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ABSTRACT

Many real-world planning problems can be modeled as Markov Decision Processes

(MDPs) which provide a framework for handling uncertainty in outcomes of action

executions. A solution to such a planning problem is a policy that handles possi-

ble contingencies that could arise during execution. MDP solvers typically construct

policies for a problem instance without re-using information from previously solved

instances. Research in generalized planning has demonstrated the utility of construct-

ing algorithm-like plans that reuse such information. However, using such techniques

in an MDP setting has not been adequately explored.

This thesis presents a novel approach for learning generalized partial policies that

can be used to solve problems with different object names and/or object quantities

using very few example policies for learning. This approach uses abstraction for state

representation, which allows the identification of patterns in solutions such as loops

that are agnostic to problem-specific properties. This thesis also presents some the-

oretical results related to the uniqueness and succinctness of the policies computed

using such a representation. The presented algorithm can be used as fast, yet greedy

and incomplete method for policy computation while falling back to a complete pol-

icy search algorithm when needed. Extensive empirical evaluation on discrete MDP

benchmarks shows that this approach generalizes effectively and is often able to solve

problems much faster than existing state-of-art discrete MDP solvers. Finally, the

practical applicability of this approach is demonstrated by incorporating it in an

anytime stochastic task and motion planning framework to successfully construct

free-standing tower structures using Keva planks.
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Chapter 1

INTRODUCTION

It is well-known in the AI community that Automated Planning is computationally

hard. For propositional STRIPS (Fikes and Nilsson (1971)) planning, determining if

a given planning problem has a solution is a PSPACE-complete problem (Bylander

(1994)). Classical planning is a well-studied area in AI. The solution to a classical

planning problem is a sequence of action sequences called a plan. A fundamental

assumption classical planning makes is that actions have deterministic effects. This

makes their application quite limited in the real world, where many problems have

inherent non-determinism.

A non-deterministic environment is one where there is uncertainty in outcomes

of action executions. A stochastic environment is a non-deterministic environment

where the action outcomes are probabilistic in nature, i.e., each outcome can occur

with a fixed probability upon action execution. Markov Decision Processes (MDPs)

can be used to model such stochastic environments. Even if the environment is fully

observable, plans made for problems in such environments require handling all pos-

sible contingencies that might arise during execution. An agent cannot simply use a

sequence of actions to reach a goal. Solutions to MDPs that model such environments

are used instead. These solutions do not comprise of a sequence of actions, but are

policies, which are functions that map all states to actions. For each state the agent

currently inhabits, the policy gives the agent the next best action it should execute

to reach a goal state with minimum expected cost. For this thesis, a subclass of

MDPs which are goal-oriented, discrete, un-discounted and have indefinite horizons

are considered.
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In many cases, the initial state of an agent is known and computing partial poli-

cies that map states in a subset of the state space to actions is sufficient to achieve a

goal. There exist many off-the-shelf MDP solvers like LAO* (Hansen and Zilberstein

(2001)) and LRTDP (Bonet and Geffner (2003)) that employ heuristic search dy-

namic programming algorithms to find partial policies, that only prescribe actions to

states in a subset of the state space. Although such approaches provide a significant

reduction in search time compared to other MDP solvers, they do not always scale

well for problems where the number of objects involved is large.

An analysis of partial policies found using MDP solvers for the different problems

in the stochastic version of the Keva domain (Kumar (2019)) described in (Shah

et al. (2020)) showed that common structures were present in solutions across different

problems with a varying object counts/names. The state-of-the-art MDP solvers used

in (Shah et al. (2020)) could not find solutions to problems with large object counts

under the given resource constraints. (Shah et al. (2020)) use iterative calls to MDP

solvers to solve smaller problems and stitch them together to form a policy to perform

integrated task and motion planning for larger structures. A key limitation shared

by these state-of-the-art solvers is that they do not exploit these common structures

observed across different problems to solve each problem. This limitation is shared

with approaches to compute classical plans, as described earlier.

Planning Domain Definition Language (PDDL) is an AI planning language first

introduced by (McDermott et al. (1998)) that uses a planning representation lan-

guage like STRIPS. It is used to represent classical planning problems in AI. PDDL

representations only permit deterministic actions. An extension to PDDL, called

Probabilistic PDDL (PPDDL), was developed by (Younes and Littman (2004)) to

allow for the representation of domains that consisted of actions with probabilistic

effects. This thesis uses PPDDL language to model MDP.
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Several advances have been made in classical planning to reduce the computa-

tional effort expended in solving a problem over the years. However, despite these

advances, many approaches are not practical for solving problems as the number of

objects increases. One area of research that tries to address this problem is ‘general-

ized planning’. A generalized plan is an algorithm-like plan that can be used to solve

multiple instances of planning problems. Some approaches to generalized planning

use abstraction to construct generalized plans from examples of solved instances of

planning problems(Srivastava et al. (2008),Srivastava et al. (2010),Winner and Veloso

(2003),Winner and Veloso (2007)). Such approaches try to capture common struc-

tures in solved example plans and use them to solve a set of planning problems.

This thesis employs abstraction concepts from generalized planning to recognize

and capture repeating patterns observed, for example partial policies. A framework to

learn a generalized partial policy from examples of partial policies is developed. The

generalized partial policy is represented as a graph. It is shown that this framework

finds a unique generalized partial policy graph regardless of the order in which the

examples were used.

Even though off-the-shelf solvers for automated planning offer complete solutions

to problem instances, there is evidence that an incomplete search routine can yield

massive dividends in search time if it can solve such problems quickly (Hoffmann

(2000),Hoffmann and Nebel (2001)). The Generalized Policy Instantiation (GPI)

method developed as part of this thesis is such an incomplete routine. It instantiates

the learned generalized partial policy to find concrete partial policies for previously

unseen problem instances quickly yet greedily.

Empirical evaluations were conducted to evaluate GPI’s performance against state-

of-the-art discrete MDP solvers on several discrete MDP benchmark domains, namely

Keva, Delicate-Can-World, Can-World, Hanoi, Gripper, File-World, Rover, and Sched-
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ule. An empirical analysis of the results shows that GPI can solve problems much

faster than benchmarks solvers. In many cases, the benchmarks solvers failed to find

solutions for problem instances containing a large number of objects in them. GPI,

however, can find solutions for even such large problems quickly.

An anytime integrated task and motion planning framework developed by (Shah

et al. (2020)) is used to find solutions for a stochastic task and motion planning

problem to build a free-standing Keva tower structure with 12 levels. A state-of-

the-art MDP solver used for performing the task planning portion of the framework

is replaced with GPI. The practical applicability of instantiating a pre-computed

generalized policy to find solutions is showcased in a simulation of the real-world

problem using a model of the Yumi IRB-14000 robot as the agent. The reduction in

overall time taken to compute task and motion policies for stochastic environments

using this approach as compared to when state-of-the-art solvers are used is made

apparent.

This thesis’s main objectives are to learn a generalized partial policy graph by

observing example policies solved by MDP solvers for smaller problems, to capture

repeating patterns in example policies such as cycles, in the generalized policy graph.

Another objective is to develop a method that can find valid solutions to unseen

problem instances by instantiating the generalized partial policy graph. The main

contributions of this thesis are to develop:

(1) A framework to learn a generalized partial policy using example policies.

(2) A quick method that instantiates the generalized partial policy to find solutions

to new problem instances by directing exploration in the space of policies

encompassed by the generalized policy.
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Chapter 2

RELATED WORK

In this chapter, related work in forming generalized plans and methods to form

contingent plans are explored. Frameworks developed in some related work are uti-

lized in this thesis, particularly that of canonical abstraction. Concepts such as

example-based generalized plan formation are very similar to the approach presented

in this work to form generalized partial policies. These shall be described in greater

detail in this chapter.

(Winner and Veloso (2003)) learn domain-specific planners (dsPlanners) using

example partial-order plans. Their approach converts each new plan into a dsPlanner,

a combination of if-else statements, while loops, logical structures, predicates,

indicators, and certain operators, by using the DISTILL algorithm. dsPlanners are

learned using various example plans and merged with a pre-existing dsPlanner. The

domain-specific plans formed are non-looping in nature. Extending upon previous

work, (Winner and Veloso (2007)) construct looping dsPlanners, which extend the

size of solvable problems. The dsPlanners capture the repeated structures observed in

the example plans by identifying matching sub-plans in the example plans, identify

unrolled loops in them and convert them into loops. These loops can be causally

independent or dependent. A key limitation of these approaches is that they require

an initial dsPlanner to be hand-coded. Their approach generalizes only for problems

from classical planning that represent deterministic environments.

(Srivastava et al. (2008)) presents an approach to learn generalized plans from

example plans using canonical abstraction. They classify some unary predicates as

abstraction predicates that are used to define the role of an object. The canonical
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abstraction technique merges different objects of the same role into a summary object.

The imprecision that arises from merging objects is modeled using three-valued logic,

which assigns a truth value of 0, 1/2, or 1, where 1/2 means ‘unknown’. As a result of

this role-based abstraction, multiple concrete states can be encapsulated by a single

abstract state. Construction of a finite abstract state space, even if the concrete state

space is infinite, becomes possible. They generalize example plans by abstracting

the concrete states and actions in the plan and then tracing this abstracted example

plan to look for recurring abstract state and action sequences, which represent loops.

They also provide a classification of problem instances where their generalized plan is

guaranteed to work. Their planner “Aranda,” produces correct plans for “extended-

LL domains”. This work also is limited to deterministic settings, in contrast to work

presented in this thesis which is applicable in stochastic settings as well.

