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ABSTRACT

One potential application of multi-robot systems is collective transport, a task in

which multiple mobile robots collaboratively transport a payload that is too large or

heavy to be carried by a single robot. Numerous control schemes have been proposed

for collective transport in environments where robots can localize themselves (e.g.,

using GPS) and communicate with one another, have information about the payload’s

geometric and dynamical properties, and follow predefined robot and/or payload tra-

jectories. However, these approaches cannot be applied in uncertain environments

where robots do not have reliable communication and GPS and lack information

about the payload. These conditions characterize a variety of applications, includ-

ing construction, mining, assembly in space and underwater, search-and-rescue, and

disaster response.

Toward this end, this thesis presents decentralized control strategies for collective

transport by robots that regulate their actions using only their local sensor measure-

ments and minimal prior information. These strategies can be implemented on robots

that have limited or absent localization capabilities, do not explicitly exchange infor-

mation, and are not assigned predefined trajectories. The controllers are developed

for collective transport over planar surfaces, but can be extended to three-dimensional

environments.

This thesis addresses the above problem for two control objectives. First, decen-

tralized controllers are proposed for velocity control of collective transport, in which

the robots must transport a payload at a constant velocity through an unbounded

domain that may contain strictly convex obstacles. The robots are provided only with

the target transport velocity, and they do not have global localization or prior infor-

mation about any obstacles in the environment. Second, decentralized controllers

are proposed for position control of collective transport, in which the robots must

i



transport a payload to a target position through a bounded or unbounded domain

that may contain convex obstacles. The robots are subject to the same constraints

as in the velocity control scenario, except that they are assumed to have global lo-

calization. Theoretical guarantees for successful execution of the task are derived

using techniques from nonlinear control theory, and it is shown through simulations

and physical robot experiments that the transport objectives are achieved with the

proposed controllers.
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Chapter 1

INTRODUCTION

Collective transport is a potential application of multi-robot systems. When a

payload is too large or heavy to be carried by a single robot, a team of robots can be

deployed to collaboratively transport the payload to a desired destination, as shown

in Fig. 1.1. This type of task can arise in a variety of applications, including con-

struction and manufacturing, assembly in space and underwater, search-and-rescue

operations, and disaster response. There has been a significant amount of research

on collective transport in the past three decades, and a wide range of controllers have

been proposed for control and coordination of a group of robots performing collec-

tive transport tasks. The proposed control schemes often rely on assumptions that

restrict the autonomy of the robots that execute the task. For instance, many of the

proposed controllers require the robots to have information about the payload’s ge-

ometry and dynamics, as well as measurements of its position and velocity. There are

numerous control methods that rely on explicit communication between the robots

or predefined trajectories for the payload and/or the robots. To this end, this thesis

focuses on enabling autonomous execution of collective transport by robots that lack

the capabilities and information required by these prior approaches. In this chapter,

we first highlight the main contributions of the thesis in Section 1.1. We then review

the literature on collective transport in Section 1.2 and relevant literature on obstacle

avoidance in Section 1.3. We conclude this chapter with the organization of the thesis
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Figure 1.1: A Simulation of a Collective Transport Task by Pheeno Robots (Wilson
et al., 2016) in the 3D Robot Simulator Webots (Michel, 2004).

in Section 1.4.

1.1 Contributions

We propose completely decentralized robot controllers that can achieve collective

transport with a quantifiable degree of predictability in unknown, remote, and haz-

ardous environments with limited data and communication. Our approach is inspired

by group food retrieval in ants (Czaczkes and Ratnieks, 2013; McCreery and Breed,

2014; Gelblum et al., 2016). This behavior is a striking example of decentralized

collective transport by autonomous individuals, since the transport team members

do not follow predefined paths, use explicit communication, or have prior knowledge

about the payload, the distribution of teammates around it, or the locations and

shapes of obstacles in the environment (Medina et al., 2020). While the ants know

the direction to their nest, it is likely that their activities during transport are in-

fluenced only by their local information. Analogously, the control strategies that we

develop must rely on minimal information and exhibit robustness to uncertainties

in the payload dynamics and to external disturbances. The proposed controllers for
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collective transport in this thesis have the following characteristics:

• The robots have identical capabilities and information.

• The robots do not communicate with one another.

• There are no predefined trajectories for the robots and/or the payload.

• The robots do not have information about the payload’s geometry or dynamics,

and they do not have feedback on its position and velocity over time.

• The robots do not have information about the size of the transport team and

the distribution of robots around the load.

• The robots do not have information about the positions and shapes of any

obstacles in the environment.

• The proposed controllers are completely decentralized, in that each robot uses

only its local measurements to calculate the control law.

• The controllers have theoretical guarantees on stability, convergence properties,

and collision avoidance.

Two scenarios are studied in this thesis. In the first scenario, the objective is to

stabilize the translational velocity of the payload to a constant value and its angular

velocity to zero. The transport is assumed to be done in an unbounded domain that

may contain strictly convex obstacles. Each robot can measure only its own velocity

and its distance from any obstacles in its sensing range. The proposed controller is

proved to safely steer the payload around obstacles and eventually drive its velocity

to the target value. In the second scenario, the robots must stabilize the payload’s

center of mass to a target position and stabilize its angular velocity to zero. The
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domain may be unbounded without obstacles, or bounded and convex with convex

obstacles. Each robot can measure its own position in a global coordinate frame,

in addition to its velocity and its distance from any nearby obstacles. It is shown

that with the proposed controllers, the payload is safely transported around obstacles

toward the target position and converges to a neighborhood of this position.

1.2 Review of Literature on Collective Transport

Over the past three decades, various control strategies have been proposed for

collective transport in scenarios that are not subject to all of the constraints listed in

the previous subsection. In some centralized control approaches, such as (Shahrokhi

and Becker, 2016), a supervisor (a human or a central computer) observes the mo-

tion of the system and communicates appropriate control commands to the robots in

order to guide the payload toward the goal. Decentralized control strategies, which

can improve the system’s robustness to errors, failures, and disturbances, have been

investigated more extensively. Some proposed methods are leader-follower algorithms

in which the leader takes the main role in planning the payload trajectory and con-

trolling its motion to the goal, while the other robots contribute to the transport

motion in a coordinated manner. For instance, in (Wang and Schwager, 2014) and

(Wang and Schwager, 2015), a consensus-based approach is presented in which the

leader is more powerful than the followers and is provided with a predefined path to

the goal, and the followers, which do not know anything about the leader’s intention,

can effectively attain a consensus on the magnitude and the direction of the force

they have to apply to the load. Also, in (Wang and Schwager, 2016), a leader robot

applies a force to move the load over a predefined path, and followers can estimate

the direction of the object movement using force sensing at the attachment point and

apply their forces along this estimated direction in order to assist the leader. Con-
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sidering the load as the leader is another approach presented in (Yufka and Ozkan,

2015), where the followers (the transporting robots) use a path planning approach to

preserve their initial position and orientation with respect to the virtual leader (load)

during the transport.

In many decentralized control approaches to collective transport, all robots in the

transport team are assumed to be identical. In (Chen et al., 2015), a decentralized

approach is proposed for cooperative transport when the load is significantly larger

than the robots, and the robots push the load only if their line of sight to the goal is

occluded by the object. In (Habibi et al., 2015), four algorithms are presented that

enable the robots to estimate the centroid of the load, rotate the load, and transport

it over certain marked points that can be recognized by a guide robot. Transporting a

flexible payload is considered in (Bai and Wen, 2009) and (Bai and Wen, 2010), where

the reaction force between the robot and the payload is modeled as the gradient of a

nonlinear potential that describes the load deformation. Group food retrieval in ants

is studied in (Berman et al., 2010), in which a vision-based force sensor is used to

collect data on ants during transport and a hybrid dynamical model is developed to

replicate the observed collective behavior. In (Bais et al., 2015), the load weight is

distributed among robots with heterogeneous load-carrying capabilities, and the load

is driven along a desired trajectory. A decentralized distribution of the forces applied

to the load is proposed in (Kalat et al., 2018), where each robot relies on the behavior

of a cooperative virtual teammate. In (Rubenstein et al., 2013), it is assumed that all

the robots know the target direction to the goal, and a simple control law, which uses

just the robot’s velocity, is developed to calculate the force that the robot has to apply

to the load. In a similar scenario, decentralized PID controllers were used in (Wilson

et al., 2016) for collective transport by three small mobile robots. In (Culbertson and

Schwager, 2018), a decentralized approach is proposed for cooperative manipulation
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in which the robots have a common reference model for the desired payload motion

and use an adaptive controller to compensate for the effect of friction on the payload.

Whereas this approach requires the robots to have access to measurements of the

payload’s linear and angular velocities, ours does not require any information on the

payload’s motion.

Some methods require robots to communicate their measurements to each other

in order to estimate parameters of an unknown payload (Franchi et al., 2014; Marino

et al., 2017). More recently, (Dohmann and Hirche, 2020) proposes an event-triggered

communication strategy with distributed impedance control to improve the stability

and robustness of cooperative manipulation of unknown payloads in unknown envi-

ronments. Other approaches do not rely on communication or prior information about

the payload’s dynamics (Marino and Pierri, 2018), but they require a supervisor to

define trajectories beforehand for the robots and the payload (Tsiamis et al., 2015;

Gueaieb et al., 2003; Li et al., 2015). Recently, adaptive robust control approaches

have been proposed for planar and three-dimensional manipulation (Kim et al., 2018;

Lee et al., 2018; Sadati and Ghaffarkhah, 2007; Dai and Liu, 2017; Lee et al., 2017;

Marino, 2017; Pliego-Jimenez and Arteaga-Perez, 2017). These approaches combine

a stabilizing term with a regression term in the controller in order to achieve stabi-

lization in the presence of parameter uncertainties. However, the approaches require

either prior information about the robots’ distribution around the payload or feed-

back on the payload’s motion. In more recent work (Jin et al., 2018), robots jointly

reach the same desired motion by running a time-varying quadratic program which

is solved online by a neural network scheme.

Recently, learning schemes have also been proposed for cooperative manipulation.

In (Jin et al., 2018), robots in a transport team, which explicitly exchange infor-

mation, jointly reach the same desired motion by running a time-varying quadratic
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program which is solved online by a neural network scheme. A dynamic recurrent

neural network is used in (Li et al., 2020) to solve a quadratic program, which com-

putes cooperative kinematic controllers for redundant manipulators using partially

known information about the payload and the teammates. In addition, reinforce-

ment learning is used in (Ding et al., 2020) to design two distributed approaches to

cooperative manipulation: the first applies Q-learning with individual reward func-

tions, and the second utilizes game-theoretic techniques. The first approach exhibits

more robustness to different reward structures than the second.

1.3 Review of Literature on Obstacle Avoidance

Obstacle avoidance has been a challenging topic in the control of robotic systems

and has been extensively studied by researchers over the past few decades. Numerous

approaches have been proposed to prevent robots from colliding with obstacles in their

workspace, ranging from heuristic solutions (Xi et al., 2005) to algorithmically rigor-

ous (LaValle, 2006; Lindemann and LaValle, 2009; Karaman and Frazzoli, 2011; Belta

et al., 2005) and/or mathematically rigorous (Connolly et al., 1990; Kim and Khosla,

1992; Rimon and Koditschek, 1992) motion planning and control schemes. These

approaches can be categorized according to their requirements on the robot’s local-

ization capabilities and prior knowledge about the environment. We first describe key

developments in obstacle-avoidance control schemes, along with their requirements,

and then summarize our contribution in the context of this prior work.

Many existing obstacle avoidance strategies require the robot to have global local-

ization as well as information about the exact shapes and locations of the obstacles.

One pioneering solution with these requirements, first proposed in (Khatib, 1986)

in the 1980’s, uses the concept of virtual potential fields. Subsequent approaches

based on potential fields include (Shahidi et al., 1991), which assumes an environ-
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ment that contains circular obstacles with known centers and radii, and (Kim and

Khosla, 1992), in which harmonic potential fields, which satisfy Laplace’s equation,

are used to guarantee collision-free robot navigation to a target position on the do-

main boundary. The construction of potential fields called navigation functions on

bounded manifolds was a significant development that enabled the design of control

laws for exact robot navigation to destinations in generalized sphere worlds (Rimon

and Koditschek, 1992; Koditschek and Rimon, 1990). These control laws require ac-

curate robot localization and prior information about the locations of the obstacles

and the equations of their boundaries. Numerous works have adapted the naviga-

tion function approach to different scenarios. In (Conner et al., 2003), a combination

of harmonic potentials and navigation functions is proposed as a solution when the

free space can be decomposed into a chain of connected polygons. In (Ogren and

Leonard, 2005), a navigation function-based strategy is merged with the dynamic

window approach (Fox et al., 1997) to produce faster robot convergence to a destina-

tion in dynamic environments. An algorithm for automatic tuning of the parameters

of navigation functions for sphere worlds is presented in (Filippidis and Kyriakopou-

los, 2011). In (Li and Tanner, 2019), navigation functions are designed such that

the robot can asymptotically track a moving target in environments with obstacles.

Recently, a modified navigation function-based approach was proposed in (Paternain

et al., 2018) to produce robot convergence to the minimum of a globally convex po-

tential function in an environment with arbitrary convex obstacles.

Control schemes that use barrier certificates (Prajna et al., 2004) and barrier

functions (Ames et al., 2017) have been recently developed for scenarios where there

are unsafe or undesired regions in a dynamical system’s state space that its trajectories

must avoid. These methods require knowledge of the exact boundary of the unsafe or

undesired region, which is the set of obstacles when the objective is collision-free robot
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navigation. In (Wang et al., 2017), a control barrier function scheme is proposed to

prevent collisions among the robots in a swarm, and it also prevents collisions between

the robots and static or dynamic obstacles. This control approach requires knowledge

of the centers and radii of the circles that virtually bound the obstacles.

Another category of work on obstacle avoidance can be characterized by the de-

pendence of the proposed control strategies on only approximate knowledge about

the locations and geometries of the obstacles. In (Guldner and Utkin, 1995), a slid-

ing mode controller is presented for tracking the gradient of potential fields that are

constructed based on the smallest circle that bounds each obstacle. In the recent

work (Paternain and Ribeiro, 2017), a stochastic navigation function-based approach

is proposed that requires a priori estimates of the obstacle geometries and loca-

tions according to a probability distribution (a belief space). It is shown that if the

robot follows a stochastic approximation of the gradient of the navigation function,

convergence to the desired destination and obstacle avoidance are guaranteed with a

probability of one. The recent work (Arslan and Koditschek, 2019) proposes a sensor-

based feedback law that uses a Voronoi diagram for the environment which the robot

computes online. While this approach applies to environments with unknown con-

vex obstacles, it requires an assumption on the obstacle curvature (Assumption 2 in

(Arslan and Koditschek, 2019)).

Other obstacle avoidance strategies do not require prior knowledge about the ob-

stacles, but are subject to different restrictions or rely on other available information.

A modified potential field-based method is presented in (Ge and Cui, 2000) for the

case where the target robot position is very close to one of the obstacles, and it

is extended to environments with moving obstacles in (Ge and Cui, 2002). Even

though the proposed controller does not require any knowledge about the shapes

and positions of the obstacles, it cannot eliminate all local minima in the environ-
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ment that can trap the robot. In (Ramı́rez-Llanos and Mart́ınez, 2019), a stochastic

source-seeking scheme is proposed for a GPS-denied environment with a signal that is

directly measurable by the robot. The robot is allowed to contact the boundaries of

the environment and the obstacles and travels around these boundaries, maintaining

contact with them, until it finds a feasible direction to the source of the signal in the

free space.

In addition to the works described above, which focus on designing controllers with

theoretical guarantees in particular types of environments, numerous other works fo-

cus on developing obstacle avoidance strategies that, while not necessarily amenable

to theoretical analysis, are convenient to implement using typical sensors on phys-

ical robotic platforms. For example, visual sensing approaches for estimating the

distance and velocity of nearby obstacles are described in (Rassameepaiboon and As-

sawinchaichote, 2018) and (Padhy et al., 2019) for terrestrial and aerial applications,

respectively. The work (Ferro et al., 2019) proposes a combination of a visual servoing

control scheme and a velocity estimation algorithm for obstacle avoidance by a legged

robot and an omnidirectional wheeled robot.

1.4 Organization of the Thesis

This thesis is organized in two parts. The first part is about the velocity control

of collective transport in an unbounded domain. The second part focuses on position

control of collective transport in a bounded convex domain.

The first part covers Chapter 2 and Chapter 3. Chapter 2 describes controllers

for decentralized velocity control of collective transport in an unbounded domain

without obstacles. This chapter includes the results from (Farivarnejad, H. et al.,

2016; Farivarnejad, H. and Berman, 2018, 2020a). Chapter 3 proposes an obstacle

avoidance controller for a single robot that must converge to a desired velocity in an
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unbounded domain. This chapter includes the results from (Farivarnejad, H. and

Berman, 2020c). Combining the results from Chapter 2 and Chapter 3, a decentralized

control law is proposed for safe velocity control of collective transport in unbounded

domains that contain strictly convex obstacles.

The second part has the same organization as the first part. Chapter 4 proposes

a decentralized controller for position control of collective transport in an unbounded

domain without obstacles. This chapter includes the results from (Farivarnejad, H.

and Berman, 2020b). Chapter 5 first introduces a novel method for obstacle avoidance

by a single robot in a bounded convex domain. This chapter then combines the

decentralized controller proposed in Chapter 4 with the proposed obstacle avoidance

controller to introduce a decentralized controller for safe position control of collective

transport in a bounded convex domain that contains convex obstacles. Chapter 5

includes the results from (Farivarnejad, H. et al., 2020) and (Farivarnejad, H.

and Berman, 2021).

Finally, Chapter 6 concludes with future work and possible extensions to the

research presented in this thesis.
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Chapter 2

VELOCITY CONTROL OF COLLECTIVE TRANSPORT IN UNBOUNDED

DOMAINS WITHOUT OBSTACLES

In this chapter, we propose decentralized controllers for velocity regulation of collec-

tive transport in unbounded environments without obstacles. The objective is for the

robots to transport a payload at a constant linear velocity and zero angular velocity.

This control strategy could, for example, be applied to tasks in which the robots must

convey a payload along a sequence of straight paths, each associated with a target

transport speed and heading.

We propose three decentralized control schemes. The first is a sliding mode con-

troller that is initially designed for point-mass robots and then is modified for non-

holonomic robots. The second controller is a proportional-integral control law that

is designed for velocity stabilization of point-mass robots and elimination of payload

drift from a desired path. The third controller is an adaptive control scheme for

nonholonomic robots that grasp the payload with a single-DOF manipulator.

Note: Dr. Sean Wilson conducted the experiments in Section 2.1.6.

2.1 Decentralized Sliding Mode Control

In this section, we present, analyze, and implement a decentralized control scheme

based on a sliding mode control approach for scenarios that are similar to those in

(Wilson et al., 2016) and (Rubenstein et al., 2013). We design controllers for the

robots in the transport team and prove that the payload converges to the target

velocity under the action of these controllers. Although sliding mode control has

previously been used for cooperative manipulation in (Yagiz et al., 2010; Yim et al.,
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1999; Parra-Vega et al., 2013; Ponce-Hinestroza et al., 2016), these strategies require

predefined trajectories for each robot and/or for the payload. In contrast, the con-

trol strategy proposed here only requires a predefined target transport velocity and

local robot measurements of their own velocity and heading, and it does not rely on

information about the environment, load, or transport team.

2.1.1 Problem Statement

We consider a team of identical autonomous ground robots, each equipped with a

manipulator arm, that are arranged on a planar surface in an arbitrary configuration

around a payload. The robots are all grasping the load and holding it above the

ground (as in Fig. 1.1). We assume that each robot can measure its own speed and

heading. The robots do not have global localization or communication capabilities,

and they lack information about the payload dynamics, the number of robots in

the transport team and their distribution around the payload, and the layout of the

environment.

Our objective is to design decentralized controllers that will drive the team of

robots to collectively transport the load at a desired speed along a straight path

in a target direction, with zero angular velocity. The target direction is defined as

the direction of a specified line that passes through the payload’s center of mass,

illustrated by the dashed green line in Fig. 2.1. We assume that each robot knows

the target speed and target direction, although they are not assigned predefined

trajectories. (We note that the controllers will drive each robot to move along the

line that passes through its initial position and is parallel to the target direction.)

The robots do not require information about the position of the payload’s center

of mass or their positions relative to the center of mass. To enable the robots to

act autonomously during transport, we do not assign them reference speed profiles
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that would require the presence of a global supervisor with knowledge about their

positions with respect to the goal and their distribution around the payload. Instead,

the controllers must depend only on the minimal information that is available to the

robots and should be robust to the uncertainties in the highly nonlinear dynamics of

the manipulated payload.

2.1.2 Dynamical Model

We consider a load that is transported in the plane by a group of N robots, each

of which is modeled as a point-mass agent. The position of robot i at time t in an

inertial reference frame is given by xi(t) ∈ R2. The robot’s actuating force is denoted

by ui ∈ R2, and the reaction force exerted by the load on the robot is F i ∈ R2. Given

that robot i has mass mi, the dynamics of the robot are:

miẍi = ui − F i . (2.1)

In order to develop a sliding mode controller for robot i, we must be able to write

the robot’s dynamics in the form

ẍi = h+Gui , (2.2)

in which G is an input matrix that is a function of the load dynamics, and h is a

nonlinear term that describes the effects of both the load dynamics and the forces

applied by the other robots. The sliding mode controller will only require bounds on

this nonlinear term, not a precise characterization. In the remainder of this section,

we show that Eq. 2.1 can be put into the form Eq. 2.2.

The notation for our dynamical model of collective transport is shown in Fig.

2.1. We define an inertial coordinate frame I and a local coordinate frame B that is

fixed to the load. The matrix RI
B is the rotation matrix from coordinate frame B to
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Figure 2.1: Schematic Representation of a Collective Transport Task with Four
Robots and the Associated Coordinate Systems.

coordinate frame I. We define ẍBo and rBi , both expressed in coordinate frame B, as

the acceleration of the load’s center of gravity (CG) and the vector from the load’s CG

to the attachment point of robot i, respectively. We denote the load’s orientation in

frame I by θo, its angular velocity by ωo, and its angular acceleration by αo. We now

recall that the cross product of any two non-zero vectors a and b can be expressed

as a× b = âb, where â is a skew-symmetric matrix. Using this notation, we denote

the skew-symmetric matrix representations of ωo and αo by ω̂o and α̂o, respectively.

Since we assume that each robot is rigidly attached to the load, the acceleration of

robot i can be written in terms of the load’s angular velocity and angular acceleration

as follows:

ẍi = RI
B(ẍBo + α̂or

B
i + ω̂o(ω̂or

B
i )) . (2.3)

Noting that

α̂or
B
i = −r̂Bi αo = (r̂Bi )Tαo (2.4)

and that αo = θ̈o, we can rewrite Eq. 2.3 as:

ẍi = RI
B

[I (r̂Bi )T
]ẍBo

θ̈o

+ ω̂o(ω̂or
B
i )

 , (2.5)
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where I is the identity matrix. We now represent the load’s translational and rota-

tional dynamics together in the following matrix form:moI 0

0 Io


ẍBo
θ̈o

 =

 I · · · I

r̂B1 · · · r̂BN

FB, (2.6)

FB =

[
(FB

1 )T · · · (FB
N)T

]T
,

where FB
i is force F i in coordinate frame B, mo is the mass of the load, and Io is

the load’s moment of inertia about the axis normal to the plane of the motion and

passing through its CG. Solving for the load’s acceleration vector from this equation

and substituting it into Eq. 2.5, we obtain the acceleration of robot i as:

ẍi = RI
B

[
I (r̂Bi )T

]
M−1

o

 I · · · I

r̂B1 · · · r̂BN

FB + RI
Bω̂o(ω̂or

B
i ) , (2.7)

where

M o =

moI 0

0 Io

 . (2.8)

We can rewrite Eq. 2.7 as the sum of two terms, one containing the force applied by

robot i and the other containing the forces applied by all the other robots:

ẍi = Q+ PF i , (2.9)

where

P = RI
B

[
I (r̂Bi )T

]
M−1

o

 I
r̂Bi

RB
I (2.10)

and

Q = RI
BQ1Q2FB

r +RI
Bω̂o(ω̂or

B
i ) , (2.11)
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Q1 =

[
I (r̂Bi )T

]
M o

−1 ,

Q2 =

 I · · · · · · · · · . . . I

r̂B1 · · · r̂Bi−1 r̂Bi+1 · · · r̂
B
N

 ,

FB
r =

[
(FB

1 )T · · · (FB
i−1)

T (FB
i+1)

T · · · (FB
N)T

]T
. (2.12)

From Eq. 2.9, we can solve for F i as

F i = P−1(ẍi −Q) . (2.13)

Finally, by substituting this expression into Eq. 2.1, we obtain an equation of the

form Eq. 2.2, where

h = M−1
a P

−1Q ,

G = M−1
a , (2.14)

in which

M a = miI + P−1. (2.15)

2.1.3 Controller Design

Our objective is for a team of robots to transport the load at a constant speed vdes

in a target direction, defined by the angle γ in Fig. 2.1. To achieve this, we will design

controllers for each robot that regulate the magnitude of its velocity to vdes and the

direction of its velocity to γ. Since the controllers for each robot will be identical,

we will drop the subscript i from the robot state variables and parameters in this

section. We define the state vector for a robot as q = [xT ẋT ]T , where x = [x y]T

is the robot’s position in inertial coordinate frame I and ẋ = [ẋ ẏ]T is its velocity in

frame I. The state vector of the robot is then q = [x y ẋ ẏ]T .

It will be useful to define a second global coordinate frame Iγ, with axes labeled

x∗I and y∗I , by rotating coordinate frame I by the angle γ (see Fig. 2.1). In this
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coordinate frame, the axis labeled x∗I points in the target direction of transport.

Denoting the rotation matrix from frame I to frame Iγ by R
Iγ
I , the state vector in

the coordinates of frame Iγ is given by q∗ = R
Iγ
I q. The components of this state

vector are q∗ = [(x∗)T (ẋ∗)T ]T = [x∗ y∗ ẋ∗ ẏ∗]T . The transformed control input is

u∗ = R
Iγ
I u. We can then write the robot dynamics Eq. 2.2 in the frame Iγ as

ẍ∗ = h∗ +G∗u∗ , (2.16)

in which h∗ = R
Iγ
I h and G∗ = R

Iγ
I GR

I
Iγ . We denote the components of the vector

u∗ ∈ R2 by u∗ = [u∗1 u
∗
2]
T , where u∗1 is the robot’s actuating force in the desired

direction of transport and u∗2 is its actuating force normal to this direction. We will

design each of these control inputs as a sliding mode controller that drives all possible

robot trajectories x∗(t) to enter a sliding manifold in the robot’s state space in finite

time and remain on the manifold thereafter (Khalil, 1996). The robot exhibits a

desired dynamical behavior when its state evolves along the manifold. To regulate

the robot’s speed to vdes in the desired direction of transport (along the x∗I axis), we

define a sliding manifold s1 as

s1 = ẋ∗ − vdes = 0 . (2.17)

To stabilize the direction of the robot’s velocity to the angle γ, we define a sliding

manifold s2 that sets the component of the robot’s velocity along the y∗I axis to zero:

s2 = ẏ∗ = 0 . (2.18)

Using the approach for sliding mode control design in (Khalil, 1996), we define

the control laws for u∗1 and u∗2 as

u∗1 = −k1 sgn(s1) , (2.19)

u∗2 = −k2 sgn(s2) , (2.20)

18



where k1 and k2 are control gains. These gains must be large enough to stabilize

the system on the sliding manifolds. We derive lower bounds on the gains in Section

2.1.4. To eliminate chattering on the sliding manifolds without considerably affecting

the controller performance, the signum functions in these controllers can be replaced

by saturation functions, as proposed in (Khalil, 1996) and (Slotine and Li, 1991).

We note that since G∗ is not a diagonal matrix, u∗2 affects the motion along x∗I

in addition to y∗I , and u∗1 influences the motion along y∗I in addition to x∗I . We can

describe these effects as a bounded nonlinear term that is added to the vector h∗ in

Eq. 2.16. Since sliding mode controllers are robust to variations in the h∗ term, these

effects will not deteriorate the controller performance.

2.1.4 Stability Analysis

We first derive some preliminary results that we will need to prove the stability

of the system driven by the sliding mode controllers.

Proposition 2.1.1. The matrix P in Eq. 2.10 is positive definite.

Proof. We define a matrix P 1 as:

P 1 =

[
I (r̂Bi )T

]
M−1

o

 I
r̂Bi

 . (2.21)

Then, by Eq. 2.10, P = RI
BP 1R

B
I . Since rotation matrices are invertible, the

matrices P and P 1 are similar, and thus they have the same eigenvalues. Using

the definition rBi =

[
ri,x ri,y

]T
and the definition of M o from Eq. 2.8, P 1 can be

calculated from Eq. 2.21 as

P 1 =

 1
mo

+
r2i,y
Io

−ri,xri,y
Io

−ri,xri,y
Io

1
mo

+
r2i,x
Io

 . (2.22)
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The eigenvalues of P 1 are

λ1 =
1

mo

, λ2 =
1

mo

+
||rBi ||2

Io
, (2.23)

which are both positive. Since these are also the eigenvalues of P , the matrix P is

positive definite.

Proposition 2.1.2. The matrix G in Eq. 2.14, and consequently G∗ in Eq. 2.16, is

positive definite and has constant eigenvalues.

Proof. Since G = M−1
a by Eq. 2.14, we need to show that M a, and consequently

M−1
a , is positive definite with constant eigenvalues. Let e1 and e2 denote the eigen-

vectors of M a, with corresponding eigenvalues µ1 and µ2. Using Eq. 2.15 for M a,

we obtain

M aej = (miI + P−1)ej = µjej, j = 1, 2. (2.24)

This equation can be rearranged as

P−1ej = µjej −miej = (µj −mi)ej, j = 1, 2. (2.25)

Hence, the eigenvalues of P−1 are µ1 −mi and µ2 −mi. Since the eigenvalues of P

were found to be λ1 and λ2 as defined in Eq. 2.23, and the eigenvalues of P−1 are

the inverses of the eigenvalues of P , we have that µ1−mi = λ−11 and µ2−mi = λ−12 .

Therefore, the eigenvalues of M a are µ1 = mi + λ−11 and µ2 = mi + λ−12 , which

are both positive and constant, making M a a positive definite matrix with constant

eigenvalues.

