
Simulation Framework for Driving Data Collection and Object Detection

Algorithms to Aid Autonomous Vehicle Emulation of

Human Driving Styles

by

Yashaswy Govada

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved November 2020 by the
Graduate Supervisory Committee:

Spring Berman, Chair
Kathryn Johnson
Hamidreza Marvi

ARIZONA STATE UNIVERSITY

December 2020

ABSTRACT

Autonomous Vehicles (AVs), or self-driving cars, are poised to have an enormous

impact on the automotive industry and road transportation. While advances have

been made towards the development of safe, competent autonomous vehicles, there

has been inadequate attention to the control of autonomous vehicles in unanticipated

situations, such as imminent crashes. Even if autonomous vehicles follow all safety

measures, accidents are inevitable, and humans must trust autonomous vehicles to

respond appropriately in such scenarios. It is not plausible to program autonomous

vehicles with a set of rules to tackle every possible crash scenario. Instead, a possi-

ble approach is to align their decision-making capabilities with the moral priorities,

values, and social motivations of trustworthy human drivers. Toward this end, this

thesis contributes a simulation framework for collecting, analyzing, and replicating

human driving behaviors in a variety of scenarios, including imminent crashes. Four

driving scenarios in an urban traffic environment were designed in the CARLA driv-

ing simulator platform, in which simulated cars can either drive autonomously or be

driven by a user via a steering wheel and pedals. These included three unavoidable

crash scenarios, representing classic trolley-problem ethical dilemmas, and a scenario

in which a car must be driven through a school zone, in order to examine driver prior-

itization of reaching a destination versus ensuring safety. Sample human driving data

in CARLA was logged from the simulated car’s sensors, including the LiDAR, IMU

and camera. In order to reproduce human driving behaviors in a simulated vehicle, it

is necessary for the AV to be able to identify objects in the environment and evaluate

the volume of their bounding boxes for prediction and planning. An object detection

method was used that processes LiDAR point cloud data using the PointNet neural

network architecture, analyzes RGB images via transfer learning using the Xception

convolutional neural network architecture, and fuses the outputs of these two net-

i

works. This method was trained and tested on both the KITTI Vision Benchmark

Suite dataset and a virtual dataset exclusively generated from CARLA. When applied

to the KITTI dataset, the object detection method achieved an average classification

accuracy of 96.72% and an average Intersection over Union (IoU) of 0.72, where the

IoU metric compares predicted bounding boxes to those used for training.

ii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude towards Dr. Spring Berman for

giving me this amazing opportunity to learn and develop my skills within team at

the Autonomous Collective Systems Laboratory. Dr. Berman made herself always

available whenever I had any troubles in my research. Without her guidance and

persistent help this thesis would not have been possible.

I would like to thank Dr. Kathryn Johnson for her valuable inputs into the

Psychological aspects of the research work and trusting me with her project. I would

also like to thank Dr. Hamid Marvi for supporting and encouraging me throughout

my coursework and research.

I dedicate this thesis to my parents and my sister for their unconditional love,

prayers and caring. You’ll were always there for me. I am extremely grateful for

the constant support and love I received directly or indirectly from all of my fam-

ily. Finally, I would like to express my gratitude towards my friends Omik Save,

Bhargav Ram, Sowparnika Koka, Akshay Reddy and many others for supporting and

motivating me throughout this graduate degree.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

1 INTRODUCTION . 1

1.1 Autonomous Vehicles (AVs) and Levels of Autonomy 1

1.2 Advantages and Challenges of AVs . 5

1.3 Morals and Ethics . 6

1.4 Trolleyology . 8

1.5 Unreal Engine and CARLA Simulator . 10

1.6 CHARTOPOLIS Test Bed . 12

1.7 3D Object Detection . 13

1.8 Contribution and Scope of this Thesis . 15

2 LITERATURE REVIEW AND RELATED WORK 17

2.1 The Trolley Problem and Other Scenarios . 17

2.2 Human Driving Styles . 19

2.3 Existing Crash Simulators . 21

2.4 Object Detection and Transfer Learning . 23

3 METHODOLOGY AND APPROACH . 29

3.1 Building the Simulator . 29

3.2 RoadRunner for Customizing Maps . 31

3.3 Map Ingestion into Simulator . 35

3.3.1 Importing the Map. 35

3.3.2 Pedestrian Navigation . 36

3.4 Creating Scenarios in CARLA . 40

3.5 Data Collection . 42

iv

Figure Page

3.6 Object Detection Algorithms . 43

3.6.1 PointNet . 43

3.6.2 Image Analysis . 44

3.6.3 Fusion Methodology . 47

3.6.4 Datasets Used . 49

3.6.5 Data Preprocessing . 50

3.6.6 Parameters and Training . 51

3.6.7 Evaluation Metrics . 52

4 RESULTS AND DISCUSSIONS . 55

5 CONCLUSION AND FUTURE WORK . 62

5.1 Conclusion . 62

5.2 Future Work . 62

REFERENCES . 64

v

CHAPTER

LIST OF TABLES

Table Page

1.1 SAE - Levels of Automation and Description, (SAE, 2018) 4

1.2 Recommended Hardware Specifications to Build CARLA on Unreal

Engine (CARLA- Car Learning to Act, 2017) . 12

3.1 Hardware Specifications of the Host Computer Used for this Application 29

4.1 Evaluation Metrics Tested on the KITTI dataset . 58

vi

LIST OF FIGURES

Figure Page

1.1 Famous Companies Working on Self Driving Cars (Self Driving Times,

2016) . 2

1.2 Google Waymo (Left) and Telsa (Right) (Mike Brown, 2018) 3

1.3 Trolley Problem Scenario 1 (Alyssa, 2016) . 9

1.4 Modified Trolley Problem Scenario (Alyssa, 2016) . 10

1.5 CHARTOPOLIS Test Bed at Polytechnic Campus, ASU (Left). Pheeno

Robots Navigating an Earlier Version of CHARTOPOLIS (Right) (Sub-

ramanyam, 2018) . 13

2.1 The Helmet Problem (Mihaly Heder, 2020) . 18

2.2 MIT Moral Machine Example Scenario 1 (from surveys in Moral Ma-

chine (2016)) . 22

2.3 MIT Moral Machine Example Scenario 2 (from surveys in Moral Ma-

chine (2016)) . 22

2.4 MIT Moral Machine Results - Statistics (Moral Machine Results (2018)) 23

2.5 TrolleyMod v1.0 (James Minton, Vahid Behzadan, 2018) 24

2.6 Results From Sliding Shape Approach (Song and Xiao, 2014) 24

2.7 Results from Monocular 3D Object Detection for Autonomous Vehicles

(Chen et al., 2016a) . 26

2.8 Results from Multi-View 3D Object Detection Network for Autonomous

Driving (Chen et al., 2016b) . 27

3.1 Deafault Layout for a Blank Project 1. Tab Bar, 2. Toolbar, 3. Modes,

4. Content Browser, 5. Viewport, 6. World Outliner, 7. Details

(Unreal Engine Documentation, 2014) . 30

3.2 Screenshot of Town03 in CARLA Simulator . 31

vii

Figure Page

3.3 CARLA Server-Client Build System (CARLA- Car Learning to Act,

2017) . 32

3.4 Screenshot of RoadRunner - Home . 32

3.5 Screenshot of RoadRunner - Simple Junction and Maneuver Tool for

Designing Signal Phases . 33

3.6 Screenshot of RoadRunner - Signal Tool and Crosswalk Tool 34

3.7 Screenshot of RoadRunner - Test Map . 35

3.8 Ingesting the map - Using Source CARLA- Car Learning to Act (2017) 36

3.9 Creating Pedestrian Navigation CARLA- Car Learning to Act (2017) . 37

3.10 Test Map. 38

3.11 Custom Map 1. 38

3.12 Custom Map 2 . 39

3.13 Custom Map 1 - Closer View . 39

3.14 Scenario 1 . 40

3.15 Scenario 2 . 41

3.16 Scenario 3 . 41

3.17 Scenario 4 . 42

3.18 Comparison of Various CNNs . 45

3.19 Proposed Network for 3D Object Detection and Classification 49

3.20 Example images from data generated through CARLA 0.8.4 51

3.21 IoU (Donghyeop Shin, 2019) . 53

4.1 The Framework . 56

4.2 Sample Data Extracted from a Test Run . 57

viii

Figure Page

4.3 Results with Batch Normalization: Bounding Box Accuracy (top left);

Bounding Box Loss (top right); Classification Accuracy (bottom left);

Classification Loss (bottom right) . 57

4.4 Results for ResNet Network: Bounding Box Accuracy (top left); Bound-

ing Box Loss (top right); Classification Accuracy (bottom left); Clas-

sification Loss (bottom right) . 58

4.5 Results for Xception Network: Bounding Box Accuracy (top left);

Bounding Box Loss (top right); Classification Accuracy (bottom left);

Classification Loss (bottom right) . 59

4.6 Test Results of the KITTI Vision Benchmark Suite Dataset 60

4.7 Test Results of the Virtual Dataset . 61

ix

Chapter 1

INTRODUCTION

1.1 Autonomous Vehicles (AVs) and Levels of Autonomy

Driving is an amalgam of continual risk assessment, environmental awareness, de-

cision making and adapting to tremendously variable surroundings or weather condi-

tions. Automotive Industry in alliance with Robotics and Control Systems fields have

created ground-breaking changes in road transportation by introducing Autonomous

Vehicles (AVs). Ideally, a vehicle that can guide and maneuver itself from a begin-

ning point to a preset destination without any human interaction but with the help

of various technologies and sensors like Adaptive cruise control, Lane detection and

centering, GPS, steering control, Cameras and LiDARs etc. is called an Autonomous

Vehicle or a Self-Driving Car . (Business Insider, 2018).

The advent of Automated Driving technology dates back to at least the 1920s. It

was not until the 1980s that a significant break-through was registered in the field,

when Carnegie Mellon University’s Autonomous Land Vehicle(ALV) (Kanade et al.,

1986), funded by Defense Advanced Research Projects Agency (DARPA), demon-

strated self-driving capabilities on a two lane road with obstacle avoidance in 1986

and later they went on to complete the first autonomous coast-to-coast drive across

the United States, spanning 2797 miles (NavLab 5, 1995). After witnessing these

milestones many companies like Google, Ford, Uber and Tesla have embraced this

technology and trusted it to be the next ”Big Thing”.

The AVs are already functional and are a reality today. There are six Levels (Level

0 to Level 5) of Driving Automation (Refer to Table 1.1) described by the Society of

1

Figure 1.1: Famous Companies Working on Self Driving Cars (Self Driving Times,
2016)

Automotive Engineers (SAE)(SAE, 2018). The Self-Driving Cars seen on the roads

today are at Level 1-3 Automation. One of the predominant reasons for being stuck at

Level 3 is the lack of complete safety and a robust framework capable of making moral

decisions during crash scenarios to minimize any kind of damage to life or property.

