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ABSTRACT

Most planning agents assume complete knowledge of the domain, which may not be

the case in scenarios where certain domain knowledge is missing. This problem could be

due to design flaws or arise from domain ramifications or qualifications. In such cases,

planning algorithms could produce highly undesirable behaviors. Planning with incom-

plete domain knowledge is more challenging than partial observability in the sense that the

planning agent is unaware of the existence of such knowledge, in contrast to it being just

unobservable or partially observable. That is the difference between known unknowns and

unknown unknowns.

In this thesis, I introduce and formulate this as the problem of domain concretization,

which is inverse to domain abstraction studied extensively before. Furthermore, I present a

solution that starts from the incomplete domain model provided to the agent by the designer

and uses teacher traces from human users to determine the candidate model set under a min-

imalistic model assumption. A robust plan is then generated for the maximum probability

of success under the set of candidate models. In addition to a standard search formulation

in the model-space, I propose a sample-based search method and also an online version

of it to improve search time. The solution presented has been evaluated on various Inter-

national Planning Competition domains where incompleteness was introduced by deleting

certain predicates from the complete domain model. The solution is also tested in a robot

simulation domain to illustrate its effectiveness in handling incomplete domain knowledge.

The results show that the plan generated by the algorithm increases the plan success rate

without impacting action cost too much.
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Chapter 1

INTRODUCTION

Most planning agents rely on complete knowledge of the domain, which could be catas-

trophic when certain knowledge is missing in the domain model. The fact that the agent

is unaware of some domain knowledge makes this problem different and more challenging

than partial observability where the agent knows what is missing. That is the difference

between known unknowns and unknown unknowns. For example, missing certain state

features means that the agent would perceive all states as if those features do not exist. In

such cases, traditional planning algorithms can create the same plan under very different

scenarios. For similar reasons, standard RL ( Sutton and Barto (2018)), IRL ( Ng and Rus-

sell (2000a); Ziebart et al. (2008)), and intention recognition algorithms (Mao and Gratch

(2004); Schrempf and Hanebeck (2005)) would be easily misled as a result of incomplete

domain knowledge.

This problem is referred to as the problem of domain concretization, which is inverse

to the problem of domain abstraction. This thesis focuses on state abstraction and leaves

action abstraction in future work. Even though state abstractions in planning have signif-

icant computational advantages, if not engineered properly, they can lead to unsound and

incomplete domain specifications ( Marthi et al. (2007); Srivastava et al. (2016)). Incom-

plete domain specification also arises naturally from domain ramifications (Finger (1987))

and qualifications (McCarthy (1977); Ginsberg and Smith (1988)) which may be viewed as

intentional state abstractions.

Consider a manufacturing domain where a robot is tasked to deliver a model to a human

worker, which is produced by a 3D printer. The human performs some demonstrations to

teach the robot about how this task is supposed to be done. Depending on how long the
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model has cooled down before the delivery, the robot is expected to either apply a coolant

first or deliver it immediately to the human worker. However, if the temperature is an

unknown domain feature to the robot, it may result in immediate delivery regardless of the

temperature, which could lead to safety risks.

In this thesis, the domain concretization problem is restricted to deterministic domains.

This problem is formulated using a STRIPS-like language (Fikes and Nilsson (1971)) and

methods for searching candidate models are provided. The search algorithm generates

candidate models based on the incomplete model provided by the domain designer and

teacher traces from human users. This problem is first formulated as a search problem in

the model space. To expedite the search, the thesis then presents a sample-based search

method by considering only models that are consistent with the traces. Additionally, an

online version that is more practical and has a computational advantage is presented. This

is because the online version uses only one trace in each iteration and maintains a small set

of models for future refinements.

For planning, the algorithm generates a robust plan that achieves the goal under the

maximum number of candidate models. This is done by transforming the planning problem

into a Conformant Probabilistic Planning problem (Domshlak and Hoffmann (2007)). The

algorithm has been tested on various IPC domains and a simulated robotics domain where

incompleteness was introduced by removing specific predicates from the complete domain

model. Results show that the robust plan generated by the algorithm increases the plan

success rate under the complete model without impacting the cost much.
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Chapter 2

RELATED WORK

2.1 Domain Abstractions

The ongoing research on state abstraction has established its necessity and computa-

tional advantages. There exists work where authors developed abstractions that retained

properties of the ground domain. The authors in Abel et al. (2016) have studied abstrac-

tions that produce optimal behaviors similar to those with the ground domain. In Srivastava

et al. (2016), the authors have investigated and categorized several abstraction mechanisms

that retain the properties of the ground domain like the Markov property. The fact that the

agent’s domain model is missing some domain features in this work makes the model an

abstraction of the ground model. Domain concretization is the inverse of domain abstrac-

tion: instead of searching for an abstraction, here the algorithm tries to recover the ground

domain model from the abstract (incomplete) model.

2.2 Partial Observability

It may be attempting to solve the domain concretization problem using a POMDP

formulation (Kaelbling et al. (1998)), or reinforcement learning methods with POMDPs

(Jaakkola et al. (1999)), where the state is partially observable and the agent uses obser-

vations to update its belief about the state of the world. Note however that a POMDP

still requires complete knowledge about the ground state space, which is not available in

the problem formulation due to missing domain knowledge. More specifically, this means

that, neither the space of belief states nor the observation function is known, unlike that in

POMDP. Hence, POMDP solutions cannot be used to solve this problem.
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2.3 Model-lite Planning

The agent’s model in this problem could be considered an approximate domain model

and hence planning in such a case becomes a type of model-lite planning (Kambham-

pati (2007)). Many existing approaches have considered planning in such approximate (or

incomplete) domain models. Authors in Weber and Bryce (2011); Nguyen et al. (2017) in-

troduce planning systems that can generate plans for an incomplete domain where actions

could be missing some preconditions or effects. The problem of domain concretization can

be viewed as a more general problem where the information of possible missing knowledge

(e.g., possible preconditions) is missing.

2.4 Learning Action Models from Traces

The idea of learning action model using plan traces has been there for quite some

time. While some authors have considered refining incomplete domain models (Zhuo et al.

(2013a,b)), others have focused more on learning action models from scratch (Yang et al.

