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ABSTRACT

The Human Gut Microbiome (GM) modulates a variety of structural, metabolic, and

protective functions to benefit the host. A few recent studies also support the role of

the gut microbiome in the regulation of bone health.

The relationship between GM and bone health was analyzed based on the data col-

lected from a group of twenty-three adolescent boys and girls who participated in a

controlled feeding study, during which two different doses(0 g/d fiber and 12 g/d fiber)

of Soluble Corn Fiber (SCF) were added to their diet.

This analysis was performed by predicting measures of Bone Mineral Density (BMD)

and Bone Mineral Content (BMC) which are indicators of bone strength, using the GM

sequence of proportions of 178 microbes collected from 23 subjects, by building a ma-

chine learning regression model.

The model developed was evaluated by calculating performance metrics such as

Root Mean Squared Error, Pearson’s correlation coefficient, and Spearman’s rank cor-

relation coefficient, using cross-validation.

A noticeable correlation was observed between the GM and bone health, and it

was observed that the overall prediction correlation was higher with SCF intervention

(r ≈ 0.51). The genera of microbes that played an important role in this relationship

were identified. Eubacterium (g), Bacteroides (g), Megamonas (g), Acetivibrio (g), Fae-

calibacterium (g), and Paraprevotella (g) were some of the microbes that showed an

increase in proportion with SCF intervention.
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Chapter 1

INTRODUCTION

1.1 Motivation

The Human Gut Microbiome (GM) benefits the host by modulating a wide variety

of structural, metabolic, and protective functions. In the community of health science,

the complicated interactions between the GM and characteristics of the host and the

subsequent functional benefits are an area of great interest and are currently being

explored (Wallace et al. (2017)). One of the major and upcoming fields being inspected

is the role of GM in the regulation of bone health.

Previous studies have indicated that the GM plays an important role in influenc-

ing bone physiology by modulating the processes of bone gain and bone loss due to

changes in bacterial composition. The GM is also known to modulate bone morphol-

ogy which in turn affects the bone strength and consequently fracture risk (Medina-

Gomez (2018)). Further investigation in the field of understanding the relationship

between the GM and bone strength is necessary and is a promising area of research in

improving bone health and reducing bone diseases such as osteoporosis (Chen et al.

(2017)).

However, current research studies are limited in number and are mainly focused

towards using animal models. Therefore, more studies focusing on the human gut

microbiome are needed. In the majority of previous studies, it has been shown that

prebiotic intervention in diet has the ability to induce changes in the gut microbiome

and is associated with increased calcium absorption in animal models and humans

(Weaver (2015), Whisner and Castillo (2018)). However the number of studies eval-
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uating the effect of prebiotics on bone health indices such as bone mineral density

and bone mineral content and understanding the potential gut-bone relationships are

scarce (Whisner and Castillo (2018)).

In this work, the influence of the gut microbiota on bone health due to the interven-

tion of a prebiotic fiber called Soluble Corn Fiber (SCF) in the diet is studied in human

subjects.

1.2 Objective

The main objective of this thesis was to analyze the relationship between the hu-

man gut microbiome (GM) and bone health in adolescents, and establish a relation-

ship between them based on the influence of addition of different doses of Soluble

Corn Fiber (SCF) to the diet, using Machine Learning techniques. This analysis was

performed by predicting measures of Bone Mineral Density (BMD) and Bone Mineral

Content (BMC) which are indicators of bone strength, using the gut microbiome se-

quences collected from subjects participating in a two-phase controlled feeding study,

by building regression models.

The goal was to develop a regression model to understand the relationship between

the microbes in the gut and the measures of bone health. The regression model was

optimized by tuning the model hyperparameters using cross-validation. The perfor-

mance of the model developed was evaluated by calculating performance metrics such

as Root Mean Squared Error, Pearson’s correlation coefficient, and Spearman’s rank

correlation coefficient, using cross validation.

Feature Selection techniques were implemented on the regression model, to iden-

tify the genera of microbes that played an important role in affecting the gut-bone re-

lationship, using cross-validation. The effect of SCF was studied on the most relevant

microbes by comparing the results from both phases of this experiment.
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Current research work indicates that the gut microbiome plays an important role in

bone metabolism and the effect of the gut microbiota on bone has been studied mainly

in animal models. In humans, a prebiotic intervention resulted in greater whole body

bone accrual in adolescents, but this link to changes in the gut microbiome was not

studied. Therefore, this project aims to study the effect of the prebiotic fiber (SCF) on

bone health (BMD and BMC) and the composition of the gut microbiota.

1.3 Thesis Organization

In Chapter 2, a background study on the human microbiome and gut microbiome

is provided. An insight into the previous work conducted in the field of gut microbiome

and its influence on bone health is provided. In Chapter 3, a background on the dif-

ferent machine learning techniques used in previous microbiome studies is given and

the motivation to use specific algorithms, in this project, is discussed. In Chapter 4, the

experiment in focus is discussed along with the methods used to collect the data, and

details about the entire dataset are mentioned. An overview of the problem, the dif-

ferent Machine Learning concepts that were used along the course of this project and

the procedure followed to perform prediction analysis is highlighted in Chapter 5. All

the results and observations obtained during this project are explained in Chapter 6.

Finally, Chapter 7 concludes this research with a summary of the contributions made

by this research and discusses some possible future research work.
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Chapter 2

BACKGROUND ON THE GUT MICROBIOME

2.1 The Gut Microbiota

The human microbiome consists of all microbiota that are present on or within

human tissues and biofluids along with the respective locations in which they thrive

such as the lungs, skin, saliva, placenta, seminal fluid, uterus, and gastrointestinal

tract. The different types of human microbiota include bacteria, archaea, fungi, pro-

tists and viruses. The microorganisms are referred to as “microbiota” and the organ-

isms along with their genetic compositions, collectively form the “microbiome” (Yang

et al. (2016)).

The gut microbiota comprises a variety of microorganisms that live in the digestive

tracts of humans and other animals including insects. The microorganisms in the gut

exhibit a greater diversity and are more abundant in comparison to other body sites

such as the skin, oral cavity and the urogenital tract (Yang et al. (2016)). Approximately

300 to 500 bacterial species, consisting of around 2 million genes, exist within the hu-

man gastrointestinal microbiota (Quigley (2013)). The gut flora is established at one

to two years after birth and its composition changes over time, when the diet changes,

and as overall health changes. This composition is different in different parts of the

digestive tract. Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria are gen-

erally identified as the most dominant phyla.
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2.2 Effect of the Gut Microbiota on Human Health

The relationship between some gut flora and humans is a mutualistic relationship.

The gut microbiota regulate a number of essential functions associated with digestion

of food, activation of the immune system, and control of cognitive processes (Yang

et al. (2016)). A normal physiology is maintained in the host as long as there is sym-

biosis of the gut microbiota, whereas a dysbiosis of the microbiota affects the balance

and may lead to a variety of diseases (Wang et al. (2016)).

• Metabolism: The gut bacteria play an important role in synthesizing amino acids

and vitamins such as Vitamin B and Vitamin K, and metabolizing bile acids (Bull

and Plummer (2014)). Intestinal bacteria also digest complex carbohydrates and

proteins present in the diet, that are not absorbed in the upper gut, by producing

hydrolytic enzymes (Macfarlane and Macfarlane (2012)). Short-chain fatty acids

(SCFAs), such as acetic acid and butyric acid, are the major products of bacte-

rial fermentation of dietary fiber in the gut. In this process the host is benefitted

by absorbing these substrates and retrieving energy, along with the bacteria re-

ceiving a supply of energy and nutrients for their growth and survival (Bull and

Plummer (2014)).

• Development of Immune System: Most of the bacteria do not allow pathogens to

thrive in the intestine by producing antimicrobial substances called bacteriocins

and competing for nutrients and sites of attachment in the gut lining (Bull and

Plummer (2014)). The gut microbiome controls the body’s response to infection

by communicating with immune cells.

• Gut–Brain Axis: The gut–brain axis is a bidirectional communication system en-

abling the intestinal microbiota to access the brain and vice versa. A route is es-
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Figure 2.1: Human Gut Mirobiota and Bone Health. From Ohlsson and Sjögren (2015)

tablished, through which the brain can control functions such as peristalsis and

mucin production along with other immunity based functions (Bull and Plum-

mer (2014)).

• Gut Microbiota and Disease: Perturbations in the microbial composition can

lead to a wide variety of inflammatory conditions affecting the inner and outer

parts of the gut. These include inflammatory bowel diseases, rheumatoid arthri-

tis, multiple sclerosis, and asthma, as well as metabolic diseases, such as diabetes

and obesity (Ohlsson and Sjögren (2015), Bull and Plummer (2014)).

2.3 Gut Microbiota and Bone Health

Previous studies have shown that the gut microbiome is involved in the regula-

tion of a plethora of biological processes such as gut physiology, nutrient production

and absorption, host growth, energy balancing, metabolic functions, immune-system

functions, brain– behavior systems, and inflammatory processes (Chen et al. (2017)).

Intestinal microbiota also plays an important role in monitoring the health of lo-

cations that are away from the intestine including the skin, lungs, arteries, and bone

6



(McCabe et al. (2015)). Although researchers have only recently begun to study the re-

lationship between the gut microbiota and bone metabolism, there are many studies

supporting the role of gut microbiome in the regulation of bone density and health.

The GM affects bone metabolism and bone mass by altering the immune system of

the host, as there is a well established connection between the immune system and

bone metabolism, which was observed in germ-free mice. In a certain experiment

by (Sjögren et al. (2012)), it was seen that the germ-free mice showed an increase in

BMD in comparison to conventionally raised mice. There was a reduction in bone

mass when the germ-free mice were colonized with a normal gut microbiota which in-

dicated that the absence of the gut microbiota might be responsible for the increased

BMD in the germ-free mice (Chen et al. (2017)).

Several studies have indicated that the intestinal microbiota regulate bone mass

through different mechanisms such as mediating the immune system, releasing neu-

rotransmitters, and calcium absorption in the intestine (Wang et al. (2017)). Previous

studies also indicate that the utilization of prebiotics, probiotics, or antibiotic treat-

ment affect the composition of the gut microbiome and in-turn leads to regulation of

bone metabolism (Ohlsson and Sjögren (2015)), as seen in Figure 2.1.

2.4 Influence of Gut Microbiome on Bone Health: Effect of Prebiotics

Approaches such as direct modulation of the quantity of bacteria present in the gut

through use of antibiotics, addition of bacterial substrates known as prebiotics, and

addition of beneficial bacteria called probiotics, to the diet can increase calcium ab-

sorption and enhance bone properties. This strategy leads to an overall improvement

in bone health (Wallace et al. (2017), McCabe et al. (2015)).

