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ABSTRACT

Spatial regression is one of the central topics in spatial statistics. Based on the

goals, interpretation or prediction, spatial regression models can be classified into

two categories, linear mixed regression models and nonlinear regression models. This

dissertation explored these models and their real world applications. New methods

and models were proposed to overcome the challenges in practice. There are three

major parts in the dissertation.

In the first part, nonlinear regression models were embedded into a multistage

workflow to predict the spatial abundance of reef fish species in the Gulf of Mex-

ico. There were two challenges, zero-inflated data and out of sample prediction. The

methods and models in the workflow could effectively handle the zero-inflated sam-

pling data without strong assumptions. Three strategies were proposed to solve the

out of sample prediction problem. The results and discussions showed that the non-

linear prediction had the advantages of high accuracy, low bias and well-performed

in multi-resolution.

In the second part, a two-stage spatial regression model was proposed for ana-

lyzing soil carbon stock (SOC) data. In the first stage, there was a spatial linear

mixed model that captured the linear and stationary effects. In the second stage,

a generalized additive model was used to explain the nonlinear and nonstationary

effects. The results illustrated that the two-stage model had good interpretability in

understanding the effect of covariates, meanwhile, it kept high prediction accuracy

which is competitive to the popular machine learning models, like, random forest,

xgboost and support vector machine.

A new nonlinear regression model, Gaussian process BART (Bayesian additive

regression tree), was proposed in the third part. Combining advantages in both

BART and Gaussian process, the model could capture the nonlinear effects of both
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observed and latent covariates. To develop the model, first, the traditional BART

was generalized to accommodate correlated errors. Then, the failure of likelihood

based Markov chain Monte Carlo (MCMC) in parameter estimating was discussed.

Based on the idea of analysis of variation, back comparing and tuning range, were

proposed to tackle this failure. Finally, effectiveness of the new model was examined

by experiments on both simulation and real data.
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Chapter 1

INTRODUCTION

Spatial statistics is a branch of statistics that be developed specifically for geo-

graphic data. These data are prevalent in many scientific disciplines such as meteorol-

ogy, oceanography, soil science, agriculture, geology, natural resources, epidemiology,

etc. With the use of spatial statistics becoming more popular across different disci-

plines, it is currently one of the most active research areas in statistics. Gelfand et al.

(2010) viewed spatial statistics as being comprised of three major categories: continu-

ous spatial variation, discrete spatial variation and spatial point patterns. Continuous

spatial variation that focus on the study of continuous spatial processes includes the

topics, like, geostatistical modeling and inference, likelihood-based approaches, spec-

tral methods, hierarchical modeling, spatial design, etc. Spatial regression stays at

the center of this category and connects with all other topics.

1.1 Spatial Regression

Regression is a technique used to examine the relation of a dependent variable to

specified covariates. When the data has a spatial component, the regression model has

to recognise and adapt to this change. In this case, we call it spatial regression model.

A general form of the spatial regression model that we studied in the dissertation is

as follows:

y(s) = f(s;X(s)) + w(s) + ε(s) (1.1)

where s := {s1, ...sn} is the set of spatial locations; y(s) is the observed dependent

variable at s; X(s) are the observed covariates at s; f(·) is an arbitrary function;

1



w(s) is a stochastic process; ε(s) are the i.i.d. errors.

According the general form (1.1), spatial regression models can be divided into

two categories.

(1) Spatial Linear Mixed Regression Model

In this case, w(s) 6= 0, the effect of unobserved covariates is exhibited as spatial

dependence that be modeled by a stochastic process w(s). The function f(·) that

models the effect of observed covariates has a linear form. The classical Kriging

models (Cressie, 1993) which focus on estimating the first-order (large-scale or global

trend) and second-order (small-scale or local) structure of y(s) falls in this category.

For example, at any new spatial location s0, the stochastic term in Kriging models is

w(s0) =
n∑
i=1

λ(si)y(si). Then,

• if f(s0;X(s0)) = 0 , (1.1) is a simple kriging model.

• if f(s0;X(s0)) = α0 + α1s0x + α2s0y, (1.1) is an universal kriging model.

• if f(s0;X(s0)) = X(s0)β, (1.1) is a regression kriging model.

Spatial linear mixed regression model has a long history in spatial statistics

(Cressie, 1993). With the advantages of solid theoretical foundation, simple mathe-

maticial formula and good interpretability, they are widely applied in different disci-

plines, such as geography (Haining et al., 2010), ecology (Robertson, 1987), meteo-

rology (Dobesch et al., 2007), etc.

(2) Spatial Nonlinear Regression Model

In this case, w(s) = 0, it means that only the effect of observed covariates be

considered in the model. The spatial dependence effect is modeled by the function

f(·). Since the linear regression model is trival, we are interested in the nonlinear

ones, e.g. the popular machine learning models, like, ensemble models (Random
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Forest, XGBoost), kernel based models (Support Vector Machine), Neural Networks,

etc. As the rising of machine learning, their application in spatial analysis grows

rapidly, especially in the direction of deriving spatial predictions for spatial regression

(Appelhans et al., 2015) (Li et al., 2011) and detecting spatial patterns (Williamson

et al., 2020).

Similar to the ordinary statistical regression, there are two major goals in spatial

regression, prediction and interpretation. Figure 1.1 illustrates the relative positions

of the two categories models in the coordinate system of prediction and interpretation.

In real applications, if our goal is to get a good prediction then spatial nonlinear

regression models are good choices. While, if understanding the relationships between

Y and X is a top priority, we prefer the spatial linear Mixed regression models which

are much easier to be explained than the nonlinear ones. However, there is a trade-off

between the prediction and interpretation. We will discuss it in chapter 3.

Figure 1.1: Prediction Vs Interpretation
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1.2 Gaussian Process

In spatial process regression model (1.1), the term w(s) usually is a Gaussian

process. Gaussian process is as well known as the extension of multivariate Gaussian

to infinite-sized collections of real-valued variables. This extension can be used to

infer the distribution over functions. First, using Gaussian process defines a prior

over functions. Then, convert it into a Gaussian process posterior after obtaining

some data.

Suppose we choose a particular finite subset of these random function variables

f = {f1, ..., fN} and the data {Y = {y1, ..., yN},XY = {XY
1, ...,X

Y
N}} as the

prior distribution. By the property of Gaussian Process, f follows a multivariate

Gaussian distribution:

p(f |Y,XY ) ∼ N (0,KY )

where KY
ij = C(XY

i,X
Y
j), C(·, ·) is a covariance function. In spatial regression

models, we always assume the mean of Gaussian process is zero.

If some new data {Z = {z1, ..., zM},XZ = {XZ
1, ...,X

Z
M}} be observed, we can

get the posterior distribution by the property of conditional multivariate Gaussian

distribution:

p(f |Z,XZ) ∼ N (µ,Σ)

where µ = KZY (KY )−1Y and Σ = KZ − KZY (KY )−1KY Z . And KZY =

C(XZ ,XY ) = (KY Z)T is M ×N and KZ = C(XZ ,XZ) is M ×M .

Figure 1.2 (a) shows 5 samples from a Guassian process prior distribution, while

(b) illustrates 5 samples from its posterior distribution after obtaining 8 new obser-

vations.

The zero mean Gaussian process can be denoted by GP (0, C(·, ·|θ)),where θ is

the parameters of covariance function. It is completely determined by its covariance
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Figure 1.2: Sampling from Gaussian Process Prior and Posterior Distributions

function C(·, ·|θ). In order to model the spatial dependence, we assume the covariance

function following some spatial correlation structure. For example, a low dimensional

parametric correlation structure can be specified by Matérn covariance function family

(Stein, 1999) as following.

C(si, sj) = Cν(||si − sj||) = σ2 21−ν

Γ(ν)

(
√

2ν
||si − sj||

ρ

)ν

Kν

(
√

2ν
||si − sj||

ρ

)

where Γ(·) is the gamma function; Kν(·) is the modified Bessel function of the second

kind; ||si − sj|| is the Euclidean distance between spatial point si and sj; The set of

parameters is θ = {σ2, ρ, ν} and ρ, ν are positive real numbers. ρ and ν control the

decay rate and smoothness in spatial correlation respectively. There are two popular

candidates from Matérn covariance function family in spatial statistics.

• ν = 1
2

, Cν(||si − sj||) = σ2exp{−||si − sj||
ρ

}, it’s an exponential covariance

function.

• ν → ∞ , Cν(||si − sj||) = σ2exp{−||si − sj||
2

2ρ2
}, it’s a gaussian covariance

function which is also called squared-exponential covariance function.
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With advantages mentioned above, Gaussian process is prevalent in spatial statis-

tical modeling today. However, the computational issue will rise when data becomes

big. It’s because the likelihood computation of a Gaussian process observed at n

spatial locations has to calculate the inverse and determinant of covariance matrix

whose exact calculation requires O(n3) operations and O(n2) storage. In recent year,

due to the advance in technology, massive spatial data are collected in various disci-

plines, we do require novel methods to overcome this challenge. Fortunately, there is

a rich literature on this problem. Basically, the studies are going on two tracks, low-

rank and sparsity. Low-rank approximation is a very active field in numerical linear

algebra. Hackbusch (2015) developed the theory of hierarchical matrices which can

provide a low-rank approximation requiring only O(nklog(n)) units of storage and

O(nkαlog(n)β) operations for matrix multiplication, inversion or determinant, where

k is the rank parameter controlling the accuracy of the approximation, α, β ∈ {1, 2, 3}.

Geoga et al. (2019) presented a kernel-independent method that applies hierarchical

matrices to the problem of maximum likelihood estimation for Gaussian processes.

There were also low-rank modeling methods in spatial statistics community, e.g. Fixed

Rank Kriging (Cressie and Johannesson, 2008), predictive process model (Banerjee

et al., 2008) and stochastic partial differential equations (Lindgren et al., 2011). On

the other track, studies seek to introduce sparseness into the covariance or precision

matrix. For example, Furrer et al. (2006) applied covariance tapering to create a

sparse approximate linear system that can then be solved using sparse matrix algo-

rithms, or Datta et al. (2016) extends the Vecchias approximation (Vecchia, 1988)

to a Gaussian process for creating the sparse precision matrices by using conditional

independence given information from neighboring locations.
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1.3 Overview

Figure 1.3 shows the two categories of spatial regression models and my study

Roadmap. My research involves both application and methodology problems. They

are organized in the rest of the dissertation as follows.

Figure 1.3: Study Roadmap

• Chapter 2, introduces a real world application that applied the nonlinear re-

gression models to predict the spatial distributions of reef fish abundance in the

Gulf of Mexico. A multistage workflow is proposed to overcome the challenges

of zero-inflated data and out of sample prediction. The nonlinear predictions

are compared to the predictions of other methods.

• Chapter 3, aims to develop a spatial regression model that can break the trade-

off between prediction and interpretation. A two-stage universal regression

Kriging and generalized additive model is built to achieve this goal. Model’s in-

terpretability and prediction accuracy are tested on both the real and simulation

data.
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• Chapter 4, proposes a new BART model and combines it with the Gaussian

process to build a nonlinear spatial regression model, named Gaussian process

BART. The methods for parameter estimation is discussed. Two experiments

and a real data testing are given for examining the effectiveness of Gaussian

process BART model.

• Chapter 5, summarizes the key contributions of the dissertation and discusses

ideas for future work.
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Chapter 2

REAL DATA CHALLENGES AND NONLINEAR MODELS

Understanding the spatial distribution of abundance is fundamental to assessing

and managing organism population. However, the task becomes difficult to marine

species due to the low detection rates because of sampling underwater. In this chapter,

we proposed a multistage statistical workflow which applied the non-linear spatial

regression models to tackle this problem. In Section 2.1, we introduced the problem,

data and challenges. We proposed a multistage statistical workflow to overcome the

challenges in Section 2.2. The methods to solve the zero-inflated data problem were

discussed in this section as well. In Section 2.3, we applied nonlinear spatial regression

models to predict the spatial distributions of reef fish abundance. Three strategies

were proposed to handle the out of sample problem. In Section 2.4, the nonlinear

prediction results were compared to the ones of linear regression and catch per unit

effort models.

2.1 Introduction

The ability to map the abundance of organisms across space is a critical precur-

sor for many applied research applications that support sustainable environmental

resources management. This includes understanding linkages between species and

habitat use (Mateo-Sánchez et al., 2015), establishing protected areas (Lin et al.,

2017), building population and ecosystem models (Stratford et al., 2016), using such

ecological analyses to develop biologically and economically sustainable management

policies (Guisan et al., 2013), etc. However, in most cases, the real data needed to de-

velop such maps either does not exist or is zero-inflated or unevenly distributed across
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space (Prosser et al., 2018). This is because field sampling efforts can be expensive

or often must collect information for multiple applications. For example, collecting

data from the marine environment can be particularly difficult due to, cost and lo-

gistical considerations accessing remote locations, the inability to transmit radio or

satellite signals from underwater, and visual limitations associated with water clarity

and water column light attenuation. It results in fewer observations of species from

the marine environment with which to develop distribution maps.

Independent of the ecosystem, a variety of techniques have been employed over

the years to maximize the use of the zero-inflated sampling data, such as variogram

estimation and random field simulation (Saul and Purkis, 2015), generalized ad-

ditive models (Drexler and Ainsworth, 2013), additive beta regression (Ros-Pena

et al., 2018), etc. However, most of them assume samples evenly distributed in the

study region or their values follow specified distributions, conditional normal distri-

bution or beta distribution. In practice, these assumptions may be violated, because

most organisms usually distribute in patchy pattern across the landscape or seascape

(Ainsworth et al., 2016). The underlying reason is that organism abundance directly

depends on their habitat environment and most of environmental covariates follow

patchy spatial patterns. Although, for some organisms, approaches work on commer-

cial data, like catch per unit effort data (McDonald et al., 2001), can extract useful

maps of abundance, models with environmental covariates are more promising credit

to their high interpretability and low bias (Streich et al., 2017). Many methods to

map organism spatial abundance use the relationship between abundance and envi-

ronmental covariates. Models can be divided into two categories, linear models and

nonlinear models. Linear models had been extensively studied in predicting organism

abundance (Guisan et al., 2002). They have many advantages, such as, model is easy

to construct, parameters and results are highly interpretable, computation is efficient

10



in both time and resources, etc. Linear models perform well on large spatial scales

identifying the overall trend or gradient of abundance (Guisan et al., 2002). How-

ever, most relationships in real world are intrinsically nonlinear rather than linear in

nature.In the few years, as therising of machine learning, nonlinear models have been

widely applied in organism population prediction (Ye et al., 2019). They are good

at capturing the subtle nonlinear relations between abundance and environmental

covariates and the complex interactions among covariates. So, nonlinear models also

have the ability to identify the local trend in fine spatial scale. Compare to linear

models, nonlinear ones could normally provide more accurate predictions at the cost

of sacrificing interpretability.

2.1.1 Data

The study region was the area whose depth is within 1 200 meters in north Gulf

of Mexico (Figure 2.1). Two types of datasets, video surveys data and interpolated

bottom habitat data, were used in the study.

Figure 2.1: Study region and video survey data. The zoomed area shows zero-
inflated feature of the sampling data. The red dot represents positive sampling, the
value on it numbers the fishes been sampled.

Three independent fishery video surveys are carried out annually to collect infor-
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mation on the abundance of shallow water reef fish species throughout the Gulf of

Mexico. The first one is sponsored by the National Marine Fisheries Service (NMFS)

Panama City Florida laboratory, the second is part of the Southeast Area Monitor-

ing and Assessment Program (SEAMAP), and the third is sponsored by the State of

Florida Fish and Wildlife Commission (FWC). Each survey is methodologically stan-

dardized to others. It allows us to merge them to a single dataset with trivial effort.

The video surveys target the commercially important species, such as red grouper

(Epinephelus morio), red snapper (Lutjanus campechanus), gag grouper (Mycterop-

erca microlepis), mutton snapper (Lutjanus analis), etc. Video surveys were carried

out by following a two-stage sampling design. The first-stage or primary sampling

units (PSUs) which located in the most possible habitat area were spatial blocks with

10 minutes of latitude by 10 minutes of longitude. The second stage or ultimate

sampling sites (USS) were point locations that were randomly choose in the ultimate

sampling sites (USS). The sampling gear consisted of four cameras mounted orthog-

onally with each other. Cameras was deployed at each location for 20 minutes and

record every species encountered. The camera sampling protocol included the use of

bait at the center of the four-camera array to increase the positive detection rate.

The video footage was read by several technicians to identified and enumerated the

species observed. In order to avoid double counting, the count value was set as the

maximum number of the species recorded in a frame during the 20-minute sampling

period (Somerton and Glendhill, 2005). The sampling design wasnt optimal due to

budget constraint. For example, the short sampling time may be the prime reason

for the zero-inflated sampling result (Figure 2.1). Another defect is that the sampling

sites were not evenly distributed across the study region. In the prediction stage, it

will cause the out of sample prediction problem for the blank areas (Figure 2.1).