(Srivastava et al. (2010)) showcases a method to form generalized contingent plans

using canonical abstraction. This works for situations where there is an uncertainty

in object quantities or state properties, but there is a lack of probabilistic information

about these uncertainties. This work is more general than the approach presented in

this thesis, where the probablities associated with uncertainties involved are known.

They use the Three-Values-Logic Analyser (TVLA) framework’s functions focus and

coerce to draw-out a representative element from summary elements. The focus

operator on the ‘chosen’ formula produces a set of abstract structures, and the coerce

operator determines which of these structures is valid. Structures formed which are

not consistent with the example policy π at the same step represent possible situations

that are not handled by π. These can be marked as loose ends, using which they

generate additional concrete plans to handle these situations. The Branch and Merge

algorithm addresses combining multiple example plans by accurately determining

segments of the existing plans where the new plans would be useful. Their approach

6



is more general when compared to the work presented in this thesis. This thesis

focuses on stochastic problems, and uses off-the-shelf MDP solvers to find contingent

trees derived from optimal policies. Hence, the branches appear in examples itself,

and only merging is done while forming the generalized policy, making the problem

of constructing generalized policies easier.

(Srivastava et al. (2011a)) present an algorithm for generalizing example plans

called “ARANDA-Learn”. They use canonical abstraction to form a graph-based

generalized plan which can contain simple loops. This algorithm first finds a ‘trace’

of the example plan, an abstracted SAS sequence. Then, identification of loops in

this SAS sequence is done. A graph containing these identified loops is formed. This

graph represents the generalized example plan. They show that one iteration of any

loop formed by their approach is guaranteed to make measurable progress towards

the goal. Their approach also efficiently computes plan preconditions under which for

a subclass of problems, the loop of actions formed is guaranteed to terminate and lead

to the desired goal state. Similar to previous work, they construct generalized plans

by using a single example concrete plan. Thus, the domain coverage of generalized

plans formed may be limited when compared to constructing plans using the approach

presented in this work.

(Srivastava et al. (2011b)) propose an algorithm for generalized plan synthesis.

The Hybrid Generalized Plan Synthesis algorithm incrementally improves the gener-

alized plan by identifying problem instances it cannot solve. It then invokes a classical

planner to solve this instance, computes the solution’s trace, and merges it back to

the generalized plan. They identify unsolved problem instances using open nodes,

which are terminal non-goal nodes. The algorithm runs until all open nodes are re-

solved or the resource limit is reached. The approach presented in this thesis does

not automatically generate new example plans that can be used to resolve unhandled
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situations in the generalized policy formed, but can determine if a new example policy

is useful or not. This work also performs tracing to form branches in the generalized

plan, unlike the work presented in this thesis where the branches are already present

in the concrete policy.

The following five papers discuss different approaches to generalized planning.

(Bonet et al. (2009)) present a model-based method to derive finite-state con-

trollers automatically, which can be used to find solutions for a class of contingent

problems with deterministic actions and partial observability. They convert the task

of deriving a controller for models into a conformant planning problem that is solved

using a classical planner using a sound and complete method to transform confro-

mant plans to classical plans (Palacios and Geffner (2007)). The derived controllers

are generalized, where apart from the original problem, they can also solve problems

of different sizes or different uncertainty of initial situation / action effects. Similar

to their approach, the approach presented in this thesis also does not require sensing

actions. However, their approach works only for a limited set of problems, where

actions have no preconditions.

(Belle and Levesque (2016)) explore the applicability and correctness of general-

ized plans in domains that are possibly unbounded, and/or stochastic/continuous.

They introduce a generic controller framework to capture different type of planning

domains, and present various notions of adequacy based on termination, boundedness

of plan length, cyclicity of plans formed and goal satisfaction criteria. They present

theoretical results relating the different notions of adequacy when using their con-

troller framework. They also present probabilistic analogues to the adequacy notions

presented for both discrete and continuous settings, and present theoretical findings

for the same. Finally, they show how the adequacy notions developed relate to the

problems of goal reachability and goal achievability. The stochastic domains we con-
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sider are stochastic in nature. Their theoretical results pertaining to discrete prob-

abilistic adequacy are applicable to domains considered in this thesis if generalized

plans were constructed using their controller framework. Although this thesis does

not produce any such theoretical results, this work provides an interesting direction

to explore termination and goal-reachability guarantees.

(Sanner and Boutilier (2009)) present a technique to translate a subset of PPDDL

problems into a first-order MDP (FOMDP) (Boutilier et al. (2001)). Their approach

finds a solution directly at the relational level as opposed to traditional approaches

which apply to ground factored representation of MDPs, which have high time and

space complexity. Their approach can derive a domain-independent policy without

grounding at any intermediate step. Using first-order algebraic decision diagrams

(FOADDs), they exploit logical structures in problems to find FOMDP solutions.

(Sanner and Boutilier (2009)) generalize linear programming techniques for MDPs

to FOMDPs, and showcase the performance of their first-order approximate linear

programming (FOALP) planner. Although not optimal, their approach provides so-

lutions that are close to optimal in many cases. Unlike the approach presented in this

work, they do not use examples to construct generalized policies.

(Segovia-Aguas et al. (2019)) represent generalized plans as planning programs

using structured programming mechanisms of control flow and procedure calls, which

allow for compact representation, and representation of hierarchical and recursive

solutions respectively. They also present an approach to ”compile” generalized plans

into classical plans, which allows them to compute generalized plans using an off-

the-shelf planner. They also present approaches to compute planning programs for

non-deterministic settings, and also show how the compilation they perform can be

extended to compute high-level features. Simple classification tasks from machine

learning can be computed using planning programs they develop with this extension.

9



Their approach is applicable only for deterministic settings. Also, the overall control

flow present in programs they compute is captured by the generalized policy graph

constructed in this thesis in the form of abstract state-action transitions.

(Segovia-Aguas et al. (2020)) extend the notion of validation for generalized plans

as the problem of verifying if a given generalized plan can solve a set of input positive

instances while failing to do so on a set of negative instances. This notion allows

for using quantitative metrics used in machine learning to assess generalization ca-

pacity of generalized plans. They incorporate this notion of plan validation into a

compilation for plan synthesis (Segovia-Aguas et al. (2019)) that takes both positive

and negative instances as inputs. Experiments they conducted indicate that using

negative examples accelerates generalized plan synthesis. Their approach differs from

the one presented in this thesis in that it is limited to deterministic settings. The ap-

proach presented in this thesis does not utilize negative examples in the construction

of generalized policies and is thus limited in this front.

(Peot and Smith (1992)) explore conditional non-linear plans (CNLP) that contain

contingent branches that account for predefined sources of uncertainty. They use

three-valued logic to represent truth values of propositions in a state (true, false, and

unknown). They define conditional actions that can have mutually exclusive effects

where a proposition whose value is unknown is resolved into either true/false and

labeled with a unique observation label α / ¬α. A step is an instance of an action

appearing in a plan. Any step that occurs at any point after a step involving a

conditional action inherits the unique observation label of that conditional action in

its context. A reason of a step is the set of goals that are reachable from that step.

CNLP first constructs a non-contingent plan. If a plan is found such that the goal is

reached for all possible observations, the planner stops. Otherwise, CNLP observes a

set of observation labels which do not lead to the goal and attempts to construct a
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new plan branch. A key limitation of this approach is that CNLP does not generalize

to new examples. It has to solve each instance of the problem from scratch.

Solving real-world problems in robotics require agents to compute high-level ab-

stract plans, along with low-level motion planning in the physical world. In stochastic

scenarios, contingent plans are required to complete a task. The plans in these cases

take the form of policies. In many cases, these high-level policies alone are insufficient

to solve the problem since a lot of information about the physical environment is lost

due to abstraction. (Shah et al. (2020)) present an approach to perform integrated

task and motion planning in stochastic scenarios. The anytime feature is showcased,

which reduces the probability of encountering an unresolved contingency over time.

They prove the probabilistic completeness of their algorithm. Their work requires

the use of an MDP solver, which can be substituted with a solver that uses any

generalized planning framework, thus providing a reliable framework to demonstrate

real-world applicability.
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Chapter 3

BACKGROUND

3.1 Markov Decision Processes

The domains considered in this thesis focuses on three sub-classes of MDPs, all

of which have a finite state space and action set and have a stationary transition and

action cost function.

Stochastic shortest path MDPs (SSPs) (Bertsekas and Tsitsiklis (1991)), are

MDPs that assume that there exists at least one complete proper policy, which reaches

a goal from any state in the state space with a probability 1. They also assume that

every improper policy incurs infinite cost. A proper policy for SSPs is one that is

guaranteed to reach a goal from any state in the policy. An improper policy contains

states from which goals are unreachable. An optimal policy for an SSP MDP will

take a finite time to reach a goal.

An SSP MDP is defined as an 8 tuple Γ = 〈S,A, T, C,G, sinit, P, O〉 where S is a

finite state space, A is a finite set of stochastic actions, T : S × A × S → [0, 1] is a

stationary transition function, C : S × A× S → R is an action cost function, G is a

goal condition, sinit ∈ S is the initial state, P is a set of predicates and O is a set of

objects.