(2007); Zhuo et al. (2010)). Authors in Zhuo and Yang (2014) have used transfer learning

to learn the action model using a small amount of training data. In Zhuo and Kambhampati

(2013), authors have gone one step further by developing an algorithm that can learn action

models even when the traces are noisy. One common assumption in all these methods is

the complete knowledge of the state space, about which, the agent in this problem, does

not have.
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Chapter 3

DOMAIN CONCRETIZATION

3.1 Problem Analysis

Consider the motivating example of the manufacturing domain mentioned in the previ-

ous section. The robot is expected to deliver a 3D model to a human, produced by a 3D

printer. The human teacher performs some demonstrations to teach the robot how the task

is supposed to be done. The human has the complete domain model M∗ but the robot’s

domain model is incomplete M̃ , where the temperature is an unknown feature. In such a

case the traces (demonstrations) are generated by the teacher using M∗ and projected onto

M̃ that is observed by the robot. In the projection, the robot does not (or cannot) observe

the missing feature since it is not present in its domain model (i.e., the robot would consider

it irrelevant to the task scenario and/or lacks the appropriate sensor for feature extraction).

Before further discussion let us first list the assumptions:

1. The human teacher is rational and the traces are optimal in the complete domain

model M∗.

2. The complete domain model M∗ is deterministic.

3. The robot still knows about all the possible actions.

4. The unknown features are completely missing from the domain model.

5. The unknown features do not appear in the goal, since the goal is often provided by

the human user who is also the teacher.
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Given the assumptions mentioned above, an observed (projected) trace would still con-

tain all the actions in the teacher’s trace but the state trajectory associated with it will be

viewed differently. To make this clearer, let us have a look at an example trace. Consider

the following teacher trace/plan that is observed by the robot in our motivating example:

• Plan z1: there is a hot 3D model (that is just printed) in the start state. The action

sequence is: 〈 apply coolant, deliver 〉.

In the teacher’s perspective, the state sequence for this action sequence is: 〈 {hot},

{wet}, {wet, delivered} 〉, assuming that apply coolant has two effects, one

being making the model wet, and the other being removing hot.

The robot observes the action and state sequences above except for the hot feature,

which requires the apply coolant action to be first applied in the complete model.

Since the feature is completely missing in the robot’s model, the apply coolant action

would also be missing it (i.e., the robot is unaware that this action would remove hot

from the state or, in other words, make the model cooler). Hence, the state sequence that

is observed by the robot would be: 〈 {}, {wet}, {wet, delivered} 〉. Hence, it

would consider that the apply coolant action is unnecessary, assuming that the action

deliver does not require the model to be wet.

Hence, given the observed initial state {}, in the robot’s model M̃ , the optimal plan for

this “same” scenario is (note again that the robot does not observe the hot feature in the

initial state):

• Plan z0: there is a 3D model in the start state. The action sequence is: 〈 deliver 〉.

Obviously, there is an inconsistency here: with the assumption that the teacher is ra-

tional and cost captured by plan length, the teacher is expected to never choose anything

longer than z0. The solution to the problem of domain concretization is hence hinged on ad-

dressing this type of inconsistency, which we refer to as plan inconsistency. Let us analyze
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this further to understand how trace inconsistency can help us concretize our domain mod-

els and its limitations. Consider a teacher’s plan z1 (under the complete modelM∗). Denote

the robot’s optimal plan (under the incomplete model M̃ ) for the same observed/projected

initial (s̃0) and goal states (g) as z0. Two possibilities are here:

1. Cost(z1) 6= Cost(z0) – Inconsistency: the teacher has chosen a more or less costly

plan than the optimal plan in the robot’s model, which should not occur if the robot’s

model is complete. In fact, given our assumptions above, the only possibility here is

that Cost(z1) > Cost(z0). And that is because when a feature is completely missing

in the domain model, it will be missing as both preconditions and effects. Hence, the

missing features would only make the incomplete model less constrained to satisfy

the goal.

2. Cost(z1) = Cost(z0) – Here, there are two possibilities:

(a) z1 is a valid plan for (s̃0, g) in M̃ : Undetermined (deemed consistent): z1 could

be a valid plan in an incomplete model M̃ or it could be that M̃ is complete.

Since we cannot decide which case is true here, we will have to wait until

inconsistencies are detected.

(b) z1 is not a valid plan for (s̃0, g) in M̃ – Inconsistency: z1 is not a valid plan in

the robot’s model but a valid plan in the complete model.

In our problem solution, we address only the cases when any plan inconsistencies above

are detected. However, even when all the plan inconsistencies are addressed, it does not

mean that the complete model is recovered due to the case of 2.(a) above. On the other hand,

as more teacher traces are provided, our solution is expected detect more inconsistencies as

long as the complete model is not recovered.
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3.2 Background

Given the focus on deterministic domains, the problem is defined using a STRIPS-like

language. Here, a planning problem is defined by a triplet P = 〈s0, g, M〉, where s0 is the

start state, g is the set of goal prepositions that must be T (true) in the goal state and M is

the domain model. The domain model M = 〈O, R〉 where R is the set of predicates and

O is the set of operators. The set of prepositions F and the set of actions A, are generated

by instantiating all the predicates in R and all the operators in O respectively. Hence, M

can also be defined as M = 〈A, F 〉. A state is either the set of prepositions s ⊆ F that are

T or s⊥ = {⊥}. Since ⊥ 6⊂ F , it is a dead state and once s⊥ is reached goal (g) can never

be achieved. The actions change the current state by adding or deleting some prepositions.

Each action a ∈ A is specified by a set of preconditions Pre(a), a set of add effects Add(a)

and a set of delete effects Del(a), where Pre(a), Add(a) and Del(a) ⊆ F .

For a model M, the resulting state after execution of plan π in state s is determined by

the transition function γ, which is defined as follows:

γ(π, s) =


s if π = 〈〉;

γ(〈a〉, γ(π′, s)) π = π′ ◦ 〈a〉.
(3.1)

In this problem the Generous Execution (GE) semantics are used as defined in Nguyen

et al. (2017). According to GE semantics, if an action a is not executable, it does not

change the world state s. Hence, the transition function γ for an action sequence with a

single action a ∈ A and state s in a model M under GE semantics is defined as follows:

γ(〈a〉, s) =


(s \Del(a)) ∪ Add(a) if Pre(a) ⊆ s;

s otherwise.
(3.2)

A plan π is a valid plan for a problem P = 〈s0, g, M〉 iff γ(π, s0) ⊇ g. The cost of a

plan π is the cumulative cost of all the actions in that plan. To make it simpler, in this work
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it is assumed that all the actions have the same unit cost. If the cost of all the actions is the

same then the cost of a plan will simply be equal to the plan length. One may also note that

the proposed solution will still work even if the cost for each action is different.

3.3 Motivating Example

Complete domain model (denoted by M∗): The specification of a packing domain is

shown in Fig. 3.1 to motivate the problem. The domain has 4 operators. As the name

suggests, open box is used to open boxes where items are to be placed. The grasp

operator is used to grasp an item. The actions place and stack are used to put items

into boxes. place is used when the box is empty and stack is used when the box already

contains some items. The goal is to store all items in boxes using the minimum number

of boxes. Some of the items may be fragile. For these items, they must not be stacked

on. To avoid such situations, a predicate not fragile is introduced foritems that are not

fragile.