Bottom habitat information was offered by dbSEABED database. dbSEABED
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project produced detailed mappings of the sea floor in various locations by interpo-

lating from all available point datasets. Individual raw data points were screened for

quality control before being used for interpolation. Isotropic, binned semivariograms

were used to interpolate point data to raster map (Goff et al., 2008). Maps can

be generated respectively to describe single benthic environmental variable. In this

study, the environmental covariate maps (percentage content) to be used for predic-

tion includes sand, gravel, mud, sediment grain size, carbonate, clay, and rock. One

defect of dbSEABED database was that benthic samples collected over the years were

more concentrated in nearshore areas than offshore ones. It makes the data has lower

variation thus higher accuracy in nearshore area than in offshore area. Despite this,

the dbSEABED dataset is the most spatially comprehensive habitat data publicly

available for the Gulf of Mexico at this time.

2.2 Multistage Workflow

The multistage workflow (Figure 2.2) start from simulating the video survey pro-

cess to generate simulated sampling outcomes under different settings. In the second

stage, a method named empirical maximum likelihood analysis worked with simulated

sampling data to find a relationship between the video survey data (catch ratio) and

fish abundance (empirical maximum likelihood density). The relation represented by

an empirical maximum likelihood density function which was the key to address the

zero-inflated issue. Then, inputting with real video survey data and the empirical

maximum likelihood density function, a two-step random smoothing method was em-

ployed in the third stage. In step one, spatial abundance was estimated in sampling

areas. In step two, uncertainties in abundance estimation were effectively removed

to produce the block spatial abundance that will work as training data in next stage

models. In the final stage, working on the training data and environmental covariates
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(habitat data), nonlinear spatial regression (Machine learning) models coming from 3

different families, support vector machine, neural networks and random forest, were

assembled to generate a high accuracy and low bias prediction of abundance spatial

distribution.

Figure 2.2: There are four stages with different methods/models and data in each
of them. Generated data means that the data was generated by the model or prior
knowledge. In contrast, real data is collected from real world.

In the rest of this section, we will go through the StageI to Stage III. The meth-

ods/models in these stages work together to tackle the zero-inflated problem of the

video survey data.

2.2.1 Video Survey Simulation

To make the most use of the video survey data, an individual-based discrete event

simulation was developed to model the video survey process.(Pfeffermann, 2013) This

was developed using the PyGame library in the Python programming language (Kelly,

2016). The following assumptions were made for the simulation:

(1) Site fidelity

Red grouper excavates benthic material to create nests or pits in which they live,

and from which they exhibit high site fidelity (Harter et al., 2017). Red snapper
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exhibits less site fidelity than red grouper but spends continuous periods of time at

one site, on the order of months or years, before moving to another habitat location.

Thus, at short time intervals, such as the length of the camera sampling protocol,

individuals were assumed to have strong site fidelity in the simulation.

(2) Fish home and behavior

In order to model site fidelity, we assumed the fish move around nearby its home.

Fish was able to explore surrounding places by wandering in a random fashion. In

the simulation, wandering implemented by a Markov Chain Monte Carlo. Its random

fashion followed an isotropic bi-normal spatial distribution around the home (Figure

2.3). It was meant to represent activities such as food foraging similar to central

place foraging theory (Schoener, 1987). Fish had a 68% probability to move within

one standard deviation of the isotropic bi-normal spatial distribution, and 95% prob-

ability of moving within two standard deviations. Home range was defined as the

spatial distance of two standard deviations. For two neighboring homes, the average

percentage of overlapping is less than 50% (Farmer and Ault, 2011). The setting of

parameters, such as, home range, fishs movement frequency, speed, turning angle,

followed Farmers papers (Farmer and Ault, 2011),(Farmer and Ault, 2014) which

conducted a thorough investigation to the movement of reef fish species in the Gulf

of Mexico.

(3) Camera and bait

In video survey, the vulnerability of fish to be sampled by the camera gear was

enhanced by placing bait at the location of the camera array to attract fish. We

modeled the bait effect on video sampling. The chance that a fish would detect the

bait and come to it is determined by two factors: the diffusion rate of the scent of the

bait, and the probability that a fish in the vicinity of bait detectability, could detect

the bait (Stoner, 2004). We assumed that the bait odor had highest intensity at the
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Figure 2.3: Video survey simulation. The green dots represent the location of a fish
home, green concentric circles around each dot represents the first and second stan-
dard deviations, the red dot represents the location of the camera, and the red circle
represents the distance to bait detectability, which expands throughout 20 minutes,
the winding trails represents the trace of fishes, each color corresponding one fish.

camera sampling gear, and spread with intensity diminishing exponentially as moving

away from the camera. The attenuation of bait odor through the water column is an

understudied complex process, as is the probability that a fish nearby will detect it.

The few studies that have been done suggest a wide range of distances from which

fish can detect bait, and the research suggests it is species dependent (Sainte-Marie

and Hargrave, 1987). As a result, we made two assumptions: (a) that the radius of

detectability from the camera array, meaning the maximum distance of odor spread

was 50 meters in 20 mins, and (b) that the value for the shape parameter of the

exponential bait detectability distribution was 0.05.

(4) Interactions

In each simulation step, program checks the location of fish in relation to the

location of the bait and the range of bait odor dissipation. If the fish entered the

range of bait odor, then it was assigned a probability of being sampled by the camera.
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Once a fish was sampled by the camera, it was removed from the simulation to avoid

double counting.

The most important parameter in simulation model was the number of fish homes.

Since simulation area was invariant and the number of fishes in each home followed a

known uniform discrete distribution, the number of fish homes scaled the abundance

of fish at each sampling station. We tested a range of numbers fish homes in the

simulation. It was increased by three and up to a big enough number which was con-

strained by the rule of less than 50% habitat overlapping and the size of simulation

area. For each number, the simulation run 5000 times. One simulation step corre-

sponds to 3 seconds in real time, and camera works 20 minutes. The data generated

by the video survey simulation will be used in the empirical maximum analysis.

2.2.2 Empirical Maximum Likelihood Analysis

In statistics, traditional maximum likelihood analysis produces the maximum like-

lihood estimator (MLE) for unknown parameter. This method typically includes three

components: an analytic mathematic model, the target parameter and the observed

outcomes. Although our workflow contained a model (video simulation model), the

target parameters (fish density) and the observed outcomes (real video survey data),

we are unable to apply traditional maximum likelihood methodology because the

video survey model is a programing simulation model rather than an analytic math-

ematic model. As a result, we developed a novel method called empirical maximum

likelihood analysis to tackle this issue. The method includes four parts: re-sampling,

empirical probability mass functions, empirical likelihood function, and empirical

maximum likelihood density function.

The procedures of re-sampling and creating empirical probability mass functions

is as following.
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(1) Initialize the number of the fish homes as n=3.

(2) Sample 100 outcomes without replacement from the results of video survey

simulation. Calculate the ratio between number of detected fishes and the

number of fish homes. We mane this ratio as catch ratio (CR).

(3) Calculate empirical probability mass function (pmf) of discretized catch ratio

values for each value of home numbers.

(4) Increase home number by n=n+3 and repeat steps (2) and (3).

Once the probability mass functions were obtained, we can calculate the empirical

likelihood function for each catch ratio. Figure 2.4 gives an example that how to

build an empirical likelihood function from probability mass functions. Then, the

empirical maximum likelihood estimator of home number under each catch ratio will

be equal to the globe maximum of empirical likelihood function. Since the number of

fishes in each home followed a uniform discrete distribution, the maximum likelihood

estimator of fish homes can be easily converted to maximum likelihood estimator

of density by the ratio of maximum likelihood estimator of fishes and the size of

area. This allowed us to build a function between the empirical maximum likelihood

density and catch ratio (Figure 2.5). This function handles the spatial sparsity and

zero-inflated characteristics of video survey data. Even if the catch ratio is close to

zero, a non-zero maximum likelihood density could be calculated.

There is a linear relation between the empirical maximum likelihood density and

catch ratio. The changing of parameters value, like, the parameters value of camera,

bait and fish behavior, in video simulation model only affects the coefficient (slope) of

this linear relation. However, all the coefficient will be cancelled when we transform

the absolute value of abundance to the relative value of abundance - the spatial
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Figure 2.4: For each home number, there is a corresponding probability mass func-
tion for discrete catch ratios. (a), (b), and (c) are 3 examples of pmf. Given a value
of catch ratio, the discrete empirical likelihood function can be obtained (d). Since
the gap of home number was 3, we can fit a curve (d) to get the discrete empirical
likelihood function with gap one. Finally, the empirical maximum likelihood estima-
tor can be found from this discrete empirical likelihood function. In this example,
when the catch ratio was 0.05, the empirical MLE of home number was 19.

distribution. For purposes of this study, we were only interested in the abundance

spatial distribution. So, we didnt really care about the setting of parameters in video

simulation model because they did influence the linear coefficients rather than the final

spatial distribution. But when you are interest in estimating the real abundance, the

parameter setting is essential.

2.2.3 Random Smoothing Estimation

The spatial abundance or empirical maximum likelihood density was estimated

by random smoothing (Figure 2.6). First, the sampling area needs to be rasterized

into grid cells, each approximately 0.25 square kilometers. Then, random smoothing
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Figure 2.5: Empirical Maximum Likelihood Density Function

was carried out by randomly drawing circle windows in the area (Figure 2.6). In

each smoothing window, the catch ratio was calculated from the video survey data.

Working with empirical maximum likelihood density (EMLD) function, we can assign

the empirical maximum likelihood density (abundance) to all the grid cells in the

smoothing window.

The smoothing windows may overlap with each other. Therefore, a grid cell

could be covered by different windows. Hence different empirical maximum likelihood

density may be assigned to the same grid cell. In order to combine all the different

values of a grid cell, a weighted mean empirical maximum likelihood density was taken.

Weights were determined by calculating a credibility statistic for each window. The

credibility was defined as follows:

c(x) =
x

N
(2.1)

where c(x) is the credibility; x is the number of samples in the smoothing window;

N is sample size.

In order to penalize the windows with low credibility, we calculate the weight of

each window:

wi =
c2i∑n
i=1 c

2
j

, i = 1, 2, ..., n (2.2)

20



Figure 2.6: The procedure of random smoothing estimation starts from rasterizing,
(a) to (b). Then, randomly draw windows in the sampling area up to a large enough
number, (c) to (d). This number can be determined by checking the convergency of
gemld.

where wi is the weight of ith window; ci is the credibility of ith window; n is the

number of random smoothing windows.

Thus, the weighted mean empirical maximum likelihood density of a grid cell can

be denoted as follows.

gemldk =
n∑
i=1

wik ∗ wemldi, i = 1, 2, ..., N (2.3)

where gemldk is the weighted mean empirical maximum likelihood density of k-th

grid; wk is the weight of ith random smoothing window covering kth grid; wemldi is

the empirical maximum likelihood density of ith random smoothing window; n is the

number of random smoothing windows covering the kth grid; N is the number of grid

cells.
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2.2.4 Reducing Uncertainty

In random smoothing, uncertainties were introduced by randomized smoothing

windows. We consider two concepts to identify uncertainties: credibility and vari-

ance. Credibility measured uncertainty from a Bayesian perspective, while variance

measured uncertainty from a frequentist perspective.

For each grid cell, we can calculate its credibility mean as follows.

gmck =
1

n

n∑
i=1

gcik, k = 1, 2, ..., N (2.4)

where gmck is the mean of credibility of kth grid; gcik is the credibility of ith window

covering kth grid; n is the number of random smoothing windows covering kth grid;

N is the number of grid cells.

The variance can be calculated:

gvk = var(Sk), k = 1, 2, ..., N (2.5)

where gvk is the variance of empirical maximum likelihood density of kth grid; Sk =

{gemld1, ..., gemldn}; n is the number of random smoothing windows covering kth

grid; N is the number of grid cells.

Based on above definitions, we developed a method hereafter referred to as Bayesian

and Frequentist scissors to eliminate uncertainties by using a priori determined thresh-

old.

ScissorsB = quantilegmc{gmci, i = 1, ..., N} (2.6)

ScissorsF = quantilegv{gvi, i = 1, ..., N} (2.7)

where N is the number of grid cells.

The scissors worked as follows.

GBS = {gmck : gmck ≥ ScissorsB k = 1, ..., N} (2.8)
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GFS = {gvk : gvk ≤ ScissorsF k = 1, ..., N} (2.9)

where GBS is the set of grid cells after Bayesian scissors cutting; GFS is the set of

grid cells after Frequentist scissors cutting; N is the number of grid cells.

The final set of grid cells, GL, is obtained by the intersection of GBS and GFS.

GL = GBS ∩GFS (2.10)

GL is the block spatial abundance with low uncertainty. Figure 2.7 shows the

process that how to apply random smoothing and Bayesian/frequentist scissors to

get the block spatial abundance.

Figure 2.7: An example applying random smoothing and Bayesian/frequentist scis-
sors to get a low uncertainty set of label data. Panel (a) shows the video survey data
of red grouper in a small region. The red dots with small numbers identify the num-
ber of red groupers were found in the survey. The result of the random smoothing is
shown in panel (b). The spatial mean of credibility and spatial sample variance are
shown in panels (c) and (d) respectively. Panels (e), (f) and (g) show the results of
GBS, GFS and GL respectively.

Up to now we successfully convert the zero-inflated video survey data to high

credibility low variance block spatial abundance data. In next section, the later will

be used as training data of the spatial nonlinear regression models.
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2.3 Non-linear Models and out of Sample Prediction

As discussed in Section 2.1, our final goal is to get good prediction of abundance

spatial distribution. Nonlinear spatial regression (machine learning) models are good

choices for this task. With the ability of capturing the subtle nonlinear relations be-

tween abundance and environmental covariates and the complex interactions among

covariates, nonlinear models are able to produce high accuracy and low bias predic-

tions which reflect the near-real patchy patterns in both large and fine scales. In

addition, there is no precondition on the distribution assumptions of the data. This

feature greatly enhances their adaptability to adapt different datasets. We choose

the nonlinear models from three families, multilayer perceptron, random forest, and

support vector machine. Multilayer perceptron is a type of artificial neural network

that carry out supervised learning via a back-propagation training algorithm (Ram-

choun et al., 2016). With bootstrapping the input data, random forest models use

a combination of multiple decision trees to implement prediction (Breiman, 2001).

Support vector machine makes prediction by classifying the input dataset into dis-

crete classes across a separating hyperplane. Moreover, it can incorporate multiple

variables to map correlations in non-linear space to improve predictions (Cristianini

and Shawe-Taylor, 2000). Machine learning models took the block spatial abundance

as its training dataset. Predictors were habitat environmental covariates that include

location (latitude and longitude), depth, rugosity, sand, gravel, mud, sediment grain

size, carbonate, clay, and rock. As discussed in Section 2.1, video survey data is

clustered rather than evenly distributed in the study region. It caused some blank

areas in which block spatial abundance (training data) was absent. Predicting in

these blank areas will encounter the out of sample prediction problem. This prob-

lem can introduce great uncertainty and produce erroneous predictions in high risk
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(Wenger and Olden, 2012). Therefore, we proposed three strategies, prior knowledge,

aggregation, and iteration to overcome this problem.

2.3.1 Prior Knowledge

The goal of involving prior knowledge is to extend the set of training data in the

areas that video survey was missing. First, we need to identify the areas that prior

knowledge can be engaged confidently. For example, it is well known that red grouper

is predominately spatially distributed with high abundance in the eastern portion and

very low abundance in the western portion of the Gulf of Mexico. Second, we created

several initial predictive maps by running different machine learning models (Figure

2.8 b,c,d). Then, the prior knowledge about spatial distribution was represented by

assigning weights to each initial prediction (Table 2.1). Finally, the new training data

can be calculated from the weighted combination.

Table 2.1: An example shows the prior knowledge (weights) applied in Figure 2.8.

Area
Prior Weights

LR MLP SVM

Area 1 0.1 0 0.9

Area 2 0.1 0.45 0.45

Area 3 1/3 1/3 1/3

Area 4 0.1 0.45 0.45

Area 5 0.3 0.4 0.4

The limitation of this strategy comes from the lack of prior knowledge. For exam-

ple, we can’t use it for red grouper in the gap areas of east gulf of Mexico, because

the red groupers live there and any inaccurate prior knowledge will cause bias. The

same thing happend on red snappers who live in the entire gulf of Mexico.
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Figure 2.8: The top panel shows the video survey of red grouper throughout the Gulf
of Mexico. Red points indicate positive samples and green points indicate negative
(zero). The three panels at bottom show initial predictions of spatial abundance in the
western portion of the Gulf. They are generated from linear regression, multilayer
perceptron and support vector machine respectively. Numbered polygons are the
areas applied prior knowledge (weights). The weights are shown in Table 1 below.