Lemma 2.1.3. If all the robots in a transport team apply control forces Eq. 2.19 and

Eq. 2.20 to the load, then the angular velocity of the load will remain bounded.
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Proof. Since the robots are rigidly attached to the load, the rotational dynamics of

the entire system are given by

Is θ̈o =
N∑
i=1

r̂Bi R
I
Iγu

∗
i , Is = Io +

N∑
i=1

mi

∥∥rBi ∥∥2 . (2.26)

We define the angular difference between the load’s orientation and the target direc-

tion as φ = θo− γ. Since γ is constant, φ̇ = θ̇o and φ̈ = θ̈o. Writing Eq. 2.26 in terms

of φ and substituting in the control laws Eq. 2.19 and Eq. 2.20, we obtain:

Is φ̈ =

(
k1

N∑
i=1

ri,ysgn(si,1)− k2
N∑
i=1

ri,xsgn(si,2)

)
cos (φ)

+

(
k1

N∑
i=1

ri,xsgn(si,1) + k2

N∑
i=1

ri,ysgn(si,2)

)
sin (φ), (2.27)

where si,1 and si,2 are the sliding modes Eq. 2.17 and Eq. 2.18 that are defined in

terms of the velocity ẋ∗i = [ẋ∗i ẏ
∗
i ]
T of robot i in coordinate frame Iγ. Since ẋ∗i is a

function of ẋo = [ẋo ẏo]
T , the velocity of the load’s CG in coordinate frame I, and

the load’s orientation θo = φ+ γ and angular velocity θ̇o = φ̇, we can write Eq. 2.27

in the following form:

φ̈ = η(ẋo, ẏo, φ, φ̇) cos (φ) + ζ(ẋo, ẏo, φ, φ̇) sin (φ), (2.28)

where the coefficients η and ζ are bounded since both are finite summations of signum

functions:

|η| ≤ δη , |ζ| ≤ δζ . (2.29)

To prove the boundedness of the load’s angular velocity φ̇ from Eq. 2.28, we can

use the comparison lemma presented in (Khalil, 1996). Here, we apply this lemma

to the simpler equation φ̈ = η cos (φ), since a similar approach can be used for the

entire Eq. 2.28. We define a function

v(t) =
1

2
φ̇(t)2 (2.30)
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whose time derivative can be calculated as

v̇ = φ̇ φ̈ = φ̇ η cos(φ) ≤ δη φ̇ cos(φ), (2.31)

with the bound on η defined in Eq. 2.29. Using Eq. 2.30, we can write the upper

bound in Eq. 2.31 in terms of v(t) as:

v̇ ≤ δη
√

2v cos

(∫ t

0

√
2vdτ

)
. (2.32)

We now define another function, w(t), that is the solution to the following equation:

ẇ = δη
√

2w cos

(∫ t

0

√
2wdτ

)
, w(0) = w0. (2.33)

By the comparison lemma from Khalil (1996), we can conclude that v(t) ≤ w(t) for

all t ≥ 0. From the definition of v(t) in Eq. 2.30, this implies that φ̇(t)2/2 ≤ w(t),

and thus we obtain an upper bound on the load’s angular velocity,

|φ̇(t)| ≤
√

2|w(t)|, t ≥ 0. (2.34)

We can derive an expression for the upper bound in Eq. 2.34 by solving Eq. 2.33

for w(t) and then obtaining an upper bound for |w(t)|. To solve Eq. 2.33, we can use

the following change of variables,

ξ =
√

2w ⇒ ξ̇ =
ẇ√
2w

,

and rewrite Eq. 2.33 as:

ξ̇ = δη cos

(∫ t

0

ξdτ

)
, ξ(0) =

√
2w0. (2.35)

Using another change of variables,

ψ =

∫ t

0

ξdτ ⇒ ψ̇ = ξ, ψ̈ = ξ̇,
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Eq. 2.35 can be written as

ψ̈ = δη cos(ψ), ψ(0) = ψ0, ψ̇(0) =
√

2w0. (2.36)

This is the equation of motion of a simple pendulum, which can be integrated once

to obtain

1

2
ψ̇2 − δη sin(ψ) =

1

2
ψ̇2(0)− δη sin(ψ0) ≡ c. (2.37)

Using the fact that ψ̇ = ξ =
√

2w, we have the relation w = ψ̇2/2, and so by Eq.

2.37,

w = δη sin(ψ)− δη sin(ψ0) + w0. (2.38)

Then, using the triangle inequality and the fact that w0 > 0,

|w| ≤ 2δη + w0.

If we use the same procedure for the term containing ζ in Eq. 2.28, we can modify

the bound as:

|w| ≤ 2δη + 2δζ + w0. (2.39)

Substituting Eq. 2.39 into Eq. 2.34 yields the following finite upper bound on the

load’s angular velocity:

|φ̇(t)| ≤
√

2|w(t)| ≤
√

4δη + 4δζ + 2w0, t ≥ 0. (2.40)

Note that since v(0) ≤ w(0) = w0 by the comparison lemma and v(0) = φ̇(0)2/2 by

Eq. 2.30, setting w0 = 0 implies that φ̇(0) = 0, meaning that the load starts with

zero angular velocity at t = 0.

The nonlinear term h defined in Eq. 2.14 is a function of the load’s angular velocity

ωo, mass, and geometric properties, as well as the forces applied by the robots. Lemma

2.1.3 states that ωo is bounded, and the other parameters are bounded as well due to
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the fact that the load has finite mass and dimensions and the robots’ forces cannot

exceed a saturation limit. This implies that h is bounded, a result that we will use

subsequently in our stability analysis.

To analyze the stability of the system, we follow the approach in (Khalil, 1996) and

define the Lyapunov functions V1 = 1
2
s21 and V2 = 1

2
s22, which measure the distance

of a robot state trajectory x∗ from the sliding manifolds Eq. 2.17 and Eq. 2.18,

respectively. The time derivatives of these functions are:

V̇1 = s1ṡ1 = s1ẍ
∗, (2.41)

V̇2 = s2ṡ2 = s2ÿ
∗. (2.42)

In order for the system to be asymptotically stable, these functions should both be

negative whenever |s1| , |s2| 6= 0.

We will conduct the analysis just for V̇1, since the analysis for V̇2 is similar. The

expression for ẍ∗ can be obtained from the first component of Eq. 2.16 and substituted

into Eq. 2.41, yielding

V̇1 = s1(h
∗
1 + g∗11u

∗
1 + g∗12u

∗
2), (2.43)

where h∗1 is the first component of h∗ and g∗ij is the entry of matrix G∗ at row i and

column j. Our finding that h is bounded implies that h∗1 < ρ1 for some positive

constant ρ1. In addition, suppose that ε11, ε12, and g0 are positive constants such

that g∗11 ≥ g0 > 0 and the following condition is satisfied:∣∣∣∣h∗1 + g∗12u
∗
2

g∗11

∣∣∣∣ ≤ ρ1 + ε11 |u∗1|+ ε12 |u∗2| . (2.44)

Here, the constants εij incorporate the uncertainties associated with (g∗12u
∗
2)/g

∗
11.

By Proposition 2.1.2, the matrix G∗ is positive definite, which implies that its

diagonal elements g∗ii are positive. Therefore, we can multiply both sides of Eq. 2.44
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by g∗11 |s1| to obtain:

|s1|(h∗1 + g∗12u
∗
2) ≤ ρ1g

∗
11 |s1|+ g∗11ε11 |u∗1| |s1|

+ g∗11ε12 |u∗2| |s1| . (2.45)

Noting that s1 ≤ |s1| and that |u∗1| = k1, |u∗2| = k2 by Eq. 2.19 and Eq. 2.20, we have

that:

s1(h
∗
1 + g∗12u

∗
2) ≤ ρ1g

∗
11 |s1|+ g∗11ε11k1 |s1|

+ g∗11ε12k2 |s1| . (2.46)

If we add s1g
∗
11u
∗
1 to both sides of this inequality, the term on the left side becomes V̇1

by Eq. 2.43. Then, noting that s1g
∗
11u
∗
1 = −g∗11k1 |s1|, this inequality can be written

as

V̇1 ≤ g∗11 |s1| (ρ1 + ε11k1 − k1 + ε12k2) (2.47)

We can follow the same procedure to compute an upper bound on V̇2.

From Eq. 2.47, we can derive the following condition on ρ1 to ensure that V̇1 < 0

whenever |s1| , |s2| 6= 0:

ρ1 ≤ (1− ε11)k1 − ε12k2. (2.48)

Similarly, the following condition on a positive constant ρ2 can be derived to ensure

that V̇2 < 0 whenever |s1| , |s2| 6= 0:

ρ2 ≤ (1− ε22)k2 − ε21k1, (2.49)

where ε21, ε22 are positive constants. Now, by defining b = [b1 b2]
T in which b1, b2 > 0,

the inequalities Eq. 2.48 and Eq. 2.49 can be written in the form of a matrix equation

as: ρ1
ρ2

+

b1
b2

 =

I −
ε11 ε12

ε21 ε22



k1
k2

 . (2.50)
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Define the matrix with entries εij as E. Since ki, ρi, and bi are positive, (I−E) must

be nonsingular, and all elements of (I − E)−1 must be positive. This implies that

(I −E) is an M-matrix (Khalil, 1996). Then, Eq. 2.50 can be solved for the control

gains k1 and k2: k1
k2

 = (I −E)−1

ρ1 + b1

ρ2 + b2

 . (2.51)

By choosing these control gains and substituting them into the upper bound Eq. 2.47

on V̇1 and the corresponding upper bound on V̇2, we obtain the following inequalities:

V̇1 ≤ −g0b1 |s1| , V̇2 ≤ −g0b2 |s2| . (2.52)

Since g0, b1, b2 > 0, it is evident that V̇1 < 0 and V̇2 < 0 when |s1| , |s2| 6= 0. Hence,

the system is asymptotically stable for these gains k1 and k2, meaning that all state

trajectories will reach the intersection of the two sliding manifolds in finite time and

remain on it thereafter.

2.1.5 Simulation Results

We validated our sliding mode control strategies with simulations of point-mass

robots in MATLAB and with high-fidelity 3D physics simulations in the robot simu-

lator Webots (Michel, 2004). The robots in the Webots simulations are 3D models of

the small mobile robot platform Pheeno that has been developed in our lab (Wilson

et al., 2016). To address the problem of chattering on the sliding manifolds, we used

the approach mentioned in Section 2.1.3: we replaced each signum function sgn(si)

in the controllers Eq. 2.19 and Eq. 2.20 with a saturation function sat(si/εbi), where

εbi is a boundary layer parameter that gives the bounds on an envelope around si = 0

within which trajectories can evolve to avoid chattering.
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Figure 2.2: Collective Transport of a Load by Five Point-Mass Robots.
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Figure 2.3: Sliding Mode Parameters (s1 and s2) of the Five Robots.

Simulation with point-mass robots

We simulated a scenario in which five point-mass robots, marked by the red dots

in Fig. 2.2, must transport an asymmetric load to a goal, the heading to which is

γ = 30◦. The desired load velocity was set to vdes = 0.1m/s, and the controller

parameters were set to k1 = k2 = 0.4, εb1 = εb2 = 0.01. The mass of the load is 1kg,

and its moment of inertia is 0.33kg/m2. Each robot has a mass of 0.1kg and can

apply a maximum force of 0.1N on the load. The system was simulated for 120 s.

As Fig. 2.2 shows, the load and the robots exhibit fairly straight trajectories that are
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Figure 2.4: Load Rotation (Left) and its Drift from the Desired Path (Right).

parallel to the desired path to the goal, illustrated by the dashed line. Also, Fig. 2.3

plots the values of the sliding mode parameters, s1 and s2, for all the robots during

the first 3 s of the transport. These values all quickly converge to the boundary

layer (|s1| < 0.01, |s2| < 0.01) within 1s. Fig. 2.4, which plots the load’s angular

position and its drift from the desired path, shows that system converges to a stable

equilibrium state after a negligible initial load rotation that produces a slight initial

drift of about 0.03mm.

Simulations with a model of Pheeno in Webots

We also developed 3D simulations that incorporate realistic physical effects arising

from the robots’ wheeled actuation system and the additional degrees of freedom

introduced by the manipulator arms. In addition, these simulations required mod-

ifications to the sliding mode controllers to account for the fact that Pheeno is a

nonholonomic, differential-drive platform. As defined, the controllers require the ve-

locity of the attachment point of a robot to the load, and so they require the velocity

of Pheeno’s end-effector, which necessitates computing the Jacobian matrix and con-

sequently including the geometry of the manipulator arm in the control commands.

However, there is an alternate way to control the heading and velocity of Pheeno dur-
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ing transport, which we pursue here. Let θ̇R and θ̇L denote the angular velocities of

the right and left wheel of Pheeno, respectively, and τR and τL be the corresponding

actuation torques on the wheels. These torques are the control inputs to the robot.

We define:

θ̇H =
1

2
(θ̇R − θ̇L), τH =

1

2
(τR − τL),

θ̇V =
1

2
(θ̇R + θ̇L), τV =

1

2
(τR + τL). (2.53)

We diagonalize the linear model developed in (Ivanjko et al., 2010) for a differential-

drive robot and write it in the following form:A−B 0

0 A+B


θ̈H
θ̈V

+

K 0

0 K


θ̇H
θ̇V

 =

τH
τV

 , (2.54)

where the constants A and B depend on the geometry and mass properties of the

robot, and the constant K is the damping in the wheels. Eq. 2.54 provides us with

two decoupled equations. One equation governs the robot’s heading angle ϕ, which

is proportional to (θR − θL), and the other governs the robot’s speed v, which is

proportional to (θ̇R + θ̇L). Defining sH = ϕ− γ and sV = v − vdes, we can formulate

the following sliding mode controllers for the robot’s heading and speed:

τH = −kH sat

(
sH
εbH

)
, τV = −kV sat

(
sV
εbV

)
. (2.55)

We implemented these controllers in a Webots simulation in which five Pheeno

robots grasp a load, lift it simultaneously, and transport it to a goal location at a

heading of γ = 30◦. The desired load velocity, load mass and moment of inertia, robot

mass, and robot maximum force were all set to the same values as in the point-mass

simulations. The system was simulated for 120 s. The controller parameters were

set to kH = 0.03, kV = 0.09, εbH = 0.01, and εbV = 0.1. Snapshots of the simulation

are shown in Fig. 2.5. Fig. 2.6 plots the load and the robot trajectories, which are
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straight and parallel in the desired direction. Fig. 2.7 shows the time evolution of the

sliding mode parameters, which all converge within the specified boundary layers.

2.1.6 Experimental Results

To further validate the control strategies, we conducted five experimental trials

of collective transport with four Pheeno robots and a rectangular load. The robots

and load were marked with 2D binary identification tags to enable real-time tracking

of their positions and orientations by an overhead camera. The robots were initially

placed in the configuration shown in Fig. 2.8. This configuration was chosen to

minimize unwanted effects such as wheel slip and unnecessary stress on the central

servo, which controls the yaw angle of the manipulator arm about the central axis of

the robot. Each robot updated its state estimate using a basic complementary filter

acting on its onboard encoders, compass, and accelerometer.

We implemented controllers similar to those in Eq. 2.55 on the robots. However,

Figure 2.5: Collective Transport by Five Pheenos Simulated in Webots.
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Figure 2.6: The Trajectories of the Pheenos and the Load During Transport.
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Figure 2.7: The Sliding Mode Parameters (sV and sH) of the Pheenos During
Transport.

instead of using torque inputs, the individual motor accelerations were controlled

directly, i.e. τH and τV in Eq. 2.55 were replaced by θ̈H and θ̈V , respectively. Thus,

the controllers required measurements of the wheel velocities and the robots’ heading.

The control parameters were set to kH = 0.01, kV = 0.05, and εbH = εbV = 0.01; the

gains were lower than the gains in the Webots simulation to avoid causing the motors

to accelerate too quickly, which results in wheel slip and odometry drift.

The robots were tasked with transporting the load at a desired velocity of vdes =
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Figure 2.8: A Zoomed-in Screenshot from the Overhead Camera That Tracks the
Load and Robots During the Experiment.

10 cm/s along the x-axis of the global frame defined by the overhead camera. Each

trial was run for 30 s. Fig. 2.9 shows the paths of the load and transporting robots

during a single experiment, and Fig. 2.10 plots the average and standard deviation

of the load’s velocity, heading, and trajectory over the five experiments. These plots

show that the sliding mode controllers are fairly successful at achieving the control

objectives. The slight rotation of the load and its deviation from the desired path in

Fig. 2.9, as well as the increasing standard deviations in the plots in Fig. 2.10, are

due to unavoidable drift in the onboard odometry caused by wheel slip, sensor noise,

and model error, among other factors. Sensor noise can result in discrepancies in the

robots’ velocities, causing the robots to exert torques on each other through the load,

which produces wheel slip and error in the odometry.

2.2 Decentralized Proportional-Integral Control

In this section, we investigate the stability properties of a proportional control

scheme that is a modification of the one presented in (Rubenstein et al., 2013). The

paper (Rubenstein et al., 2013) proposes a decentralized approach to the problem

that we address, in which each robot applies a force to the payload that is defined

as a proportional velocity controller. It is demonstrated that the payload moves in a

straight line toward the goal with no more than 180◦ of rotation. However, there is
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Figure 2.9: The Trajectories of the Pheenos and the Transported Load During
One Experiment. The Rectangle Shows the Orientation of the Load at Several Time
Points. The Colored Circles Mark the Robot Attachment Points at the Beginning
and End of the Experiment.
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Figure 2.10: The States of the Load During the Transport Experiments. The Dark
Blue Lines Are the Mean States Averaged over Five Trials, and the Light Blue Area
Shows the Standard Deviation. Top Left: The Average Velocity of the Load During
Transport. Top Right: The Average Heading of the Load During Transport. Bottom:
The Average Trajectory of the Load During Transport.
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Figure 2.11: Illustration of a Collective Transport Team with Four Point-Mass
Robots and the Associated Coordinate Systems.

no stability analysis that guarantees the convergence of the system’s dynamics to the

desired motion. In our control scheme, the robots also exert a force component per-

pendicular to the target direction, in order to maintain a straight transport trajectory.

We prove that the closed-loop system is exponentially stable with this controller, and

we characterize the rate of the system’s convergence to the target transport velocity

in terms of the robots’ distribution around the payload. In addition, we introduce

an integral controller to drive any drift of the payload from the desired path to zero.

We note that our analysis on pure proportional control also applies to our previous

decentralized strategy for collective transport (Farivarnejad, H. et al., 2016), dur-

ing the phase when the system trajectories enter the boundary layer defined in the

sliding mode controllers.

2.2.1 Dynamical Model

We model the dynamics of the system in Fig. 2.11, a load that is transported by N

point-mass robots, which we studied in our previous work (Farivarnejad, H. et al.,

2016). Here, we derive the equations of motion for the entire system, comprised of
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both the load and the robots, whereas in (Farivarnejad, H. et al., 2016) we derived

the dynamics of each robot. We define mr as the mass of each robot, mo as the mass

of the payload, and Io as the load’s moment of inertia about the axis normal to the

plane of the motion and passing through its center of gravity. We also define rc as

the vector from the center of mass of the entire system (CMo) to the load’s center

of mass, and ri as the vector from CMo to the attachment point of robot i. Both rc

and ri are expressed in the inertial reference frame shown in Fig. 2.11, defined such

that the x-axis points in the target direction of transport. Then, the mass m and

moment of inertia I of the entire system are given by:

m = mo +Nmr,

I = Io +mo ‖rc‖2 +mr

N∑
i=1

‖ri‖2 . (2.56)

Each robot i applies an actuating force ui = [ui,x ui,y]
T to the payload. We denote

the vector of all applied forces by u =

[
(u1)

T · · · (uN)T
]T

. We define the position of

CMo in the inertial reference frame as xo = [xo yo]
T and the load’s orientation in this

frame as θo. We will use qo = [xo yo θo]
T as the generalized coordinates that describe

the motion of the entire system. Then we can write the equation of motion of the

system as: mI 0

0 I

 q̈o =

 I · · · I

r̂1 · · · r̂N

u, (2.57)

where I is the identity matrix and r̂ is a skew-symmetric matrix defined by ri×u =

r̂iu. Let ẋi and ẏi be the speed of robot i along the x and y axes of the inertial frame.

We define the components of ui for each robot i as proportional velocity controllers:

ui,x = k(vdes − ẋi), ui,y = k(−ẏi), (2.58)
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where k is the controller gain and vdes is the desired transport speed. This controller

drives each robot’s velocity to vdes along the desired direction of transport, with

no velocity component perpendicular to this direction. When all robots attain this

velocity, the load moves in the target direction at speed vdes with zero angular velocity.

Using the kinematic equations of the payload, we can obtain expressions for ẋi and

ẏi in terms of q̇o and then rewrite Eq. 2.58 as:

ui,x = k
(
vdes − ẋo + θ̇o||ri|| sin(θo + θi)

)
,

ui,y = k
(
−ẏo − θ̇o||ri|| cos(θo + θi)

)
, (2.59)

where θi is the angle of vector ri with respect to a local coordinate frame fixed to the

load, as shown in Eq. 2.12. Substituting the controller in Eq. 2.59 for each robot

into Eq. 2.57, we obtain the following equations for the closed-loop system:

mẍo = k

(
N(vdes − ẋo) + θ̇o

N∑
i=1

||ri|| sin(θo + θi)

)
,

mÿo = k

(
−Nẏo − θ̇o

N∑
i=1

||ri|| cos(θo + θi)

)
,

Iθ̈o = −k
N∑
i=1

(
ẏo||ri|| cos(θo + θi) + θ̇o||ri||2 cos2(θo + θi)

)
+ k

N∑
i=1

(ẋo − vdes)||ri|| sin(θo + θi)− k
N∑
i=1

θ̇o||ri||2 sin2(θo + θi). (2.60)

Defining sx ≡ ẋo − vdes and sy ≡ ẏo, the closed-loop dynamics in Eq. 2.60 can be

rewritten in the following compact form:

mṡx + ctsx − kfs(θo)θ̇o = 0,

mṡy + ctsy + kfc(θo)θ̇o = 0,

Iθ̈o + crθ̇o − kfs(θo)sx + kfc(θo)sy = 0, (2.61)
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Figure 2.12: Illustration of the Geometric Parameters that Express the Position of
a Robot in the Local Coordinate Frame of the Load.

where ct = kN , cr = k
∑N

i=1 ||ri||2, and:

fs(θo) =
N∑
i=1

||ri|| sin(θo + θi),

fc(θo) =
N∑
i=1

||ri|| cos(θo + θi). (2.62)

2.2.2 Stability Analysis

In this section, we characterize the stability of the equilibria of the closed-loop

system in Eq. 2.61. Defining z = [sx sy θo θ̇o]
T as the state vector, we find that the

system has no isolated equilibrium point and that the set M, defined as:

M =
{
z ∈ R4|sx, sy, θ̇o = 0

}
, (2.63)

is a continuum of equilibrium points, i.e. an invariant set. When the system state

is in this set, the payload moves directly to the goal along a straight path (sy = 0)

at a regulated velocity (sx = 0) with no rotational motion (θ̇o = 0). The following

theorem characterizes the convergence of the system trajectories to M.

Theorem 2.2.1. The trajectories of the system in Eq. 2.57 with the decentralized

controllers in Eq. 2.58 exponentially converge to the set M.
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Proof. We consider the following Lyapunov function:

V =
1

2
m(s2x + s2y) +

1

2
Iθ̇2o. (2.64)

The time derivative of this function is:

V̇ = −cts2x − cts2y − crθ̇2o + 2k(fs(θo)sx − fc(θo)sy)θ̇o. (2.65)

Defining z1 = [sx sy θ̇o]
T , Eq. 2.65 can be written as

V̇ = −zT1 Λz1, (2.66)

in which

Λ =


ct 0 kfs

0 ct −kfc

kfs −kfc cr

 . (2.67)

To prove the convergence of the system, we need to show that Λ is positive definite,

or equivalently, that all its eigenvalues are positive. These eigenvalues are given by:

λ1 = ct,

λ2 =
1

2

(
(ct + cr) +

√
4k2(f 2

s + f 2
c ) + (ct − cr)2

)
,

λ3 =
1

2

(
(ct + cr)−

√
4k2(f 2

s + f 2
c ) + (ct − cr)2

)
. (2.68)

Since ct and cr are strictly positive numbers, we can conclude that λ1 and λ2 are

strictly positive as well. Therefore, we only have to determine the sign of λ3. We first

investigate the term ξ ≡
√
f 2
s + f 2

c .

Proposition 2.2.2. For the system described by Eq. 2.57 with the robot controllers

2.58, ξ is a constant that is equal to ||
∑N

i=1 ri||.
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Proof. Using Eq. 2.62, we can write:

ξ2 =
N∑
i=1

||ri||2 +
N∑
i=1

N∑
j 6=i

||ri||||rj|| cos(θo + θi) cos(θo + θj)

+
N∑
i=1

N∑
j 6=i

||ri||||rj|| sin(θo + θi) sin(θo + θj). (2.69)

Combining the second two terms on the right-hand side, we obtain:

ξ2 =
N∑
i=1

||ri||2 +
N∑
i=1

N∑
j 6=i

||ri||||rj|| cos(θi − θj). (2.70)

Denoting the components of ri in the local coordinate frame as x̄i and ȳi, we have

that x̄i = ||ri|| cos(θi) and ȳi = ||ri|| sin(θi). We can then rewrite Eq. 2.70 as:

ξ2 =

(
N∑
i=1

(x̄2i + ȳ2i ) +
N∑
i=1

N∑
j 6=i

(x̄ix̄j + ȳiȳj)

)
. (2.71)

Finally, by separating the x and y components, we can write:

ξ2 =
(
(x̄1 + · · ·+ x̄N)2 + (ȳ1 + · · ·+ ȳN)2

)
, (2.72)

which implies that ξ = ||
∑N

i=1 ri||.

Now, we can analyze the sign of λ3.

Proposition 2.2.3. For a transport team with a fixed number of robots and a fixed

configuration on the load, λ3 in Eq. 2.68 is strictly positive.

Proof. First, we calculate the critical value of ξ, defined as ξcr, at which λ3 becomes

zero. If we can show that ξ is always less than this value, then we can conclude that

λ3 is always positive. From Eq. 2.68, we calculate ξcr as:

ξ2cr = N

N∑
i=1

||ri||2. (2.73)
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From the triangle inequality, we know that ||
∑N

i=1 ri|| ≤
∑N

i=1 ||ri||, and by squaring

both sides of this inequality, we have:

||
N∑
i=1

ri||2 ≤

(
N∑
i=1

||ri||

)2

. (2.74)

From the Cauchy-Schwarz inequality Horn and Johnson (2012), we know that(
N∑
i=1

||ri||

)2

≤ N
N∑
i=1

||ri||2. (2.75)

which means that ξ2 ≤ ξ2cr and consequently, ξ ≤ ξcr. Excluding physically impossible

configurations in which all robots occupy a single point on the perimeter of the load,

which results in ξ = ξcr, λ3 is strictly positive.

Since all the eigenvalues of Λ are positive, it is positive definite. Furthermore, the

Lyapunov function in Eq. 2.64 can be written in the quadratic form V = zT1 ∆z1,

where:

∆ =


m 0 0

0 m 0

0 0 I

 . (2.76)

Then, we have the following inequalities (Khalil, 1996):

λmin(∆)||z1||2 ≤ V (z1) ≤ λmax(∆)||z1||2 (2.77)

In addition, using Eq. 2.66, the following upper bound can be established for V̇ :

V̇ (z1) ≤ − λmin(Λ)||z1||2 (2.78)

Therefore, we can write:

V̇ ≤ − λmin(Λ)

λmax(∆)
V, (2.79)

and by Theorem 4.10 in (Khalil, 1996), we can conclude that trajectories of the

system in Eq. 2.61 exponentially converge to the invariant set M. This completes

the proof of Theorem 2.2.1.
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2.2.3 Convergence Analysis

Given the exponential stability of the closed-loop system, we can describe the

convergence of its trajectories in a qualitative fashion using an exponential function

that gives the lowest possible rate of convergence to M. According to Theorem 4.10

in Khalil (1996), the following inequality holds:

||z1(t)|| ≤ b||z1(t0)|| e−εt, t ≥ t0, (2.80)

where b =
√

λmax(|Delta)
λmin(∆)

and

ε =
λmin(Λ)

λmax(∆)
. (2.81)

Thus, ε bounds the convergence rate of the system trajectories. We now show how

ε can be characterized in terms of the distribution of the robots around the load.

Toward this end, we first determine λmin(Λ).

Proposition 2.2.4. For a transport team with a fixed number of robots and a fixed

configuration on the load, λmin(Λ) = λ3, defined in Eq. 2.68.

Proof. From Eq. 2.68, we see that λ3 < λ2. Therefore, we only need to compare λ1

and λ3. We rewrite λ3 as:

λ3 =
1

2
(ct + cr)−

1

2
(|ct − cr|+ 2%), (2.82)

where % is a positive number that monotonically increases with ξ. In this expression,

if cr ≤ ct, then λ3 = cr − %, which is clearly smaller than cr. Hence, in this case,

λ3 ≤ cr ≤ ct = λ1. If ct ≤ cr, then λ3 = ct− %, which is clearly smaller than ct. Thus,

in this case, λ3 ≤ ct = λ1 as well. Therefore, we can conclude that λmin(Λ) = λ3.
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To simplify our subsequent calculations, we replace the vector z1 in our stability

analysis with z2 = [sx sy rgθ̇o]
T , where rg is the radius of gyration of the system,

rg =

(
Io +mo ‖rc‖2 +mr

∑N
i=1 ‖ri‖

2

mo +Nmr

) 1
2

. (2.83)

With this replacement, we can write the Lyapunov function in Eq. 2.64 as V =

zT2 ∆2z2, where ∆2 = mI ∈ R3×3, and λmax(∆2) = m. Note that m is independent

of the robot configuration on the load. We can also write Eq. 2.66 as V̇ = zT2 Λ2z2.

Setting λmax(∆) = m, we can calculate ε as:

ε =
1

2mr2g

(
(r2gct + cr)−

√
4r2gξ

2 + (r2gct − cr)2
)
. (2.84)

We see that for a fixed number of robots, the distribution of the robots around the

load (i.e., the set of vectors ri) affects σ through the parameters rg, cr, and ξ. It

is difficult to analyze the effect on all three parameters simultaneously. However,

by following the procedure in the proof of Proposition 2.2.4, we can write ε in the

following form:

ε =
k

2mr2g

(
N(r2g + ρ2 − |r2g − ρ2|)− 2δ

)
, (2.85)

where:

ρ2 =
1

N

N∑
i=1

||ri||2, (2.86)

and δ is a positive number that monotonically increases with rgξ.

We now show that we can derive simplified expressions for ε based on the relative

magnitudes of rg and ρ. From Eq. 2.83, the term (r2g−ρ2) in Eq. 2.85 can be written

as:

(r2g − ρ2) =
a

a+N
(r2g,o + ||rc||2 − ρ2), (2.87)

where a = mo/mr and rg,o is the load’s radius of gyration. Furthermore, we can write

the vector rc as:

rc = − mr

mo +Nmr

N∑
i=1

ri,c (2.88)
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where ri,c is the vector from the load’s center of mass to robot i (see Eq. 2.12).