Analysis indicates that the majority of the population, especially adolescents, con-

sume diets with fewer vegetables, whole grains, and fruits (Krebs-Smith et al. (2010)).
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There is also an under-consumption of milk and milk products with respect to the rec-

ommended quantities (Krebs-Smith et al. (2010)). This leads to a deficiency in calcium,

vitamin D, and potassium nutrient intakes (Fulgoni III et al. (2011)), and further in-

creases the risk of reduced peak bone mass development and eventually increases the

risk of osteoporosis during adulthood (Whisner et al. (2016)).

Adolescence is the most important time for building a strong skeleton and is the

most critical period for bone mineral accrual (Loud and Gordon (2006)). During this

period, the hormones of puberty speed up growth of bones and increase bone size and

strength. An optimal environment must be established during the years of growth and

maturation for the achievement of peak bone mass in order to maintain a strong life-

long bone health and prevent adult osteoporosis and bone fractures (Carey and Golden

(2015), Levine (2012)).

For the growth and development of healthy bones and bone mineralization it is

required that adolescents receive adequate calcium and vitamin D through a well-

balanced nutrition and participate in regular physical activities (Carey and Golden

(2015), Cheng et al. (2020), Bailey et al. (2010)). Long-lasting improvements in bone

mineral density might occur with an increase in calcium intake from dairy sources

(Levine (2012)).

Despite much public health awareness of the importance of calcium intake for os-

teoporosis prevention, many do not choose calcium-rich foods (Weaver (2015)). There-

fore it is essential to develop an alternative strategy for improving calcium nutrition.

One method is to enhance the absorption of any calcium present in the diet with the

help of prebiotic dietary fibers, such as nondigestible oligosaccharides and polysac-

charides (Whisner et al. (2016),Whisner et al. (2014)).

The gut microbiota is very plastic, and its composition can be altered rapidly when

there is a change in diet (Clarke et al. (2014)). The intake of carbohydrates and other

8



nutrients provide an energy source for the gut bacteria to thrive (Chen et al. (2017)).

Significant changes in bacterial metabolism associated with small chain fatty acids and

amino acids was seen with dietary changes in mice in a short span of one week (Ursell

et al. (2012)). Studies showed that switching from a low-fat, polysaccharide-rich diet

to a high-fat, high-sugar diet led to a dramatic shift in the structure of the human mi-

crobiota within a single day (Clarke et al. (2014), David et al. (2014)) and led to a rapid

change in the configuration of the microbiota of humanized gnotobiotic mice (Turn-

baugh et al. (2009)).

Dietary fiber positively shapes the composition of the gut microbiota and immu-

nity (Shen and Wong (2016)) and fermentation of fiber by gut bacteria has numerous

potential health benefits (Klosterbuer et al. (2013)). It is hypothesized that the fermen-

tation of soluble fibers in the colon, by intestinal microflora, leads to the production

of Short Chain Fatty Acids(SCFAs) ( Klosterbuer et al. (2013), Zafar et al. (2004)). The

most abundant SCFAs formed are acetate, propionate and butyrate, with butyrate be-

ing considered as the most important for colonic health due to its effects on promoting

normal colonocyte development (Klosterbuer et al. (2013)). There is a reduction in the

luminal pH by these organic acids and this leads to conversion of any unabsorbed cal-

cium which comes from the upper part of the intestine into the ionic form. The SCFAs

and low pH medium cause the surface area of the intestine to enlarge and thereby en-

hance calcium absorption and subsequent utilization (Zafar et al. (2004), Weaver et al.

(2010)). Thus, dietary fibers benefit bone health by undergoing fermentation in the gut

and increasing mineral absorption and retention (Weaver et al. (2010)).

Maathuis et al. (2009) define Prebiotics as “a non-digestible food ingredient that

beneficially affects the host by selectively stimulating the growth and/or activity of one

or a limited number of bacteria in the colon”. Prebiotic fibers by definition are resis-

tant to absorption and are fermented by microbial flora in the large intestine (Weaver
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(2015), Scholz-Ahrens et al. (2002)).

Adding bacterial fermentative substrates such as complex carbohydrates leads to

an increase in concentration of SCFAs, including butyrate, and affects the immune

function directly (Neish (2009)). Non-digestible oligosaccharides (NDO) such as in-

ulin, oligofructose and fructo-oligosaccharides, and galacto-oligosaccharides, along

with resistant starch, lactulose, and maltitol have also been shown to promote absorp-

tion of various minerals such as calcium, magnesium, and zinc. This process has an

important impact on the regulation of Bone Mineral Density and the prevention of

bone loss and osteoporosis (Chen et al. (2017), Scholz-Ahrens et al. (2002)).

A series of studies have shown the effects of dietary prebiotics on microbiota, cal-

cium absorption, and bone measures in rats and humans. It was seen that feeding

healthy growing rats with 5% fructo-oligosaccharides (Lobo et al. (2006)) and supple-

menting diets with dietary galacto-oligosaccharides (Weaver et al. (2011)) led to an in-

crease in the intestinal absorption of calcium and magnesium. This led to an increase

in bone mineralization, which, in turn, improved the resistance to fracture (Lobo et al.

(2006)). An increase in calcium and magnesium retention, bone strength, and bone

mineral density was also observed (Weaver et al. (2011)).

In other studies related to ovariectomized rats, the incorporation of the following

in the diet, fructo-oligosaccharides (Devareddy et al. (2006)), Nondigestible Oligosac-

charides (Zafar et al. (2004)), and oligofructose (Scholz-Ahrens et al. (2002)), improved

calcium absorption and retention (Zafar et al. (2004)) and significantly increased bone

mineral density of the lumbar vertebrae, tibiae, whole body (Devareddy et al. (2006)),

and femurs (Zafar et al. (2004)).This impeded ovariectomy-induced loss of bone struc-

ture and thus improved bone health (Scholz-Ahrens et al. (2002)). It was seen that con-

sumption of a mixture of prebiotic fructo-oligosaccharides by pubertal adolescents

elevated calcium absorption, enhanced bone mineralization, (Abrams et al. (2005),
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Griffin et al. (2002)) and led to an increase in whole-body BMC and BMD (Abrams

et al. (2005)). In another study, consumption of a product rich in transgalactooligosac-

charides (TOS) caused an increase in calcium absorption in postmenopausal women

(van den Heuvel et al. (2000)).

2.4.1 Effect of SCF

Soluble Corn Fiber ( or Soluble Maize Fiber) is a corn-derived non-digestible car-

bohydrate which has been shown to have beneficial effects on bone and human health

(Whisner et al. (2016)). In previous studies, a Soluble Corn Fiber(SCF) supplemented

diet consumed by rats (Knapp et al. (2013)) and humans (Klosterbuer et al. (2013)),

increased SCFA production (Bassaganya-Riera et al. (2011)), and showed a positive

influence on the microbial community of the gut (Knapp et al. (2013), Klosterbuer

et al. (2013)). A comparison between eight novel prebiotic fibers such as SCF, solu-

ble fiber dextrin, resistant starch (RS), pullulan, and polydextrose, was conducted on

weanling rat models (Weaver et al. (2010)). It was observed that SCF tended to in-

crease bone mineral density, bone mineral content, cortical thickness, cortical area,

and peak breaking strength of femur. SCF also resulted in an increase of total SCFA

production and faecal content weight (Weaver et al. (2010)). It was demonstrated that

consuming SCF(12 g/d) increased calcium absorption efficiency by 12% in a heteroge-

nous population, of 24 adolescent girls and boys (12-15 years), during two three-week

sessions of controlled feeding study (Whisner et al. (2014)). This was the first study

which linked a diet-induced change in the gut microbiota with an increase in calcium

intake in healthy individuals (Whisner et al. (2016)).

In another related study, 10 or 20 g fiber/d from PROMITOR SCF 85 was added to an

uncontrolled diet of a homogenous population including adolescent girls (aged 11-14

years) over a 30-day period. This increased calcium absorption by 13.3% and 12.9% for

11



10 and 20 g fiber/d from SCF, respectively (Whisner et al. (2016)).

Despite the differences in study designs, both the above experiments showed a pos-

itive influence on calcium absorption and minimal gastrointestinal symptoms, thereby

supporting the effectiveness of this prebiotic fiber in improving bone health (Whisner

et al. (2016), Whisner et al. (2014)).

Further work to understand the exact mechanism by which SCF affects intestinal

microbiota and calcium absorption is required. More studies are needed to analyze the

long-term effect of dietary fibers on bone density and strength ((Whisner et al. (2016)).

2.5 Important Gut Microbes

The human gut microbiome is a stable and diverse environment which is domi-

nated by bacteria from the phyla Bacteriodetes and Firmicutes (Clarke et al. (2014)). The

intestinal bacteria and other microorganisms coexist in a dynamic ecological equilib-

rium (Martin et al. (2010)). Most of these bacterial species belong to the genera, Bac-

teroides, Clostridium, Lactobacillus, Eubacterium, Faecalibacterium, Bifidobacterium

(Martin et al. (2010)), Ruminococcus, Peptococcus, Peptostreptococcus (Guarner and

Malagelada (2003)). There is also a high abundance of the genera Prevotella and Ru-

minococcus which is independent of body mass index, age, or gender (Clarke et al.

(2014)). Other genera, such as Escherichia and Lactobacillus, are present to a lesser

extent (Guarner and Malagelada (2003)).

The bacterial enterotypes within the gut ecosystem exhibit differential functional

capabilities. The genus Bacteroides plays a very important role in the functioning of

the host as it alone constitutes about 30% of all bacteria in the gut (Sears (2005)). It

was seen in a controlled feeding study that the Bacteroides and Prevotella enterotypes

are associated with protein/animal fat and carbohydrate rich diets respectively (Clarke

et al. (2014), Morgan et al. (2013)). Some of the genera of bacteria that are most efficient
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in producing SCFAs include Bacteroides, Bifidobacterium, Eubacterium, Lactobacillus,

Clostridium, Roseburia, and Prevotella (Clarke et al. (2014), Neish (2009)).

Two recent studies on adolescents by Whisner et al. (2016) and Whisner et al. (2014),

showed that the changes in the gut microbiota are correlated with improvements in

calcium absorption. It was seen that the consumption of SCF was associated with an

increase in the proportion of microbes from the phylum Bacteroidetes as compared

to the treatments without SCF, and decrease in the proportions of bacteria from the

phylum Firmicutes.

The proportions of bacterial genera Actinomyces and Pseudomonas of the phylum

Actinobacteria and other Erysipelotrichaceae of the phylum Firmicutes decreased as

calcium absorption with the SCF treatment increased. Negative correlations were also

observed on genera Paraprevotella, Megamonas, Sutterella, Parabacteroides, other Bac-

teroidales, and other Clostridiaceae (Whisner et al. (2016), Whisner et al. (2014)).