2.3.2 Aggregation

Aggregation is a model ensemble approach (Diesing and Stephens, 2015)(Stohlgren

et al., 2010) that combines predictions from different models to stabilize the final

prediction. In this study, three popular machine learning algorithms were used: mul-

tilayer perceptron, random forest and support vector machine. In each category,

a range of tuning parameters for that algorithm were tested in a range of possible

values. With multilayer perceptron algorithm, the number of hidden layers and the

number of neurons in each hidden layer was tried. With random forest algorithm,

the maximum number of features allowed in each decision tree, the number of trees
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to build before averaging for prediction, the number of levels in each decision tree

(maximum depth), and the minimum sample leaf size (size of the end node) were

tested. With support vector machine algorithm, the kernel parameters that include

the type of hyperplane and the shape of the hyperplane were tested. Based on the

mean test score obtained from cross-validation, we narrowed down the number of

candidate models by a criterion that the mean test scores fell in the range between

0.65 and 0.95. This criterion worked well with model combination in keeping the

balance between underfitting and overfitting. Table 2.2 shows the selected models for

aggregative prediction of red grouper spatial abundance.

With the selected 33 models in table 2.2, we fit them with training data then

make predicitons. The final prediciton is estimated by a suitable statistic of the 33

predicitons, like, mean, weighted mean, median, etc. In the study, we choose median.
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Table 2.2: Parameter settings and mean test scores of the selected models for ag-
gregative prediction of red groupers abundance spatial distribution.

Modle Tuning parameters Mean test score

M
L
P

N
u
m
b
er

o
f
n
eu

ro
n
s
in

ea
ch

h
id
d
en

la
y
er

(20,) 0.70046559

(30,) 0.74232753

(50,) 0.76654593

(80,) 0.79432473

(250,) 0.84556754

(300,) 0.8656241

(8, 8) 0.74759073

(10, 10) 0.75592852

(15, 15) 0.80448259

(30, 30) 0.87254421

(50, 50) 0.91866864

(5, 5, 5) 0.70332429

(7, 7, 7) 0.7580669

(10, 10, 10) 0.80493967

(13, 13, 13) 0.85251525

(20, 20, 20) 0.89251978

(30, 30, 30) 0.92922169

R
a
n
d
o
m

F
o
re
st

m
a
x
fe
a
tu

re
s,

n
u
m
b
er

o
f
es
ti
m
a
to
rs

m
a
x
d
ep

th
,
m
in

sa
m
p
le
s
p
er

le
a
f

(0.3, 1000, 7, 150) 0.75829703

(0.5, 1000, 7, 150) 0.78100404

(0.5, 1000, 8, 150) 0.81256017

(0.7, 1000, 8, 100) 0.84390548

(0.5, 1000, 9, 100) 0.85742639

(0.7, 1000, 9, 100) 0.87075123

(0.7, 1000, 5, 50) 0.71127043

(0.7, 1000, 5, 150) 0.70476749

(0.7, 1000, 15, 100) 0.91193176

S
u
p
p
o
rt

V
ec
to
r
M
a
ch

in
e

C
,
γ

(30, 0.5) 0.92571115

(50, 0.05) 0.74480628

(50, 0.1) 0.79185051

(50, 0.15) 0.8290371

(50, 0.25) 0.88165398

(70, 0.5) 0.93602774

(100, 0.1) 0.80533548
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2.3.3 Iteration

For each grid cell, the selected models generated predictions. Based on these

predicitons, mean, standard deviation, and coefficient of variation (CV) can be calcu-

lated. By choosing a threshold for CV (CV0.5), we can filter all the grid cells to get

the ones with low variance. Then, new selected cells can be added into the original

training data (Figure 2.9). We can iterate this process to expand the training data.

However, in order to avoid systematic bias, iterations are better to be less than three.

Figure 2.10 shows the distributions of the coefficient of variation (CV) before and

after the additional training data was added. It indicates that the one-time iteration

can greatly reduce the overall CV, thus stabilize the final prediction.

Figure 2.9: Map of original training data (light blue) and new training data (dark
blue). The new training data was extended by one-time iteration with criterion
CV ≤ 0.5.

Figure 2.10: The distributions of coefficient of variation (CV) before and after one-
time iteration.
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2.4 Results and Discussion

Our workflow worked well not only in large scale but also in fine scale. To demon-

strate this, there is a comparison with the linear regression model in Figure 2.11.

The figure shows that linear regression model can capture the overall trend across

the entire Gulf. However, in fine scale, linear regression prediction was too smooth

to capture the patchy pattern. In comparison, the prediction of our workflow, here-

inafter referred to as non-linear prediction, was able to capture the overall trend as

well as the patchy pattern under high resolution. In addition, at some locations, the

linear regression prediction shown contradictories to the non-linear prediction. For

example, it is well known by biologist that red grouper distributes higher abundance

in areas with higher level rugosity and gravel over sea bottoms. Its because their

affinity for structure and their role as ecosystem engineers excavating pits in which

to live (Harter et al., 2017) (Coleman et al., 2011). Circle number one in Figure 2.11

(panels b-1 and b-2) shows that non-linear prediction correctly gave higher abundance

in areas of higher rugosity (panel c), while the linear regression prediction shown the

opposite. Similarly, when considering the locations of gravel habitat, circles numbered

two, three, and four in Figure 2.11 (panels b-1 and b-2) shows that non-linear pre-

diction correctly demonstrates the positive relation between abundance and the level

of gravel. But the linear regression prediction shows inconsistent results. Especially,

linear regression prediction at circle number two illustrates a self-contradictory.

The nonlinear prediciton abundance maps of red grouper and red snapper were

shown in Figure 2.12(b) and 2.13(b). To validate the goodness of predicting, we

choose the maps of spatial catch per unit effort (CPUE) obtained from fishery data

(Figures 2.12(a) and 2.13(a)) (McDonald et al., 2001). Figure 2.12(c) and 2.13(c)

show the prediciton that corrected by considering the impact of pollution and over-
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Figure 2.11: Comparison between linear regression prediction and non-linear pre-
diction. Panels a-1 and a-2 show the two predictions in a large scale. Panels b-1 and
b-2 show the two predictions in a small scale which is 10 times finer than the large
scale (area in blue rectangle in panels a-1 and a-2). Panels c and d show the spatial
distributions of rugosity and gravel respectively corresponding to the area in panels
b-1 and b-2.

fishing. Overall, the non-linear prediction is consistent with CPUE map. However,

it is important to acknowledge that they do notcoincide each othertotally. Because

the quality, quantity, and location of fishery-dependent data were influenced by the

decision-making behaviors of commercial fishers (Saul et al., 2013). It made the

CPUE map biased from real abundance distribution.

In catch per unit efforts (CPUE) map, bias can be introduced from the amount
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Figure 2.12: Abundance spatial distribution of red grouper. The top panel rep-
resents spatial catch per unit effort map obtained from logbook data. The middle
panel represents the non-linear prediction. The bottom panel shows the prediciton
that corrected by considering the impact of pollution and overfishing.

of catch. For example, Figure 2.14(b) shows relatively low abundance in the area

circles numbered 3 and 4. In fact, there is a zone in the middle of these two areas

(Figure 2.14(a)). The sea bottom of this zone has high-level rugosity and covered

by hard and soft corals. The environment condition is desirable for the living of

red grouper (Coleman et al., 2011). As a part of Florida middle grounds habitat

of particular concern project, this zone is protected from some fishing gear types
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Figure 2.13: Abundance spatial distribution of red snapper. The top panel rep-
resents spatial catch per unit effort map obtained from logbook data. The middle
panel represents the non-linear prediction. The bottom panel shows the prediciton
that corrected by considering the impact of pollution and overfishing.

including bottom longlines, trawls, dredges, pots and traps (Lembke et al., 2017).

CPUE prediction in this zone is highly biased, since it depends on the amount actually

fished. Contrarily, the nonlinear models which directly employed habitat information

was able to appropriately predict near-real abundance based on real environment

conditions. Figure 2.14(a) illustrates that nonlinear prediction was able to capture

the high abundance in the protected zone.

33



Figure 2.14: Comparison of red grouper abundance maps between non-linear pre-
diction and CPUE. Non-linear prediction can catch the high abundance patchy area
(between circles numbered 3 and 4). This area is highly suitable for the living of
red grouper because it is covered by hard and soft corals and protected from some
fishing gear types including bottom longlines, trawls, dredges, pots and traps. How-
ever, CPUE map shows highly biased prediction due to it can be distorted by fishery
policy.

Catch per unit efforts (CPUE) map may also introduce bias from the amount

of efforts. For example, in Figure 2.15(b), the non-linear prediction of red snappers

abundance in western Gulf of Mexico shows that the abundance in region circle num-

bered 1 was higher than regions circles numbered 2 and 3. It is reasonable because

region circle numbered 1 in Figure 2.15(a) has higher level mud on sea bottom. And

its well known by biologist that red snappers occupy mud bottom during much of

their life history. However, CPUE map in Figure 15 (c) gave opposite answer. We

can see there are only two seaports (in blue circles) in western of Gulf of Mexico. For

both of them, the cost of fishing in region circle numbered 1 is higher than regions

circle numbered 2 and 3. The high cost or effort distorts CPUE prediction in this

area far from the real abundance. To this end, depending on fishery-independent

environmental data nonlinear prediction maps could be less bias than CPUE maps.
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Figure 2.15: Maps representing the spatial distribution of mud levels (panel a), the
non-linear prediction (panel b), and CPUE map (panel c). Blue triangles in blue
circles on panel c indicate the locations of fishing port.

The generalizability of the multistage workflow can be explained as follows.

First, the distribution of many organisms is patchy across the landscape or seascape.

A strength of our workflow and nonlinear predicitons (Figure 2.2) is the ability to

capture patch dynamics from sparse data, which will render them applicable to many

organisms.

Second, video survey methodology is commonly used to capture presence and

abundance data, both in marine and terrestrial ecosystems. As a result, our work-

flow is well suited for applications of many already existing video survey datasets

collected in a variety of ecosystems. Actually, different video simulations can flexibly

be adapted to this workflow without having to make any changes to the rest stages.

Third, as mentioned in the end of Section 2.2.2, if the matter is spatial distribu-

tion rather than absolute abundance. The only thing you need to know there is the

relationship (function) between the catch ratio and population density. If the rela-

tionship is a linear function, the first two stages of workflow can be omitted. Even

the exact form of the linear function is not required. You can assign an arbitrary

value to the coefficient for the linear function and continue subsequentstages of the

workflow. The effect of coefficient will be canceled automatically. Fortunately, in
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most cases, the relationship between catch ratio and population density is a linear

function. Otherwise, you have to find the exact form of this function. If it is possible,

you can still get rid of the first two stages of the workflow. Final, the flexibility of the

workflow also comes from the loose coupling relations among its stages. For exam-

ples, a moving window smoothing can take the place of random window smoothing.

Another example, you can add more nonlinear (machine learning) models or differ-

ent parameterizations. Note that if you change the set of more nonlinear (machine

learning) models, the final prediction will change as well. However, when you apply

the techniques in Section 2.3, such as, controlling the level of predictive accuracy,

aggregation and iteration, the final prediction will go stable.

In this chapter, we proposed a generalizable multistage workflow for the nonlin-

ear regression models to predict maps of abundance spatial distribution for reef fish

species. This workflow can effectively handle zero-inflated sampling data without

strong assumptions. The nonlinear prediction has the advantages, high accuracy,

low bias and well-performed in multi-resolution. Moreover, high adaptivity of the

workflow makes it suitable to different applications and datasets.
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Chapter 3

A TWO-STAGE MODEL

The purpose of study in this chapter is to develop a spatial regression model for

analyzing the soil carbon stock (SOC) data. Different from the application in Chapter

2, the desired model should perform well in both prediction and interpretation. Un-

fortunately, as mentioned in Chapter 1 there is trade-off between the two goals. For

example, generally speaking, the linear regression model has good interpretability but

bad prediction accuracy. In contrast, the nonlinear models are good at predicting but

the black-box property harms their interpretability. In this chapter, we proposed a

two stage model trying to break the trade-off between prediction and interpretation.

Section 3.1 introduces the data we used in this study. In Section 3.2, a two-stage

model is proposed. The model’s abilities in interpretation and prediction are discuss

from a conceptual view. The results and discussion are presented in Section 3.3.

3.1 Data

The soil carbon stock (SOC) data comes from the rapid carbon assessment study

initiated by the Natural Resources Conservation Services Soil Science Division of the

U.S. Department of Agriculture (USDA) Staff and Loecke (2016). More than 6200

sites across the conterminous United States were established according to a multilevel

stratified random sampling scheme. SOC stock for a fixed soil depth (0 - 30 cm) was

calculated using (3.1) (Adhikari et al., 2020). Figure 3.1 shows the map of SOC data

in a log transformed scale.

SOCstk = SOC ×BD ×D × (1− CF

100
) (3.1)
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where SOCstk is the SOC stock (Mg ha−1), SOC is the SOC content (g 100 g−1),

BD is the soil bulk density (Mg m−3), D is the given soil layer thickness (cm), and

CF is the volumetric fraction of the coarse fragments.

Figure 3.1: Soil carbon stock (SOC) data. The scale of SOC data was transformed
by the nature log function. This transformation normalized the SOC data (Figue 3.2)
for the convenance of modeling.

A wide range of environmental covariates (31 variables) were collected and evalu-

ated as SOC predictors. Table 3.1 lists their name, a brief description and their source.

Figure 3.2 shows a summary of SOC data and eight environmental covariates.

Different from the application in Chapter 2, this data is neat and tidy. As Figue

3.1 showing, the samples are well scattered across the whole area. It’s good for

prediction. And also, there are 31 covariates which is relatively sufficient for the

study of interpretation.
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Table 3.1: Environmental Variables Description and Data Source

Environmental variable Brief description Data source

Precipitation (PPT) 30-yr (1981 to 2010) annual average http://www.prism.oregonstate.edu/normals

Precipitation of the driest season

(PDRY)

30-yr (19712000) annual average precipitation

of the driest month

http://worldclim.org/bioclim

Potential evapotranspiration (PET) 30-yr (19712000) potential evapotranspiration https://doi.org/10.6084/m9.figshare.

7504448.v3

Precipitation of the wettest season

(PWET)

30-yr (19712000) annual average precipitation

of the wettest month

http://worldclim.org/bioclim

Dew point temperature (TD) 30-yr (19812010) annual average dew point

temperature

http://www.prism.oregonstate.edu/normals

Minimum temperature (TMIN) 30-yr (19812010) annual average minimum

temperature

http://www.prism.oregonstate.edu/normals

Mean temperature (TMEAN) 30-yr (19812010) annual average temperature http://www.prism.oregonstate.edu/normals

Maximum temperature (TMAX) 30-yr (19812010) annual average maximum

temperature

http://www.prism.oregonstate.edu/normals

Ecological region (ECOL3) Ecological zone map at level 3 legend DerivedfromgSSURGO

Net primary production (NETPP) Annual terrestrial primary production DerivedfromLandsat

Landsat Band 3 (RED) Landsat Band 3 for 2014 http://earthenginepartners.appspot.com/

science-2013-global-forest/download_v1.6.

html

Landsat Band 5 (SW1) Landsat Band 5 for 2014 http://earthenginepartners.appspot.com/

science-2013-global-forest/download_v1.6.

html

Landsat Band 7 (SW2) Landsat Band 7 for 2014 http://earthenginepartners.appspot.com/

science-2013-global-forest/download_v1.6.

html

National land cover database

(NLCD)

Land cover of the United States for 2011

Potential vegetation (PVEG) U.S. Potential natural vegetation Original Kuchler Types, v2.0

Normalized difference vegetation

index (NDVI)

Calculated as (NIR RED)/(NIR + RED),

where, NIR is near-infrared band (Landsat

Band 4)

http://earthenginepartners.appspot.com/

science-2013-global-forest/download_v1.6.

html

Elevation (DEM) Land surface elevation Derived from the national digital elevation

dataset (NDEM) from U.S. Geological Sur-

vey

Slope aspect (ASPECT) Direction of the steepest slope from the north Derived from the DEM

Slope length factor (LSFACTOR) Slope length factor calculated as in the USLE

(universal soil-loss equation)

Derived from the DEM

Multi-resolution valley bottom flat-

ness index (MRVBF)

Potential depositional areas Derived from the DEM

Melton ruggedness number (MRN) Melton ruggedness number Derived from the DEM

Mid-slope position (MSPOS) Covers the warmer zones of slopes Derived from the DEM

Wetness index (SAGAWI) Topographic wetness index with modified

catchment area

Derived from the DEM

Slope height (SLOPEHT) Height of the local slope Derived from the DEM

Slope gradient (SLOPE) Local slope gradient in percent Derived from the DEM

Valley depth (VALDEP) Calculates the extent of valley depth Derived from the DEM

Drainage class (DRNG) Natural soil drainage class Derived from gSSURGO

Surface geology (GEOSUR) Surficial geology class Derived from gSSURGO

Hydrological group (HYDRO) Hydrologic soil group class Derived from gSSURGO

Soil order class (SOIL) Taxonomy soil order class Derived from gSSURGO

Soil temperature regime (SOILTR) Soil temperature regime class Derived from gSSURGO
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Figure 3.2: The summary of SOC data and 8 environmental covariates. The num-
bers are correlation values between variables.

