
Field Theories à la Gravity: From Navier-Stokes to Superconductivity.

by

Nikhil Monga

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved October 2020 by the
Graduate Supervisory Committee:

Cynthia Keeler, Chair
Onur Erten

Matthew Baumgart
Richard Lebed

ARIZONA STATE UNIVERSITY

December 2020



ABSTRACT

Recent developments inspired by string theoretic considerations provide multiple

maps between gravitational and non-gravitational degrees of freedom. In this dis-

sertation I discuss aspects of three such dualities, the gauge/gravity duality and

how it applies to condensed matter systems, the fluid-gravity duality, and the color-

kinematics duality.

The first of these, colloquially referred to as holography, in its simplest form posits

a mapping of d-dimensional conformal field theory (boundary) partition functions

onto d+1 dimensional gravitational(bulk) partition functions, where the space-time

carries a negative cosmological constant. In this dissertation I discuss the results of

our calculations examining the emergence of Fermi-surface like structures in the bulk

spacetime despite the absence of explicit Fermions in the theory.Specifically the 4+1

dimensional Einstein-Maxwell-Chern-Simons theory with scalar degrees of freedom,

with and without symmetry breaking is considered. These theories are gravity duals

to spatially modulated gauge theories. The results of calculations presented here in-

dicate the existence of a rich phase space, most prominently Fermi shells are seen.

The second set of dualities considered are the color-kinematic duality, also known

as the double-copy paradigm and the fluid-gravity duality. The color-kinematic dual-

ity involves identifying spin-2 amplitudes as squares of spin-1 gauge amplitudes. This

double copy picture is utilized to construct “single copy” representations for space-

times where Einstein’s equations reduce to incompressible Navier-Stokes equations.

In this dissertation I show how spacetimes that characterize irrotational fluids and

constant vorticity fluids each map to distinct algebraically special spacetimes. The

Maxwell fields obtained via the double-copy picture for such spacetimes further pro-

i



vide interesting parallels, for instance, the vorticity of the fluid is proportional to the

magnetic field of the associated gauge field.
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Chapter 1

OVERVIEW: DUALITIES IN PHYSICS

Mathematical dualities allow the reformulation of otherwise difficult problems into

relatively more manageable forms. In this dissertation we leverage three such math-

ematical dualities that have been illuminated recently. Each of these dualities allows

one to look at various classical and quantum field theoretic quantities under a geo-

metric lens.

The dualities we consider include the gauge/gravity duality which relates par-

tition functions in gravitational theories to gauge theories, the double-copy picture

which relates amplitudes in gravitational theories to gauge theories and finally the

fluid-graviy duality wherein the long wavelength limits of Einstein’s equations are

related to the Navier-Stokes equations in various forms.

We will discuss each of these dualities as well as their various formulations in

more detail in chapter 2 and chapter 4. However, before delving into the details of

these dualities, we first set the stage by discussing a more well known duality - the

electric-magnetic duality. We will see various flavors of this duality from its simpler

constructions to its non-Abelian extensions. In this process we will, albeit briefly,

see the computational benefits that arise from such mappings as well as the physical
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insights that emerge from them.

1.1 Why Study Dualities? The Electric-Magnetic Duality and its Uses.

In this section the motivations for studying dualities are provided by considering

the electric-magnetic duality. The first manifestation of a duality that a physics stu-

dent comes across is the electric-magnetic duality. The simplest form of this duality

is apparent when considering source free Maxwell equations, dF = 0 and d∗F = 0, the

transformation F ↔∗F , or equivalently E⃗ → B⃗ and B⃗ → −E⃗ allows for Maxwell’s

equations to remain satisfied by the transformed fields.

This mapping breaks down when sources are present, unless one introduces a

magnetic charge that behaves just as an electric charge does. Such magnetic charges

are magnetic monopoles. Similar to its electric counterpart, the magnetic field for a

magnetic charge m is,

B⃗ = mr̂

4πr2 . (1.1)

For the wave function of a particle carrying a magnetic charge to be quantum-

mechanically sensible one needs to impose an additional constraints on the mag-

netic charge above, this is known as Dirac’s quantization condition for magnetic

monopoles1,

em = 2nπℏ. (1.2)

It is worth noting here that a small electric coupling e will amount to a large

magnetic coupling m and vice-versa. Extensions of this concept prove useful when

considering non-Abelian gauge theories where monopoles arise more naturally and are

1This concept can be further generalized to dyons - which point particles that carry both a

magnetic charge and an electric charge.
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topological objects [’t Hooft (1974); Polyakov (1974)]. The extension of the electric-

magnetic duality that thus arises when considering non-Abelian fields is known as the

Montonen-Olive duality, first proposed by [Montonen and Olive (1977)].

Witten and Olive (1978) further generalized this duality by considering the effect

of the degeneracy of vacua in non-Abelian gauge theories. This generalization was

made possible by including an additional term in the action known as the θ term.

They considered an action of the form,

L = LYM + LHiggs + Lθ

= − 1
4g2F

a
µνF

aµν + θ
g2

32π2F
a
µνF̃

aµν + 1
2
Dµϕ

aDµϕa − V (ϕa),
(1.3)

where in the above action, F̃ a
µν ≡ i

2ϵµνρσF
a ρσ, or equivalently, F̃ ≡∗F . If we make the

following identification,

Ga
µν = F a

µν + iF̃ a
µν , (1.4)

then the action eq. (1.3) can then be packaged into a compact form as,

L = − 1
32π

Im
(
τGa

µνG
aµν

)
+ 1

2
Dµϕ

aDµϕa − V (ϕa), (1.5)

where, the complex coupling τ is is given by:

τ = 4πi
g2 + θ

2π
. (1.6)

Witten and Olive (1978) observed that the mass of the lowest energy stationary

monopole solutions (or Bogomol’nyiPrasadSommerfield or BPS states, [Bogomolny

(1976); Prasad and Sommerfield (1975)]) is invariant under the following transforma-

tion of the coupling constant,

τ → aτ + b

cτ + d
where

a b

c d

 ∈ SL(2,Z). (1.7)
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It is precisely this symmetry of the coupling constant in leaving the monopole-

mass invariant that was identified as the Montonen-Olive SL(2,Z) duality.