Incomplete domain model (denoted by M̃ ): In the robot’s domain model that is incom-

plete, the incompleteness may be due to missing the predicate not fragile (shown in

bold in Fig. 3.1). In such a case, the robot may choose a plan in which it stacks an item

over a fragile item which is highly undesirable.

3.4 Problem Formulation

The incomplete model M̃ (the robot’s model in Fig. 3.1) is defined as M̃ = 〈Õ, R̃〉.

The incomplete model is incomplete in the sense that it is missing some predicates from the

ground truth domain M∗ = 〈O∗, R∗〉. In the packing domain (Fig. 3.1), the robot’s model

is missing the predicate of not fragile. Denote R̂ as the set of missing predicates, such

that:

• R̃ ⊆ R∗ such that R̃ = R∗ \ R̂
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(:action open box

:parameters (?b – box)

:precondition (and (handempty))

:effect (and (box open ?b)))

(:action grasp

:parameters (?i – item)

:precondition (and (on shelf ?i) (handempty))

:effect (and (holding ?i) (not (on shelf ?i)) (not (handempty))))

(:action place

:parameters (?i1 - item ?b – box)

:precondition (and (holding ?i1) (box open ?b) (box empty ?b))

:effect (and (item packed ?i1) (handempty) (on top ?i1 ?b)

(not (holding ?i1)) (not (box empty ?b))))

(:action stack

:parameters (?i1 - item ?i2 - item ?b - box)

:precondition (and (holding ?i1) (not fragile ?i2)

(box open ?b) (on top ?i2 ?b))

:effect (and (item packed ?i1) (handempty) (on top ?i1 ?b)

(not (on top ?i2 ?b)) (not (holding ?i1))))

Figure 3.1: Domain Model of the Packing Domain

10



Figure 3.2: Simulation View of the Packing Domain

• P̃ re(o) = Pre(o) \ R̂

• Ãdd(o) = Add(o) \ R̂

• D̃el(o) = Del(o) \ R̂

Definition 1. The problem setting of Domain Concretization is defined as a setting where

the agent has only access to an incomplete domain model M̃ and teacher traces under M∗.

In this thesis, it is assumed that the human user knows M∗ so he/she can provide a set

of successful teacher traces ζ∗ based on M∗. Each trace z∗ ∈ ζ∗ is a tuple 〈s∗0, g, τ〉 where

g and s∗0 are the goal and initial state respectively and τ is an action sequence 〈a1, a2, ...an〉

where each ai ∈ A∗. Since the robot has incomplete predicate set R̃, it observes incomplete

traces ζ̃ = 〈s̃0, g, τ〉, where s̃0 = s∗0 \ R̂. It is assumed that the robot still has knowledge

about all the actions, and hence τ would not be affected by the incompleteness. Addition-

ally, it is also assumed that the missing predicate cannot be present in the goal state since

the goal is provided by the human user.

11



Definition 2. The problem of Planning under Incomplete Domain Knowledge (PIDK) is

defined as P̃ = 〈s̃0, g, M̃ , ζ̃〉, which is the problem of generating a plan that has the highest

probability of success for P ∗ = 〈s∗0, g,M∗〉.

To achieve this, using ζ̃ and M̃ , the proposed solution finds a set of candidate models

M. OnceM is generated, the planning problem is compiled to a Conformant Probabilis-

tic Planning problem, and a conformant plan is found that has the highest probability of

success under the set of candidate modelsM. The details of the method are provided in

following sections.

3.5 Candidate Model Generation

When searching for candidate models, the method makes the assumption that the can-

didate models have the minimum number of new predicates (i.e., new state features) and

the minimum number of model changes. Note that a new predicate could be introduced to

different actions as an additional precondition or effect in the domain. One of the moti-

vations for this assumption could be attributed to the principle of Occam’s Razor (Blumer

et al. (1987)). Another reason is due to the fact that here, the model-space search problem

has infinite possible solutions as more dummy predicates can always be introduced. This

is somewhat similar to the unidentifiability problem in reward learning (Ng and Russell

(2000b); Amin and Singh (2016); Armstrong and Mindermann (2017)) and is referred to it

the problem of model unidentifiability.

The problem of generating candidate models is transformed to a search problem in the

model space. A variable σ is defined whose value indicates the number of new predicates

that are going to be added. Initially, σ is set to 1 and is gradually increased if no models

are found for the current value. Further, A set X is defined as the set of possible typed

predicates for each new predicate. Each state in the search space is a domain model (M )

generated by adding one or more predicates from X to one or more possible missing po-

12



sitions in the incomplete domain model (M̃ ). Since these predicates could also be present

in the start state, each candidate model M is verified against one or multiple possible start

states s0 (details in the search section), based on the prepositions added to s̃0. The model

M is accepted as a candidate model only if it passes the model test below for at-least one

s0. The model-space search is defined as follows:

• Initial State: M̃ (The given incomplete model).

• Action Set (Λ): αPre(o)χ (or αAdd(o)χ /α
Del(o)
χ ) ∈ Λ,

∀χ ∈ X and ∀o ∈ O where O ∈M .

The actions in the model space search represent a predicate χ being added to the

Pre(o) (or Add(o)/Del(o)) of the current model M .

• Successor Function (T ): T (M,α
Pre(o)
χ ) = M ′.

T produces new model M ′ where R′ = R ∪ χ and Pre(o′) = Pre(o) ∪ χ where

o′ ∈ O′ and o ∈ O. Similarly, T (M,α
Add(o)
χ ) and T (M,α

Del(o)
χ ) can be defined.

• Model (Goal) Test: C1(M) ∧ C2(M) ∧ C3(M).

C1(M), C2(M) and C3(M) are defined as follows-

– Plan Validity Test, C1(M) is True if :

γM(τ, s0) ⊇ g;∀〈s̃0, g, τ〉 ∈ ζ̃ (3.3)

This ensures that the traces are executable and achieve the goal under M . This

condition essentially detects the type of inconsistency mentioned in case 2.(b)

of the problem analysis section (3.1).
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– Well-Justification Test, C2(M) is True if :

∀ai ∈ τ, γM(τ \ {ai}, s0) + g;∀〈s̃0, g, τ〉 ∈ ζ̃ (3.4)

This ensures that the traces are well-justified (Fink and Yang (1997)) in M ,

which means that if any action is removed from the trace the goal will not be

achieved. This is a direct consequence of the assumption that the traces are

optimal. This condition detects the type of inconsistency mentioned in case 1

of the problem analysis section (3.1).

