below to calibrate  parameter for 

detector 84 using the traffic data set from 3/14/2016. 

𝑡𝑡 = 𝑡𝑓 +
𝜌

36𝜇
⋅ (

𝐷

𝜇
)
3

= 𝑡𝑓 ⋅ [1 +
𝜌

36𝜇𝑡𝑓
⋅ (

𝐷

𝜇
)
3

]                

𝐷(𝑡) = (36(𝜇)4(𝑡𝑡 − 𝑡𝑓)/𝜌)
1/3

                    

𝐷(𝑡) =  (𝑡) [𝐾(𝑡) 𝐿] 

 (𝑡)  = 𝐷(𝑡)/[𝐾(𝑡) 𝐿]                                                                     

 (𝑡)  = (
36(𝜇)4(𝑡𝑡 − 𝑡𝑓)

𝜌
)

1
3

/[𝐾(𝑡) 𝐿] 

The parameter   is estimated for each time interval during the congested period. The 

average of these estimated parameters will be used in the link validation of the proposed 

travel time method.   
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Table 5-9 Calibration Summary Spreadsheet of   Parameter Using Link Specific Traffic 

Data from Detector 84 During Congested Period 

 

 

The calibration process is performed on the remaining detectors for   parameters and the 

results are shown in Table 5-10.  

Table 5-10   Parameters for Detectors 78, 84, 137, and 139
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 (2) Validation 

The validation of the new method uses the calibrated  parameter and the traffic data from 

the set from 10/17/2016 to estimate the travel time that is compared to the link congested 

travel time. The standard BPR function (with alpha = 0.15 and beta =4) is used here as a 

reference. Table 5-11 summarizes travel time from the link/field, from the new method, 

and from the standard BPR function for detector 84.  

Table 5-11 Travel Time Summary Spreadsheet of the New Method Using Calibrated   
Parameters and Traffic Data from Detector 84 During Congested Period 
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In Figure 5-21, the travel time data from the field/link, BPR, and the new method from 

detector 84 during the congested period are plotted. It can be observed that the curves 

remain constant in the uncongested region where K/Kc < 1 and then they scatter after the 

congestion has been reached at K/Kc=1.0 

 

 
Figure 5-21 Link/Field, BPR, and New Method Travel Time Curves from Detector 84  

All Curves Display an Increase in Steepness after the Congestion Occurs at K/Kc=1.0 
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The validation process is performed on all the remaining detectors and the statistical 

results are shown in Table 5-12. The detectors show very high R-squared numbers.  

 

Table 5-12 Statistical Results (R-Squared) of the New Method and BPR Validation with 

Field Data 

 78 84 137 139 

 R-squared 

New Method 0.9716 0.985 0.8041 0.9942 

BPR 0.9461 0.9606 0.8361 0.9882 

 

5.6. Discussions of the Results 

This dissertation focuses on traffic congested conditions since traffic variables behave 

differently under congested conditions. Selecting density as one variable for traffic state, 

in addition to the flow variable, ensures that congested traffic conditions necessary for 

planning purposes are captured in the analysis. This section compiles the comments and 

observations from the results from the previous sections. The comments are gathered under 

a heading similar to their section titles. 

 Cumulative Flow Curve and Queue Length Curve 

The visual difference between 5-minute time interval and 1-hour time interval data was 

obvious in the diagrams especially queue length curve diagram. Because of dynamic traffic 

conditions, there were several irregularities in the 5-minute time interval queue length 

curve. However, the 1-hour time interval queue length curve was smooth, reflecting the 

steady-state conditions of traffic. Despite a few discrepancies in the shapes of curves, the 

5-minute time interval data and the 1-hour time interval data displayed similar patterns and 
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produced the almost same maximum queue length. Only congested volume data are needed 

to produce the cumulative flow curve and the queue length curve.  

Even though the data was collected from individual lanes, the final analysis was based on 

link data. The main reason for this decision is that travel demand models represent roadway 

system as a series of links with number of lanes as an attribute of these links. So, the volume 

data from lanes were aggregated to produce link volume data and the speed data from lanes 

were averaged to generate link speed data.  

 Average Delay and Travel Time Estimation 

In Newell’s method, the queue length estimate during the congested period is central 

because it serves as the transition from cumulative flow curve to the quadratic polynomial 

function. The shape parameter of the function can be computed using the maximum queue 

length and the congested time parameters. The average delay can then be estimated using 

the shape parameter and the congested time parameters.   

The proposed travel time method transforms the average delay formula by including the 

congested volume and the discharge rate (capacity) in the equation.  

 Travel Time Calibration and Validation 

The proposed travel time function satisfies the two most important requirements for a well 

behaved congestion function (Spiess, 1989). The function is a convex and an increasing 

function, which ensures that an assignment will converge to a unique solution. The 

function’s exponent is an indication of the congestion effect when the capacity limit is 

reached.  
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The validation results show very high statistical results in R2 values between the proposed 

method and the field results. This indicates that the proposed model can relatively predict 

the field data accurately.  