The biggest computational benefit that comes from the Montonen-Olive duality is

that a topological object–the magnetic monopole–can be identified as a perturbation2

[Montonen and Olive (1977); Witten and Olive (1978)]. Historically however, we see

that the electric-magnetic duality and its generalizations lead us down a trajectory of

realizing that objects such as monopoles should be expected as fundamental ingredi-

ents of gauge theories.

Lastly we point out the supersymmetric extensions of the electric-magnetic dual-

ity, this duality is also known as the S-duality [Seiberg (1995)]3. In its original form

the S-duality treats quarks and gluons of one supersymmetric non-Abelian theory as

solitons in another. Like the previous iterations of the electric-magnetic duality, the

S-duality also related strong coupling computations to weak coupling computations.

The applications of the S-duality are numerous and span various aspects of string

theory (for a pedagogical review see Alvarez-Gaume and Hassan (1997))4. We shall

see that such reformulations where the physics of strongly interacting systems can be

described by “dual” weakly coupled theories are a frequent and often useful feature of

dualities in physics. In the next section we provide a quick overview of the dualities

considered in this thesis.

2First shown in Montonen and Olive (1977), appropriately titled “Monopoles as Gauge Particles”.
3Seiberg (1995) aptly titled his work - “Electric-magnetic duality in supersymmetric non-Abelian

gauge theories”.
4See Rajaraman (1982) and Figueroa-OFarrill (1998) for reviews on topological objects and the

electric-magnetic duality respectively, the latter of which is also aptly titled - “Electromagnetic

Duality for Children”.
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1.2 An Overview of Dualities Considered.

The previous section illustrates the usefulness of considering dualities. Having

discussed a more familiar setup in the electric-magnetic duality, we now provide an

overview of the dualities used in this dissertation. The first of these dualities that we

discuss is the gauge-gravity duality, the most concrete examples of which involve the

Anti-de Sitter Space/Conformal Field Theory correspondence [Maldacena (1999); Al-

day et al. (2010); Aharony et al. (2008)]. Using this family of dualities it is possible to

perform computations in weak(strong) coupling supergravity in place of strong(weak)

coupling “dual” gauge theories in one lesser dimension.

Taking this approach further, one then asks the question: what would gravita-

tional duals for real world field theories, such as various condensed matter systems,

look like? The work presented in this dissertation on the gauge/gravity duality fo-

cuses on aspects of this question.

The second duality that forms a center piece of the research presented here in-

volves what is referred to as the double-copy picture. Stated briefly, the double-copy

picture implies that gravitational amplitudes ∼ (gauge amplitudes)2. Of interest to

us in this dissertation is the form of this duality based on the Weyl tensor[Luna et al.

(2019)]. The third duality we will use in this dissertation involves a mapping between

Einstein’s equations and Navier-Stokes equations, referred to as the fluid-gravity du-

ality[Bredberg et al. (2011, 2012)]. We will use the double-copy picture to further

dissect the fluid-gravity duality.
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The structure of this dissertation is as follows: we provide a more detailed overview

of the gauge/gravity duality, particularly in the context of condensed matter physics

in chapter 2. In chapter 3(5) we discuss our results pertaining to a specific holographic

condensed matter physics model - the Einstein-Maxwell-Chern-Simons-Dilaton theory

with and without symmetry breaking. In chapter 4 we provide a detailed overview of

the fluid-gravity duality. In chapter 5(6) we provide discuss our findings of applying

the double-copy paradigm to a specific set of metrics we refer to as fluid metrics.

Finally in chapter 6 we provide concluding remarks and discuss future directions.

5Chapter 3 is based on the published paper titled “Spectral weight in Chern-Simons theory with

symmetry breaking” by V.L Martin and the author..
6Chapter 5 is based on the published paper titled “From Navier-Stokes to Maxwell, via Einstein”

by C. Keeler, T. Manton and the author. Note that the Journal of High Energy Physics uses

alphebatized authorship. These works are reproduced here with permission from the co-authors.
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Chapter 2

HOLOGRAPHIC CONDENSED MATTER PHYSICS: FOLLOWING THE

SYMMETRIES

Holography allows the computation of field theory correlators by computing grav-

itation partition functions in one higher dimension, most successfully for spacetimes

with negative cosmological constants. The strongest evidence for this conjecture ex-

ists for the duality between N = 4SYM and type IIB string theory on AdS5 × S5

[Maldacena (1999)].

The need to study holographic theories was motivated, among other reasons, by

the need to understand strongly interacting systems. Calculations from IR QCD to

several strongly correlated condensed matter systems have presented several technical

challenges when adopting perturbative methods. For QCD amplitudes, one finds an

unwieldy factorial growth of the number of Feynman diagrams. For several condensed

matter systems such as high temperature superconductors, usual approaches such

as Landau’s Fermi liquid theory are not enough because they lack a quasiparticle

description of excitations. Thus mean-field approximations for theories such as what

is done in BCS do not work for these systems.

The reason for the usefulness of holography as a tool here follows from how it

relates strong coupling field theory partition functions to weak coupling gravitational

partition functions in one higher dimension. In the next section we will see how by

following the symmetries of the physical system in question gauge theory quantities

7



are mapped onto their dual gravitational counterparts.

2.1 Following the symmetries: à la Holography.

The Holographic conjecture can be briefly summarized as the following relation

between field theory partition functions and gravity partition functions in one higher

dimension [Gubser et al. (1998)]:

Zd+1
QFT = Zd+2

AdS

⟨ei
∫
dxhi(x) Oi(x)⟩ =

∫ ϕi→hi ∏
i

(Dϕi) eiS[ϕi],
(2.1)

where the set of fields hi correspond to the boundary values of bulk fields ϕi. Note

that bulk here refers to anti-de Sitter spacetimes, where we study the gravitational

theory. We see from the (2.1) that the boundary values hi of bulk fields ϕi source

operators on the boundary theory.