– Plan Optimality Test, C3(M) is True if :

Cost(πM) = Cost(τ);∀〈s̃0, g, τ〉 ∈ ζ̃ (3.5)

where πM is the optimal plan for problem P = 〈s0, g, M〉; Cost(πM) and

Cost(τ) represents plan cost of πM and τ respectively. This condition ensures

that the traces are optimal under M . This condition detects the type of incon-

sistency mentioned in case 1 of the problem analysis section (3.1).

The failure of any of these conditions signifies that the traces are inconsistent. The

notion of inconsistency has been explained in section 3.1.

In the packing domain in Fig. 3.1, let τ = 〈open box b1, grasp i1, place i1 b1,

grasp i2, stack i2 i1 b1, open box b2, grasp i3, place i3 b2〉. Applying the

algorithm to τ and M̃ , C3 will fail. This is because the optimal plan πM = 〈open box b1,

grasp i1, place i1 b1, grasp i2, stack i2 i1 b1, grasp i3, stack i3

i2 b1〉 is shorter (and hence less costly) than τ . This indicates that the trace is inconsistent

as mentioned in the case 1 of the problem analysis (3.1) section.

Theorem 1: Conditions C1(M) and C3(M) are necessary and sufficient to ensure that

the model M can generate τ , ∀〈s̃0, g, τ〉 ∈ ζ̃ .
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Proof: If C1(M) is true then γM(τ, s0) ⊇ g which means τ is a valid plan for 〈s0,

g, M〉. Also, if C3(M) is true then cost of optimal plan of M equals cost of τ which

implies τ has minimum cost under M . Hence, by definition τ is the optimal plan for the

given problem under model M . Since this is true for all τ , it can be concluded that M can

generate τ ∀〈s̃0, g, τ〉 ∈ ζ̃ . Similarly, if a model M can generate τ for a problem 〈s0, g, M〉

then τ an optimal plan for the problem. Hence, by definition of optimal plan, τ is valid and

has minimum cost which implies that it satisfies C1(M) and C3(M). This proves that the

model test is sound and complete.

Theorem 2: C2(M), is a necessary condition for a trace τ where 〈s̃0, g, τ〉 ∈ ζ̃ to be

optimal.

Proof: This could be proven by contradiction. Assume that model M doesn’t satisfy

C2(M) but still τ is an optimal plan for M . This implies that for some action ai, τ \ {ai} is

a valid plan. Hence, there is a valid plan τ \ {ai} which has lesser cost than τ as Cost(τ \

{ai}) = Cost(τ)− Cost(ai). This implies that τ is not an optimal plan which contradicts

the initial assumption. Hence proved.

Generating an optimal plan for a problem is a known challenging problem. Since

C3(M) involves the generation of an optimal plan for model M , the algorithm would

become very slow if it checks for an optimal plan for every model. To improve this the

proposed algorithm checks for C3(M) only if C2(M) fails. This reduces the search time

by a significant amount. Moreover, Theorem 2 ensures that this process will not lose any

candidate models.

Search: This formulation can be solved by any standard search algorithm and here a

uniform cost search is chosen. The cost of the path fromM toM ′ is the number of changes

introduced into the domain model M to generate M ′. The search starts with M̃ (the given

incomplete model) as the initial state for the model-space search. Using the action set Λ

and the transition function T , the set of models for the subsequent steps is generated and
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put into a priority queue. The model with the least cost is then popped and passed through

the model test. The model is tested with multiple s0’s for each trace. If X ′ (X ′ ⊂ X) is

the set of new predicates added to the current domain model M , the algorithm generates

U as a set of all the prepositions that can be instantiated from each predicate in X ′. Now,

s0 = s̃0 ∪ µ where µ ∈ P(U). Each µ is chosen such that |µ| is minimum. First, the

algorithm tests the model with |µ| = 0 and if the model test is passed it does not go further.

If model test fails, the algorithm increases |µ| by 1 and tests with every µ such that |µ| = 1.

This process goes on until a predefined threshold is reached and in that case, the model test

fails. Setting this threshold to 0 denotes an assumption that missing predicate could never

be present in the start state.

Now, if the model test is passed, all the models having the same cost are popped and

tested. Each model that passes the model test becomes a candidate model. If the model test

fails, the set of models for the subsequent steps is generated in a similar way as mentioned

before. This process continues until some model passes the model test or the cost increases

to be above a predefined threshold. In the latter case, σ is increased by 1 and the whole

search starts again. In the end, sets of models are obtained such that, within each set of

models, s0’s used to satisfy the model test remains the same. Each model could be in

multiple sets based on the s0’s that satisfy the model test. The candidate model setM is

a weighted union of these sets of models based on how many times each model appears in

those sets.

In the example of packing domain shown in Fig 3.1, the search starts with M̃ as model

M and σ = 1 (1 missing predicate). Denote the missing predicate as pred 1. Since

M fails C3(M), the search generates X that includes all the possible typed predicates

like (pred 1 ?b - box), (pred 1 ?b - box ?i - item) etc. Using X , the

set Λ is generated that has all the possibilities where the predicates in X can be added,

like αPre(open box)χ ∀χ ∈ X , which means χ will be added to the precondition of operator
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open box. Using current model M , T and α ∈ Λ next model M ′ is generated. Now, the

modelM ′ is tested for the goal conditions and based on the result of the goal test the search

continues as explained above.

3.6 Generating Candidate Models using Sample-Based Search

One obvious way to perform the model search is by brute-forcing through all the pos-

sible models, which is computationally expensive and not scalable as it considers all the

possibilities where the given predicate could be added. Hence, a sample-based search is

presented which reduces the search space by a considerable amount and makes the search

faster. The idea is to return information for refining the model to satisfy the traces only,

instead of checking all possibilities. This means that instead of considering all the possible

actions in the action set, the algorithm chooses a subset of actions that could possibly lead

to a valid model. Since these changes are necessary to make the model pass the model test,

changes that would not lead to a candidate model are ignored.

The action set Λ′ now is a set of actions that each encodes multiple simultaneous

changes. Such a process should also decide what s0’s to use for a model M in the model

test. The search process is similar as before except that if a model fails the model test,

instead of returning false, it returns a set of actions, B ⊆ Λ′ that will be used to generate

models for the next step. Instead of checking the model M for all possible s0’s, the algo-

rithm checks for the ones that are returned along with the action set. The returned action

set B is as follows:

• Unsatisfied Precondition: This happens when the trace is not executable in the cur-

rent model M because of some unsatisfied precondition.

If for a model M , C1(M) is false and, for an action ai ∈ τ , 1 ≤ i ≤ |τ |, Pre(ai) *

γM(〈a1, a2, ...ai−1〉, s0). Then, the returned action set B = {{αAdd(oj)χ }}, ∀aj ∈ τ
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and ∀χ ∈ X , where oj is the operator corresponding to action aj and 1 ≤ j ≤ i− 1.