The ultimate aim is to achieve Level 5 Automation wherein your car acts as your

chauffeur and can perform driving tasks without any human supervision. Renowned

companies and the big players in this market, Tesla and Google Waymo are pursuing

unprecedented measures to achieve Level-4 Automation. As of October, 2020 Google

Waymo has introduced its ”Fully Driverless Service” to the general Public in Phoenix,

Arizona, USA (Google Waymo, 2020) and Telsa has rolled out its ”Full Self-Driving”

update (Andrew Hawkins, 2020) which is extremely slow and cautious as declared by

Telsa’s CEO, Elon Musk.

Despite all this progress Self-Driving Cars currently are not expected to perform

on par with human drivers due to its safety restrictions and lack of trust bestowed

upon AVs by general public (Hengstler et al., 2016; Dixit et al., 2016). This trust

can be built only if the public and passengers are completely convinced that an AV

is safe and it makes better decisions than humans, especially during crashes.

2

Figure 1.2: Google Waymo (Left) and Telsa (Right) (Mike Brown, 2018)

3

Automation

Level
Title Description

Level 0 No Driving Automation

Completely Manual Control. Despite

having a few systems for warnings, the

vehicles is not Autonomous

Level 1 Driver Assistance

The Vehicle exhibits only one auto-

mated system for either steering or ac-

celeration.

Level 2 Partial Automation

The Vehicle can control both steering

and acceleration. Constant human su-

pervision is necessary

Level 3 Conditional Automation

The Vehicle is aware of its environment

with the help of its sensors and can

make calculated decisions. However,

the driver must be alert and ready to

take control whenever needed

Level 4 High Automation

These vehicles do not need any human

intervention. The only drawback here

is, the vehicles can operate only under

certain conditions

Level 5 Full Automation

The vehicle is completely automated

and will function as effectively as a hu-

man driver or better

Table 1.1: SAE - Levels of Automation and Description, (SAE, 2018)

4

1.2 Advantages and Challenges of AVs

Irrespective of the proficiency of the driver, crashes are inevitable and Autonomous

Vehicles are not an exclusion to this. From 2014 to 2018, 62 accidents were reported

when an AV was on ”Autopilot” of which only one was caused by the AV itself

(Business Insider, 2018). Road accidents are alone the greatest cause of unusual

deaths of healthy individuals aged below 54. (CDC, 2019) According to Annual Global

Road Crash Statistics, approximately 1.35 million lives are lost in road crashes every

year i.e, 3700 lives per day and additionally, 20-50 million are injured critically enough

to require medical assistance (T Pietrasik, 2020). The need for Autonomous Vehicles

has been inspired from the bitter fact that 94% of serious crashes are a result of human

error or distraction (NHTSA, 2019). Including the potential to reduce these accidents,

AVs possess the ability to minimize traffic, mitigate harmful emissions, promote ride

sharing, ease parking struggle and assist the elderly and disabled through greater

mobility, thus increasing their independence.

Despite its comforting prospects there are a few drawbacks. Any vehicle, irrespec-

tive of its capabilities, moving at a considerable speed is bound to crash in certain

scenarios. Whilst travelling millions of miles collectively, AVs have been involved in

a few crashes (Andrew Hawkins, 2020). The first fatal crash took place in 2016, on a

highway, near Handan, China when the car couldn’t identify the sweeper truck and

crashed right into the back of it (Neal Boudette, 2016). Soon after this a similar crash

took place in Florida resulting in the death of the driver again (Danny Yadron, Dan

Tynan, 2016). In 2018, the death of Elaine Herzberg caused by an Uber Self-Driving

Car in Tempe, Arizona (Greg Bensinger, Tim Higgins, 2018), was recorded as the

first accident resulting in the death of a Pedestrian. The results of these crashes were

placed under thorough examination. In addition to technical errors, security concerns

5

and other vulnerabilities, decision making capabilities of the vehicle were recognized

to be one of the main barriers hindering AVs from becoming a reality. Ultimately, the

decisions made by these vehicles will be judged by the ethical and moral standards

of the society they drive in (Gerdes and Thornton, 2015). These vehicles must be

able to make clear technical and moral decisions in dilemma situations to perform

better than, or comparably to, human drivers and to enable this, the programmers of

the AVs must make sure that the control algorithms cause actions that are approved

legally and ethically.

The public’s Trust in Autonomous Vehicles is another challenge that AVs have

to overcome. The way these vehicles manage to smoothly handle the social interac-

tions a human encounters in traffic on a daily basis will strongly impact their social

acceptance (Gerdes and Thornton, 2015). The American Automobile Association as-

serts that 3 out of 4 U.S drivers are afraid to ride in Autonomous Vehicle (American

Automobile Association, 2019) and about half of them felt less safe sharing the road

with these vehicles. This trend has been changing gradually after witnessing the de-

ployment of Partially Automated Vehicles and the current generation are embracing

this relatively new technology of Self-Driving Cars. But for complete deployment of

Autonomous vehicles the car has to function as effectively as a human being or better.

For this purpose a lot of effort is being put into programming autonomous vehicles

to exhibit ethical decision making.

1.3 Morals and Ethics

With improvements in research areas like big data, computation, sensing and

Machine Learning over the past few decades, there has been decent growth in Vehicle

Automation. This growth has given birth to another new subject of study known

as Machine Ethics or Machine Morality (Wallach et al., 2010; Goodall, 2014b). For

6

their acceptance by the society, AVs should exhibit socially approved stances when

encountering moral or ethical dilemmas. Fagnant and Kockelman (2015); Gerdes and

Thornton (2015) discuss and predict ethical challenges that might take place upon

deploying AVs into the world.

Ideally, it makes sense to program AVs with driving styles that align with the best

practices of good drivers (Basu et al., 2017). The intent of the programmers is to

directly code in such a way that provides the AV with commands on how to behave

in diverse situations. The approach to do this has generally been based from two

schools of thought from the ethical theories, Deontology and Utilitarianism.

Utilitarian ethics, introduced and developed by Jeremy Bentham, emphasizes ”the

greatest good for the greatest number” (Kuipers, 2016). It was asserted that to be

moral or not was entirely dependent on the outcome that causes least damage or

choosing the best of all possible outcomes. For this reason Utilitarian ethics was also

referred to as the Consequentialist approach.

Deontology emphasizes on following the rules no matter what the outcome is. De-

ontology is the ethical concept that uses rules to distinguish between right and wrong.

It was first put forward by a European philosopher Immanuel Kant. Deontology be-

lieves in following universal moral laws like Don’t steal and Don’t Cheat. Deontology

is simple in its proposition. It describes that people should just follow the rules and

fulfill their duties no matter what. Unlike Utilitarianism, which judges actions by

their outcomes, deontology doesn’t consider costs and implications of the outcome.

This disregards the context and uncertainty because you only have to follow the rules.

So far it has been observed that the notion of implemented ethics for AVs either

aligns with deontology, that preaches following rules irrespective of the result, or

utilitarianism, where minimizing damage or optimizing a crash outcome on the basis

7

of severity is desirable. Limiting the scope to only these ethical theories will cause

neglecting the other dominant human morals and values that might have a significant

impact on the crash decisions.

Virtue Ethics, according to its proponents, is the ethical theory that should be

utilized in Self driving cars (Thornton et al., 2016). It is an approach that reflects

the values and character of the person rather than the external rules or outcomes.

Virtue ethics explores concepts like how virtues are acquired and applied to different

scenarios one might face. This is another possible approach towards incorporating

moral integrity into AV controllers.

Most accepted practices to estimate these moral priorities and values are ques-

tionnaires or surveys. The most widely used questionnaires for this are the Moral

Foundations Theory (MFT) as specified in Graham et al. (2013) and Basic individual

values proposed and updated by Schwartz (1992); Schwartz et al. (2012).

1.4 Trolleyology

There has been great progress in vehicle automation and autonomous vehicle

technology, yet, little has been done towards researching optimal crashing responses

for Automated Vehicles. Drivers in unsafe situations, where collision is inevitable,

are forced to make quick decisions with little or no planning (Goodall, 2014a). The

lack of consensus about the right crash decisions is an important factor that makes

ethical programming complex for crash scenarios. The Trolley Problem is one of the

most famous debates in the discussions of ethical dilemmas. This story to explore

moral dilemmas was introduced by Philippa Foot in 1967 (Foot, 1967). The trolley

problem story assumes a situation where a trolley is navigating around a corner and

the driver notices that ahead on the track there are five men tied to the rail tracks.

8

The driver tries to stop the vehicle to avoid killing them but realizes that he has lost

its control due to brake failure. The trolley is now headed towards 5 people tied to

a track and the only thing under his control is the steering which would help him

redirect the trolley to another track. However, on this track too there is one person

tied to the tracks. (Figure 1.3)

Figure 1.3: Trolley Problem Scenario 1 (Alyssa, 2016)

The whole motivation behind this story is to illustrate the outcomes of decisions that

are consistent with different ethical theories and how one perceives ethics. Thomson

(1985) in her paper questions if it is morally permissible for the driver to turn the

trolley? If the driver follows a utilitarian approach he would change the track to kill

one person instead of five; even if he chooses deontology he is supposed to change the

track and cause the death of the person so he follows the rules by endangering only

one as opposed to five. (Figure 1.4)

However there would be differences in opinion if this story can be tweaked a little

to change it into a situation where the subject in this context is standing behind a

9

Figure 1.4: Modified Trolley Problem Scenario (Alyssa, 2016)

fat man and they are on an overpass. The subject notices a train on a slope sliding

towards 5 people tied to the track. The only way for the subject to save the five

people is to push the fat man on to the tracks to save the 5 members. According to

the utilitarian approach this exactly seems like the outcome that the subject should

choose. But for a supporter of deontology this is totally against his values as in this

case he would be exploiting the person thus killing him.

The trolley problem has been a relevant debate even in the context of AVs. But how

does the community come to an agreement on the particular ethical theory to use as

a basis for programming the AV?. Simulating such scenarios to understand people’s

responses towards this problem seems like a viable solution.

1.5 Unreal Engine and CARLA Simulator

The Unreal Engine is a game engine created by Epic Games (Unreal Engine, 2004),

first introduced in 1998 through the game ”Unreal”. The Unreal engine has been

10

modified several times since then and has established itself as one of the prominent

game developing platforms. Programmed in C++, the Unreal engine is a highly

flexible tool that supports diverse platforms. ’Blueprints’ is the GUI system inside

Unreal Engine that facilitates scripting without the need to write lines of code but

by utilizing an intuitive node-based interface (Unreal Engine Documentation, 2014).

These blueprints can be used to manipulate behaviors of agents or objects in the

simulation. Its abilities can be expanded using the comprehensive ’Plugins’ system.

Since 2015 the Unreal Engine has been available for free to encourage developers from

all Research fields.