In constructing this map from bulk fields to boundary operators we seek to estab-

lish a dictionary. At this point it is pertinent to discuss "top-down" vs "bottom-up"

constructions in holography. For "top-down" constructions of the gauge-gravity du-

ality such a dictionary can be obtained by performing compactifications of higher

dimensional string theory actions (see for eg. the GPKW dictionary Gubser et al.

(1998)).

On the other hand, in bottom up constructions of holography the objective is to

construct gravity duals relevant for phenomenology. Such duals are however not well

defined - i.e. we do not know the precise form of the field theory dual. Nevertheless

one attempts to recreate as many phenomenologically pertinent features as possible.

The construction of such phenomenologically meaningful gravitational models is

made possible by adding matter content to the gravitational action. This matter field

content in bulk (in AdS) has similar symmetries and symmetry breaking behavior as
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the dual boundary operators of the associated gauge theory. It is in this way by

"following the symmetries" that we attempt to create holographic models of super-

conductors. Some mappings that typically manifest in the gauge-gravity duality are

given in table 2.1,

Bulk Field Dual Field Theory Operator

Gauge fields Aa Conserved currents Jµ

Metric Tensor gab Boundary Stress Tensor Tµν

Surface gravity κ Temperature

Table 2.1: Examples of bulk-boundary maps in the gauge/gravity Duality.

As an example of this map, we now study how gauge symmetry in the bulk relates

to symmetries of the associated current on the boundary. Consider a gauge field An in

d+2 dimensions whose boundary value i.e. Aa → Aµ sources the boundary current Jµ

in d+1 dimensions. Often the additional coordinate in the bulk spacetime (i.e. AdS

spacetime) is referred to as the radial coordinate1. We shall see below in eq. (2.2),

how a conserved U(1) gauge symmetry in the bulk theory corresponds to a globally

conserved current on the boundary gauge theory:

ZQFT [Aa(r, x) → Aµ(x)] =
∫
dd+1x

√
−γ AµJµ

=
∫
dd+1x

√
−γ (Aµ + ∂µχ)Jµ

=
∫
dd+1x

√
−γ AµJµ − χ∇µJ

µ,

(2.2)

1It is worth pointing out that scaling of the bulk partition function with this radial coordinate

rather neatly corresponds to renormalization of the boundary field theory. Appropriately the study

of renormalization group flow associated with the radial coordinate is a field of research by itself,

oft referred to as holographic renormalization (see Bianchi et al. (2002); Skenderis (2002); de Boer

et al. (2000); Hartnoll et al. (2016) for a review).
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here γ refers to the determinant of the boundary metric, γµν . The above quantity is

invariant if the current is conserved, i.e. ∇µJ
µ = 0.

The AdS/CFT correspondence is most precisely understood in the context of

the duality between N = 4 SYM and type II-B string theory. Observing this one

might ask the extent to which such constructions for condensed matter systems are

meaningful given that in bottom-up constructions one does not know the precise

form of the associated field theory dual. However, it is useful here to recall that the

Ginzburg-Landau theory was constructed by following the symmetries of the charge

carriers. In Holography as in Ginzburg-Landau, the key detail which makes such

calculations possible is universality in second order phase transitions.

2.2 Holographic Superconductors: A Brief Overview

Superconductivity requires the condensation of charge carriers which results in an

infinite DC conductivity. This can be seen as a symmetry breaking process in the field

theory, such that the current operator picks up a non-vanishing vacuum expectation

value.

Holographic gravity-duals to such superconductors realize these symmetry break-

ing processes via the formation of condensates of relevant matter fields outside of

black-hole horizons [Gubser (2008); Hartnoll et al. (2008); Hartnoll and Shaghoulian

(2012)]. The first hint that the AdS/CFT correspondence could be used to study

superconductors was provided by Gubser (2008). The action used is of the form,

S ∼
∫
d4x

√
−g
(
R − 6

l2AdS5

− 1
4
FµνF

µν − |∂µψ − iqAµψ|2 −m2|ψ|2
)
. (2.3)

For a charged Reissner-Nordstrom AdS black-hole background and with a back-

ground electric field, Gubser (2008) showed that it is possible for large enough masses

and charge of the scalar field for condensates to form outside the Horizon. This is

10



a consequence of the shift in the Breitenlohner-Friedman bound which allows one to

have “hairs” outside of the horizon in addition to mass, charge and angular momen-

tum.

The first complete picture of a holographic superconductor emerged in Hartnoll

et al. (2008). The authors then observed that scalar hair shows up at low tempera-

tures below a critical temperature & not above it. This was interpreted as a strongly

interacting S-wave superconductor as the condensate did not carry angular momen-

tum. The bulk action considered here has the form,

S ∼
∫
d4x

√
−g

(
−1

4
FµνF

µν − |∂ψ − iAψ|2 + 2
L2 |ψ|2

)
. (2.4)

The background metric that was utilized for this work was the planar Schwarzschild

AdS black hole,

ds2 = −f(r)dt2 + dr2

f(r)
+ r2(dx2 + dy2),

f(r) = r2

L2 − M

r
,

(2.5)

where the temperature relates to the mass of the black hole and size of the AdS

radius as T = 3M1/3/4πL4/3. In addition, the authors interpreted excitations on the

background as quasi-particle/hole pairs. Although this is interpreted as an S-wave

superconductor and the existance of quasi-particle excitations makes it tempting to

think of this as a BCS superconductor, however this is not the case. The reason is that

the gap in the excitation spectrum obtained here is significantly larger than what is

predicted by BCS theory. Further, owing to the strong-weak nature of the AdS/CFT

correspondence the associated field theory dual of a weak coupling Einstein gravity

calculation would be a strongly coupled field theory, this fact is consistant with the

former stated observation of the larger gap.

The first sets of holographic p-wave superconductors were constructed by promot-

ing on an AdS-Schwarzchild background where the gauge field was promoted to an
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SU(2) field [Gubser and Pufu (2008); Roberts and Hartnoll (2008)]. A holographic

superconductor consisting of a d-wave condensate was constructed by Benini et al.