The set of predicates with arity k is denoted as P k. An atom pk(o) is defined as

a predicate pk ∈ P k instantiated with an object list o ∈ Ok, where o = 〈o1, . . . , ok〉

o1, . . . , ok ∈ O. A literal is an atom with a truth value assigned to it (true/false). A

state is defined as a conjunction of literals. The goal condition G is a conjunction

of literals that describe a set of states which represent goal states in the MDP. A
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stochastic action a ∈ A is defined by its preconditions, effect list, and parameters.

The precondition of an action pre is a conjunction of literals that must be true for

the action to be applicable in a state s i.e. pre ⊆ s. The effect list is defined as

εa = 〈(p1, e1), . . . , (pj, ej), . . . , (pk, ek)〉, where pj ∈ [0, 1] represents the probability

of the action resulting in effect ej (Younes and Littman (2004)). Each effect ej is

a conjunction of positive(e+j ) and negative(e−j ) literals that describe how the state s

changes when the action is executed. The action described above has |εa| effects. It

is required that
∑k

j=1 pj = 1. The code developed to implement this thesis does not

consider conditional effects, or disjunctive preconditions. An action is instantiated

with an object list as its parameters as a(o) where o = 〈o1, . . . , on〉, o1, . . . , on ∈

O, o ∈ On. This action is said to have n parameters. Unless specified, stochastic

actions will be referred to as actions. The transition function T maps states and

actions to successor states and assigns such a transition with probabilities. ∀s, s′ ∈ S

where s′ = (s \ e−j ) ∪ e+j , a ∈ A, T (s, a, s′) = Probability(s′|s, a) = pj.

SSP’s make assumptions that prevent them from being used to model catastrophic

situations where a state has no path to a goal. Such states are called dead-end states.

For such a state sdead ∈ S, no state s ∈ S, s |= G is reachable. (Kolobov et al.

(2012)) describe two extensions to SSPs that help model such situations. They are

SSPs with avoidable dead-ends (SSPADE) and SSPs with unavoidable dead-ends with

finite penalty (fSSPUDE).

SSPADE (Kolobov et al. (2012)) relax the requirements posed by SSPs. Such

problems only require an initial state to be known, and at least one proper policy

rooted at the initial state exists. Here, dead-ends are avoidable from the initial state.

In fSSPUDEs (Kolobov et al. (2012)), the initial state is required to be known as

well. However, dead-end states are unavoidable from the initial state in all possible

policies. No proper partial policies exist for such problems. Whenever an agent
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reaches a state where the expected cost is greater than a predefined finite value, the

agent simply pays a finite penalty equal to this value and gives up. (Kolobov et al.

(2012)) show that all fSSPUDE problems can be represented as SSP problems.

The solution Γ is a policy π : S → A. Since the initial state is known, a partial

policy rooted at sinit, that maps only a subset of the state-space containing states

reachable from sinit to the action set is sufficient to reach a goal. A partial policy is

defined as πsinit
: S ′ → A, S ′ ⊆ S, all s′ ∈ S ′ are reachable from sinit. Unless specified,

partial policies will be referred to as policies. The optimal solution to the problem Γ

is a policy π∗ that reaches the goal with the least expected cumulative cost.

Every policy πsinit
can be represented by a policy graph G = 〈VG, EG〉 where VG

and EG are the vertices and edges of G respectively. A labelling function LG : VG →

S × A that maps each vertex vi ∈ VG to a state-action pair 〈si, ai〉, where si ∈ S

represents the current state and ai ∈ A represents an action given by πsinit
(si). There

exists a root vertex vroot ∈ VG, for which L(vroot) = 〈sinit, π(sinit)〉. Each node vi

has |εai | child nodes. Each child node contains states that are a result of applying

action ai on state si with one of its non-deterministic effects from εai observed. The

transition probabilities from one node to the next is determined by T . Every edge

eij ∈ E is an ordered pair eij = 〈vi, vj〉, vi, vj ∈ VG forming a directed link from

vertex vi to vj in G and represents a state-action transition. The set of all possible

concrete state-action pairs is S×A, and the set of all possible state-action transitions

is S × A× S × A.

A goal node is a leaf node in G, where vgoal ∈ VG,LG(vgoal) = 〈sgoal, agoal〉, where

sgoal ∈ S, sgoal |= g and agoal ∈ A is a dummy action that contains no parameters,

preconditions or effects.

A dead end node is a leaf node in G, where vdead ∈ VG,LG(vdead) = 〈sdead, adead〉,

where sdead ∈ S,¬sdead |= g is a dead-end state , and adead is a dummy action that
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contains no parameters, preconditions or effects.

MDPs find use in many real-world problems. One such instance is in anytime

integrated task and motion planning for stochastic environments, where a robot in

the real world has to act in a stochastic environment in order to achieve a goal. This

is described in the next section.

3.2 Anytime Integrated Task And Motion Policies For Stochastic Environments

A framework to compute anytime integrated task and motion policies for stochas-

tic environments was developed by (Shah et al. (2020)). They define a stochastic

task and motion planning problem (STAMPP) as a tuple 〈M, c0, α, [M]〉, where M

is the high-level policy, c0 is the initial concrete configuration of the environment, α

is a composition of function and entity abstractions, and [M] is the abstraction ofM

obtained using α. They present the ATM-MDP Algorithm, which accepts [M], a do-

main D, problem P , and SSP MDP solver SSP and a motion planner M . Overall, the

ATM-MDP algorithm builds a plan refinement graph (PRG), and interleaves compu-

tation among the two processes: (1) Concretization of an abstract policy, (2) Updating

abstraction for a fixed concretization and computation of a new abstract policy. For

the first process, feasible refinement of a partial path in PRG is searched by instan-

tiating its symbolic action arguments with values from their original non-symbolic

domains. An example of this is where abstract symbols representing trajectories are

refined using motion planners to calculate physical low-level motion plans until no

unrefined paths are left, or some resource limit has reached. Sometimes, there is no

feasible refinement available. In such cases, the second process is used. Here, (Shah

et al. (2020)) fix a concretization for the partially refined path and update the earli-

est abstract state in this path whose subsequent concretizations were infeasible. The

subsequent portion of the policy is discarded, and the failed preconditions learned
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from the environment are updated in this abstract state. An updated state is formed

using this, and the SSP solver is used to compute a new policy from this state.

For long-horizon tasks, computation of refinements for multiple contingencies with

a low probability of being encountered may be wasteful computations to perform in

real-time settings. An optimization the authors of (Shah et al. (2020)) developed to

avoid such computation is summarized in their anytime-approach. Here, they use a

greedy approach, where they prioritize the selection of paths to refine based on the

probability of encountering that path p, and the cost of refining that path c. p/c is

computed for all paths, and the ones with the highest value are refined first. They

prove that if a proper policy that reaches a goal state within a predefined horizon

exists, then their approach will find it with probability 1.0. After extensive domain

investigation, a preliminary version of the approach developed in this thesis was used

to stitched together solutions for multiple smaller problems to calculate the solution

for a large problem. This thesis implements a framework using canonical abstraction

to automatically learn patterns from solutions to smaller problems and use them to

solve larger problems.

3.3 Canonical Abstraction

Canonical abstraction was originally developed as a state abstraction technique

from software model checking Sagiv et al. (2002). It helps in representing an un-

bounded set of concrete states compactly.

For finding the canonical abstraction of states in a domain, a subset of unary

predicates Pabs ⊆ P 1 are identified as abstraction predicates. In this thesis, all unary

predicates in a domain are considered as abstraction predicates i.e. Pabs = P 1.

Definition 1. (Role) The role of an object o ∈ O in a state s ∈ S is the set of

abstraction predicates that it satisfies: role(o) = {pabs|pabs ∈ Pabs, pabs ∈ s}.

16



The maximum possible number of roles in any state from problems derived from

a domain with |Pabs| abstraction predicates is 2|Pabs|.

ψ(r) = {o|o ∈ O, role(o) = r} defines the set of objects associated with a partic-

ular role r. The following example introduces canonical abstraction with the help of

a problem instance from the Keva domain.

Example 1. A Keva problem consists of two locations and a single gripper used to

pick multiple planks and place them on a table to build some structure. Consider the

following state in the Keva problem with objects O = {l0, l1, p0, p1}, where li represents

the the ith location and pj represents the jth plank. s = {free1(l0), free1(l1),

ingripper1(p0), ontable
1(p1), placed

1(p1), clear
1(p1)}. The roles for objects in state s

are role(p0)=r0, role(p1)=r1, role(l1)=role(l2)=r2; r0={ingripper1}, r2={free1},

r1={clear1, ontable1, placed1}. So, ψ(r0)={p0}, ψ(r1)={p1} and ψ(r2)={l0, l1}.

An object list o = 〈o1, . . . , ok〉, o1, . . . , ok ∈ O, can be used to compute a role list

r̈ = 〈role(o1), . . . , role(ok)〉 for a given state s. Ψ(̈r) = ψ(role(o1))× . . .×ψ(role(ok))

defines the set of object lists whose corresponding role list is r̈.

The canonical abstraction of a state is found by converting each literal in that

state pk(o) ∈ s to an abstract literal p̄k (̈r), p̄k ≡ pk, where r̈ is the corresponding role

list for object list o, and then grouping common abstract literals. The imprecision in

truth values resulting from this grouping is modeled using three-valued logic.