CARLA- Car learning to act is an open source simulator for Automated Driv-

ing Research (Dosovitskiy et al., 2017) developed by Intel Labs in collaboration with

The Toyota Research Institute and the Computer Vision Center at Universitat Au-

tonoma de Barcelona in Barcelona, Spain. CARLA exploits Unreal Engine’s abilities

to simulate dynamic worlds with convincing Physics of Materials, Animations, Virtual

Reality support and outstanding rendering capabilities. As compared to other simu-

lators like Airsim, CarSim, TORCS, Udacity Simulator and others, CARLA stands

out as the most suitable and ever evolving simulator compatible with the scope of this

thesis. Mainly, CARLA eases training, testing and validation of Autonomous Vehicles

in urban traffic scenarios permitting us to make desired changes to the environments.

To encourage future modifications and upgrades by the community, CARLA is built

as an open-source layer over the Unreal Engine.

For the purposes of this thesis, CARLA (Version 0.9.10) was built on an Ubuntu

distribution (18.04 LTS) of Linux. The following table lists the specifications of

hardware used. However, a high performance Graphic card would be ideal for this

application. Including the Driving Simulator, CARLA also provides digital assets

like buildings, vehicles, humans and other features that are characteristics of urban

11

Operating System Ubuntu 16.04 and above

RAM 8 GB

Memory 1TB (Need a minimum of 60-80 GB free disk space)

GPU Nvidia GeForce GTX 470 or higher with latest NVIDIA drivers

Processor Quad-core Intel or AMD, 2.5GHz or faster

Table 1.2: Recommended Hardware Specifications to Build CARLA on Unreal En-
gine (CARLA- Car Learning to Act, 2017)

environments to inspire imagination in creation of new environments or maps. The

Simulator also offers a wide range of sensor suite including Cameras, LiDARs, GNSS

(Global Navigation Satellite Systems), IMU (Inertial Measurement Unit) amongst

others. Other features of CARLA include dynamic weather conditions, full control of

all agents, ROS (Robot Operating System) bridge, map generation and customization

and many more. The ROS bridge in particular is a very useful feature which can help

study the behaviors and moral profiles extracted from the human driving data in a

multi-agent ecosystem.

1.6 CHARTOPOLIS Test Bed

The ’CHARTOPOLIS’ (Subramanyam, 2018) is a small scale traffic test bed es-

tablished by the Autonomous Collective Systems Lab in ASU. Primarily, it was set

up as a safe, controlled environment to study interactions between Autonomous vehi-

cles and human drivers. Initially Pheeno Robots (Wilson et al., 2016) were used for

testing the lane detection and traffic light detection alogrithms. Later Go-CHARTs

will be used to emulate AVs on this test bed. Go-CHART (Kannapiran and Berman,

2018) is 4-wheeled robot which replicates a scaled version of a standard sedan. It

was designed and manufactured by the Autonomous Collective Systems Laboratory

for its use on the CHARTOPOLIS test bed. This robot is fitted with some of the

12

most useful sensors that you can find on an AV. All the studies and tests will be

conducted using these robots since they have much of the functionality of full-size

AVs such as perception, localization and state estimation. For the purpose of this

thesis, CHARTOPOLIS is referred to as the Physical domain and CARLA is referred

to as the Virtual Domain.

Figure 1.5: CHARTOPOLIS Test Bed at Polytechnic Campus, ASU (Left). Pheeno
Robots Navigating an Earlier Version of CHARTOPOLIS (Right) (Subramanyam,
2018)

1.7 3D Object Detection

Perception of the environment is an important prerequisite for autonomous ve-

hicles. With ever rising number of driverless vehicles on the road, human safety

is an alarming concern. Despite facing issues with time complexity, computational

capacity and robustness, use of computer vision, facilitated by machine learning algo-

rithms, has led progress in this field. Identifying, Classifying objects and estimating

the volume enclosed by these objects is a crucial capability for AVs and is necessary

for implementing safety measures. Including the camera data, exploiting valuable

information from high precision instruments like LiDAR has proven to be signifi-

cantly effective in achieving 3D object detection and classification. While research

13

in computer vision has produced algorithms to analyze objects in a scene, a robust

and reliable architecture is yet to be standardized. This work is a sincere effort to-

wards developing an algorithm that harnesses point cloud information of LiDAR in

conjunction with RGB images captured by cameras on an AV to determine the class

and volume of objects in a scene through sensor fusion. In this approach, the use of

PointNet (Qi et al., 2016), to analyze LiDAR’s point clouds and ‘Exception’ (Chollet,

2017), trained on ‘ImageNet’ (Deng et al., 2009) to analyze camera RGB images, thus

implementing transfer learning, was proposed. The world is moving towards train-

ing neural network models using synthetic datasets for application in simulators, to

achieve higher accuracy by training a network on relevant data. Enforcing fusion of

the two state-of-the-art tools, the network is trained and tested on a dataset which

was generated using CARLA (Car Learning to Act – an open simulator for Urban

Driving). ResNet (He et al., 2015a), Exception(Chollet, 2017) and VGG(Simonyan

and Zisserman, 2015) were compared for choosing the best CNN. The compatibility

of Exception was determined and was decided to be the best CNN for this fusion

network.

A modern autonomous vehicle is equipped with multiple high resolution and low

noise cameras, LiDARs and other sensors (Kesten et al., 2019). While object detec-

tion using cameras has been around for a significant period, it lacks robust abilities in

determining the bounding volume occupied by the same object. LiDAR on the other

hand, has significant volume detection capabilities but has poor results in semantic

mapping. This thesis implements an algorithm that involves fusion of camera and

LiDAR data to classify objects and determine their bounding volume. The data of

interest includes precise outputs from the left stereo camera and corresponding Li-

DARs mounted on a vehicle that capture activities on road. Previous attempts can

be broadly classified into image based detection and LiDAR based detection. The

14

former method (Hegde and Zadeh, 2016; Qian et al., 2020; Li et al., 2019) takes in

RGB images from cameras and estimates a 3D bounding volumes of objects in the

image along with classifying these objects. LiDAR based methods compute volume

of objects through mapping density of point cloud data (Zhou and Tuzel, 2018; Him-

melsbach et al., 2008; Beltrán et al., 2018) and determines the class of an object

by projecting the point cloud on a plane. CNNs have been used frequently in both

these methods. As discussed previously, camera based methods were fruitful in ex-

amining 2D bounds of an object, thus classifying the object correctly while LiDAR

based methods were suitable in predicting the volume of the objects but performed

relatively poorly in determining object class using point clouds (Prokhorov, 2010).

To accurately classify and detect volumes of objects, a robust algorithm is needed

that assimilates various features of data from the cameras and LiDARs on the vehi-

cle. Inspiration for this algorithm has been derived from observing effectiveness of

multi-data as input to neural networks (Bindhi and Gupta, 2018). Here, individual

feature maps are prepared for each data type and are fused together to achieve clas-

sification and bounding volume via regression. The important feature map identified

is Camera Image (RGB) using point by point analysis. Extracting semantic informa-

tion like object class and bounding box information like length, width, height, center

x, center y and center z to facilitate 3D Object Detection are key features of this

research. Through layers of convolution networks, regions of interest are identified

and are finally evaluated to assess the outputs of choice.

1.8 Contribution and Scope of this Thesis

Preferably, the performance of AVs should align with human driving styles that

reflect best driving practices. Crashes are likely inevitable as long as AVs share roads

with other human drivers, cyclists and pedestrians. This thesis has been inspired by

15

recent and ongoing studies and surveys conducted by Dr. Kathryn A Johnson from

Arizona State University (Johnson, K.A., Berman, S., Chiou, E., Pavlic, T.P., Cohen,

A.B., 2020) (in preperation) to analyze the moral foundations (Graham et al., 2013)

and basic individual values (Schwartz, 1992; Schwartz et al., 2012) influencing driver’s

crash responses obtained from the driving data of the subjects. This thesis work

includes construction of a virtual world in a driving simulator where Autonomous

Vehicles can be tested in an urban traffic environment. This world is designed with

various scenarios to understand how would drivers respond to scenarios involving a

school zone or trolley problem like situations. The data from the sensor suite of the

simulated vehicle was logged during sample driving trials in all the scenarios. In

future studies, this data will be collected from human subjects with different sets

of moral priorities and values (as determined by surveys) and will be used to fit

parameters of AV controllers, in an effort to characterize and mimic the variability in

driving behaviors across different types of drivers. In order to implement the resulting

AV controllers, object detection algorithms must be developed for classifying objects

from AV sensor data, in order for the AV to respond appropriately based on its

surroundings. A Sensor Fusion Approach for 3D Object Detection to classify and

plot the 3D bounding box of objects in a scene from RGB camera and LiDAR data

has been developed using transfer learning techniques on ResNet and Xception models

available in the Keras library. These models were tested to evaluate their performance

in the KITTI dataset (Geiger et al., 2013a).

16

Chapter 2

LITERATURE REVIEW AND RELATED WORK

2.1 The Trolley Problem and Other Scenarios

These are hypothetical Scenarios which help us explore the moral and ethical

inclinations of humans. The trolley problem has been described in chapter 1.4 of this

thesis. Here we explore work that has been carried out to study the trolley problems.

In relevance to the field of Automated Vehicles there a been a change of perspective

in the way the trolley problems have been viewed (Goodall, 2014a). The trolley

problems for this research area are designed to resemble scenarios that we might

encounter on the roads at some point of time. These scenarios have been constructed

in a way to make subjects choose between 2 choices which decide the outcomes of a

crash scenario. These scenarios involved situations where the subject who imagines

himself to be in an unavoidable crash scenario has to choose between saving his own

life by running into one or more pedestrians in his way or sacrificing himself by

swerving into a wall. Other scenarios were set up under the same context in which

the subject was asked to choose between a group of people on one side and only one

person on the other side of the road mimicking the original trolley problem. Other

complexities and parameters were allotted to the pedestrians such as age, gender,

profession, whether he/she was a law-abiding citizen or not and so on. A problem

similar to the trolley problem, the helmet problem has also been in discussions. In

this setup the subject imagines himself to be the driver of the AV. He notices a vehicle

coming towards him in the same lane, so he tries to brake, but the vehicle’s brakes

have failed. He can steer it to right or left to minimize damage or save himself.

17

But the catch here is on the left there is a Motorist who is not wearing a helmet

and on the right is a Motorist wearing his helmet. The dilemma here is whether

the subject/driver of the AV swerves to right to kill the motorist who has followed

the rules and wore a helmet to be safe because his chances of survival are better or

should the AV collide with the one on the left even if he is not wearing a helmet. The

paradox is that if we choose the one on the right counting on his survival chances due

to the helmet, we would be inflicting damage upon a person who follows the law and

has worn the helmet to keep himself safe. But this collision happened because he was

wearing his helmet and the one without helmet has been spared.