Also, possible additions to start state s0 will be Pre(ai) \ γM(〈a1, a2, ...ai−1〉, s0).

This is because missing preposition could either be present in the add effect of any of

the previous actions or in the start state. This addresses the type of trace inconsistency

mentioned in case 2.(b) of the problem analysis section (3.1).

• Un-justified action: This happens when some action in the trace is not well-justified

in the current model M .

If for a modelM , C2(M) is false and for some action ai, γM(τ \{ai}, s0) ⊇ g. Then,

the returned action set B = {{αAdd(oi)χ , α
Pre(oj)
χ }} ∪ {{αAdd(oi)χ , α

Pre(oj)
χ , α

Del(oj)
χ }}

∀aj ∈ τ and ∀χ ∈ X . oi and oj are operators corresponding to actions ai and aj

respectively and i+ 1 ≤ j ≤ |τ |. Intuitively, this generates B such that ai cannot be

removed from τ which makes it well-justified under M . The set in B represents that

these changes will be introduced simultaneously in the model M to obtain M ′. This

addresses the type of trace inconsistency mentioned in case 1 of the problem analysis

section (3.1).

• Sub-optimal Trace: This happens when the optimal plan of the current model M is

shorter than the trace.

In this case, C3(M) becomes false, which means there has to be some action that was

not possible in τ under M∗ but was possible in πM under M . Hence, the operator

corresponding to that action is missing some precondition. In such a case, ∃ai, a′i

such that ai ∈ τ and a′i ∈ πM and ai 6= a′i, 1 ≤ i ≤ n (n = |πM |). Then, the

returned action set B = {{αPre(oj)χ }} ∪ {{αPre(oj)χ , α
Del(oj)
χ }} ∀a′j ∈ πM , where oj

is the operator corresponding to a′j and i ≤ j ≤ n. This addresses the type of trace

inconsistency mentioned in case 1 of problem analysis section (3.1).

The three conditions mentioned above augment the model such that the traces are no
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longer inconsistent. The notion of the trace inconsistency has been discussed in depth in

the problem analysis section (3.1).

For the packing domain in Fig. 3.1, consider τ = 〈open box b1, grasp i1, place

i1 b1〉. If some model M is missing the predicate (box open ?b), C2(M) will fail

because the goal will be achieved even after the deletion of open box b1 from τ . In that

case, B = {{αAdd(open box)χ , α
Pre(grasp)
χ },{αAdd(open box)χ , αPre(place)χ }} ∪

{{αAdd(open box)χ , α
Pre(grasp)
χ , α

Del(grasp)
χ }, {αAdd(open box)χ , α

Pre(place)
χ , α

Del(place)
χ }} ∀χ ∈ X .

Using the actions in B for each model-space state the successive states are generated in

the search and it continues as mentioned in the previous section.

Theorem 3: (Soundness) The candidate models found by the sample-based search pro-

cess can generate all the given traces, with the minimum number of changes to the incom-

plete model M̃ .

Proof: This is pretty straightforward as while generating the action setB in the sample-

based search method, the process checks to see if the conditions (C1(M), C2(M) and

C3(M)) are satisfied. It accepts the model as a candidate model only if these are satisfied.

Using Theorem 1, it can be said that if the sample-based search process finds a candidate

model, the candidate model will be able to generate all the given traces. Uniform cost

search ensures that the changes between the candidate models and the given incomplete

domain model M̃ are minimum. Hence Proved.

Theorem 4: (Completeness) The sample-based search finds all the models satisfying

the model test with the minimum number of changes to the incomplete model M̃ .

Proof: We prove this by induction. Let us start from the first iteration through all the

traces. In this iteration, since the unknown features are completely missing from the in-

complete domain model M̃ , it makes the model a less constrained model than the complete

model M for achieving any goal. Hence, a trace will always be achieving the goal in M̃

when it works under the complete model. This means C1(M) will always be satisfied. For
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any trace, C2(M) can still be false and in that case, it means that there is some action ai

that is not well-justified under M̃ . To make that action well-justified, it is necessary that ai

has some add effect that is a precondition for one of the subsequent actions in the trace. All

these possibilities are included in the setB discussed above. 1 These changes are necessary

to ensure that model M satisfies the conditions.

Similarly, for any trace, C3(M) can also be false and in that case, the model M̃ must

have an optimal plan with shorter (lesser cost) than the trace. In that case, to satisfy C3(M),

this optimal plan must be inexecutable in the complete model. This is necessarily achieved

by updating M̃ to add new preconditions to actions following the action ai up to which the

trace and this optimal plan are the same. Here also, B contains all the possibilities. Since

a delete effect may also appear as a precondition in the same action, each option in B that

includes the addition of a new predicate to the preconditions comes with a paired option

that includes the addition of the new predicate to the delete effects as well.

Now let us assume that for the first k iterations, all necessary changes to M̃ with all

possibilities are considered. For the (k + 1)th iteration, since in the previous iterations we

have added some new preconditions, the current (intermediate) model M may no longer

be less constrained than the complete model for achieving a goal. Hence, for any trace, it

might not be achieving its goal in M , which means that C1(M) may fail. In this case, it is

necessary that there is some action ai for which one of the preconditions is not satisfied. In

this case, to make the trace executable, the only possibilities are to add the predicate (for

the unsatisfied precondition) either to the add affects of some action before ai in the trace,

or to the start state. Again we can see thatB includes all the possibilities in which predicate

could be added to make the model satisfy this condition for each trace. For the (k + 1)th

iteration we can use similar reasoning as in the first iteration to argue that B includes all

1Note that in B, these possibilities are organized according to each trace and a new model is created for

addressing each trace for the next iteration.
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the possibilities for C2(M) and C3(M) as well.

Hence, by induction, we show that the sample-based search includes all the possi-

ble ways in which the given incomplete model can be modified to satisfy all the given

traces. The Uniform Cost Search (UCS) ensures that the changes are minimal. Hence, the

sample-based search process will find all the candidate models with the minimum number

of changes.

3.7 Generating Candidate Models using Online Search

In the real world, it is desirable to have an online search method that takes traces into

account as they arrive. The search procedure is similar to the sample-based method men-

tioned above and starts with the incomplete model M̃ . The difference being that the model

test is performed against just one trace at a time. Within each iteration, the search contin-

ues till it findsM. OnceM is generated, it begins the next iteration by adding models in

M (from the previous iteration) to the priority queue and then starting the search process

again. It continues iterating until all available traces are checked. The set of models M

generated after the last iteration becomes the final set of candidate models.