Definition 2. (Canonical Abstraction) Canonical abstraction of a concrete state

s = {pk(o) | pk ∈ P, o ∈ Ok} is an abstract state s̄ = {p̄k (̈r) | p̄k ≡ pk}. The truth

value of p̄k (̈r) in s̄ is given by:

• p̄k (̈r) = 0⇐⇒ ∀(o ∈ Ψ(̈r)) pk(o) /∈ s

• p̄k (̈r) = 1⇐⇒ ∀(o ∈ Ψ(̈r)) pk(o) ∈ s

• p̄k (̈r) = 1/2⇐⇒ (∃(o ∈ Ψ(̈r)) pk(o) ∈ s)
∧

(∃(o ∈ Ψ(̈r)) pk(o) /∈ s)
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Example 2. The canonical abstraction of state s described in Example 1 is s̄ =

{free1(r2), ontable1(r0), placed1(r0), clear1(r0), ingripper1(r1)}. The truth values are

free1(r2)=1, ingripper1(r1)=1, ontable1(r0)=1, placed1(r0)=1, clear1(r0)=1.

Consider another state from Keva domain with an extra plank on the table com-

pared to the one shown in Example 1. s′ = {free1(l0), free1(l1), ontable1(p0),

placed1(p0), clear
1(p0), ontable

1(p1), placed
1(p1), clear

1(p1), ingripper
1(p2)}.

The canonical abstraction of this state is also given by s̄. The abstract state s̄ cap-

tures all states in Keva domain, where one plank is present in the gripper and all

other planks are placed on the table. This demonstrates the usefulness of canonical

abstraction, where different states with similar properties can be mapped to the same

abstract state. It allows for representation of an unbounded numbers of objects and

can be used to identify recurring state properties in policies.

Figure 3.1: Objects And Associated Roles For A Keva
Domain State

Consider the state of the system where 4 Keva planks are stacked together as

shown in Fig. 3.1. The state of the system is given by:

s = {placed1(p1), placed1(p2), placed1(p3), placed1(p4), clear1(p4), ontable1(p1),

onsingleplank2(p2, p1), onsingleplank
2(p3, p2), onsingleplank

2(p4, p3),

The binary predicate onsingleplank2(p2, p1) represents the relation between p2 and

p1, where p2 is on a single plank p1. Three distinct roles a,b and c are present in this
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onsingleplank2 a b c

a 0 1/2 0

b 0 1/2 1/2

c 0 0 0

Table 3.1: Truth Value Assignment For Binary Predicates

state as shown in the figure on the right. The truth values for onsingleplank2 in the

canonical abstraction of the state is shown in Table 3.1. onsingleplank2(a, b) = 1/2

because although there exist some concrete literals where planks with role ‘a’ are one

those with role ‘b’, this relationship is not true for all planks with roles ‘a’ and ‘b’.

In a similar fashion, the truth values are computed for all permutations of roles.

An n-parameter action a(o) where on ∈ On can be abstracted as ā(̈r), ā ≡ a . The

following example describes action abstraction.

Example 3. Consider action a=putdown plank ondoubleplank(yumi, p2, p1, p0). Let

roles associated with each object be r1=role(yumi)={}, r2=role(p2)={ingripper1},

r3=role(p1)=role(p0)={clear1, ontable1, placed1}. The corresponding abstract action

is ā = putdown plank ondoubleplank(r1, r2, r3, r3).

The set of all abstract states is denoted by S̄, and the set of all abstract actions

is denoted by Ā. The set of all possible abstract state-action pairs is S̄ × Ā, and the

set of all possible state-action transitions is S̄ × Ā× S̄ × Ā.
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Chapter 4

METHODOLOGY

The overall methodology presented in this thesis can be divided into two sections.

The first involves learning the generalized policy, and the second describes how the

learnt policy can be instantiated to solve new problems. Each of these sections fulfill

individual objectives of this thesis that were outlined in the introduction.

4.1 Learning Generalized Policies

Learning the generalized policy for a given stochastic domain can be broadly sim-

plified into three steps: (1) Generating example policies, (2)Tracing, and (3) Merging.

This is described in Fig. 4.1.

Figure 4.1: Learning Generalized Policies
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4.1.1 Generating Example Policies

For each stochastic domain considered in this thesis, a domain file is written in

PPDDL. A problem generator is implemented to generate problem instances for each

domain. All problem instances contained similar initial states and goal conditions for

a particular domain.

(Hansen and Zilberstein (2001)) present LAO*, which is a heuristic search dynamic

programming algorithm that can be used to solve MDPs. The solutions for such

problems are policies which can be represented as AND-OR graphs. The LAO*

algorithm can solve problems that have cyclic solutions. (Hansen and Zilberstein

(2001)) show that LAO* can be used to find optimal partial policies rooted at an

initial state, which are solutions to a goal-directed MDP problem without expanding

the entire state space. An open-source implementation (Pineda (2014)) is used for

implementation of LAO*. A problem generator generates a domain file and a problem

instance as inputs to an LAO*, which returns an optimal partial policy. Since this

is an optimal solution, it will take a finite amount of time to reach the goal. This

partial policy is unrolled into a tree G with a bounded depth in a similar fashion as

done in (Shah et al. (2020)). Domain analysis reveals the appropriate depth required

for each problem. G is referred to as the concrete policy graph.

An example concrete policy graph from the Keva Domain is as shown in Fig.

4.2. The values of LG(v) are written inside the circle representing each vertex

v ∈ VG. Here s1 = {free1(l0), free1(l1), handempty1(yumi)} represents the initial

state. a1 corresponds to human place(yumi, p1), where a human places a plank non-

deterministically in either of the two locations l0/l1. The resulting successor states

are s2 and s3. This action is assigned to the initial state by the policy found by LAO*.

In a similar fashion, the entire graph is constructed.
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Figure 4.2: Example Concrete Policy

4.1.2 Tracing

The trace of an example policy G is a graph G′ = 〈VG′ , EG′〉, and a labeling

function LG′ , which helps in identifying the underlying abstract structure present in

an example policy. The algorithm for trace is shown in Algorithm 1.

Input : G,Γ
Output: G′

1 G′ = AbstractConcPolicy(G,Γ)

2 Rreps = IdentifySubtreeRepeats(G′)

3 G′ = DeleteRedundantRepeats(G′, Rreps)

4 G′ = FindDeadEnds(G′, G,Γ)

5 return G′

Algorithm 1: Trace
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Converting an example policy to a trace is summarized in 4 steps as described in

Section 4.1.2.1 to Section 4.1.2.4.

4.1.2.1 Abstracting Concrete Policy

This section discusses the function AbstractConcPolicy from Line 1 of Trace Algo-

rithm.

An abstraction function Υ : S×A→ S̄× Ā is a function that maps set of all con-

crete state-action pairs to abstract state-action pairs using the canonical abstraction

framework. Υ(〈si, ai〉) = 〈s̄i, āi〉, 〈si, ai〉 ∈ S × A, 〈s̄i, āi〉 ∈ S̄ × Ā.

Given a concrete policy graph G = 〈VG, EG〉 with a labeling function LG, an abstract

policy graph is defined as G′ = 〈VG′ , EG′〉 such that G and G′ are isomorphic graphs

i.e. G ∼= G′, with some isomorphism function f : VG → VG′ . A labeling function for

L̄G′ maps each vertex in VG′ to an abstract state-action pair. L̄G′ : VG′ → S̄× Ā. For

all vabs ∈ VG′ , vconc ∈ VG, and vabs = f(vconc), L̄G′(vabs) = Υ(LG(vconc)).

Since both S, and A are finite, S̄ and Ā are finite as well. Hence, S̄× Ā is a finite

set. So, there exists only a finite set of abstract state-action pairs.

Hence, the set of abstract state action transitions S̄ × Ā× S̄ × Ā is also finite.

In this manner, all the concrete state-action pairs present inG are used to calculate

their equivalent abstract state-action pairs. Using this, the corresponding state-action

transitions are found.

The corresponding abstracted policy graph of the example concrete policy graph

showin in Fig. 4.2 is shown in Fig 4.3. The values of L̄G′(v) are written inside the

circle representing each vertex v ∈ VG′ . Note that in the resulting graph, different

concrete states/actions can map to the same abstract state/action.

23



Figure 4.3: Example Abstracted Policy

4.1.2.2 Identifying Repeating Structures

This section discusses the function IdentifySubtreeRepeats seen in Line 2 of Algo-

rithm 1. Repeating structures in the tree G′ are sub-trees of G′ that are identical

to one another. A set of identical sub-trees are called “sub-tree repeats”. (Flouri

et al. (2013)) present a method to identify all non-overlapping sub-tree repeats in

unrooted, unordered, labeled trees. Non-overlapping sub-tree repeats shall be re-

ferred to as repeats for the sake of simplicity. The example policies obtained from

the previous step are rooted, unordered, and labeled trees. A modified version of

the FORWARD-STAGE algorithm shown in (Flouri et al. (2013)) is implemented

to identify the repeating structures of rooted labeled trees. The node corresponding

to the initial state is the root node, and the labels used as input to the algorithms
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is the set of unique identifiers L̄G′ for each vertex v ∈ VG′ . Inputting this to the

FORWARD-STAGE algorithm gives us all the repeats present in the example policy.

The complexity of the algorithm presented in (Flouri et al. (2013)) is linear in the

number of nodes in the tree. If G′ has depth d, then the output of this algorithm is a

dictionary Rreps with keys k ∈ {1, 2, ..., d}. The corresponding value of Rreps[k] is the

set of root nodes of repeating sub-trees at depth k, along with their corresponding

labels li assigned by the FORWARD-STAGE algorithm. Note that depth here refers

to the minimum distance of a node to any leaf node, with leaf nodes having a depth

of 1. Two nodes with the same label li in Rreps[k] indicate that they both represent

the root nodes of repeating sub-trees.