Figure 2.1: The Helmet Problem (Mihaly Heder, 2020)

Another important scenario that has been discussed widely in the context of moral

18

profiles of human drivers is the School Zone scenario (HANA, 2017; Michael Clamann,

Nancy Pullen-Seufert, 2020). For the deployment of AVs, developers should make sure

that the pedestrian detection algorithms are exceedingly accurate and should show

capability in distinguishing between children, cyclists and adults (Michael Clamann,

Nancy Pullen-Seufert, 2020). Letting AVs to be tested on the road at school zones

can be extremely risky. The vehicles must realize when they enter or exit school

zones and must abide by the respective speed regulations. Possible challenges in this

scenario could be to pass by various adults and children to perform curbside pick-up

and drop-off of the passengers. Communication between AVs and humans especially

to determine the right-of-way would be complex to program. Navigation problems

can also arise due to the terrain and infrastructure. Automated vehicles tests must

involve school zone scenarios but they should not be allowed at the school zones if they

do not exhibit the accuracy standards. Therefore for the purpose of testing school

zone scenarios, CARLA was used to simulate such environments to understand and

log the behavior of various human drivers when navigating through a school zone.

2.2 Human Driving Styles

With augmented deployment of AVs, the question that arises is how should the

AVs drive. Apart from safety and reliability, providing great comfort and a satis-

factory user experience will also play an important role in the acceptance of these

vehicles (Kuderer et al., 2015). Comfort and user experience can have multiple mean-

ings here. Some people might prefer a peaceful and steady drive whereas others might

prefer high speed drives (within the speed limits). This fact leads us to a conclusion

that AVs must be available in different driving styles to serve people’s preferences.

The three distinctly identified driving styles in this context are Power Driving,

Benevolent Driving, Defensive Driving (Basu et al., 2017). For the scope of this

19

thesis only Power and Benevolent Driving Styles are considered. Factors like clean

driving record, mean distance to lead car, distance maintained during lane change

and merges, braking distance, maximum and mean speeds at turns, speeds through

school zones and crash decisions can help determine the moral profile of a driver and

categorize them as a Benevolent or a Power Driver. A benevolent driver is someone

who follows the rules and a power driver is someone who is a little careless when it

comes to hard and fast rules. In the context of trolley problem dilemmas adapted

from the philosophical studies, the person who sacrifices himself for saving others

would be categorized as a benevolent driver and the person who is willing to run

over the pedestrians to save his own life is classified as an power driver. This kind of

classification can help diversify the AV experience and make them more compatible

to the societal needs. Dr. Kathryn Johnson, in her work Johnson, K.A., Berman, S.,

Chiou, E., Pavlic, T.P., Cohen, A.B. (2020)(in preperation) has extracted important

moral factors that can be leveraged to assess a person’s driving behavior or moral

profile in the context of human driving styles.

This thesis aligns with the research proposed by Dr.Kathryn Johnson. Accord-

ing to the proposed research, it was important to understand the moral profiles and

priorities of participants who are taking the driving simulation tests. In compari-

son to the MFT survey which hypothesizes 5 moral domains of Harm/Care, Fair-

ness/Reciprocity, Ingroup/Loyalty, Authority/Respect and Purity/Sanctity; Basic

Individual Values proposed by Schwartz et al. (2012) seemed more suitable. For

the proposed research, the 57-item Schwartz Value Survey (SVS) (Schwartz, 1992)

will be used. From these 57 questions we will be able to assess an individual’s in-

clination towards values such as self-direction, stimulation, hedonism, achievement,

power, security, conformity, tradition, benevolence and universalism.

For the purpose of this research it has been determined that Power and Benev-

20

olence are the 2 most predominant values that influence a person’s driving behavior

during crash scenarios (Johnson, K.A., Berman, S., Chiou, E., Pavlic, T.P., Cohen,

A.B., 2020) (in preperation). These questionnaires in conjunction with the driving

simulation results will be used to fit models to design AV controllers which would

presumably align with the moral, ethics and values of the good drivers with clean

driving records.

2.3 Existing Crash Simulators

MIT Moral Machine (Awad et al., 2018), is the most popular platform that

records responses to dilemmas. It was developed by Iyad Rahwan and his team

at Massachusetts Institute of Technology. The experiment consists of hypothetical

dilemma situations like the ones discussed in Chapter 2.1. These scenarios have been

derived from the trolley problem as well. The Moral Machine generates such dilem-

mas randomly and records the responses that subjects make between two hazardous

outcomes. The website, Moral Machine (2016), gathered more than 40 million deci-

sions in ten languages from millions of people in 233 countries and territories. More

results and statistics about the experiments have been provided in Awad et al. (2018).

The results of this experiment have been made available at Moral Machine Results

(2018) and the summary of it given in Figure 2.4. The figure explains the statistics

of the responses of all the subjects towards each category in the Moral Machine Ex-

periment.

21

Figure 2.2: MIT Moral Machine Example Scenario 1 (from surveys in Moral Machine
(2016))

Figure 2.3: MIT Moral Machine Example Scenario 2 (from surveys in Moral Machine
(2016))

TrolleyMod v1.0 (James Minton, Vahid Behzadan, 2018) is an open source data

collection platform for ethical decision making in autonomous vehicles (See figure 2.5)

developed by a team at the Kansas State University. This work has similar motivation

22

Figure 2.4: MIT Moral Machine Results - Statistics (Moral Machine Results (2018))

to this thesis but is limited to observing who the subject crashes in given dilemma

situations. The system generates random trolley problem like scenarios obligating the

user to crash into at least one of the two choices. The main issues with this simulator

is that it uses outdated versions of CARLA and Unreal Engine for which support

and updates are not provided as of now. This project has not been updated since

December 2018. It is not very immersive or realistic because the participants are not

given enough time to understand the environment or interface but are directly tested

to log the responses.

2.4 Object Detection and Transfer Learning

Image based 3D object detection : An RGB image in its simplest form

is a planar representation of a 3D space. Naturally, this image lacks vital depth

information to estimate the volume enclosed by object in the scene. More importantly,

without accurate volume, determining the coordinate center and orientation of objects

23

Figure 2.5: TrolleyMod v1.0 (James Minton, Vahid Behzadan, 2018)

is challenging as well as unreliable. However, a representation of depth can be achieved

by generating point clouds with the help of inexpensive tools or using images of the

same scene in different orientations. Sliding Shape (Song and Xiao, 2014) approach

uses RGB images together with depth images to generate bounding boxes around

objects.

Figure 2.6: Results From Sliding Shape Approach (Song and Xiao, 2014)

A depth image is an RGB image where distance between the object and camera

plane is encoded. This eliminates computationally intensive parameters like sensor

noise, texture clutter and illumination. Because depth is encoded in an RGB image,

24

computational cost of analysing 3D point space is saved. Stereo-RCNN (Li et al.,

2019) approach takes stereo images as input and simultaneously detects and clas-

sifies objects in the images. This method takes advantage of information encoded

in stereo images to estimate object dimensions by analyzing the Region of Interest

(RoI)s. In monocular approach (Girshick, 2015; Chen et al., 2015), a set of lenses

are used to magnify distant objects and project them on 2D plane. Primarily, this

method is used for detecting objects in 2D plane and is accurate in estimating the

region encompassed by the object in the plane, but lacking depth information cre-

ates challenge in predicting the actual volume i.e. 3D bounding box of the object.

Although this method is faster compared to various other complicated methods and

can also exhibit real-time performance (Song and Chandraker, 2014), it is restricted

by the performance of cameras. Since, cameras are the sole generators of data in this

case, data is lost in projecting the 2D image in 3D space. Object detection algorithms

use prior knowledge about the features of the object and try to identify similar ob-

jects. However, deficiencies in learning, e.g. new or unique object can challenge the

understanding of the algorithm. Cameras are also known to be prone to environmen-

tal factors like temperature, humidity, light intensity and thus using data from only

such cameras can produce corrupted data as well as inconsistent data involving same

objects captured in different conditions. RGB images in general, lack information

about depth (Chen et al., 2016a) and thus are not suitable as a robust approach to

3D object detection and classification.

Recent works like (Ma et al., 2019) show that RGB images can be projected in point

cloud space and complicated feature detectors can be used to predict the location

and orientation of objects. However, this approach is restricted by visibility of object

as well as the data loss in projections over the process. In this context, we aspire

to exploit the capabilities of LiDAR information to generate regions of interest in

25

Figure 2.7: Results from Monocular 3D Object Detection for Autonomous Vehicles
(Chen et al., 2016a)

determining the depth of the objects.

Point cloud based 3D object detection : LiDARs can be a huge resource in

identifying objects by comparing density and intensity of points in the point cloud

(Li, 2017). Since LiDARs generate huge point clouds on the order of 1.5 million

points, it can be computationally expensive to monitor these clouds and determine

object location and orientation. 2D image analysis has greatly advance since its

inception and thus has a wide range of applications in autonomous driving. It is

possible to project LiDAR data in 2D space (Su et al., 2015) and the method is

known as Point Cloud Projection. Most important advantage of this approach is that

it reduces the computation space and thus decreases time complexity. However, front

view projections of LiDAR data are prone to data loss (Li et al., 2016) as the sparse

data in volume may appear dense in the projection. This may trick the algorithm

into inaccurately predicting the object class and thus is a trade-off in return of high

speed of computation. Regions of interest (ROI) is a technique (Chen et al., 2016b)

used to discard the irrelevant point clouds and focus on only specific spaces in the

26

cloud for relevant information. However, semantic projection of LiDAR data does

Figure 2.8: Results from Multi-View 3D Object Detection Network for Autonomous
Driving (Chen et al., 2016b)

not have comparable accuracy of a camera based RGB image analysis approach to

classify and bound object in 2D space. These proposals are then used to evaluate

the same object in the LiDAR Front View data for accurate depth analysis. Similar

proposals are used to evaluate object location in the image to reduce computation

time.

TensorFlow and Transfer Learning: Tensorflow (Abadi et al., 2016) is an

open source library for Machine Learning, Deep Neural Networks and complex com-

putation using data-flow graphs. It is compatible with Python, C++ and Java.

Tensorflow was first developed by Google Brain Team for internal research applica-

tions. Its version 1.0, released in February 2017, has seen exponential demand through

github forks. It runs on diverse platforms like GPUs, TPUs and can also run on mo-

27

bile phones or micro controllers. Tensorflow is generally used to build a computation

graph as a data structure for building the models and compiling them. Keras (Ketkar,

2017) acts as an interface for Tensorflow. It provides the building blocks to build Deep

Neural Networks on the tensorflow framework. It is the library which contains classes

and functions for Optimizers, Activation function and metrics. Both Tensorflow and

Keras are provided through github. Tensorflow’s applications include a wide range of

research domains like data science, natural language processing, robotics etc.

Another attractive attribute of the Keras library is that it enables Transfer learn-

ing on the existing Deep Neural Network models which have been pre-trained on

ImageNet (Dai et al., 2007). ImageNet is a large dataset of more than 14 million

hand annotated images mentioning the objects in them and with at least 1 million

of them containing bounding box information of the images (Deng et al., 2009). Im-

ageNet is the largest collection of images available with more than 20000 classes.

Transfer learning is a technique in which pre-trained models are frozen using tensor-

flow and are reused for applications in related but different contexts. Keras provides

us with such pre-trained models like ResNet, VGG19, Inception, Xception, NasNET

etc. The feature extraction capabilities of these pre-trained networks are used to

develop intermediate model outputs for the data in our application thus facilitating

transfer learning.