The proportions of bacterial genera Parabacteroides, Bifidobacterium, unclassified

Lachnospiraceae, Dialister, Bacteroides, Butyricicoccus, Oscillibacter, and Clostridium

increased after the addition of SCF to the diet as compared to the diet without SCF. This

indicates that these microbes are involved in SCF fermentation (Whisner et al. (2016),

Whisner et al. (2014)). The phylum Bacteroidetes includes a large number of starch

fermenting bacteria. Bifidobacterium species are known for their health benefits to

the host and are commonly used as probiotics (Whisner et al. (2016)).

Therefore, the role of the microbiome in fermentation and calcium absorption and

hence its influence on bone health, is a complex mechanism and not mediated by a

single species (Whisner et al. (2016)).
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Chapter 3

BACKGROUND ON MACHINE LEARNING TECHNIQUES

Microbiome research generates large scale data with hundreds of samples and large

number of features which allows the use of sophisticated analysis methods such as ma-

chine learning algorithms to derive functional relationships between the microbiome

and properties of various ecosystems (Namkung (2020)).

3.1 Machine Learning in Microbiome Studies

Machine learning algorithms are computational and statistical data analysis meth-

ods, used to build and adapt models on data in order to draw inferences, predict pat-

terns, and learn new tasks. Machine learning methods are categorized into two groups;

supervised and unsupervised learning. Supervised learning is used to build a model

which can explain the relationship between input and output variables. Unsupervised

learning, on the other hand, is used to explore unknown patterns or structure of a given

data (Namkung (2020)).

Supervised learning methods are used to identify the relationship between micro-

biome profiles and host traits. The traits of the dataset are known, and a model is

trained to recognize feature characteristics associated with the trait (Zhou and Gallins

(2019)). Supervised learning approaches are classified into classification and regres-

sion based on the type of trait. Classification predicts the class to which the sample

belongs and regression predicts the value of the trait.

A few supervised learning methods that are most commonly used for microbiome

host trait predictions, are lasso, ridge, and penalized regression, Support Vector Ma-

chine (SVM), Linear Discriminant Analysis (LDA), k- Nearest Neighbors(k-NN), Ran-
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dom Forest (RF), and Gradient Boosting. Linear models such as lasso and ridge regres-

sion allow simple fitting of continuous variables as a function of feature vectors (Zhou

and Gallins (2019)).

Support vector machine (SVM) is a classification method which finds a hyperplane

in a high dimensional space, which is a margin between two samples of classes of train-

ing data points [ref 36]. Linear Discriminant Analysis (LDA) is a method used to find a

linear combination of features that separates two or more classes of objects. k-NN can

be used for both classification and regression predictive problems. It is a model that

classifies data points based on the points that are most similar to it. Random forest is

an ensemble learning method which works on the concept of bagging, where multiple

trees are built on bootstrap samples and a random subset of variables, and the out-

come is obtained by averaging prediction values or voting for a specific outcome. Gra-

dient boosting is a technique which produces an ensemble model of weak prediction

models such as decision trees. The model is built successively by computing weights

for the individual trees and optimizing a differentiable loss function (Zhou and Gallins

(2019)).

The structure of the human microbiome differs widely among individuals and this

makes it difficult to use traditional statistical models to identify populations of mi-

crobes that are associated with disease. Traditional statistical approaches also con-

sider the effect of bacterial population individually and do not account for the varia-

tion in the human microbiome (Yazdani et al. (2016)).

Therefore, machine learning (ML) models are being used in recent studies because

they can be used to effectively account for the interpersonal microbiome variation by

considering the relative abundance of each bacterial population in the context of other

bacterial populations (Topçuoğlu et al. (2020)). Machine learning methods are also

used to reduce the amount of time required to manually investigate huge amounts of
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data obtained from metagenomic sequencing (Yazdani et al. (2016)).

In previous studies, machine learning methods were widely used to understand

the composition of the microbiome and how it plays a role in the host health. Johnson

et al. (2016) compared multiple machine learning methods for regression analysis be-

tween microbiome profile and post-mortem intervals such as SVM regression, k-NN,

lasso/elastic-net regression, and random forest. Random forest, SVM, and Lasso lo-

gistic regression methods have also been used to identify microbiome profiles that are

associated with specific diseases such as obesity (Le Chatelier et al. (2013)), colorectal

cancer (Zeller et al. (2014)), and Irritable Bowels Syndrome (IBS) (Fukui et al. (2020)).

Machine learning techniques were also used to discover Type II diabetes associated

with gut microbiome profiles (Qin et al. (2012)).

In some studies, it was seen that the random forest model outperformed other

machine learning methods including linear discriminant analysis (LDA), quantitative

discriminant analysis (QDA), k-nearest neighbor (kNN), and support vector machine

(SVM) classifiers (Meding et al. (2012), Namkung (2020)). In the study by, Topçuoğlu

et al. (2020), three linear models, L2-regularized logistic regression, L1- and L2- reg-

ularized SVMs with linear kernel, and four nonlinear models, SVM with radial basis

function kernel, decision tree, random forest, and gradient boosted trees were trained

and evaluated using faecal 16S rRNA sequence data to predict the presence of colonic

screen relevant neoplasias (SRNs). It was observed that the predictive performance of

the random forest model was higher than other ML models. It was demonstrated that

the most complex model need not necessarily perform the best and the most inter-

pretable models performed nearly as well as the nonlinear models (Topçuoğlu et al.

(2020)).

In studies using machine learning models to perform statistical analysis, the data

was split into training and test sets (usually in the ratio of 80:20) (Topçuoğlu et al.

16



(2020)), hyperparameters of the model were selected using repeated k-fold CV on the

training set, the model with these hyperparameters was trained on the full training set

and applied to the held-out data to evaluate the predictive performance of the model.

This process was repeated multiple times to obtain a robust robust interpretation of

model performance (Namkung (2020), Topçuoğlu et al. (2020)). The performance of

regression models is evaluated using Pearson’s correlation coefficient or Root Mean

Squared Error (RMSE), and Mean Absolute Error(MAE). RMSE is used more often as

it gives more weight to larger error and is inter- pretable in units of original response

variables (Namkung (2020)).

When machine learning methods are applied to data in the microbiome field, cer-

tain problems such as, determining which methods have to be used and how they are

implemented, evaluating models using the entire dataset without setting aside test

data, variation between cross-validation and testing performances, and variation be-

tween the predictive performance on different folds of cross-validation, arise. There-

fore further work is needed to improve reproducibility and reduce the overestimation

of model performance (Topçuoğlu et al. (2020)).

3.2 Random Forests for High-Dimensional Data

A High-dimensional dataset is the case where the number of features is larger than

the number of observations or samples. Even though it is possible to perfectly fit the

training data in the high-dimensional setting, the resulting linear model will perform

extremely poorly on an independent test set, and therefore does not constitute a useful

model (James et al. (2013)). Therefore non-linear models, such as RF, are preferred.

It was seen in previous studies that the RF model demonstrated a higher perfor-

mance in comparison with other algorithms with respect to high dimension and low

sample data sets (Guo et al. (2010), Gunduz and Fokoué (2015), Luan et al. (2020)).
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When building each tree in the random forest model, roughly about one third of the

training set is not used. The fraction of training data which is left out certainly con-

tains some outliers, and each outlier has a probability of e-1 of not affecting the base

learner. Therefore, it can be deduced that by averaging this exclusion of outliers over

many replications, a robust model can be achieved through bootstrap aggregation. In

the Random Forest model, the extremely high dimensionality of the data is addressed

by variable selection performed by random subspace learning. The effect of outliers is

reduced or eliminated by subsampling,these features attribute to the overall superior

performance of Random Forest (Gunduz and Fokoué (2015)).

In another experiment it was seen that the RF model was robust to limited data,

and showed an acceptable predictive performance at a low sample size. The RF model

enabled adequate capture of the information from the data and partially reduced the

uncertainty of the model predictions for small datasets (Luan et al. (2020) ).

It also provides a measure of the prediction power of individual variables called

variable importance which can be used to select a few key features for further study

(Topçuoğlu et al. (2020)). Random Forest algorithm is chosen because it is scale invari-

ant, non-linear, and robust to outliers, missing values, and overfitting (Yazdani et al.

(2016)).
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Chapter 4

EXPERIMENT DESIGN

The dataset used for this thesis is based on the study conducted by Whisner et al. (2014)

4.1 Subjects

The subjects participating in this study were healthy adolescent girls and boys re-

cruited from local schools, community centres and Indiana extension offices and also

by sending direct mails to the surrounding areas. A total of twenty-four adolescents

including, fifteen boys, aged 13-15 years, and nine girls, aged 12-14 years, took part in

the metabolic studies. The participants were ethnically diverse with a distribution of

eleven Asian, six Hispanic, one Black and six multi-racial teenagers.

A 6-day diet record was used to assess their habitual dietary intake and question-

naires based on brief medical history, maturational age, and physical activity were used

to screen the participants to determine their eligibility.

The criteria for exclusion included abnormal liver or kidney function, malabsorp-

tive disorders, anaemia, history of using medications influencing Ca metabolism, body

weight outside the 5th-95th Body Mass Index(BMI) percentile for age, regular consump-

tion of illegal drugs, non-prescription drugs, or any kind of contraceptives, and preg-

nancy.

The subjects were not permitted to take any nutritional supplements while par-

ticipating in these studies. The study was conducted according to the guidelines laid

down in the Declaration of Helsinki, and all procedures involving human subjects were

approved by the Institutional Review Board of Purdue University. A written informed

consent was acquired from all the subjects participating in this study (Whisner et al.
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(2014)).

During the first session of the camp, anthropometric parameters including weight,

sitting height, waist circumference and hip circumference were measured. Standing

height was measured at the beginning of the first session using a wall-mounted sta-

diometer, and to ensure that the weight remained stable throughout the sessions, it

was monitored each morning with an electronic digital scale.

Among all the participants, three members did not undergo the fractional Ca ab-

sorption test in both sessions and one member attended only one of the camp sessions.

Therefore, analyses included twenty-three participants in all (Whisner et al. (2014)).

The characteristics of the participants are shown in Table 4.1 (Whisner et al. (2014)).

Characteristics Females Males

Mean SD Mean SD

Age(years) 13.3 1.0 13.5 0.9

Weight(kg) 59.9 13.2 61.1 11.8

BMI(kg/m2) 24.1 4.0 22.4 3.1

Total Body BMD(g/cm2) 1.07 0.11 1.04 0.11

Total Body BMC(g) 2115 329 2316 424

Total Spine BMD(g/cm2) 1.09 0.13 1.04 0.14

Femoral Neck BMD(g/cm2) 1.03 0.18 1.05 0.15

Table 4.1: Characteristics of Participants. BMI: Body Mass Index, BMD: Bone Mineral
Density, SD: Standard Deviation

4.2 Study Design

The studies were designed to mimic the experience of a summer camp, where ado-

lescent boys and girls were taken on field trips, and were allowed to participate in a
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variety of recreational and educational activities. During the duration of the camp, the

participants were housed in University Residence Halls at Purdue University.