For each robot i, we have the relation ri = rc + ri,c, and by applying the triangle

inequality, we have that ||ri|| ≤ ||rc||+ ||ri,c||. Squaring both sides of this inequality

and summing the resulting terms over i = 1, ..., N , we obtain:

Nρ2 ≤ N ||rc||2 +Nρ2c + 2||rc||
N∑
i=1

||ri,c||, (2.89)

where ρ2c = 1
N

∑N
i=1 ||ri,c||2. Hence, we can write:

−ρ2c −
2

N
||rc||

N∑
i=1

||ri,c|| ≤ ||rc||2 − ρ2. (2.90)

Moreover, using the expression for rc in Eq. 2.88 and applying Eq. 2.74 and Eq. 2.75

to the vectors ri,c we can write:

−ρ2c −
2N

a+N
ρ2c ≤ ||rc||2 − ρ2, (2.91)

which yields the following lower bound for (r2g − ρ2):

a

a+N

(
r2g,o − (1 +

2N

a+N
)ρ2c

)
≤ (r2g − ρ2). (2.92)

Note that this lower bound is a function of a single parameter, ρc, that depends on

the distribution of robots around the load. We can now determine the sign of (r2g−ρ2)

for the following two cases:

(a) rg < ρ. This case happens when ρc is sufficiently large to make the lower

bound in Eq. 2.92 a negative large number. This occurs when the robots are mostly

located at positions that are far from the load’s center of mass. In this scenario,

ε =
k

m

(
N − δ

r2g

)
. (2.93)

This means that for a fixed number of robots, ε mainly depends on the value of ξ

through δ.
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(b) rg > ρ. This case happens when ρc is a small number that makes the lower

bound in Eq. 2.92 positive. This occurs when the robots have a uniform and close-

to-symmetric distribution around the load. Under this condition,

ε =
k

mr2g
(Nρ2 − δ). (2.94)

Here, ε is not as sensitive to changes in δ (and hence ξ) as it is in the first case, since

such changes could be compensated by the value of ρ2.

2.2.4 Drift Compensation by Integral Control

When the proposed proportional controller is used, the load will inevitably drift

away from the line between its initial position and its target position, which we will

refer to as the desired path. To eliminate this drift, we add an integral term to Eq.

2.58 and modify the control law as follows:

ui,x = k(vdes − ẋi) + kI

∫ t

o

(vdes − ẋi)dτ,

ui,y = k(−ẏi) + kI

∫ t

o

(−ẏi)dτ. (2.95)

With this new controller, the closed-loop dynamics in Eq. 2.61 can be rewritten as:

mσ̈x + ctσ̇x + kINσx − kfs(θo)θ̇o − kIηs = 0,

mσ̈y + ctσ̇y + kINσy + kfc(θo)θ̇o + kIηc = 0,

Iθ̈o + crθ̇o − kfs(θo)σ̇x + kfc(θo)σ̇y

− kI

(
fs(θo)σx − fc(θo)σy −

N∑
i=1

(ηi,sη̇i,s + ηi,cη̇i,c)

)
= 0, (2.96)

in which

σx =

∫ t

o

sxdτ, σy =

∫ t

o

sydτ, (2.97)

and

ηs =
N∑
i=1

ηi,s, ηc =
N∑
i=1

ηi,c, (2.98)
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where

ηis = ||ri||
∫ t

o

sin(θo + θi)θ̇odτ,

ηic = ||ri||
∫ t

o

cos(θo + θi)θ̇odτ. (2.99)

Furthermore, noting that θ̇odτ = dθo, the two integrals in Eq. 2.99 can be calculated

as:

ηis = ||ri|| (cos(θo(0) + θi)− cos(θo + θi)) ,

ηic = ||ri|| (sin(θo + θi)− sin(θo(0) + θi)) , (2.100)

where θo(0) is the initial orientation of the load. By substituting Eq. 2.100 into Eq.

2.96, we can rewrite the closed dynamics as:

mσ̈x + ctσ̇x + cIσx − κη̇s − κIηs = 0,

mσ̈y + ctσ̇y + cIσy + κη̇c + κIηc = 0,

Iθ̈o + crθ̇o − κfs(θo)σ̇x + κfc(θo)σ̇y − kI(fs(θo)σx − fc(θo)σy) + cIρ
2 sin(θ̃o) = 0,

(2.101)

in which cI = kIN , and θ̃o = θo − θo(0) is the difference between the current value of

θo and its initial value, which implies ˙̃θo = θ̇o and ¨̃θo = θ̈o.

This model has two more state variables than the system in Eq. 2.61 does: σx,

which represents the accumulation of error from the desired velocity, and σy, which

represents the drift from the desired path. Defining the new state vector as ζ =

[σx σy σ̇x σ̇y θo θ̇o]
T , and setting ζ̇ = 0, we see that the equilibrium point of the

closed-loop system is where

Nσx = ηs

Nσy = −ηc

fs(θo)σx − fc(θo)σy = Nρ2 sin(θ̃o). (2.102)
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If we substitute the first two equations in Eq. 2.102 into the third equation and

expand it, we can rewrite it as:(
N∑
i=1

N∑
j=1

||ri||||rj||

)
sin(θ̃o) = Nρ2 sin(θ̃o). (2.103)

Separating the terms with the same indexes and the ones with different indexes in

the left hand side of Eq. 2.103, and with regards to Eq. 2.86, we see that in the

equilibrium point we have:(
N∑
i=1

N∑
j 6=i

||ri||||rj||

)
sin(θ̃o) = 0. (2.104)

Therefore, the equilibrium point is where θ̃o = kπ for k ∈ Z, and the corresponding

σx and σy are obtained from Eq. 2.102. By linearization, we can easily see that for

odd values of k, the equilibrium point is unstable. However, the following theorem

expresses the asymptotic stability of the trajectories of the closed-loop system in Eq.

2.96 to the equilibrium points with even values of k, where θo is equal to its initial

value, and σx and σy are equal to zero with regards to Eq. 2.100 and Eq. 2.102. First,

we state the following proposition, which will be used in the proof of the theorem.

Proposition 2.2.5. The following function is a candidate Lyapunov function only

for the equilibrium points with even values of k:

W = V +
1

2
kI

N∑
i=1

(
(σx − ηi,s)2 + (σy + ηi,c)

2
)
. (2.105)

Proof. First, we can easily validate that this function is nonnegative since it is a sum

of squares. Moreover, σ̇x, σ̇y, and θ̇o are zero , and thus V is zero at the equilibrium

point. Also, when k is even, i.e. k = 2k′ for k′ ∈ Z, we have θo = θo(0) + 2k′π, which

results in sin(θo) = sin(θo(0)) and cos(θo) = cos(θo(0)). This also leads to zero values

for ηis and ηic in Eq. 2.100, and consequently zero values for σx and σy with regards

to Eq. 2.102. Therefore, W is zero at this equilibrium point. Furthermore, when k
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is odd, i.e. k = 2k′ + 1 for k′ ∈ Z, we have θo = θo(0) + (2k′ + 1)π, which results

in sin(θo) = − sin(θo(0)) and cos(θo) = − cos(θo(0)). These turn nonzero values for

ηis and ηic, and consequently, for σx and σy, which do not necessarily cancel out each

other in the summation term in Eq. 2.105. Hence, W is not zero at the equilibrium

point with odd k’s.

Theorem 2.2.6. The trajectories of the system in Eq. 2.57 with the decentralized

controllers in Eq. 2.95 are asymptotically stable to the equilibrium point characterized

by σx, σy, σ̇x, σ̇y, θ̇o = 0, and θo = θo(0) + 2kπ for k ∈ Z.

Proof. The time derivative of the Lyapunove function in Eq. 2.105 is calculated as:

Ẇ =− ct(σ̇2
x + σ̇2

y)− crθ̇2o + 2k(fs(θo)σ̇x − fc(θo)σ̇y)θ̇o − kIN(σxσ̇x + σyσ̇y)

+ kI(σ̇xηs + σxfs(θo)θ̇o − σ̇yηc − σyfc(θo)θ̇o)− kI
N∑
i=1

(ηi,sη̇i,s + ηi,cη̇i,c)

+ kI

N∑
i=1

((σx − ηi,s)(σ̇x − η̇i,s) + (σy + ηi,c)(σ̇y + η̇i,c)) . (2.106)

Using Eq. 2.98 and the fact that η̇s = fs(θo)θ̇o and η̇c = fc(θo)θ̇o, we can cancel many

terms in the expression for Ẇ and simplify it to:

Ẇ = −zT1 Λz1, (2.107)

where z1 and Λ are the same vector and matrix as in Eq. 2.66, respectively. This

result at lest shows that W remains bounded as t → ∞. Furthermore, we see that

when Ẇ is identically zero, i.e. Ẇ ≡ 0, we have σ̇x, σ̇y, θ̇o ≡ 0, and taking into account

the closed-loop dynamics in Eq. 2.96, we can obtain σx, σy ≡ 0. Thus, by LaSalle’s

invariance principle (Khalil, 1996), and invoking Proposition 2.2.5, we conclude that

the system trajectories asymptotically converge to the aforementioned equilibrium
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point. In other words, while the objectives with the proportional controller are still

achieved, the drift from the desired path is driven to zero.

2.2.5 Simulation Results

Proportional control

In this section, we validate our analysis with simulation results for collective transport

by a team of robots that are arranged in three different distributions around a payload.

We study the effect of the robot distribution on the convergence rate of the system

to the target transport velocity, the amount of rotation exhibited by the load, and

the translational drift of the load from the desired path. The load is modeled as a

homogeneous circular ring with mass mo = 1 kg and moment of inertia Io = 0.33

kg·m2. Six point-mass robots, each with mass mr = 0.05 kg, are rigidly attached to

the load. The controller gain is k = 0.08 and the target transport speed is vdes = 0.1

m/s. The simulations were each run for 200 s.

Fig. 2.13-Fig. 2.15 show snapshots of the load over time for each robot distribu-

tion. The robot locations are marked as colored points on the perimeter of the load

in its initial and final configurations. The target path for the load’s center of mass is

shown as a red dotted line, and its actual trajectory is plotted in blue. The red line

on the load indicates its orientation. In addition, Fig. 2.16 plots the corresponding

time evolution of the load’s rotation and angular velocity, along with the drift d of

the system’s center of mass from the target path for all three distributions.

In the first simulation (Fig. 2.13), the robots have an equally-spaced distribution,

and the load is transported to the goal with no change in θo and no drift d from

the target path, as shown in Fig. 2.16. This is because both ||rc|| and ξ are zero.

For this case, ε = 0.1584. In the second simulation (Fig. 2.14), the robots have a
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Figure 2.13: Snapshots of the Payload Over Time with an Equally-Spaced Distri-
bution of Robots Around its Perimeter (Distribution 1).
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Figure 2.14: Snapshots of the Payload Over Time with a Nonuniform Distribution
of Robots Around its Perimeter (Distribution 2).
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Figure 2.15: Snapshots of the Payload Over Time with a Highly Nonuniform Dis-
tribution of Robots Around its Perimeter (Distribution 3).
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nonuniform distribution for which ξ = 0.179 and ||rc|| = 0.02. The load undergoes a

total rotation of about θo = 30◦, and its drift from the target path increases to about

d = 15 cm. For this case, ε has decreased slightly to 0.1582. In the third simulation

(Fig. 2.15), the robots are clustered within a quarter of the load’s perimeter. The

load undergoes a large rotation of about θo = 140◦, and its drift from the target

path reaches a maximum of about d = 1.4 m. For this case, ||rc|| = 0.05 and ξ has

increased to 0.3875, which has lowered ε to 0.1577.

Finally, Fig. 2.17 shows the time evolution of the variables sx ≡ ẋo − vdes and

sy ≡ ẏo, the discrepancies between the actual and target velocity components of the

system’s center of mass, for all three distributions. In all cases, sx converges to zero

at an exponential rate, which is slowest for the third distribution. For the second and

third distributions, sy displays an overshoot before converging to zero, with a much

higher overshoot for the third distribution because of its relatively large value of ξ

compared to the other two cases. While the second distribution results in convergence

to the desired velocity within about 150 s, the third distribution requires more than

200 s to converge.

Proportional-Integral control

The effect of adding the integral control for the third distribution, which had the

highest drift, is shown in Fig. 2.18. The system parameters are the same as in the

case with proportional control only, and the controller gains are chosen as k = 0.1

and kI = 0.005. Fig. 2.18 confirms that the large drift in Fig. 2.15 is driven to zero,

and the payload motion converges to the desired path after a transient phase. The

convergence of the states of the system in Eq. 2.96 is shown in Fig. 2.19.
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Figure 2.17: Time Evolution of sx ≡ ẋo − vdes and sy ≡ ẏo for All Three Distribu-
tions.

2.3 Decentralized Adaptive Controllers for Differential-Drive Mobile Manipulators

This section is an extension to the previous works in Section 2.1 and Section 2.2, in

which we considered collective transport scenarios that are similar to those in (Wilson

et al., 2016) and (Rubenstein et al., 2013). In those works, we designed decentralized

controllers for teams of point-mass robots that are rigidly attached to the payload.
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The controllers only required robots’ measurements of their own speed and heading,

without any information about the number of robots, the payload dynamics, and the

robots’ distribution around the payload. The controllers drove the robot team to

transport the payload toward a target direction with a regulated velocity. Here, we

consider a more realistic scenario in which the collective transport task is performed

by differential-drive robots with 1-DOF manipulator arms, like the robots in Fig. 1.1.

To derive decentralized controllers that can be implemented on such robots, we

make significant modifications to our previous controller design procedure in Section

2.1 and Section 2.2. First, we design the desired manifolds of system motion such

that the system trajectories do not violate the holonomic constraints between the

robots and the payload. For the case of point-mass robots in (Farivarnejad, H.

and Berman, 2018), we implicitly incorporated these constraints when we used the

kinematics of the payload to derive the dynamics of the system. In this scenario,

however, since the robots and their manipulator arms may in general have different

initial configurations (see Fig. 2.20), we must explicitly account for the holonomic

constraints between the robots and the payload in the design of the desired manifolds

of motion. Second, we design adaptive robot controllers that stabilize the system

to the desired manifolds of motion and estimate uncertain mass and geometric pa-

rameters of the robots. We prove that the closed-loop system will converge to the

target transport speed and direction for all initial conditions that are far enough from

singular configurations (described in Section 2.3.3). Although adaptive control has

previously been used for cooperative manipulation in (Yagiz et al., 2010; Yim et al.,

1999; Parra-Vega et al., 2013; Ponce-Hinestroza et al., 2016), these strategies require

predefined trajectories for each robot and/or for the payload, as well as knowledge

about the robots’ distribution around the payload. In addition, the adaptive control

strategy in (Lee et al., 2017) requires that the robots have information about the
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Figure 2.20: Simulated Pheeno Robots (Wilson et al., 2016) Performing a Collective
Transport Task.

payload’s dynamics. In contrast, the control strategy proposed here only requires

local robot measurements of their own motion, and it does not rely on information

about the environment, load, or transport team.

2.3.1 Problem Statement

We consider a team of N identical autonomous ground robots that are arranged

on a planar surface in an arbitrary configuration around a payload, as in Fig. 2.20.

Each robot is comprised of a differential-drive core module, equipped with a 1-DOF

manipulator arm that can rotate about the core’s central axis. We assume that the

manipulator arm of each robot is attached to the load via a point grasp and that

the load is lifted above the ground. We also assume that each robot can measure its

own speed and heading, as well as the rotation angle and angular velocity of its ma-

nipulator. The robots do not have global localization or communication capabilities,

and they lack information about the payload’s physical properties, velocity, and the

position of its center of mass; the number of robots in the transport team; and the
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robots’ distribution around the payload.

Our objective is to design decentralized robot controllers that drive the team to

collectively transport the load at a desired speed along a straight path in a target

direction. We assume that each robot knows the target speed and direction, al-

though they are not assigned predefined trajectories. To enable the robots to act

autonomously during transport, the controllers must not depend on global feedback,

which would require the presence of a central supervisor. Instead, the controllers

must rely only on the minimal local information that is available to each robot.

2.3.2 Dynamical Model

To derive the equation of motion of each 3-DOF robot in the transport team, we

must first choose a vector of generalized coordinates that describe the configuration of

the robot, illustrated in Fig. 2.21. We define xi = [xi yi]
T ∈ R2 as the position of the

center of the ith robot’s core in the global coordinate frame I, θi as its heading angle

with respect to the global frame, θRi and θLi as the angular positions of the right and

left wheels, and φi as the angular position of the manipulator with respect to a coor-

dinate frame R that is fixed to the core. If we select Qi = [xi yi θi θRi θLi φi]
T ∈ R6

as the generalized coordinates for robot i, the dynamics of the robot must include the

Lagrange multipliers that are associated with the nonholonomic constraints between

the robot’s translational and rotational motion. Alternatively, we can use the gen-

eralized coordinates q∗i = [θRi θLi φi]
T to formulate the dynamics of the robot in an

unconstrained form, as described in Appendix A. Moreover, if we use the invertible

transformation qi = Tq∗i with

T =


r
2

r
2

0

r
b

−r
b

0

0 0 1

 , (2.108)
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in which r is the radius of the robot’s wheels and b is the distance between the wheels,

then we obtain a new vector of generalized coordinates that are more suitable for our

control objectives:

qi =


r
2
(θRi + θLi)

r
b
(θRi − θLi)

φi

 . (2.109)

Defining ξi as the length of the path traveled by the center of the ith robot’s core,

the time derivative ξ̇i is the speed of this point. From the kinematics equations for

a differential-drive robot, given by Eq. A.5–Eq. A.6 in Appendix A, we find that

the time derivative of the first and second elements of qi are equal to ξ̇i and θ̇i,

respectively. Therefore,

q̇i =

[
ξ̇i θ̇i φ̇i

]T
. (2.110)

These coordinates express the motion of the robot directly in terms of the parame-

ters that we need to control: the robot’s translational motion and heading, and its

manipulator arm’s angular position.

While engaged in cooperative transport, the dynamics of robot i can be written

in the following general form (Murray et al., 1994):

M i(qi)q̈i +Ci(qi, q̇i)q̇i +N i(qi, q̇i) = τ i − JTi F i, (2.111)

where qi ∈ R3 is the vector of generalized coordinates defined in Eq. 2.109, τ i ∈ R3

is the vector of actuator torques, F i ∈ R2 is the force exerted on the robot by the

payload, J i ∈ R2×3 is the Jacobian matrix of the end-effector’s position, M i ∈ R3×3

is the inertia matrix, Ci ∈ R3 is the Coriolis matrix, and N i ∈ R3 is a vector that

includes the effect of gravity and frictional forces at the joints.

In addition, we derive the the dynamics of the payload during cooperative trans-

port. Let mo be the mass of the load and Jo be the load’s moment of inertia about
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Figure 2.21: A Pheeno Robot in a Collective Transport Task with the Kinematic
Chain Representing the Holonomic Constraint Between it and the Payload.

the axis normal to the plane of the motion and passing through its center of gravity

(CG). Then M o = diag(mo,mo, Jo) ∈ R3×3 denotes the payload’s inertia matrix.

We define qo = [xo yo θo]
T ∈ R3 as the payload’s vector of generalized coordinates,

where xo and yo are the position coordinates of the load’s CG and θo is the load’s

heading, all with respect to the global frame I. Because there is a point grasp at each

robot’s attachment point to the load, there exists a kinematic chain passing through

the load’s CG, the attachment point, and the robot core’s center, as illustrated in

Fig. 2.21. Then we will use the grasp matrix Erhart and Hirche (2016), G ∈ R3×2N ,

given by:

G =

[
G1 · · · GN

]
, (2.112)

where

Gi =


1 0

0 1

−||rBi || sin(θo + αi) ||rBi || cos(θo + αi)

 , (2.113)

in which rBi ∈ R2 is the vector from the load’s CG to the attachment point of robot

i, and αi is the angle of this vector with respect to the load’s local coordinate system.

Finally, we define F i ∈ R2 as the force exerted by robot i on the load, expressed in
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the global frame, and F ∈ R2N as the concatenation of all the robots’ applied forces:

F =

[
F T

1 · · · F T
N

]T
. (2.114)

Then, the dynamics of the payload can be written as

M oq̈o = GF . (2.115)

2.3.3 Holonomic Constraints and Design of the Desired Manifolds of Motion

Using the notation in Fig. 2.21, the kinematic chain that represents the holonomic

constraint between a robot and the payload can be expressed as:

xi + li −RI
Br

B
i − xo = 0, (2.116)

in which xi = [xi yi]
T ∈ R2 is the position of the center of robot i’s core in the

global frame, li ∈ R2 is the vector from xi to the attachment point of robot i on

the load, RI
B ∈ R2×2 is the rotation matrix from the payload’s local frame to the

global frame, and xo = [xo yo]
T ∈ R2 is the position of the payload’s CG in the global

frame. Taking the time derivative of this equation, we can write it in the form of an

integrable Pfaffian constraint (Murray et al., 1994),

Ai(qi, qo)

q̇i
q̇o

 = 0, (2.117)

where Ai = [J i −GT
i ], in which

J i =

cos(θi) −li sin(θi + φi) −li sin(θi + φi)

sin(θi) li cos(θi + φi) li cos(θi + φi)

 (2.118)

with li = ‖li‖, and Gi given by Eq. 2.113.

In the case of N robots, the constraint Eq. 2.116 exists between each robot and

the payload. Then Eq. 2.117 can be expanded to include all N constraints:

A(qa)q̇a = 0, (2.119)
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where qa = [qT qo
T ]T ∈ R3N+3, in which q = [q1

T · · · qNT ]T ∈ R3N , and the

constraint matrix A ∈ R2N×(3N+3) is given by:

A(qa) =



J1 02×3 · · · 02×3 −GT
1

02×3 J2 02×3 · · · −GT
2

...
...

...
...

...

02×3 · · · 02×3 JN −GT
N


. (2.120)

Eq. 2.119 describes the allowable velocities of the system in the entire configuration

space. This means that these velocities can evolve only in the null space of A, and

we must take this fact into account when designing the desired manifolds of motion.

Otherwise, the desired system behavior, which is described by the manifolds, would

not be reachable by trajectories of the system.

We aim to design robot controllers that do not require any information about

the payload’s position and velocity and the distribution of robots around the pay-

load. Toward this end, we design the desired manifold of motion for a single robot i

by considering its constraint with the payload, defined by the matrix Ai, and then

showing that the manifolds for all N robots are compatible with the entire set of N

constraints, defined by the matrix A.

For mechanical systems, any first-order desired manifold of motion can be written

in the general form ψ = η̇ − η̇r, where η̇ is the vector of system velocities and η̇r is

the vector of reference velocities, which can be a function of time and η (Slotine and

Li, 1991). In general, ψ must be driven to zero, at which point η̇ will track η̇r. Here,

defining ηi := [qTi q
T
o ]T ∈ R6 as the vector of the generalized coordinates of robot i

and the payload, we specify a reference velocity vector η̇ri := [q̇Tri q̇
T
ro ]

T ∈ R6 that

lies in the null space of Ai so that it is achievable by η̇i. The null space of Ai can be

written as:

N (Ai) = span(e1i , e2i , e3i , e4i), (2.121)
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where

e1i = [ 0 − 1 1 0 0 0 ]T ,

e2i =

[
cos(θi + φi)

cos(φi)

− sin(θi)

li cos(φi)
0 1 0 0

]T
,

e3i =

[
sin(θi + φi)

cos(φi)

cos(θi)

li cos(φi)
0 0 1 0

]T
,

e4i = [ e41i e42i 0 0 0 1 ]T , (2.122)

in which the first two elements of the vector e4i are:

e41i =
−||rBi || sin(θo + αi − θi − φi)

cos(φi)
,

e42i =
||rBi || cos(θo + αi − θi − φi)

cos(φi)
. (2.123)

Indeed, the vector η̇ri must be a linear combination of these four vectors, since they

span N (Ai). As stated in section 2.3.1, the desired motion for the payload is a

regulated speed along the xI direction, zero speed along the yI direction, and zero

angular speed. Thus, we set:

q̇ro = [vdes 0 0]T , (2.124)

where vdes is the desired speed of transport. Then, noting the 1’s in the fifth and

sixth elements of e3i and e4i , respectively, we can conclude that η̇ri cannot have any

projection on these two vectors and must be a linear combination of only e1i and e2i .

Moreover, the desired motion for the robot includes a regulated forward speed and a

zero heading angle, in addition to a zero angular speed for the manipulator.

Here, we design the desired manifolds in a way that is applicable to general initial

configurations of robots, in which the robots have an arbitrary distribution around

the payload and arbitrary headings and manipulator angles, as depicted in Fig. 1.1.

However, we must first take into account the fact that both e2i and e3i have entries

with cos(φi) in the denominator, and hence φi = kπ/2 for any integer k is a singular
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configuration that has to be avoided. Therefore, we consider the following assumption,

which can be enforced by restricting the range of rotation of the manipulator arm

(for example, φi ∈ 0.9[−π/2, π/2]):

Assumption 2.3.1. Each robot starts the transport from a configuration far from sin-

gular configurations, and stays far from these configurations during the entire trans-

port.

The reference velocity vector is specified as

η̇ri = vdese2i , (2.125)

and therefore, the desired manifold of motion is given by

ψi = η̇i − η̇ri . (2.126)

This manifold can be written as ψi = [sTi s
T
o ]T , where si and so are the desired

manifolds for robot i and the payload, respectively:

si =


ξ̇i − vdes cos(θi+φi)cos(φi)

θ̇i + vdes
sin(θi)
li cos(φi)

φ̇i

 , so =


ẋo − vdes

ẏo

θ̇o

 . (2.127)

We see that so is independent of the robot’s state variables. We now show that the

reference velocity vector Eq. 2.125 is compatible with all holonomic constraints in

the system, i.e. Eq. 2.119, and then we prove that it produces the desired motion

characteristics of the payload and the robots.

Proposition 2.3.2. The desired velocities in Eq. 2.125 are reachable by all robots in

the team and the payload during collective transport.
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Proof. Since both η̇i and η̇ri are inN (Ai) for each robot i = 1, ..., N , we can conclude

that Aiψi = 0, i = 1, ..., N , which implies that

[
J i −GT

i

]si
so

 = 0, i = 1, ..., N. (2.128)

Defining s := [s1
T · · · sNT ]T and sa := [sT so

T ]T , we can rewrite the N equations

in Eq. 2.128 in the following compact form:

A(qa)sa = 0, (2.129)

which means that sa ∈ N (A). Since the designed manifold sa therefore satisfies the

constraint Eq. 2.119, the reference velocity vector η̇ri is reachable by each robot i.

Proposition 2.3.3. On the manifolds ψi defined by Eq. 2.126, the payload’s motion

converges to a pure translation along the xI direction with speed vdes; the robots’

speeds and headings converge to vdes and 0, respectively; and the robots’ manipulators

converge to a stationary configuration.

Proof. At the time when ψi = 0, we have θ̇o = 0, which means that the payload has

stopped rotating, and ẏo = 0, ẋo = vdes, which means that the payload is moving along

the xI direction at the desired speed. In addition, from the elements of si, we have

that φ̇i = 0 → φi = const. := φiss , which means that the manipulator of robot i has

stopped rotating. Consequently, we can conclude that cos(φi) = const. = cos(φiss),

and thus the second element of si, which governs the dynamics of the robot’s heading,

can be written in the following form:

θ̇i + ci sin(θi) = 0, (2.130)

where ci = vdes
li cos(φiss )

is constant and positive for φi ∈ (−π/2, π/2), which is the

manipulator’s range of motion. We can show that θi asymptotically converges to zero
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as follows. We consider the following Lyapunov function W and its time derivative

along the trajectories of Eq. 2.130:

W = 1− cos(θi) → Ẇ = −ci sin(θi)
2. (2.131)

Since Ẇ is negative definite, Eq. 2.130 is asymptotically stable at θi = 0, which

means that robot i will converge to the desired heading.1 Finally, since si = 0 and θi

converges to zero, we can write the following for the first element of si:

lim
t→∞

ξ̇i = vdes lim
θi→0

cos(θi + φiss)

cos(φiss)
= vdes, (2.132)

which shows that the robot’s speed will converge to the desired value.

Remark 2.3.4. The compatibility of the desired manifolds of motion in Eq. 2.126

with the holonomic constraints between the robots and the payload enables the robots

to perform the transport task without information about the position of the payload’s

center of mass or the vector from this point to each robot’s attachment point, i.e.

rBi . This information is required in many collective transport methods that have been

proposed in the literature, as described in Section 2.3.1.

2.3.4 Controller Design and Stability Analysis

As discussed in section 2.3.3, the desired system behavior is achieved on the man-

ifolds expressed as ψi = [sTi s
T
o ]T , in which si := [sξi sθi sφi ]

T is associated with the

dynamics of robot i, and so is associated with the payload’s dynamics. Moreover, it

is possible to verify that the terms M i(qi), Ci(qi, q̇i), and N i(qi, q̇i) in Eq. 2.111

can be linearly parametrized in terms of a constant vector Θi ∈ RP that contains

1To keep θi(t) ∈ (−π, π), the robot moves backward when the absolute value of its initial heading

error is more than π/2. This is implemented by switching the desired speed to −vdes and shifting

the desired heading by −π rad.
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P uncertain mass and geometric properties of robot i (Slotine and Li, 1991). Thus,

we can define a matrix Y i = Y i(qi, q̇i, q̇ri , q̈ri) ∈ R3×P , which is a function of the

reference quantities q̇ri , q̈ri and the measured quantities qi, q̇i, such that:

M i(qi)q̈ri +Ci(qi, q̇i)q̇ri +N i(qi, q̇i) = Y i(qi, q̇i, q̇ri , q̈ri)Θi. (2.133)

Here, we assume that we have uncertain estimates of P = 3 parameters for each

robot: the mass and moment of inertia of its core, and the mass of its manipulator.

We now design the controller for the actuator torque that is applied by the wheels

and manipulator of robot i. This torque is defined as τ ∗i = T−1τ i, where

τ i = −Ksi + Y iΘ̂i. (2.134)

Here, K ∈ R3×3 is a positive definite matrix that contains the controller gains, and

Θ̂i is an estimate of Θi, which is updated according to the following adaptation law:

˙̂
Θi = −ΓY T

i si, (2.135)

in which Γ ∈ R3×3 is a symmetric positive definite matrix that contains the adaptation

gains.

Remark 2.3.5. The controller in Eq. 2.134 and the adaptation law in Eq. 2.135 are

completely decentralized, in the sense that each robot i can execute them using only

measurements of its own motion (i.e., the quantities in si and Y i). They also do

not require any information about the payload’s motion and the robots’ distribution

around the payload.

To ensure that the controller in Eq. 2.134 and the adaptation law in Eq. 2.135

drive the system trajectories to the desired manifolds, we prove the stability of the

closed-loop system in Theorem 2.3.7. First, we state the following lemma, which will

be used in the proof of the theorem.
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Lemma 2.3.6. Consider a team of N ≥ 2 robots that are attached to a payload at

distinct points, with the robots’ reference velocities specified as in Eq. 2.125. If si ≡ 0

for each robot i ∈ {1, 2, ..., N}, then so ≡ 0.