Figure 4.4: Identified Repeating Sub-Trees

Fig 4.4 illustrates the identified sub-tree repeats from the previously calculated

abstract graph, by assigning a unique color to each root node of a repeating sub-tree
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4.1.2.3 Deleting Repeating Structures

This section discusses the function DeleteRedundantRepeats seen in Line 3 of Al-

gorithm 1. Algorithm 2 describes DeleteRedundantRepeats, which uses information

learned about the repeats in the previous step to remove redundant structures.

Input : G′, Rreps

Output: G′ with no repeating structures

1 levels = Rreps.keys()

2 for i in levels do

3 R = Rreps[i]

4 U = GetUniqueLabelRootMap(R,G′)

5 for (root node, label) in R do

6 if U(label) == root then

7 continue

8 else

9 unique root = U(label)

10 G′.add edge(root node.parent, unique root)

11 G′.delete subtree(root)

12 return G′

Algorithm 2: DeleteRedundantRepeats

For each repeat, one sub-tree is preserved while the rest are deemed redundant.

As a redundant sub-tree is deleted, an edge is added from the parent of the root

node of the redundant sub-tree to the root node of the preserved sub-tree. The

process of deletion is done in a top down approach. This means that redundant

sub-trees with higher levels, i.e., lower distance from the root node, are deleted first.

The resulting graph generated by this algorithm contains no repeats. The function

GetUniqueLabelRootMap converts an input list of tuples R = {〈r1, l1〉, 〈r2, l2〉, . . . ,

〈rn, ln〉} into a map U : {l1, . . . , ln} → {r1, . . . , rn}. U(li) = ri, if for some

li ∈ {l1, . . . , ln}, ∃ri ∈ {r1, . . . , rn} s.t. 〈ri, li〉 ∈ R, ri ∈ VG′ .

The abstract policy tree after removal of the sub-tree repeats present in it is shown
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Figure 4.5: Abstracted Policy After Deleting Sub-Tree
Repeats

in Fig. 4.5. It can be observed that unique labels are preserved at each depth of the

tree while redundancies are deleted. In the Keva example, the resulting graph is a

linear sequence of abstract-state action pairs. This is not necessarily true for other

domains. In general, the resulting graph formed is a directed acyclic graph.

4.1.2.4 Finding Dead-Ends

The leaf nodes present in G′ can be classified into two types: abstract representations

of goal nodes, and non-goal nodes. Goal nodes contain states that satisfy the goal
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condition G. Non-goal nodes contain states which do not satisfy the goal condition,

and may be assigned an action by the policy. If the adead action is the corresponding

action in such a node, then it is classified as a dead-end node. If any other action

is assigned, it is not clear if the node represents a dead-end or not. Consider such a

node called vleaf . For determining this, certain checks are performed. First, check if a

state-action pair in the leaf node corresponds to some internal node in G′ from which

a path to a goal node exists. If such a node exists, then such leaf nodes are ignored as

they represent conditions where a path to the goal exists. If no such node exists, then

a new example policy is attempted to be found. This new example policy is found

by solving a new MDP problem Γ′, where Γ′ is similar to Γ except that s′init for Γ′

is given by the state from LG(f−1(vleaf )), where f is the isomorphism function used

in abstracting the concrete policy. If Γ′ is solvable, the trace of the resulting solution

for Γ′ is calculated and merged with the current trace G′ by connecting an edge from

vleaf to the root node of the resulting trace. If not, vleaf is marked as a dead-node,

with the corresponding action in the state-action pair changed to the dummy action

‘dead’.

4.1.3 Merge

Using the merge algorithm, a graph based generalized partial policy is generated

using traces. A graph-based generalized partial policy is a graph H = 〈VH, EH〉

where VH and EH represent the set of vertices and edges respectively. Given a set of

example policies G = {G1, G2, ..., Gn} generated by an MDP solver, the corresponding

abstracted set of policies G′ = {G′1, G′2, ..., G′n} are found using Υ. The generalized

policy graph is constructed as follows:

VH = {L̄G′
j
(vi) | vi ∈ VG′

j
, G′j ∈ G′}

EH = {〈L̄G′
j
(vi), L̄G′

j
(vj)〉 | ∃G′j ∈ G′s.t. vi, vj ∈ VG′

j
, 〈vi, vj〉 ∈ EG′

j
}
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Thus, the generalized policy H contains the set of all unique abstract state-action

pairs seen in abstracted example policies as its vertices and set of all abstract state-

action pair transitions seen in abstracted example policies as its edges.

If unrolled sequences, which are repeated sequences of state-action pairs seen in

root-to-leaf paths of an abstract policy G′ are seen, then a cycle is formed in place of

the unrolled sequence in generalized policy H to capture such redundancies.

To build this graph, Algorithm 3 (Merge) is called iteratively. The Merge algo-

rithm accepts an input example abstracted graph G′i ∈ G′ and the current generalized

policy graph H. Merge follows a greedy approach to form loops in the generalized

policy.

The Merge algorithm is initially input with H containing no nodes and edges, i.e.

VH = ∅, and EH = ∅. It computes the set of unique state-action pairs and transitions

in G′ as shown in Line 1-2 of Algorithm 3. Once this is done, the change-sets for

nodes and edges required to be added to H are calculated. These are defined as the

set differences shown in Lines 3-4 of Algorithm 3. If both the change-sets are found

to be empty, then this indicates that the trace G′ is not adding any new information

to the generalized policy H, and Merge returns ‘false’ to indicate this. Otherwise, the

nodes and edges of H are updated to include all new state-action pairs and transitions

captured in the node and edge change-sets. This is done in Line 7-8 of Algorithm

3. Merge returns ‘true’, indicating that G′ added new information that was used to

update H. Note that at any point, the set of nodes and set of edges present in H are

unique i.e. ∀(v ∈ VH) (v = 〈s̄, ā〉); s̄ ∈ S̄; ā ∈ Ā; ∀(e ∈ EH) (e = 〈〈s̄i, āi〉〈s̄j, āj〉〉);

s̄i, s̄j ∈ S̄; āi, āj ∈ Ā.
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Input : H, G′
Output: success,H

1 unique sa pair = {LG′(v) | v ∈ VG′}
2 unique sa transition = {〈LG′(vi),LG′(vj)〉 | vi, vj ∈ VG′ , 〈vi, vj〉 ∈ EG′}
3 node change set = unique sa pair \ VH
4 edge change set = unique sa transition \ EH
5 if (node change set = ∅)and(edge change set = ∅) then

6 return False,H
7 VH = VH ∪ node change set
8 EH = EH ∪ edge change set
9 return True,H

Algorithm 3: Merge(H, G′)

An example generalized policy, initially containing no nodes and edges, and trained

with an input trace shown in Fig. 4.5 is shown in Fig. 4.6. I shall now present

theoretical results related to the uniqueness and succinctness of the policies computed

by Merge.

Figure 4.6: Generalized Partial Policy Graph

30



Theorem 1. (Uniqueness): Merge will result in the same unique generalized policy

H regardless of the order in which example policies are used to build it.

Proof. Consider example traces G′ = 〈G′1, G′2, . . . , G′n〉. Let H be the generalized

policy formed after using Merge by using elements from G′ in its current order, and

H′ be the generalized policy formed using elements from G′ in a different order.

The set of all abstract state-action pairs observed in example traces G′ is given by

the set Ipair = {L̄G′
j
(vi) | vi ∈ VG′

j
, G′j ∈ G′}. The merge algorithm assigns the vertices

of the generalized policy graph it forms to this set. This means that VH = Ipair and

VH′ = Ipair. Hence, VH = VH′ .

Similarly, the set of all abstract state-action transitions in example traces is given

by the set Itransition = {〈L̄G′
j
(vi), L̄G′

j
(vj)〉 | ∃G′j ∈ G′s.t. vi, vj ∈ VG′

j
, 〈vi, vj〉 ∈ EG′

j
}.

The merge algorithm assigns the edges of the generalized policy graph it forms to this

set. So, EH = Itransition and EH′ = Itransition. Hence, EH = EH′ .

Since VH = VH′ and EH = EH′ , H = H′ is true. Thus, the merge will result in the

same unique generalized policy H regardless of the order in which it example policies

are used to build it. �

Theorem 1. (Succinctness): The generalized policy H constructed using canonical

abstraction by Merge from a set of example traces G′ has bounded |VH| and |EH|, and

captures all unique state-action pairs and transitions seen in G′.

Proof. Consider example traces G′ = 〈G′1, G′2, . . . , G′n〉. The set of unique abstract

state-action pairs and transitions seen in example traces is given by Ipair and Itransition

respectively as shown in Theorem 1. The conditions |Ipair| ≤ |S̄ × Ā| and

|Itransition| ≤ |S̄ × Ā × S̄ × Ā| hold. Since Ipair and Itransition contain only unique

elements, |Ipair| and |Itransition| represent the minimum possible number of nodes and

edges required in a generalized policy graph to capture all abstract state-action pairs

and transitions respectively.
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All nodes in the generalized policy formed by merge represent unique abstract

state-action pairs seen in G′. So, |VH| = |Ipair|. Similarly, all edges in the generalized

policy represent unique abstract state-action transitions seen in G′.

So, |EH| = |Itransition|. Hence, even if an infinite number of examples are used to

learn the generalized policy H, the number of nodes and edges of H are bounded by

the number of unique abstract state-action pairs and transitions seen in G′. �

The time complexity of the Merge algorithm to merge a generalized policy H with

a trace G′ is O(max(|VH|, |VG′|) +max(|EH|, |EG′|)).