In terms of computation, on average, the online sample-based search is expected to

perform better. This is because in each iteration it uses only those models that satisfy the

traces in the previous iterations. This restricts the number of models to be checked in each

iteration since it is only constrained by one trace at any time. It also makes the online

method highly dependent on the sequence of traces and not guaranteed to find the complete

model. This is because it could find some incorrect model M1, higher in the search-tree

and at the same level reject some model M2 that would have lead to the correct model by

introducing a few more changes (deeper in the tree). In that iteration, the online search

would not consider models that are deeper than M1. Since in the next iteration only M1

will be considered, there is a possibility that the correct model would never be found. The
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online method, in that case, doesn’t return any solution. The best way to deal with such a

situation is to randomize the traces and perform multiple training iterations until a set of

candidate models that satisfy all the traces is found.

3.8 Planning under Incomplete Domain Knowledge

After generating the set of candidate modelsM, the algorithm finds a robust plan for

P̃ = 〈s̃0, g, M̃ , ζ̃〉 such that it has the highest probability of achieving the goal under

the weighted set of candidate models M. Similar to Nguyen et al. (2017), the problem

of generating a robust plan is compiled into a Conformant Probabilistic Problem (CPP). A

Conformant Probabilistic Problem (Domshlak and Hoffmann (2007)) is defined as P ′ = 〈I ,

g, D, ρ〉 where I is the belief over the initial state, g is set of propositions that needs to be T

for goal state, D is the domain model and ρ is the acceptable goal satisfaction probability.

The domain model D = 〈F ′, A′〉, where F ′ is the set of prepositions and A′ is the set of

actions. Each a′ ∈ A′ has the set of preconditions Pre(a′) ⊆ F ′ and E(a′), the set of

conditional effects. Each e′ ∈ E(a′) is a pair of con(e′) and ȯ(e′) where con(e′) ⊆ F ′

which enables e′ and ȯ(e′) is a set of outcomes ε. The outcome ε is a triplet 〈Pr(ε), add(ε),

del(ε)〉 where add(ε) adds prepositions to and del(ε) deletes prepositions from the current

model with probability Pr(ε).

A compilation that translates the original planning problem P̃ to a conformant proba-

bilistic planning problem P ′ is defined as follows:

• For each candidate model Mi ∈ M a preposition mi is introduced. Let the set of

these prepositions be M̂ . Further, a set F̂ =
n⋃
i=1

Fi is introduced, where Fi is the set

of prepositions instantiated by predicates Ri ∈ Mi where Mi ∈ M and n is the total

number of model inM. For the compiled problem set of prepositions F ′ = M̂ ∪ F̂ .

• For each modelMi ∈M, U ′i is created which is the set of new prepositions that were
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not present in M̃ . Using this, now a domain model is created D from M̃ as follows:

– A new action a′0 that initializes the start state with new/missing prepositions is

introduced. The action a′0 is defined as Pre(a′0) = ∅. ∀mi ∈ M̂ , a conditional

effect e′i ∈ E(a′0) is created such that con(e′i) = {mi} and each outcome εj ∈

ȯ(e′i) has add(εj) = µ′ and del(εj) = ∅ where µ′ ∈ P(U ′i). For each out-

come, Pr(εj) = 1/|P(U ′i)|. This essentially initializes the start state for each

model Mi, considering all the possibilities for new prepositions to be present

in it with equal probability. In the packing domain, if U ′i = { (pred 0 i1),

(pred 0 i2)}, all the possibilities are {}, {(pred 0 i1)}, {(pred 0

i1)}, {(pred 0 i1), (pred 0 i2)}. All of these will be considered to

be present in the start state with equal probability for each, which is 0.25 here.

– For each action a ∈ Ã in M̃ , if model Mi ∈ M adds a preposition u′i ∈

U ′i to P̃ re(a), a conditional rule ei ∈ E(a) is created, such that con(ei) =

P̃ re(a) ∪ {mi} ∪ {u′i}, add(ei) = Ãdd(a) and del(ei) = D̃el(a), mi ∈ M̂ is

the binary predicate corresponding to Mi. For example, if in model Mi, action

place i1 has the new preposition (pred 0 i1) in it’s precondition, then

the action in the compiled domain will have a conditional rule where con(ei) =

˜Pre(place i1)∪{mi}∪{(pred 0 i1)} and add(ei) and del(ei) will remain

the same.

– For each action a ∈ Ã in M̃ , if model Mi ∈ M adds a preposition u′i ∈ U ′i to

Ãdd(a), a conditional rule ei ∈ E(a) is created, such that con(ei) = P̃ re(a) ∪

{mi}, add(ei) = Ãdd(a) ∪ {u′i}, del(ei) = D̃el(a), mi ∈ M̂ , is the binary

predicate corresponding to Mi.

– For each action a ∈ Ã in M̃ , if model Mi ∈ M adds a preposition u′i ∈ U ′i to

D̃el(a), a conditional rule ei ∈ E(a) is created, such that con(ei) = P̃ re(a) ∪
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{mi}, add(ei) = Ãdd(a), del(ei) = D̃el(a) ∪ {u′i}, mi ∈ M̂ , is the binary

predicate corresponding to Mi.

The modified domain becomes D for the problem P ′.

• The initial belief state I = (
∧
f∈s̃0

f) ∧ (oneof(m1,m2, ...mn)) where oneof returns

T when exactly one of its input is T. The probability of each mi is equal to its weight

inM and all the other prepositions are certain.

• In the compiled problem, ρ′ = ρ represents the probability of success of the confor-

mant plan generated in the problem P̃ .

The process of generating the robust plan is quite straightforward. Initially, ρ = 1,

and a conformant plan is calculated for the given problem using conformant probabilistic

planner. If a conformant plan is not found ρ is decreased by ∆ until one is found. The plan

so obtained is a robust plan for problem P̃ = 〈s̃0, g, M̃ , ζ̃〉 and has the highest probability

of success given the weighted set of candidate modelsM.

Theorem 5: If π′ = 〈a′0, a′1, a′2, a′3, ...a′n〉 is a plan for the complied problem P ′ with

goal probability ρ then, ρ is also the probability of success of the plan π = 〈a1, a2, a3, ...an〉

in the problem P̃ .