Proof. Since both q̇a and q̇ar are in N (A), we can write Asa = 0. Thus, according

to Eq. 2.119, we have:

Js = GTso, (2.136)

in which J ∈ R2N×3N is a rectangular matrix in block-diagonal form, with the blocks

defined as J i, i = 1, ..., N . When si = 0 for all i = 1, ..., N , then s = 0. This implies

that Js = 0, which means that GTso = 0. Moreover, G ∈ R3×2N , and its first two

rows, which are the first two columns of GT , are linearly independent. The third row

is linearly dependent on the other rows only in the case where ||rBi || sin(θo + αi) =

||rBj || sin(θo + αj) and ||rBi || cos(θo + αi) = ||rBj || cos(θo + αj) ∀ i, j ∈ {1, 2, ..., N},

which is impossible because the robots are attached to distinct points on the payload.

Therefore, all columns of GT are linearly independent, and so rank(GT ) = 3, which

implies that dim(N (GT )) = 3 − 3 = 0. Hence, the null space of GT is empty, and

the only solution for GTso = 0 is so ≡ 0.

Theorem 2.3.7. Consider a team of N differential-drive robots, each with a 1-DOF

manipulator arm that is attached to a payload via a point grasp, as depicted in Fig.

1.1. Given the manifold in Eq. 2.127 and the controller and adaptation law in Eq.

2.134 and Eq. 2.135, the entire system converges to the desired motion, which is

defined as the translation of the payload and robots in a specified direction at a target

speed without rotation, with the robots’ manipulators fixed in a stationary configura-

tion.
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Proof. We consider the following Lyapunov function (Slotine and Li, 1991):

V =
1

2

N∑
i=1

sTi M isi +
1

2
sToM oso +

1

2

N∑
i=1

Θ̃
T

i Γ−1Θ̃i, (2.137)

in which Θ̃i = Θ̂i−Θi is the parameter estimation error. The time derivative of this

function is:

V̇ =
N∑
i=1

sTi M iṡi +
1

2

N∑
i=1

sTi Ṁ isi + sToM oṡo +
1

2
sTo Ṁ oso +

N∑
i=1

˙̃ΘT
i Γ−1Θ̃i.

(2.138)

Since M o is constant, and by Eq. 2.124, q̈ro , which is included in ṡo, is equal to zero,

V̇ is reduced to:

V̇ =
N∑
i=1

sTi M i(q̈i − q̈ri) +
1

2

N∑
i=1

sTi Ṁ isi + sToM oq̈o +
N∑
i=1

˙̃ΘT
i Γ−1Θ̃i. (2.139)

Furthermore, considering the passivity property of the robot dynamics in Eq. 2.111

(Murray et al., 1994), recognizing that the matrix Ṁ i−2Ci is skew-symmetric, noting

the payload’s dynamics in Eq. 2.115, and substituting the controller Eq. 2.134 into

the expression for M iq̈i from Eq. 2.111, V̇ can be rewritten as:

V̇ =−
N∑
i=1

sTi Ksi +
N∑
i=1

sTi Y iΘ̂i −
N∑
i=1

sTi
(
M i(qi)q̈ri +Ci(qi, q̇i)q̇ri +N i(qi, q̇i)

)

+
N∑
i=1

˙̃ΘT
i Γ−1Θ̃i −

[
sT sTo

] JT
−G

F . (2.140)

From Eq. 2.120, the last term on the right-hand side of Eq. 2.140 can be rewritten

as (Asa)
TF , and invoking Eq. 2.129, we conclude that this term is zero. Finally,

applying the linear parameterization in Eq. 2.133 and the adaptation law in Eq.

2.135, and also using the fact that ˙̃Θi =
˙̂
Θi since Θi is constant, we have:

V̇ = −
N∑
i=1

sTi Ksi. (2.141)
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The negative semi-definiteness of V̇ implies the global stability of the system and,

consequently, the boundedness of so, si, and Θ̃i for all i = 1, ..., N . From Eq. 2.134,

this result implies the boundedness of each τ i. By eliminating the vector F from

the dynamics of the N robots (Eq. 2.111) and the payload (Eq. 2.115), we observe

that τ i, i = 1, ..., N , are the only active torques affecting the dynamics of the entire

system of the robots and payload. Since these torques are bounded, we can conclude

that q̇i and q̈i are bounded for each robot i. The boundedness of q̈ri can be verified

from Eq. 2.127. Since q̈i and q̈ri are both bounded, we have that ṡi = q̈i− q̈ri is also

bounded. Furthermore, the second time derivative of V can be calculated as:

V̈ = −2
N∑
i=1

sTi Kṡi. (2.142)

Given that si and ṡi are bounded for all i as discussed above, this equation indicates

that V̈ is bounded as well. By Barbalat’s lemma (Slotine and Li, 1991), the positive

definiteness of V and the boundedness of V̈ imply that V̇ → 0, and consequently

si → 0, as t → ∞. Finally, from Lemma 2.3.6, we conclude that so → 0 as t → ∞,

which completes the proof.

Proposition 2.3.8. All internal forces F i, which are exerted by the robots on the

payload, remain bounded during transport.

Proof. In the proof of Theorem 2.3.7, we showed that q̇i, q̈i, and τ i are all bounded.

We can then conclude from the robot equations of motion 2.111 that the term JTi F i

is also bounded for each robot i. In addition, we can confirm that the null space of

JTi is empty. This implies that all internal forces F i remain bounded as well.

2.3.5 Simulation Results

We validated our adaptive control strategy with high-fidelity 3D physics simu-

lations in the robot simulator Webots (Michel, 2004). The robots in the Webots
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simulations are 3D models of a small mobile robot platform, Pheeno, that has been

developed in our lab (Wilson et al., 2016).

We implemented the controller and adaptation law proposed in section 2.3.4 in

a Webots simulation in which eight Pheeno robots transport the payload to a goal

that is located at a heading of γ = 30◦ in the inertial frame. The desired load

speed is vdes = 0.2 m/s, and the load mass and moment of inertia are 1 kg and

0.33 kg·m2, respectively. The matrices of controller and adaptation gains were set to

K = diag(0.002, 0.006, 0.01) and Γ = diag(0.3, 0.5, 0.2). The system was simulated

for 150 s.

Four snapshots of the simulation are shown in Fig. 2.22, in which the goal location

is indicated by the green cone and the desired path of the payload’s CG is illustrated

by the blue line. Fig. 2.23 plots the load and robot trajectories, which are straight

and parallel in the desired direction without significant rotation for the load.

Fig. 2.24 displays the time evolution of the entries of the desired manifold si

for each robot i (here we drop the i subscripts for simplicity): sξ, sθ, and sφ, which

are associated with the robot’s speed ξ̇, heading angle θ, and manipulator angle φ,

respectively. The figure also plots the time evolution of ξ̇, θ, and φ for each robot.

The variables are only plotted over the beginning of the simulation in order to clearly

illustrate their transient dynamics. The plots show that sξ, sθ, and sφ all converge to

zero for each robot, and although they initially exhibit oscillations, they have smooth

profiles after ∼ 6 s. The manipulator angles of the robots all converge to steady-state

values, demonstrating that each robot converges to a fixed configuration. Note that

these angles remain far from the singular configuration, i.e. ±90◦, in accordance with

Assumption 2.3.1. Furthermore, four of the robots, which push the payload, converge

to a heading of 30◦ and speed of 0.2 m/s, while the other four robots, which pull the

payload, converge to a heading of −150◦ and speed of −0.2 m/s. This discrepancy
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Figure 2.22: Collective Transport by Eight Pheenos Simulated in Webots.
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Figure 2.23: The Trajectories of the Pheenos and the Load During Transport.

in heading and speed between the pushing and pulling robots happens due to the

maneuver described in the footnote in section 2.3.3. This maneuver prevents the

robots from performing unnecessarily large rotations that would slow down their

response and possibly drive them to singular configurations.
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Figure 2.24: Time Evolution of Variables in the Webots Simulation of Collective
Transport. Left Column: Entries of the Desired Manifold si for Each Robot i: sξ, sθ,

and sφ (We drop the i subscripts for simplicity). Right Column: Speed ξ̇, Heading
Angle θ, and Manipulator Angle φ of Each Robot.
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Chapter 3

VELOCITY CONTROL OF COLLECTIVE TRANSPORT IN UNBOUNDED

DOMAINS WITH STRICTLY CONVEX OBSTACLES

In this chapter, we propose an obstacle avoidance controller for a disk-shaped holo-

nomic robot with double-integrator dynamics and local sensing. The control objective

is for the robot to converge to a target velocity while avoiding collisions with strictly

convex obstacles in an unbounded environment. We assume that the robot has no

information about the location and geometry of the obstacles, has no localization

capabilities, and can only measure its own velocity and its relative position vector to

the closest point on any obstacles in its sensing range. We first propose a potential-

based controller for the case with a single obstacle, and we prove that the robot

safely navigates past the obstacle and attains the desired velocity. For the case with

multiple obstacles, we propose a switching control scheme in which the robot applies

the single-obstacle controller for the closest obstacle at each instant. We investigate

the correctness of this switching control law and demonstrate the absence of local

stable equilibrium points that would trap the robot. We validate our analytical re-

sults through simulations of a robot that uses the proposed controllers to successfully

navigate through an environment with strictly convex obstacles of various shapes and

sizes. We finally combine the proposed obstacle avoidance controller with the PI

controller in Section 2.2 to design a decentralized control law for velocity control of

collective transport in unbounded domains with convex obstacles.

The proposed controller is suitable for applications in which it is necessary to regu-

late the velocity of a robot and navigate it safely through an unknown, obstacle-filled

environment where precise position feedback is absent, unreliable, or not required.
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For example, underwater robots may lack accurate global position information via

odometry or GPS, only obtaining GPS readings when they surface periodically. A

multi-robot control problem that involves velocity regulation and does not require

position feedback is flocking control of a group of agents (Tanner et al., 2003), which

may need to avoid unanticipated obstacles along their way while stabilizing their

velocities and maintaining group cohesion (Sakai et al., 2017).

To summarize, the novel contribution of this work is a robot controller for velocity

regulation and obstacle avoidance with all of the following properties:

• The controller does not require that the robot have exact or approximate global

position information or a priori information about the locations, geometries, or

configuration of obstacles in the environment.

• The robot has no predefined trajectory and operates autonomously with minimal

capabilities: it can only measure its own velocity and its relative position vector to

the closest point on any nearby obstacles within its sensing range.

• The controller has theoretical guarantees on performance; specifically, it can be

proved that a robot with this controller will converge to a desired velocity without

colliding with obstacles or becoming entrapped by local minima.

3.1 Problem Statement

We consider a disk-shaped holonomic robot that moves in a planar unbounded

domain with second-order dynamics (a double-integrator model), q̈ = u, where q =

(x, y)T ∈ R2 denotes the position of the robot’s center in a global reference frame

and u ∈ R2 is the robot’s control input. A physical realization of such a robot is

an omnidirectional mobile robot that can move in any direction in a plane at each

time instant (Bräunl, 2008). We assume that the domain contains multiple strictly
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convex obstacles. The control objective is for the robot to attain a desired velocity

vdes while avoiding collisions with the obstacles. The x-axis of the global reference

frame is defined along the direction of vdes, without loss of generality. We now define

two terms that we will frequently use throughout the paper.

Definition 3.1.1. The line from the robot’s current position q that is normal to the

obstacle’s boundary intersects the boundary at the projection point. This point and

its position vector are denoted by P and qP , respectively, as shown in Fig. 3.1.

Definition 3.1.2. The vector q− qP from the projection point to the robot’s current

position is called the collision vector. This vector is denoted by d and is shown in

red in Fig. 3.1.

We make the following assumptions about the robot’s specifications and capabil-

ities. The robot has a circular shape with radius r. It does not have global position

information (e.g., GPS) and has no prior knowledge of the obstacles’ locations and

shapes. The only information provided to the robot is the target velocity vdes. The

robot can measure its own velocity, for example by using tachometers or a velocity

estimation algorithm based on optical flow (Ho et al., 2017). It can measure its head-

ing in the global frame, e.g., using a compass.1 It can also identify the boundaries of

nearby obstacles within its local sensing range, which is assumed to be a circle with

radius δc. We assume that at each time instant, the robot can measure its distance

from each obstacle within its sensing range, for example, using infrared sensors or LI-

DAR. This distance is the length of the collision vector d, according to the Projection

Theorem in (Bertsekas et al., 2003). We also assume that the robot can measure the

1Note that the robot’s ability to measure its heading (or orientation in general) does not contradict

the assumption that it lacks global position information. The orientation of a mobile robot is often

measured by its on-board sensors, such as a compass, IMU, or gyroscope, and not necessarily by an

external localization system.
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angle φd of the vector −d in its body-fixed frame, e.g. using LIDAR. By adding φd+π

rad to the robot’s heading in the global frame, the robot can obtain the angle of d

in the global frame, which we denote by θd. This angle is required in the proposed

control law described in Section 3.2.

Given this minimal and completely local information, we first seek a control law

that can solve the following problem.

Problem 3.1.3. We consider an unbounded domain that contains a single strictly

convex obstacle with an arbitrary boundary 2 described by β(x, y) = 0, where β : R2 7→

R is at least twice continuously differentiable. We design a robot control law that uses

only the local measurements available to the robot to ensure that the robot:

(1) asymptotically converges to the desired velocity vdes,

(2) does not collide with the obstacle, and

(3) is never trapped in a neighborhood of the obstacle.

After designing a control law that solves this problem, we consider an unbounded

environment with multiple strictly convex obstacles, in which the following assump-

tion is satisfied.

Assumption 3.1.4. We define the closest pair of obstacles in the environment

as the two obstacles with the shortest distance between their boundaries. We assume

that this distance is larger than the diameter 2r of the robot.

We confirm that the controller proposed for Problem 3.1.3 guarantees the prop-

erties described in the following problem.

Problem 3.1.5. We consider an unbounded domain that contains a finite number

m > 1 of strictly convex obstacles with arbitrary boundaries described by βi(x, y) = 0,

2The assumption that the obstacle is strictly convex excludes the possibility that its boundary

contains straight segments.
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Figure 3.1: A Schematic Representation of the Robot, an Obstacle, the Projection
Point, the Collision Vector, a Virtual Potential Field Constructed by the Robot, and
the Associated Global Reference Frame.

where each βi : R2 7→ R, i ∈ {1, ...,m} is at least twice continuously differentiable.

We assume that Assumption 3.1.4 about the distance between obstacles in the domain

is satisfied. During its motion, the robot implements the control law designed to solve

Problem 3.1.3 for the obstacle that is closest to its current position. We confirm that

this control law ensures that the robot:

(1) asymptotically converges to the desired velocity vdes,

(2) does not collide with any obstacle, and

(3) is never trapped by any set of obstacles.

3.2 Controller Design

The proposed control law is a combination of a regulatory term, which stabilizes

the robot’s velocity to vdes, and a repulsive term that is based on the gradient of a

virtual potential field.
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3.2.1 Definition of the Virtual Potential Field

The robot constructs a virtual potential field ϕ around the point P . This field is

designed to satisfy four properties:

(i) ϕ is only a function of δ := (‖d‖ − r) ∈ R>0, the distance between the robot’s

boundary and the point qP .

(ii) ϕ(δ)→∞ as δ → 0.

(iii) d
dδ
ϕ(δ)→∞ as δ → 0.

(iv) ϕ(δ) and d
dδ
ϕ(δ) decrease monotonically to 0 as δ → δc, and equal zero when

δ ≥ δc.

Note that by property (i), the potential field has circular level sets around qP , as

shown in Fig. 3.1.

To this end, we define the potential field as follows:

ϕ(δ) =


p δ
δc

+
(
δc
δ

)p − (p+ 1), 0 < δ ≤ δc,

0, δc < δ,
(3.1)

where p is a strictly positive real constant. We can easily confirm that the function

in Eq. 3.1 has properties (i)-(iii). The function also satisfies property (iv), and is

therefore continuous and differentiable for every δ ∈ R>0. This potential field may

introduce extremely large forces into the control law that exceed the saturation limits

of the actuators when the robot moves very close to the obstacle’s boundary. However,

as described in Section 3.3.3, we can enforce an upper bound on the actuation forces

if we impose a limit on the robot’s speed.

76



3.2.2 Robot Control Law

The proposed control law is the following combination of a stabilizing term and a

repulsive term:

u = −K(q̇ − vdes)−KR∇dϕ(δ), (3.2)

in which K = kI and KR = kRI, where k, kR are positive gains and I ∈ R2×2 is the

identity matrix, and ∇dϕ(δ) is the gradient of the potential field with respect to d.

Remark 3.2.1. The gradient of ϕ with respect to d can be written as:

∇dϕ(δ) =
dϕ

dδ
ed =


p
δc

(
1−

(
δc
δ

)p)
ed, 0 < δ ≤ δc

0, δc < δ
(3.3)

where ed is the unit vector along d. The calculation of ∇dϕ is provided in Appendix

B. Since p and δc are known parameters, and we assume that the robot can measure

δ and the direction of d (see Section 3.1), the robot can therefore calculate ∇dϕ(δ)

using only these local measurements.

Remark 3.2.2. We emphasize that the control law in Eq. 3.2 relies solely on local

measurements: the robot’s velocity q̇ and the magnitude and direction of the collision

vector d, all of which can be measured by sensors on-board the robot. The robot does

not need global position information or knowledge about the locations and geometric

properties of the obstacles.

3.3 Analysis of Robot Dynamics for Single-Obstacle Case

We now investigate the robot’s closed-loop dynamics with the control law in Eq.

3.2 and prove that this control law achieves the three objectives described in Problem

3.1.3. First, we define four terms that will be used in our analysis.
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Figure 3.2: Illustration of an Obstacle’s Front and Back Areas as well as the Safe
Area. The Dashed Orange Lines Are Parallel to the Direction of the Desired Velocity,
and the Solid Blue Lines Are Normal to the Dashed Orange Lines. The Blue Arrows
Illustrate the Gradient of the Potential Field.

Definition 3.3.1. The free space is the subset of the domain that excludes the

obstacle’s boundary and interior.

Definition 3.3.2. The obstacle’s front area is the subset of the free space in which

δ ∈ (0, δc] and vTdes∇dϕ ≥ 0.

Definition 3.3.3. The obstacle’s back area is the subset of the free space in which

δ ∈ (0, δc] and vTdes∇dϕ < 0.

Definition 3.3.4. The safe area is the subset of the free space that excludes the

obstacle’s front and back areas.

The areas defined above are illustrated for an arbitrary strictly convex obstacle in

Fig. 3.2.

3.3.1 Velocity Convergence Analysis

We can write the closed-loop dynamics of the robot with the proposed control law

as:

q̈ +K(q̇ − vdes) +KR∇dϕ(δ) = 0. (3.4)
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By setting q̈ = q̇ = 0 in Eq. 3.4, we obtainKvdes = KR∇dϕ(δ). Since the obstacle is

strictly convex, given any two distinct points at the same distance δ from the obstacle,

the direction of the gradient ∇dϕ(δ) (i.e., the direction of ed) at these points cannot

be identical. Also, we can confirm that dϕ
dδ

in Eq. 3.3 is a strictly monotonic function

for δ ∈ (0, δc). Thus, the equation Kvdes = KR∇dϕ(δ) has unique solutions for δ

and ed, which we denote by δe and ede , respectively. Consequently, Eq. 3.4 has a

unique equilibrium point at which

δe = δc

(
1 +

k ‖vdes‖
pkR

)−1/(p+1)

, ede = −evdes , (3.5)

where evdes is the unit vector along vdes. We can check that δe ∈ (0, δc). The repulsive

vector field −∇dϕ has a component in the opposite direction of vdes everywhere in

the front area of the obstacle, and it has a component in the same direction as vdes

everywhere in the back area. Thus, the position where the term KR∇dϕ negates the

term −Kvdes in Eq. 3.4 must be in the front area, and so the equilibrium where the

robot stops at a distance δe from the obstacle must be in this area (see Fig. 3.3).

Eq. 3.4 also has an invariant set E that is defined as

E =
{
q ∈ R2 , q̇ ∈ R2 | q̇ = vdes , ∇dϕ(δ) = 0

}
. (3.6)

From Eq. 3.3, ∇dϕ = 0 implies that δ ≥ δc. This invariant set has no intersection

with the obstacle’s front area, since asymptotic convergence to the desired velocity

vdes and a monotonic decrease in the value of the potential field ϕ(δ) as δ → δc

(property (iv) of ϕ) cannot occur simultaneously in the front area.

The stability characteristics of the unique equilibrium point in Eq. 3.5 and the

invariant set in Eq. 3.6 are discussed in the next two theorems.

Theorem 3.3.5. Consider the unique equilibrium point of Eq. 3.4 for which the robot

is stationary at distance δe, given in Eq. 3.5, from the boundary of the obstacle in the
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Figure 3.3: Illustration of Repulsive Vector Field −∇dϕ (Red Arrows) and the
Unique Equilibrium Point at Distance δe from the Obstacle, Given by Eq. 3.5.

obstacle’s front area. This equilibrium is a saddle point.

Proof. We use Lyapunov’s indirect method to investigate the stability properties of

this equilibrium. Toward this end, we define the state vector as X = (qT , q̇T )T ∈ R4

and linearize Eq. 3.4 about the equilibrium point, obtaining the following equation:

Ẋ =

 02×2 I2×2

−KR
∂
∂q
∇dϕ(δ) −K

X, (3.7)

where δ ≡ δe. By Lemma 3.5 in (Koditschek, 1989), we know that the linear system

in Eq. 3.7 has the stability properties of the system described by q̇ = − ∂
∂q
∇dϕ(δe)q.

In addition, since q = d+ qP and ϕ = ϕ(δ), where δ = (‖d‖ − r), we can show that

∇dϕ = ∇qϕ (this equation is similar to Equation (7) in (Tanner et al., 2003) and is

proved in Appendix B). Therefore, we have that q̇ = − ∂
∂q
∇dϕ(δe)q = −∇2ϕ(δe)q,

where ∇2ϕ(δe) is the Hessian of ϕ at the equilibrium point. The stability properties

of Eq. 3.7 are thus determined by the eigenvalues of ∇2ϕ(δe), which we characterize

in the following lemma.

Lemma 3.3.6. The determinant of ∇2ϕ(δ) is strictly negative for all points q ∈ R2

such that δ ∈ (0, δc), and consequently, the eigenvalues of ∇2ϕ(δ) have opposite signs.
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Proof. The Hessian of ϕ can be calculated as

∇2ϕ(δ) =
∂

∂q
(∇dϕ(δ)) =

∂

∂q
(ϕ′(δ)ed) , (3.8)

where ϕ′(δ) = dϕ
dδ

. Applying the fact that ∇dϕ = ∇qϕ, Eq. 3.8 can be written as

∇2ϕ(δ) = ϕ′′(δ)ede
T
d + ϕ′(δ)

(
∂ed
∂q

)
, (3.9)

where ϕ′′(δ) = d2ϕ
dδ2

. By the chain rule, the partial derivative in Eq. 3.9 can be

expressed as

∂ed
∂q

=
∂ed
∂d

∂d

∂q
. (3.10)

Since d = q − qP , we have that ∂d
∂q

= I. Also, given that ed = [cos(θd) sin(θd)]T , we

can confirm that

∂ed
∂d

=
1

δ

 sin(θd)2 − cos(θd) sin(θd)

− cos(θd) sin(θd) cos(θd)2

 . (3.11)

Using Eqs. 3.10 and 3.11, Eq. 3.9 can be rewritten as

∇2ϕ(δ) = ϕ′′(δ)

 cos(θd)2 cos(θd) sin(θd)

cos(θd) sin(θd) sin(θd)2


+
ϕ′(δ)

δ

 sin(θd)2 − cos(θd) sin(θd)

− cos(θd) sin(θd) cos(θd)2

 . (3.12)

Then, we can express the determinant of the Hessian as

det(∇2ϕ(δ)) =
1

δ
ϕ′(δ)ϕ′′(δ). (3.13)

We can determine from Eq. 3.1 that ϕ′(δ) and ϕ′′(δ) are strictly negative and strictly

positive, respectively, for δ ∈ (0, δc). Hence, det(∇2ϕ(δ)) is strictly negative for any

point q that is at a distance δ ∈ (0, δc) from a strictly convex obstacle.
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Since det(∇2ϕ) is strictly negative, the eigenvalues of ∇2ϕ are both non-zero and

have opposite signs, and consequently the equilibrium of the system described by

q̇ = −∇2ϕ(δe)q is a saddle point. As explained in the text preceding Lemma 3.3.6,

this implies that the equilibrium of the system in Eq. 3.7 is also a saddle point.

Therefore, the equilibrium of Eq. 3.4 for which the robot is stationary at distance δe

from the obstacle is a saddle point. We can thus conclude that the robot can only

reach this equilibrium if its initial position is in a set of measure zero. In practice,

the robot will not be initialized precisely in this set, and so it will never stop at the

location of the saddle point.

Theorem 3.3.7. The invariant set E described in Eq. 3.6 is locally asymptotically

stable, and the obstacle’s back area is a subset of its basin of attraction.

Proof. We cannot use Lyapunov’s indirect method to study the stability of the in-

variant set E due to the following argument. In the set E , we have that δ ≥ δc, and

consequently ϕ(δ) = 0 and dϕ(δ)/dδ = 0 in this set. The linearization of Eq. 3.4

about each point in the set E is given by Eq. 3.7 with δ ≥ δc. As a result, the first two

columns of the matrix in Eq. 3.7 are both columns of zeros, and therefore the matrix

has two zero eigenvalues. Thus, we cannot determine the stability characteristics of

the closed-loop system from its linearization (Khalil, 1996).

Instead, we use LaSalle’s invariance principle for this case. Toward this end, we

define the velocity error s = q̇ − vdes. Since the desired velocity is constant, we have

that q̈ = ṡ. Then, the closed-loop dynamics in Eq. 3.4 can be rewritten as:

ṡ+Ks+KR∇dϕ = 0. (3.14)

We consider the following Lyapunov function:

V =
1

2
sTs+ kRϕ(δ). (3.15)
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This function is positive over the entire state space and equals zero at each point in

the set E , since s = 0 and ϕ(δ) = 0 in this set. The time derivative of this function

is:

V̇ = −sTKs− sTKR∇dϕ+ kR(∇dϕ)T ḋ, (3.16)

where we have written ϕ̇ = (∇dϕ)T ḋ in the last term using the chain rule. To simplify

Eq. 3.16, we write ḋ as ḋ = q̇− q̇P , in which q̇P is the time derivative of the position

of the projection point (see Fig. 3.1). Since the projection point is constrained to

move along the boundary of the obstacle, its velocity q̇P is always tangent to this

boundary. Moreover, the gradient of the potential field ϕ is normal to the boundary.

Hence, we can conclude that (∇dϕ)T q̇P = 0. Thus, using the relation s = q̇ − vdes,

Eq. 3.16 is simplified to:

V̇ = −sTKs+ kRv
T
des∇dϕ. (3.17)

As stated in Definition 3.3.3, the second term on the right-hand side of this equation

is negative in the obstacle’s back area, and thus V̇ is negative definite over the entire

back area of the obstacle. This means that the invariant set E is locally asymptoti-

cally stable, and a set defined as Ω := {X ∈ R4 | V ≤ c, c > 0}, which contains the

obstacle’s back area, is the simplest estimate of the basin of attraction for E . The set

Ω consists of all trajectories with a bounded initial velocity that start in or enter the

obstacle’s back area.

3.3.2 Collision Avoidance Analysis

We now prove that the robot will never collide with the obstacle in either its front

area or back area. For the case where the robot is in the back area, the following

corollary from Theorem 3.3.7 ensures collision avoidance:
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Corollary 3.3.8. Since V̇ is negative everywhere in the obstacle’s back area, V can

never become unbounded in this area. This implies that ϕ never blows up to infinity

in the back area. Hence, δ never approaches zero in this region, meaning that the

robot never collides with the obstacle when it is in the back area.

Next, we analyze the case where the robot is in the obstacle’s front area. For

this purpose, we study the dynamics of the robot in a different coordinate system,

illustrated in Fig. 3.4. Note that the vectors denoted by e in the figure are unit

vectors. First, we decompose the robot’s velocity q̇ into the sum of q̇P , the velocity of

the projection point on the obstacle’s boundary, and ḋ, the robot’s velocity relative

to the projection point. We describe q̇P in a tangential-normal coordinate system

(Meriam and Kraige, 2012), in which ξ ∈ R denotes the scalar displacement of the

projection point along the obstacle’s boundary, and ρ ∈ R>0 denotes the radius of

curvature of the boundary. In addition, we describe ḋ in a polar coordinate system

(Meriam and Kraige, 2012), in which (as defined previously) δ = (‖d‖ − r) ∈ R≥0 is

the distance between the robot’s boundary and the projection point, and θd ∈ [−π, π]

rad is the angle of the vector d in the global reference frame. Using the facts that

q̇ = q̇P + ḋ, eδ = ed, and q̇P is always tangent to the obstacle’s boundary, the robot’s

velocity can be written in the new coordinate system as:

q̇ = (δ̇)eδ +
(

(δ + r)θ̇d

)
eθd + (ξ̇)et. (3.18)

Therefore, the robot’s acceleration is:

q̈ =
(
δ̈ − (δ + r)θ̇2d

)
eδ +

(
(δ + r)θ̈d + 2δ̇θ̇d

)
eθd + (ξ̈)et +

(
ξ̇2

ρ

)
en. (3.19)

Moreover, since the collision vector d always points in the direction of the normal

to the boundary, we can conclude that et = eθd and en = −eδ. Substituting the

expressions for q̇ and q̈ defined in Eq. 3.18 and Eq. 3.19 into Eq. 3.4, we can write
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Figure 3.4: Illustration of the Coordinate Systems Used to Derive Eqs. 3.20 and
3.21.

the resulting equations of motion along the eδ and eθd directions as Eq. 3.20 and Eq.

3.21, respectively:

δ̈ − (δ + r)θ̇2d −
ξ̇2

ρ
+ kδ̇ + kRϕ

′(δ)− kvdes cos(θd) = 0, (3.20)

(δ + r)θ̈d + 2δ̇θ̇d + ξ̈ + k(δ + r)θ̇d + kξ̇ + kvdes sin(θd) = 0, (3.21)

in which vdes = ‖vdes‖. Note that the repulsive force −ϕ′(δ)ed shows up only in Eq.

3.20, since ed = eδ.

Remark 3.3.9. The robot is in the obstacle’s back area when cos(θd) > 0, and it is

in the front area when cos(θd) ≤ 0.

The next theorem uses Eq. 3.20 and Eq. 3.21 to prove that the robot will never

collide with the obstacle in its front area.

Theorem 3.3.10. If the robot’s trajectory starts anywhere in the obstacle’s front

area, then the robot will never collide with the obstacle’s boundary in this region.