(2010). In all, holographic superconductors constructed thus far encompass (but are

not limited to) s-wave, p-wave and d-wave order parameters [Ammon et al. (2010a,b);

Benini et al. (2011); Chen et al. (2011)].

2.3 Mathematical Tools

We now provide an overview of two of the most important mathematical tools that

we use in chapter 3. The first of these pertains to calculations of Green’s functions

in the context of the gauge/gravity duality, while the second deals with the spectral

weight. The spectral weight can be related to the counting of the degrees of freedom

for our system. This quantity will be our diagnostic for evaluating the presence

or absence of Fermi-surface like structures. We begin first by discussing Green’s

functions below.

2.3.1 Computing Green’s Functions Holographically

We will now look at a simple model to illustrate how holography can be used

for computing Greens functions (for a review see Hartnoll et al. (2016)). Consider a

massive scalar on an AdSd+2 background,

ds2 = L2

r2 (−dt2 + dr2 + dx⃗2
d), (2.6)

while the action is specified by,

S = −
∫
dd+1x

√
−g

(
1
2

(∂ϕ)2 + m2ϕ2

2

)
. (2.7)
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If we consider modes of the form ϕ(r, t, x⃗) = ϕ(r)eik⃗.x⃗−iωt, the equation of motion then

can be rewritten as,

ϕ′′ − d

r
ϕ′ +

(
ω2 − k2 − (mL)2

r2

)
ϕ = 0. (2.8)

Solving this expression as a series expansion near r → 0, the boundary of the AdSd+2

spacetime we get,

ϕBoundary = ϕ(0)rd+1−∆ + ...+ ϕ(1) r∆ + ... (2.9)

where the quantity ∆, is essentially representing the scaling dimension of the field

theory operator. ∆ is related to the bare mass of the scalar field via the following

relation,

∆(∆ − d− 1) = m2L2 (2.10)

The coefficient ϕ(0) plays the role of the boundary value of the field h, which as

we saw earlier sourced the field theory operator. Now using linear response theory

for boundary operators O dual to the field ϕ, we have,

GR
OO(ω, k) = ⟨O⟩

h
= ϕ(0)

ϕ(1) . (2.11)

The retarded Greens function so computed has a simplification in the near horizon

limit,

GR
OO ∼ ω2ν . (2.12)

Above ν is an exponent that linearly depends on the scaling dimension of the field

theory operator. We shall use such exponents used extensively and their computation

will be central to our work as we shall see in chapter 3.

2.3.2 Spectral Weight: A Fermi Surface Diagnostic.

The quantity that is of most interest to us here is known as the low energy spectral

weight. This quantity counts the charged degrees of freedom in a given field theory
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and can thus provide a diagnostic for the Fermi surface. The low energy spectral

weight is effectively the imaginary part of the retarded current-current correlator.

Suppressing indices, we can describe it as,

σ(k) = lim
ω→0

Im
[
GJJ(ω, k)

ω

]
(2.13)

A spectral decomposition of the imaginary part of the Greens function shows how

it counts the charged degrees of freedom of the system.

ImGR
JJ(ω, k) =

∑
m,n

e−βEm

∣∣∣⟨n(k′)|J(k)|m(k′′)⟩
∣∣∣2 δ(ω − Em + En). (2.14)

Following the previous section, we can see that the holographic computation of the

IR Greens function is made simple via the near horizon limit of bulk correlators,

(Gubser et al. (1998); Gubser (2008); Hartnoll et al. (2008) see Hartnoll et al. (2016)

for a review). Under this limit one finds that the spectral weight takes the form (with

suppressed indices),

σk = lim
ω→0

Im[GR
JJ(ω, k)]
ω

∼ lim
ω→0

ω2νk−1 & GIR
bulk ∼ δA(1)

δA(0) (2.15)

From (2.15) above we see that in the zero frequency limit a critical value of the

exponent νk emerges. For values of this exponent νk > 1/2 no spectral weight exists

while for values of the exponent νk < 1/2 one finds that charged degrees of freedom

exist,

σk ∼ lim
ω→0

ω2νk−1 =


∞ if νk < 1/2.

0 if νk > 1/2.
(2.16)

As we shall see in detail, the exponent νk explicitly depends on the perturbed mo-

mentum as well as the geometry of the spacetime in consideration. This observation

suggests that we can identify a momentum K∗ below which most charged degrees of

freedom exist, and above which no charged degrees of freedom are there.
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Figure 2.1: Schematic showing the spectral weight indicating the existance of charged

degrees of freedom below some critical momentum k∗.

2.4 Unexpected Spectral Weight: Gouteraux et. al. 2016

While it is interesting to note these structures in the bulk and what they imply

for boundary theories, some aspects of the spectral weight remain to be understood.

In particular this work was motivated by the results of Goutéraux and Martin (2017)

where a spectral weight was seen simultaneously with the existence of a charged con-

densate (they studied a 4 dimensional Einstein-Maxwell-Dilaton theory with massive

gauge fields). The authors postulated that the true underlying ground state of the

system studied could be a spatially modulated phase. This property has in fact been

suggested as a general feature of holographic superconductors.

Following these hints we conjectured that a possible ground state for the sys-

tem studied in Goutéraux and Martin (2017) could be identified by a 5-dimensional

Einstein-Maxwell-Dilaton + Chern-Simons theory with massive gauge fields.

In the paper we present in chapter 3, we computed the spectral weight for various

theories, finally building up to the Einstein-Maxwell-Dilaton with a massive vector
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and Chern-Simons action. We limit our considerations to backgrounds that contain

only electric fields.

2.5 Spatially Modulated Phases in Condensed Matter Physics

Before turning our attention to spatially modulated phases in holography, we will

first discuss these in condensed matter systems. Phenomena such as spin density

waves and charge density waves exhibit a breaking of spatial isotropy of their ground

states. Thus a spatially modulated phase can be defined as a state which has a ground

state which breaks spatial isotropy, breaking either translation invariance, rotation

invariance or a combination of both in the ground state. This spatial anisotropy can

be identified by a non-zero wave-vector k, which is indicative of the direction in which

the ground state breaks spatial isotropy. Not only does the ground state of such a

system pick up a vacuum expectation value, but given that spatial isotropy is broken

one also finds a gradient associated with the ground state. For instance, for charge

density waves in a 2 dimensional ordered condensed matter phase one would find for

eg. one finds, ⟨Q⟩ ∼ Q0Cos(kx).