Proof: The compilation defines a bijective mapping between each state ij ∈ I of the

problem P ′ and each model Mj ∈ M of the problem P̃ . Also, the probability of ij in

I is same as the probability of Mj in M. Let the belief state after execution of action

a′0 in I be bs′0 . The action a′0 initializes multiple start states for each model in M. One

can think of it as generating multiple sub-models for each Mj ∈ M based on different

start states. Let the set of all these sub-models be M′. It is easy to see that there is a

bijective mapping between each s′0j ∈ bs′0 and model M ′
j ∈ M′ with same probability as

well. Moreover, if s0j is the start state for model M ′
j ∈ M′, any prepositions p ∈ s′0j
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iff p ∈ s0j . The application of plan π′ \ {a′0} in belief state bs′0 generates sequence of

belief states 〈bs′1 , bs′2 , ...bs′n〉. Similarly, executing π in s0j for model M ′
j generates state

sequence 〈s1j, s2j, ...snj〉. To any state s′ij ∈ bs′i , every action a′ ∈ A′ adds/deletes same set

of prepositions against the same conditions as action a ∈ A to sij for M ′
j ∈ M′. Hence,

using induction one can say that for any state in the sequences mentioned above preposition

p ∈ s′kj iff p ∈ skj (∀k ∈ {1, 2, ...n}). Therefore, snj ⊇ g iff s′nj ⊇ g. Since the all actions

(except the dummy action a′0) are deterministic, if plan π′ achieves goal for s′0j ∈ bs′0 , then

π achieves goal for s0j in M ′
j ∈ M′. Hence, if π′ achieves goal with probability ρ in P ′,

then the probability of success of π in the problem P̃ is ρ. Hence Proved.

25



Chapter 4

EVALUATION

The evaluations are conducted using two experiments. In the first one, the algorithm

was tested on various International Planning Competition (IPC) like domains. In the second

experiment, a more complex version of the motivating packing domain was simulated to

show the practical benefits of the proposed algorithm. To generate optimal plans Fast-

Downward planner (Helmert (2006)) was used and for solving Conformant Probabilistic

Planning problem state of the art Probabilistic-FF (PFF) planner (Domshlak and Hoffmann

(2007)) was used.

4.1 Synthetic Domains

For synthetic evaluations the following International Planning Competition (IPC) do-

mains were used.

Rovers- In the rovers domain, there are multiple rovers each equipped with different

capabilities like sampling soil, sampling rock and capturing the image. The goal in this

domain is to sample soil, rock and capture images for the given waypoints.

Gold-miner- In this domain, there is a grid and the task is to pick up gold from a

particular cell in the grid and deposit it in some other cell. Some cells have a laser or a

bomb that could be used to clear blocked cells.

Storage- In this domain, there are some crates, containers, hoists, depots and different

types of areas. Each hoist can move in different areas of the depot according to the con-

nections specified by the spatial map. The objective is to move a certain number of crates

from some containers to some depots by hoists.

Driverlog- In this domain, there are some drivers, trucks, locations and objects (pack-
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ages). The driver can either walk or drive the truck. Walking paths are different from

driving paths and the possible traversals of both are given in the beginning. The pack-

ages can be loaded into or unloaded from the truck (driver is not needed for this). The

goal is to transport packages from one location to another and end the truck/trucks and the

driver/drivers at specified locations.

Blocksworld- In this domain, there are multiple blocks on a table. The objective is to

stack some or all of them in a specific order. The blocks could already be stacked in the

beginning in an incorrect or partially correct order. In that case, one might have to unstack

the blocks, put them on the table and stack again in the required order.

In all the above-mentioned domains, the incompleteness was introduced by deleting

some predicates that could be generated by one action and are preconditions to some other

action. For example in the rovers domain, to capture an image the precondition is that

camera should be calibrated. In the gold-miner domain, incompleteness was introduced

in a similar way as before, i.e. by removing the predicates, e.g. hold laser that would be

needed to fire a laser.

For each domain, a few incomplete domains and problems were created by deleting

either a single or multiple (up to 3) predicates. For this experiment, only those predicates

were deleted, that were not present in the initial state. Using the complete domain, optimal

plans were generated which were used as the teacher traces. These traces were then pro-

jected onto the incomplete model and were given to the agent. The robust plan generated

by the algorithm was then verified by checking its execution against the complete domain.

Table 4.1 shows the detailed results of the experiments. For each incomplete domain

the results are presented for all the 3 methods: Brute Force (BF), Sample-based Search (SS)

and Online sample-based Search (OS). Here each incomplete domain was given sufficient

traces such that the robust plan generated in the end was successful for every test case.

This happens when there are very few candidate models. “-” in the table represents the
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situation where the model search time exceeded the predefined limit for that domain. Since

the brute-force approach is very expensive, it timed-out in almost every domain tested

when multiple predicates were missing. It can clearly be seen that sample-based search

(either SS or OS) reduces the number of models to be searched by a considerable amount.

One can also see that as the number of missing predicates increases, the time taken by the

algorithm to generate candidate models increases by a huge amount which is due to the

exponential increase in the search space of the possible models. In such cases, one can see

that the online search method performed much better than the sample-based search method

except for cases where only 1 predicate was missing. It can also be seen that without using

the proposed method and running the planner on the incomplete domain, the plan almost

always fails. One can also see that the plan generated by the proposed algorithm has a little

more cost than the optimal plan in the complete domain.

Figure 4.1: Candidate Models VS Number of Traces

Fig. 4.1 shows the variation of the number of candidate models generated with the

number of traces. It can clearly be seen that as the number of traces increase, there are

fewer but more accurate candidate models generated.
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Doms # T
Model Searched Candidate Models Time(secs) Plan Success Avg Cost Inc