Proof. We consider the following function:

W =
1

2

(
δ̇2 +

(
(δ + r)θ̇d + ξ̇

)2)
+ kRϕ(δ)

− kvdes
(

(δ + r) cos(θd)−
∫ θd

0

ρ sin(σ)dσ

)
. (3.22)

85



To confirm that this function is positive over all θd in the obstacle’s front area, i.e.

θd ∈ [−π,−π/2]∪[π/2, π] rad, we only have to prove that (δ cos(θd)−
∫ θd
0
ρ sin(σ)dσ) ≤

0 for all θd in this set. From Remark 3.3.9, we see that the term δ cos(θd) ≤ 0

for all θd in the front area. In addition, by Definition 6.2 in (Khalil, 1996), the

integral
∫ θd
0
ρ sin(σ)dσ ≥ 0 for any θd ∈ [−π, π] rad, since ρ is always positive and

sin(θd) belongs to the sector [0, π/4] for θd ∈ [−π, π] rad (and therefore for θd ∈

[−π,−π/2] ∪ [π/2, π] rad). Therefore, (δ cos(θd) −
∫ θd
0
ρ sin(σ)dσ) ≤ 0 for all θd

in the front area, and hence W is positive over such θd. We note that we cannot

derive a closed-form solution for the integral
∫ θd
0
ρ sin(σ)dσ, since ρ changes with

θd for arbitrary strictly convex obstacles, and the obstacle shape in our scenario is

unknown.

The time derivative of the function W along the trajectories of the system in Eq.

3.20 and Eq. 3.21 is given by:

Ẇ =− k
(
δ̇2 + (δ + r)2θ̇2d

)
+ δ̇

ξ̇2

ρ
− ξ̇δ̇θ̇d

− kvdes
(
ξ̇ sin(θd)− d

dt

∫ θd

0

ρ sin(σ)dσ

)
. (3.23)

We define β as the angle of the direction of the normal to the boundary in the global

reference frame. For an infinitesimal change in the projection point displacement ξ,

we have that dξ = ρdβ, where the radius of curvature ρ is approximated as constant.

This implies that ξ̇ = ρβ̇. Moreover, since eδ is always normal to the boundary, we

can conclude that dθd = dβ, and consequently, β̇ = θ̇d. Using the relation ξ̇ = ρθ̇d,

we can reduce Eq. 3.23 to the following expression:

Ẇ = −k
(
δ̇2 + (δ + r)2θ̇2d

)
− kvdes

(
ρθ̇d sin(θd)− d

dt

∫ θd

0

ρ sin(σ)dσ

)
. (3.24)

We now define g(θd) :=
∫ θd
0
ρ sin(σ)dσ. By the chain rule, the time derivative of g(θd)

can be written as d
dt
g(θd) = d

dθd
g(θd)θ̇d, where d

dθd
g(θd) = ρ sin(θd). This leads to the
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cancellation of the two terms in the second set of parentheses in Eq. 3.24, and Ẇ is

simplified to:

Ẇ = −k
(
δ̇2 + (δ + r)2θ̇2d

)
, (3.25)

from which we can conclude that Ẇ ≤ 0. Therefore, W never becomes unbounded

in the front area, which implies that ϕ remains bounded in this region. By property

(ii) of ϕ, this shows that the distance δ never approaches zero in the front area, and

hence the robot never collides with the obstacle in this region.

The next theorem, which addresses the evolution of robot trajectories that begin

in the obstacle’s front area, completes our analysis of collision avoidance.

Theorem 3.3.11. Almost all robot trajectories that start in the obstacle’s front area

will eventually leave this region and enter the back area or the safe area.

Proof. From Theorem 3.3.5, the only equilibrium point in the front area is a saddle,

which does not attract any trajectories in this area except for trajectories that start

in a particular set of measure zero. Furthermore, since there are no other equilibria

in the front area, we can apply the Index Lemma in (Khalil, 1996) to Eq. 3.14 and

conclude that there is no limit cycle in this area as well. Therefore, the unstable

trajectories in the front area, which emanate from the saddle point, must cross into

the back area. By Theorem 3.3.7, there exists an asymptotically stable invariant set

in the back area that attracts these trajectories.

3.3.3 A Bound on The Repulsive Term in the Control Input

As stated in property (iii) in Section 3.2.1, the derivative of the potential field ϕ

goes to infinity when the robot’s distance δ from the obstacle approaches zero. Thus,

when the robot is very close to the obstacle (i.e., δ is small), the repulsive term in the

control input Eq. 3.2 could become too large to implement in practice. In this section,
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we establish an upper bound on this term by incorporating realistic constraints on

the robot’s initial velocity and sensing range.

We consider the line that is parallel to the direction of the desired velocity and

passes through the saddle equilibrium point, as shown in Fig. 3.3. If the robot’s

initial position is located on this line, and its initial velocity is parallel to this line,

then both the velocity stabilizing force −K(q̇ − vdes) and the repulsive force will

be along this line at the beginning of its motion and for all future time, since there

will be no other vector fields to drive the robot off this direction. This leads to one-

dimensional motion of the robot along this line. Moreover, for a given initial robot

speed, the velocity stabilizing force has the largest component that directly opposes

the repulsive force when the robot is on this line, compared to when it is anywhere

else in the obstacle’s front area. Thus, the minimum feasible value for δ in the front

area is achieved on this line.

When the robot moves only along this line in the front area, we have that θ̈d, θ̇d, ξ̈, ξ̇ =

0 and θd = π. Substituting these values into Eqs. 3.20 and 3.21, the equation of the

robot’s one-dimensional motion along this line in the front area is given by:

δ̈ + kδ̇ + kRϕ
′(δ) + kvdes = 0. (3.26)

Theorem 3.3.13 below proves the existence of a lower bound on δ by comparing the

time response of Eq. 3.26, which is denoted by δ(t), to that of the following equation,

%̈+ k%̇ = h(%), (3.27)

where

h(%) := −a%+ b, a, b ∈ R>0. (3.28)

We first state the following Lemma, which describes the conditions that guarantee

the existence of a positive lower bound for the time response of Eq. 3.27, denoted by

%(t).
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Lemma 3.3.12. Given %0 := %(0) ∈ R>0
3 and w0 := %̇(0) as the initial conditions

for Eq. 3.27, and vmax ∈ R>0 as a bound for w0, i.e. |w0| ≤ vmax, there exists a

strictly positive number γ that satisfies %(t) ≥ γ, ∀t ∈ [0,∞), if a and b in Eq. 3.28

are large enough.

Proof. See Appendix C.

Theorem 3.3.13. Given δ0 := δ(0) and v0 := δ̇(0) as the robot’s initial distance

from the obstacle and its initial speed in Eq. 3.26, respectively, and also assuming

|v0| ≤ vmax, there exists a lower bound on the robot’s distance from the obstacle. If

the robot starts its motion in the safe area, this bound will be uniform and depend on

δc and vmax.

Proof. We rewrite Eq. 3.26 in the following form:

δ̈ + kδ̇ = −kRϕ′(δ)− kvdes. (3.29)

The right-hand side of Eq. 3.29 is the orange curve in Fig. 3.5. From this plot, we

can see that there is at least one function h(δ) in the form of Eq. 3.28 (the green

straight line in Fig. 3.5) that satisfies the following condition,

h(δ) ≤ −kRϕ′(δ)− kvdes, ∀δ ∈ R>0, (3.30)

for the type of potential field defined by Eq. 3.1. Hence, we can write the following

differential inequality:

δ̈ + kδ̇ ≥ −aδ + b, δ(0) = δ0, δ̇(0) = v0. (3.31)

Now, considering the system in Eq. 3.27 with the initial conditions set as %0 =

δ0, w0 = v0, and defining

χ% := %̇+ k%, χδ := δ̇ + kδ, (3.32)

3We assume that %0 is positive, since we want to compare %(t) with δ(t), which we proved is

always positive in Theorem 3.3.10.
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Figure 3.5: Illustration of the Right-Hand Side of Eq. 3.29 Compared to a Function
in the Form of Eq. 3.28 with % Replaced by δ.

we rewrite Eq. 3.27 and Eq. 3.31 as

χ̇% = h(%), χ̇δ ≥ h(δ). (3.33)

Using the comparison lemma (Khalil, 1996), we obtain

χδ ≥ χ%, ∀t ∈ [0,∞). (3.34)

Furthermore, using the expressions for χδ and χ% in Eq. 3.32, we can rewrite Eq.

3.34 as

δ̇ − %̇ ≥ −k(δ − %). (3.35)

Using the comparison lemma again, we obtain

δ(t) ≥ (δ0 − %0) e−kt + %(t), ∀t ∈ [0,∞), (3.36)

and taking into account the fact that δ0 = %0, we conclude that

δ(t) ≥ %(t), ∀t ∈ [0,∞). (3.37)

Finally, invoking Lemma 3.3.12, we can write

δ(t) ≥ γ, (3.38)

which gives a lower bound for δ(t) and completes the proof.
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If we assume that the robot starts its motion in the safe area, we can replace δ0

with δc in all the calculations and obtain a closed-form solution for γ based on the

procedure in C. Such a bound is a function of δc and vmax, and this bound is uniform

with respect to the robot’s initial condition.

To conclude this section, we take into account the fact that −ϕ′(δ) is a decreasing

function with respect to δ, which allows us to establish an upper bound for the

repulsive term based on the derived lower bound on δ(t) as

‖−kRϕ′(δ)ed‖ ≤ −kRϕ′(γ). (3.39)

3.4 Analysis of Robot Dynamics for Multiple-Obstacle Case

In this section, we design a control law based on Eq. 3.2, which was developed for

an environment with a single obstacle, and demonstrate that it achieves the three ob-

jectives described in Problem 3.1.5 for an environment that contains multiple strictly

convex obstacles. Our solution is to define a switching control law, in which the robot

applies the control law Eq. 3.2 for the closest obstacle that it detects in its sensing

range at each time instant. This control law is a discontinuous function because the

repulsive term in the control input Eq. 3.2 undergoes a sudden change in its direction

whenever the robot crosses the switching surface between two obstacles, which is the

loci of all points that are equidistant from the obstacles, as illustrated in Fig. 3.6. If

there are m disjoint obstacles in the robot’s sensing range, the control law is written

as:

u = −K(q̇ − vdes)−KR∇d∗ϕ(δ∗),

δ∗ = min
i∈{1,...,m}

{δi}, (3.40)
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where d∗ is the collision vector associated with the closest obstacle. The closed-loop

dynamics of the robot with control law Eq. 3.40 can be written as:

q̈ +K(q̇ − vdes) +KR∇d∗ϕ(δ∗) = 0. (3.41)

Defining the state vector X = (XT
1 ,X

T
2 )T ∈ R4, where X1 = q and X2 = q̇, we can

rewrite Eq. 3.41 in state-space form as

Ẋ = f ∗(X) :=

 X2

−K(X2 − vdes)−KR∇d∗ϕ(δ∗)

 . (3.42)

Eq. 3.42 is a differential equation with a discontinuous right-hand side, since

∇d∗ϕ may have different directions on the sides of a switching surface between two

obstacles. To analyze the solutions X(t) of Eq. 3.42, suppose that at a given time,

the robot is at distance δi from obstacle i and distance δj from obstacle j. We then

replace the vector field f ∗ in 3.42 with f i and f j, where f i is the vector field on the

side of the switching surface that contains obstacle i, and f j is the vector field on the

side that contains obstacle j (see Fig. 3.6):

f i(X) =

 X2

−K(X2 − vdes)−KR∇diϕ(δi)

 ,
f j(X) =

 X2

−K(X2 − vdes)−KR∇djϕ(δj)

 . (3.43)

On each side of the switching surface, the robot’s dynamics are described by Eq. 3.4,

and therefore exhibit the desired velocity convergence and collision avoidance behav-

iors as we proved in Sections 3.3.1 and 3.3.2. On the switching surface, however, the

closed-loop system 3.42 can have two types of solutions, depending on the directions

of the vector fields f i and f j with respect to the switching surface. If the components

of f i and f j that are normal to the switching surface are pointing in the same di-

rection (Fig. 3.7, left), then the solution of the closed-loop system is a Carathéodory
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solution, which is an absolutely continuous function satisfying the integral equation

corresponding to Eq. 3.42, X(t) = X(t0) +
∫ t
t0
f ∗(X(τ))dτ (Liberzon, 2003). In this

case, the system trajectory passes through the switching surface. If the two compo-

nents that are normal to the switching surface point in opposite directions (Fig. 3.7,

right), then the system has a Filippov solution that satisfies the following differential

inclusion (Liberzon, 2003), defined in terms of a convex combination of f i and f j:

Ẋ ∈ F (X) :=
{
αf i(X) + (1− α)f j(X) : α ∈ [0, 1]

}
. (3.44)

Equation 3.44 describes the dynamics of the robot as:

Ẋ =


f i(X), δi < δj

αf i(X) + (1− α)f j(X), δi = δj

f j(X), δi > δj

(3.45)

Since the components of f i and f j that are normal to the switching surface are

pointing in opposite directions, the system trajectory corresponding to the Filippov

solution can only evolve on the switching surface. At the point where the system

trajectory reaches the switching surface, there is a unique convex combination of f i

and f j (i.e., a unique value for α in 3.44) that is tangent to this surface, which defines

the direction of F (X) on the surface. At each point on the switching surface, the

Filippov solution is represented by the value of α for which F (X) is tangent to the

surface at that point.

A trajectory corresponding to a Filippov solution often chatters about the switch-

ing surface. We note that the proposed controller, in contrast to a sliding mode

controller, is not designed to stabilize the system trajectories to the switching sur-

face. Chattering might occur for some time, but the robot will eventually leave the

switching surface if certain conditions hold. Theorem 3.4.1 below guarantees that,
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Figure 3.6: Illustration of the Forces That Act on the Robot When It Detects
Multiple Obstacles in its Sensing Range.

Figure 3.7: A Schematic Representation of Two Vector Fields That Result in (Left)
Carathéodory and (Right) Filippov Solutions for a Differential Equation with a Dis-
continuous Right-Hand Side.

under these conditions, the closed-loop system has no equilibria on the switching

surface, which ensures that the robot does not become stuck between two obstacles.

Theorem 3.4.1. Consider an unbounded environment with at least two obstacles for

which Assumption 3.1.4 holds true; i.e., the closest pair of obstacles is separated by

a distance larger than the robot’s diameter 2r. Given the discontinuous control law

in Eq. 3.40, no equilibrium point exists on the switching surface between any two

obstacles in the environment if p in Eq. 3.1 is sufficiently small.

Proof. Suppose that obstacles i and j are the closest pair of obstacles in an envi-

ronment. By Assumption 3.1.4, the distance between these obstacles is greater than

2r. If there exists an equilibrium point (Ẋ = 0) on the switching surface between
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obstacles i and j, we have that

αf i(X) + (1− α)f j(X) = 0. (3.46)

Using the fact that δi = δj on the switching surface, and substituting Eq. 3.3 for ϕ

and Eq. 3.43 for f i and f j, Eq. 3.46 becomes:

Kvdes + kR
p

δc

(
1−

(
δc
δs

)p)(
αedi + (1− α)edj

)
= 0, (3.47)

where we have defined δs := δi = δj.

We now derive a conservative upper bound for the parameter p in the potential

field. When the robot is on the switching surface, the repulsive force on it has the

highest possible component in the direction opposite to vdes when edi = edj .
4 The

magnitude of the repulsive force is highest when δs = r. Substituting edi = edj and

δs = r into Eq. 3.47, we can reduce this equation to the following scalar equation:

kvdes + kR
p

δc

(
1−

(
δc
r

)p)
= 0. (3.48)

To prevent the existence of an equilibrium point, and to ensure that the robot con-

verges to the desired velocity, we need the stabilizing term to exceed the repulsive

term; i.e.,

kvdes > −kR
p

δc

(
1−

(
δc
r

)p)
. (3.49)

We can rearrange this inequality to obtain the following upper bound on a function

of p, called µ(p):

µ(p) := p

((
δc
r

)p
− 1

)
<
kvdes
kR

δc. (3.50)

If the closest pair of obstacles are both in the robot’s sensing range, we know that

r ≤ δc, and therefore can confirm that µ(p) in Eq. 3.50 is strictly increasing for

4This is a theoretical scenario that would not happen in practice; we are using it here to obtain

a conservative bound on p.
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positive p. Hence, we can conclude that p must be small enough for Eq. 3.50 to hold,

which completes the proof.

The result in Theorem 3.4.1 can be generalized for a point that is equidistant

from l ∈ {3, ...,m} obstacles. At such a point, the convex combination of vector

fields f i, which defines the differential inclusion in Eq. 3.44, is given by F (X) :=∑l
i=1 αif i(X), where αi ∈ [0, 1] for all i ∈ {1, ..., l} and

∑l
i=1 αi = 1. The vector X

is an equilibrium if
∑l

i=1 αif i(X) = 0, which implies that

Kvdes + kR
p

δc

(
1−

(
δc
δs

)p)( l∑
i=1

αiedi

)
= 0, (3.51)

where δs := δ1 = δ2 = ... = δl. Again, we consider the repulsive force on the

robot with the highest possible component in the direction opposite to vdes, which

occurs when ed1 = ed2 = ... = edl . This simplifies the summation in Eq. 3.51 to∑l
i=1 αi edi = ed1 . Finally, setting δs = r, Eq. 3.51 is simplified to Eq. 3.48. This

shows that choosing p small enough to satisfy Eq. 3.50 will also guarantee the absence

of an equilibrium at a point that is equidistant from three or more obstacles.

3.5 Simulation Results

To validate our controller, we simulated the motion of a disk-shaped holonomic

robot in environments with a single strictly convex obstacle or multiple strictly convex

obstacles. The robot’s radius is r = 0.1 m, and its sensing radius is δc = 0.5 m. The

desired velocity is set to vdes = 0.1 m/s along the x-axis of the global frame for all

the simulations. We present results for one scenario with a single obstacle and two

scenarios with multiple obstacles. In all scenarios, the robot starts its motion in the

safe area to the left of the obstacles, does not have any global localization or prior

information about the shapes and locations of the obstacles, and only knows the

desired velocity.
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3.5.1 Single Obstacle

We first consider an environment with an elliptical obstacle. The control parame-

ters in Eq. 3.2 are set to k = 1, kR = 0.05, and p = 0.4. Figure 3.8 plots the trajectory

of the robot in this environment, showing that it travels past the obstacle without

collision. The robot’s x and y velocity components over its trajectory are plotted

versus time in Fig. 3.9. This figure shows that the robot quickly approaches the

desired velocity until it detects the obstacle in its sensing range. Then, the controller

redirects the robot so that it travels around the obstacle, as indicated by the increase

in the y velocity component, and the robot deviates from the desired velocity. The

robot converges to the desired velocity after it travels far enough from the obstacle

that it cannot detect it within its sensing range.

3.5.2 Multiple Obstacles

In the first scenario, we consider an environment with six identical circular obsta-

cles, shown in Fig. 3.10. The radius of each obstacle is 1.1 m, and Assumption 3.1.4

is satisfied. The control parameters are set to k = 1, kR = 0.05, and p = 0.32. Fig.

3.10 shows that the robot travels between the obstacles without colliding with them

or becoming entrapped. Figure 3.11 plots the time evolution of the robot’s velocity

components, which oscillate as the robot maneuvers between the obstacles. The sud-

den changes in the y velocity component occur at times when the robot detects a

new obstacle in its sensing range and begins to circumvent the obstacle. The robot

converges to the desired velocity after it travels past all six obstacles.

In the second scenario, we consider an environment with four different strictly

convex obstacles, shown in Fig. 3.12. Assumption 3.1.4 is satisfied, since the shortest

distance between the closest pair of obstacles (Obstacles 1 and 2) is 0.3 m. As

97



illustrated in Fig. 3.12, the robot travels past the obstacles without colliding with

them or becoming entrapped between them. Figure 3.13 plots the time evolution of

the robot’s velocity components. The robot’s velocity displays a chattering behavior

between times A and B, when it passes through the narrow channel between Obstacles

1 and 2. This is due to its frequent crossing of the switching surface between these

two obstacles, which indicates that its trajectory is a Filippov solution of the closed-

loop dynamics 3.43-3.44, as described in Section 3.4 (Fig. 3.7, right). At time C, the

robot crosses the switching surface between Obstacles 2 and 3. No chattering occurs

at this time, since the resultant of the velocity stabilizing force and the two repulsive

forces from Obstacles 2 and 3 prevent the robot from entering the narrow channel

between these two obstacles. At time D, the robot crosses the switching surface

between Obstacles 3 and 4. No chattering is observed at this time either, because

the channel between these two obstacles is relatively wide. The absence of chattering

about the last two switching surfaces indicates that the robot’s trajectory through

these switching surfaces is a Carathéodory solution of the closed-loop dynamics, as

discussed in Section 3.4 (Fig. 3.7, left). The robot stops sensing Obstacle 3 after it

passes the corresponding point D in Fig. 3.12 and is repelled only by Obstacle 4. Fig.

3.13 shows that after circumventing all the obstacles, the robot converges to vdes.

3.6 Application to Velocity Control of Collective Transport in Unbounded

Domains with Strictly Convex Obstacles

In this section, we propose decentralized controllers for robots without global

position information or communication to perform collective transport in unbounded

environments with convex obstacles.
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Figure 3.8: Simulation of a Disk-Shaped Holonomic Robot’s Motion in an Environ-
ment with a Single Elliptical Obstacle.

Figure 3.9: Time Evolution of the Robot’s x and y Velocity Components in the
Global Frame While It Moves Along the Red Trajectory Shown in Fig. 3.8.

3.6.1 Dynamical Model

We illustrate the system that we consider in Fig. 3.14. A load is transported

by N point-mass robots that are rigidly attached to the load and modeled as double

integrators. Here, we derive the equations of motion for the entire system, comprised

of the load and the robots. We define m as the mass of the entire system and J

as the moment of inertia of the entire system about the axis that passes through

its center of gravity and is normal to the plane of motion. We also define ri =

[ri,x ri,y]
T ∈ R2 as the vector from the system’s center of mass (denoted by CG in
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Figure 3.10: Simulation of the Robot’s Motion in an Environment with Six Circular
Obstacles in Which Assumption 3.1.4 Is Satisfied.

Fig. 3.14) to the attachment point of robot i. Each robot i applies an actuating

force ui = [ui,x ui,y]
T ∈ R2 to the payload. We denote the vector of all applied forces

by u =

[
(u1)

T · · · (uN)T
]T

. We denote the pose of the load in the inertial reference

frame by qo ∈ R3. Then we can write the equation of motion of the system asmI 0

0 J

 q̈o =

 I · · · I

r̂1 · · · r̂N

u, (3.52)

where I ∈ R2×2 is the identity matrix and r̂i ∈ R1×2 is defined as r̂i := [−ri,y ri,x].

3.6.2 Controller Design

The proposed decentralized controller for each robot i consists of two components:

ui = uv,i + ur,i, (3.53)

where uv,i stabilizes the robot’s velocity to a target velocity vdes, and ur,i is a repulsive

term that pushes the robot away from the closest obstacles in its sensing range. We
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Figure 3.11: Time Evolution of the Robot’s x and y Velocity Components in the
Global Frame While It Moves Along the Red Trajectory Shown in Fig. 3.10.

now define each of these terms. Let ẋi be the velocity of robot i in the inertial frame.

We define uv,i for each robot i as a proportional-integral velocity controller:

uv,i = −K(ẋi − vdes)−KI

∫ t

o

(ẋi − vdes)dτ, (3.54)

where K and KI are controller gain matrices. This controller drives each robot’s

velocity to vdes and eliminates any drift from the path between the initial CG position

and the goal position, as proved in (Farivarnejad, H. and Berman, 2018). Also,

when a robot detects an obstacle in its sensing range, it applies the repulsive term in

Eq. 3.40. This means that the repulsive term is written as

ur,i = −KR∇d∗ϕ(δ). (3.55)

To this end, the decentralized control law for robot i is written as

ui = −K(ẋi − vdes)−KI

∫ t

o

(ẋi − vdes)dτ −KR∇d∗ϕ(δ). (3.56)

We see that each robot requires only its own velocity and its distance from the closest

obstacle in its sensing range to apply this controller.
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Figure 3.12: Simulation of the Robot’s Motion in an Environment with Four Dif-
ferent Strictly Convex Obstacles in Which Assumption 3.1.4 Is Satisfied. The Points
Labeled A, B, C, and D Are the Locations of the Robot at the Corresponding Times
Labeled in Fig. 3.13.

3.6.3 Simulation Results

To show the effectiveness of the control law in Eq. 3.56, we consider a team

of six point-mass robots that are rigidly attached to a rectangular payload. The

environment contains three circular obstacles with different radii. The mass and

moment of inertia of the system are m = 1 kg and I = 0.33 kg·m2. The controller

gains are set to K = diag(0.4, 0.4), KI = diag(0.005, 0.005), and kr = 0.05. The

target transport speed is vdes = 0.1 m/s, and the simulation is run for 120 s. As

shown in Fig. 3.15, the robots transport the payload toward the desired direction

(the angle of the dashed green line) and avoid the obstacles along the way without

getting stuck between them. Also, the drift from the dashed green line converges to

zero after the robots pass the obstacles.
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Figure 3.13: Time Evolution of the Robot’s x and y Velocity Components in the
Global Frame While It Moves Along the Red Trajectory Shown in Fig. 3.12.

Figure 3.14: Illustration of a Collective Transport Team with Four Point-mass
Robots, a Convex Obstacle, and the Associated Coordinate Systems.
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Chapter 4

POSITION CONTROL OF COLLECTIVE TRANSPORT IN UNBOUNDED

DOMAINS WITHOUT OBSTACLES

In this chapter, we propose decentralized position controllers for a team of point-

mass robots that must cooperatively transport a payload to a target location. The

robots have double-integrator dynamics and are rigidly attached to the payload. The

controllers only require robots’ measurements of their own positions and velocities,

and the only information provided to the robots is the desired position of the payload’s

center of mass. We consider scenarios in which the robots do not know the position

of the payload’s center of mass and try to selfishly stabilize their own positions to

the desired location, similar to the behaviors exhibited by certain species of ants

when retrieving food items in groups. We propose a proportional-derivative (PD)

controller that does not rely on inter-robot communication, prior information about

the load dynamics and geometry, or knowledge of the number of robots and their

distribution around the payload. Using a Lyapunov argument, we prove that under

this control strategy, the payload’s center of mass converges to a neighborhood of

the desired position. Moreover, we prove that the payload’s rotation is bounded, and

its angular velocity converges to zero. We show that the error between the steady-

state position of the payload’s center of mass and its desired position depends on the

robots’ distribution around the payload’s center of mass, with a uniform distribution

resulting in the lowest steady-state error. We validate our theoretical results with

simulations in MATLAB.
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Figure 4.1: Illustration of a Collective Transport Team with Four Point-Mass Robots
and the Associated Coordinate Systems.

4.1 Problem Statement

We consider a team of N identical point-mass robots that move on a planar sur-

face and are rigidly attached to a payload in an arbitrary configuration, as shown in

Fig. 4.1. We assume that each robot has access to its own position and velocity with

respect to an inertial coordinate system, which is common to all the robots. The

robots do not communicate with one another and are not assigned predefined tra-

jectories. They also lack information about the payload’s kinematics and dynamics,

the number of robots in the transport team, and the robots’ distribution around the

payload.

We define xo = [xo yo]
T ∈ R2 and θo ∈ R as the position of the payload’s center

of mass, point O in Fig. 4.1, and the payload’s orientation with respect to a global

coordinate frame, respectively. We define xi = [xi yi]
T ∈ R2 as the position of robot

i and xd = [xd yd]
T ∈ R2 as the position of the target point in the global frame, as

shown in Fig. 4.2. The center of mass of the entire system, including both the load

and the robots, is denoted by point C in Fig. 4.1. Given that points O and C are

not necessarily coincident, we define xc = [xc yc]
T ∈ R2 as the position of C in the
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Figure 4.2: Illustration of the Geometric Parameters That Express the Position of
a Robot in the Local Coordinate Frame of the Load.

global frame and rc ∈ R2 as the vector from C to O, as shown in Fig. 4.1. We also

define ri = [rix riy]
T ∈ R2 as the vector from C to the attachment point of robot i in

the global frame.

Each robot i knows its own position xi and velocity ẋi and applies an actuating

force ui = [uix uiy]
T ∈ R2 to the payload. The control objective is to design the

forces ui, i = 1, ..., N , such that the robots drive the position of the payload’s center

of mass, xo, to the target position xd. The only sensor feedback available to the

robots consists of their on-board measurements of their own positions and velocities.

4.2 Dynamical Model

To derive the dynamical model of the entire system, comprised of both the load and

the robots, we use the framework in Chapter 2. We denote the mass of each robot and

the mass of the payload by mr and mo, respectively. We also define Io as the payload’s

moment of inertia about the axis perpendicular to the plane and passing through O.

Considering the entire system as a rigid body and defining q := [xc yc θo]
T ∈ R3

as the vector of generalized coordinates, we can write the equation of motion of the
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entire system as mI 0

0 I

 q̈ =

 I · · · I

r̂T1 · · · r̂TN

u, (4.1)

where m and I are the mass and moment of inertia of the entire system, given by:

m = mo +Nmr,

I = Io +mo ‖rc‖2 +mr

N∑
i=1

‖ri‖2 , (4.2)

and r̂i ∈ R2 and u ∈ R2N are defined as

r̂i = [−riy rix]
T , (4.3)

u = [uT1 · · · uTN ]T . (4.4)

The matrix I ∈ R2×2 is the identity matrix.

4.3 Controller Design

In this section, we present decentralized robot controllers for the system described

by Eq. 4.1 that produce asymptotic convergence of the payload’s center of mass to a

neighborhood of the desired position xd. The proposed control law has a proportional-

derivative (PD) structure,

ui = −Kdẋi −Kp(xi − xd), (4.5)

in which Kp = KpI and Kd = KdI are gain matrices, where Kp and Kd are strictly

positive constants. This control law implies that each robot selfishly tries to stabilize

its own position to the target position. Since the robots are attached to distinct

points on the payload’s boundary, convergence of all the robots’ positions to the

target position is impossible. However, by each applying the decentralized controller

in Eq. 4.5, the robots produce a collective transport behavior that approximately
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achieves the control objective defined in Section 4.1. We analyze and discuss this

behavior in the next section.

4.4 Motion Analysis

To analyze the collective behavior of the entire system of the payload and robots

with the proposed controller, we first derive the dynamics of the closed-loop system

and then investigate the stability and convergence properties of this system.