The possible future implementation of the proposed travel time function in a travel demand 

model will demonstrate any possible reduction in the computing runtime from the proposed 

function when compared to the BPR function.  

 Future Considerations 

The possible future implementation of the proposed travel time function in a travel demand 

model will demonstrate any possible reduction in the computing runtime from the proposed 

function when compared to the BPR function.  

The proposed method is time-dependent and can compute travel time in 5-minute time 

interval during congestion period provided the 5-minute time interval volume data and 

speed data are used as input. This important option can transform a static assignment model 

into a dynamic assignment model, pending further detailed research.  

In the conclusion chapter, the concept applied in this research is referred to as the BPR-x 

method. It consists in calculating the time-dependent queue length based on cumulative 

arrival and departure curves, assuming the queue length distribution curve is equivalent to 

a polynomial function (in this research, a quadratic function), calculating the average delay 

with the integral of queue length function, and obtaining the analytical form of the average 

travel time function during the oversaturated period. 
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CHAPTER 6  

CONCLUSIONS 

This dissertation proposes a TSE framework that is updated by real-time traffic data 

considering spatiotemporal correlations based on Newell’s KW model. Using STPG, the 

framework combines the local MC model and Bayesian classifiers to update the online 

estimation. A case study, based on the traffic data from ADOT, is implemented to validate 

the method and to determine the traffic state with a good estimation/prediction. It is also 

found that both the historical patterns and real-time updating are important for a better on-

line estimation system.  

Link travel time performance functions (or volume-delay functions) have been widely used 

in static traffic assignment (STA) for transport planning. Among a variety of link 

performance functions, the BPR function, created by the US Bureau of Public Roads in 

1964, is recognized as an analytical building block for system-wide performance 

evaluation. Focusing on the traffic volume and delay, relationship, the BPR function in its 

polynomial form is computationally efficient and simple for implementation in the 

transport planning software. 

As shown in Figure 6-1, the derivative process for the proposed BPR-x can be summarized 

as the following: 1) assume the inflow rate function follows a polynomial form and 

determine the order of the polynomial inflow rate function; 2) establish the equivalent 

factor form of the polynomial inflow rate function; 3) calculate the time-dependent queue 

length based on cumulative arrival and departure curves; 4) calculate the total delay and 
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average delay with the integral of queue length function; 5) obtain the analytical form of 

the average travel time function during the oversaturated period.  

 

 
Figure 6-1 General Graphical Illustration of Queue Evolution for a Single Oversaturated 

Bottleneck 

 

The proposed BPR-x function has four advantages compared with existing models. Firstly, 

it has a similar structure with BPR function, but with more intuitional meanings for the 

coefficients (including the coefficient of the highest order term in the polynomial inflow 

rate function, the capacity or practical discharge rate, and the peak duration) compared to 

the original BPR function. With the assumption of constant capacity, the peak duration (i.e., 

degree of peakness) equals to the peak period demand over capacity, thus describing how 

inflow coverage and capacity parameters influence the average travel time. Secondly, it 

establishes the equivalence between the analytical BPR average performance functional 

form and the corresponding queue evolution form. Thirdly, a new type of calibration 

process from the point queue bottleneck perspective is proposed, and it is very simple to 
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fully utilize the sensor data (e.g., flow, speed, density) to calibrate the coefficients based 

on the three-detector model. Lastly, with well-posed assumptions, the BPR-x function can 

be smoothly transferred for a simplified approximation of the full-scale DTA model. It also 

has broad applications in the transport system management (e.g., dynamic signal control, 

traffic system evaluation and optimization, bus and metro demand management), as long 

as we can obtain the system’s cumulative arrival and departure curves. 

The BPR-x function opens a window for the performance evaluation of a single 

oversaturated freeway bottleneck. However, it still has many challenges in the future 

research. As the freeway has different facility types with merge and diverge ramps, so how 

to model the BPR-x with merging and diverging is still an open question. To extend the 

BPR-x from freeway to atrial streets, one of the inevitable problems is how to consider the 

travel time functions with oversaturated signals and how to optimize the signal control with 

BPR-x. Many theoretical issues also arise in the BPR-x. Which order should we choose to 

best represent the traffic system performance? The higher order may have a better fitness, 

but the structure may be tedious and result in a slow convergence for equilibrium traffic 

assignment; so how to make a tradeoff between the fitness and parsimonious structure is 

worthy of deep consideration. In the proposed BPR-x functions, the derivative process is 

based on point queue model. It is widely recognized that the point queue model cannot 

capture the spatial dynamics of traffic flows, so how to establish the analytical form of 

BPR-x from point queue model to spatial queue and kinematic wave models should be 

investigated. In addition, when multi-bottlenecks are considered, the impact of queue 

spillbacks should be studied seriously.   
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