4.2 Generalized Policy Instantiation

After learning a generalized policy H, it is used to find solutions to some problem

instance Γ. This requires information that can be used to find concrete policies for

problems of larger sizes if the abstracted solution to the problem is encompassed by

the generalized policy.

A generalized policy instantiation problem is the tuple Ω = 〈Γ,H〉 where Γ is an

MDP and H is a generalized partial policy.

The solution to a Ω, is a finite, connected, directed graph C = 〈VC , EC〉, where

VC and EC represent the set of vertices and edges of C. C represents a partial policy

graph that is a solution for the MDP Γ.

A domain file and a problem file generated using the problem generator are used

to generate Γ. The processes involved in this section are described in Fig. 4.7.

Application of an action a ∈ A from state s ∈ S requires that s |= pre(a). Each

action can have multiple possible effects, each of which are associated with an effect

list εa. The action ae represents a sub-action of action a, for which pre(a) = pre(ae)

and εae = 〈〈pe, e〉〉, 〈pe, e〉 ∈ εa, where pe represents the probability with which an

action a when executed changes the current state using the effect set e, and is the
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Figure 4.7: Learning Generalized Policies

probability associated with sub-action ae. Each effect e can be split into its component

add-effects which are literals added to the current state, and delete-effects which are

literals deleted. An action ae when executed at a state s ∈ S results in a new state

s′ = (s \ e−) ∪ e+, s′ ∈ S . This operation is denoted by s′ = ae(s).

Algorithm 4 (GPI) uses the generalized policy graph H to direct the policy search

to find a solution for a given problem instance Γ. Each stochastic action is treated as a

set of deterministic sub-actions, as described above. Portions of source code developed

by (Steinmetz et al. (2016)) were used to implement this. Upon the execution of a

stochastic action on a state s ∈ S, GPI calculates a list of successor states by executing

all sub-actions, and each successor state can be reached from the current state based

on the probability corresponding to that sub-action.

Each node n ∈ VC corresponds to a concrete state-action pair 〈sn, an〉, sn ∈ S, an ∈

A. Initially, a single node nc ∈ VC , snc = sinit is initialised. nc represents the current

node being explored in C. GPI attempts to find a sequence of such deterministic

actions that can be applied, starting from the initial state sinit to reach a state

satisfying the goal condition G. During each step, a corresponding current abstract

node hc ∈ VH is maintained, where shc = s̄nc , shc ∈ S̄, snc ∈ S. The current abstract

action ahc ∈ Ā is used in filtering out the set of actions to be explored from state
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snc , of which the one executed is anc ∈ A. In this way, the generalized policy H

helps direct the search. Upon each execution, a new node nn, corresponding to the

next node to be explored is created in C, with snn = anc(snc). An edge is created

between nc and nn in C. Once a sequence of actions from the initial to the goal

state is found, the sequence is retraced from goal to root node in C containing the

initial state. A check is done in each step of this retrace to see if all possible effects

for the corresponding stochastic action have been explored with their corresponding

sub-actions. If not, it explores one of the unexplored effects.

Once a goal state is reached through this contingent branch, retracing is done

again, and the algorithm continues to execute until all the action effects have been

explored for all nodes in C. Every time a goal is reached, all ancestors of the goal

node are marked to indicate that they have a path that leads to a goal node. The

inputs to this algorithm are the generalized policy H, a concrete policy graph C with

the current concrete node nc for which snc = sinit, an abstract node hc called the

current abstract node which satisfies shc = s̄init and G which is the goal condition for

the problem.
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Input : C,H, nc, hc,G
Output: success, C

1 if (snc |= G) ∨ ((hc is a dead-end node) ∧ (C.has marked ancestor(nc))) then
2 C.mark ancestors(nc)
3 return True
4 next act list = {ai|(ai ∈ A) ∧ (āi = ahc) ∧ (snc |= pre(a))}
5 if |next act list| = 0 then
6 return False
7 for a in heuristic(next act list) do
8 C.create node(nn)
9 if ¬nc[εa] then

10 nc[εa] = εa
11 e = nc[εa].pop()
12 ae =get sub action(a, e)
13 snn = ae.apply(snc)
14 if ∃nv ∈ VC s.t. (snv = snn)∧C.is marked(nv) then
15 C.add edge(nc, nv)
16 C.mark ancestors(nc)
17 if |nc[εa]| = 0 then
18 return True
19 else
20 goto line 30
21 C.add edge(nc, nn)
22 for hn in abstract heuristics(C.get valid children(H, snn)) do
23 ret = GPI(C,H, nn, hn,G)
24 if ret then
25 break
26 if ret ∧|nc[εa]| = 0 then
27 return True
28 if ¬ret then
29 C.remove edge(nc, nv) and continue to next iteration
30 if GPI(C,H, nc, hc,G) then
31 return True
32 C.check and unmark ancestors(nc)
33 C.remove outgoing edges(nc)
34 return False

Algorithm 4: GPI

Line 1-3 describe the cases where a goal condition is found. If the current state

snc |= G, then the search algorithm returns True to the call stack. The second

portion of the condition in Line 1 handles the scenario where a path to a goal from

the initial state is already found, and an alternate action effect is being explored,

during which a dead-end node was encountered. Since a goal state was reached,
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there must be some ancestor of the current node that is marked as a goal node.

So C.has marked ancestor(nc) is True. In such a situation, the call to GPI returns

True. Policies where such situations are encountered represent improper policies.

They can occur when the Γ ∈ fSSPUDE MDPs, where all solutions contain dead

ends. They can also occur in cases where Γ ∈ SPADE MDPs when poor training

examples containing improper policies are used to form the generalized partial policy.

Since LAO* produces optimal proper policies for both SSPs and SSPADEs, the only

scenario where dead nodes are encountered is when the MDP problem is a subset of

fSSPUDEs. A marked node indicates that it contains a valid path to a goal state.

Before returning to the call, the current node and its ancestors are marked, indicating

that these nodes have a valid path to the goal. The function call C.mark ancestors

marks all the ancestor nodes of nc to indicate that they have a valid path to the

goal. Note that nodes marked by GPI as dead-ends are those that contain states

from which GPI could not find paths to the goal using H. So, these nodes are called

partial dead-ends.

During the exploration of a state, a list of applicable actions, called ‘next act list’,

on the given state is calculated. These actions are filtered by using the current

abstract action ahc , as shown in Line 4 of Algorithm 4. If no applicable action is

found, return False. This indicates that further exploration directed by H does not

lead to a goal state.

When actions in next act list were explored in any random order in experiments

conducted, GPI did not yield results within reasonable time frames. Directing GPI

with the help of heuristics that can order the set of actions to be explored significantly

improved the performance. In this heuristic, each action in next act list is scored

based on the number of matching predicates from the goal condition and the number

of predicates in initial states required to be removed to reach the goal state. Actions
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that the heuristic predicts have higher chances to lead to the goal state are given

higher scores and appear earlier in next act list. In case all actions have the same

preference, which can arise in situations where that action does not directly contribute

to predicates seen in the goal state, a look-ahead is performed where the scoring of

future possible actions using the heuristic described above is done. This is used to

rank actions in next act list. Based on trial and error, looking ahead with a depth

of 5 actions worked suitably for most domains. The resulting actions are explored

in the order assigned by the heuristic. The heuristic used makes GPI analogous to

many non-interleaved planners, which are susceptible to Sussman anomaly.

When exploring each action a, a new node nc is created and added to VC . This

is done in Line 8. If action a is being explored for the first time, a list maintaining

the effect list of a is added to nc. If such a list already exists, it means that a

path was found from the current node to a terminal node, and the current node is

being revisited during retracing. An effect e is popped from the effect list, and GPI

explores if valid paths to the goal exist with this contingency. In lines 12-13, the

sub action corresponding to a with effect e is found using ‘get sub action’. Then, the

next state snn is calculated. If some node nv ∈ VC with a path to a terminal node,

and containing a state snv = snn exists, then an edge is added from the nc to nv.

The ancestors of nc are then marked. If any sub-action corresponding to a remains

unexplored, a recursive call to GPI is made to explore all such sub-actions. This will

be explained in detail later.

If the condition in line 14 is not true, an edge is added from nc to nn, and H is

consulted again to find the next list of abstract nodes corresponding to nn. The list

of child nodes of hc contains possible candidates for the next abstract node hn. This

node must satisfy shn = s̄nn . Another heuristic is computed to score all possible next

abstract nodes. This is done using the heuristic function described before over all
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possible next abstract actions. Reordering the abstract nodes whose corresponding

abstract action has the highest score in an earlier position in this list also results

in a significant reduction in search time required by GPI to find solutions. This is

represented by abstract heuristics. GPI is then called with parameters C,H, nn, hn,

and g. If the variable ret is assigned true, that means a goal is found from node

nn while using hn as the next abstract node, and we do not explore paths using a

different next abstract node. If not, ret is assigned false. If ret is assigned true and

no further stochastic effects of a were remaining to be explored, return true to the

GPI call, indicating a path from nc exists to reach the goal. Note that if true is

returned, nc has already been marked. If ret is assigned false, the edge from cn to

cc is deleted, and the control skips to the next iteration of the for loop, where a new

node is created, and other actions with lower ranks in next act list are explored.