28

Chapter 3

METHODOLOGY AND APPROACH

3.1 Building the Simulator

The CARLA Simulator for this application needs to be built from source. This

process has been clearly documented on the official CARLA website (CARLA- Car

Learning to Act, 2017). Building it from source will enables us to open the simulator

in the Unreal Engine as an Unreal Project as opposed to Standalone game mode when

using the pre-compiled version.

Operating System Ubuntu 18.04 LTS, 64-bit

RAM 16 GB

Memory 500GB HDD

GPU
Nvidia GeForce GTX 1050 Ti 4GB with NVIDIA drivers

(390, proprietory)

Processor Quad-core Intel i5-3550 3.3GHz

Table 3.1: Hardware Specifications of the Host Computer Used for this Application

Upon successful build the editor can be launched from its root directory. The user

can choose an existing base project with dedicated blueprints or he/she can choose a

blank project. Each map or virtual environment or game is called a ’Level’. Opening

a project opens the main editor whose default layout is as follows

For panning, zooming and moving around the input is Keyboard keys WASD,

arrow keys and Mouse. The Content Browser is place where all the assets related

to the project can be created, edited, migrated or imported. The details pane is the

29

Figure 3.1: Deafault Layout for a Blank Project 1. Tab Bar, 2. Toolbar, 3. Modes,
4. Content Browser, 5. Viewport, 6. World Outliner, 7. Details (Unreal Engine
Documentation, 2014)

interface which provides us a list of all editable properties and their current values.

The world outliner shows information of all the actors or blueprints used in the current

level.

CARLA can be built on this compiled version of Unreal Engine through git clone

and make commands in the Terminal. This will download the latest assets and

updates provided by CARLA. Once this process has been completed successfully,

CARLA can be opened using the command ’make launch’ from the root directory

through the Terminal. This will open up the CARLAUE4 Project in Unreal En-

gine. Press the Play button on the toolbar to simulate the level or the default map

(Town03).

CARLA functions on 2 different modules the server and the client. The server

refers to the simulator itself and the client refers to the PythonAPI module. Most

of the processing like rendering of actors and sensors, lighting, logic, simulating

30

Figure 3.2: Screenshot of Town03 in CARLA Simulator

physics and shadows takes place on the server side. The client communicates us-

ing Python language. Almost everything relating to controlling, spawning and de-

stroying actors and sensors, controlling the weather, logging sensor data etc. can

be done through Python scripts. Both CARLA build-from-source and pre-compiled

versions come with example scripts. Some of the most useful example scripts are

manual control steeringwheel.py which enables one to use a steering wheel to control

the vehicle in a pygame setup, spawn npc.py to spawn vehicles and pedestrians.

3.2 RoadRunner for Customizing Maps

RoadRunner is a third-party software originally created by VectorZero but was

later acquired by Mathworks. Hence to use RoadRunner one must have an active

Mathworks subscription. RoadRunner is a comprehensive tool for creation of 3D

scenes and Maps for testing AVs. Its in-built assets from the RoadRunner Asset

31

Figure 3.3: CARLA Server-Client Build System (CARLA- Car Learning to Act,
2017)

Library will enable us to build a map or a virtual world very similar to urban cities.

Some of its most useful assets include buildings, traffic lights, various road styles,

markings, speed signs etc. RoadRunner also enables us to export the created map

into file formats compatible with Unreal Engine and CARLA. The work flow around

RoadRunner is relatively intuitive and there are enough resources available online to

guide you through the software.

Figure 3.4: Screenshot of RoadRunner - Home

We can create road and intersections seamlessly by using the road plan tool.

32

There are options available to create hills and valleys too. Any number of lanes can

be added, merged and modified using the lane chop, lane joining or lane marking

tool. Road navigation and traffic flow is described by the Maneuver tool. This tool

helps in specifying signal phases which describe the traffic flow across a junction. In

the figure below the 2D editor on the left bottom shows the differnt phases for the

4-way Protected left case. We can also set time limit for each phase and this is what

decides the time limit for change in traffic lights. Once this is done we can import

traffic lights from the assets and place them around the corners.

Figure 3.5: Screenshot of RoadRunner - Simple Junction and Maneuver Tool for
Designing Signal Phases

Now from here we place the traffic lights from the Asset Browser on bottom right

by dragging and dropping it in the workspace. All of this can also be done through

the Auto-Signalize option from the attributes panel on the right. Now we select

the Crosswalk tool and select the particular marking style from the assets and right

click on the junction we want the markings for. This will create the cross walks for

Pedestrians as shown below. A lot of other commands are available for creation of

complex maps and this can be referred from the RoadRunner Documentation on the

33

Figure 3.6: Screenshot of RoadRunner - Signal Tool and Crosswalk Tool

Mathworks website (Mathworks, 2019). After this the map can be previewed for lidar

point cloud map or opendrive preview or scene export preview to check if everything

is right. After this we can export the map created into .xodr (Opendrive), .fbx

(filmbox) and .xml file for clean import into CARLA simualator. The Opendrive file

is an editable text file that parses the information of the roads, signals, georeference

latitudes, longitudes useful to convert GNSS sensor measurement to world coordinates

and pedestrian navigation paths. If there are no errors the files will be exported to

the set destination folder. Now we will have to download RoadRunner Plugins for

CARLA and Unreal Engine to enable importing of these maps. We place the Plugin

folders inside the Plugins folder in CARLA root and rebuild CARLA to compile these

Plugins. Now we are ready to ingest a map into CARLA. The image below shows a

test map in which a few buildings have been imported.

34

Figure 3.7: Screenshot of RoadRunner - Test Map

3.3 Map Ingestion into Simulator

Once we have the exported files from RoadRunner we place the exported Open-

Drive and Filmbox files in the Import folder present CARLA root folder. If the

filmbox file is being created in a different software like Maya (Autodesk) it has to

follow a certain nomenclature for roads, sidewalks,crosswalks and grass as mentioned

in CARLA- Car Learning to Act (2017).

3.3.1 Importing the Map

Importing this map is a simple process for the user but a lot of computation and

processing happens behind the scenes. The names of the exported files or maps should

not be changed throughout this process otherwise the import will fail. The next step

is to open a Terminal in the root folder and run the command ’make import’. This

will import the map and rebuild it from the source. The map will now be available

in the Content browser in the Unreal Engine under the map package folder

35

Figure 3.8: Ingesting the map - Using Source CARLA- Car Learning to Act (2017)

3.3.2 Pedestrian Navigation

The imported map does not necessarily have the information about where the

pedestrians can walk. This is given by a binary file which has to be created sepa-

rately and copied to the ’Nav’ folder inside the Map Package that has been created

from running make import. For the imported maps Pedestrian Navigation informa-

tion has to be derived through RecastBuilder which is also available in the source

code of CARLA. We have to now import .obj file of the map from either unreal

or roadrunner. The Opendrive (.xodr) file and the object (.obj) files are copied to

Carla/Util/Docker/dist folder and the command ˙build.sh map name is run to let

the RecastBuilder create the binary file for navigation which is then placed in the

’Nav’ folder in the package. The map has to be rebuilt again following the import

procedure mentioned above. We can now open the map by double clicking on the

36

Figure 3.9: Creating Pedestrian Navigation CARLA- Car Learning to Act (2017)

map name.umap file from the content browser.

37

Figure 3.10: Test Map

Figure 3.11: Custom Map 1

38

Figure 3.12: Custom Map 2

Figure 3.13: Custom Map 1 - Closer View

39

3.4 Creating Scenarios in CARLA

We use the existing skeletal meshes and animations to create blueprints and spawn

these actors instantaneously when necessary. The Blueprints are mainly used to

impart animations like walking, idle stance and running to the actors. Nodes like ’AI

Move To’, ’Spawn Actor’, ’Destroy Actor’, ’On Event Hit’ etc. have been very useful

to manipulate the simulation in a way as to cover many scenarios in the same map.

As described in Chapters 1 and 2 we have chosen a total of 4 scenarios. One scenario

in which the driver has to drive through the school zone and the other 3 involved

strategically placing actors to recreate trolley problem like dilemmas. These dilemma

scenarios were placed around the corner and the driver will be directed towards this

scene and will encounter a sudden crash scenario which would give him very little

time to respond.

Figure 3.14: Scenario 1

40

Figure 3.15: Scenario 2

Figure 3.16: Scenario 3

41

Figure 3.17: Scenario 4

3.5 Data Collection

Sensors CARLA has a wide range of in built sensors blueprints that can be at-

tached to a vehicle before starting the simulation. Some of the main sensors are

Cameras, LiDARs, RADARs, IMU, GNSS. All the sensor classes have a listen() fun-

tion which enables us to record the data. The main challenge here is to synchronize

all the sensors to output a data at fixed time steps so as to enable sensor fusion.

Using python from the client side we can spawn actors and attach sensors to the

actors/vehicles and record data from those sensors. We plan to collect these sensor’s

data from human participants with different Values Profiles who drive through the

scenarios created in the simulator and then fit parameters of AV-implementable con-

trollers to these data. This data will then be processed to convert the ourputs into

latent variable which in the future will be used by SEM framework to implement Path

Analysis

42

3.6 Object Detection Algorithms

In this section we dissect the architecture of 3D Fusion Network that classifies and

predicts 3D bounding box regression by extracting information from RGB images cap-

tured by camera and raw point clouds captured by LiDAR on-board an autonomous

vehicle.

3.6.1 PointNet

PointNet (Qi et al., 2016) is a unified network that is invariant to N data points

in a cloud. This allows the input to PointNet to be in a random order which is

convenient compared to systematic voxels and grids. Thus, irrespective of order of

points fed to the network, the analysis of the network remains unchanged. This also

acknowledges that N ! permutations of N data points are accommodated in the net-

work.

Points in a cloud are usually encoded with distance metric. While the size of point

is not available, its distance from a defined origin, helps distinguish it from a subset

of other points. This signifies that points in a cloud are not in practice, random, but

hold meaningful information in the form of distance. A collection of neighbouring

points can be used to define an object in space. PointNet also features analysis of

group of local or neighbouring points used to identify an object. Additionally, it can

analyze all combinations of K neighbouring points which are a subset of N .

Invariance of analysis due to transformation is an important consideration while

choosing an algorithm. It is important that while the points undergo an affine trans-

form with a combination of translation and rotation individually or together, the

network does not vary its output. PointNet features this invariance under transfor-

43

mation and hence suits the application in this research.

3.6.2 Image Analysis

Processing of 2D RGB images is equivalently important for this research as it

provides the ground truths of locations of object and class identification in image

space. It has been established that object detection and classification in image space

is robust and reliable. Thus choosing an algorithm that takes RGB images as an in-

put and provide bounding box and class of object as output is important to estimate

viability of our research. Key indices considered for choosing an image analysis algo-

rithm were time-space complexity, ease of integration and its overall performance in

fusion network accuracy. Xception, Inception, ResNet152 and VGG19 are discussed

briefly in this context. Results obtained by using these architectures and comments

about them have been discussed in the later sections.