4.4.1 Closed-Loop Dynamics

There is a holonomic kinematic constraint between the position of robot i and the

position of the system’s center of mass (see Fig. 4.2), given by

xi = xc + ri. (4.6)

Taking the time derivative of Eq. 4.6, we obtain

ẋi = ẋc + r̂iθ̇o, (4.7)

where r̂i is given by Eq. 4.3. We define ec := xc − xd, where ėc = ẋc and ëc = ẍc,

since xd is constant. Substituting the expressions for xi and ẋi in Eqs. 4.6 and 4.7

into Eq. 4.5, we obtain

ui = −Kd(ėc + r̂iθ̇o)−Kp(ec + ri). (4.8)

We now incorporate the decentralized control law for ui in Eq. 4.8 into the dynamical

model in Eq. 4.1 to derive the equation of motion of the closed-loop system as

Mëc = −Kd

N∑
i=1

(ėc + r̂iθ̇o)−Kp

N∑
i=1

(ec + ri),

Iθ̈o = −Kd

N∑
i=1

r̂Ti (ėc + r̂iθ̇o)−Kp

N∑
i=1

r̂Ti (ec + ri), (4.9)
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whereM = mI. Taking into account the facts that ri×ri = 0 and [rTi 0]T×[aT 0]T =

[0 0 r̂Ti a]T , where a is an arbitrary vector in R2, the closed-loop system in Eq. 4.9

can be rewritten as

Mëc = −NKdėc −Kd

N∑
i=1

r̂i θ̇o −NKpec −Kp

N∑
i=1

ri,

Iθ̈o = −Kd

N∑
i=1

r̂Ti ėc −Kd

N∑
i=1

‖ri‖2 θ̇o −Kp

N∑
i=1

r̂Ti ec. (4.10)

For notational simplicity, we define % :=
∑N

i=1 ri, which implies that %̂ :=
∑N

i=1 r̂i,

and ρ :=
∑N

i=1 ‖ri‖
2. Note that while the direction of % changes with the payload’s

rotation, its magnitude remains unchanged since the robots are rigidly attached to

the payload and C is a fixed point on the payload.

4.4.2 Convergence Analysis

The equilibrium state of the closed-loop system in Eq. 4.10 is obtained by setting

ëc = ėc = 0 and θ̈o = θ̇o = 0, which results in the following equations:

Ne∗c + %∗ = 0, (4.11)

(%̂∗)T e∗c = 0, (4.12)

in which the superscript * denotes the equilibrium state. Solving Eq. 4.11 for e∗c , we

obtain e∗c = − 1
N
%∗. Since %̂ is perpendicular to % by definition, this shows that Eq.

4.12 is redundant. Also, since % has a constant norm, the steady-state error e∗c has a

constant magnitude. The set of equilibrium states E is therefore obtained as

E =

{
ec, ėc ∈ R2, θo, θ̇o ∈ R | ec = − 1

N
%, ėc = 0, θ̇o = 0

}
. (4.13)

Note that the payload’s orientation θo is not specified in E , which means that E is

a manifold in the state space and not an isolated equilibrium point. To analyze the
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convergence of the closed-loop system’s trajectories to E , we consider the following

quadratic positive semidefinite function,

V =
1

2
ėTcMėc +

1

2
Iθ̇2o +

1

2N
(Nec + %)TKp(Nec + %), (4.14)

which is zero in the set E and positive everywhere else. The time derivative of V is

calculated as

V̇ = ėTcMëc + Iθ̇oθ̈o +
1

N
(Nec + %)TKp(N ėc + %̇)

= ėTc (−NKdėc −Kd%̂ θ̇o −NKpec −Kp%) + θ̇o(−Kd%̂
T ėc −Kdρθ̇o −Kp%̂

Tec)

+NeTcKpėc + eTcKp%̇+ %TKpėc +
1

N
%TKp%̇. (4.15)

We see that many terms in the above expression cancel out. Moreover, since we can

confirm that %̇ = −%̂θ̇o and %T %̂ = 0, the last term in the right-hand side of Eq. 4.15

is zero. Hence, V̇ is simplified to

V̇ = −N ėTcKdėc −NKdρθ̇
2
o − ėTcKd%̂θ̇o − θ̇oKd%̂

T ėc, (4.16)

which can be rewritten in the following quadratic form:

V̇ = −
[
ėTc θ̇o

]NKd Kd%̂

Kd%̂
T NKdρ


︸ ︷︷ ︸

Q

ėc
θ̇o

 . (4.17)

The matrix Q ∈ R3×3 is the same matrix Q in [(Farivarnejad, H. and Berman,

2018), Theorem 3.1, Eq. (12)], which we proved is positive definite. This shows

that V̇ is negative semidefinite, and henceforth V remains bounded throughout the

motion of the entire system. Furthermore, invoking LaSalle’s invariant principle, we

can conclude that the trajectories of the closed-loop system in Eq. 4.10 converge to

a set that is characterized by V̇ ≡ 0, for which ėc ≡ 0 and θ̇o ≡ 0. This is the set E

in Eq. 4.13. Convergence of the closed-loop system’s trajectories to E implies that
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as t → ∞, the center of mass of the entire system (C) converges to a neighborhood

of the target position xd and the payload’s angular velocity θ̇o converges to zero.

The uniform continuity of θo implies the convergence of θo to a bounded value, which

depends on its initial value.

To analyze the convergence of the payload’s center of mass (O) to the target

position, we define ri,o as the vector from point O to robot i and %o :=
∑N

i=1 ri,o. We

also define eo = xo − xd. We can confirm that for a group of robots attached rigidly

to a payload,

rc = −mr

mo

% = −mr

m
%o. (4.18)

Moreover, since xc = xo − rc, we can write

ec = eo − rc. (4.19)

Substituting Eq. 4.18 for rc into Eq. 4.19 and then incorporating the result into Eq.

4.11, we obtain

e∗o = − 1

N
%∗o, (4.20)

which gives the position error of the payload’s center of mass at equilibrium. Like

%, %o has a constant magnitude, since the robots are rigidly attached to the payload

and O is a fixed point on the payload. Eq. 4.20 shows that the steady-state distance

between the payload’s center of mass and the target position depends on the number

of robots N and their distribution around the payload. This distance decreases as

N is increased, and for payloads with a homogeneous mass density, it decreases as

the distribution of robots around the payload’s center of mass approaches a uniform

distribution. For non-homogeneous payloads, this distance is reduced by allocating

the robots in accordance with the payload’s mass distribution; e.g., increasing the

number of robots around sections of the payload with high mass density. The direction
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of e∗o depends on the steady-state value of the payload orientation θo through %∗o; the

steady-state orientation depends on the initial value of θo, as stated earlier.

4.5 Simulation Results

We validate our analysis with simulation results for collective transport by a team

of identical robots that are arranged in three different distributions around a circular

payload. For each simulation, we observe the time evolution of the payload’s orien-

tation, angular velocity, and the position and velocity of its center of mass. We also

study the effect of the robot distribution on the steady-state error of the payload’s

center of mass with respect to the target position.

The load is modeled as a homogeneous circular ring with mass mo = 1 kg and

moment of inertia Io = 0.33 kg·m2. Six point-mass robots, each with mass mr = 0.05

kg, are rigidly attached to the load. The controller gain are Kp = 0.8 and Kv = 0.3.

The payload’s center of mass is initially located at xo(t = 0) = [3 − 1.5]T m. The

simulations were each run for 40 s.

Figs. 4.3-4.5 show snapshots of the payload over time for each robot distribution.

The robot locations are marked as red points on the perimeter of the load in its initial

and final configurations. The target position is shown as a green star at the origin,

and the actual trajectory of the payload’s center of mass is plotted in dashed green.

The red dashed line on the load indicates its orientation. The gray circles and the

orange dashed lines on them show the payload and its orientation, respectively, in

intermediate states. In addition, Figs. 4.6-4.7 show the time evolution of the position

and velocity of the payload’s center of mass for the three distributions. Also, Fig. 4.8

plots the corresponding time evolution of the load’s angular position and velocity.

In the first simulation (Fig. 4.3), the robots have an equally-spaced distribution,

and the load is transported to the target position with zero steady-state error. This
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happens because ||%o|| = 0, which results in Eq. 4.20 yielding ||e∗o|| = 0. The position

and velocity of the payload’s center of mass converge to zero quickly after around 7

s (the blue lines in Figs. 4.6 and 4.7). Also, the payload shows zero rotation and

angular velocity during the entire transport (the blue lines in Fig. 4.8). In the

second simulation (Fig. 4.4), the robots have a nonuniform distribution for which

||%o|| = 1.058 m. Using Eq. 4.20, we can obtain ||e∗o|| = 0.176 m. The position

and velocity of the payload’s center of mass converge to their steady-state values

after around 10 s (the orange lines in Figs. 4.6 and 4.7), which is a little slower

than in the first simulation. In addition, the load undergoes a total rotation of

approximately θo = 85◦ (the orange lines in Fig. 4.8). In the third simulation (Fig.

4.5), the robots are clustered within about a quarter of the load’s perimeter. For

this case, ||%o|| = 1.477 m, and the steady-state error has increased to ||e∗o|| = 0.246

m. We also see that the system convergence to equilibrium is much slower than

in the first and second simulations. The payload’s position and velocity converge

to their steady-state values after about 25 s (the green lines in Figs. 4.6 and 4.7).

The load undergoes a large rotation of about θo = 248◦, and its angular velocity

converges to zero after around 35 s (the green lines in Fig. 4.8). Thus, a highly

nonuniform distribution of robots significantly affects the system’s steady-state error

and convergence characteristics.
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Figure 4.6: Time Evolution of the Position of the Payload’s Center of Mass for the
Three Distributions.

116



0 5 10 15 20 25 30 35 40

Time (sec)

-4

-3

-2

-1

0

1

v
x

o

 (
m

/s
)

Distribution #1

Distribution #2

Distribution #3

(a) Velocity Component Along the x-axis.

0 5 10 15 20 25 30 35 40

Time (sec)

-1.5

-1

-0.5

0

0.5

1

1.5

2

v
y

o

 (
m

/s
)

Distribution #1

Distribution #2

Distribution #3

(b) Velocity Component Along the y-axis

Figure 4.7: Time Evolution of the Velocity of the Payload’s Center of Mass for the
Three Distributions.

0 5 10 15 20 25 30 35 40

Time (sec)

0

50

100

150

200

250

θ
o
 (

d
e
g
)

Distribution #1

Distribution #2

Distribution #3

(a) Angular Position

0 5 10 15 20 25 30 35 40

Time (sec)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ω
o
 (

ra
d

/s
)

Distribution #1

Distribution #2

Distribution #3

(b) Angular Velocity

Figure 4.8: Time Evolution of the Rotational Motion of the Payload for the Three
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Chapter 5

POSITION CONTROL OF COLLECTIVE TRANSPORT IN BOUNDED

DOMAINS WITH CONVEX OBSTACLES

In this chapter, we present a controller that stabilizes a robot to a desired position

and prevents it from colliding with arbitrary convex obstacles, as well as being en-

trapped between the obstacles, in a bounded environment. Both obstacle avoidance

and convergence to the desired position are enforced by a term in the controller that

is the gradient of a navigation-like function, which is defined in Section 5.2. As in

(Arslan and Koditschek, 2019), the controller does not require the robot to have exact

or approximate a priori information about the locations, geometries of the obstacles

in the environment. However, unlike the method in (Arslan and Koditschek, 2019),

we do not assume any restrictions on the curvature of the obstacles, and the proposed

controller is effective for any arbitrary convex obstacle shapes. We assume that the

robot has no predefined trajectory, and that it operates autonomously with minimal

capabilities: it can only measure its own position, velocity, and heading and the dis-

tance to nearby obstacles within its sensing range. We also combine the proposed

obstacle avoidance controller with a velocity dissipation term to design a decentral-

ized control law for collective transport in presence of convex obstacles in a bounded

convex domain.

Note: Amir Salimi Lafmejani coded the simulations in Sections 5.5 and 5.7.5 and

conducted the experiments in Section 5.6.
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5.1 Preliminaries and Problem Statement

We consider a disk-shape holonomic robot with radius r that moves in a planar

bounded domain. The robot has first-order dynamics (a single-integrator model),

q̇ = u, where q = (x, y)T ∈ R2 denotes the position of the robot in a global reference

frame and u ∈ R2 is the robot’s control input. The robot can measure its distance

δ from the obstacles within its sensing radius. The sensing radius is denoted by

δc. We assume that the domain contains multiple obstacles with arbitrary convex

boundaries. The control objective is for the robot to attain a desired position while

avoiding collisions with the obstacles. We assume that the desired position is the

origin of the global frame without loss of generality.

We first define several terms that we will frequently use throughout the paper.

Definition 5.1.1. (Domain). A compact, closed and convex subset of R2, whose

interior includes the origin (the target position). The domain and its boundary are

denoted by D and ∂D, respectively. Also, the domain’s interior is denoted by I(D)

and is defined as

I(D) := D \ ∂D. (5.1)

Definition 5.1.2. (Obstacle). A compact, closed and convex subset of the domain,

whose closure is a subset of the domain’s interior and does not intersect with the

domain’s boundary. The domain may include multiple obstacles, which are indexed

by i. Obstacle i is denoted by Oi. Also, the boundary of obstacle i is denoted by ∂Oi.

Definition 5.1.3. (Free Space). An open subset of the domain, which is obtained

by removing the obstacles from the domain’s interior:

F := I(D) \
m⋃
i=1

Oi. (5.2)
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Definition 5.1.4. (Repulsion Space). A semi-closed subset of the free space,

which is bounded by an obstacle’s (domain’s) boundary and the closed curve that

is formed by offsetting the obstacle’s (domain’s) boundary outward (inward) along

normal to the boundary with the length δc. This space is denoted by Ri and is written

as

Ri = {q ∈ F | 0 < δi ≤ δc} , i = 0, 1, . . . ,m, (5.3)

where R0 represents the repulsion space associated with the domain’s boundary, and

the others represent the repulsion spaces of the internal obstacles.

Definition 5.1.5. (Switching Repulsion Surface). If at least two repulsion

spaces intersect, there exists at least one point which is at equal distances from those

repulsion spaces. The set of the points that belong to the intersection of intersecting

repulsion spaces and are at equal distances from their corresponding obstacles (do-

main) is called a switching repulsion surface. If Rj, Rk, · · · , Rl form a group of

intersecting repulsion spaces, the corresponding switching repulsion surface is written

as

Sjk...l :=

{
q ∈

⋂
i=j,k,··· ,l

Ri | δj = δk = · · · = δl

}
, (5.4)

where δj, δk, · · · , δl denote distances from Oj, Ok, · · · , Ol, respectively.

Definition 5.1.6. (Safe Space). The subset of the free space that is obtained by

removing the repulsion spaces from the free space is called the safe space and is defined

as

SS := F \
m⋃
i=0

Ri. (5.5)

Property 5.1.7. The safe space has no intersection with any of the repulsion spaces:

SS
⋂
Ri = ∅, ∀ i ∈ {0, 1, · · · ,m} . (5.6)
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Property 5.1.8. The safe space and the repulsion spaces form a cover of the free

space:

SS
⋃(

m⋃
i=0

Ri

)
= F . (5.7)

A circular domain with multiple circular and elliptical obstacles is shown in Fig.

5.1. Also, a schematic representation of Definitions 5.1.1 through 5.1.6 is illustrated

in Fig. 5.2 for the environment in Fig. 5.1.

We make the following assumptions about the robot’s capabilities. The robot has

global localization and has no prior knowledge of the obstacles’ locations and shapes.

The robot can measure its own heading in the global frame, and it can identify the

boundaries of nearby obstacles within its local sensing range, which is assumed to be

a circle with radius δc. We assume that at each time instant, the robot can measure

its distance δ, which is the length of the collision vector d according to the Projection

Theorem in (Bertsekas et al., 2003), from each obstacle within its sensing range (e.g.,

using infrared sensors or LIDAR). We also assume that the robot can measure the

angle θd of the vector −d in its body-fixed frame. By adding θd+π rad to the robot’s

heading in the global frame, the robot can obtain the angle of the collision vector d

in the global frame.

We also make the following two assumptions. The first one is about the distri-

bution of the obstacles in the environment, which is Assumption 1 in (Arslan and

Koditschek, 2019). The second assumption is about the robot’s minimal knowledge

about the environment.

Assumption 5.1.9. The distance between any pair of obstacles and also the distance

between each obstacle and the boundary of the domain are larger than the size of the

robot, which is 2r.

Assumption 5.1.10. The only information provided to the robot is the target position
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Figure 5.1: A Schematic Representation of a Circular Domain, Convex Obstacles
in it, and Their Associated Areas of Effect.

and the size of the domain. The size of the domain is defined as the diameter of the

smallest circle that surrounds the domain and is denoted by 2rD.

Given this minimal information and completely local measurements, we seek a

control law that can solve the following problem.

Problem 5.1.11. We consider a bounded domain, whose boundary ∂D is described by

β0(x, y) = 0, where β0 : R2 7→ R is a smooth function. The domain contains a finite

number m ≥ 1 of obstacles with arbitrary convex boundaries described by βi(x, y) = 0,

where each βi : R2 7→ R, i ∈ {1, ...,m} is at least twice continuously differentiable.

Given the robot’s initial position in the free space F , we design a robot control law

that uses only the local measurements available to the robot to achieve the following

objectives:
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Figure 5.2: Representation of Different Spaces in the Domain Including the Safe
Space, the Repulsion Spaces, and Switching Surfaces for the Configuration Illustrated
in Fig. 5.1.

(1) The robot asymptotically converges to the desired position, which is inside F

and assumed to be the origin without loss of generality.

(2) The robot does not collide with any obstacle.

(3) The robot is never trapped by any set of obstacles.

5.2 Local Navigation-Like Functions

As described in (Rimon and Koditschek, 1992), prior knowledge about the equa-

tions of the boundaries of the domain and the obstacles is required in order to con-

struct a navigation function over a bounded domain. Moreover, knowledge of the

number of obstacles in the domain is required to tune the parameter k in Eq. (10) in

(Rimon and Koditschek, 1992) to remove all the local minima inside the free space.
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This kind of information is not available in many practical applications, and this fact

motivates a new definition of such functions which does not require this information

about the obstacles and domain. Inspired by the original design of the navigation

functions in (Rimon and Koditschek, 1992), we introduce a new notion, which we call

a navigation-like function (NLF). These functions are defined in association with the

safe space and each of the repulsion spaces. The NLF’s are designed in such a way

that their gradients have the following characteristics:

1) The gradients form a vector field over the entire free space F that steers the

robot to the target position with the properties described in Problem 5.1.11.

2) The robot requires minimal information to calculate the gradients of the NLF’s:

specifically, the robot’s position and the collision vectors (Definition 3.1.2) associated

with obstacles within the robot’s sensing range.

The NLF’s are defined and analyzed in details in the sequel.

5.2.1 Safe Space Navigation-Like Function

The navigation-like function for the safe space SS is denoted by ϕSS and is defined

as

ϕSS(q) =
qTq

qTq + 1
. (5.8)

We can confirm that ϕSS ∈ [0, 1) in a bounded domain. The next proposition char-

acterizes the critical points of ϕSS .

Proposition 5.2.1. If the target position (the origin) is located in the safe space, it

will be the only critical point and a global minimum for ϕSS . Otherwise, this function

has no critical point in SS.

Proof. The gradient of ϕSS is calculated as:

∇ϕSS =
2q

(qTq + 1)2
. (5.9)
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Setting ∇ϕSS = 0, q = 0 is the only solution provided it is inside the safe space.

Also, the Hessian of ϕSS is written as:

∇2ϕSS =
2
(
(qTq + 1)I − 4qqT

)
(qTq + 1)3

, (5.10)

where I ∈ R2×2 is the identity matrix. The Hessian at q = 0 is equal to 2I, which is

a positive definite matrix. Also, from Eq. 5.8, ϕSS is zero at the origin and is positive

every where else. Therefore, q = 0 is a global minimum for ϕSS . If the origin is not

inside SS, ϕSS has no critical point.

Property 5.2.2. The robot requires only its own position q to calculate the gradient

of ϕSS , as implied by Eq. 5.9.

5.2.2 Repulsion Space Navigation-Like Function

The navigation-like function for repulsion spaceRi is denoted by ϕRi and is defined

as

ϕRi(q) =
qTq

qTq + g(δi)
, (5.11)

where g(δi) : R>0 7→ R>0 with i ∈ {0, 1, ...,m} is a function of the robot’s distance

from the boundary of the domain or obstacle i and is defined as:

g(δi) =

(
δi
δc

)k
, (5.12)

in which δi := ‖di‖−r, δc is the sensing radius of the robot, and k is a strictly positive

real number. We can confirm that ϕRi ∈ [0, 1) for a bounded domain. We notice that

since δi depends on the robot’s location, g(δi) is implicitly a function of q. The next

two propositions characterize the critical points of ϕRi .

Proposition 5.2.3. If the target position (the origin) is located in the repulsion space

of obstacle i, it will be a global minimum for ϕRi.
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Proof. The gradient of ϕRi is calculated as:

∇ϕRi =
2g(δi)q − (qTq)∇g(δi)

(qTq + g)2
. (5.13)

To find the critical points, we set ∇ϕRi = 0, which leads to the following equation:

2g(δi)q − (qTq)∇g(δi) = 0. (5.14)

One solution is q = 0. Also, the Hessian of ϕRi is calculated as:

∇2ϕRi =
N 1(q)−N 2(q)

(qTq + g)3
, (5.15)

in which N 1(q),N 2(q) ∈ R2×2 are:

N 1(q) = (ρ2 + g)
(
2gI − ρ2∇2g + 2(q∇gT −∇gqT )

)
(5.16)

N 2(q) = 2
(
2gqqT + 2gq∇gT − 2ρ2∇gqT − ρ2∇g∇gT

)
, (5.17)

where ρ := ‖q‖. We can see that for q = 0, N 1 = 2g2I and N 2 = 0. Thus, the

Hessian at the origin is simplified to:

∇2ϕRi |q=0 =
2

g
I, (5.18)

which is positive definite. Furthermore, by construction, ϕRi is zero at the origin and

positive everywhere else in Ri. Thus, the origin is a global minimum for ϕRi .

Proposition 5.2.4. ϕRi may have non-zero norm, i.e. q 6= 0, critical points in Ri

if k ∈ (0, 2). Also, there is no non-zero norm critical point in Ri for k ∈ [2,∞).

Proof. The gradient of g(δi) in Eq. 5.14, which is originally the derivative of g with

respect to q, is equal to ∇dig(δi), since q = di + qPi and g is only a function of δi,

where δi = ‖di‖ − r (similar to Equation (7) in Tanner et al. (2003)). Also, ∇dig(δi)

can be calculated as:

∇dig(δi) = g
′
(δi)edi , (5.19)
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in which g
′
(δi) is the derivative of g with respect to δi, and edi is the unit vector

along the collision vector di. Substituting Eq. 5.19 into Eq. 5.14 and incorporating

the expressions for g(δi) and g
′
(δi), Eq. 5.14 can be rewritten as:

ρδk−1i

δkc
(2δieq − ρkedi) = 0, (5.20)

where eq is the unit vectors along the robot’s position vector q. Therefore, the non-

zero norm solutions of Eq. 5.14 are the solutions of the following equation

2δieq − ρkedi = 0. (5.21)

Notice that this is a vector equation, and eq and edi are unit vectors. Also, δi, ρ,

and k are all positive numbers. Hence, Eq. 5.21 implies that at the non-zero norm

critical points of ϕRi , we have:

eq = edi

2δi = ρk. (5.22)

Figure 5.3 shows the origin, a convex obstacle (the ellipse), and the non-zero

norm equilibrium points that are associated with the obstacle. It shows that the

first equation in Eq. 5.22 can be satisfied only on the side of the obstacle that is far

from the origin, since eq is always against edi in the side closer to the origin. This

consequently implies that ρ > δi at these points. Defining ρPi :=
∥∥qPi∥∥, where qPi

is the position of the projection point (Definition 3.1.1) associated with the non-zero

norm critical point, and rewriting ρ = ‖di‖+ ρPi , we obtain:

‖di‖ =
k

2− k
ρPi , (5.23)

which gives a positive solution for ‖di‖ only for k ∈ (0, 2). If k ∈ (2,∞), ‖di‖ becomes

negative which means the critical point would be inside the obstacle and not in Ri.
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Figure 5.3: A Schematic Representation of Non-Zero Norm Equilibrium Points of a
Convex Obstacle and the ξl ξl⊥ Local Coordinate System for One of Them.

Finally, if k = 2, Eq. 5.22 has a solution only if the origin is located on the boundary

of the obstacle, which is not the case in this problem (Item (1) in Problem 5.1.11).

This completes the proof.

There could exist one or multiple non-zero norm critical points associated with

obstacle i in Ri. The number of these points depends on the obstacle’s shape and its

position and orientation with respect to the global frame, as shown in Fig. 5.3. The

set of all the non-zero norm critical points in Ri is denoted by Ci. Also, the elements

of Ci are denoted by Cij, j = 1, 2, · · · , li, where li is the number of the non-zero norm

critical points in Ri, i.e.

Ci = {Cij} , j = 1, 2, · · · , li (5.24)

The next proposition characterizes the type of these critical points.

Proposition 5.2.5. All of the non-zero norm critical points of ϕRi, i.e. the elements

128



of Ci, are degenerate for i = 0, 1, · · · ,m.

Proof. Incorporating Eq. 5.22 into the Hessian of ϕRi , i.e. Eq. 5.15 through Eq.

5.17, we can confirm that N 2 = 0 at these points, and the Hessian is simplified to

∇2ϕRi |q∈Ci=
(
2gI − ρ2∇2g

)
(qTq + g)2

. (5.25)

The Hessian of g is obtained from ∇2g = ∂
∂q

(∇g). Taking into account Eq. 5.19, the

Hessian of g can be rewritten as

∇2g(δi) =
∂

∂q

(
g
′
(δi)edi

)
= g

′′
(δi)edie

T
di

+ g
′
(δi)

(
∂edi
∂q

)
. (5.26)

Denoting the angular contribution of edi in the global coordinate by θi, and incorpo-

rating the equation for the second derivative of g(δi) with respect to δi, the first term

in the right hand side of Eq. 5.26 is calculated as:

g
′′
(δi)edie

T
di

=
k(k − 1)

δkc
δ
(k−2)
i

 cos(θi)
2 cos(θi) sin(θi)

cos(θi) sin(θi) sin(θi)
2

 . (5.27)

Furthermore, by the chain rule, the second term in the right hand side of Eq. 5.26

can be rewritten as:

g
′
(δi)

(
∂edi
∂q

)
=

k

δkc
δ
(k−1)
i

(
∂edi
∂eq

)(
∂eq
∂q

)
. (5.28)

The vectors edi and eq are both unit vectors and can be related to each other by

a rotation matrix as edi = R(αi)eq, where αi is the angle between the two vectors.

Hence, the first parenthesis in the right hand side of Eq. 5.28 is equal to R(αi). Also,

denoting the angular contribution of eq by θ, the second parenthesis is calculated as:

∂eq
∂q

=
1

ρ

 sin(θ)2 − cos(θ) sin(θ)

− cos(θ) sin(θ) cos(θ)2

 . (5.29)
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At the non-zero norm critical points, eq and edi are equal (Eq. 5.22), which implies

that θ = θi. This results in R(αi) = R(0) = I. Moreover, ρ in Eq. 5.29 can be

replaced by 2δi/k from Eq. 5.22. Hence, the Hessian of g can be written as:

∇2g |Ci=
kδ

(k−2)
i

δkc

(k − 1)cθ2i + k
2
sθ2i (k

2
− 1)cθisθi

(k
2
− 1)cθisθi (k − 1)sθ2i + k

2
cθ2i

 , (5.30)

where cθi and sθi abbreviate cos(θi) and sin(θi), respectively. Finally, the Hessian of

ϕRi at the non-zero norm critical points can be obtained from Eq. 5.25. By using

Eq. 5.25, we can see that:

det
(
∇2ϕ |Ci

)
= 0 ∀ i ∈ {1, 2, · · · ,m}

tr
(
∇2ϕ |Ci

)
=

2− k
2k

∀ i ∈ {1, 2, · · · ,m} . (5.31)

This demonstrates that for non-zero norm critical points inside F , i.e. k ∈ (0, 2), one

eigenvalue of ∇2ϕRi at the non-zero norm critical points is zero, and the other one

is positive. This completes the proof.

We conclude this section with the following properties, which are crucial in the

stability analysis of the proposed controller in Section 5.4.

Property 5.2.6. The robot requires only its own position q and the collision vectors

di to calculate the gradient of ϕRi, as implied by Eq. 5.13 and Eq. 5.19.

Property 5.2.7. The repulsion space NLF’s in Eq. 5.11 have the same values on

switching repulsion surfaces (Definition 5.1.5), since the robot would have the same

distances from the obstacles that are associated with the intersecting repulsion spaces.

5.3 Controller Design

The control strategy for single-integrator dynamics is based on the robot’s position

in the free space. The proposed control law is negatively proportional to the gradient
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of the NLF that is associated with the position of the robot and is defined as

u = − 1

n

∑
η∈E

∇ϕη(q), (5.32)

where

E = arg max
σ∈{SS,R0,R1,··· ,Rm}

{ϕσ}, (5.33)

and n := |E| is the cardinality of E . We notice that to execute the controller in

Eq. 5.32 and Eq. 5.33, the robot is not required to measure its distance from every

obstacle and identify the space it is located in. It instead is required only to measure

and compare its distances from the obstacles within its sensing range. If the robot

is in the safe space SS, where it does not sense any obstacles in its sensing range,

the controller uses the gradient of ϕSS . When the robot is in the union of repulsion

spaces and not on a switching repulsion surface, the controller uses the gradient of the

ϕRi that has the largest value and is essentially associated with the closest obstacle

to the robot by construction (Eq. 5.11). Finally, if the robot is on a switching

repulsion surface, the controller uses the average of the gradients of the NLF’s of the

corresponding intersecting repulsion spaces.

5.4 Analysis of Robot Motion

We incorporate the control law proposed in Eq. 5.32 and Eq. 5.33 into the robot’s

equation of motion (q̇ = u). The equation of the closed-loop system is obtained as

q̇ = − 1

n

∑
η∈E

∇ϕη(q),

E = arg max
σ∈{SS,R0,R1,··· ,Rm}

{ϕσ}. (5.34)

We notice that the controller proposed in Eq. 5.32 and Eq. 5.33 is a switching control

law since the gradients of NLF’s could discontinuously change when the robot crosses
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over a switching repulsion surface or passes from a repulsion space to the safe space

and vice versa. This implies that the closed-loop system in Eq. 5.34 represents a

switching system composed of multiple subsystems, where each subsystem is driven

by the gradient of a safe space or repulsion space NLF. In this section, we analyze the

switching system in Eq. 5.34 and prove that it achieves the three objectives described

in Problem 5.1.11.