If true is returned, and all possible stochastic effects were not explored, then GPI

is recursively called with the same parameters as the current call to explore these

effects. This call will explore the next effect in the effect list εa. The condition on

Line 9 will no longer hold, and the next effect to be explored is given by Line 11.

Subsequent sub-calls to GPI made by this call will explore all effects in εa, and delete

it from εa with each exploration. If this call returns true, that means nc has a path

to reach a terminal state regardless of which action effect of a is observed. If this call

returns false, this indicates not all contingencies of a could not be resolved from the

current node. This also indicates there were no stop nodes in all the descendants of

hc, and hence no improper policy was permitted either. In this case, ancestors of nc,

which do not have alternate paths to the goal, are un-marked. All outgoing edges

from nc are severed, and control flows to the next iteration of the for-loop.

For b applicable actions each with c effects found during each call of GPI, for a

solution found at depth d, the time complexity of GPI is O((bc)d).
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Chapter 5

EXPERIMENTS

This section is divided into two parts. In the first portion, the different benchmark

discrete MDP domains on which empirical evaluations of GPI’s performance against

state-of-the-art discrete MDP solvers were performed are described. GPI was in-

corporated in the existing anytime stochastic task and motion planning framework

developed by (Shah et al. (2020)).

5.1 Domains

The methodology described in this work was compared against state-of-the-art

discrete MDP solvers, namely LAO* and LRTDP. (Bonet and Geffner (2003)). Both

LAO* and LRTDP employ heuristic search DP algorithms to find an optimal partial

policy rooted at the initial state for an MDP problem. The different discrete MDP

domains used for evaluation are described in each subsection. Although GPI is not

guaranteed to produce optimal partial policies, it does find a proper policy in case of

problems belonging to the SSP and SSPADE subclasses (given that training problems

used to form the generalized policy for SSPADE were optimal) if the generalized policy

encompasses their goal condition. In the case of fSSPUDE problems, off-the-shelf

MDP solvers and GPI produce improper policies as solutions. Note that solutions to

an MDP can be found by GPI only if the goal condition G is encompassed by the

generalized partial policy H.
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5.1.1 Keva

Keva planks are laser cut planks made of wood that are sold as toys to kids.

Every plank is identical to another, with minimal variance in size. Using these planks,

multiple 3D structures can be built. Solutions to problems in this are high-level plans

a robot has to execute to build such structures. The problems considered focus on

building towers and pi structures. To build a structure, a human places a plank in one

of two locations with a probability of 0.6 of placing it in location1 and 0.4 of placing

it in location2. The robot then picks up the plank from the location it was placed in

and places it in the appropriate configuration as described by the goal condition to

build the structure. Each plank can be placed either on the table, on another plank,

or two planks. All placements are reversible, i.e., the robot can pick a plank after it

was placed and place it elsewhere. The MDP problems corresponding to this domain

fall under the SSP sub-class of MDP problems.

5.1.2 Delicate-Can-World

Multiple cans are present on a cluttered table, and the goal is to pick a specific

can. The cans are divided into two types: delicate and non-delicate. A robot with

a single gripper is used to manipulate the environment. Since the table is cluttered,

the robot’s goal cannot be reached as other cans may obstruct the robot from picking

the goal can. The problems in this domain are such that all the cans are obstructing

the goal can and hence have to be moved. The non-determinism in this domain

originates in the pick action. If a delicate can is picked, it has an 80% probability

of being crushed. A non-delicate can has a 10% probability of being crushed when

picked. If a can is crushed, it has to be thrown in the dustbin. Otherwise, it is placed

in another region of the table where it is guaranteed not to obstruct the goal can. The
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delicate can requires three units of effort to clean up after being crushed, while the

non-delicate one requires one unit. The MDP problems corresponding to this domain

fall under the SSP sub-class of MDP problems.

5.1.3 Can-World

This domain models a similar environment as the DelicateCanWorld domain.

Here, not all cans present on the table necessarily obstruct the robot from pick-

ing the goal can. The stochasticity in this domain originates from the pick action,

with a can being crushed on the execution of pick with a 10% probability. If a can is

crushed, it is immediately thrown into a dustbin. The MDP problems corresponding

to this domain fall under the SSP sub-class of MDP problems.

5.1.4 Gripper

There are two rooms ‘rooma’ and ‘roomb’. Multiple balls are placed in each

room. Each ball has an intended target room. A robot with gripper(s) is used to

pick a ball(s), move to a room, and place it. The stochasticity in this domain lies

in the pick action, where there is a 20% probability that the ball is dropped when

a pick action is executed. For the Gripper domain, the problems generated contain

either a robot with a single gripper or one with two grippers. The MDP problems

corresponding to this domain fall under the SSP sub-class of MDP problems.

5.1.5 Hanoi

Hanoi is a well-studied problem in AI. There are three pegs and multiple discs

on the first peg, each with decreasing disc sizes with the largest disc placed at the

bottom. The goal is to move all the discs from peg1 to peg3 without placing a larger

disc on a smaller disc at any step. The only action in this domain is move, where a disc
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is moved from one position to another. The inherent stochasticity introduced in this

domain is that the execution of move action can accidentally break the whole setup

with a probability of 1/100000. The MDP problems corresponding to this domain fall

under the fSSPUDE sub-class of MDP problems, containing only improper policies

as solutions.

5.1.6 File-World

In this domain, there are two kinds of objects: folders and files. The goal condition

requires each file to be filed inside one of the folders. To file a file, firstly, the file

type, which indicates which folder it should be filed in, is found by executing the

get file type action. This action is stochastic, where each non-deterministic effect sets

the file type as one of the available folders with a probability of 1/#(folders). For the

problems considered in this work, #(folders) = 2. Once the type of the file is found,

get folder is executed. Then the file is filed in the folder, and the folder is returned.

The goal condition specifies that all files should be filed. This domain is a corner case

of the same name domain, considered in IPC2004 probabilistic planning competitions.

The MDP problems corresponding to this domain fall under the SSPADE sub-class

of MDP problems.

5.1.7 Rover

The planetary rovers domain inspires this domain. A map defined by waypoints is

given where each waypoint can have multiple incoming and outgoing paths from and

to other waypoints, respectively. Objectives are images that need to be captured, and

each objective can be completed only from a specific waypoint. There are multiple

samples distributed across waypoints, each of which has to be picked and dropped

into a drop location individually. The rover can move between two waypoints if a path
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exists between them. The pick sample is a stochastic action that successfully picks

the sample with an 80% probability and fails with a 20% probability. The problems

considered contain fully connected maps which have a total of 3 or 4 waypoints. Each

problem contains only two objectives. The number of samples that need to be picked

is varied across problems. The MDP problems corresponding to this domain fall

under the SSP sub-class of MDP problems.

5.1.8 Schedule

This domain is a simplified version of the schedule domain considered in IPC2006

probabilistic planning competitions.

Problems involve multiple packets that need to be served by a server. Initially, the

server is in the Arrivals and updating phase. Each time a packet arrives at a server,

it is marked as processed, and with a probability of 47/50, it is assigned a packet

class and put on the queue. With a probability of 3/50, it is not assigned a class.

Then, the server switches to the Cleanup and service phase. If a packet was assigned

a packet class, it is served. Otherwise, it is dropped and marked unprocessed. This

allows the server to receive the packet again and process it for arrival. The goal is

to serve all incoming packets. The problems considered have a different number of

packets in them. The MDP problems corresponding to this domain fall under the

SSP sub-class of MDP problems.

5.2 Anytime Integrated Task And Motion Planning

The methodology developed as a part of this thesis is integrated with the anytime

integrated task and motion motion planning framework developed by (Shah et al.

(2020)). The ATM-MDP algorithm developed by (Shah et al. (2020)) to accomplish

the task is used to build a free-standing Keva tower structure with 12 levels. The
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authors of Shah et al. (2020) use the LAO* algorithm to compute a high-level policy

to perform this task. This is replaced with the GPI method developed in this work

for this experiment. The OpenRAVE simulator (Diankov and Kuffner (2008)) is

used for performing this planning experiment along with its collision checkers. The

CBiRRT (Berenson et al. (2009)) implementation from (Koval (2014)) was used for

motion planning. A model of the Yumi IRB14000 dual hand robot is used as the

autonomous agent acting in the stochastic environment for this experiment. To find

inverse kinematic solutions, Trac-IK (Beeson and Ames (2015)) is used. The goal

structure required to be built is described in a Collada file, as shown in Fig. 5.1. Pose

generators were written to use this reference structure during refinement performed by

the ATM-MDP algorithm to build the desired structure. The environment contains

two tables, one on which the Yumi robot is placed, and another where the desired

structure is built. On this second table, two stations representing the two different

locations where a human can place a plank are present. The robot must pick the

plank placed in any of these regions by the human and place it appropriately to build

the structure.

Figure 5.1: Keva 12-Level Tower Structure
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Chapter 6

RESULTS

6.1 Domains

Empirical evaluations were made for determining which problems should be used

for training the generalized policy. After the generalized policy was formed, the run

times of GPI were compared against that of baselines, namely LAO* and LRTDP,

to solve examples from a test set of discrete MDP problems. Table 6.1 describes the

number of training and testing problems used for each domain.

6.1.1 Training

Experiments were performed for each benchmark domain to determine the set of

training examples to be used. Using the problem generator for each domain, example

problems were generated. The LAO* algorithm was used to find the optimal partial

policy graph for each problem. Problems with an increasing number of objects in them

were solved in increasing order, and their traces were found. The Merge algorithm

was used to incrementally build the generalized partial policy using these traces in the

order they were found. It was observed that the algorithm reported successfully using

these examples to build generalized policies only for problems with object counts up

to some finite value. This value is called maximum training object count (MTOC).