ResNet: Deep networks have been utilized in many computer vision applications.

However, training a deep network is difficult and challenging. The deeper the network

is, the higher the probability of the model to be overfitted. But, ResNet (He et al.,

2015b) architecture, introduced by Microsoft, avoids this hassle by reiterating the

layers of a deep network with a learning residual function as input. This reiteration

stems from counter-intuitive phenomena of degradation problem where additional

layers, when developed as identity mapping, reduces the errors of deep network equal

to the errors of its corresponding shallow network.The ResNet building block can be

represented as,

y = F (x,Wi) + x (3.1)

where x and y are input and output vectors and F (x,Wi) represents residual learning

44

Figure 3.18: Comparison of Various CNNs

function. Ideally the addition of F and x happens using shortcut connections and

element wise addition. This shortcut helps skip the many cluttered layers and speed

up the process. The main function of this shortcut is to join linear functions in a

deep network and skip the non-linear functions. It is observed that the performance

of ResNet compared to traditional deep networks is very similar, except that ResNet

outperforms other deep networks in space-time complexity.

The most common versions of ResNet are ResNet50, ResNet101 and ResNet152.

The input to any ResNet network is an image of fixed size of 224× 224. Our research

features the ResNet152 version of the algorithm. Here, the 2 3×3 layers are replaced

by 3 new layers. These layers are ordered as 1 × 1, 3 × 3 and 1 × 1. Reducing

dimensions by introducing 1× 1 layers significantly reduce errors. It is observed that

the complexity is not altered by this modification and the efficiency is raised. Hence,

the use of ResNet152 is justified.

VGG19: A refined version of convolution nets is featured in the Visual Geom-

etry Group (VGG) (Simonyan and Zisserman, 2014) architecture. This architecture

is known to provide state-of-the-art accuracy on a wide range of datasets. Minimal

45

pre-processing is required which is subtracting mean RGB value from each pixel of

an image. The processed image is passed through a set of convolution layers of size

3× 3 and 1× 1. While VGG is a predecessor of ResNet, the occasional dimensional

reduction by 1 × 1 layers helps it reduce errors and maintain high efficiency. This

architecture proves that higher orders of first convolution layer featured in (Simonyan

and Zisserman, 2014) i.e. 11 × 11 and 7 × 7 do not necessarily increase accuracy is

tantamount to high computation costs. Using a combination of 3× 3 and 1× 1 con-

volution layers achieves similar or higher accuracy at reduced complexity helps VGG

stand amongst competitors.

The input to a VGG network is an image of fixed size of 224× 224. To achieve this,

the network reshapes an image to maintain the dimension constraint. Furthermore,

random flipping and RGB colour shift is performed to enable data augmentation and

raise efficiency of training. VGG is tested on classifying images in dataset distributed

across 1000 categories and resulted in high accuracy. Use of VGG allows us to validate

our fusion network with a traditional element. VGGs are advanced than the complex

conventional deep networks because it features reduced bottlenecks but at the same

time, it holds its deep network intact as compared to ResNet that completely erad-

icates non-linearity from the model. This allows us to study the effect of non-linear

elements in a mode on autonomous driving applications and hence, the use of VGG

to create a variant of our fusion network is justified.

Inception and Xception: The Inception (Szegedy et al., 2014, 2015) micro-

architecture, formerly known as the GoogLeNet is a multi-level feature extraction

Network. Depending upon the version rolled out by Google it is currently called

Inception V3 and it is a model that is available through Keras. It computes 1 ×

1, 3 × 3 and 5 × 5 convolutions in the network. Before they are sent to the next

layer the outputs from these convolutions are horizontally stacked. The developers of

46

this network were more focused on cutting down the computational costs and thus

expanded ’wider’ rather than ’deeper’. The Inception Network proposed in Szegedy

et al. (2014) was remodeled into Inception V3 mentioned in Szegedy et al. (2015) to

improve accuracy on the ImageNet.

Xception (Chollet, 2017), also referred to as Extreme Inception is an extension

to the Inception network which involves a flow where the convolutions are separated

for each deep layer. It was developed by the creator of Keras, Francois Chollet. As

the number of classes in the dataset increase, the performance of Xception increases

significantly in comparison with Inception V3.

3.6.3 Fusion Methodology

. The network features 3 important parts namely:

CNN which is pre-trained is used to extract features from input images. VGG19,

Inception, ResNet and Xception were tested on the algorithms to compare whose

performance was the best, the criteria being speed, accuracy, optimization and ef-

ficiency. The CNN was chosen to implement transfer learning on the network used

for this application. These Nets are pre-trained on ImageNet Deng et al. (2009) and

thus we use techniques of Transfer learning to train the model using these pre-trained

nets directly from ’keras’. Fusion architecture performs the task of combining

features extracted from individual networks and regresses the 3D bounding box and

determines the class of the objects.

LiDAR representation: Point cloud is a collection of photons collected by the

hardware at various instances that when scattered represents a 3D space. Analysing

a point cloud is generally intensive because of the random nature of the points. Re-

searchers have overcome this by aligning the points into grids or collection of images.

However, this increases unnecessary computation costs while not increasing efficiency

47

significantly. The biggest issue with utilizing point clouds for deep learning is that

they are unordered datasets. PointNets (Qi et al., 2016) are invariant to the order and

transformations of point clouds as they are built using symmetric functions. PointNet

accepts the raw LiDAR file without the need to align the cloud and thus retains valu-

able information otherwise lost in transformations. The input to PointNet requires

minimal preprocessing which is mostly determining an affine transformation matrix

and multiplying it to all points in the cloud. This matrix calculated from sensor

calibration file corresponding to a point cloud of a scene. By transforming, we aim to

achieve points scattered in random orientation to a collection in sensor coordinates.

This serves as a datum to process all point clouds knowing that all data is processed

in a uniform geometric system and thus errors due to orientation is minimized.

Point Cloud Analyzer is used to skim through raw LiDAR bin files to extract a

random sample of 2048 points in relevance to the scene. A 3D Lidar essentially collects

millions of points per frame from the scene. Processing all these points is unnecessary

and computationally costly. To extract points relevant to the scene camera calibration

and camera’s field of view are used to narrow down the domain to points that fall

in the scope of the camera. PointNet (Qi et al., 2016) is the network that analyzes

points in a cloud individually. This helps the network encode the criteria for selecting

particular points that describe a shape or a feature. A random sample of 2048 such

points is derived from the output of data preprocessing.

As shown in the figure 3.19, Features extracted from LiDAR and camera’s RGB

images are stacked and are passed through multi-layer perceptron to determine the

class and regress the bounding box of the object

48

Figure 3.19: Proposed Network for 3D Object Detection and Classification

3.6.4 Datasets Used

As can be referred from above this thesis emphasizes on testing the Autonomous

Driving styles in both virtual and physical domains. Both the domains have their

inconsistencies like the robots used (Go-Charts) would not resemble vehicle dynamics

of a real world car but to investigate this concept it is essential to test it in a physical

environment. In order to conduct tests in a wide variety of scenarios it has to be

tested in CARLA too. Although transfer learning has been a novel discovery it has

proven its efficiency only the 2D Object Detection domain. Using the same model

for 3D Object detection in both physical and virtual domains has given very poor

results. Hence we train models with the same algorithms on 2 different datasets one

from each of the physical and virtual domains.

Experiments were performed on the KITTI Vision Benchmark SuiteGeiger et al.

(2013b) for obtaining models for the real world. KITTI is an opensource dataset that

aims to enhance computer vision applications in autonomous driving. The dataset

features 7481 training scenes and 7518 test scenes where the package contains the

same number of multi-camera captured images and LiDAR files. While using the

dataset, we only use images captured by left-end camera and corresponding LiDAR

49

point cloud. Alongside the raw dataset, sensor calibration files are provided that

gives the location of the sensors (camera and LiDAR) with respect to the vehicle at

all instants. Using this calibration file, we convert LiDAR point cloud data randomly

distributed in global frame to sensor frame by multiplying all points with an affine

transform. Using the location of camera, we also transform the corresponding RGB

image. We observed that the effect of this transformation on the image is no more

than a minor rotation. No manipulation on the illumination, noise and overall quality

of the raw data is performed. This prepares the raw data for training while retaining

most of its original features.

As a proof of concept, Data from CARLA (Version 0.8.4) has been generated

inspired by the works from Brekke et al. (2019). The data has been saved in the

KITTI Format so as to enable using the same algorithms for both the datasets to

train the Neural Networks. Inspired from the works presented in Brekke et al. (2019)

a training dataset similar to the KITTI dataset was created manually from CARLA.

The size of this dataset is same as that of KITTI with 7481 images and corresponding

point cloud and labels. This data was collected alternately from 2 different maps to

avoid resemblance. Further data was collected in dynamic weather conditions.

3.6.5 Data Preprocessing

Both the datasets have been broken down into 3 parts for Training, Validation

and Testing in a 18:1:1 ratio. Training had 6750 images, Testing set had 365 images

and Validation set had 366 images. The coordinates of the 2048 interesting points

randomly selected from the camera’s field of view for every image makes one input

to the neural network of size (7481,2048,3). The ground truth is given from an array

of classes which converts and encodes the three classes ”Cars” , ”Pedestrians” and

”Vans” from categorical variables to binary variables. For instance if the object in

50

Figure 3.20: Example images from data generated through CARLA 0.8.4

the image is a car the class is stored as [1.0, 0.0, 0.0], the value of 1.0 referring to the

car. The shape of the classes input is (7481, 3) The information about the corners of

the bounding box are stored in an array of size (7481, 8, 3) meaning 8 corners with 3

values for x,y,z coordinates. The RGB images were first converted and concatenated

to make an array of all the images. This was preprocessed by the respective CNNs that

were being used to implement Transfer Learning. The intermediate output obtained

extracting the output of the model was used as an input to the model being trained.

This intermediate output contained the feature maps required for training. These

arrays are fed as input to the neural network and the model is compiled to enable 3D

Object Detection.

3.6.6 Parameters and Training

All the metrics, optimizers and loss functions were directly used from the available

functions in the Keras Library. The initial network architecture was adapted from the

PointNet structure. The batch normalization layers and a few max pooling layers were

51

removed from the PointNet architecture. Upon experimentation it was found that

these layers have been hindering the accuracy of the bounding box for our application.