Here we will briefly discuss the quantum Lifshitz model (QLM) its renormalization

group evolution thereby giving a concrete example of spatial modulation. The QLM

model can be thought of as a continuum description for quantum dimer models.

Quantum dimer models exhibit a phase transition where the ground state changes

from a columnar state to a spatially modulated phase(see fig. 2.2 below).

It is useful to introduce the effective Hamiltonian for the dimer model first in

eq. (2.17) below before we turn to its field theory formulation, the QLM in eq. (2.18),

H = −
∑

plaquettes

J [|Hi,j⟩⟨Vi,j| + |Vi,j⟩⟨Hi,j|] + V [|Hi,j⟩⟨Hi,j| + |Vi,j⟩⟨Vi,j] (2.17)
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(a) Columnar states at RK fixed point (b) Tilted states

Figure 2.2: Ground states of the dimer model (c.f. ch. 8, 9 Fradkin (2013)).

The state |Hi,j⟩ above referes to a pair of horizontal dimers in a single plaquette 2,

while |Vi,j⟩ refers to two vertical dimers in a plaquette. It is easy to see from the form

of the Hamiltonian that the first operator shifts one type of plaquette to another

while the other counts the total number of plaquettes of each type.

Quantum dimer models in 2 + 1 dimensions exhibit what are known as Rokhsar

Kivelson fixed points. At the RK point phonons have relativistic dispersion relations,

i.e. E ∼ P , where as at deviations away from this RG fixed point, the dispersion

relations go as E ∼ P 2. The RK fixed point corresponds to J/V = −1 in the above

Hamiltonian (2.17), and represents the columnar states above.

Having provided a brief but necessary context above, we now turn to the quantum

Lifshitz model and briefly touch upon its RG flow. The last step will allow us to

explicitly derive the spatial modulation of the ground state and its associated wave

vector. The Euclidean action for the Quantum Lifshitz model is:

SE = −1
2

∫
d2x dτ

(
(∂τϕ)2 + κ̃(∇2ϕ)2)

)
(2.18)

2Plaquette here refers to the repeating structure of the lattice, in this case we consider square

plaquettes.
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This action is non-relativistic, in the sense that the dispersion relation goes as

E ∼ P 2, or it exhibits Lifshitz symmetry (i.e. the mass dimensions are [L]=-1 and

[T]=-2). Here the field ϕ is related to the height of the columnar set of dimers that

one finds in these sorts of models.

We now discuss various deformations of this model and see how these deformations

will allow us to describe the "tilted states" mentioned above. We now consider the

introduction of deformations of the form, ρ(∇⃗ϕ)2 to the action (2.18); we will be

particularly interested in cases where ρ < 0. We emphasize the choice ρ < 0 as that

choice leads to a spatially modulated ground state with non-zero "wave-vector". To

fully construct the action for the tilted phase (fig. b above) one must also include

additional deformation terms of the form, g4(∇ϕ)4 [c.f. ch. 9 Fradkin (2013)]. The

full action in (+,−,−) signature then reads,

S = 1
2

∫
d2x dt

(
(∂tϕ)2 − ρ(∇⃗ϕ)2 − g4(∇⃗ϕ)4 − κ̃(∇2ϕ)2)

)
(2.19)

Note that the above description of the RG flow of the Lifshitz model describes a

shift in the dispersion relations. This also entails a shift in the mass dimensions of

the effective field. For instance the scalar ϕ, which is representative of the height of

the columnar states changes its mass dimension from [ϕ] = 0 with ρ = 0 to [ϕ] = 1/2.

A direct consequence of this change in mass dimensions is that κ̃ becomes marginally

irrelevant and can be ignored. We now write the effective action for the QLM as

(once again in a (+,−,−)),

Seff = 1
2

∫
d2x dt

(∂tϕ)2 − g4

(
(∇⃗ϕ)2 + ρ

2g4

)2

+ ρ2

4g2
4

 . (2.20)

The observation that the ground state is spatially modulated can best be seen

from the Hamiltonian, which is:

Heff = 1
2

∫
d2x

Π(ϕ)2 + g4

(
(∇⃗ϕ)2 + ρ

2g4

)2

− ρ2

4g2
4

 (2.21)
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Now we consider time invariant or static solutions for this Hamiltonian, one sees

that for ρ > 0 the solution is a state with ∇⃗ϕ = 0 and the ground state is a state with

E = 0. However for ρ < 0 we will notice that something more interesting is observed,

let ρ = −A where A > 0. We now have,

Heff = 1
2

∫
d2x

Π(ϕ)2 + g4

(
(∇⃗ϕ)2 − A

2g4

)2

− ρ2

4g2
4

 , (2.22)

for this Hamiltonian, as before for a static solution it is clear that the ground state is

a state where ∇⃗ϕ ̸= 0. This can be interpreted as the ground state acquiring a VEV

for the gradient term, ⟨∇⃗ϕ⟩ ̸= 0 This is the state with the lowest energy, whereas any

state with vanishing ∇⃗ϕ = 0 are no longer the lowest energy states.

(∇⃗ϕ)2 = A

2g4

⇒ ϕ ∼ Q⃗.x⃗,

(2.23)

here if the vector Q is non-zero it represents the tilt of the spatially modulated phase

(fig. 2.2b above). However if instead Q=0, one obtains a columnar state (fig. 2.2a

above).

2.6 Spatial Modulation In Holography

Having discussed what a spatially modulated phase is, we now turn to gravita-

tional descriptions of spatially modulated phases. As with any consideration in holo-

graphic systems, symmetries of field theory states are mapped onto symmetries of

the bulk field content, matter and gravitational. For holographic fields spatial mod-

ulation can show up in multiple different ways, for instance one can find "striped"

black-branes [Rozali et al. (2013a,b)].