For this experiment, a double-blind, cross-over design was used in which the par-

ticipants received two treatments in a randomised order. One treatment was labelled

SCF treatment where a 12 g/d SCF dose was provided and the other treatment was la-

belled Control Treatment (CON) where a 0 g/d SCF dose was administered. The study

involved two 3-week balance studies which were separated by a 7-day washout period

(Whisner et al. (2014)).

4.3 Diets

The diet provided, during both the 3-week sessions, consisted of foods typically

eaten by adolescent children such as spaghetti, hamburgers, sandwiches and potato

chips and was a controlled diet.

The diets were designed in such a way that body weight was maintained and con-

stant amounts of key nutrients were present. The controlled diets were provided as a 4

day cycle menu with three meals and two snacks daily. SCF was present in Welch’s®fruit

snacks (WELCH Foods, Inc.) and was provided at lunch and dinner, divided into two

0 or 6 g fibre doses. The diets contained 14% protein, 33% fat, 53% carbohydrate, 5mg

vitamin D, 1100mg P, 2300mg Na and 600mg Ca, on an average.

The SCF ingredient called, PROMITOR®Soluble Corn Fiber 70, which was provided

by Tate & Lyle is a fermentable, non-digestible carbohydrate containing a minimum

of 70% soluble dietary fibre.The basal diet contained 15g of fibre and the intervention

product contributed an additional 0g or 12g SCF. This yielded a dietary fibre content

of 15g and 27g, in total, for the CON and SCF treatments, respectively (Whisner et al.

(2014)).
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4.4 Bone Health Measurements

Bone mineral content and bone mineral density were measured using a method

called Dualenergy X-ray absorptiometry (GE Lunar) in order to determine the bone

status of the participants. Dual-energy X-ray Absorptiometry (DXA) is one of the stan-

dard methods to measure Bone Mineral Density (BMD) using spectral imaging. The

images are processed to compute the Bone Mineral Content (BMC) per projected area

which is referred to as the projected BMD. BMC is calculated by summing the BMD

values over the projected area.

BMD is the amount of bone mineral present in the bone tissue. Bone mineral con-

tent (BMC) is a measurement of bone mineral found in a specific area and is mea-

sured in grams (g). BMD is measured in grams per centimeter squared (g/cm2). BMD

is calculated by dividing BMC by area. During one of the sessions, DXA scans were per-

formed to collect bone measurements of the whole body, spine, forearm and both hips.

For this study, the following measures of bone health were collected from each partici-

pant, total body BMD, hip BMD, spine BMD, total body BMC, hip BMC, and spine BMC

(Whisner et al. (2014)).

4.5 Faecal Sample Processing and Microbial Community Composition

The composition of the faecal microbial community was determined from the sam-

ples collected at the beginning and end of each session for every participant. Sterilised

double distilled water was added to the frozen faecal samples and the slurries were

stored at -20 degree celsius until DNA extraction. DNA was extracted from 50 - 100mg

of faecal material using the FastDNA® SPIN Kit for Soil as mentioned in Ariefdjohan

et al. (2010).

Trained counsellors supervised the participants during activity, meal and sample
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collection periods for 24 h each day. Unconsumed food from meals was collected and

its amount recorded (Whisner et al. (2014)). The presence of stomach noises, flatu-

lence, bloating and abdominal pain among the participants was evaluated daily using

a short questionnaire.

The phylogenetic diversity of bacterial communities was determined using 16S ri-

bosomal RNA (rRNA) gene sequences obtained using 454 FLX titanium chemistry and

Roche Genome Sequencer and primers that amplify the V3–V5 region of the 16S rRNA

gene as described in (Nossa et al. (2010)). The 16S rRNA gene sequence dataset was

analysed using the Quantitative Insights Into Microbial Ecology (QIIME) pipeline as

described in Caporaso et al. (2010). The pipeline uses a multi-software approach to

perform quality filtering, operational taxonomic unit (OTU) picking, taxonomic as-

signment, alpha diversity (bacterial diversity within each sample) and beta diversity

(bacterial similarities and differences among the samples) measures. (Whisner et al.

(2014), Nossa et al. (2010)]. The representative OTU was given final taxonomic assign-

ments using the Greengenes dataset and Ribosomal Database Project (RDP) classifier

at a confidence of 80% (Whisner et al. (2014)).

Taxonomy is known as the science of defining and naming groups of biological or-

ganisms based on certain shared characteristics. The evolutionary relationship among

the microbes represented by each operational taxonomic unit, is defined by the taxon-

omy. In this study the taxonomy order used, from general to specific, is as follows:

kingdom (k), phylum (p), class (c), order (o), family (f), and genus (g). Firmicutes was

the most dominant phylum followed by the phyla Bacteroidetes, Actinobacteria, and

Proteobacteria (Whisner et al. (2014)).

The microbial community varies with the host’s health condition, age, and diet.

The composition is different in the stomach compared to that of the colon owing to

the space and nutrients available in the large intestine. A major source of intestinal
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metabolism comes from the processing of dietary nutrients by gut microbes. There-

fore, by assessing the metabolic changes in feces, nutrient microbiota relationships

can be studied. In clinical and preclinical trials, fecal metabolic monitoring should

be considered to explore how host metabolism is impacted by dietary habits through

metabolic activity of bacteria (Martin et al. (2010)).

In this study a total of 178 microbes were identified and the GM sequence consti-

tutes values which represent the proportions of all the microbe genera present in the

faecal samples collected from the participants (Whisner et al. (2014)).
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Chapter 5

STATISTICAL ANALYSIS

In this project, the main aim was to establish a relationship between the gut micro-

biome and bone health. The analysis of this relationship was carried out in 2 steps.

First, only the sequences from the 0 g/d SCF dose were used. Second, the sequences

from both the 0 g/d SCF and 12 g/d SCF doses were used to understand the effect of

SCF.

5.1 Problem Formulation

During the two phases (0 g/d SCF and 12 g/d SCF) of this study, faecal samples were

collected from each of the twenty-three participants and used for sequencing to deter-

mine microbe sequences. A total of 178 microbe sequences were recorded for each par-

ticipant. DXA method was used to record six different measures of bone health during

the two phases, including the following, Total Body Bone Mineral Density (TBBMD),

Spine Bone Mineral Density (SPBMD), Hip Bone Mineral Density (HPBMD), Total Body

Bone Mineral Content (TBBMC), Spine Bone Mineral Content (SPBMC), and Hip Bone

Mineral Content (HPBMC). This constitutes a high-dimensional low-sample dataset,

as the number of features exceeds the number of samples.

To understand the relationship between the microbes in the gut and the measures

of bone health, the GM sequence, consisting of the 178 microbe proportions, was used

to predict the measures of BMD and BMC in the two phases of the study, using the

regression machine learning algorithm.

In statistical modeling, regression analysis is a collection of statistical processes

which are used to estimate relationships between a dependent variable (outcome vari-
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able) and one or more independent variables, also known as predictors or features. Re-

gression analysis is widely used for the purpose of prediction and forecasting. It can

also be used to infer causal relationships between the independent and dependent

variables.

Regression models consist of the following components:

1. Unknown parameters, often denoted as a scalar or vector β .

2. Independent variables, denoted as a vector X i (where i denotes a row of data).

3. Dependent variable, denoted using the scalar Yi

4. Error terms, denoted using the scalar ei .

It is proposed that, Yi is a function of X i andβ , with ei which represents an additive

error term,

Yi = f (X i ,β ) + ei (5.1)

In this algorithm, the independent variables are represented by the feature vector

set formed by 178 GM sequences collected from 23 participants, from two phases. The

dependent variable was represented by one of the measures of bone health mentioned

above.

The goal is to estimate the function f (X i ,β ) that comes very close to fitting the

data. The regression method ultimately provides an estimate of β , denoted by β̂ to

distinguish the estimate from the true parameter value that generated the data. The

fitted value,

Ŷi = f (X i , β̂ ) (5.2)

can then be used for prediction purposes or to assess the accuracy of the model in

explaining the data.
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5.2 Prediction Analysis

As mentioned earlier, many recent studies have used machine learning regression

and classification algorithms to analyze the gut microbiome data. Ensemble learning

methods, especially Random Forest, have been widely used and are effective in the

case of high dimensional data.

In this project, the Random Forest regression algorithm was used as the main model

to predict the measures of BMD and BMC. Another ensemble regression model, Ex-

tremely Randomized Trees, was also built in order to validate the predictions. The en-

semble learning algorithms that were used are explained below.

5.2.1 Random Forest

Ensemble methods use multiple learning algorithms to obtain better predictive

performance than could be obtained from any of the individual learning algorithms

considered separately.

Random forest is an ensemble learning method that operates by constructing mul-

tiple decision trees during training and outputs the class that is the mode of the classes,

in case of classification or the mean prediction of the individual trees, in regression.

Decision Tree

Decision trees are models which are built by learning a hierarchy of if/else ques-

tions on the given data, leading to a final decision. A decision tree is constructed by

splitting the source dataset into two or more homogeneous subsets based on a set of

splitting rules focused on the input variables. The technique of recursive partitioning

is used where each derived subset is further split in a recursive manner. This splitting

process is terminated when the subset obtained at a node contains similar values of the

target variable, or when the splitting ceases to add value to the predictions made. This
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process is called top-down induction of decision trees (TDIDT) and it is an example of

a greedy algorithm. The structure of the decision tree is shown in Figure 5.1.

The Root Node represents the entire sample and further gets divided into subsets.

The Interior/Decision Nodes represent the features of a data set and the branches rep-

resent the decision rules. The Leaf/Terminal Nodes represent the final outcome and

do not split further. The final prediction is given by the average of all the values of

the dependent variable in that specific leaf node. The tree predicts the final value by

performing multiple iterations.

Figure 5.1: Decision Tree

One of the main drawbacks of decision trees is that they tend to overfit the training

data, and lead to a low bias and high variance condition.

Bootstrap aggregation, or bagging, is a procedure used for reducing the variance

of a statistical learning method (James et al. (2013)). The Random Forest training al-

gorithm applies the technique of bootstrap aggregating, or bagging, to the individual

trees.

Bagging

Given a training set, X = x1, ..., xn , and the corresponding response variables, Y =
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y1, ...yn , the bagging algorithm selects a random subset of this training set by replacing

the samples in each iteration, and fits the trees to this subset. The algorithm works as

follows, For each iteration b = 1,...,B :

• n training examples from X , Y are sampled with replacement, called Xb , Yb .

• A classification or regression tree fb is trained on Xb , Yb .

After training, predictions for unseen samples x ′ can be made by averaging the pre-

dictions from all the individual regression trees on x ′:

f̂ =
1

B

B
∑

b=1

fb (x
′) (5.3)

This bootstrapping procedure decreases the variance of the model, without increas-

ing the bias and this leads to a better model performance. This implies that, as long as

the trees are not correlated with one another, the average prediction of many trees is

not sensitive to noise even though the predictions of a single tree can be highly sensi-

tive to noise.