Above this architecture, a multi layer perceptron with 4 fully-connected hidden layers

of 1024, 512, 256 and 128 units was established, with Rectified linear unit (ReLU) as

the activation function, to serve our purpose of classifying the object and regressing a

bounding box. The above derived model has 3,988,251 trainable parameters. Initially

the model was trained for 200 epochs with the adam optimizer at a decaying learning

rate of 0.01 and batch size of 32 with mean squared error loss for bounding boxes

and categorical cross entropy for classification. This has produced terrible results

in estimation and classification of the object. Parameter tuning was done slowly

changing all the parameters one by one. Firstly, the categorical cross entropy was

replaced by categorical hinge function to minimize the loss. This showed satisfactory

performance but there was more scope for betterment. After this mean absolute

error was used to optimize loss for the bounding box prediction. This too did not

show better performance. By mixing and matching the loss functions for training the

network the optimum settings for loss functions were found when the model performed

well on using the huber loss function for box losses and mean squared error function

for the classification losses. The number of epochs was gradually increased to test

the performance of the model. The number of epochs and batch size which gave best

results were 550 epochs and 64 images respectively.

3.6.7 Evaluation Metrics

To evaluate the performance of the model, two important metrics were chosen

namely, 1. IoU and 2. Class Probability.

IoU: Intersection over Union(IoU) is a metric used to compare predictions with

52

ground truth. Mathematically it can be represented as,

IoU(A,B) =
A ∩B

A ∪B
(3.2)

where A is the box volume of prediction and B is the box volume of ground truth.

Figure 3.21: IoU (Donghyeop Shin, 2019)

The threshold for IoU is set at 0.5 and progresses to 1 with step size of 0.05. The

closer the value to 1, the more accurate is the prediction with respect to ground truth.

Generally the IoU of a True Positive is above the threshold value and if it is below

the threshold it is a False Positive.

Class prediction probability: The objects in the dataset are distributed over 8

major categories including car, van, pedestrian and miscellaneous. When the model

detects an object, there is a possibility that the model may classify the object in more

than one categories. Hence, it is important to add a class prediction constraint such

that, 1. The class with highest probability is chosen as the output and 2. the chosen

probability is higher than 0.51 or 51%.

Precision and Recall: Recall describes the ratio of number of True Positive

53

predictions to the total number of images or ground truths. Precision is defined as

the ratio of True Positive predictions to total number predictions

Recall = TP
TP+FN

= TP
Numberofgroundtruths

Precision = TP
TP+FP

= TP
Numberofpredictions

Here TP - True Positive; FN - False Negative; FP - False Positive

54

Chapter 4

RESULTS AND DISCUSSIONS

A comprehensive framework for implementing controllers on Autonomous Vehicles

in both the physical and virtual domains has been proposed. This framework enables

us to collect driving data from multiple sensors like cameras, LiDARs, IMU, GNSS,

obstacle detection sensor, lane invasion sensor, collision sensor. In future, this data

will be used to characterize various driving behaviors from participants with different

driving styles and motivations. The moral values and motivations of these participants

will be determined by the Schwartz (Schwartz et al., 2012) questionnaire and Moral

Foundation Theory (Graham et al., 2013) surveys and crash responses. Figure 4.1

summarizes the framework.

A sample visualization of the data logged through sensors from the simulated

vehicle in CARLA, extracted during a test run can be seen from Figure 4.2.

In Figure 4.2, X and Y axes correspond to the position of the ego vehicle and hence

the plot show the trajectory of the vehicle across the map. Each blue triangle refers

to a collision and the image and lidar data corresponding to the frame of collision

have been shown.

55

Figure 4.1: The Framework

As can be referred from the graphs in Figure 4.3 Batch normalization layers in

the neural network cause manipulations of the point clouds and thus decreases the

accuracy of the model and fails to optimize or minimize the loss. Therefore all the

Batch normalization layers have been voided. The loss function for bounding box

was huber loss and for classification it was mean squared error. The batch size was

32 and the it was trained for 500 epochs.

Both ResNet (Refer figure 4.4) and Xception (Refer figure 4.5) have been trained

on same parameters as above except they were tested on both the loss function of

56

Figure 4.2: Sample Data Extracted from a Test Run

Figure 4.3: Results with Batch Normalization: Bounding Box Accuracy (top left);
Bounding Box Loss (top right); Classification Accuracy (bottom left); Classification
Loss (bottom right)

categorical hinge and mean squared error for the classification loss. Mean squared

error seemed to yield better results.

57

Figure 4.4: Results for ResNet Network: Bounding Box Accuracy (top left); Bound-
ing Box Loss (top right); Classification Accuracy (bottom left); Classification Loss
(bottom right)

From the plots and Table 4.1, Xception is the best choice for training our Object

Detection model.

The metrics for the models trained using different pre-trained CNNs is shown

in Table 4.1. With the Average IoU and classification accuracy as the criteria

both ResNet152 and Xception have obtained decent results. Xception outperformed

ResNet152 in classification accuracy.

VGG19 ResNet152 InceptionV3 Xception

IoU 0.61 0.70 0.69 0.72

Class Accuracy 94.08% 95.62% 95.38% 96.72%

Precision 0.9459 0.9527 0.9402 0.9671

Recall 0.9480 0.9453 0.9445 0.9644

Table 4.1: Evaluation Metrics Tested on the KITTI dataset

58

Figure 4.5: Results for Xception Network: Bounding Box Accuracy (top left);
Bounding Box Loss (top right); Classification Accuracy (bottom left); Classification
Loss (bottom right)

The class will be determined by the color of the bounding box

Car - Red ; Pedestrian - Yellow ; Van - Green

59

Figure 4.6: Test Results of the KITTI Vision Benchmark Suite Dataset

60

Figure 4.7: Test Results of the Virtual Dataset

61

Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

A comprehensive framework for collecting data on human driving styles and auto-

matically classifying objects in order to implement human-like AV driving behaviors

on a physical tesbed has been developed in the CARLA driving simulator.

Modeled a city in the simulator that is similar to the test bed in context.

Three crash scenarios and a school zone scenario have been created and animated

to give the participants a more realistic experience.

All possible data from sensors like cameras, lidars, GNSS, IMU, collision detection,

obstacle detection and lane invasion sensors is logged during simulator driving trials

for post analysis of the crash decisions made by the participants.

To facilitate these tests Object Detection algorithms and models have been tested

and Xception network pre-trained on ImageNet has proven to be very effective in

finding the bounding boxes of objects in an image using a Sensor Fusion architecture

trained through transfer learning

5.2 Future Work

Create more scenarios in CARLA and run driving simulation trials with a large

set of people with different Values Profiles.

Designing and Implementing human-like driving styles, extracted from data logged

from CARLA, on Go-CHART robotic cars once the CHARTOPOLIS test bed is ready.

The current dataset is saturated and does not produce great results overall because

62

the CARLA 0.8.4 version has very few vehicle models and this caused repetition in the

features and the model was over-fitted with the same features. A larger virtual dataset

with many instances per class (a wide range of vehicles) and one which is larger in

size is needed so as to achieve a decent model trained on meaningful features.

Implement Real-Time Object detection on both the physical test bed and CARLA

63

REFERENCES

Abadi, M., P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard et al., “Tensorflow: A system for large-scale machine learning”,
in “12th {USENIX} symposium on operating systems design and implementation
({OSDI} 16)”, pp. 265–283 (2016).

Alyssa, “The trolley problem”, Retrieved from
https://sites.google.com/site/has233aw/the-trolley-problem (2016).

American Automobile Association, Three in Four Americans Re-
main Afraid of Fully Self-Driving Vehicles, Retrieved from
https://newsroom.aaa.com/2019/03/americans-fear-self-driving-cars-
survey/ (2019).

Andrew Hawkins, Tesla’s Full Self-Driving software is start-
ing to roll out to select customers, Retrieved from
https://www.theverge.com/2020/10/21/21527577/tesla-full-self-driving
-autopilot-beta-software-update (2020).

Awad, E., S. Dsouza, R. Kim, J. Schulz, J. Henrich, A. Shariff, J.-F. Bonnefon and
I. Rahwan, “The moral machine experiment”, Nature 563, 7729, 59–64 (2018).

Basu, C., Q. Yang, D. Hungerman, M. Sinahal and A. D. Draqan, “Do you want
your autonomous car to drive like you?”, in “2017 12th ACM/IEEE International
Conference on Human-Robot Interaction (HRI”, pp. 417–425 (2017).

Beltrán, J., C. Guindel, F. M. Moreno, D. Cruzado, F. Garćıa and A. De La Escalera,
“Birdnet: A 3d object detection framework from lidar information”, in “2018 21st
International Conference on Intelligent Transportation Systems (ITSC)”, pp. 3517–
3523 (2018).

Bindhi, M. and A. Gupta, Deep Sensor Fusion for 3D Bound-
ing Box Estimation and Recognition of Objects, Retrieved from
http://cs230.stanford.edu/fileswinter2018/projects/6939556.pdf(2018).

Brekke, Å., F. Vatsendvik and F. Lindseth, “Multimodal 3d object detection from
simulated pretraining”, arXiv preprint arXiv:1905.07754 (2019).

Business Insider, “Many self-driving car accidents
have been caused by humans”, Retrieved from
https://www.businessinsider.com/self-driving-car-accidents-caused-
by-humans-2018-9 (2018).

CARLA- Car Learning to Act, CARLA Documentation, Retrieved from
https://carla.readthedocs.io/en/latest/ (2017).

64

CDC, Centers for Disease Control and Prevention:
Road Traffic Injuries and Deaths, Retrieved from
https://www.cdc.gov/injury/features/global-road-safety/index.html
(2019).

Chen, X., K. Kundu, Z. Zhang, H. Ma, S. Fidler and R. Urtasun, “Monocular 3d
object detection for autonomous driving”, in “The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR)”, (2016a).

Chen, X., K. Kundu, Y. Zhu, A. G. Berneshawi, H. Ma, S. Fidler and R. Urtasun,
“3d object proposals for accurate object class detection”, in “Advances in Neural
Information Processing Systems 28”, edited by C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama and R. Garnett, pp. 424–432 (Curran Associates, Inc., 2015).

Chen, X., H. Ma, J. Wan, B. Li and T. Xia, “Multi-view 3d object detection network
for autonomous driving”, (2016b).

Chollet, F., “Xception: Deep learning with depthwise separable convolutions”, (2017).

Dai, W., Q. Yang, G.-R. Xue and Y. Yu, “Boosting for transfer learning”, in “Pro-
ceedings of the 24th international conference on Machine learning”, pp. 193–200
(2007).

Danny Yadron, Dan Tynan, Tesla Driver Dies in first Fa-
tal crash while using Autopilot mode, Retrieved from
https://www.theguardian.com/technology/2016/jun/30/tesla-autopilot
-death-self-driving-car-elon-musk (2016).

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database”, in “2009 IEEE conference on computer vision and
pattern recognition”, pp. 248–255 (Ieee, 2009).

Dixit, V. V., S. Chand and D. J. Nair, “Autonomous vehicles: disengagements, acci-
dents and reaction times”, PLoS one 11, 12, e0168054 (2016).

Donghyeop Shin, I. K., “Deep neural network-based scene graph generation for 3d
simulated indoor environments”, KIPS Transactions on Software and Data Engi-
neering (2019).

Dosovitskiy, A., G. Ros, F. Codevilla, A. Lopez and V. Koltun, “CARLA: An open
urban driving simulator”, in “Proceedings of the 1st Annual Conference on Robot
Learning”, pp. 1–16 (2017).