Of interest to us in this dissertation will be work by Nakamura et al. (2010)

where the spatial modulation is primarily mapped onto the spin-1 matter content
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in the bulk. We begin by looking at the Einstein-Maxwell-Chern-Simons theory, as

considered by Nakamura et al. (2010),

S =
∫
d5x

√
−g

[
R − 12

L2 − 1
4
FmnF

mn + α

3!
ϵabcde√

−g
AaFbcFde

]
, (2.24)

here we set the AdS radius to 1. α corresponds to the Chern-Simons coupling. In

our paper, chapter 3, we only consider backgrounds that carry electric fields3. This

action admits the AdS-Reissner-Nordström black hole (AdS-RN) as a solution. The

near horizon geometry of this metric is AdS2 × IR3.

ds2 = −dt2 + dr2

r2 + dx2 + dy2 + dz2 Am = (At(r), 0, 0, 0, 0) At(r) = E0 r
−1.

(2.25)

Perturbations of the gauge field can be decomposed into transverse and longitudi-

nal modes. We shall see for the transverse channel, for sufficiently large Chern-Simons

coupling α, this background is unstable Nakamura et al. (2010),i.e. in the presence

of a background E field one can obtain tachyonic modes. On the other hand, in the

presence of a background B field alone, the modes will not be tachyonic4.

As we note below, these tachyonic modes which can be obtained with background

electric fields can in fact violate the Brietenlohner-Freedman(BF) bound. Recall, as

we discussed in section 2.2, the violation in the BF bound is associated with the viola-

tion of no-hair theorems for black holes. This violation of the BF bound characterizes

the instability of the black hole solution and is found to be associated with a helical
3In similar but not identical actions, turning on a background magnetic field has been shown to

be related to holographic realizations of Weyl semi-metalsJimenez-Alba et al. (2015); Landsteiner

and Liu (2016).
4Since our interest is in studying phase transitions of the holographic system, and since back-

ground magnetic fields do not appear to result in unstable modes, we will not consider background

magnetic fields here.
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current at the boundary. It is the helicity of this current that corresponds to spatial

modulation, in particular since we break translational invariance.

We now provide context to our work by demonstrating this instability. In order

to do so, first consider Maxwell’s equations for this system,

∂b(
√

−gF ba) + α

2
ϵabcdeFbcFde. (2.26)

Following arguments by Nakamura et al. (2010), we first see how the tachyonic modes

can arise in 5 dimensional flat space, further we decompose our modes such that

R1,4 ∼= R1,1 × R3. Linearizing the equation above as Fmn = F (0)
mn + fmn, where the

background has a constant E field, specifically for µ = 0, 1 we have F (0)
µν = ϵµνE and

zero otherwise. The equation of motion for the gauge field is thus linearized and has

the form,

∂µfµi + ∂jfji − 2αEϵijkfjk = 0. (2.27)

Further simplifications can be performed to the above expression using Bianchi iden-

tities ϵijk∂ifjk = 0 and making the identification that fi = 1
2ϵijkfjk. Thus we reduce

the above linearized expression to,

(∂µ∂µ + ∂j∂j)fi − 4αEϵijk∂jfk = 0.

Next we take the Fourier transform of the above modes while keeping track of

the decomposition of the associated momentum vectors in the full spacetime R5 to

R1,1 × R3, i.e. with eipµxµ+ikiy
i , where µ = 0, 1 and i = 1, 2, 3.

Modes fi that solve eq. (2.27) are circularly polarized, we thus work with the

ansatz, fi ∼ u⃗ eikiy
i . Here the u⃗ is circularly polarized, i.e. k⃗ × u⃗ = ±i|k|u⃗. Substi-

tuting this ansatz for fi into eq. (2.27) yields the following dispersion relation,

(p0)2 − (p1)2 = (|k| ± 2αE)2 − 4α2E2. (2.28)
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It is evident from eq. (2.28) above that these modes can be tachyonic, the lowest value

of m2 is −4α2E25. For the electric field background case, one than finds the values

of momentum k (along yi) that will appear violate the BF bound. The behavior of

m2 is similar for the AdS2 × R3 case. Nakamura et al. (2010) show that the range of

momenta for which one observes an instability in the gravitational theory (which is

asymptotically AdS) is,

2|αE|

1 −
√√√√1 − 1

16α2E2l2AdS2

 < k < 2|αE|

1 +
√√√√1 − 1

16α2E2l2AdS2

 . (2.29)

It is important to note here that in eq. (2.29) unless the Chern-Simons coupling

is turned off, the instability occurs only at finite momenta. Nakamura et al. (2010)

argue that observation of helical boundary currents as well as the presence of insta-

bilities at finite momenta are indicative of spatially modulated phases. They further

state that the two aforementioned features provide a gravitational theory whose be-

havior is similar to what one observes in the cholestic/chiral-nematic liquid crystals,

thereby constructing a gravity dual to spatially modulated phases.

In the next chapter in which the results of our paper Martin and Monga (2019) are

presented. We study the spectral weight associated with a set of theories that reduce

to (and including), the action in eq. (3.8). We will first reproduce the instability of

eq. (2.29) by computing the spectral weight instead. We then consider multiple models

to evaluate their spectral weight so as to diagnose their Fermi-surface structure. Our

approach closely follows Goutéraux (2014); Goutéraux and Martin (2017). As we

shall see, one finds a rich phase space structure with several geometry dependent

5On the other hand, with a background B field one obtains the dispersion relation (p0)2 −(p1)2 −

(k2)2 =
(√

(k3)2 + (k4)2 + 4α2B2 + 2|αB|
)2

, which is not going to be tachyonic.
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properties. Most notably we observe for the presence of Fermi shell like behavior for

a subset of models that we consider.
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Chapter 3

SPATIALLY MODULATED PHASES IN HOLOGRAPHY WITH SYMMETRY

BREAKING

This chapter is a reproduction of the paper Martin and Monga (2019), titled “Spectral

weight in Chern-Simons theory with symmetry breaking” published in the Journal

of High Energy Physics1. It has been appropriately formatted for inclusion in this

document.