Random Forest

In the Random Forest algorithm, multiple deep decision trees are trained on differ-

ent parts of the same training set (bootstrapping), and the predictions of all the trees

are averaged as shown in Figure 5.2. Each individual tree has high variance, but low

bias. Averaging these trees reduces the overall variance. This is achieved at the ex-

pense of a small increase in the bias and reduces interpretability, but boosts the overall

performance.

Random forests improve the variance reduction of bagging by reducing the correla-

tion between the trees, without increasing the variance too much (Hastie et al. (2009)).

During the process of constructing decision trees, each time a split in a tree is consid-

ered, a random sample of m predictors is chosen as split candidates from the full set
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of p predictors, in this case, the 178 GM sequences. Only one of those m predictors are

used to make a decision at the split. In general, the number of predictors considered at

each split is approximately equal to the square root of the total number of predictors

(James et al. (2013)). The number of decision trees, the depth of each decision tree,

the number of samples and predictors to be considered at each split, are some of the

parameters that can be adjusted in order to obtain a good model.

The main difference between Bagging and Random Forests is the choice of predic-

tor subset size m . If multiple decision trees are built using all the available predictors,

i.e., m = p , then it is called bagging. (James et al. (2013)).

Figure 5.2: Random Forest Algorithm

The Random Forest algorithm (Hastie et al. (2009)) can be summarized as follows:

• For b = 1 to B :

(a) A random bootstrap sample of size N is drawn from the training data .

(b) A random-forest tree Tb is built on the bootstrapped data, by repeating the
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following steps in each iteration, at the terminal node of the tree, until the mini-

mum node size is reached,

i. Selecting m variables from the p variables at random

ii. Among these m variables, picking the best variable/split-point

iii. Splitting the node into two daughter nodes

• Generate an ensemble of trees represented by {Tb }B
1 .

• The ensemble of trees can be used to make a prediction on a new unseen point

x by averaging the predictions of all the trees in the forest given by,

f̂ (x ) =
1

B

B
∑

b=1

Tb (x ) (5.4)

5.2.2 Extremely Randomized Trees

Extremely randomized trees are an ensemble of individual trees, which are very

similar to random forests. As in the RF model, the number of features to be consid-

ered at each node are selected at random. However, in extremely randomized trees,

the splits are computed in a random fashion and each tree is trained using the entire

learning sample instead of using a bootstrap sample.

For each feature under consideration, a random cut-point is selected to divide the

parent node into two child nodes, instead of calculating the best split at that node. This

threshold value is selected from a uniform distribution within the feature’s empirical

range. The split that yields the highest score amongst all the randomly generated splits

is chosen as the final split at that node. In comparison to the RF algorithm, this method

reduces the variance of the model to a greater extent but at the expense of a slightly

greater increase in bias.

In the next sections, the process to develop the regression model to predict the bone

health measures is highlighted.
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5.3 Model Selection

Model selection is the process of selecting a machine learning model, from among

a collection of different machine learning models and also across models of the same

type configured using different model hyperparameters, for a given training dataset.

The performance of different models is measured in order to choose the best model.

Once the final model is chosen, it is assessed by estimating its prediction error on the

test data (Hastie et al. (2009)).

The analysis of the relationship between gut microbiome and bone health was car-

ried out in 2 steps. First, only the sequences from the 0 g/d SCF dose were used. The

independent variable set was represented by 23 samples and 178 features. Second, the

sequences from both the 0 g/d SCF and 12 g/d SCF doses were used to understand

the effect of SCF. The independent variable set included 46 samples in all, and 178 fea-

tures. In both the cases the dependent variable to be predicted was one of the six bone

strength measures which included 23 samples and 46 samples, respectively.

Figure 5.3: Dataset Representation

The training dataset is a set of examples which is used during the learning process
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and is used to fit the parameters of the model. The validation dataset or development

set is a set of examples used to tune the hyperparameters of the model and it provides

an unbiased evaluation of a model fit on the training dataset. Different models are

trained on the training data set by minimizing an appropriate error function. The per-

formance of the models is then compared by evaluating the error function using an

independent validation set, and the model which has the smallest error with respect

to the validation set is selected. Finally, the test dataset, which is independent of the

training set, is a dataset used to provide an unbiased evaluation of a final model fit on

the training dataset. Minimal overfitting takes place if the final model selected, fits the

test dataset well.

However, when the data is partitioned into three subsections, the number of sam-

ples which can be used by the model for learning drastically reduces. One way to over-

come this problem is to use a procedure called cross-validation. It is required that a

test set should still be held out for final evaluation, but the validation set is no longer

necessary. Cross-validation is especially useful when the training dataset is very small

and holding out part of the data just for validation purposes is not affordable (Zheng

(2015)).

In the first case (0 g/d SCF dose), I split the above mentioned dataset into a training

set and test set in the ratio of 80-20. The training set included 80 percent of the samples

(18 sequences) and the test set included the remaining 20 percent of the samples (5

sequences). In the second case (12 g/d dose), the dataset was split into a training set

of 36 samples and test set of 10 samples. This is depicted in Figure 5.3.

I used a Random Forest (RF) regression model to train the training set samples in

each case. In order to optimize the model, I tuned the hyperparameters of the RF

model using the procedure described below.
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5.3.1 Hyperparameter Tuning

Hyperparameter optimization is the process of choosing a set of optimal hyperpa-

rameters for a learning algorithm. A hyperparameter is a parameter whose value is

used to control the learning process. A tuple of hyperparameters is found that yields

an optimal model which minimizes a predefined loss function on given independent

data.

The hyperparameter values are changed when running a learning algorithm over

the training set and this results in a set of different models. Model selection refers to

the process of finding the model which gives best performance from this set of models

(Raschka (2018)). The process of hyperparameter tuning and model selection are per-

formed on the training set simultaneously (Raschka (2018)). The learning algorithm

optimizes an objective function on the training set along with hyperparameter tuning.

After the tuning stage, a reasonable approach is to select a model based on the test set

performance. However, using the test set again and again would introduce a bias and

result in overly optimistic estimates of the generalization performance leading to the

leakage of information from the test set. To avoid this problem, a three-way split can be

performed by dividing the dataset into training, validation, and test datasets (Raschka

(2018)). In this way the training set can be used to fit the models, the validation set can

be used to estimate the prediction error for the selected model, and this pair can be

used for hyperparameter tuning . The test set is used to assess the generalization error

of the final model (Hastie et al. (2009)).

K-fold cross-validation is a special case of cross-validation where the training set is

split into k smaller sets. For each of the k folds generated, k-1 of the folds are used as

training data to train a model and this resulting model is validated on the remaining

part of the data.
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The procedure to tune hyperparameters for model selection outlined in Figure 5.4,

is described as follows:

• Step 1: The dataset is split into two parts, a training and an independent test

set. The test set is kept aside for the final model evaluation step. In this case, I

randomly selected 20 percent of the data as the test set.

• Step 2: Various hyperparameter settings can be experimented with, by using

techniques such as Bayesian optimization, Randomized search, or Grid search.

The k-fold cross-validation method is applied on the training set, resulting in

multiple models and performance estimates (Raschka (2018)). The overall per-

formance is considered to be the mean of the performance on all k folds (Zheng

(2015)).

• Step 3: The hyperparameter combination that gave the best results in the k-fold

cross validation procedure was selected and a final RF model was fit with these

values, on the entire training set of 23 samples or 46 samples in cases 1 and 2

respectively.

• Step 4: The 20 percent independent test set which was withheld earlier is now

used to evaluate the final model obtained from Step 3. The RF model was fit on

the test set to obtain the predictions of the bone health measures.

• Step 5: After evaluation, a model can be fit to the entire dataset and this could be

the model for deployment. This step is optional.

5.3.2 Grid Search and Random Search

The random forest algorithm has several hyperparameters that can be modified,

such as the number of trees, number of observations drawn randomly for each tree,
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Figure 5.4: Hyperparameter Tuning for Model Selection. From Raschka (2018)
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the number of variables drawn randomly for each split, and the minimum number of

samples that a node must contain (Probst et al. (2019)). One of the major attributes

to be tuned is the number of features/variables used in an individual tree. Selecting a

small number will reduce the variance of the ensemble but it might also increase the

bias of an individual tree in the ensemble. If the dataset comprises a lot of noisy vari-

ables, a lesser number of variables selected will decrease the probability of choosing an

important variable at a split. Also a higher number of trees gives better performance.

Random Search

Random search uses a randomized search over all the parameters and samples each

setting randomly from a distribution over possible parameter values. This technique

can be applied to a discrete set of values or it can be generalized to continuous and

mixed spaces.

Distributions of each parameter were searched using the Random search technique

using 5-fold CV, over 700 iterations. This process narrowed down the range of each

parameter enabling trial using specific combination settings in that range, using Grid

Search.

Grid Search

Grid-search is used to find the optimal hyperparameters of a model, from a com-

bination of parameters, which results in the most accurate predictions. This is a tra-

ditional method of performing hyperparameter optimization and is also known as pa-

rameter sweep. In this technique a hyperparameter space of the learning algorithm

is specified manually and exhaustive searching of this subset is performed. The grid

search algorithm is guided by optimizing a performance metric. Different performance

metrics can be measured by evaluation on a held-out test set or cross-validation on the

training set.

Grid Search along with 3-fold CV was used in Case 1 (0 g/d fiber) and 5-fold CV in
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case 2 (12 g/d fiber), to identify the best hyperparameter settings from a grid of values.

The parameters that were tuned include the number of trees in the forest, the number

of features assigned to each tree, the depth of each tree, and the number of samples in

the node of each tree.

Each hyperparameter setting was run over 100 iterations. In each iteration, one of

the k folds is held out as a validation set. A model is trained on the rest of the k – 1

folds and its performance is measured on the held-out fold. This is repeated for all the

hyperparameter settings that need to be tested. The best hyperparameter combination

was identified as the one which produced the highest performance metric.

5.4 Model Evaluation

The predictive performance of a model is evaluated for the following reasons:

1. To estimate the generalization performance, which is the predictive performance

of the model on new data.

2. To increase the predictive performance by tweaking the learning algorithm and

selecting the best performing model from a given hypothesis space.

3. To identify the machine learning algorithm that is best-suited for the given prob-

lem (Raschka (2018)).

5.4.1 Cross-Validation

Cross-validation is a model validation technique which is used to assess the effec-

tiveness of the results of a statistical analysis on independent data. The aim of cross-

validation is to evaluate the model’s ability to predict new data, and provide an insight

on how the model will generalize to an independent dataset.

A single round of cross-validation involves splitting a sample of data into two sub-
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sets, called training set, on which the analysis is performed, and test set, on which vali-

dation is performed. In order to reduce variability, multiple rounds of cross-validation

can be performed using different partitions, and all the validation results are combined

over the rounds to provide an estimate of the model’s predictive performance.