3.2 Methods

As mentioned in the beginning of this chapter, the challenge of this study is the

trade-off between prediction and interpretation. To break this trade-off, we propose a

novel two-stage statistical method that combines global mostly-linear effects (Stage-

1) and with non-linear effects (Stage-2). In particular, Stage-1 relies on the universal

regression kriging whereas Stage-2 is based in a Generalized Additive Model with

splines to capture non-linear effects.

3.2.1 The Two-stage Model

The two-stage model is built on the basis of two well studied statistical models,

universal regression Kriging and generalized additive model.

1) Universal regression kriging (URK)
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The Universal regression kriging relies on the expression of the quantity of

interest Y as follows.

Y (s) = f(s) +X(s)β + λ(s) + ε(s) (3.2)

where s is the spatial location, f(s) is a low degree polynormial function that

can capture the deterministic spatial trend of dependent variable; X(s)β is a

regression part to capture the global linear relationship between the dependent

variable Y (s) and the explanatory covariates X(s); λ(s) is a stochastic part that

captures the spatial structure of the variable Y (s), λ(s) is generally assumed to

be a zero-mean stationary Gaussian process; ε(s) is the nugget effect, usually

assumed independent from Y and independent across locations, and identically

distributed.

2) Generalized additive model (GAM)

Generalized additive models were originally invented by Hastie and Tibshirani

in 1986 (Hastie and Tibshirani (1986), Hastie and Tibshirani (1990)). GAM

assumes the relationships between the individual predictors X and the depen-

dent variable Y follow smooth functionals that can be linear or nonlinear. These

smooth functional relationships can be estimated and added up as the predictors

of E(Y |X) and is expressed as following.

Y = β0 + f1(X1) + ...+ fp(Xp) + ε (3.3)

where fi(Xi) is an arbitrary smooth univariate function of Xi, usually based on

basis decomposition such as splines; ε are i.i.d errors. Meanwhile, the predictor

function has constraint equal to zero.

E(fi(Xi)) = 0, i = 1, ..., p
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3) The two-stage model

The proposed two-stage universal regression kriging generalized additive model

is a workflow in which we apply the universal regression kriging in the first stage

and the generalized additive model in the second stage.

[Stage-1:] Universal regression kriging model

Y (s) = fspl(s) +X(s)β + λ(s) + δ(s) (3.4)

where fspl(s) is a linear function of spatial coordinates capturing the global

linear spatial trend; X(x)β is the linear regression of covariates representing the

global linear effects of covariates X(s) on Y (s); λ(s) is a zero mean stationary

Gaussian process which explains the global stationary spatial dependence of the

process Y; δ(s) are residuals of the first stage.

[Stage-2:] Generalized additive model

δ(s) = fsps(s) +

p∑
i=1

fi(Xi(s)) + ε(s) (3.5)

where fsps(s) is a spatial smoother that handle the nonlinear and nonstation-

ary spatial dependence;
∑p

i=1 fi(Xi(s)) are the additive nonlinear univariate

functions for each covariate; ε(s) is a pure white-noise error.

3.2.2 Model Interpretability and Analysis Flow

There is no mathematical definition of model’s interpretability. However, we can

consider it as the degree to which a human can understand/explain the model. In

this section, we discuss 3 levels of interpretability.

The concept that corresponds to the first-level (model-level) interpretability of a
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model is the R2 coefficient expressed as the ratio of model explained variation and

total variation.

R2 = 1− SSE

SST
=
Explained V ariation

Total V ariation

In the two-stage model (3.4) and (3.5), all the components are additive. It’s

a elegant and powerful assumption that offers a natural way to decompose the in-

terpretability of model into its components. The key idea in the definition of R2

is the explained variation by the model. Similarly, we can generalized this idea to

the second-level (component-level) interpretability (Figure 3.3). In the first stage, the

Universal Regression Kriging (URK) models the global variations of the data. In par-

ticular, the URK decomposes the total variation into 4 parts: the variations explained

by a global linear spatial trend, the variations explained by the linear regression of

covariates, the variations explained by a zero-mean stationary spatial random process

and the remaining unresolved variations. In the second stage, the residuals of URK

model become the input of Generalized Additive Model (GAM). The variations that

can’tnot captured by URK will be handled in GAM. Similarly, GAM decomposes

the variations into a non-stationary or non-linear spatial component explained by a

spatial smoother and nonlinear covariates component explained by spline smoothers

and a pure errors component which can’t be explained by both URK and GAM.

The third-level (element-level) interpretability is the explanation of relationship

between elements and the response variable Y in each component cited above in

the second-level. For example, the global linear relationship between the covariates

X(s) and response variable Y (s) can be explained by the coefficients β, the global

stationary zero mean Gaussian process λ(s) can be characterized and explained by

the parameters of its covariance function. Since the element-level interpretability of

URK is simple and straightforward, we put more effort on GAM.

n general, GAM has the interpretability advantages of multiple linear regression
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Figure 3.3: Two-stage Universal Regression Kriging Generalized Additive Model

model where the contribution of each covariate to the response variable is clearly

encoded. In addition, GAM is substantially more flexibility since the relationships

between covariates and dependent variables are not assumed to be linear. Since the

marginal impact of a single covariate Xi, does not depend on the values of the other

covariates in GAM, we can simply interpret its relationship to the response variable

by exhibiting the univariate function fi(Xi). For example, the synthetic example of

Figure 3.4, we can say that the expected value of first stage residuals δ(s) increases

exponentially asX1(s) increases, holding everything else constant. Another important

feature of GAM ,which also plays an important role in model interpretation, is the

ability to control the smoothness of the predictor functions. With GAMs, we can

impose the prior belief that predictive function is inherently smooth in nature, even

though the dataset may suggest a more noisy function.
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Figure 3.4: Generalized Additive Model Demo

As Figure 3.3 showing, the model is fitted in two stages, which leads to an analysis

conducted in two stages bringing the following advantages.

(1) Layers of analysis

In spatial data analysis, extracting global linear trend (with covariates) and

stationary spatial dependence is the first interest of geostatistical studies, which

we consider as the first layer analysis corresponding to the first-stage of the

proposed model. The second layer analysis that aims at revealing the nonlinear

relationships between response variable Y (s) and covariates X(s) coincides with

the second stage of the analysis flow. The second layer analysis is subtle and

on the basis of first layer analysis. The order of these two layers is meaningful

since it is challenging to separate the effects of global stationary from nonlinear

relationships between Y (s) and X(s) in second layer, if this order is not followed.

For example, the existing machine learning models that be applied in spatial

context do not include a independent stochastic process, like the λ(s) in first

stage, to capture the spatial dependence.

(2) Simplicity and flexibility

The universal regression kriging model and generalized additive model are well

studied in the statistical community. In the proposed two-stage model, we

connect them by following the simple rule that the former’s output will be

the latter’s input. Moreover, there are existing R packages that implement

45



these two models respectively. In this paper, we use the R packages ”fields”

Nychka et al. (2017) for URK and ”mgcv” Simon Wood (2019) for GAM. The

differences among packages mainly come from the target problems they want

to solve and the algorithms that used by the model. For example, fields and

FRK Andrew Zammit-Mangion (2020) are two R packages implementing the

universal regression kriging model. The main issue that FRK focuses on is

computational intensity of large/big spatial data, while fields be designed as a

versatile tool for spatial analysis with moderate size data. The algorithms they

utilized to estimate parameters are different as well. FRK uses EM algorithm,

while fields uses REML and GCV algorithms. Various choices of packages offer

great flexibility for analyzing data. We can select the most suitable packages

according to the requirements in practise.

3.2.3 Prediction Setup

In predictive modelling and especially with the increasing use of machine learning

techniques, a trade-off emerges between interpretability and accuracy of prediction.

One of the major goals of this paper is to find an optimal framework to balance

this trade-off. As Figure 3.3 shows, the two-stage model can accommodates linear

and nonlinear, stationary and non-stationary variations. In the following section,

we assess the predictive accuracy of the proposed two-stage model by comparing it

with popular machine learning (nonlinear) models for simulated data and soil organic

carbon data.

Figure 3.5 illustrates the framework of model comparison. Five models are eval-

uated and compared: an ordinary linear regression model, the proposed two-stage

model, a random forest model, a gradient boost model and a support vector ma-

chine model. Since some models, like gradient boost and support vector machine,
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Figure 3.5: Framework of Model Comparison

can not handle categorical data, thus encoding process or feature engineering can

be performed as discussed in Section 3.3.2. In order to avoid data linkage, nested

resampling was applied to tune the hyperparameters of machine learning models.

Then, all five models were compared through a shared cross-validation scheme, as

illustrated in Figure 3.5 (right). Statistics of combined test data, like the predictive

root mean square error (RMSE) or predictive R2, were used to evaluate and compare

the accuracy of predictions.

3.3 Results and Discussion

In this section, we exhibit the results in terms of interpretability and prediction

of the proposed two-stage model fitted on the SOC data and its covariates described

in Section 3.2.

3.3.1 Interpretation of Fitted Model

(1) Variable selection

The principle of Occams Razor states that among several plausible explanations

for a phenomenon, the simplest is best. Simplicity plays a important role in model’s

interpretability. We want to explain the data in the simplest way redundant pre-

dictors should be removed. Moreover, unnecessary predictors will add noise to the
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estimation of other quantities that we are interested in. So, the first thing we need

to do is variable selection. Since there are several categorical variables in the data,

we choose group lasso Yuan and Lin (2006) to select the important variables to be

included in the regression model.

Figure 3.6: Group Lasso Variable Selection

The covariates selected by group lasso are as follows.

ASPECT REDL14 TMEANAA30 PWETCL5 NDVI14 MIDSLPPOS

LSFACTOR DRNGSS7 NLCD2011 SoilOrder SOILMREGIM DEMNED6

Landsat NPP PET SLOPEHT TMAXAA30 VALDEP

(2) Components of the fitted model on data

With the previously selected covariates, the two-stage model is fitted to the organic

soil carbon data. In each stage, we summarize the model information and elucidate

the structure of data interpreted by the model.

Stage-1: Universal regression kriging model

The estimated regression coefficients are exhibited in Table 3.2. Because all the

covariates were scaled before model fitting, the coefficients βs are comparable with

each other and provide the relative importance of each of them to the soil carbon

stock.. The coefficients α0, αlong and αlat belong to fspl(s) which is a linear surface
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trend function of spatial coordinates (slong, slat).

fspl(s) = α0 + αlong ∗ slong + αlat ∗ slat

Table 3.2: Estimated Coefficients by URK

α0 αlong αlat βASPECT βREDL14

4.3597 0.0025 -0.0025 -0.0284 -0.1703

βTMEANAA30 βPWETCL5 βNDV I14 βMIDSLPPOS βLSFACTOR

-0.2100 0.1360 0.1439 0.0621 -0.0373

βDEMNED6 βDRNGSS7 βNLCD2011 βSoilOrder βSOILMREGIM

0.0429 0.2361 0.1180 0.1172 0.0629

βLandsat NPP βPET βSLOPEHT βTMAXAA30 βV ALDEP

-0.0248 -0.0940 0.0015 0.0218 -0.0256

Each component of the URK model (3.4) can be visualized in Figure 3.7 which

provides further interpretation. The fitted R2 of first stage model URK is about

67.3%. In other words, it means there is approximately 22.7% variation of the data

left in the residuals δ(s) and will be dealt with GAM in second stage.

Figure 3.7: Fitted Universal Regression Kriging Model
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Stage-2: Generalized additive model

The fitted information of GAM can be found in Table 3.3. Under the significant

level 0.01, there are three covariates have non-zero effect on the response variable.

They are REDL14, NDVI14 and SoilOrder. All of other covariates are not significant,

in other words, they have no effects on the response variable. Figure 3.8 shows the

significant fitted predictor functions (smoothers).

Table 3.3: Importance of Smoothers Fitted by GAM in Second Stage

Smoother edf Ref.df F p-value

s(Long,Lat) 2.000 2.000 0.530 0.588885

s(ASPECT) 2.617 2.892 2.661 0.028600

s(REDL14) 2.733 2.950 8.553 4.20e-05 ***

s(TMEANAA30) 1.000 1.000 0.060 0.806594

s(PWETCL5) 2.084 2.488 1.267 0.197143

s(NDVI14) 3.000 3.000 20.432 3.62e-13 ***

s(MIDSLPPOS) 1.560 1.909 0.562 0.524011

s(LSFACTOR) 1.658 2.037 0.631 0.508336

s(DEMNED6) 1.000 1.000 0.078 0.780581

s(Landsat NPP) 2.300 2.688 3.391 0.012992

s(PET) 1.000 1.000 0.151 0.697162

s(SLOPEHT) 1.000 1.000 0.149 0.699483

s(TMAXAA30) 1.000 1.000 0.039 0.843379

s(VALDEP) 1.000 1.000 0.061 0.804975

s(DRNGSS7) 2.461 2.774 3.776 0.028268

s(NLCD2011) 1.905 2.283 2.966 0.047557

s(SoilOrder) 2.330 2.700 6.752 0.000277 ***

s(SOILMREGIM) 1.105 1.202 0.450 0.472465
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Figure 3.8: Estimated GAM Predictor Functions (Smoothers)

(3) Analysis of spatial patterns of significant predictors

The most obvious benefit of interpretability is understanding the underlying mech-

anisms of the system. The first stage URK model reveals the global linear relation-

ships between covariates and response variable, then, the second stage GAM corrects

the first stage understanding with more subtle non-linear details. Finally, we obtain

the overall understanding by adding up results from the two stages. The following

Equation (3.6) shows the estimated relationship (f̂(Xi)) between covariate Xi and

response variable Y .

f̂(Xi) = Xiβ̂i + f̂i(Xi) (3.6)

where β̂i was the linear coefficient estimated by URK and f̂i(Xi) was the nonlinear

smoothing function fitted by GAM. These functional relationships bring to light the

underlying dependencies between the covariates and soil carbon.

In Figure 3.9, the top row plots show the nonlinear fitted functions for covariates,

REDL14, NDVI14 and SoilOrder. The visualization of predictor function leads us to

check the part of function where the 95% confidence interval is away from zero (seg-

ment between the blue vertical lines), which indicates a significant contribution of the

covariate to the soil carbon prediction. After representing the significant contribution

in the context spatial context (the bottom row of Figure 3.9), one can vizualise the

spatial reparttion of the significant predictors. First, significant covariate data tend

to exhibit some spatial clustering patterns. Second, the spatial regions of 3 clusters
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are overlapped and located in the southwest of United States. A reasonable hypoth-

esis may be like that, there is a latent variable which influences the 3 covariates, but

it’s not included in the data and need further investigation. The clusters provides the

information of location where the further investigation should be conducted.

Figure 3.9: Spatial Clusters of Significant Non-linear Predictors

(4) Comparison to GWR model

Geographically weighted regression (GWR) model Brunsdon et al. (1998) is an

extension of the traditional regression framework and allows the regression coefficients

to vary across space. GWR is a very popular geostatistical tool to explore possible

spatial patterns of the covariates effects (regression coefficients) and acquire valuable

information for further analysis, such as clusters detection. In the following, we

compare the interpretation of the components of each GWR and Two-Stage models

fitted on the carbon soil data.

First, there are some covariates’ effect claimed to be global linear in Two-Stage

model but are spatially varying in GWR model. For example, in Figure 3.9 (top

row), the effects of covariate NDVI14 shows non-linearity. By comparing the two

GWR coefficients maps (Figure 3.10), NDVI14 and TMEANAA30, the spatial vari-

ability of TMEANAA30 is larger than NDVI14. So, if we assume the coefficient of

NDVI14 is spatially varying (non-linear), GWR model tell us that the coefficient of
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TMEANAA30 will be spatially varying as well. In other word, the effect of covari-

ate TMEANAA30 is not globally linear. While Table 3.3 shows that the covariate

TMEANAA30 in the second stage GAM has no significant effects on response variable

(p-value = 0.806594). It indicates that TMEANAA30 only has the global linear (con-

stant coefficient) relationship with response variable in the first stage URK model.