BF SS OS BF SS OS BF SS OS SS OS Default SS OS

One predicate missing at a time

Rovers

3 1500 400 400 2 2 2 205.78 23.32 37.80 8/8 8/8 0/8 +0.25 +0.25

3 1500 200 200 2 2 2 47.62 10.56 10.98 8/8 8/8 0/8 +0.63 +0.63

5 10300 1400 300 3 3 3 520.29 103.89 184.52 11/11 11/11 0/11 +0.64 +0.64

Miner

2 700 30 30 1 1 1 8.74 0.90 1.12 12/12 12/12 0/12 +1.25 +1.25

4 2520 430 70 1 1 1 517.69 156.14 31.07 10/10 10/10 0/10 +1.00 +1.00

2 140 10 10 1 1 1 2.42 0.49 0.62 12/12 12/12 0/12 +1.25 +1.25

Storage 4 4350 580 220 3 3 3 128.15 31.11 23.12 3/3 3/3 0/3 +2.00 +2.00

Blocksworld 2 2530 280 240 1 1 1 21.79 5.09 7.33 5/5 5/5 0/5 +10.80 +10.80

Driverlog
3 1160 180 320 2 2 2 77.24 10.56 17.8 3/3 3/3 0/3 +2.66 +2.66

3 38420 4280 920 3 3 3 864.45 278.6 56.12 7/7 7/7 0/7 +5.00 +5.00

Two predicates missing at a time

Rovers

3 - 26500 26600 - 4 4 - 645.11 484.96 7/7 7/7 0/7 +0.57 +0.57

6 - 297000 31900 - 3 3 - 8873.6 1484.72 8/8 8/8 0/8 +0.25 +0.25

6 - 250700 32000 - 3 3 - 8456.40 1671.37 8/8 8/8 0/8 +0.00 +0.00

Miner

4 - 21900 3600 - 1 1 - 1023.41 192.62 10/10 10/10 0/10 +1.00 +1.00

4 - 6600 620 - 1 1 - 450.05 41.72 10/10 10/10 0/10 +1.00 +1.00

2 121300 260 260 1 1 1 1610.92 3.29 2.83 12/12 12/12 0/12 +1.25 +1.25

Three predicates missing at a time

Rovers 6 - - 117500 - - 3 - - 25610.00 - 8/8 0/8 - +0.25

Miner 4 - 451500 11420 - 1 1 - 11104.00 364.22 10/10 10/10 0/10 +1.00 +1.00

Table 4.1: Detailed Results of Synthetic Domains

4.2 Simulated Domain

In this experiment, a simulated robotics domain was created which is a more complex

version of the motivating packing domain. In this domain instead of one now there are

two constraints for putting items in boxes. As before, the first constraint is that a fragile

item cannot be stacked. The second constraint is that a fragile item cannot be dropped

into the box and instead it has to be placed carefully. Now, there are two grasping ac-

tions: horizontal grasp and vertical grasp. For horizontal grasp, the

surroundings of the item to be picked up should be clear. For vertical grasp, clear

surroundings are not a necessity but in situations where the item to be picked is placed in
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Figure 4.2: Comparison of Action Sequences Generated with a Standard Planning Method

(Top) and the Proposed Method (Bottom).

the container (as shown in Fig. 4.2), the container needs to be opened first by pressing a

button on the top. On the other hand for horizontal grasp, this is not needed. Fur-

thermore, if the robot has picked up an item horizontally it is constrained to use drop

action instead of place. For vertical grasp both place and drop are possible. The goal

of the robot is the same as before, to put all the items into the boxes by using the minimum

number of boxes.

Fig. 4.2 shows the setup of the simulated experiments. The upper sequence (left to

right) is the one that did not use the proposed algorithm. It can be seen that the robot

was not able to distinguish between fragile item (in yellow) and non-fragile item (in blue).

Hence, it used horizontal grasp for picking up the fragile item and drop to put

the fragile item into the box which could damage the fragile item. Furthermore, in the

subsequent actions the robot stacked an item over the fragile item, which is also unde-

sirable. On the other hand, in the bottom sequence showing the actions executed using

the proposed algorithms (SS and OS), the robot first picked up the non-fragile item using

horizontal grasp and then put it into the box using the drop action. Then it used

vertical grasp followed by place to stack the fragile item carefully over non-fragile
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item. This was a successful sequence as none of the constraints of the complete domain

were violated.

The proposed algorithms were tested on few more scenarios where using the proposed

algorithm the robot was able to learn what types of items are not fragile. The robust plan

generated by the proposed algorithm was successful for all the test scenarios. This experi-

ment showed that the robot was able to learn what types of items were not fragile and acted

accordingly, with such knowledge completely missing in the domain initially.
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Chapter 5

DISCUSSION AND CONCLUSION

In this thesis, I have formally introduced the problem of Domain Concretization and

have discussed its prevalence (Sharma et al. (2020)). Further, a solution has been presented

that uses teacher traces and the incomplete domain model to generate a set of candidate

models and then finds a robust plan that achieves the goal under the maximum number of

candidate models. I have formulated the model search process and developed a sample-

based search to make the search more efficient. For practical use, an online version of

this search method has been presented where the algorithm used one trace at a time to

refine the candidate models. The proposed methods were tested on IPC domains and a sim-

ulated robotics domain where the proposed methods significantly increased plan success

rate without increasing the cost much.

In this thesis, it is assumed that the human has more knowledge than the robotic agent

in a planning and decision making context. In such cases, the human can either play as a

teacher (Schaal (1996); Silver et al. (2012); Ng and Russell (2000a)) or critic (Christiano

et al. (2017); Wirth et al. (2016)). The knowledge could be about the reward, domain

model, or computational model. My work here is focused on the knowledge of domain

model. Along this line, there has been work on eliciting domain models directly from hu-

mans (Talamadupula et al. (2010a,b); Talamadupula and Kambhampati (2013); Manikonda

et al. (2014)). My work may be viewed in the general direction of learning from demon-

strations for domain models, closely connecting to work on learning or refining domain

models from teacher traces (Zhuo et al. (2013a)).

There has been work in the other direction where the robot has more knowledge than

the human. In this direction, the focus has so far been on either the domain (Chakraborti
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et al. (2017); Zhang et al. (2017)) or computational model (Choudhury et al. (2019)), while

assuming humans have the correct reward model. In human-robot interaction, this is be-

cause the robot is assumed to be assisting humans and hence must respect their reward

model. Regarding domain models, Zakershahrak et al. (2020a,b); Gong (2018); Gong and

Zhang (2018) have developed a solution where the robot generates explanations or uses

signaling to modify the human’s domain model and make it more complete. Some authors

have also looked at interactive scenarios where the robot interacts with the human to not

only maintain a behavioral model of its human teammate to project the team status, but

also to be aware that its human teammate’s expectation of itself (Zakershahrak and Zhang

(2018)). In a similar type of interactive scenario, some authors have considered the possi-

bility of the human having an incorrect understanding of the robot’s domain model, while

the robot tries to learn the human preferences from the human feedbacks (Gong and Zhang

(2020)).

In the reality, however, either the human or the robot may have more knowledge than

the other. In such a case, it would be necessary to integrate these above work to allow

knowledge discrepancy in both directions. Research in this direction is so far missing.
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Chapter 6

FUTURE WORK

This problem opens up several research directions and few of them are mentioned here.

The process of candidate model generation, even with sample-based and online methods,

is quite computationally expensive, especially when the number of missing predicates in-

creases. Finding more efficient heuristics and constraints would be an interesting future

direction to work on. Another possible future direction could be to consider solving the

problem in a better iterative process something similar to the online method. In the online

method presented here, if an intermediate step learns only incorrect models and not any

correct model then the next steps fail to learn the correct model. Future work could include

solving this problem and enabling the algorithm to learn the correct model even if some

previous steps learn only incorrect domain models.

The current work is limited to deterministic domains. Solving the problem of domain

concretization for stochastic domains could be another possible future direction. Further-

more, currently, we assume that the human model is complete. Considering the incomplete

human model with a complete robot’s model where the robot’s model could be used to

refine the human model could be a very interesting future direction to work on. This could

be further extended to the interactive scenarios where the human and the robot works as a

team, both having incomplete domain models.
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