5.4.1 Stability Characteristics of the Equilibrium Points of the Subsystems

For each individual subsystem of the switching system in Eq. 5.34, we have n = 1,

and henceforth the subsystem is represented as

q̇ = −∇ϕσ(q),

σ ∈ {SS,R0,R1, · · · ,Rm} . (5.35)

This shows that the equilibrium points of each subsystem of Eq. 5.34 are the critical

points of the NLF corresponding to that subsystem. To investigate stability properties

of the equilibrium points, we use Lyapunov’s indirect method and linearize Eq. 5.35

around those equilibrium point as

q̇ =
(
−∇2ϕσ(q∗)

)
q,

σ ∈ {SS,R0,R1, · · · ,Rm} , (5.36)

where q∗ denotes a critical point of ϕσ. Given the linearized model in Eq. 5.36, we

analyze the eigenvalues of the Hessian of the corresponding NLF and use the results

in Propositions 5.2.1 through 5.2.4, as discussed in the sequel.

Proposition 5.4.1. The origin is an asymptotically stable equilibrium point if it is

located either in the safe space or the union of the repulsion spaces.
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Proof. This is concluded from Propositions 5.2.1 and 5.2.3, where we proved positive

definiteness of the Hessian at the origin. This consequently results in strictly negative

eigenvalues for the negative of the Hessian matrix in the linearized system in Eq.

5.36.

Non-zero norm critical points of repulsion space NLF’s ϕRi are other equilibrium

points of the subsystems in Eq. 5.35. As proved in Proposition 5.2.4, they are

degenerate with their corresponding Hessian matrices each having one zero and one

positive eigenvalues. This means that the negative of the Hessian in Eq. 5.36 has

one zero and one negative eigenvalue, and henceforth linearization fails to determine

stability properties of these equilibrium points. To this end, the center manifold

theorem is used to investigate stability properties of these equilibrium points (Khalil,

1996). We first state the following two lemmas, which are used in stability analysis

of non-zero norm equilibria.

Lemma 5.4.2. We define l as the line along q∗ and l⊥ as the line perpendicular to

l, as shown in Fig. 5.3. Then l⊥ and l are respectively center manifold and stable

manifold for each subsystem in Eq. 5.35 at a neighborhood of their non-zero norm

equilibrium points.

Proof. We define a local coordinate system with its origin located at the equilibrium

point and its axes denoted by ξl and ξl⊥ . ξl is along l outward the obstacle’s boundary,

and ξl⊥ is along l⊥ with its direction creating a right-handed coordinate system with

ξl (Fig. 5.3). We also define ξ := [ξl ξl⊥ ]T ∈ R2 as the position of a point in the local

coordinate system. We know that the rotation matrix from the local coordinate to

the global coordinate system equals R(θi), and the transformation from the global

frame to the local frame is then given by

ξ = RT (θi)(q − q∗). (5.37)
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We define two augmented vectors qa := [qT 1]T ∈ R3 and ξa := [ξT 1]T ∈ R3. Then

Eq. 5.37 can be rewritten as

ξa = Tqa , T =

RT (θi) −RT (θi)q
∗

01×2 1

 , (5.38)

where T ∈ R3×3. Also, the linearized system in Eq. 5.36 can be rewritten in an

augmented form in terms of qa as

q̇a =

−∇2ϕσ(q∗) 02×1

01×2 0

 qa,
σ ∈ {SS,R0,R1, · · · ,Rm} . (5.39)

From Eq. 5.38, we have qa = T−1ξa, which we use to rewrite Eq. 5.39 in terms of ξa

as

ξ̇a = T

−∇2ϕσ(q∗) 02×1

01×2 0

T−1ξa,
σ ∈ {SS,R0,R1, · · · ,Rm} . (5.40)

Doing the matrix multiplication in the right hand side of Eq. 5.40, omitting the

third row and the third column in the result, which are all zeros, and removing the

augmented 1 in ξa, Eq. 5.40 is simplified to

ξ̇ =
2− k

2k

−1 0

0 0

 ξ, (5.41)

which has the linearization matrix in a block diagonal form. This matrix has a

negative eigenvalue and a zero eigenvalue for k ∈ (0, 2). Using Theorem 8.1 in (Khalil,

1996), Eq. 5.41 demonstrates that the corresponding nonlinear system (Eq. 5.35) has

a center manifold in the form ξl = h(ξl⊥), where h is a smooth function. Since the
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vector field of the nonlinear system 5.35 (the gradient of the potential field) is along l

at the equilibrium point, we can confirm that the only smooth candidate for h is the

zero function, and consequently ξl = 0 is the center manifold of the nonlinear system

at the equilibrium point. This shows that the ξl⊥-axis of the local coordinate system

is the center manifold for the nonlinear system 5.35 at the non-zero norm equilibrium

point. Also, the ξl-axis, which is associated with the negative eigenvalue of the matrix

in Eq. 5.41, is the stable manifold of the nonlinear system 5.35 at the non-zero norm

equilibrium point. This completes the proof.

Lemma 5.4.3. We define a set Bl⊥(q∗, ε) in the center manifold as

Bl⊥(q∗, ε) = {q ∈ l⊥ | ‖q − q∗‖ ≤ ε , ε > 0} . (5.42)

There exists ε > 0, for which ϕRi(q
∗) is maximal to every point in Bl⊥(q∗, ε).

Proof. Eq. 5.37 yields q as

q = q∗ +R(θi)ξ. (5.43)

We insert the expression for q in Eq. 5.43 into Eq. 5.11 and rewrite ϕRi in terms of

ξ as

ϕRi =
ξTξ + 2q∗

T
RTξ + q∗

T
q∗

ξTξ + 2q∗TRTξ + q∗T q∗ + g(δi)
. (5.44)

The expression 2q∗
T
RTξ is the inner product of q∗ and the representation of ξ in the

global frame. These two vectors are normal to each other for any point on l⊥. Hence,

ϕRi for any point in Bl⊥ is simplified to

ϕRi |Bl⊥ =
ξTξ + q∗

T
q∗

ξTξ + q∗T q∗ + g(δi)
, ∀ε > 0. (5.45)

We know that q∗
T
q∗ is constant. Also, we can confirm that δi is implicitly a function

of ‖ξ‖. Defining ξ =: ‖ξ‖, we can rewrite Eq. 5.45 as

ϕRi |Bl⊥ =
ξ2 + b

ξ2 + b+ g(ξ)
, ∀ε > 0, (5.46)
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where b is a constant that represents q∗
T
q∗. Eq. 5.46 represents the value of ϕRi for

the points in Bl⊥ in terms of their distance from the equilibrium point. The derivative

of ϕRi |Bl⊥ with respect to ξ is calculated as

d

dξ
(ϕRi |Bl⊥ ) =

−g′(ξ)ξ2 + 2g(ξ)ξ − bg′(ξ)
(ξ2 + b+ g(ξ))2

, (5.47)

where g
′
(ξ) denotes the derivative of g(ξ) with respect to ξ. We know that g(δ) is

always positive and a strictly increasing function. We can also confirm that δ = δ(ξ) is

a strictly increasing function for convex obstacles. We can thus conclude that g(ξ) is a

strictly increasing function too, and consequently, g
′
(ξ) is strictly positive. Therefore,

the numerator in the right hand side of Eq. 5.47 is a second order polynomial in

terms of ξ with the coefficients being all sign-definite. To determine the sign of this

polynomial, we calculate the “∆” for the numerator as ∆ = 4g2−4bg
′2

and study the

following three possibilities:

1) If ∆ < 0, then the numerator is negative ∀ξ > 0 since the coefficient of ξ2 is

strictly negative.

2) If ∆ = 0, then the roots are obtained as ξ1,2 = g/g
′
, and the numerator is

strictly negative for ξ ∈ (0, g/g
′
) ∪ (g/g

′
,+∞).

3) If ∆ > 0, then the roots can be written as

ξ1 =
g +

√
g2 − bg′2

g′
, ξ2 =

g −
√
g2 − bg′2

g′
. (5.48)

ξ1 is positive. ξ2 can be rewritten in the following form:

ξ2 =
g − (g − ζ)

g′
=

ζ

g′
, (5.49)

where ζ is a strictly positive variable that monotonically changes with bg
′2

. Eq.

5.49 shows that ξ2 is positive too. Since 0 < ξ2 < ξ1, and the coefficient of ξ2 is

strictly negative, we can conclude that the numerator is strictly negative for ξ ∈

(0, ξ2) ∪ (ξ1,+∞).
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The above discussion demonstrates that the numerator in the right hand side

of Eq. 5.47 is strictly negative for ξ ∈ (0,min(g/g
′
, ζ/g

′
)). Thus, the derivative is

strictly negative, and ϕRi |Bl⊥ is strictly decreasing for ξ ∈ (0,min(g/g
′
, ζ/g

′
)). This

shows that ϕRi |Bl⊥ (ξ = 0) is maximal to the points in ξ ∈ (0,min(g/g
′
, ζ/g

′
)). Since

ξ = 0↔ q = q∗, we conclude that ϕRi(q
∗) is maximal to the points in Bl⊥(q∗, ε) if

ε := min(g/g
′
, ζ/g

′
). (5.50)

This completes the proof.

The next proposition characterizes the stability of non-zero norm equilibrium

points.

Proposition 5.4.4. The non-zero norm equilibrium points of ϕRi are unstable equlib-

ria of the subsystem in Eq. 5.35 for i ∈ {0, 1, · · · ,m}.

Proof. The existence of a center manifold and a stable manifold at a non-zero norm

equilibrium point (Lemma 5.4.2), and maximality of ϕRi(q
∗) with respect to the

points adjacent to q∗ in the center manifold (Lemma 5.4.3), demonstrate that there

is no neighborhood of q∗ in R2 that encompasses q∗ as a local minimum point for

ϕRi . Thus, no basin of attraction can be introduced for q∗, and it is unstable.1

5.4.2 Absence of Equilibrium Points on the Switching Surfaces

The closed-loop system in Eq. 5.34 is a differential equation with a discontinuous

right hand side and represents a switching system with each subsystem having the

dynamics in Eq. 5.35. When the robot moves, the active subsystem can switch from

1Even though q∗ is not technically a saddle point, it stability properties resemble those of a saddle

point. It is stable for trajectories that start in a set of measure zero (l here), and it is unstable for

trajectories that start outside l.
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one to another based on the robot’s position. This implies that the switching is

state-dependent and creates switching surfaces in the robot’s state space. When the

robot evolves in a single subsystem, its dynamics are described by Eq. 5.35, with

the equilibrium points analyzed in the previous section. Also, a classical solution

(continuously differentiable) q(t) can be introduced for Eq. 5.34 as long as the robot

evolves in a single subsystem. On the switching surface, however, the closed-loop

system 5.34 can have different solutions, depending on the directions of the gradients

∇ϕσ of the subsystems that interact on the switching surface. These solutions could

form equilibrium points on a switching surface, which may possibly be stable and

entrap the robot. In this section, we analyze these solution and state conditions that

guarantee absence of equilibrium points on the switching surfaces. There are two

types of switching surfaces for the system in Eq. 5.34. The first type is the switching

repulsion surface (Definition 5.1.5). The second type is the outer margin of a repulsion

space that is adjacent to the safe space. We study these two types in the sequel.

Switching repulsion surfaces

We assume that two repulsion spaces Ri and Rj intersect and consequently, a switch-

ing repulsion surface Sij exists. This implies that the gradient −∇ϕRi applies to the

robot on the side of the switching surface that contains obstacle i, and the gradi-

ent −∇ϕRj applies to the robot on the side of the switching surface that contains

obstacle j. The closed-loop system 5.34 can have two types of solutions, depending

on the directions of the gradients −∇ϕRi and −∇ϕRj with respect to the switching

surface. If the components of −∇ϕRi and −∇ϕRj that are normal to the switching

surface are pointing in the same direction, then the solution of the closed-loop system

is a Carathéodory solution. In this case, the system trajectory passes through the

switching surface, and no equilibrium point can be formed on the switching surface.
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If the two components that are normal to the switching surface point in opposite

directions, then the system has a Filippov solution that satisfies the following differ-

ential inclusion Liberzon (2003), defined in terms of a convex combination of −∇ϕRi

and −∇ϕRj :

q̇ ∈ Υ(q) :={
α(−∇ϕRi(q)) + (1− α)(−∇ϕRj(q)) : α ∈ [0, 1]

}
. (5.51)

Equation 5.51 describes the dynamics of the robot as:

q̇ =


−∇ϕRi(q), q ∈ Ri , δi < δj

α(−∇ϕRi(q)) + (1− α)(−∇ϕRj(q)), q ∈ Sij

−∇ϕRj(q), q ∈ Rj , δi > δj

(5.52)

Since the components of −∇ϕRi and −∇ϕRj that are normal to the switching sur-

face are pointing in opposite directions, the system trajectory corresponding to the

Filippov solution can only evolve on the switching surface. At the point where the

system trajectory reaches the switching surface, there is a unique convex combination

of −∇ϕRi and −∇ϕRj (i.e., a unique value for α in Eq. 5.51) that is tangent to this

surface, which defines the direction of Υ(q) on the surface. At each point on the

switching surface, the Filippov solution is represented by the value of α for which

Υ(q) is tangent to the surface at that point.

A trajectory corresponding to a Filippov solution often chatters about the switch-

ing surface. We note that the proposed controller, in contrast to a sliding mode

controller, is not designed to stabilize the system trajectories to the switching sur-

face. Chattering might occur for some time, but the robot will eventually leave the

switching surface if certain conditions hold. Proposition 5.4.5 below guarantees that,

under these conditions, the closed-loop system has no equilibria on the switching

surface, which ensures that the robot does not become stuck between two obstacles.

139



Proposition 5.4.5. Given Assumption 5.1.9 and Assumption 5.1.10, no equilibrium

point exists on the repulsion switching surface Sij between two intersecting repulsion

spaces Ri and Rj if k in Eq. 5.12 is chosen to satisfy k < r/rD.

Proof. By Assumption 5.1.9, the distance between obstacle i and obstacle j is greater

than 2r. If there exists an equilibrium point (q̇ = 0) on the switching repulsion

surface Sij, from Eq. 5.52, we have that

α(−∇ϕRi(q)) + (1− α)(−∇ϕRj(q)) = 0. (5.53)

Using the fact that δi = δj on the switching surface, and writing the expressions for

−∇ϕRi and −∇ϕRj using Eq. 5.13 and Eq. 5.19, Eq. 5.53 becomes:

2g(δs)eq − ρg
′
(δs)

(
αedi + (1− α)edj

)
= 0, (5.54)

where we have defined δs := δi = δj.

We now derive a conservative upper bound for the parameter k in ϕRi (Eq. 5.11

and Eq. 5.12). When the robot is on the switching repulsion surface, the repulsive

force on it has the highest possible component in the direction opposite to eq when

edi = edj .
2 Substituting edi = edj and δs = r into Eq. 5.54, we can reduce this

equation to the following scalar equation:

2g(δs)− ρg
′
(δs) = 0. (5.55)

To prevent the existence of an equilibrium point, and to ensure that the robot con-

verges to the origin (the target position), we need the attraction term to exceed the

repulsive term; i.e.,

2g(δs) > ρg
′
(δs). (5.56)

2This is a theoretical scenario that would not happen in practice; we are using it here to obtain

a conservative bound on k.
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Using Eq. 5.12, this inequality is simplified to

2δs > kρ (5.57)

Assumption 5.1.9 gives the radius of robot r is the lowest possible value for δs, and

Assumption 5.1.10 gives the size of the domain 2rD is the highest possible value

for ρ. Considering a worst case scenario, the inequality in Eq. 5.57 is rewritten as

2r > 2krD, which gives the following conservative upper bound for k:

k <
r

rD
. (5.58)

This completes the proof.

The result in Proposition 5.4.5 can be generalized for the repulsion switching

surface of more than two obstacles, as stated in next corollary.

Corollary 5.4.6. Consider a switching repulsion surface that lies within the intersec-

tion of l ∈ {3, ...,m} repulsion spaces. We can confirm that such a switching repulsion

surface is only a single point. The condition in Eq. 5.58 ensures that no equilibrium

is formed at such a point.

Proof. The convex combination of vector fields −∇ϕRi(q), which defines the differen-

tial inclusion in Eq. 5.51, is given by Υ(q) :=
∑l

i=1−αi∇ϕRi(q), where αi ∈ [0, 1] for

all i ∈ {1, ..., l} and
∑l

i=1 αi = 1. The vector q is an equilibrium if
∑l

i=1 αi∇ϕRi(q) =

0, which implies that

2g(δs)eq − ρg
′
(δs)

(
l∑

i=1

αiedi

)
= 0, (5.59)

where δs := δ1 = δ2 = ... = δl. Again, we consider the repulsive force on the robot with

the highest possible component in the direction opposite to eq, which occurs when

ed1 = ed2 = ... = edl .This simplifies the summation in Eq. 5.59 to
∑l

i=1 αi edi = ed1 .
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Finally, setting δs = r, Eq. 5.59 is simplified to Eq. 5.55. This shows that choosing

k small enough to satisfy Eq. 5.58 will also guarantee the absence of an equilibrium

at a switching repulsion surface that is equidistant from three or more obstacles.

Switching surfaces between the safe space and repulsion spaces

We assume that a segment of the outer margin of repulsion spaceRi is adjacent to the

safe space SS. This then means that the gradient −∇ϕRi applies to the robot on the

side of the switching surface that contains obstacle i, and the gradient −∇ϕSS applies

to the robot on the other side of the switching surface, which is SS. The discussion

in Subsection 5.4.2 about the discontinuity of the right hand side of Eq. 5.34 and

the two possible types of solutions to Eq. 5.34 (Carathéodory and Filippov solutions)

hold true here too. To this end, like Subsection 5.4.2, we consider a Filippov solution

to Eq. 5.34 on the switching surface between repulsion space Ri and the safe space

SS, and we state the next proposition which guarantees the absence of an equilibrium

point on this switching surface.

Proposition 5.4.7. Given Assumption 5.1.10 and δc as the robot’s sensing radius,

no equilibrium point exists on the switching surface between repulsion space Ri and

the safe space SS if k in Eq. 5.12 is chosen to satisfy k < δc/rD.

Proof. Taking the same procedure as in the proof of Proposition 5.4.5, an equilibrium

point (q̇ = 0) exists on the switching surface if

α(−∇ϕSS(q)) + (1− α)(−∇ϕRi(q)) = 0. (5.60)

Using the fact that δi = δc and consequently, g(δi) = 1 and g
′
(δi) = k/δc on the outer

margin of Ri, and writing the expressions for −∇ϕSS and −∇ϕRi using Eq. 5.9, Eq.

5.13, and Eq. 5.19, Eq. 5.60 becomes:

2eq − (1− α)(k/δc)ρedi = 0. (5.61)
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To prevent the existence of an equilibrium point, and to guarantee that the robot

converges to the origin (the target position), we again set the attraction term to

exceed the repulsive term; i.e.,

2 > (1− α)(k/δc)ρ. (5.62)

The right hand side of the inequality in Eq. 5.62 has the highest possible value if

α = 0 and ρ = 2rD. Inserting these values into the right hand side of Eq. 5.62, we

obtain the following conservative upper bound for k:

k <
δc
rD
, (5.63)

which guarantees absence of an equilibrium point on the switching surface between

Ri and SS. This completes the proof.

Corollary 5.4.8. Consider a switching surface that lies within the intersection of the

safe space and l ∈ {2, ...,m} repulsion spaces. We can confirm that such a switching

surface is only a single point. The condition in Eq. 5.63 ensures that no equilibrium

is formed at such a point.

Proof. We take the same strategy as in the proof of Corollary 5.4.6. The convex

combination of vector fields −∇ϕSS(q) and −∇ϕRi(q), which defines the differential

inclusion in Eq. 5.51, is given by Υ(q) := −αss∇ϕSS(q) −
∑l

i=1 αi∇ϕRi(q), where

αss, αi ∈ [0, 1] for all i ∈ {1, ..., l} and αss +
∑l

i=1 αi = 1. The vector q is an

equilibrium if αss∇ϕSS(q) +
∑l

i=1 αi∇ϕRi(q) = 0, which implies that

2g(δs)eq − ρg
′
(δs)

(
l∑

i=1

αiedi

)
= 0, (5.64)

We know that δs := δ1 = δ2 = ... = δl = δc at this switching surface. Thus, Eq. 5.64

is reduced to

2eq − ρ(k/δc)

(
l∑

i=1

αiedi

)
= 0. (5.65)
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Considering the the highest possible repulsive force in the direction opposite to eq,

which occurs when ed1 = ed2 = ... = edl , the summation in Eq. 5.65 is simplified

to
∑l

i=1 αi edi = (1 − αss)ed1 . Finally, setting the attraction term higher than the

repulsion term to prevent the formation of an equilibrium point, we obtain

2 > (1− αss)(k/δc)ρ, (5.66)

which resembles the inequality in Eq. 5.62 and gives the same upper bound for k as

in Eq. 5.63.

We conclude this subsection with the following theorem that guarantees the ab-

sence of equilibrium points on any switching surface in the domain.

Theorem 5.4.9. Given Assumption 5.1.9 and Assumption 5.1.10, no equilibrium

point exists on any switching surface in the domain if k in Eq. 5.12 satisfies the

following condition:

k <
1

rD
min(r, δc). (5.67)

Proof. The result is immediately deduced from Corollary 5.4.6 and Corollary 5.4.8.

5.4.3 Convergence Analysis

As discussed in Subsection 5.4.2, the closed-loop system in Eq. 5.34 is a differential

equation with a discontinuous right hand side, which does not meet the Lipchitz con-

tinuity condition. This implies that we cannot directly apply Lyapunov and LaSalle’s

theorems to analyze stability/convergence properties of the closed-loop system. To

this end, we use the idea of multiple Lyapunov functions that has been developed for

stability analysis of switching systems (Chapter 3 in (Liberzon, 2003)). To this end,

we first state the following two lemmas, which are used in the analysis afterward.
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Lemma 5.4.10. Given the closed-loop system in Eq. 5.34 that is composed of the

subsystems in Eq. 5.35, Vσ(q) := ϕσ(q) is a continuous function for every solution

q(t) of Eq. 5.34 for t ≥ 0.

Proof. The safe space NLF ϕSS(q) in Eq. 5.8 and the repulsion space NLF ϕRi(q)

in Eq. 5.11 are continuous functions by construction. Also, when the robot crosses a

switching repulsion surface between l ∈ {2, ...,m} repulsion spaces, ϕRi(q) does not

change value since δi has the same value for all i ∈ {1, ..., l}, and consequently, g(δi)

is the same for all the intersecting repulsion spaces on the switching repulsion surface.

Finally, when the robot crosses the outer margin of repulsion space Ri to the safe

space SS, the value of Vσ does not change since δi = δc, and consequently, g(δi) = 1

on the outer margin of Ri. This means that ϕRi(q) = ϕSS(q) on the outer margin of

Ri. The same analysis holds true when the robot leaves the safe space to a repulsion

space. This completes the proof.

Lemma 5.4.11. Considering the subsystems in Eq. 5.35, we define tσ,i as the time

instant that the robot enters σ and tσ,i+1 as the time instant that the robot leaves

σ to another subsystem, i.e. q(t) ∈ σ, ∀ t ∈ [tσ,i, tσ,i+1). Then the function Vσ

strictly decreases over the time interval [tσ,i, tσ,i+1) for every subsystem σ in Eq. 5.35.

Moreover, the system trajectory converges to the origin (the target position) if it is

located in σ. Finally, if there is a non-zero norm equilibrium point q∗ in σ, and a

trajectory starts inside the stable manifold l of this point, i.e. tσ,i = 0 and q(0) ∈ l,

then the trajectory converges to q∗.

Proof. The time derivative of Vσ for t ∈ [tσ,i, tσ,i+1) is calculated as

V̇σ(t) = ϕ̇σ(t)

= (∇ϕσ(q(t)))T q̇(t), t ∈ [tσ,i, tσ,i+1). (5.68)
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Inserting q̇ from Eq. 5.35, we obtain

V̇σ(t) = −‖∇ϕσ(q(t))‖2 , t ∈ [tσ,i, tσ,i+1), (5.69)

which is non-positive in σ. Since Vσ is positive-definite, Eq. 5.69 shows that Vσ

strictly decreases and converges to the following set,

E =
{
q ∈ R2 | ‖∇ϕσ(q)‖ = 0

}
, (5.70)

which is the set of the equilibrium points of ϕσ. This completes the proof.

Before we state the next theorem, which is the main result of this subsection, we

define the set L as the union of all the stable manifolds l of all the non-zero norm

critical points in F .

Theorem 5.4.12. Consider the switching closed-loop system in Eq. 5.34 with pa-

rameter k satisfying the condition in Eq. 5.67. Every trajectory of 5.34 that starts

inside F and outside L asymptotically converges to the origin. This also implies that

the origin is almost globally asymptotically stable.

Proof. When a trajectory starts in F and outside L, the functions Vσ create a sequence

of strictly decreasing functions (Lemma 5.4.11) that have coincident values at the

time instants that σ switches (Lemma 5.4.10). Taking into account Theorem 5.4.9

and Eq. 5.69, and invoking Theorem 3.1 in Liberzon (2003), the continuous sequence

of strictly decreasing positive-definite functions shows asymptotic convergence of the

trajectory to a critical point of ϕσ, σ ∈ {SS,R0,R1, · · · ,Rm}. Since the trajectory

starts outside L, this point cannot be a non-zero norm equilibrium point, and the

origin is the only remaining candidate. This means that the trajectory asymptotically

converges to the origin.

Also, the trajectories that start inside L converge to a non-zero norm equilibrium

point. The elements of L are sets of measure zero in F , which is the reason we cannot
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introduce a basin of attraction for non-zero norm equilibrium points. This implies

that the origin is an almost globally asymptotically stable equilibrium point of the

system in Eq. 5.34.

5.4.4 Collision Avoidance Analysis

The robot’s clearance from the obstacles and the domain’s boundary is imme-

diately concluded from Theorem 5.4.12. We state this conclusion in the following

corollary.

Corollary 5.4.13. Given the switching closed-loop system in Eq. 5.34 with param-

eter k satisfying the condition in Eq. 5.67, F is a positively invariant set for any

trajectory that starts in F , and consequently no collision occurs between the robot and

the boundaries of the obstacles and the domain.

Proof. We know ϕσ ∈ [0, 1) ∀σ ∈ {SS,R0,R1, · · · ,Rm}, and consequently ϕσ(q(0)) ∈

[0, 1) if q(0) ∈ F . The sequence of strictly decreasing positive functions Vσ in the

proof of Theorem 5.4.12 shows that every ϕσ remains in the range [0, 1) for trajectories

that start in F and outside L ∀ t ≥ 0. This implies that the trajectory stays in F for

all future time, and the robot never hits the the obstacles’ boundaries and the domain

boundary, where ϕRi = 1. Also, trajectories that start in L monotonically converge

to the corresponding non-zero norm equilibrium point due to the first-order dynam-

ics of the robot. Thus, these trajectories never hit the obstacles’ and the domain’s

boundaries either. This completes the proof.

5.5 Simulation Results

In this section, we validate our theoretical results with MATLAB simulations

of the motion of a holonomic robot with single-integrator dynamics. We consider
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Figure 5.4: Trajectory of a Single Robot That Moves in a Bounded Domain When
the Destination Is Located in a Repulsion Space.

Figure 5.5: Time Evolution of the Navigation-Like Function for the Robot When
the Destination Is Located in a Repulsion Space.

a circular domain that contains four circular obstacles and two elliptical obstacles,

where the obstacles’ configuration in the domain satisfies Assumption 5.1.9. The
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radius of the robot is r = 10 cm, and the size the domain is rD = 2.5 m. We set

k = 0.04 and run two simulations.

In the first simulation, the robot’s initial position is q(0) = [−3 3]T , and the

destination is located in a repulsion space, which is R0 here. As shown in Fig. 5.4,

the robot moves between the obstacles without colliding with them and converges to

the destination (the origin) in almost 10 s. Also, the time evolution of the navigation-

like function ϕσ(q) is shown in Fig. 5.5. We can see that the NLF monotonically

converges to zero and never becomes equal 1, which shows that the robot never hits

the obstacles and the domain boundary.

In the second simulation, the robot starts from the same initial position, q(0) =

[−3 3]T , while the domain and the obstacles are reconfigured in such a way that

the origin is located in the safe space SS. As shown in Fig. 5.6, the robot again

converges to the destination without colliding with the obstacles. The time evolution

of the navigation-like function ϕσ(q) is also illustrated in Fig. 5.7 for this simulation.

We again see that the value of the NLF monotonically converges to zero and never

becomes equal to 1. This shows that the robot converges to the destination without

colliding with the boundaries of the obstacles and the domain when the destination

is located in the safe space.

We also see that the robot has a slow rate of convergence in both simulations,

especially at the beginning of its motion. The reason is that the attraction force is

much smaller than the repulsion force at the beginning. We know that the rate of

convergence can be increased if we use smaller values for k, which would result in

smaller repulsion forces. In this case, the robot’s navigation through the environment

would be “riskier,” in that its clearance from the boundaries of the obstacles and

the domain would decrease. Another way to modify the rate of convergence is to

introduce an additional tuning parameter into the NLF’s without affecting the types
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Figure 5.6: Trajectory of a Single Robot That Moves in a Bounded Domain When
the Destination Is Located in the Safe Space.

Figure 5.7: Time Evolution of the Navigation-Like Function for the Robot When
the Destination Is Located in the Safe Space.

of the critical points and their stability characteristics. This is a subject of ongoing

work.
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Figure 5.8: (a) 3-D View of the Turtlebot 3 Burger Robot, and (b) Overhead View
with Body-Fixed Coordinate Frame.

5.6 Experimental Implementation and Results

In this section, we present experimental results of implementing our proposed

obstacle avoidance controller on a physical robot in order to evaluate performance

of the controller in practice. We use a commercial nonholonomic robot called the

Turtlebot3 Burger robot, which is shown in Fig. 5.8, for the experimental tests. Since

the controller is designed for a holonomic robot, we need to adapt the proposed

controller in such a way that it can be applied to a nonholonomic robot. To this

end, we use the adaptation method in (Lafmejani et al., 2020). We consider two

scenarios. In each scenario, the environment contains convex obstacles, whose shapes

are arbitrary and unknown to the robot. The robot must navigate between the

obstacles without any collisions with them and converge to the goal position (the

origin).

5.6.1 Scenario 1

In the first scenario, we demonstrate stabilization of the robot to the goal point by

our proposed obstacle avoidance controller in the presence of convex obstacles in the

environment. We set the controller gain to k = 0.15. Figure 5.9 shows snapshots of
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Figure 5.9: Snapshots of the Experimental Implementation of the First Scenario.
The Controller Gains Are Set to k = 0.15.

the experimental implementation of the first scenario. The Burger robot starts at the

initial point q(0) = [−3.75 2.0]T m. The goal point is the origin of the global frame.

As shown in the third snapshot, the robot has to pass over the switching surface in

order to navigate between the two closest obstacles without colliding with them.

5.6.2 Scenario 2

In the second scenario, we illustrate the effect of the parameter k on the perfor-

mance of the robot on stabilizing to the goal point. We also change the obstacles’

configuration. Two different cases are tested with this configuration of obstacles in

the environment but with different values of the parameter k. The robot’s initial

position is q(0) = [−3.75 2.25]T m in both cases. We first set k = 0.12. Figure 5.10

shows snapshots of the experimental results of the second scenario when k = 0.12.