Once the best model that fit the training data well was found, its performance was

evaluated by fitting it to the 20 percent test set which was set aside initially. In order to

see how well the model performs on new data, performance metrics such as Root Mean

Squared Error, Mean Absolute Error, Pearson’s correlation coefficient, and Spearman’s

correlation coefficient, between the true and predicted values of the BMD and BMC

measures, were calculated.

5.4.2 Performance Metrics

Performance metrics can be used to evaluate how well the model, fit on the training

data, performs on unseen test data.

1. Mean Absolute Error (MAE): Absolute error is the difference between the true

value and the predicted value. MAE is the average of all absolute errors. It can be

is calculated as follows:
n
∑

i=1
|yi − xi |

n
(5.5)

where yi is the prediction and xi is the original value.

2. Root Mean Suared Error (RMSE): It measures the average magnitude of the error.

It is calculated as the square root of the average of squared differences between

the true and predicted observations given by,

√

√

√

√

n
∑

i=1
(yi − xi )2

n
(5.6)
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3. Pearson Correlation Coefficient (r ): It is a statistic that measures linear correla-

tion between two variables X and Y. It has a value between +1 and -1. A value

of +1 is total positive linear correlation, 0 is no linear correlation, and -1 is total

negative linear correlation.

4. Spearman’s rank correlation coefficient (ρ): It is a nonparametric measure of

rank correlation (statistical dependence between the rankings of two variables).

It assesses how well the relationship between two variables can be described us-

ing a monotonic function. The Spearman correlation between two variables is

equal to the Pearson correlation between the rank values of those two variables.

While Pearson’s correlation assesses linear relationships, Spearman’s correlation

assesses whether the relationships are linear or not. A Spearman correlation of

+1 or -1 occurs when each of the variables is a perfect monotone function of the

other.

In this study, the dataset is very small containing only 23 or 46 samples. In this

situation, the generalization performance of the model can be evaluated by using k-

fold cross -validation instead of just the test set (Raschka (2018)).

5.4.3 K-Fold Cross-Validation

In k-fold cross-validation, the original sample is randomly partitioned into k equal

sized subsamples. Of the k subsamples, a single subsample is retained as the validation

data for testing the model, and the remaining k-1 subsamples are used as training data.

The cross-validation process is then repeated k times, with each of the k subsam-

ples used exactly once as the validation data. The k results can then be averaged to

produce a single estimation. The advantage of this method over repeated random sub-

sampling is that all observations are used for both training and validation, and each
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observation is used for validation exactly once.

Typically, given these considerations, one performs k-fold cross-validation using

k = 5 or k = 10, as these values have been shown empirically to yield test error rate

estimates that suffer neither from excessively high bias nor from very high variance

(James et al. (2013)).

The final RF model was evaluated on the entire dataset by splitting the dataset into

k-folds, where k=3 in case 1 and k=5 in case 2, as depicted in Figure 5.5. The per-

formance metrics were calculated in each iteration and averaged to obtain the overall

value.

Figure 5.5: K-fold Cross-Validation

The following are the different variations in cross-validation:

• When k = n (the number of observations), k-fold cross-validation is equivalent

to leave-one-out cross-validation.

• Repeated k-fold cross-validation: the data is randomly split into k partitions sev-

eral times. The performance of the model can thereby be averaged over several

runs, but this is rarely desirable in practice. The data was split into k-folds in

100 iterations and the performance metrics, described earlier, were calculated

by averaging the values over all the iterations.
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• Random permutations cross-validation or Shuffle and Split CV: In this method,

samples are shuffled and then split into a pair of train and test sets. The number

of train/test splits can be specified by the user. This is a good alternative to k-fold

cross validation, as it allows a finer control on the number of iterations and the

proportion of samples on each side of the train / test split.

Figure 5.6: Shuffle and Split Cross-Validation. From Wikipedia

To get a better understanding of how the model performs, the entire dataset was

shuffled and split into 80-20 percent folds of train/test datasets, in 100 iterations,

as shown in Figure 5.6. The RF model was fit on the training fold and evaluated

on the test fold by calculating the performance metrics in all iterations. The aver-

age of all the iterations was computed to get the final correlation coefficient and

other performance metrics.

This process of model selection and evaluation, using the Random Forest algo-

rithm, was used to predict the values of the six bone mineral density and bone mineral

content measures. The process was carried out in 2 steps, first using only the samples

from the CON treatment (0 g/d fiber) and second using all the samples from the SCF

treatment (12 g/d fiber). All the performance metrics obtained in both the phases were

tabulated.

The entire procedure was then repeated using the Extremely Randomized Trees re-

gression model, in order to validate the results that were obtained previously using the
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Random Forest model.

In order to identify the microbes that played a role in predicting these bone mea-

surements, the permutation feature importance technique was used on the final RF

model, to rank the microbes based on their importance.

5.5 Feature Selection

In machine learning and statistics, feature selection, also known as variable selec-

tion, attribute selection or variable subset selection, is the process of selecting a subset

of features which are most relevant for the construction of machine learning models.

Feature selection techniques are used for several reasons:

• Easier interpretation of models by simplifying them

• Shorter training times

• To avoid the curse of dimensionality

• To reduce overfitting and enhance generalization

• To obtain a better understanding of individual features and their relationship to

the response variables.

The first part of this project was to predict the measures of bone health (response

variable) using the GM sequence consisting of microbe proportions (predictor vari-

ables). The aim of this project was to not only make the most accurate predictions

of the response variable but to also identify which predictor variables/features (mi-

crobes) play the most important in making these predictions. I used the Random For-

est model to identify the most relevant microbes which affected the gut-bone relation-

ship.
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5.5.1 Feature Importance of Random Forest

The variable importance measures provided by the Random Forest model serve as

an effective solution for the problem of feature selection because of the properties of

Random Forests such as their ability to model complex interactions, flexibility to work

with numerical and categorical variables, good prediction performance, and robust-

ness to noisy variables (Louppe (2014)).

The feature importance values are usually calculated by the mean decrease in im-

purity mechanism . When decision trees are built in the RF algorithm, the importance

of a feature is computed by measuring the effectiveness of the feature at reducing the

uncertainty or variance. The value is equal to zero if and only if the variable is irrele-

vant. However, the drawback of this method is that it shows a bias towards variables

with more categories and prefers those variables over others.

5.5.2 Permutation Feature Importance

In this method the importance of a feature is measured by randomly shuffling the

values of each feature, without disturbing the other predictor variables or the target

variable, and observing how this permutation affects the performance metric of the

machine learning model and influences the model performance.

The approach for calculating the permutation feature importance using Random

Forest is described as follows:

1. A baseline model is trained on the training set and its evaluation is performed

by passing the validation set and obtaining the performance metric. The score

recorded in this case is denoted by Pb .

2. The values of one feature are shuffled randomly within that column and this

modified dataset is passed to the model to obtain new predictions and a new
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performance metric is obtained. The score recorded after shuffling is denoted

by Ps . The feature importance is the difference between these two scores.

3. The above procedure is repeated for all features in the dataset.

If performance metrics such as precision, accuracy, or coefficient of determination

are used, where larger values are better, the importance is defined as (Pb−Ps ). However

if error/loss metrics such as log loss or root mean squared error are used, then the

importance is defined as −(Pb −Ps ). The importance of the feature is measured as the

reduction in performance or increase in the model’s prediction error after the shuffling

has been performed. For example, if shuffling the values of a feature decreases the

accuracy, then it is considered as important and it implies that the model relies on that

feature for prediction. If the model accuracy remains unchanged, then that feature

is not considered by the model for prediction. Therefore no matter which metric is

chosen, a higher value implies the feature is more important.The features which show

a maximum decrease in accuracy are considered as the most important features.

The results obtained by this permutation mechanism are more reliable as com-

pared to the mean decrease in impurity mechanism, even though it is computationally

expensive. In the permutation importance strategy, after permuting each column the

model does not have to be retrained. The perturbed test samples can be re-run through

the already-trained model, which saves the computation time.

Permutation Feature Importance technique was used along with Shuffle and Split

CV as shown in Figure 5.7. The entire dataset was shuffled and split into training and

test set folds in the ratio of 80:20. The final RF model was fit on the training fold and

the the performance metric (R 2) was calculated on the test fold. Next, the dataset is

modified by shuffling each of the feature vector columns. This modified dataset is then

passed to the model again to obtain new predictions and new R 2 values. The features
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are shuffled 15 times and the average R 2 value is recorded. This process is repeated

100 times and for all the 178 feature vector columns. The final importance value is

obtained by taking the average of all the values from all the iterations.

Figure 5.7: Permutation Feature Importance of Random Forest

The entire process of training and evaluating the regression models along with their

evaluation and feature selection was implemented using the Spyder (Python 3.7) plat-

form and Jupyter Notebook. The results obtained from model selection, evaluation

and feature selection techniques are explained in the next section.
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Chapter 6

RESULTS

6.1 Relationship Between Gut Microbiome and Bone Health

The Root Mean Squared Error (RMSE), Pearson’s correlation coefficient (r), and

Spearman’s correlation coefficient (ρ), metrics were calculated between the ground

truth values of the bone health measures and the values predicted by the RF model.

The values for both the cases, without and with SCF intervention, can be seen in

Table 6.1 and Table 6.2, respectively.

Variable Range RMSE r ρ

TBBMD 0.86 - 1.24 0.11 0.075 -0.0008

TBBMC 1648.26- 3243.07 434.35 -0.207 -0.17

TSBMD 0.82 - 1.32 0.126 0.35 0.27

TSBMC 31.92 - 78.07 13.62 -0.12 -0.06

HPBMD 0.71 - 1.27 0.165 -0.19 -0.18

HPBMC 3.34 - 6.76 1 -0.4 -0.37

Table 6.1: Performance Metrics for Phase Without SCF (0 g/d Fiber) Using Random
Forest Regression Model and Cross-Validation

It can be seen from Tables 6.1 and 6.2 that the correlation coefficient values show

an improvement from the CON phase to the SCF phase, in all the six bone measure

cases. The Pearson Correlation Coefficient values range between 0.3 and 0.65 and the

Spearman Correlation coefficent values range between 0.25 and 0.6, in the case with

SCF treatment.
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Variable Range RMSE r ρ

TBBMD 0.86 - 1.24 0.096 0.55 0.49

TBBMC 1648.26- 3243.07 364.96 0.5 0.48

TSBMD 0.82 - 1.32 0.111 0.64 0.56

TSBMC 31.92 - 78.07 11.575 0.55 0.53

HPBMD 0.71 - 1.27 0.137 0.51 0.47

HPBMC 3.34 - 6.76 0.89 0.31 0.26

Table 6.2: Performance Metrics for Phase With SCF (12 g/d Fiber) Using Random Forest
Regression Model and Cross-Validation

The performance metrics were also calculated for the values predicted by the Ex-

tremely Randomized Trees regression model for the bone health measures, TSBMD

and TSBMC, during the two phases, as shown in Table 6.3.