In sum, GWR model and Two-Stage model provide contradicting explanation to co-

variate TMEANAA30. The reason hides in the stochastic process term λ(s) in the

first stage URK model. As Figure 3.10 (right) showing, the value λ(s) varies spatially

compensating for errors in the linear global term. Since the coefficients of GWR are

estimated locally, λ(s) will cause their estimated values varying across space.

Figure 3.10: Constant or Varying Coefficients

Second, the spatial clustering patterns of the covariate effects differ from GWR

to the Two-Stage model. In Figure 3.11, the repartition of REDL14 significance

(left) shows non-negligable differences between GWR and Two-Stage model. The

maps of NDVI14 (middle) present some similarities but also differences, for example,

the junction region between Arizona and Utah, the Northeast states and Florida.

For SoilOrder (right), the two maps show similarity in the west of United States

but differences in other regions. The reason causing the differences is similar to the

analysis of Figure 3.10. In addition, the insignificant parts that we get rid of in GAM

plots may also cause the GWR coefficients spatially varying.

In summary, the power of interpretability of Two-Stage model comes from its abil-

ity of decomposition. First, Two-Stage model conducts analysis hierarchically and
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Figure 3.11: Comparing Two-stage model and GWR

the two analysis layers can be easily and clearly decoupled. The second layer (GAM)

analysis relies on the basis of extracting out all the influences of first layer (URK).

Second, in each layer, the additivity of components ensures decomposition of inter-

pretable components. For instance, the spatial cluster patterns of REDL14 (Figure

3.11), the analysis is base on the condition of extracting out all of other influences,

such as the influences from global linearity, global stationary spatial dependence, non-

stationary spatial dependence and other covariates. While GWR model mixes up all

of those influences, which makes the interpretation ambiguous.

3.3.2 Prediction Results

In this section, we compare the prediction results of different models. The frame-

work for comparison (Figure 3.5) was introduced in Section 3.2.3.

(1) Real data

Different from interpretability, the goal of prediction is accuracy and ability to pre-

dict the data characteristics. In order to compare the model capabilities of prediction,

we employ all predictors (covariates) into the models.

To work with categorical data, we can use variable encoding approach. However,
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this approach didn’t work well on this real dataset. It caused the predictive R2 of SVM

model (≈ 49%) even lower than the ordinary linear regression model (≈ 54%). To

solve this issue, we adopted feature engineering on categorical variables. For example,

SoilOrder is a nominal categorical variable. Feature engineering can be applied by

using the median value of response variable to instead the nominal number of category

(Table 3.4). Now, we transferred the nominal categorical variable to a numerical

variable which can be accommodated by any model. After feature engineering (all

categorical covariates), we found that the predictive R2 increased from 49% to 58%

with SVM model but changed negligibly with other models.

Table 3.4: Example of Feature Engineering for the Covariate Soilorder

SoilOrder 1 2 3 4 5 6 7 8 9 10 11

y.median 3.9276 3.5199 4.0103 4.0338 3.6944 5.9676 4.0752 4.3900 4.7165 3.0662 4.8314

Table 3.5 lists the predictive rmse and predictive R2 for the compared models. The

Two-Stage model stays competitive to the popular machine learning models, Random

forest, XGBoost and SVM. However, comparing to URK model, Two-Stage model

only improves the predictive R2 by 0.5% which is negligible in some circumstances.

The reason came from the nature of data. The purely random variation takes a large

proportion (approximately 40%) in the total variation of data. It made all the models,

except linear regression model, obtaining similar predictive R2. Regardless of only

0.5% improvement in predictive R2, Two-Stage model discovered much more useful

information comparing to URK model (see Section 3.3.1).

(2) Simulation data

In order to demonstrate the abilities of the two-stage model to compete with

popular machine learning models and improve its capabilities compared to URK and

linear regression models, we simulate a dataset and conduct the comparison described
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Table 3.5: Prediction Comparison on Real Data

Model Predictive RMSE Predictive R2

LM 0.6978181 0.5392069

URK 0.6729866 0.5732470

Two-Stage 0.6687347 0.5786224

RF 0.6534186 0.5958378

XGB 0.6689105 0.5765102

SVM 0.6693818 0.5757998

in Figure 3.5. The response variable Y (s) is simulated as

Y (s) = Yx(s) + λ(s) + p(s) + ε(s) (3.7)

where the components are generated as follows and their visualizations can be found

in Figure 3.12.

Yx(s) represents the nonlinear relationship between two covariatesX1(s) andX2(s)

and the response variable.

Yx(s) = 0.1 ∗X1(s)
3 + 10 ∗ sin(X2(s) + 3)

X1(s) ∼ unif(1, 4)

X2(s) ∼ unif(0, 2π)

λ(s) is a zero mean Gaussian process capturing the isotropic stationary spatial

dependence. λ(s) entirely characterized by a Matrn covariance function as follows.

Cν(|s1 − s2|) = σ2 21−ν

Γ(ν)

(
√

2ν
|s1 − s2|

ρ

)ν

Kν

(
√

2ν
|s1 − s2|

ρ

)
where Γ(·) is the Gamma function, Kν(·) is the modified Bessel function of the second

kind, |s1 − s2| is the Euclidean distance between spatial point s1 and s2, and σ2 = 1,

ρ = 0.5 and ν = 1.5.
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p(s) = 0.005 ∗ sx ∗ sy represents non-stationary dependence in the spatial coordi-

nates sx and sy.

ε(s)
i.i.d.∼ N(0, 10.24) is the pure error also called nugget effect in Geostatistics.

Figure 3.12: Simulated Data

The results of model comparison are shown in Table 3.6. URK model shows a

predictive R2 ≈ 49.3% which is closed to linear regression model 48.4% but far away

from Two-Stage model 80.7%. By relationship of URK and Two-Stage model, we

know the predictive R2 contributed by the second stage GAM is 31.4% which is a

great improvement. Moreover, comparing to Random forest, XGBoost and SVM,

Two-Stage model has higher predictive R2 and similar results to the random forest.

The comparison on synthesized data again proves the predictive ability of Two-Stage

model is competitive to popular machine learning models.

57



Table 3.6: Prediction Comparison on Simulated Data

Model Predictive RMSE Predictive R2

LM 5.695840 0.4843744

URK 5.667649 0.4932645

Two-Stage 3.499716 0.8067849

RF 3.522183 0.8026377

XGB 3.645922 0.7884789

SVM 3.564608 0.7981013

In summary, the two-stage model has good interpretability which is close to the

linear regression. Meanwhile, it keeps high prediction accuracy that is competitive

to the nonlinear (machine learning) models, like random forest, xgboost and support

vector machine. It makes the two-stage model stand out from the rest (Figure 3.13).

Figure 3.13: Breaking the Trade-off Between Prediction and Interpretation
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Chapter 4

GAUSSIAN PROCESS BART

The Bayesian Additive Regression Trees (BART) model is rarely used in spatial

applications. One of the reasons is that the error term in BART model is restricted

to be independently distributed which is unusual in spatial problems. In this chapter,

we get rid of this constraint and propose a Gaussian process BART model for spatial

regression problems. First, the traditional BART model is introduced in Section

4.1. Then, in Section 4.2, we develop a new BART model that can accommodate

the correlated errors. In section 4.3, the Gaussian process BART model is studied.

Section 4.4 shows two experiments and a testing on real data.

4.1 Introduction

Bayesian Additive Regression Trees (BART), proposed by Chipman et al. (2010),

can be viewed as a sum-of-trees model as follows.

y = g(X;T1,M1) + ...+ g(X;Tm,Mm) + ε, ε
i.i.d∼ N(0, σ2) (4.1)

where y,X are observed dependent and independent variables; ε is independent and

identically distributed random error; T denotes a tree, consisting of a set of interior

nodes with decision rules and a set of terminal nodes; M = {µ1, ..., µb} where b is

the number of terminal nodes of T ; g(X;Ti,Mi), i = 1, ...,m denotes a single binary

regression tree that assigns µj, j = 1, ..., b in M to the observations through T . A

example of single binary regression tree is illustrated in Figure 4.1.

BART is inspired by the idea of boosting that sums the contribution of sequen-

tial weak learners (trees) to get a much more accurate prediction. Different from
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Figure 4.1: (Left) An example of single binary tree, with internal nodes labelled by
their splitting rules, terminal nodes labelled with the corresponding parameters µi
and the observations associated with it. (Right) The corresponding partition of the
sample space and the step function.

other boosting methods, like, gradient boosting trees, BART works in a Bayesian

framework using prior and likelihood to generate a posterior distribution of the pre-

diction. The posterior distribution provides much richer information than the point

estimation of classical regression models. In addition, the Bayesian framework has

a built-in complexity penalty mechanism that automatically initializes the model’s

hyperparameters, like, max tree size, which normally be tuned via cross-validation in

other models.

Experiments study (Chipman et al., 2010) showed that BART outperforms other

popular machine learning methods, including Neural Nets, Gradient Boosting Trees

and Random Forest. Recall the spatial nonlinear regression model which excludes

the stochastic process term w(s) in model (1.1):

y(s) = f(s;X(s)) + ε(s), ε(s)
i.i.d∼ N(0, σ2) (4.2)

The BART model (4.1), of course, is a good candidate in this category. But we

want to be more ambitious. Since the term w(s) in model 1.1 models the effects

of unobserved independent variables. Keeping it in the spatial nonlinear regression

model can benefit us in both prediction and interpretation (see Section 4.3.1).
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4.2 Bart for Correlated Errors

In BART model (4.1) the error term ε is assumed independent and identically

distributed, ε(s)
i.i.d∼ N(0, σ2). We can generalize this assumption and allow the error

term has a general correlated structure, ε ∼ N(0,Σ).

y = g(X;T1,M1) + ...+ g(X;Tm,Mm) + ε, ε ∼ N(0,Σ) (4.3)

We will build the new model (4.3) and illustrate how it works in this section. But,

first of all, the question can be simplifie to a single tree model by taking advantage

of the reductions Rj = y −
∑

k 6=j g(X;Tk,Mk).

Rj = g(X;Tj,Mj) + ε, ε ∼ N(0,Σ)

Hereafter, we remove the subscripts and discuss on the single tree model (4.4).

R = g(X;T,M) + ε, ε ∼ N(0,Σ) (4.4)

4.2.1 Dummy Representation

To understand model (4.4), the first and most impotant step is dummy represen-

tation. Simply speaking, dummy representation provides a matrix form to the single

tree model (4.4). The tree g(x;T,M) can be denoted as follows.

g(X;T,M) = Dµ (4.5)

where

µ = [µ1, µ2, ..., µb]
T

and

D =



d11 d12 ... d1b

d21 d22 ... d2b
...

...
. . .

dn1 dn2 ... dnb


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D is called dummy matrix which is a n×b matrix. n is the number of observations

and b is the number of bottom nodes. For each row in D, there is only one entry

equal to 1 and the rest are equal to 0. For example,

[di1, ..., di,j−1, di,j, di,j+1, ..., din] = [0, ..., 0, 1, 0, ...0] (4.6)

is the ith row in D and its jth column is 1. Matrix D can be viewed as a map that maps

the observations to the bottom nodes of the tree. The row (4.6) works as mapping

the ith observation to the jth bottom node. An example is as following. The dummy

matrix D mapped r2 to node 1, r3 and r4 to node 2, r1 and r5 to node 3.

R = g(X;T,M) = Dµ =



0 0 1

1 0 0

0 1 0

0 1 0

0 0 1




µ1

µ2

µ3



Based on the dummy representation, the tree model (4.4) can be re-denoted as a

matrix form.

R = g(X;T,M) = Dµ+ ε, ε ∼ N(0,Σ) (4.7)

The matrix form makes mathematical derivation possible. Moreover, given X this

representation perfectly decoupled the components T and M in the tree model. It

means if X and T are fixed a dummy matrix D is uniquely determined regardless the

value of µ in M . This decoupling will benefit the calculation of marginal likelihood

p(R|X,T ) which is the pivot of MCMC transitions. The details will be discussed in

next section.
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4.2.2 Metropolis-Hastings Search

In BART, each tree be updated at every MCMC iteration. Recall (4.4), obviously,

to update a tree we need to update its components T and M . Naturally, the structure

of tree which is T should be updated first. ? proposed Metropolis-Hastings algorithm

to draw a sequence of trees,

T 0, T 1, T 2, ...

The sequence starting with an initial tree T 0, iteratively simulate the transitions

from T i to T i+1, i = 0, 1, 2, ..., by the following two steps:

(1) Generate a candidate value T ∗ with probability distribution q(T i, T ∗).

(2) Set T i+1 = T ∗ with probability

α(T i = T ∗) = min{q(T
∗, T i)

q(T i, T ∗)

p(R|X,T ∗)p(T ∗)
p(R|X,T i)p(T i)

, 1} (4.8)

Otherwise, set T i+1 = T i.

In (4.8) the transition kernel q(·, ·) and the prior p(T ) are same in both traditional

BART and new BART. So, (4.9) doesn’t change as well.

q(T ∗, T i)

p(T i)

p(T ∗)

q(T i, T ∗)
(4.9)

On the other hand, the correlated data goes into (4.10) which is a marginal like-

lihood ratio. And this ratio is the difference between the traditional BART and the

new BART.

p(R|X,T i+1)

p(R|X,T i)
(4.10)

In the discussion of dummy representation, we know that given X and T a dummy

matrix D can be uniquely determined. So, the marginal likelihood p(R|X,T ) is equal

to p(R|D). Then, (4.10) is equal to (4.11) as well.

p(R|Di+1)

p(R|Di)
(4.11)
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Now the question is converted to calculate p(R|D). By (4.7), we can get the joint

likelihood (4.12).

p(R|D,µ) ∼ N(Dµ,Σ) (4.12)

Then the marginal likelihood can be got by integrated out the µ. The only thing

we need is a prior distribution π(µ).

p(R|D) =

∫
p(R|D,µ)π(µ) dµ (4.13)

A Gaussian prior π(µ) ∼ N(µ̄, Q−1) is preferred, because it conjugates to (4.12).

µ̄ and Q are the mean and precision matrix of the Gaussian prior distribution respec-

tively. (4.14) shows the result of the integration (4.13). The proof can be found in

Appendix A.1.1;

p(R|D) =
(2π)−

n
2 |Σ|− 1

2 |Q| 12
|Q+DTΣ−1D| 12

exp{−1

2
(−vT (Q+DTΣ−1D)v + µ̄TQµ̄+RTΣ−1R)}

(4.14)

where, v = (Q+DTΣ−1D)−1(Qµ̄+DTΣ−1R).

Let µ̄ = 0, (4.14) can be simplified to (4.15).

p(R|D) =
(2π)−

n
2 |Σ|− 1

2 |Q| 12
|Q+DTΣ−1D| 12

exp{1

2
[RTΣ−1D(Q+DTΣ−1D)−1DTΣ−1R−RTΣ−1R]}

(4.15)

Finally, we plug (4.15) into the marginal likelihood ratio (4.11) and get (4.16).

The computational complexity of (4.16) will be studied in Section 4.2.4. And the

details of calculation can be found in Appendix A.3.

p(R|Di+1)

p(R|Di)
=
|Qi+1| 12
|Qi| 12

|Qi + (Di)TΣ−1Di| 12
|Qi+1 + (Di+1)TΣ−1Di+1| 12

· exp{1

2
RTΣ−1

[Di+1(Qi+1 + (Di+1)TΣ−1Di+1)−1(Di+1)T −Di(Qi + (Di)TΣ−1Di)−1(Di)T ]Σ−1R}

(4.16)
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4.2.3 Posterior Distribution of µ

In Section 4.2.2, the tree structure T was updated. Given the new T , we can

update M which is the set of µ in the bottom nodes. Since X and new T are known,

the likelihood of µ is easily obtained from (4.12).

p(R|µ) = p(R|D,µ) ∼ N(Dµ,Σ) (4.17)

According Bayesian theory, the posterior probability density function of µ is pro-

portional to the product of its likelihood and prior probability density function (4.18).

p(µ|R) ∝ p(R|µ)π(µ) (4.18)

Similar to the calculation of marginal likelihood (4.13), we choose the conjugate

prior π(µ) ∼ N(µ̄, Q−1). The posterior distribution p(µ|R) is as (4.19) and the proof

can be found in Appendix A.1.2.

p(µ|R) ∼ N( (Q+DTΣ−1D)−1(Qµ̄+DTΣ−1R) , (Q+DTΣ−1D)−1 ) (4.19)

Furthermore, if let µ̄ = 0, (4.18) can be simplified to (4.20).

p(µ|R) ∼ N((Q+DTΣ−1D)−1DTΣ−1R, (Q+DTΣ−1D)−1) (4.20)
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4.2.4 Computational Complexity

The new BART works with the covariance matrix Σ whose dimension is n×n. n is

the number of observations. When the data is big, the huge covariance matrix could

cause computational problems, for example, the computation of likelihood needs to

calculate the |Σ| and Σ−1. Their exact calculation requires O(n3) operations which

becomes an impossible mission for a personal computer when n is greater than, for

example, one million. In this section, we will investigate the computational complexity

of the new BART model. Since a preprocessing step called reordering can greatly

simplify the discussion, before digging into the computational stuff, it’s worth to

spend some time to understand the reordering.