3.1 Introduction

Harnessing the AdS/CFT correspondence Maldacena (1999) to explore the space

of potential phenomena occurring in strongly interacting quantum matter is now a

well-established research enterprise (see Hartnoll et al. (2016) and references therein).

One phenomenon of interest is the role of Pauli exclusion in strongly interacting quan-

tum field theories, where a quasi-particle description is absent. We know from ex-

perimental techniques like ARPES (angle-resolved photoemission spectroscopy) that

Fermi surfaces can form in such strongly coupled materials (see for example Damas-

celli et al. (2003); Gonda et al. (1995)). A famous example of this occurs in the normal

state of certain high-Tc cuprate superconductors, known as a “strange metal” phase

due to the anomalous linear scaling of quantities like resistivity and specific heat with

temperature Varma et al. (1989). The superconducting phase transition occurs due

to competition between the free energies of the normal and superconducting states,

and thus characterizing the strange metal phase is a prerequisite for understanding
1Note that the Journal of High Energy Physics uses alphebatized authorship. This work is

reproduced here with permission from the co-authors.
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the mechanism for the high-Tc transition. Understanding Pauli exclusion and the

formation of Fermi surfaces at strong coupling is one aspect of this characterization.

In studying Pauli exclusion in strongly interacting quantum field theories via the

AdS/CFT correspondence, a natural question arises: in which contexts do Fermi sur-

faces appear in holography? To address this question, one can employ an exploratory

method known as bottom-up holography2. In this method, one chooses by hand a

sensible classical bulk theory exhibiting the symmetries and field content of interest,

and then uses perturbation theory to extract information about the dual quantum

field theory (such as correlation functions) via the holographic dictionary. The field

theory quantity of interest to us that diagnoses the presence of a Fermi surface is

called the low energy spectral weight:

σ(k) = lim
ω→0

ImGR
OO(k)
ω

. (3.1)

The object ImGR
OO is called the spectral function, and O is a field theory operator.

We will see now that the spectral weight (3.1) identifies Pauli exclusion in two dis-

tinct ways, both of which have been studied holographically in several bottom-up

constructions.

The first (and most traditional) diagnostic for a Fermi surface is a pole in the

spectral function ImGR
OO near the Fermi momentum k = kF . For example, for free

fermions, when O = ψ and

GR
ψψ = 1

ω − vF (k − kF ) + iϵ
(3.2)

is the fermion propagator, a Fermi surface is defined by a pole in ImGR
ψψ at k = kF .

This is the sense in which ARPES detects the presence of a Fermi surface: it measures
2Bottom-up holography can be contrasted with top-down constructions, which involve consistent

Kaluza-Klein reductions of relevant string theories. In practice, one does not necessarily know the

UV completion of a particular bottom-up model, but nevertheless many features of our bottom-up

constructions are motivated by top-down ones (cf equation (3.20)).
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a pole in the spectral function. Diagnosing the presence of such a pole in strongly

coupled theories using holography requires knowledge of the full spacetime, including

UV data. For example, one can consider a bulk theory with an explicit fermion ψ,

solve the Dirac equation over the full asymptotically AdS background (often using

numerical techniques), and extract the UV spectral function ImGR(ω, k) associated

with this fermion. This was the approach taken in Lee (2009); Liu et al. (2011);

Cubrovic et al. (2009); Cremonini et al. (2018).

There is a second, distinct way in which the spectral weight informs us of the

presence of Pauli exclusion. Furthermore, in contrast to the pole discussed in the

previous paragraph, this diagnostic only requires knowledge of the near-horizon IR

geometry, rather than the full UV theory. Indeed, to leading order in ω → 0 (see for

example Hartnoll et al. (2016); Iqbal et al. (2011)),

ImGR
OO(ω, k) ∝ ImGR

OO(ω, k). (3.3)

As is standard in the literature, we reserve the symbol GR
OO for the UV Green’s

function and GR
OO denotes the IR Green’s function. The UV data are stored in the

proportionality constant of (3.3), and in throwing that away we are denying ourselves

access to any potential poles discussed in the previous paragraph. Nevertheless, (3.3)

still carries physically relevant information. To see this, consider the spectral decom-

position:

ImGR
JJ(ω, k) =

∑
m,n

e−βEm

∣∣∣⟨n(k′)|J(k)|m(k′′)⟩
∣∣∣2 δ(ω − Em + En). (3.4)

From (3.4), we can see that the spectral weight directly counts charged degrees of

freedom at a given frequency and momentum3. Thus we take nonzero low energy

spectral weight at finite momentum to be an indication that a Pauli exclusion-like
3We refer the reader to Hartnoll et al. (2016) for a more elaborate discussion regarding this

spectral decomposition.
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phenomenon is taking place. One can study this effect holographically by considering

a bulk theory even without explicit fermions. Much like before, one must solve the

bulk equations of motion, but this time only using the IR near horizon geometry. One

then obtains the ω scaling of ImGR(ω, k) at low energies. If this spectral function

is nonzero for finite momenta, it signals the presence of charged degrees of freedom

with a nontrivial momentum space structure. This is a signature of Pauli exclusion,

occurring without explicit fermions in the theory. This approach was taken in Hartnoll

and Shaghoulian (2012); Anantua et al. (2013); Goutéraux and Martin (2017), and

it is the approach that we will use in this work.

Low energy spectral weight has been calculated in a variety of theories and back-

ground geometries. The authors of Hartnoll and Shaghoulian (2012) argued that low

energy spectral weight should be exponentially suppressed in hyperscaling violating

geometries (labeled by exponents z and θ), and then showed this explicitly for the

Einstein-Maxwell-dilaton theory. They (and Anantua et al. (2013)) also showed that

in the limit z → ∞ with the quantity η = −θ/z fixed, the spectral weight is no

longer exponentially suppressed. This indicated that these so-called semi-local the-

ories Iqbal et al. (2011) are perhaps more fermionic in nature, and deserve further

study. The authors of Goutéraux and Martin (2017) studied the low energy spectral

weight again in near horizon η geometries, but this time in the case of the holographic

superconductor Hartnoll et al. (2008). For the holographic superconductor, the bulk

charge density manifestly forms a condensate, and so nonzero low energy spectral

weight at finite momenta was not expected to be observed. Interestingly, however,

Goutéraux and Martin (2017) did report the presence of low energy spectral weight

over a range of momenta, as well as a finite k instability in the longitudinal channel.