Fagnant, D. J. and K. Kockelman, “Preparing a nation for autonomous vehicles: op-
portunities, barriers and policy recommendations”, Transportation Research Part
A: Policy and Practice 77, 167–181 (2015).

Foot, P., “The problem of abortion and the doctrine of the double effect”, Oxford
Review 5, 5–15 (1967).

65

Geiger, A., P. Lenz, C. Stiller and R. Urtasun, “Vision meets robotics: The kitti
dataset”, International Journal of Robotics Research (IJRR) (2013a).

Geiger, A., P. Lenz, C. Stiller and R. Urtasun, “Vision meets robotics: The kitti
dataset”, International Journal of Robotics Research (IJRR) (2013b).

Gerdes, J. C. and S. M. Thornton, Implementable Ethics for Autonomous Vehicles,
pp. 87–102 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2015), Retrieved from
https://doi.org/10.1007/978-3-662-45854-95.

Girshick, R., “Fast r-cnn”, 2015 IEEE International Conference on Computer Vision
(ICCV), December 2015, pp.1440-1448 (2015).

Goodall, N. J., “Ethical decision making during automated vehicle crashes”, Trans-
portation Research Record 2424, 1, 58–65 (2014a).

Goodall, N. J., “Machine ethics and automated vehicles”, in “Road vehicle automa-
tion”, pp. 93–102 (Springer, 2014b).

Google Waymo, Waymo is opening its fully driverless ser-
vice to the general public in Phoenix, Retrieved from
https://blog.waymo.com/2020/10/waymo-is-opening-its-fully-driverless
.html (2020).

Graham, J., J. Haidt, S. Koleva, M. Motyl, R. Iyer, S. P. Wojcik and P. H. Ditto,
“Moral foundations theory: The pragmatic validity of moral pluralism”, in “Ad-
vances in experimental social psychology”, vol. 47, pp. 55–130 (Elsevier, 2013).

Greg Bensinger, Tim Higgins, Video Shows Moments Before
Uber Robot Car Rammed Into Pedestrian, Retrieved from
https://www.wsj.com/articles/video-shows-final-seconds-before-fatal
-uber-self-driving-car-crash-1521673182 (2018).

HANA, S. A., “Intention to comply with the school zone speed limit: Scenario-based
study”, Journal of the Eastern Asia Society for Transportation Studies 12, 1965–
1973 (2017).

He, K., X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition”,
CoRR abs/1512.03385, Retrieved from http://arxiv.org/abs/1512.03385
(2015a).

He, K., X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition”,
(2015b).

Hegde, V. and R. Zadeh, “Fusionnet: 3d object classification using multiple data
representations”, (2016).

Hengstler, M., E. Enkel and S. Duelli, “Applied artificial intelligence and trust—the
case of autonomous vehicles and medical assistance devices”, Technological Fore-
casting and Social Change 105, 105–120 (2016).

66

Himmelsbach, M., A. Mueller, T. Lüttel and H.-J. Wünsche, “Lidar-based 3d ob-
ject perception”, in “Proceedings of 1st international workshop on cognition for
technical systems”, vol. 1 (2008).

James Minton, Vahid Behzadan, TrolleyMod v1. 0: An Open-Source Simulation and
Data-Collection Platform for Ethical Decision Making in Autonomous Vehicles,
Retrieved from https://github.com/zminton/TrolleyMod (2018).

Johnson, K.A., Berman, S., Chiou, E., Pavlic, T.P., Cohen, A.B., Toward virtuous
vehicles: Identifying the moral profile of good drivers as a basis for ethical decision-
making in self-driving cars, in preperation, 2020 (2020).

Kanade, T., C. Thorpe and W. Whittaker, “Autonomous land vehicle project at cmu”,
in “Proceedings of the 1986 ACM Fourteenth Annual Conference on Computer
Science”, CSC ’86, p. 71–80 (Association for Computing Machinery, New York,
NY, USA, 1986), Retrieved from https://doi.org/10.1145/324634.325197.

Kannapiran, S. and S. Berman, Go-CHART: A miniature remotely accessible self-
driving car robot (2018).

Kesten, R., M. Usman, J. Houston, T. Pandya, K. Nadhamuni, A. Ferreira, M. Yuan,
B. Low, A. Jain, P. Ondruska, S. Omari, S. Shah, A. Kulkarni, A. Kazakova,
C. Tao, L. Platinsky, W. Jiang and V. Shet, “Lyft level 5 av dataset 2019”,
https://level5.lyft.com/dataset/ (2019).

Ketkar, N., “Introduction to keras”, in “Deep learning with Python”, pp. 97–111
(Springer, 2017).

Kuderer, M., S. Gulati and W. Burgard, “Learning driving styles for autonomous
vehicles from demonstration”, in “2015 IEEE International Conference on Robotics
and Automation (ICRA)”, pp. 2641–2646 (IEEE, 2015).

Kuipers, B., “Human-like morality and ethics for robots”, in “AAAI Workshop: AI,
Ethics, and Society”, (2016).

Li, B., “3d fully convolutional network for vehicle detection in point cloud”, in “2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)”,
(2017).

Li, B., T. Zhang and T. Xia, “Vehicle detection from 3d lidar using fully convolutional
network”, (2016).

Li, P., X. Chen and S. Shen, “Stereo r-cnn based 3d object detection for autonomous
driving”, in “Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR)”, (2019).

Ma, X., Z. Wang, H. Li, P. Zhang, X. Fan and W. Ouyang, “Accurate monocular
object detection via color-embedded 3d reconstruction for autonomous driving”,
(2019).

67

Mathworks, RoadRunner, Retrieved from https://www.mathworks.com/help/
roadrunner/index.html (2019).

Michael Clamann, Nancy Pullen-Seufert, Considerations for Deploy-
ing Automated Driving Systems Around Schools, Retrieved from
http://pedbikeinfo.org/cms/downloads/PBICWhitePaperADS%20Near%20Schools.pdf(2020).

Mihaly Heder, The epistemic opacity of autonomous sys-
tems and the ethical consequences. AI Soc, Retrieved from
https://doi.org/10.1007/s00146-020-01024-9 (2020).

Mike Brown, Waymo vs Tesla, Retrieved from
https://www.inverse.com/article/50456- waymo-vs-tesla-who-will-win-
the-self-driving-car-race (2018).

Moral Machine, What should the self-driving car do?, Retrieved from
https://www.moralmachine.net (2016).

Moral Machine Results, MIT Moral Machine Statistics based on Countries, Retrieved
from http://moralmachineresults.scalablecoop.org/ (2018).

NavLab 5, PANS: A Portable Navigation Platform, Retrieved from
https://www.cs.cmu.edu/ tjochem/nhaa/navlab5details.html(1995).

Neal Boudette, Autopilot cited in Death of Chinese Driver, Retrieved from
https://www.nytimes.com/2016/09/15/business/fatal-tesla-crash-in
-china-involved-autopilot-government-tv-says.html (2016).

NHTSA, Automated Vehicles for Safety, Retrieved from
https://www.nhtsa.gov/technology -innovation/automated-vehicles-
safetytopic-road-self-driving (2019).

Prokhorov, D., “A convolutional learning system for object classification in 3-d lidar
data”, IEEE Transactions on Neural Networks (Volume: 21 , Issue: 5) (2010).

Qi, C. R., H. Su, K. Mo and L. J. Guibas, “Pointnet: Deep learning on point sets for
3d classification and segmentation”, (2016).

Qian, R., D. Garg, Y. Wang, Y. You, S. Belongie, B. Hariharan, M. Campbell, K. Q.
Weinberger and W.-L. Chao, “End-to-end pseudo-lidar for image-based 3d object
detection”, (2020).

SAE, Taxonomy and Definitions for Terms Related to Shared Mobility and Enabling
Technologies, Retrieved from https://doi.org/10.4271/J3163201809(2018).

Schwartz, S. H., “Universals in the content and structure of values: Theoretical ad-
vances and empirical tests in 20 countries”, Advances in experimental social psy-
chology 25, 1, 1–65 (1992).

68

Schwartz, S. H., J. Cieciuch, M. Vecchione, E. Davidov, R. Fischer, C. Beierlein,
A. Ramos, M. Verkasalo, J.-E. Lönnqvist, K. Demirutku et al., “Refining the theory
of basic individual values.”, Journal of personality and social psychology 103, 4,
663 (2012).

Self Driving Times, The Interesting Estimation of 33 Cor-
porations Working on Self Driving Cars, Retrieved from
https://www.selfdrivingtimes.com/posts/the-interesting-estimation-of-
33-corporations-work (2016).

Simonyan, K. and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition”, (2014).

Simonyan, K. and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition”, in “International Conference on Learning Representations”,
(2015).

Song, S. and M. Chandraker, “Robust scale estimation in real-time monocular sfm for
autonomous driving”, in “The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR)”, (2014).

Song, S. and J. Xiao, “Sliding shapes for 3d object detection in depth images”, Pro-
ceedings of the 13th European Conference on Computer Vision (ECCV2014) (2014).

Su, H., S. Maji, E. Kalogerakis and E. Learned-Miller, “Multi-view convolutional
neural networks for 3d shape recognition”, (2015).

Subramanyam, R., CHARTOPOLIS: A Self Driving Car Test Bed (2018).

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke and A. Rabinovich, “Going deeper with convolutions”, (2014).

Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, “Rethinking the inception
architecture for computer vision”, (2015).

T Pietrasik, World Health Organization: Road Traffic Injuries, Retrieved from
https://www.who.int/news-room/fact-sheets/detail/road-traffic-
injuries (2020).

Thomson, J. J., “The trolley problem”, The Yale Law Journal 94, 6, 1395–1415
(1985).

Thornton, S. M., S. Pan, S. M. Erlien and J. C. Gerdes, “Incorporating ethical consid-
erations into automated vehicle control”, IEEE Transactions on Intelligent Trans-
portation Systems 18, 6, 1429–1439 (2016).

Unreal Engine, Epic Games: Unreal Engine, Retrieved from
https://www.unrealengine.com (2004).

Unreal Engine Documentation, Unreal Engine Documentation: Blueprints, Retrieved
from https://docs.unrealengine.com/en-US/Engine/Blueprints/index.html
(2014).

69

Wallach, W., S. Franklin and C. Allen, “A conceptual and computational model of
moral decision making in human and artificial agents”, Topics in cognitive science
2, 3, 454–485 (2010).

Wilson, S., R. Gameros, M. Sheely, M. Lin, K. Dover, R. Gevorkyan, M. Haberland,
A. Bertozzi and S. Berman, “Pheeno, a versatile swarm robotic research and edu-
cation platform”, IEEE Robotics and Automation Letters 1, 2, 884–891, Retrieved
from 10.1109/LRA.2016.2524987 (2016).

Zhou, Y. and O. Tuzel, “Voxelnet: End-to-end learning for point cloud based 3d
object detection”, in “Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR)”, (2018).

70