Supposing a tree has b bottom nodes. The dummy matrix D maps n observations

to them. Based on this mapping, the observations can be partitioned at most b

sets. Reordering means that we reorder all the observations to make them ordered

successively in each partition. Since any reordering is a map and can be achieved by

multiplying a permutation matrix. Let’s assume permutation matrix P T (transpose

of P ) can realize the reordering. Then, the reordered dummy matrix, DP , can be

denoted as following.

P TD = DP , D = PDP (4.21)

where

DP =



d′11 d′12 ... d′1b

d′21 d′22 ... d′2b
...

...
. . .

d′n1 d′n2 ... d′nb


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and

d′ij =


0, i /∈ nj,

1, i ∈ nj.
i = 1, ..., n; j = 1, ..., b.

where nj, j = 1, .., b is the index set of observations that be mapped to jth bottom

node.

Intuitively, DP is formatting as follows.

DP =



1 0 ... 0

...
...

...
...

1 0 ... 0

0 1 ... 0

...
...

...
...

0 1 ... 0

0 0 ... 0

...
...

...
...

0 0 ... 0

0 0 ... 1

...
...

...
...

0 0 ... 1


Recall the example in Section 4.2.1, it’s easy to find the reordered matrix DP and

permutation matrix P .

D =



0 0 1

1 0 0

0 1 0

0 1 0

0 0 1


= PDP =



0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0





1 0 0

0 1 0

0 1 0

0 0 1

0 0 1


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Similar to (4.21), R and Σ also have their reordered counterparts.

R = PRP , Σ = PΣP T (4.22)

In Appendix A.2, we proved that reordering didn’t change the values of marginal

likelihood ratio (4.16) and posterior distribution (4.20). So, the discussion of compu-

tational complexity can be carried on their reordering expressions.

p(RP |Di+1
P )

p(RP |Di
P )

=
|Qi+1|1/2

|Qi|1/2
|Qi + (Di

P )TΣ−1P Di
P |1/2

|Qi+1 + (Di+1
P )TΣ−1P Di+1

P |1/2

exp{1

2
RT
PΣ−1P [Di+1

P (Qi+1 + (Di+1
P )TΣ−1P Di+1

P )−1(Di+1
P )T

−Di
P (Qi + (Di

P )TΣ−1P Di
P )−1(Di

P )T ]Σ−1P RP}

(4.23)

and,

p(µP |RP ) ∼ N((Q+DT
PΣ−1P DP )−1DT

PΣ−1P RP , (Q+DT
PΣ−1P DP )−1) (4.24)

For the new BART, we assume the precision matrix Σ−1 and Σ−1P are known. The

possible computation burden comes from the underline item in (4.23) and (4.24).

Q+DT
PΣ−1P DP (4.25)

In Appendix A.1.1, we show (4.25) is a b × b symmetric matrix and its calcu-

lation is the sum of all non-zero entries in Σ−1P . In (4.23) and (4.24), we need to

calculate |A| and (A)−1. They need O(b3) operations, b is the number of bottom

nodes. Fortunately, in the new BART, the size of tree which is the number of bottom

nodes are small (usually less than 20). So, if the number of nonzero entries in Σ−1P

is O(n), the MCMC updating of single tree needs O(n) operations. The details of

calculating (4.23) and (4.24) can be found in Appendix A.3. However, we have to

compute Σ−1 for back comparing and buildup tuning range in section 4.4.4. A sparse

approximation approach is adopted and introduced in Appendix B.

68



4.2.5 Example

In order to compare the new and old BART, we make an example to demonstrate

their similarities and differences. The simulation data was created as follows.

yi = f(xi) + ηi i ∈ {1, ..., n}

where, f(xi) = x3i , xi ∈ (−1, 1); n = 200. We assumed the error term ηi followed a

normal distribution ηi ∼ N(0,Σ). There are two scenarios about the structure of the

error term.

(1) ηi are independent and identically distributed (i.i.d.)

In this scenario, Σ = σ2I, and the new BART should be identical to the old

BART. Figure 4.2 (left) proved this claim.

(2) ηi are correlated

In this scenario, ηi was created as follows.

εi ∼ N(0, σ2), i = 1, ..., n

η1 = ε1, ηj = ρεj−1 + εj, 0 < ρ < 1, j = 2, ..., n

We can denote ηi in a matrix form.

η = Aε

where

η =


η1
...

ηn

 , A =



1 0 0 . . . 0 0

ρ 1 0 . . . 0 0

0 ρ 1 . . . 0 0

...
...

. . . . . .
...

...

0 0 0 . . . ρ 1


n×n

, ε =


ε1
...

εn

 (4.26)
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The inverse of Σ can be calculate by

Σ−1 = σ−2A−TA−1

Let σ = 0.1 and ρ = 0.8, we examined the new and old BART with above two

settings of error term. Figure 4.2 shows the results. When the errors are i.i.d. the two

BART models are consistent. But, when the errors are correlated the two models are

different from each other. In Table 4.1, we measured the differences between the two

models. Compare to the old BART, the new BART fitted bad to the training data

but outperformed in restoring the function f(s). It means if the correlated structure

of errors is known the new BART can correct its fit to the real signal f(x) rather

than the noise according the information getting from covariance matrix Σ.

Figure 4.2: Left figure shows if the errors were i.i.d. the new BART degenerated to
the old BART. Right figure shows the new BART was different from the old BART
when the errors were correlated.

Table 4.1: Comparing BARTnew and BARTold

Model Training Data MSE Training Data R2 Restoring f(x) MSE

BARTold 0.008474055 94.0% 0.01849994

BARTnew 0.02189554 84.5% 0.01547938

BARTnew−BARTold
BARTold

158.4% -10.1% -16.3%
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4.3 Gaussian Process Bart Model

In the new BART model (4.3), the correlation structure of error term is arbitrary

because Σ is a general covariance matrix. However, in real world applications, people

always assumes the error term is satisfied some special correlation structure. There

are different ways to model it. In spatial statistics, as discussed in section 1.2, one

of the most popular ways is using the Gaussian process. So, by combining Gaussian

process and the new BART we proposed a new nonlinear spatial regression model

(4.27) which is named Gaussian process BART.

y(si) = fBART (X(si)) + w(si) + ε(si) (4.27)

where

• y(si) denotes the response variable observed at location si, i = 1, 2, ..., n.

• X(si) are covariates observed at si.

• fBART (X(si)) is the mean spatial trend function of X(si).

• w(si) is a Gaussian process modeling the effect of unobserved covariates.

• ε(si)
i.i.d.∼ N(0, τ 2) denotes the independent and identically distributed noise.

In Chapter 1, we introduced the two categories of spatial regression models. The

nonlinear spatial regression models don’t include the term w(s), which causes two

problems. One is that the models can’t take into account the latent covariates.

Another is that the models overfit the effects of observed covariates. On the other

hand, the spatial linear mixed models can capture the latent covariates’ effects with

w(s) but they can’t model the nonlinear effects of the observed covariates. Gaussian
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process BART model (4.27) is the first spatial regression model that is able to handle

the nonlinear effects of both observed and latent covariates.

4.3.1 Analysis of Variation

In this section, we proposed a method, called analysis of variation, to gain a

deep level understanding about the Gaussian process BART model (4.27). Figure 4.3

illustrates the idea of analysis of variation. The discussion can be divided into three

parts.

Figure 4.3: Analysis of Variation

First, the data generating process. From a physics point of view, observed data or

observations are generated by the underlying physical process and plus the pure error.

We call the underlying physical process data generating process. Based on this idea,

the total variations in the observations can be divided into two parts, the variations

explained by data generating process and the variations of pure error. In Figure 4.3,

we denote the variations with sum of square errors. The data generating process

fProcess(X(s), Z(s)) can include observed covariates X(s) and latent covariates Z(s).
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So, the total variations in data can be divided into three parts, SSfXprocess, SSf
Z
process

and SSEprocess.

Second, the ideal case. Figure 4.3 shows the ideal case that the Gaussian pro-

cess BART model (4.27) can perfectly explain the three parts variations in the

data, fnewBART (X(s)) catching SSfXprocess, w(s) catching SSfZprocess and SSEprocess go-

ing into εnew(s). It also indicates that the nonlinear models without w(s), like the

old BART model, will overfit the observed covariates process fprocess(X(s)). Be-

cause f oldBART (X(s)) will fit some variations belonging to the latent covariates process

fprocess(Z(s)) (SSfZprocess).

Third, the normal case. In practice the ideal case rarely happens. The reasons

may include, the new BART is still overfitting, the effects of latent covariates doesn’t

behave as spatial dependence, the assumption (stationary, isotropy) or parameter

setting of the Gaussian process w(s) is not suitable to the real data ,etc. However,

comparing to the old BART, if w(s) with its explained variations SSw can shrink the

variations SSfnewBART and SSEnew , the existing of w(s) is preferable. The shrinkage

of SSfnewBART can reduce overfitting of the new BART and restore more close to the

real underlying process of observed covariates X(s). The example in section 4.2.5

supports this claim.

4.3.2 The Failure of Likelihood Based MCMC

At first glance, Gibbs sampling is a good choice to estimate fBART and the param-

eters θ in model (4.27). θ includes parameters in the covariance function of Gaussian

process w(s) and τ 2. (4.28) and (4.29) are the two steps in MCMC updating.

θ | fBART (4.28)

fBART | Σ−1(θ) (4.29)
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First, given fBART , model (4.27) can be convert to a Bayesian hierarchical model

(4.30).

p(θ|y) ∝ p(θ)×N(w(s)|0,C)×N(y|fBART + w(s), τ 2I) (4.30)

Furthermore, the Gaussian process w(s) can be integrated out.

p(θ|y) ∝ p(θ)×N(y|fBART ,C + τ 2I)

Let Σ = C + τ 2I, we can get the posterior distribution p(θ|y) (4.31) which can be

used to update (4.28).

p(θ|y) ∝ p(θ)× 1√
|Σ|

exp{−1

2
(y − fBART )TΣ−1(y − fBART )} (4.31)

Second, if parameters θ are known, the precision matrix Σ−1 could be calculated

as well. The problem of updating (4.29) given Σ−1 was already solved in section 4.2.

Everything looks good so far. However, the devil is in the detail. Let’s look at an

experiment first. The simulation data is created as follows.

f(x(si)) = x(si)
3, x(si) ∼ unif(1, 3), i = 1, ..., n

w(s) ∼ GP (0, C(·)), C(|si − sj|) = σ2exp{−φ|si − sj|} (4.32)

ε(si)
i.i.d.∼ N(0, τ 2)

where σ = 1, τ = 1 and φ = 6. x(si) ∼ unif(1, 3) denotes that x(si) follows a uniform

distribution in the range (1, 3).

The MCMC samples of τ 2, σ2 and φ is showed in Figure 4.4 (a). The Markov chain

couldn’t burn into stationary. If we fixed one of the parameters, τ = 1, then the chain

achieved stationary in Figure 4.4 (b). But, in this case, the estimated parameter φ is

big (≈ 150) which makes the covariance matrix Σ = σ2I. So, the new BART model

degenerated to the old BART model.
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Figure 4.4: The failure of Likelihood based MCMC

For the problem shown in Figure 4.4 (a), the reason is because both BART and

Gaussian process are nonparameter and nonlinear model. They are sensitive to the

changes of data. An disturbance in the data may cause dramatic turbulence in the

Markov chain. When we fixed one or several parameters, this problem may be solved,

like the case in Figure 4.4 (b). However, the degeneration issue comes out. To explain

this issue, let’s recall the example in section 4.2.5. Table 4.1 tell us that working with

the true parameter ρ and Σ the new BART fitted bad to the training data. Actually,

the fitting will get worse when |ρ| approaches to 1. Suppose we know nothing about

the parameters of Σ and all the information comes from the data which determines

the likelihood. In likelihood based MCMC, the likelihood will guide its searching

behavior in parameter space. As a result, the data/likelihood will lead the parameter

ρ going to zero. In other word, the correlation structure of Σ will be eliminated

and Σ will degenerate to σ2I. The same thing happens in spatial context. If there

is no any prior information about the parameters of the covariance function C(·),

the data/likelihood will lead MCMC searching to eliminate the spatial dependent

structure in C(·) and makes Σ = σ2I. Figure 4.4 (b) just showed this situation. We

want to estimate the parameters which must be known first. It looks like we are

locked in a dead loop. In next section, we will introduce a key to open this lock,

which is called back comparing.
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4.3.3 Back Comparing and Tuning Range

In section 4.3.2, we discussed the failure of likelihood based MCMC. The reason

of failure is because the data leads the search in parameter space and tend to elimi-

nate the correlation structure. So, the solution should pull the parameter search in

the opposite direction. Instead let the data totally control the parameter searching

process, we need to intervene it by proposing candidates that scatter over a larger

range in parameter space. We proposed a strategy, back comparing, to select the good

candidates. Figure 4.5 demonstrates the idea of back comparing. First, we propose

an candidate θ. Second, use this candidate to fit the new BART model. With fitted

BART model fnewBART , the variation of residuals SSEnew
real can be calculated. Mean-

while, with the value of candidate θ, it’s easy to calculate the proposed variation of

the mixed errors SSMEnew
proposed which includes the errors comes from w(s) and ε(s).

Then, we compare SSEnew
real and SSMEnew

proposed. There are three possible cases.

(1) SSEnew
real < SSMEnew

proposed

Over-estimation. The proposed θ estimates more variations (SSMEnew
proposed)

when it works with the new BART fnewBART .

(2) SSEnew
real > SSMEnew

proposed

Under-estimation. The proposed θ estimates less variations (SSMEnew
proposed)

when it works with the new BART fnewBART .

(3) SSEnew
real ≈ SSMEnew

proposed

Good-estimation. The proposed θ provides good estimation about the varia-

tions of SSMEnew
proposed when it works with the new BART fnewBART .

Back comparing provides us a criteria to identify the good estimation of param-

eters. Figure 4.6 illustrates the parameter searching process. After proposed a set
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Figure 4.5: Back Comparing

of parameters {θ(0), ...,θ(n)} we apply the backing comparing to each of them. The

good estimations be picked out and put into a new set, called tuning range. All the

proposed parameters in the tuning range are good for both the model (4.27) and

the data. People can select the one that fits to their goals best. A more intuitive

analogy is the speaker volume control knob. You can tune the knob to get the volume

comfortable to you. However, the best volume differs from person to person. Even

you will adjust it when the situation changes, for example, the environment changes

from quiet to noisy.

Figure 4.6: Parameter space searching for the buildup of tuning range

There is still a question. How can we properly propose a parameter set {θ(0), ...,θ(n)}

for searching the tuning range? The answer is that we can use the information getting

from the old BART or the liner mixed models. All approaches in this section will be

demonstrated with concrete examples in section 4.4.
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4.4 Experiments and Results

In this section, we will show the applications of model (4.27) in two type of

problems, one dimension problems and two dimension problems. The methods, back

comparing and tuning range, will be discussed carefully. The idea of analysis of

variation introduced in section 4.3.1 will provide guidance to the parameter selection

in tuning range.

4.4.1 One Dimension Experiment

In one dimension, the class of autoregressive (AR) processes, and its extensions,

autoregressive moving-average (ARMA) processes are popular choices for modeling

time-varying processes. By Wold decomposition theorem, any AR(p) process is a

special Guassian process called Gaussian linear process if it satisfies the recursions

yt = φ1yt−1 + ...+ φpyt−p + εt

where {εt} is an i.i.d. sequence of N(0, σ2) random variables, and the polynomial

φ(z) = 1 − φ1z − ... − φpzp has no zeros inside or on the unit circle (Brockwell and

Davis, 2002). It means that the Gaussian process BART model (4.27) can be used in

one dimension problems.

Recall the example in section 4.2.5. It’s not exactly an AR(1) process but an

AR(1) error process. However, it’s also a Gaussian linear process. Because the

sequence η = {ηt} always follows a multivariate Gaussian distribution.

η ∼MVN(0,Σ), Σ = σ2AAT

where matrix A was defined in (4.26). In this case, the Gaussian process BART model

(4.27) becomes to (4.33). Next, we will treat this model with previously proposed
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methods.

y(ti) = fnewBART (X(ti)) + η(ti) i = 1, .., n (4.33)

Note: In this experiment, the parameters in model (4.33) are θ = {σ, ρ}. Their real

value are σ = 0.1 and ρ = 0.8 (the green point in Figure 4.7).