After this point, all other problems with larger object counts did not contribute to

the learning of the generalized policy. All problems with object count lesser than or

equal to MTOC were used for training. MTOC is represented by the black vertical

dotted line in Fig 6.1 ([I-IX]-a) for each domain.
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Domain Training Testing

Can-World 9 135

Hanoi 4 32

Rover 10 30

Delciate-Can-World 45 105

Keva 9 23

Schedule 5 40

File-World 4 36

Gripper 10 48

Table 6.1: Total Problems Used For Training And Testing

6.1.2 Testing

Once the generalized policy for a domain is generated, a set of problems for that

domain are created, with each problem’s object count falling within a range of values.

This is a domain-specific configuration and is illustrated by the range of values shown

in the x-axis ‘Objects (#)’ in Fig 6.1 ([I-IX]-a) for each domain. Run times for GPI

and baseline approaches were compared. The cutoff time for the baselines LAO* and

LRTDP were set to 600s. The cutoff time for GPI was set to 200s, as it finds greedy

solutions to problems, unlike the baselines, which attempt to find optimal solutions.

Fig 6.1([I-IX]-a) compares the average run-time for a successful search between

GPI and baseline approaches and plots it against the number of objects present in
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the problem. For example, in Fig 6.1 (III-a) consider a point on the x-axis where

Object(#) = 9. The corresponding y-value of a curve represents the average time

taken to successfully solve all Delicate-Can-World problems, which had object counts

equal to 9. Object counts in this domain correspond to the total number of cans.

Different problems with object counts equal to 9 contain a different number of delicate

cans ranging from 1 to 8 present in the problem. Cases where an approach failed to

find the solution for a problem are not included in the curves corresponding to that

approach.

Fig 6.1 ([I-IX]-a) also compares the success rates in the percentage of total prob-

lems solved for all three approaches, each of which is represented by three different

scatter plots in the figure. It can be observed that for problems in our test suite, GPI

solves 100% of problems for all object counts, for all the benchmark domains con-

sidered, while the LAO* and LRTDP algorithms fail to do so in many cases. These

plots showcase that the generalized policies formed using the methodology developed

in this work generalize well to unseen problems of larger sizes. It can also be observed

that except for the File-World and Hanoi domains, the average search times for prob-

lems solved by GPI is much lower than that of LAO* and LRTDP. Looking at Fig

6.1 (III-a) reveals that the average time taken to solve a problem appears to be an

exponential function of the number of objects present in the problem. So, to solve a

problem instance with an object count of 14 in this domain, it appears that the time

taken to compute a solution by LAO* and LRTDP would be well above the cutoff

time of 600s. However, GPI can find a solution in less than 60s on average. This

shows that GPI is a very attractive candidate in situations where optimality can be

traded for the reduced time taken to compute sub-optimal solutions.

Fig 6.1 ([I-IX]-b) shows the cumulative planning time vs percentage of solved

problems for GPI and the baselines. As the amount of time increases, the number
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of problems solved by each approach increases monotonically. It can be seen that

GPI reaches 100% faster than both LAO* and LRTDP except for problems in the

File-World domain.

Fig 6.1 ([I-IX]-c) shows the serialized planning time vs percentage of solved prob-

lems, where each problem is solved sequentially after the previous one is solved. In

cases where a solution was not found, the time taken for that computation is not

included in this plot. The total time taken to form the generalized policy, which

includes LAO* search time for each example problem, time taken to find the trace,

and time taken to merge it with the generalized policy, is represented by the black

vertical line. The time taken by GPI to solve a problem is offset by this training time

taken. The total training time also includes problems whose solutions were not used

in building the generalized policy because it contained redundant information. Com-

parison of baselines LAO* and LRTDP with GPI, and observe that GPI can solve

problems faster even after including the training time offset, except for the File-World

domain.

The speed of computation for GPI is highly susceptible to the performance of the

heuristic. Although GPI performs well in most cases, it is susceptible to Sussman

anomaly, which is the reason why it performs poorly in the case of the Hanoi and

File-World domains. If the recursive call at an early stage in the search leads to

some states that do not have a path to a goal, GPI will end up exploring all those

states before trying another path. This is the biggest drawback of the methodology

presented in this work.
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Figure 6.1: Results For (I) Keva And (II) Rover
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Figure 6.1: Results For (III) Delicate-Can-World And (IV)
Can-World
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Figure 6.1: Results For (V) Hanoi And (VI) Gripper
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Figure 6.1: Results For (VII) File-World And (VII) Schedule
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6.2 Anytime Integrated Task And Motion Planning

The stochastic task and motion planning problem defined in the experimental

setup is attempted to be solved. Using GPI, the high-level policy is computed quickly.

Planks are placed randomly at one of the two stations by the human in this exper-

iment. The ATM-MDP algorithm can compute low-level motion plans required to

successfully build the tower structure, despite the stochastic nature in which the hu-

man places the planks in one of the two stations present on the table. When the

LAO* algorithm is used to compute the high-level policy, it fails to do so even after

1200s. Refinement is not even possible without a high-level plan in place. Waiting

for an optimal solution is not desirable if a task can be accomplished while using a

sub-optimal solution, that finishes quicker when compared to the time taken to com-

pute the former. This illustrates situations where computing a quick solution that

may be sub-optimal is extremely useful. A snapshot of the environment shows the

successfully built structure in Fig. 6.2.

Figure 6.2: Completed 12-Level Keva Structure
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A preliminary version of this algorithm, which was used in (Shah et al. (2020))

was used to conduct real-world experiments of building Keva structures. An open-

source controller interface (Mahler and Liang (2017)) was used to control the Yumi

IRB 14000 robot. The trajectories calculated in the OpenRave simulator during the

execution of the ATM-MDP algorithm are processed and sent to this interface to

control the real robot. The real-world experimental setup consists of two tables, one

with the Yumi, and the other with two plank stations where planks can be placed by

humans. The desired structure is built on this second table. The placement of a plank

by the human results in an uncertainty in the state. To eliminate this uncertainty, the

environment is sensed to determine the location where the human placed the plank

using a camera. A background subtraction implementation from OpenCV is used in

this determination. Real-world executions are very difficult to get right as a lot of

errors are introduced during the low-level state estimation done while constructing

simulated environments. Collisions of the robot hand with the table are a common

occurrence. To limit the chance of collisions, all actual pick and place operations are

enveloped between their corresponding ‘pre’ and ‘post’ operations, where the pose

of the gripper is actually a few centimeters away from the intended pick/place pose.

Stills from real-world executions for building the Tower, Twisted Tower, Triple-Tower

and 3-π structures are shown in Fig. 6.3.
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(a) Tower (b) Twisted Tower

(c) Triple Tower (d) 3-π

Figure 6.3: Real-World Keva Executions With Yumi-IRB
14000
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Chapter 7

CONCLUSIONS

In this thesis, a methodology to compute generalized partial policies is developed, and

a quick but greedy and incomplete method is developed to use the formed generalized

policy to find concrete partial policies for unseen problems, including those with

greater object counts. The methodology developed to learn generalized plans uses

canonical abstraction for state representation, which allows for translating concrete

example policies into their abstract representations in which patterns such as loops

that are agnostic to problem-specific properties are identified. Results indicate that

the approach presented in this work can generalize well to problems instances with

much larger object counts. The generalized policy formed is shown to be a succinct

representation of the underlying abstract structures seen in examples. It is also

shown that the generalized policy formed using the methodology presented in this

work is unique, regardless of the order in which example policies were used to learn

it. The applicability of this methodology is demonstrated using multiple discrete

MDP benchmark domains. The performance of the greedy method developed is

compared against state-of-the-art discrete MDP solvers, and results indicate that for

the benchmark domains considered, the method presented can solve problems much

faster than the benchmarks in most cases.

Finally, the method developed in this work is incorporated with a framework that

performs task and motion planning in stochastic environments. Using this method

to perform task planning in this framework shows a significant reduction in run time

required to achieve the task of building a free-standing Keva tower structure with 12

levels when compared to using state-of-the-art MDP solvers to do the same.
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Chapter 8

FUTURE WORK

The GPI algorithm can find solutions quickly but is still susceptible to Sussman

anomaly. Encoding goal hints, as shown in (Karia and Srivastava (2020)), while

learning the generalized policy could possibly help in alleviating this problem. There

is scope for improvement in the methodology used to construct the generalized policies

from example policies. The methodology described does require some domain analysis

to be done to determine the set of training examples to be used for learning the

generalized policy. This can be automated by using an approach similar to the one

described in (Srivastava et al. (2011b)). The patterns found by the tracing approach

are not fully utilized by the way generalized policies are formed in this work. There is

scope for improvement in constructing better policies using these traces. The solutions

found by GPI are sub-optimal. Future directions could try to incorporate generalized

policies learnt with LAO* to find near-optimal solutions faster.

In this work, the Merge algorithm utilizes all example policies given to it. If

bad example policies which are sub-optimal solutions to problems are used, they can

significantly impact the performance of GPI. More work can be done in identifying

bad example policies. There is scope for improvement in the heuristic function used

by GPI.

Loops are inherently unsafe structures. Some of the loops formed by the method-

ology developed in this work could result in situations where if the state-space for

solving the MDP were infinite, GPI would never terminate. Further research to form

generalized policies with termination guarantees can be done .
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