We see that the robot converges to the destination in 198 s. We then set k = 0.1. The

result is shown in Fig. 5.11, where we see that the robot converges to the destination

in 124 s. This demonstrates that the robot stabilizes to the goal point faster when
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Figure 5.10: Snapshots of the Experimental Implementation of the Second Scenario.
The Controller Gains Are Set to k = 0.12.
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Figure 5.11: Snapshots of the Experimental Implementation of the Second Scenario.
The Controller Gains Are Set to k = 0.1.

we use a smaller value of the parameter k.
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5.7 Application to Position Control of Collective Transport in Bounded Domains

with Convex Obstacles

In this section, we propose a decentralized controller for collective transport by a

team of robots that have double-integrator dynamics and move in a bounded convex

domain with convex obstacles. To design the controller, we use the obstacle avoidance

controller that we designed for a single robot in a bounded domain in the preceding

section.

5.7.1 Problem Statement

We consider a team of N identical point-mass robots that move in a bounded pla-

nar convex domain and are rigidly attached to a payload in an arbitrary configuration,

as shown in Fig. 5.12. We assume that each robot has access to its own position and

velocity with respect to an inertial coordinate system, which is common to all the

robots. The robots do not communicate with one another and are not assigned pre-

defined trajectories. They also lack information about the payload’s kinematics and

dynamics, the number of robots in the transport team, and the robots’ distribution

around the payload. We also assume that the domain contains convex obstacles, and

that the positions and shapes of the obstacles are unknown to the robots. We make

the following assumptions about the configuration of the obstacles in the domain and

the robots’ distribution around the payload.

Assumption 5.7.1. The space between each pair of obstacles and the space between

an obstacle and the boundary of the domain is larger than the largest dimension of

the payload.

Assumption 5.7.2. The payload is contained in the convex polygon that has the

robots as the vertices.
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Figure 5.12: A Schematic Representation of a Collective Transport Task with Four
Robots in a Bounded Convex Domain.

Assumption 5.7.1 allows the payload to be physically transportable through any

space in the domain. Also, Assumption 5.7.2 guarantees that the payload never

collides with the obstacles if the robots never collide with the obstacles.

We define xo = [xo yo]
T ∈ R2 and θo ∈ R as the position of the payload’s center

of mass, point O in Fig. 2.11, and the payload’s orientation with respect to a global

coordinate frame, respectively. We define xi = [xi yi]
T ∈ R2 as the position of robot

i and xd = [xd yd]
T ∈ R2 as the position of the target point in the global frame, as

shown in Fig. 2.12. The center of mass of the entire system, including both the load

and the robots, is denoted by point C in Fig. 2.11. Given that points O and C are

not necessarily coincident, we define xc = [xc yc]
T ∈ R2 as the position of C in the

global frame and rc ∈ R2 as the vector from C to O, as shown in Fig. 2.11. We also

define ri = [rix riy]
T ∈ R2 as the vector from C to the attachment point of robot i in
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the global frame.

Each robot i knows its own position xi and velocity ẋi and applies an actuating

force ui = [uix uiy]
T ∈ R2 to the payload. The control objective is to design the

forces ui, i = 1, ..., N , such that the robots drive the position of the payload’s center

of mass, xo, to the target position xd while colliding collisions with the obstacles. The

only sensor feedback available to the robots consists of their on-board measurements

of their own positions and velocities and their distance from the obstacles in their

sensing range.

5.7.2 Dynamical Model

To derive the dynamical model of the entire system, comprised of both the load and

the robots, we use the framework in Chapter 4. We denote the mass of each robot and

the mass of the payload by mr and mo, respectively. We also define Io as the payload’s

moment of inertia about the axis perpendicular to the plane and passing through O.

Considering the entire system as a rigid body and defining q := [xc yc θo]
T ∈ R3

as the vector of generalized coordinates, we can write the equation of motion of the

entire system as mI 0

0 I

 q̈ =

 I · · · I

r̂T1 · · · r̂TN

u, (5.71)

where m and I are the mass and moment of inertia of the entire system, given by:

m = mo +Nmr,

I = Io +mo ‖rc‖2 +mr

N∑
i=1

‖ri‖2 , (5.72)

and r̂i ∈ R2 and u ∈ R2N are defined as

r̂i = [−riy rix]
T , (5.73)

u = [uT1 · · · uTN ]T . (5.74)
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The matrix I ∈ R2×2 is the identity matrix.

5.7.3 Controller Design

In this section, we present decentralized robot controllers for the system described

by Eq. 3.52 that produce convergence of the payload’s center of mass to a neighbor-

hood of the desired position xd while guaranteeing its clearance from the obstacles

and the domain’s boundary. The proposed control law is written as

ui = −Kdẋi −Kp∇ϕ(xi), (5.75)

in which Kp = KpI and Kd = KdI are gain matrices, where Kp and Kd are strictly

positive constants. Also, the term ∇ϕ(xi) is the gradient of the NLF at the position

of robot i. This control law implies that each robot selfishly tries to stabilize its own

position to the target position using the NLF that is calculated at its own position.

Since the robots are attached to distinct points on the payload’s boundary, conver-

gence of all the robots’ positions to the target position is impossible. However, by

each applying the decentralized controller in Eq. 5.75, the robots produce a collec-

tive transport behavior that approximately achieves the control objective defined in

Section 5.7.1. We analyze and discuss this behavior in the next section.

5.7.4 Motion Analysis

To analyze the collective behavior of the entire system of the payload and the

robots with the proposed controller, we first derive the dynamics of the closed-loop

system and then investigate the stability and convergence properties of this system.
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Closed-loop dynamics

There is a holonomic kinematic constraint between the position of robot i and the

position of the system’s center of mass (see Fig. 2.12), given by

xi = xc + ri. (5.76)

Taking the time derivative of Eq. 5.76, we obtain

ẋi = ẋc + r̂iθ̇o, (5.77)

where r̂i is given by Eq. 5.73. Substituting the expressions for xi and ẋi in Eqs. 5.76

and 5.77 into Eq. 5.75, we obtain

ui = −Kd(ẋc + r̂iθ̇o)−Kp∇ϕ(xi). (5.78)

We now incorporate the decentralized control law for ui in Eq. 5.78 into the dynamical

model in Eq. 5.71 to derive the equation of motion of the closed-loop system as

Mẍc = −Kd

N∑
i=1

(ẋc + r̂iθ̇o)−Kp

N∑
i=1

∇ϕ(xi),

Iθ̈o = −Kd

N∑
i=1

r̂Ti (ẋc + r̂iθ̇o)−Kp

N∑
i=1

r̂Ti ∇ϕ(xi), (5.79)

whereM = mI. Taking into account the facts that ri×ri = 0 and [rTi 0]T×[aT 0]T =

[0 0 r̂Ti a]T , where a is an arbitrary vector in R2, the closed-loop system in Eq. 5.79

can be rewritten as

Mẍc = −NKdẋc −Kd

N∑
i=1

r̂i θ̇o −Kp

N∑
i=1

∇ϕ(xi),

Iθ̈o = −Kd

N∑
i=1

r̂Ti ẋc −Kdρθ̇o −Kp

N∑
i=1

r̂Ti ∇ϕ(xi), (5.80)

where ρ :=
∑N

i=1 ‖ri‖
2. For notational simplicity, we also define % :=

∑N
i=1 ri, which

implies that %̂ :=
∑N

i=1 r̂i.
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Note that ri changes with the payload’s rotation, and we can write ri = ri(θo).

The magnitude of ri however remains unchanged since each robot i is rigidly attached

to the payload and C is a fixed point on the payload. Consequently, when the payload

rotates, the directions of % and %̂ change while their magnitudes remain constant.

Equilibrium points

The equilibrium state of the closed-loop system in Eq. 5.80 is obtained by setting

ẍc = ẋc = 0 and θ̈o = θ̇o = 0, which by using Eq. 5.76, results in the following

equations:

N∑
i=1

∇ϕ (x∗c + ri(θ
∗
o)) = 0, (5.81)

N∑
i=1

r̂Ti (θ∗o)∇ϕ (x∗c + ri(θ
∗
o)) = 0, (5.82)

in which the superscript * denotes the equilibrium state. We must solve Eq. 5.81

and Eq. 5.82 simultaneously to find the values of xc and θo at the equilibrium points.

Regarding the equation of the navigation function and its gradient, these equations

are very complicated to solve analytically. Hence, we use Eq. 5.81 and Eq. 5.82 as

the representation of the equilibrium points of the system in Eq. 5.80.

Stability characteristics of the equilibrium points

To analyze the stability characteristics of the equilibrium points of the closed-loop

system in Eq. 5.80, we use Lyapunov’s indirect method and linearize Eq. 5.80

around the equilibrium points represented by Eq. 5.81 and Eq. 5.82. Taking into

account Eq. 5.76 and the fact that ri = ri(θo), we can define X = [XT
1 X

T
2 ]T ∈ R6

as the state vector for the system in Eq. 5.80, where X1 := [xTc θo]
T ∈ R3 and

X2 := [ẋTc θ̇o]
T ∈ R3. Given X, the state-space representation of Eq. 5.80 is written
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as

Ẋ = F (X) :=

 X2

−H−1 (G1(θo)X2 +G2(X1))

 , (5.83)

where H = diag(m,m, I) ∈ R3×3, and G1 ∈ R3×3 and G2 ∈ R3 are given by

G1(θo) = Kd

NI %̂

%̂T ρ

 , (5.84)

G2 = Kp

N∑
i=1


 ∇ϕ(xi)

r̂Ti (θo)∇ϕ(xi)


 . (5.85)

To derive the linearized model, we must calculate the derivative of F (X) with respect

to X as

∂F (X)

∂X
=

 03×3 I3×3

−H−1
(
∂G1(θo)
∂X1

X2 + ∂G2(X1)
∂X1

)
−H−1G1

 . (5.86)

The linearized model is obtained by evaluating the right-hand side of Eq. 5.86 at the

equilibrium points, where X1 = X∗1 and X2 = 0. Hence, the linearized form of Eq.

5.83 is obtained as

Ẋ =

 03×3 I3×3

−H−1
(
∂G2(X1)
∂X1

)
−H−1G1


X1=X∗1

X, (5.87)

where X∗1 = [x∗
T

c θ
∗
o]
T described by Eq. 5.81 and Eq. 5.82. To study the stability

properties of the equilibrium points, we must analyze the signs of the eigenvalues of

the matrix in the right-hand side of Eq. 5.87. We know that H is positive definite

and can confirm that G1 is positive definite too. By Lemma 3.5 in (Koditschek,

1989), we know that the linear system in Eq. 5.87 has the stability properties of the

linear system defined by

Ẋ1 = −H−1AX1, (5.88)
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where

A :=

(
∂G2(X1)

∂X1

)
X1=X∗1

(5.89)

Toward this end, we define Ai(X1) ∈ R3×3 as

Ai(X1) :=
∂

∂X1


 ∇ϕ(xi)

r̂Ti (θo)∇ϕ(xi)


 . (5.90)

Taking into account Eq. 5.85, we can confirm that

A = Kp

N∑
i=1

Ai(X1 = X∗1). (5.91)

By the chain rule, we can rewrite Ai in Eq. 5.90 as

Ai(X1) =

 ∂
∂xi

(∇ϕ(xi))
∂xi
∂X1

r̂Ti
∂
∂xi

(∇ϕ(xi))
∂xi
∂X1

+ ∇ϕ(xi)
T ∂r̂i
∂X1

 . (5.92)

We know that ∂
∂xi

(∇ϕ(xi)) = ∇2ϕ(xi) and can also confirm from Eq. 5.76 that

∂xi
∂X1

=

[
I2×2 r̂i

]
(5.93)

∂r̂i
∂X1

=

[
02×2 −ri

]
. (5.94)

Incorporating Eq. 5.93 and Eq. 5.94 into Eq. 5.92, we obtain

Ai =

 ∇2ϕ(xi) ∇2ϕ(xi)r̂i

r̂Ti ∇2ϕ(xi) r̂Ti ∇2ϕ(xi)r̂i − r̂Ti ∇ϕ(xi)

 . (5.95)

Using Eq. 5.91 and Eq. 5.82, we calculate the matrix A as

A = Kp

N∑
i=1

 ∇2ϕ(xi) ∇2ϕ(xi)r̂i

r̂Ti ∇2ϕ(xi) r̂Ti ∇2ϕ(xi)r̂i

 . (5.96)

To determine the signs of the eigenvalues of A, we need to have knowledge about

the signs of the eigenvalues of each matrix Ai at the equilibrium state, which is very

complicated because of the arbitrary geometry of the payload and also because of the

highly nonlinear structure of the ϕ(xi) functions. Hence, we leave the rest of this

analysis for our future work.
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5.7.5 Simulation Results

We validate our theoretical results with MATLAB simulations of collective trans-

port of a circular payload by four point-mass robots. We consider a circular domain

that contains four circular obstacles, where the obstacles’ configuration in the domain

satisfies Assumption 5.7.1 and Assumption 5.7.2.

In the first simulation, the robots have a uniform distribution around the payload

and must transport it to the origin while avoiding the obstacles. The initial position

of the payload’s center of mass is xo(0) = [−1 3]T . We set Kp = 1 and Kd = 0.6.

As shown in Fig. 5.13, the robots steer the payload between the obstacles without

colliding with them and drive the payload’s center of mass to the destination (the

origin that is shown in green). Also, the time evolution of the navigation-like functions

that are associated with each robot are shown in Fig. 5.14. We can see that each

NLF has almost monotonic decrease with time and never becomes equal to 1, which

shows that none of the robots contact an obstacle. Figure 5.14 also shows that the

payload’s center of mass converges to the destination in almost 16 seconds. In the

second simulation, the robots have a nonuniform distribution around the payload and

must transport it to the origin while avoiding the obstacles. The initial position of the

payload’s center of mass is changed to xo(0) = [−3 2.25]T , and the controller gains

are the same as those in the first simulation. As shown in Fig. 5.15, the robots again

transport the payload toward the destination and avoid collisions with the obstacles.

The time evolution of the navigation-like functions in Fig. 5.16 show that each robot

almost monotonically converges to a vicinity of the origin while avoiding collisions

with the obstacles. We also see that the motion becomes very slow between t = 10 s

and t = 14 s. The reason is that the robots detect three obstacles in their sensing

radius when they are in the area in the middle of the domain. The robots apply
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Figure 5.13: Snapshots of a Collective Transport Task in a Bounded Domain by
Four Robots with a Uniform Distribution Around the Payload.

Figure 5.14: Time Evolution of the Navigation-Like Functions for Four Robots with
a Uniform Distribution Around the Payload.
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Figure 5.15: Snapshots of a Collective Transport Task in a Bounded Domain by
Four Robots with a Nonuniform Distribution Around the Payload.

Figure 5.16: Time Evolution of the Navigation-Like Functions for Four Robots with
a Nonuniform Distribution Around the Payload.

164



opposing repulsion forces to the payload, which slow down its motion. Since there is

no local minimum point in that area, the robots do not become stuck, and instead

circumvent the obstacles on their way toward the destination. Figure 5.16 also shows

that the payload’s center of mass converges to a neighborhood of the origin in almost

21 seconds.
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Chapter 6

CONCLUSION AND FUTURE WORK

In this chapter, we conclude this thesis and mention some possible directions for

future work.

In Chapter 2, we first presented a decentralized control strategy for multi-robot

collective transport based on sliding mode control. The controllers did not require

inter-robot communication, knowledge of the load dynamics and geometry, or the size

and spatial configuration of the transport team. We validated this control strategy

in simulations with point-mass robots and with 3D models of robots with realis-

tic dynamics, as well as in experiments with a team of small mobile robots. The

simulations and experiments demonstrated the effectiveness of the strategy at driv-

ing the transport team to a target speed in a desired direction. We then presented

decentralized proportional control (P-control) and proportional-integral control (PI-

control) strategies for collective transport by a team of point-mass robots with the

same assumptions. We proved that the closed-loop system comprised of the payload

and robots is exponentially stable with P-control and asymptotically stable with PI-

control. We also analyzed the system’s rate of convergence to the target velocity in

the case of P-control, finding that it is mainly affected by the robots’ distribution

around the load and that it influences the load’s total rotation and drift from the

target path during the transient phase of motion. Our simulations verified the cor-

rectness of our analysis for different robot distributions around the load, as well as

the effectiveness of the PI-control in driving the payload’s motion to the desired path.

A possible extension of this work is to include noise in the robots’ velocity measure-

ments and derive conditions on the controller gains that guarantee the robustness of
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the system’s performance.

In Chapter 2, we also presented a decentralized adaptive control strategy for col-

lective transport by nonholonomic robots. The controllers did not require inter-robot

communication, information about the payload dynamics and geometry, or knowl-

edge of the number of robots in the transport team and their distribution around

the payload. In addition, since the desired manifolds of motion were designed to

be consistent with the system’s holonomic constraints, the robots were not required

to begin the transport task in any specific configuration. We validated this control

strategy in simulations with 3D models of robots with realistic dynamics. The simu-

lations demonstrated the effectiveness of the strategy at driving the transport team

to a target speed in a desired direction. One possible direction for future work is to

consider transport teams in which the robots have manipulators with more degrees

of freedom and modify the controller to achieve internal force regulation and payload

transport along curved reference trajectories. Another direction for future work is to

consider robots with force sensing capabilities and utilize their force measurements

of the transport team’s exertions on the payload, which constitutes a type of implicit

communication through the payload, in feedback controllers that drive the payload

to a time-varying target velocity.

In Chapter 3, we proposed an obstacle avoidance controller for a holonomic finite-

dimensional robot in an unbounded, GPS-denied environment with unknown strictly

convex obstacles. The controller relied only on the robot’s local measurements and did

not require any information about the locations and geometry of the obstacles. We

first studied the case where the environment has a single obstacle and proved that with

the proposed controller, no collision takes place and the robot converges to the desired

velocity after it passes the obstacle. For the case of multiple obstacles, we proposed

a switching control scheme and showed that the robot avoids collisions and converges
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to the target velocity if it uses the controller designed for the single-obstacle case for

the closest obstacle at each time instant. Moreover, the robot never becomes trapped

between any pair of obstacles (i.e., there are no local stable equilibrium points) if it

uses a sufficiently small p in the equation for the virtual potential field, which is used

in the repulsive term of the controller. We also combined the proposed controller with

the PI controller in Chapter 2 to design a controller for velocity control of collective

transport in an unbounded domain with strictly convex obstacles. We presented

simulations of collective transport with this controller and left the theoretical analysis

of the controller for future work.

In Chapter 4, we proposed a decentralized PD control strategy for a team of

identical point-mass robots to collectively transport a payload to a target position.

The controller only required the robots’ local measurements and did not rely on

predefined trajectories or explicit communication between the robots. We proved

that with the proposed controller, the robots drive the payload to a neighborhood

of the destination, where the steady-state distance between the payload’s center of

mass and the target position was only a function of the number of the robots and

their distribution around the payload. A version of the proposed controller for three-

dimensional collective transport tasks in space applications was recently developed in

(Farivarnejad, H. et al., 2021).

In Chapter 5, we first proposed a controller for obstacle avoidance in a bounded

convex domain that contains convex obstacles. We considered single integrator dy-

namics for the robot and proved the robot’s convergence to the destination. We also

proved that the robot never collides with the obstacles and never get stuck between

them. We validated our theoretical results with simulations in MATLAB and imple-

mentation on a holonomic robot. We then modified the proposed controller for posi-

tion control of collective transport. We added a velocity dissipation term to design a
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decentralized control law for point-mass robots with double-integrator dynamics that

perform collective transport in a bounded convex domain with convex obstacles. We

proved the convergence of the system to a set of equilibrium points. We also validated

the effectiveness of the proposed controller with simulations in MATLAB.

An additional direction for future work is to derive conditions that theoretically

guarantee the absence of local equilibrium points for collective transport in bounded

domains. We can also explore the application of extremum seeking to the design of

controllers for collective transport tasks in GPS-denied bounded environments that

contain both concave and convex obstacles.
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APPENDIX A

UNCONSTRAINED DYNAMICS OF A NONHOLONOMIC ROBOT
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Here, we derive the unconstrained dynamical model of a nonholonomic robot.
Using the classical Lagrange formulation, we first obtain the constrained dynamics
of the robot, and then eliminate the Lagrange multipliers in this constrained model.
For simplicity, we drop the subscript i in the variables associated with the robot.

We begin with the vector of generalized coordinates qc := [x y θ θR θL]T ∈ R5,
which completely describes the position of each point on the robot’s core as it moves.
We define mc as the mass of the robot’s core, Ic as the robot core’s moment of inertia
about the axis that passes through its center of mass and is normal to the plane of
motion, and Jw as the moment of inertia of each wheel about its axis of rotation.
Hence, the Lagrangian of the robot’s core is written as:

L =
1

2
mc(ẋ

2 + ẏ2) +
1

2
Icθ̇

2 +
1

2
(Jwθ̇

2
R + Jwθ̇

2
L). (A.1)

Furthermore, to satisfy the rolling condition for each wheel, we include four constraint
equations that can be written in the following matrix form:

Acq̇c = 0, (A.2)

where Ac ∈ R4×5 is

Ac =

1 0 b cos(θ) −r cos(θ) 0
0 1 b sin(θ) −r sin(θ) 0
1 0 −b cos(θ) 0 −r cos(θ)
0 1 −b sin(θ) 0 −r sin(θ)

 . (A.3)

Defining λ := [λ1 λ2 λ3 λ4]
T ∈ R4 as the vector of Lagrange multipliers, and using

the Lagrange formulation, the equations of motion of the robot’s core are calculated
as:

mcẍ = λ1 + λ3
mcÿ = λ2 + λ4

Icθ̈ = λ1b cos(θ) + λ2b sin(θ)− λ3b cos(θ)− λ4b sin(θ)

Jwθ̈R = τR − λ1r cos(θ)− λ2r sin(θ)

Jwθ̈L = τL − λ3r cos(θ)− λ4r sin(θ), (A.4)

where τR and τL are the actuation torques on the right and left wheels, respectively.
Using a similar approach to the method in Section 1.4 of Bloch et al. (2003)

for deriving the nonholonomic dynamics of a vertical rolling disk, we eliminate the
Lagrange multipliers from these equations to obtain the unconstrained equations of
motion for the robot’s core. Since rank(Ac) = 3, the four constraint equations A.2 are
linearly dependent, and the number of linearly independent constraints is 3. These
three constraints can be calculated from basic row operations on the matrix Ac in
Eq. A.3. By adding the first and third rows and the second and fourth rows of Ac,
we obtain the following two equations from Eq. A.2:

ẋ =
r

2
(θ̇R + θ̇L) cos(θ) , ẏ =

r

2
(θ̇R + θ̇L) sin(θ). (A.5)
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Subtracting the third row of Ac from the first row (or the fourth row from the second
row) yields the third equation:

θ̇ =
r

2b
(θ̇R − θ̇L). (A.6)

Eq. A.5–Eq. A.6 are the three linearly independent constraint equations. Differenti-
ating these equations with respect to time, and substituting the resulting expressions
for ẍ, ÿ, and θ̈ into the first, second, and third equations in Eq. A.4, we obtain:

r

2

(
cos(θ)(θ̈R + θ̈L)− θ̇ sin(θ)(θ̇R + θ̇L)

)
=

1

mc

(λ1 + λ3)

r

2

(
sin(θ)(θ̈R + θ̈L) + θ̇ cos(θ)(θ̇R + θ̇L)

)
=

1

mc

(λ2 + λ4)

r

2b
Ic(θ̈R − θ̈L) = b cos(θ)(λ1 − λ3) + b sin(θ)(λ2 − λ4). (A.7)

Adding the fourth and fifth equations in Eq. A.4 results in the equation:

Jw(θ̈R + θ̈L) = (τR + τL)− r cos(θ)(λ1 + λ3)

− r sin(θ)(λ2 + λ4). (A.8)

By substituting in the expressions for λ1 + λ3 and λ2 + λ4 from Eq. A.7, we obtain:(
Jw +

mcr
2

2

)
(θ̈R + θ̈L) = τR + τL. (A.9)

Subtracting the fifth equation from the fourth equation in Eq. A.4, we have:

Jw(θ̈R − θ̈L) = (τR − τL)− r cos(θ)(λ1 − λ3)
− r sin(θ)(λ2 − λ4). (A.10)

If we move the term (τR − τL) to the left-hand side of the above equation, then
the right-hand side is equal to the right-hand side of the third equation in Eq. A.7
multiplied by −r/b. Therefore, Eq. A.10 can be rewritten as:(

Jw +
r2

2b2
Ic

)
(θ̈R − θ̈L) = τR − τL. (A.11)

The Lagrange multipliers, i.e. the elements of λ, have been eliminated in Eq. A.9
and Eq. A.11. Also, since the number of original generalized coordinates is 5 and the
number of linearly independent constraints is 3, the robot’s core has only 2 degrees of
freedom, and the unconstrained dynamics of the core are therefore expressed by two
equations. Hence, Eq. A.9 and Eq. A.11 are the unconstrained equations of motion
for the robot’s core. Finally, defining

H1 = Jw +
mcr

2

2
, H2 = Jw +

r2

2b2
Ic, (A.12)
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we can write Eq. A.9 and Eq. A.11 in matrix form:[
H1 H1

H2 −H2

] [
θ̈R
θ̈L

]
=

[
1 1
1 −1

] [
τR
τL

]
. (A.13)

By pre-multiplying this equation by the inverse of the matrix that multiplies the
vector [τR τL]T , it can be rewritten as

1

2

[
H1 +H2 H1 −H2

H1 −H2 H1 +H2

] [
θ̈R
θ̈L

]
=

[
τR
τL

]
, (A.14)

which is in the standard form of unconstrained dynamics. This formulation shows
that q∗c = [θR θL]T ∈ R2 is an unconstrained configuration space for the dynamics of
a nonholonomic robot.
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CALCULATION OF THE GRADIENTS OF ϕ WITH RESPECT TO d AND q
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We can write the gradient of ϕ with respect to d as

∇dϕ =
∂ϕ

∂d
=
∂ϕ

∂δ

∂δ

∂d
. (B.1)

We represent d in terms of its components in the global coordinate frame as d :=
[dx dy]

T . Then, from the definition of δ, we have that δ = ||d|| − r =
√
d2x + d2y − r.

Using this expression for δ, we obtain:

∂δ

∂d
=

[
∂δ
∂dx
∂δ
∂dy

]
=

 dx√
d2x+d

2
y

dy√
d2x+d

2
y

 =
1√

d2x + d2y

[
dx
dy

]
= ed. (B.2)

Therefore, ∇dϕ is given by

∇dϕ =
∂ϕ

∂d
=
∂ϕ

∂δ
ed. (B.3)

We also represent the position of the projection point in terms of its components
in the global frame as qP = [qp,x qp,y]

T . Then the vector equation q = d+ qP can be
written as

dx = x− qp,x , dy = y − qp,y. (B.4)

The gradient of ϕ with respect to q can be calculated as

∇qϕ =
∂ϕ

∂q
=
∂ϕ

∂δ

∂δ

∂q
. (B.5)

By the chain rule, the term ∂δ
∂q

can be expressed as

∂δ

∂q
=

∂δ

∂dx

∂dx
∂q

+
∂δ

∂dy

∂dy
∂q

, (B.6)

which can be rewritten as

∂δ

∂q
=

∂δ

∂dx

[
∂dx
∂x
∂dx
∂y

]
+

∂δ

∂dy

[
∂dy
∂x
∂dy
∂y

]
. (B.7)

Given Eq. B.4 and the fact that δ =
√
d2x + d2y − r, we can calculate the partial

derivatives in Eq. B.7 to obtain:

∂δ

∂q
=

dx√
d2x + d2y

[
1
0

]
+

dy√
d2x + d2y

[
0
1

]
=

1√
d2x + d2y

[
dx
dy

]
= ed. (B.8)

Substituting this expression for ∂δ
∂q

into Eq. B.5, we find that

∇qϕ =
∂ϕ

∂δ
ed, (B.9)

which is identical to Eq. B.3. Therefore, we conclude that

∇dϕ = ∇qϕ. (B.10)
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PROOF OF LEMMA 3.3.12
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We describe a procedure for choosing a and b in Eq. 3.28 in order to ensure a
strictly positive lower bound γ on the time response %(t) of the system in Eq. 3.27.
We know that any unforced scalar linear second-order system can be written in the
following form (Franklin et al., 2014),

%̈+ 2ζωn%̇+ ω2
n% = 0. (C.1)

Hence, the system in Eq. 3.27 can be represented as

%̈+ 2ζωn%̇+ ω2
n% = b, (C.2)

where

ωn =
√
a, (C.3)

ζ =
k

2
√
a
, (C.4)

and consequently, its time response is written as

%(t) = e−ζωnt (c1 cos(ωnt) + c2 sin(ωnt)) + b
′
, t ≥ 0, (C.5)

in which

c1 = %0 −
b

ω2
n

, (C.6)

c2 =
1

ωn
(w0 + c1ζωn), (C.7)

b
′

=
b

ω2
n

. (C.8)

Let us choose b such that c1 = 0 1, i.e.,

b := %0ω
2
n. (C.9)

Then, from Eq. C.5, we obtain the following inequality:

%(t) = e−ζωntc2 sin(ωnt) + b
′ ≥ − |c2|+ b

′
, t ≥ 0. (C.10)

In order to ensure that %(t) ≥ γ for an arbitrary γ ∈ (0, %0), we therefore need to
enforce the condition − |c2|+b

′ ≥ γ. To do this, we choose b
′
to satisfy this condition.

Using Eq. C.7 with c1 = 0, this condition can be written as:

b
′ ≥ |c2|+ γ =

|w0|
ωn

+ γ. (C.11)

1This is not the only feasible choice for b. This is the most convenient choice that facilitates the
calculations.
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Taking into account the fact that |w0| ≤ vmax, we can ensure that Eq. C.11 is true
by defining b

′
such that:

b
′ ≥ vmax

ωn
+ γ. (C.12)

Noting that b
′
= %0 from Eq. C.8 and Eq. C.9, the above inequality implies that

ωn ≥
vmax

(%0 − γ)
. (C.13)

Since a = ω2
n by Eq. C.3, Eq. C.13 implies that a should be chosen such that

a ≥ v2max
(%0 − γ)2

. (C.14)

By Eq. C.3 and Eq. C.9, we have that

b = %0a. (C.15)

We can then define b according to the selected value of a.
This proof shows that the establishment of a specific lower bound γ for the time

response of the system in Eq. 3.27 requires a and b to be chosen such that the
conditions in Eq. C.14 and Eq. C.15 hold. Also, the selection of sufficiently large
values for a and b never contradicts Eq. 3.30, since we can always choose values of a
and b such that the corresponding green line in Fig. 3.5 lies below the orange curve
in that figure.
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