Phase Variable RMSE r ρ

Without

SCF

TSBMD 0.126 0.35 0.29

TSBMC 13.3 0.044 0.065

With

SCF

TSBMD 0.112 0.64 0.56

TSBMC 10.83 0.59 0.55

Table 6.3: Performance Metrics for Both Phases Using Extremely Randomized Trees
Regression and Cross-Validation

The correlation coefficient values obtained using the Extra trees model are compa-

rable to the values obtained using the RF model, thereby validating the performnace

of the RF model.

This implies that with the addition of SCF to the diet, the gut microbiome was af-

fected and this indicates a positive influence on its relationship to bone health.
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6.2 Analysis of Microbes

The permutation feature importance technique was used to obtain the importance

of each microbe in predicting the six BMD and BMC measures. The microbes were

ranked according to their importance values from most important to least important

in predicting each of the 6 measures in the two cases of without SCF (0 g/d fiber) and

with SCF (12 g/d fiber).

The microbes which had an importance value of above the threshold 0 across all

the six bone health measures, were shortlisted to be the most relevant microbes in the

two cases. A total 4 microbes were identified as relevant in the case of without SCF

treatment and these microbes along with their importance values are shown in Figure

6.1.

Figure 6.1: 4 Most Relevant Microbes Identified in the CON Treatment (0 g/d Fiber)
Across the Six Bone Health Measures.

A total of 22 microbes were identified as relevant in the with SCF treatment case

and these microbes along with their importance values are shown in Figure 6.2. It was

observed that the microbes Megamonas (g) and Unclassified Peptostreptococcaceae (f)

were common to both the cases. Some of the new microbes added to the list included
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Acetivibrio (g), Prevotella (g), Eubacterium (g), and Turicibacter (g).

Figure 6.2: 22 Most Relevant Microbes Identified in the SCF Treatment (12 g/d Fiber)
Across the Six Bone Health Measures.

The change in importance values of these most relevant microbes with the addition

of SCF to the diet is shown in Figure 6.3.

A previous study by Bass et al. (1999) in adolescents showed that the due to the dif-

ference in speed of growth between different regions of the body there are differences

in the size, mass, or BMD in different body parts and there may be a deficiency in one

region and not the other. It was seen that growth of the spine accelerated while growth

of the legs slowed without a detectable acceleration phase, at puberty.In some other

studies it was found that the BMD and BMC measures were significantly higher in the

spine region as compared to other body parts (Saraví and Sayegh (2013), Deng et al.

(2002)).

It was observed from the values of the correlation coefficients obtained in this ex-

periment that, the spine region is of importance and the microbes that play a role in

predicting the TSBMD and TSMBC measures were identified.

The top relevant microbes ranked from most important to least important in pre-
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Figure 6.3: The Change in Importance Values With and Without SCF (Microbe Num-
bers in Table 6.4).

dicting TSBMD and TSBMC measures along with their importance values, in both the

cases, are shown in Figure 6.4 and Figure 6.5 respectively.

Some of the most important microbes which were highly ranked in the case of with-

out SCF were, Unclassified Peptostreptococcaceae (f), Megamonas (g), Phascolarctobac-

terium (g), Unclassified Ruminococcaceae (f), and Haemophilus (g).

The microbes which were ranked high in the case of with SCF were, Unclassified

Firmicutes (p), Acetivibrio (g), Faecalibacterium (g), and Prevotella (g), Eubacterium

(g), Turicibacter (g), Unclassified Ruminococcaceae (f), Mogibacterium (g), and Porphy-

romonas (g).

The mean proportions of the most relevant microbes in the faecal samples in both

SCF and CON treatments, while the TSBMD and TSBMC measures were recorded, were

compared. Figure 6.6 and Figure 6.7 show the mean proportions of the microbes in
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Figure 6.4: Most Relvant Microbes Identified for Predciting TSBMD Measure (Microbe
Numbers in Table 6.4).

both the cases of with and without SCF.

Some of the relevant microbes which showed an increase in the mean proportion

values with SCF intervention in the diet, while measuring TSBMD, were Megamonas

(g), Faecalibacterium (g), Porphyromonas (g), Anaerostipes (g), Allobaculum, and Para-

prevotella (g). While measuring TSBMC, the microbes Bacteroides (g), Unclassified

Ruminococcaceae (f), Megamonas (g), Faecalibacterium (g), Porphyromonas (g), and

Unclassified Firmicutes (p), showed an increase in mean proportion values with SCF

intervention in the diet.

The most relevant microbes identified in this study, have previously shown to be

important for calcium absorption and hence play an important role in affecting the

bone health in humans, as discussed in Section 2.5.
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Figure 6.5: Most Relvant Microbes Identified for Predciting TSBMC Measure (Microbe
Numbers in Table 6.4).

Microbe Number Microbe Name

1 p_Actinobacteria;f_Actinomycetaceae;g_Actinomyces

2 p_Actinobacteria;f_Actinomycetaceae;g_Actinomyces

3 p_Actinobacteria;f_Actinomycetaceae;Other

4 p_Actinobacteria;f_Actinomycetaceae;g_Varibaculum

5 p_Actinobacteria;f_Brevibacteriaceae;g_Brevibacterium

6 p_Actinobacteria;f_Corynebacteriaceae;g_Corynebacterium

7 p_Actinobacteria;f_Corynebacteriaceae;Other

8 p_Actinobacteria;f_Micrococcaceae;g_Kocuria

9 p_Actinobacteria;f_Micrococcaceae;g_Rothia
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Microbe Number Microbe Name

10 p_Actinobacteria;o_Actinomycetales;Other;Other

11 p_Actinobacteria;f_Propionibacteriaceae;Other

12 p_Actinobacteria;f_Propionibacteriaceae;g_Propionibacterium

13 p_Actinobacteria;f_Bifidobacteriaceae;g_Bifidobacterium

14 p_Actinobacteria;f_Bifidobacteriaceae;g_Gardnerella

15 p_Actinobacteria;f_Bifidobacteriaceae;Other

16 p_Actinobacteria;f_Coriobacteriaceae;g_Asaccharobacter

17 p_Actinobacteria;f_Coriobacteriaceae;g_Atopobium

18 p_Actinobacteria;f_Coriobacteriaceae;g_Collinsella

19 p_Actinobacteria;f_Coriobacteriaceae;g_Eggerthella

20 p_Actinobacteria;f_Coriobacteriaceae;g_Enterorhabdus

21 p_Actinobacteria;f_Coriobacteriaceae;g_Gordonibacter

22 p_Actinobacteria;f_Coriobacteriaceae;g_Olsenella

23 p_Actinobacteria;f_Coriobacteriaceae;Other

24 p_Actinobacteria;f_Coriobacteriaceae;g_Slackia

25 p_Actinobacteria;c_Actinobacteria;Other;Other;Other

26 p_Bacteroidetes;f_Bacteroidaceae;g_Bacteroides

27 p_Bacteroidetes;o_Bacteroidales;Other;Other

28 p_Bacteroidetes;f_Porphyromonadaceae;g_Barnesiella

29 p_Bacteroidetes;f_Porphyromonadaceae;g_Butyricimonas

30 p_Bacteroidetes;f_Porphyromonadaceae;g_Odoribacter

31 p_Bacteroidetes;f_Porphyromonadaceae;Other

32 p_Bacteroidetes;f_Porphyromonadaceae;g_Parabacteroides

33 p_Bacteroidetes;f_Porphyromonadaceae;g_Porphyromonas

54



Microbe Number Microbe Name

34 p_Bacteroidetes;f_Prevotellaceae;g_Hallella

35 p_Bacteroidetes;f_Prevotellaceae;Other

36 p_Bacteroidetes;f_Prevotellaceae;g_Paraprevotella

37 p_Bacteroidetes;f_Prevotellaceae;g_Prevotella

38 p_Bacteroidetes;f_Rikenellaceae;g_Alistipes

39 p_Bacteroidetes;f_Rikenellaceae;Other

40 p_Bacteroidetes;f_Flavobacteriaceae;g_Cloacibacterium

41 p_Bacteroidetes;Other;Other;Other;Other

42 p_Bacteroidetes;f_Sphingobacteriaceae;g_Pedobacter

43 p_Cyanobacteria;f_Streptophyta;Other

44 p_Cyanobacteria;Family I;GpI;Other

45 p_Firmicutes;f_Bacillaceae;g_Anoxybacillus

46 p_Firmicutes;f_Bacillaceae;g_Bacillus

47 p_Firmicutes;f_Bacillaceae;Other

48 p_Firmicutes;f_Paenibacillaceae;g_Brevibacillus

49 p_Firmicutes;f_Staphylococcaceae;g_Gemella

50 p_Firmicutes;f_Staphylococcaceae;g_Macrococcus

51 p_Firmicutes;f_Staphylococcaceae;g_Staphylococcus

52 p_Firmicutes;f_Thermoactinomycetaceae;g_Desmospora

53 p_Firmicutes;f_Aerococcaceae;g_Abiotrophia

54 p_Firmicutes;f_Carnobacteriaceae;g_Carnobacterium

55 p_Firmicutes;f_Carnobacteriaceae;g_Granulicatella

56 p_Firmicutes;f_Carnobacteriaceae;Other

57 p_Firmicutes;f_Enterococcaceae;g_Enterococcus
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Microbe Number Microbe Name

58 p_Firmicutes;f_Enterococcaceae;Other

59 p_Firmicutes;f_Enterococcaceae;g_Vagococcus

60 p_Firmicutes;f_Lactobacillaceae;g_Lactobacillus

61 p_Firmicutes;f_Lactobacillaceae;Other

62 p_Firmicutes;f_Lactobacillaceae;g_Pediococcus

63 p_Firmicutes;f_Leuconostocaceae;g_Leuconostoc

64 p_Firmicutes;f_Leuconostocaceae;g_Weissella

65 p_Firmicutes;o_Lactobacillales;Other;Other

66 p_Firmicutes;f_Streptococcaceae;g_Lactococcus

67 p_Firmicutes;f_Streptococcaceae;Other

68 p_Firmicutes;f_Streptococcaceae;g_Streptococcus

69 p_Firmicutes;c_Bacilli;Other;Other;Other

70 p_Firmicutes;f_Clostridiaceae;g_Anaerobacter

71 p_Firmicutes;f_Clostridiaceae;g_Clostridium

72 p_Firmicutes;f_Clostridiaceae;Other

73 p_Firmicutes;f_Clostridiaceae;g_Sarcina

74 p_Firmicutes;f_Eubacteriaceae;g_Anaerofustis

75 p_Firmicutes;f_Eubacteriaceae;g_Eubacterium

76 p_Firmicutes;f_Eubacteriaceae;Other

77 p_Firmicutes;f_Gracilibacteraceae;Other

78 p_Firmicutes;f_Incertae Sedis XI;g_Anaerococcus

79 p_Firmicutes;f_Incertae Sedis XI;g_Finegoldia

80 p_Firmicutes;f_Incertae Sedis XI;g_Gallicola

81 p_Firmicutes;f_Incertae Sedis XI;Other
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82 p_Firmicutes;f_Incertae Sedis XI;g_Parvimonas