(1) Back comparing and Tuning range

In order to apply back comparing to find the tuning range, first, we need to pro-

pose a searching set {θ(0), ...,θ(n)} in parameter space. The estimation from old

BART model can provide clues, σ̂ = 0.1042189 where is the yellow dash line located

in Figure 4.7. We can search σ in the neighbor interval of σ̂ which is (0.05, 0.15)

shown in Figure 4.7. For the parameter ρ, its value must be constrained in (0, 1) to

keep the Gaussian process η(t) stationary. We divided each interval into 10 segments

and selected the centers as the searching set. So, the searching set included 100 can-

didates {θ(0), ...,θ(99)} which is showed in Figure 4.7. As the discussion in section

4.3.3, to apply back comparing we need to compare SSEnew
real and SSMEnew

proposed. Fig-

ure 4.7 shows the back comparing results SSEnew
real − SSMEnew

proposed. The cells with

negative (positive) value represent over-estimation (nuder-estimation). The tuning

range (green cells) was selected under the criteria |SSEnew
real − SSMEnew

proposed| < 0.5.

We can change this criteria to control the size of tuning range. In Figure 4.7, the left

panel shows the results that was obtained by working on fitted training data. First,

the model was fitted with all the observed data. Then, the observed data and their

model fitted values were used to calculate the variations, SSEnew
real and SSMEnew

proposed.

In this case, the BART model tends to overfit the data and causes the parameters

under estimated. To tackle this issue, instead of fitting training data we can use

predicted testing data and the observed testing data to compute the variations. The

predicted testing data was generated be a 4-folds cross-validation. Figure 4.7 right

panel presents the back comparing results and tuning range in this case. Now, you
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may have a question. Why the real value (green point) of parameters is not included

in the tuning range? Let’s look at the results of back comparing. Compared to the

real value, all the values in tuning range are under estimated which indicates their

corresponding variations SSw (see Figure 4.3) are less than the real value case. Recall

the analysis of variation and Figure 4.3. The real value corresponds to the ideal case

(Figure 4.3) which rarely happen. While, the values in tuning range correspond to the

normal case (Figure 4.3). Last but not least, the number of folds in cross-validation

should not be too small (less than 4) to damage the correlation structure of covariance

matrix Σ.

Figure 4.7: Back comparing and Tuning range. The green dot is the real value of
parameters. The vertical yellow dash line shows the estimation of σ from the old
BART. The green cells indicate the tuning range. Left panel shows the tuning range
that selected using the fitted training data. While, the tuning range in right panel
was using the predicted testing data in a 4-folds cross-validation.

(2) Guidance of parameter selection in tuning range

As discussed in Section 4.3.3, any candidate in tuning range is good for the model

and data but maybe not for your purpose. Besides personal purpose, there is a
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guidance for selecting the parameter values in tuning range according the idea of

analysis of variation in Section 4.3.1. In Figure 4.3, compare to the old BART model

the more SSfnewBART and SSEnew be shrink, the better the Gaussian process BART

model (4.27) performs in both interpretation and prediction. Figure 4.8 shows the

values SSf oldBART−SSfnewBART and SSEold−SSEnew. So, under the guidance of analysis

of variation we should select the big values of these two subtractions which indicates

the preference of correlation structure (big ρ).

Figure 4.8: Guidance of parameter selection in tuning range

Moreover, with the proposed parameter values we can decompose the variations

in the Gaussian process η(t) into pure error variation SSEnew
proposed and correlated

variation SSwnewproposed.

SSEnew
proposed = nσ2, SSwnewproposed = SSMEnew

proposed − SSEnew
proposed

where SSMEnew
proposed is in Figure 4.5. Their values was showed in Figure 4.9. The

analysis of variation (Figure 4.3) suggests to select big value of SSwnewproposed and small

value of SSEnew
proposed. It is consistent to the previous guidance.
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Figure 4.9: The variance decomposition of Gaussian process η(t).

(3) Results

The analysis of variation recommended θtop = {σ, ρ} = {0.085, 0.95} at the top

of tuning range. To study the effect of different values in tuning range we selected

another one θbottom = {σ, ρ} = {0.125, 0.05} at the bottom of tuning range. Their

comparison in Figure 4.10 shows the significant differences. In Figure 4.11, we com-

pared the top one with the real value (left) and the bottom one with the old BART

(right). Although the top one {σ, ρ} = {0.085, 0.95} is different from the real value

{σ, ρ} = {0.1, 0.8}, their fits are quite similar. It indicates that the guidance from

analysis of variation is effective and can lead us closing to the real value. On the other

hand, the fit of bottom one {σ, ρ} = {0.125, 0.05} is very close to the fit of old BART

{σ, ρ} = {0.1042189, 0}. Based on the comparisons, it’s easy to imagine that if we

scan the tuning range from top to bottom the model fitting will degenerate from the

new BART with (near) real correlation structure to the (near) old BART. In other

word, the covariance matrix Σ will approximately degenerate to σ2I.
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Figure 4.10: Two extreme candidates from the tuning range. The comparison shows
they impose different influences on the model fitting.

Figure 4.11: Comparing the two extreme candidates in tuning range to the real
value and old BART. Left panel shows the similarity of model fitting between the
candidate at the top of tuning range and the real value. Right panel shows the
similarity of model fitting between the candidate at the bottom of tuning range and
the old BART

83



4.4.2 Two Dimension Experiment

The two dimension experiment is created following the Gaussian BART model

(4.27).

y(si) = f(x(si)) + w(si) + ε(si), i ∈ {1, ..., 400} (4.34)

where

• f(x(si)) = x(si)
3, x(si) ∼ unif(1, 3).

• w(si) ∼ GP (0, C(·, ·|σ, φ)), C(sj, sk|σ, φ) = σ2exp{−φ ∗ d(sj, sk)},

where d(sj, sk) is the Euclidean distance between point sj and sk.

• ε(si)
i.i.d∼ N(0, τ 2).

• The real value of parameters are {σ, φ, τ} = {1, 6, 1}.

We can explore the created data in Figure 4.12. Similar to the one dimension

experiment, we will check this experiment in three parts.

Figure 4.12: Experiment data exploration. Left and middle panels show the spatial
maps of y(si) and w(si) respectively. Right panel shows relation between x and y.

(1) Back comparing and Tuning range
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First, we need to propose the searching set in parameter space. The liner mixed

model regression Kriging (4.35) can provide clues.

y(si) = β0 + x(si)β1 + w(si) + ε(si) (4.35)

The parameters estimated by (4.35) are {σ̂, φ̂, τ̂} = {1.18, 5.46, 1.05}. According

these estimations, we created the searching set as follows. 10 equally divide the

interval (0.5,1.4) for σ; 10 equally divide the interval (1,10) for φ; 7 equally divide

the interval (0.4,1.6) for τ . Then, back comparing was applied to build the tuning

range. Figure 4.13 (left) shows the back comparing results and selected tuning range.

In this experiment, instead of sum square error (SSE) the mean square error (MSE)

was used to avoid large values. Figure 4.13 (right) indicates that we took on strict

criteria, |MSEnew
real −MSMEnew

proposed| < 1, to select the tuning range. The exact values

of back comparing are listed in Table 4.2.

Figure 4.13: Back Comparing and Tuning Range (left). Back comparing MSE
density and selection criteria (right).

(2) Guidance of parameter selection in tuning range

As discussed in the one dimension experiment, MSf oldBART−MSfnewBART andMSEold−

MSEnew can be used as guidance to select the good candidates in tuning range. Fig-
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Table 4.2: Back Comparing and Candidates Selection Guidance

τ σ φ Back Comparing MSE MSf oldBART −MSfnewBART MSEold −MSEnew

0.4 0.9 3 0.97500489 50.90653 1.11422824

0.4 1.4 6 0.16215768 50.29464 1.11422824

0.6 0.9 3 -0.02155375 50.02426 0.99994253

0.6 1.4 6 -0.45026158 49.79650 0.99994253

0.8 0.9 3 -0.10393848 50.10187 0.83994253

1.0 0.9 3 0.54719834 50.95872 0.63422824

1.0 1.4 6 -0.92835327 49.68413 0.63422824

1.2 0.9 3 -0.04935067 50.61360 0.38279967

1.4 0.9 3 0.14343539 51.10353 0.08565681

1.4 1.2 5 0.80226033 49.45199 0.08565681

1.6 0.6 1 0.85251483 51.78393 -0.25720033

ure 4.14 illustrates their relative values (color) and positions in tuning range. Their ex-

act value are listed in Table 4.2. According the first guidance, MSf oldBART−MSfnewBART ,

the candidates {τ, σ, φ} = {1.6, 0.6, 1}, {1.4, 0.9, 3}, {1, 0.9, 3} are the top three can-

didates. But, when we check with the second guidance, MSEold − MSEnew, it

gives the opposite order, and the value is negative for the candidate {1.6, 0.6, 1}.

In this case, {1.4, 0.9, 3} and {1, 0.9, 3} are both good. I choose the second one

{τ, σ, φ} = {1, 0.9, 3} because the sum of subtractions, MSf oldBART − MSfnewBART +

MSEold −MSEnew,is bigger than the first one’s.

(3) Results

The motivation of developing the Gaussian process BART model (4.27) is try-

ing to gain the advantages of both the spatial linear mixed regression models and

the spatial nonlinear regression models. On one hand, compare to the linear mixed

regression models, Gaussian process BART model should be capable to handle the

nonlinear relationships between the observed variables y(s) and x(s). On the other
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Figure 4.14: Left shows the values of MSf oldBART −MSfnewBART in tuning range. Right
shows the values of MSEold −MSEnew in tuning range.

hand, compare to the nonlinear regression models, Gaussian process BART model

should be able to understand the spatial dependence which may be caused by the

latent variables. Obviously, we already achieved the second goal. For the first goal,

let’s compare the results between Gaussian process BART model (4.34) and linear

mixed model (4.35).

• First, they have similar ability to understand the spatial dependent structure

in the data. It is because their estimated parameters are both close to the real

value.

• Second, they have different ability to understand the relationship between y(s)

and x(s). Figure 4.15 demonstrates the differences. obviously, the Gaussian

process BART model greatly captured the nonlinear relation f(x) = x3 between

y(s) and x(s).

• Last but not least, the failure of fitting nonlinear trend may cause the linear

mixed model violates its assumption that the Gaussian process w(s) is station-

ary. In this experiment, the linear mixed model failed to extract the nonlinear

trend f(x) = x3. So, the stationary assumption must be violated. Actually,

87



there are many literature working on this problem. They were trying to estimate

a non-stationary Gaussian process using methods like, spatial partitioning, pro-

cess convolution, low rank splines or basis functions, etc. While, the Gaussian

process BART model (4.27) which is able to capture both linear and nonlinear

trend naturally makes the stationary assumption much more robust than it in

the linear mixed model.

Figure 4.15: The fitting results of Gaussian process BART, old BART and Linear
mixed model

Moreover, we can compare the Gaussian process BART to old BART. In Figure

4.15, they look similar but still have some differences. It is because the Gaussian

process BART foresees the spatial dependence when it fits the data. Like the example

in Section 4.2.5, the Gaussian process BART model should perform better in fitting

the underlying process f(x) than the old BART. To illustrate that, we can calculate
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the mean square errors (MSE) as follows.

MSEold
f =

∑n
i=1(f(xi)− f̂old(xi))2

n
, MSEGP

f =

∑n
i=1(f(xi)− f̂GP (xi))

2

n

From the experiment, we got MSEold
f = 0.3594093 and MSEGP

f = 0.3418461.

This result proves the claim that Gaussian process BART performs better in restoring

the underlying process f(x) than the old BART.

4.4.3 Testing on Real Data

In this section, we test Gaussian process BART on real data which is the soil

carbon stock data in Chapter 3. In order to visually compare the results among

different models, we chose two environmental covariates to do the test. From the

results in Chapter 3, we know the environmental covariates NDVI14 and REDL14

have nonlinear relationships with the response variable y (see Figure 3.8). So, we

choose them and construct the models as follows.

The linear mixed model:

y(si) = fLMX(X(si)) + w(si) + ε(si) (4.36)

The Gaussian process BART model:

y(si) = fGPBART (X(si)) + w(si) + ε(si) (4.37)

The old BART model:

y(si) = fBART (X(si)) + ε(si) (4.38)

where

• si, i = 1, 2, ..., 6213, there are 6213 observations in different locations.
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• We test two scenarios, one is using variable NDVI14 only, another is using

NDVI14 and REDL14 two variables. So, in the first scenario,

X(si) = {xNDV I14(si)}

In the second scenario,

X(si) = {xNDV I14(si), xREDL14(si)}

• In the first scenario, fLMX(X(si)) in the linear mixed model (4.36) is:

fLMX(X(si)) = β0 + xNDV I14(si) ∗ β1

In the second scenario, fLMX(X(si)) in the linear mixed model (4.36) is:

fLMX(X(si)) = β0 + xNDV I14(si) ∗ β1 + xREDL14(si) ∗ β2

• w(si) ∼ GP (0, C(·, ·|σ, φ)), C(sj, sk|σ, φ) = σ2exp{−φ ∗ d(sj, sk)},

where d(sj, sk) is the Euclidean distance between point sj and sk. We use the

R package ”fields” (Nychka et al., 2017) to check this model. In that package

the parameter φ is set to 1 defaultly. So, only the unknown parameter σ will

be estimated.

• ε(si)
i.i.d∼ N(0, τ 2). The unknown parameter τ will be estimated.

The results will be presented in two scenarios as well.

(1) The first scenario (NDVI14)

The estimations of the linear mixed model (4.36) shows in Table 4.3. We use the

estimations σ and τ to fit the Gaussian process BART model (4.37). Figure 4.16

shows the fitting results of these 3 models. We can see the differences among them.

Since the Gaussian process BART model (4.37) used the same value of covariance
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Table 4.3: Linear Mixed Model Estimations (the First Scenario)

β0 β1 σ τ

4.0475534 0.4237016 0.5282045 0.6557

parameters with the linear mixed model (4.36), the fitting of Gaussian process BART

shrinks more to linear mixed model comparing to the old BART. Meanwhile, the

Gaussian process BART keeps its non-linearity comparing to the linear mixed model.

Figure 4.16: The fitting results of Gaussian process BART, old BART and Linear
mixed model on real data with one covariate NDVI14.

(2) The second scenario (NDVI14 and REDL14)

The real soil carbon stock data and two environmental covariates NDVI14 and

REDL14 are showed in Figure 4.17.

The estimations of the linear mixed model (4.36) shows in Table 4.4. Similar to

the first scenario, we use the estimations σ and τ to fit the Gaussian process BART
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Figure 4.17: The read data with two environmental covariates NDVI14 and
REDL14.

model (4.37).

Table 4.4: Linear Mixed Model Estimations (the Second Scenario)

β0 β1 β2 σ τ

4.0413586 0.163074 -0.2934858 0.5040833 0.6539

Figure 4.18 illustrates the different model fittings. Comparing to the linear mixed

model, both Gaussian process BART and old BART successfully captured the non-

linear relationships between the covariates and response variables.

Figure 4.19 shows the differences among the three models. Similar to the first

scenario, the Gaussian process BART shrinks more to linear mixed model comparing

to the old BART. It’s because that the Gaussian process BART model (4.37) used

the same value of covariance parameters with the linear mixed model (4.36).
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Figure 4.18: The model fittings on read data.

Figure 4.19: The results comparison among different models.

4.4.4 Discussion on Computation Issues

All the computation issues with Gaussian process BART model (4.27) are related

to parameter space searching for the buildup of tuning range. The issues and possible

solutions are discussed in this section.

(1) The curse of dimensionality

As showing in the experiments, to construct the tuning range we have to

propose a searching set in parameter space. This searching set suffers from the

curse of dimensionality as the parameters increasing. The first possible solution

is using low dimensional parametric Gaussian process models, for example, the

Matérn family. The second possible solution is using random search to instead

grid search. The ad hoc information of random search can be used to locate
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the promising areas in parameter space. Another possible solution is parallel

computing. In theory, all the points in searching set can be test in parallel.

Since the computation resources is limited, we can partition the searching set

into subsets and deploy different computational resources to each of them.

(2) The inverse of covariance matrix

For every time searching, we have to inverse the covariance matrix Σ with

the proposed parameters in searching set. It’s because the algorithm of the

new BART needs Σ−1 rather than Σ (see Appendix A). Since the dimension of

Σ is n × n where n is the number of observations, as the data increasing, the

calculation of Σ−1 will become the computational bottleneck of model (4.27). A

possible solution is creating a sparse matrix which has O(n) non-zero entries to

approximate Σ−1. A popular approach called nearest neighbor Gaussian process

(Finley et al., 2019) is presented in Appendix B.
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Chapter 5

CONCLUSION

This chapter summarizes the key ideas and contributions of the dissertation. Ideas

for further research are also discussed.

5.1 Summary of Contributions

• Chapter 1 provided a unifying view of existing models for spatial regression. A

classification based on their capability of modeling latent variables was intro-

duced.