83 p_Firmicutes;f_Incertae Sedis XI;g_Peptoniphilus

84 p_Firmicutes;f_Incertae Sedis XIII;g_Anaerovorax

85 p_Firmicutes;f_Incertae Sedis XIII;g_Mogibacterium

86 p_Firmicutes;f_Incertae Sedis XIII;Other

87 p_Firmicutes;f_Incertae Sedis XIV;g_Blautia

88 p_Firmicutes;f_Incertae Sedis XIV;g_Howardella

89 p_Firmicutes;f_Incertae Sedis XIV;Other

90 p_Firmicutes;f_Lachnospiraceae;g_Anaerostipes

91 p_Firmicutes;f_Lachnospiraceae;g_Coprococcus

92 p_Firmicutes;f_Lachnospiraceae;g_Dorea

93 p_Firmicutes;f_Lachnospiraceae;g_Oribacterium

94 p_Firmicutes;f_Lachnospiraceae;Other

95 p_Firmicutes;f_Lachnospiraceae;g_Robinsoniella

96 p_Firmicutes;f_Lachnospiraceae;g_Roseburia

97 p_Firmicutes;o_Clostridiales;Other;Other

98 p_Firmicutes;f_Peptococcaceae;g_Peptococcus

99 p_Firmicutes;f_Peptostreptococcaceae;Other

100 p_Firmicutes;f_Peptostreptococcaceae;g_Peptostreptococcus

101 p_Firmicutes;f_Peptostreptococcaceae;g_Sporacetigenium

102 p_Firmicutes;f_Ruminococcaceae;g_Acetanaerobacterium

103 p_Firmicutes;f_Ruminococcaceae;g_Acetivibrio

104 p_Firmicutes;f_Ruminococcaceae;g_Anaerofilum

105 p_Firmicutes;f_Ruminococcaceae;g_Anaerotruncus
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106 p_Firmicutes;f_Ruminococcaceae;g_Butyricicoccus

107 p_Firmicutes;f_Ruminococcaceae;g_Ethanoligenens

108 p_Firmicutes;f_Ruminococcaceae;g_Faecalibacterium

109 p_Firmicutes;f_Ruminococcaceae;g_Hydrogenoanaerobacterium

110 p_Firmicutes;f_Ruminococcaceae;g_Lactonifactor

111 p_Firmicutes;f_Ruminococcaceae;g_Oscillibacter

112 p_Firmicutes;f_Ruminococcaceae;Other

113 p_Firmicutes;f_Ruminococcaceae;g_Papillibacter

114 p_Firmicutes;f_Ruminococcaceae;g_Ruminococcus

115 p_Firmicutes;f_Ruminococcaceae;g_Sporobacter

116 p_Firmicutes;f_Ruminococcaceae;g_Subdoligranulum

117 p_Firmicutes;f_Veillonellaceae;g_Acidaminococcus

118 p_Firmicutes;f_Veillonellaceae;g_Allisonella

119 p_Firmicutes;f_Veillonellaceae;g_Dialister

120 p_Firmicutes;f_Veillonellaceae;g_Megamonas

121 p_Firmicutes;f_Veillonellaceae;g_Megasphaera

122 p_Firmicutes;f_Veillonellaceae;g_Mitsuokella

123 p_Firmicutes;f_Veillonellaceae;Other

124 p_Firmicutes;f_Veillonellaceae;g_Phascolarctobacterium

125 p_Firmicutes;f_Veillonellaceae;g_Veillonella

126 p_Firmicutes;c_Clostridia;Other;Other;Other

127 p_Firmicutes;f_Erysipelotrichaceae;g_Allobaculum

128 p_Firmicutes;f_Erysipelotrichaceae;g_Bulleidia

129 p_Firmicutes;f_Erysipelotrichaceae;g_Catenibacterium
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130 p_Firmicutes;f_Erysipelotrichaceae;g_Coprobacillus

131 p_Firmicutes;f_Erysipelotrichaceae;g_Erysipelothrix

132 p_Firmicutes;f_Erysipelotrichaceae;g_Holdemania

133 p_Firmicutes;f_Erysipelotrichaceae;Other

134 p_Firmicutes;f_Erysipelotrichaceae;g_Solobacterium

135 p_Firmicutes;f_Erysipelotrichaceae;g_Turicibacter

136 p_Firmicutes;Other;Other;Other;Other

137 p_Fusobacteria;f_Fusobacteriaceae;g_Fusobacterium

138 p_Fusobacteria;f_Fusobacteriaceae;Other

139 k_Bacteria;Other;Other;Other;Other;Other

140 p_Proteobacteria;f_Caulobacteraceae;g_Brevundimonas

141 p_Proteobacteria;Alphaproteobacteria;Other;Other;Other

142 p_Proteobacteria;f_Methylocystaceae;g_Methylocystis

143 p_Proteobacteria;o_Rhizobiales;Other;Other

144 p_Proteobacteria;f_Rhizobiaceae;g_Rhizobium

145 p_Proteobacteria;f_Alcaligenaceae;g_Parasutterella

146 p_Proteobacteria;f_Alcaligenaceae;g_Sutterella

147 p_Proteobacteria;f_Comamonadaceae;g_Diaphorobacter

148 p_Proteobacteria;f_Oxalobacteraceae;Other

149 p_Proteobacteria;f_Oxalobacteraceae;g_Oxalobacter

150 p_Proteobacteria;Neisseriaceae;g_Neisseria

151 p_Proteobacteria;f_Desulfovibrionaceae;g_Desulfovibrio

152 p_Proteobacteriaf_;Desulfovibrionaceae;Other

153 p_Proteobacteria;o_Desulfovibrionales;Other;Other
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154 p_Proteobacteria;o_Alteromonadales;Other;Other

155 p_Proteobacteria;f_Shewanellaceae;g_Shewanella

156 p_Proteobacteria;f_Enterobacteriaceae;g_Cronobacter

157 p_Proteobacteria;f_Enterobacteriaceae;g_Escherichia/Shigella

158 p_Proteobacteria;f_Enterobacteriaceae;g_Klebsiella

159 p_Proteobacteria;f_Enterobacteriaceae;Other

160 p_Proteobacteria;f_Enterobacteriaceae;g_Raoultella

161 p_Proteobacteria;f_Enterobacteriaceae;g_Serratia

162 p_Proteobacteria;f_Halomonadaceae;g_Halomonas

163 p_Proteobacteria;f_Halomonadaceae;Other

164 p_Proteobacteria;c_Gammaproteobacteria;Other;Other;Other

165 p_Proteobacteria;f_Pasteurellaceae;g_Haemophilus

166 p_Proteobacteria;f_Pasteurellaceae;Other

167 p_Proteobacteria;f_Moraxellaceae;g_Acinetobacter

168 p_Proteobacteria;o_Pseudomonadales;Other;Other

169 p_Proteobacteria;f_Pseudomonadaceae;Other

170 p_Proteobacteria;f_Pseudomonadaceae;g_Pseudomonas

171 p_Proteobacteria;f_Xanthomonadaceae;Other

172 p_Proteobacteria;f_Xanthomonadaceae;g_Stenotrophomonas

173 p_Proteobacteria;Other;Other;Other;Other

174 p_Spirochaetes;f_Spirochaetaceae;g_Treponema

175 p_Synergistetes;f_Synergistaceae;g_Cloacibacillus

176 p_TM7;c_TM7_genera_incertae_sedis;Other;Other;Other

177 p_Verrucomicrobia;f_Verrucomicrobiaceae;g_Akkermansia
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178 None;Other;Other;Other;Other;Other

Table 6.4: List of Gut Microbes.
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Figure 6.6: Mean Proportions of Most Relevant Microbes for TSBMD. The Microbes in
Green Show Increase in Proportion With SCF.
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Figure 6.7: Mean Proportions of Most Relevant Microbes for TSBMC. The Microbes in
Green Show Increase in Proportion With SCF.
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Chapter 7

CONCLUSION

Through this study, a noticeable relationship between the GM community and the

overall bone strength was observed. Results showed that there exists a correlation be-

tween the gut microbiome content and six measures of BMC and BMD. It was oberved

that addition of SCF to the diet increased the correleation between the true and pre-

dicted values of BMD and BMC measures (r ≈ 0.51).

This is one of the few studies where the relationship between GM and bone health

has been presented using clinical trials of human participants. It was observed from

the values of the correlation coefficients obtained in this experiment that, the spine

region is of importance and the microbes that play a role in predicting the TSBMD and

TSMBC measures were identified.

It was observed that most of the important microbes belonged to the phyla Firmi-

cutes and Bacteroidetes. The bacteria of genera Bacteroides, Ruminococcus, Prevotella,

Megamonas, Eubacterium, Faecalibacterium, Bifidobacteria, Phascolarctobacterium,

and Lactobacilli were some of the most relevant microbes identified in affecting the

measures of BMD and BMC. These microbes have shown to be associated with fer-

mentation of prebiotic fibers and play a major role in influencing bone health.

In summary, this study suggests that there exists a relationship between human

GM and bone health, and shows that SCF interventions further strengthens the rela-

tionship. This study also indicates that this observed relationship is not a causal one.

Future Research

Due to the small sample size of this dataset and short duration of the experiment,

significant changes in bone strength and density were not observed. In the future,
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studies need to be conducted for longer durations, for one year or more, especially

in humans in order to understand the long-term beneficial effects of prebiotic con-

sumption on bone metabolism and bone strength. Collecting samples from a higher

number of human subjects will also be useful in these studies to explore the effects on

a diverse and larger sample distribution.

It has been shown that consuming SCF is associated with resulting in a healthy

microbiome. Further controlled trials are required to investigate the mechanisms by

which SCF influences the intestinal microbiota and further affects calcium absorption,

bone mineral density, bone mineral content, and bone geometry, over greater lengths

of time.

Present research studies show the involvement and importance of changes in the

composition of gut microbiota in bone metabolism and improved mineral absorption.

Future work is needed to interpret these effects with respect to a variety of prebiotic

fibers and their influence with different doses, as well as on various microbial commu-

nities.

Therefore, further exploring this relationship will lead to beneficial outcomes in

the fields of bone health and osteoporosis research and serve as an important factor

for dietary and clinical recommendations.

To further understand the gut-bone relationship, the interactions between the cor-

related microbes and their combined influence on predicting the bone strength mea-

sures need to be addressed by using different feature selection techniques. Differ-

ent machine learning techniques such as boosting and combining multiple ensemble

learning algorithms can further be exploited to gain better insights on this relationship

and validate the results obtained.
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