• In Chapter 2, a multistage workflow equipped with nonlinear models was pro-

posed for the spatial prediction problem in reef species abundance study. The

methods, empirical maximum likelihood analysis and random smoothing, were

developed to solve the zero-inflated issue in sampling data. Three strategies,

prior knowledge, aggregation and iteration were introduced to help the nonlin-

ear models overcome the out of sample prediction issue.

• Chapter 3 developed a novel two-stage model for the spatial regression problems

in soil carbon stock (SOC) analysis. In the first stage, a universal regression

Kriging model captures the linear and stationary effects of covariates. The

remaining nonlinear and non-stationary effects are modeled by a generalized

additive model in the second stage.

• In Chapter 4, the traditional BART model was extended to a new BART model

which can accommodate the general correlated errors. A novel nonlinear spatial

regression model called Gaussian process BART can then be built by combin-
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ing the new BART and Gaussian process. Because of the failure of likelihood

based MCMC in parameter estimation, the methods, back comparing and tun-

ing range, were proposed based on the idea of analysis of variation.

5.2 Future Work

Promising paths for future work involve:

• Applying the Gaussian process BART model to real world problems.

• Solving the computation issue of parameter space searching for the buildup of

tuning range.

• Updating R package “BART” with the new algorithm for accommodating cor-

related errors.
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APPENDIX A

BART FOR CORRELATED DATA
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A.1 Marginal Likelihood and Posterior Distribution

A.1.1 Marginal Likelihood

The marginal likelihood p(R|D) can be derived as follows.
First, by (4.12), we know

p(R|D,µ) = (2π)−
n
2 |Σ|−

1
2 exp{−1

2
(R−Dµ)TΣ−1(R−Dµ)} (A.1)

If given π(µ) ∼ N(µ̄, Q−1), where

π(µ) = (2π)−
b
2 |Q|

1
2 exp{−1

2
(µ− µ̄)TQ(µ− µ̄)} (A.2)

The marginal distrionbution of p(R|D) can be calculated by integrated out µ.

p(R|D) =

∫
p(R|D,µ)π(µ)dµ

Let’s check the product of likelihood and prior.

p(R|D,µ)π(µ) = (2π)−
n
2 |Σ|−

1
2 exp{−1

2
(R−Dµ)TΣ−1(R−Dµ)}∗

(2π)−
b
2 |Q|

1
2 exp{−1

2
(µ− µ̄)TQ(µ− µ̄)}

= (2π)−
n+b

2 |Σ|−
1
2 |Q|

1
2∗

exp{−1

2
[(R−Dµ)TΣ−1(R−Dµ) + (µ− µ̄)TQ(µ− µ̄)]︸ ︷︷ ︸

(∗)

}

(A.3)

Since

(∗) = RTΣ−1R− 2RTΣ−1Dµ+ µTDTΣ−1Dµ+ µTQµ− 2µ̄TQµ+ µ̄TQµ̄

= µT (DTΣ−1D +Q)µ− 2(RTΣ−1D + µ̄TQ)µ+RTΣ−1R + µ̄TQµ̄

Then, we can introduce a variable v and think about the following term.

(µ− v)T (DTΣ−1D +Q)(µ− v)

= µT (DTΣ−1D +Q)µ− 2vT (DTΣ−1D +Q)µ+ vT (DTΣ−1D +Q)v

To make the underline coefficient equal, we can let

vT (DTΣ−1D +Q) = RTΣ−1D + µ̄TQ

vT = (RTΣ−1D + µ̄TQ)(DTΣ−1D +Q)−1

and
v = (Q+DTΣ−1D)−1(Qµ̄+DTΣ−1R) (A.4)
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Finally
(∗) = (µ− v)T (Q+DTΣ−1D)(µ− v) + C

where
C = −vT (Q+DTΣ−1D)v +RTΣ−1R + µ̄TQµ̄

Plug (A.1) and (A.2) into the integral term.∫
p(R|D,µ)p(µ)dµ

= (2π)−
n+b

2 |Σ|−
1
2 |Q|

1
2 exp{−1

2
C}
∫
exp{−1

2
(µ− v)T (Q+DTΣ−1D)(µ− v)}dµ

= (2π)−
n+b

2 |Σ|−
1
2 |Q|

1
2 exp{−1

2
C}(2π)

b
2 |Q+DTΣ−1D|−

1
2

·
∫

(2π)−
b
2 |Q+DTΣ−1D|

1
2 exp{−1

2
(µ− v)T (Q+DTΣ−1D)(µ− v)}dµ

=
(2π)−

n
2 |Σ|− 1

2 |Q| 12
|Q+DTΣ−1D| 12

exp{−1

2
C}

After simplifying we can get (A.5) which is same to (4.14).

p(R|D) =
(2π)−

n
2 |Σ|− 1

2 |Q| 12
|Q+DTΣ−1D| 12

exp{−1

2
(−vT (Q+DTΣ−1D)v + µ̄TQµ̄+RTΣ−1R)}

(A.5)
where, v = (Q+DTΣ−1D)−1(Qµ̄+DTΣ−1R).

A.1.2 Posterior Distribution

Based on the proof of marginal likelihood above, it’s easy to get the posterior
distribution p(µ|R). By (4.18), we have

p(µ|R) ∝ p(R|µ)π(µ) = p(R|D,µ)π(µ)

If given, p(R|D,µ) in (A.1) and π(µ) in (A.2) . Then, by (A.3) and (A.4), we can
directly prove that

p(µ|R) ∼ N( (Q+DTΣ−1D)−1(Qµ̄+DTΣ−1R) , (Q+DTΣ−1D)−1 ) (A.6)
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A.2 Invariant under Reordering

If P is a permutation matrix, it has the property that P−1 = P T . Then, according
(4.21) and (4.22) we can prove (A.7).

DTΣ−1R = (PDP )T (PΣPP
T )−1(PRP )

= DT
PP

TPΣ−1P P TPRP

= DT
PΣ−1P RP

(A.7)

If given Q = τ−2I, similar to (A.7) we can prove that

Q+DTΣ−1D = Q+ (PDP )TPΣ−1P P TPDP = Q+DT
PΣ−1P DP (A.8)

Let’s recall (4.16) and (4.20),

p(R|Di+1)

p(R|Di)
=
|Qi+1| 12
|Qi| 12

|Qi + (Di)TΣ−1Di| 12
|Qi+1 + (Di+1)TΣ−1Di+1| 12

· exp{1

2
RTΣ−1

[Di+1(Qi+1 + (Di+1)TΣ−1Di+1)−1(Di+1)T −Di(Qi + (Di)TΣ−1Di)−1(Di)T ]Σ−1R}

and,
p(µ|R) ∼ N((Q+DTΣ−1D)−1DTΣ−1R, (Q+DTΣ−1D)−1)

By applying (A.7) and (A.8), obviously, (4.16) and (4.20) are invariant under
reordering.
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A.3 On the Calculation of Marginal Likelihood Ratio

A.3.1 Calculate Matrix A

We use matrix A to denote (4.25)

A = Q+DT
PΣ−1P DP , Q = τ−2I

According the discussion of reordering in section 4.2.4, it’s easy to know A is a
symmetric matrix. We can denote it as follows.

A =


a11 + τ−2 a12 ... a1b

a21 a22 + τ−2 ... a2b
...

...
. . .

ab1 ab2 ... abb + τ−2

 (A.9)

where
aji = aij =

∑
h∈ni

∑
l∈nj

qhl, i ≤ j, i, j ∈ {1, ..., b}

nk, k ∈ {1, ..., b} is the index set of observations that associated with bottom node k
and qhl is the hth row and lth column entry in Σ−1P .

Σ−1P =


q11 q12 ... q1n
q21 q22 ... q2n
...

...
. . .

qn1 qn2 ... qnn


So, the operations to calculate A is the summation of non-zero entries in Σ−1.

A.3.2 The Block Form of Matrix E

Plug A into (4.23), we can get

p(R|Di+1)

p(R|Di)
=
|Qi+1|1/2

|Qi|1/2
|Ai|1/2

|Ai+1|1/2

· exp{1

2
RT
PΣ−1P [Di+1

P (Ai+1)−1(Di+1
P )T −Di

P (Ai)−1(Di
P )T ]︸ ︷︷ ︸

E

Σ−1P RP}

To understand the form of E, we have to consider the birth and death operations
respectively. Without losing generality, we can assume that birth or death operation
occurs in (i+1)th MCMC iteration. Since the dummy matrix D has very special form
(see section 4.2.1), we developed an algorithm as following to achieve computational
efficiency.

(1) Birth
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In this scenario, the tree has b bottom nodes at i step and b + 1 nodes at i + 1
step. So, (Ai)−1 and (Ai+1)−1 are b× b and (b+ 1)× (b+ 1) matrices. We can denote
them by block matrices as follows.

(Ai+1)−1 =

[
V i+1
11 V i+1

12

V i+1
21 V i+1

22

]
, (Ai)−1 =

[
V i
11 vi12
vi21 vi22

]
where, V i+1

11 and V i
11 are (b − 1) × (b − 1) matrices; V i+1

12 = (V i+1
21 )T is (b − 1) × 2

matrix; vi12 = vi21 is a b− 1 column vector; vi22 is a scalar.
We create a matrix

(Ai)−1ex =

V i
11 vi12 vi12
vi21 vi22 vi22
vi21 vi22 vi22


Let B = (Ai+1)−1 − (Ai)−1ex , then, we can get

B =

 V i+1
11 − V i

11 V i+1
12 −

[
vi12 vi12

]
V i+1
21 −

[
vi21
vi21

]
V i+1
22 −

[
vi22 vi22
vi22 vi22

] =


b11 b12 ... b1(b+1)

b21 b22 ... b2(b+1)
...

...
. . .

b(b+1)1 b(b+1)2 ... b(b+1)(b+1)


(2) Death

Similar to birth scenario, we denote the matrices (Ai)−1 and (Ai+1)−1 as following.

(Ai)−1 =

[
V i
11 V i

12

V i
21 V i

22

]
, (Ai+1)−1 =

[
V i+1
11 vi+1

12

vi+1
21 vi+1

22

]
where, V i+1

11 and V i
11 are (b− 2)× (b− 2) matrices; V i

12 = (V i
21)

T is (b− 2)× 2 matrix;
vi+1
12 = vi+1

21 is a b− 2 column vector; vi+1
22 is a scalar.

Create a matrix

(Ai+1)−1ex =

V i+1
11 vi+1

12 vi+1
12

vi+1
21 vi+1

22 vi+1
22

vi+1
21 vi+1

22 vi+1
22


Different from the birth scenario, B = (Ai+1)−1ex − (Ai)−1

B =

 V i+1
11 − V i

11

[
vi+1
12 vi+1

12

]
− V i

12[
vi+1
21

vi+1
21

]
− V i

21

[
vi+1
22 vi+1

22

vi+1
22 vi+1

22

]
− V i

22

 =


b11 b12 ... b1b
b21 b22 ... b2b
...

...
. . .

bb1 bb2 ... bbb


Block form of matrix E
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We can denote E as a block matrix

E = Di+1
P (Ai+1)−1(Di+1

P )T −Di
P (Ai)−1(Di

P )T =


E11 E12 ... E1b′

E21 E22 ... E2b′

...
...

. . .
Eb′1 Eb′2 ... Eb′b′


where

b′ =

{
b+ 1, Birth,

b, Death.

Each block matrix has a special form

Eij = ET
ji = bijJij, i ≤ j, i, j ∈ {1, ..., b′}

where bij is the (i, j) element of matrix B calculated in birth or death step; Jij is a
card(ni) × card(nj) matrix whose entries are 1s. (card(nk) is the cardinality of set
nk).

A.3.3 Calculate Marginal Likelihood Ratio

Let’s set
RT
PΣ−1P = [ω1 ω2 . . . ωb′ ] , ωi = [ωij], j ∈ ni

and
u = RT

PΣ−1P EΣ−1P RP

Then, u can be calculated

u = [ω1 ω2 . . . ωb′ ]E


ωT1
ωT2
...
ωTb′


=

b′∑
i=1

b′∑
j=1

ωiEijω
T
j

=
b′∑
i=1

b′∑
j=1

(ωiJijωTj )bij

=
b′∑
i=1

b′∑
j=1

[(
∑
h∈ni

ωih)(
∑
l∈nj

ωjl)bij]

Finally, we can get the marginal likelihood ratio as follows.

p(R|Di+1)

p(R|Di)
=

{
τ−1 |A

i|
|Ai+1|exp{

1
2
u} Birth

τ |A
i|

|Ai+1|exp{
1
2
u} Death
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APPENDIX B

NEAREST NEIGHBOR GAUSSIAN PROCESS
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The easy way to understand nearest neighbor Gaussian process is from the linear
form of Gaussian process (B.1).

w = Hw + η (B.1)

where w is an instance of Gaussian process W ∼ GP (0, K(·, ·|θ)) and w ∼ N(0, C),
C is the covariance matrix calculated by K(·, ·|θ). The structure of H is as follows.

H =


0 0 0 . . . 0
h21 0 0 . . . 0
h31 h32 0 . . . 0
...

...
. . . . . .

...
hn1 hn2 . . . hn(n−1) 0


w1 = 0 + η1

w2 = h21w1 + η2

w3 = h31w1 + h32w2 + η3
...

wn = hn1w1 + hn2w2 + · · ·+ hn(n−1)w(n−1) + ηn

and
η ∼ N(0,Λ)

where Λ is diagonal with entries Λ11 = var(w1) and Λii = var(wi|{wj : j < i}) for
i = 2, . . . , n.

Since I −H is nonsingular

I −H =


1 0 0 . . . 0
−h21 1 0 . . . 0
−h31 −h32 1 . . . 0

...
...

. . . . . .
...

−hn1 −hn2 . . . −hn(n−1) 1


Then, (B.1) can be transformd to w = (I −H)−1η. So,

C = (I −H)−1Λ(I −H)−T (B.2)

Recall,
wi+1 = h(i+1)1w1 + h(i+1)2w2 + · · ·+ h(i+1)iwi + ηi+1 (B.3)

Let, hi+1 = (h(i+1)1, ..., h(i+1)i) and wi+1 = (w1, ..., wi, wi+1) = (wi, wi+1), where
wi = (w1, ..., wi).

Note: For any matrix M and set of indices I1, I2 ∈ {1, 2, ..., n}, let M [I1, I2] denote
the submatrix of M formed by the rows indexed by I1 and columns indexed by I2.

Let
var(w1, ..., wi+1) = C
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Then,
var(w1, ..., wi) = C[1 : i, 1 : i]

and

C =

[
C[1 : i, 1 : i] C[1 : i, i+ 1]
C[i+ 1, 1 : i] C[i+ 1, i+ 1]

]
By equation (B.3), we can get

C[i+ 1, 1 : i] = hi+1 · C[1 : i, 1 : i]

C[i+ 1, i+ 1] = Λi+1,i+1 + hi+1 · C[1 : i, i+ 1]

Then, hi+1 and Λi+1,i+1 can be calculated as follows.

hi+1 = C[i+ 1, 1 : i]C[1 : i, 1 : i]−1 (B.4)

Λi+1,i+1 = C[i+ 1, i+ 1]− hi+1 · C[1 : i, i+ 1] (B.5)

Using (B.4) and (B.5), the covariance matrix C can be decomposited by (B.2).
However, the computational complexity of (B.4) still increases as the dimension of
C[1 : i, 1 : i] increasing (O(n3)). In order to achieve the sparsity, we permit no more
than m elements in hi (the i-th row of matrix H) to be nonzero.

Let ne(i) to represent the number of nearest neighbors of point i = 1, ..., n and
ne(i) ≤ m. Then equation (B.4) and (B.5) become

hne[i+1] = C[i+ 1, ne(i+ 1)]C[ne(i+ 1), ne(i+ 1)]−1 (B.6)

Λi+1,i+1 = C[i+ 1, i+ 1]− hne[i+1] · C[ne(i+ 1), i+ 1] (B.7)

The size of linear system { (B.6), (B.7) } is at most m×m. So, the computational
complexity decreases from O(n3) to O(nm3).

From (B.2), (B.6) and (B.7), we can get that

C̃ = (I −H)−1Λ(I −H)−T (B.8)

C̃−1 = (I −H)TΛ−1(I −H) (B.9)

where H and Λ are computed from (B.6) and (B.7) respectively.
Since Σ = C+τ 2I, by Sherman Woodbury Morrison (SWM) identity, we can get:

Σ−1 = (C + τ 2I)−1 = τ−2I − τ−4(C−1 + τ−2I)−1

Then, the approximation of Σ−1 is as follows:

Σ̃−1 = τ−2I − τ−4(C̃−1 + τ−2I)−1 (B.10)

The calculation of (C̃
−1

+ τ−2I)−1 can enjoy the sparsity of C̃
−1

.
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