Such an instability coincides with a violation of the Breitenlohner-Freedman bound
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Breitenlohner and Freedman (1982a,b), since for the theories we consider4

ImGR
JJ(ω, k) ∼ ω2νk , (3.5)

where the νk is related to the conformal dimension of the dual field theory operator

(see Iqbal et al. (2011) for more details on this). In particular, the authors of Anantua

et al. (2013); Goutéraux and Martin (2017) reported finding a “smeared” Fermi sur-

face, which they define as the low-energy spectral weight σ(k) vanishing only above

a particular momentum k∗:

σ(k) = lim
ω→0

ImGR
JJ(ω, k)
ω

=
{ ∞ k < k∗

0 k > k∗

}
. (3.6)

Further, Goutéraux and Martin (2017) found a Fermi shell in a region of parameter

space, which they define as σ(k) existing between two nonzero momenta k− and k+:

σ(k) = lim
ω→0

ImGR
JJ(ω, k)
ω

=
{ ∞ k− < k < k+

0 otherwise

}
. (3.7)

In this work when we refer to a smeared5 Fermi surface or a Fermi shell, we will mean

spectral weight of the form (3.6) and (3.7), respectively.

These results regarding the above momentum space structure and the regions of

instability led to questions such as 1) What are the bulk degrees of freedom that

are contributing to this nonzero spectral weight? and 2) In some range of parameter

space, the instability suggests that our model is not the true ground state. Could

the true ground state be a spatially modulated phase? Indeed, experimentally the

superconducting phase of certain high Tc cuprate superconductors is seen to coexist
4In equation (3.5) the JJ subscript is schematic. It will become J⊥J⊥ in the transverse channel

and J∥J∥ in the longitudinal channel, as explained in a later section.
5Sometimes we will drop the word “smeared”, but by Fermi surface we will always mean spectral

weight of the form (3.6).
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with (or perhaps compete with) charge density wave (CDW) and spin density wave

(SDW) order (see for example Chang et al. (2012) and references therein). Question

1) motivates us to study the low energy spectral weight of these η geometries in

the presence of other interesting interaction terms, so that we might determine how

robust this anomalous spectral weight is. Question 2) urges us to consider theories

with broken translation invariance, so that we might better model the charge density

wave order.

In this work we study the effect of introducing a Chern-Simons term on the results

obtained in Goutéraux and Martin (2017). The addition of a Chern-Simons term

is motivated by Nakamura et al. (2010), which studies a Chern-Simons theory in

an AdS Reissner-Nordström background geometry. For large enough values of the

Chern-Simons coupling, and in the presence of a constant background electric field,

they too find an instability at finite momentum, and conjecture that the true ground

state is a spatially modulated phase. The purpose of this paper is to study a theory

with both a Chern-Simons coupling and a massive vector (this gives a broken U(1)

symmetry that is the hallmark of the holographic superfluid), so that we might learn

how the presence of the low energy spectral weight and the presence of an instability

changes as we very both the Chern-Simons coupling and the condensate charge.

In Section 3.2 we review the set-up of Nakamura et al. (2010) as a warm-up, and

compute the spectral weight for transverse and longitudinal channels for the Einstein-

Maxwell-Chern-Simons action in an AdS2 ×IR3 background, which is the near horizon

geometry of the extremal AdS Reissner-Nordström black hole. We reproduce the finite

k instability obtained in Nakamura et al. (2010), this time in the language of spectral

weight. In Section 3.3 we include a dilaton field (we call this theory Einstein-Maxwell-

dilaton-Chern-Simons theory, or EMDCS for short) and discuss the implications on

the spectral weight and the smeared Fermi surface momentum space structure that
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the spectral weight suggests. In Section 3.4 we break the U(1) symmetry of EMDCS

by adding a massive vector. This model is a holographic superfluid with an added

Chern-Simons term. We calculate the spectral weight to learn about how the Chern-

Simons term affects the instability region and the smeared Fermi surface structure

reported in Goutéraux and Martin (2017). In Section 3.5 we discuss our results.

3.2 Einstein-Maxwell-Chern-Simons

We begin our analysis by discussing the Einstein-Maxwell-Chern-Simons theory

in d = 5 spacetime dimensions described by the action

S =
∫
d5x

√
−g

[
R − V0 − 1

4
FmnF

mn + α

3!
ϵabcde√

−g
AaFbcFde

]
. (3.8)

In equation (3.8) we set the AdS radius equal to 1, and α corresponds to the Chern-

Simons coupling. Note that ϵabcde is the Levi-Civita symbol, and the Chern-Simons

piece is metric independent.

This action was considered by Nakamura et al. (2010) in the near horizon geometry

of the AdS-Reissner-Nordström black hole (AdS-RN), namely AdS2 × IR3, and in the

presence of an electric field

ds2 = −dt2 + dr2

r2 + dx2 + dy2 + dz2 Am = (At(r), 0, 0, 0, 0) At(r) = E0 r
−1. (3.9)

The authors of Nakamura et al. (2010) observed that at sufficiently large Chern-

Simons coupling α, this background is unstable against metric fluctuations. Further,

they note that this instability occurs at non-zero momentum. This suggests that the

instability signals a phase transition toward a spatially modulated phase.

We can reproduce this instability by computing the spectral weight, and fur-

ther diagnose whether or not a smeared Fermi surface structure is present, in the

spirit of Anantua et al. (2013). Our approach closely follows Goutéraux (2014);
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Goutéraux and Martin (2017), and we consider perturbations of both the background

gauge field and the metric. All perturbations X → X + δX are of plane wave form

δX = δX(r)ei(kx−ωt), where we choose the perturbations to propagate purely in the

x direction. Then, as in electrodynamics, the perturbed equations of motion decou-

ple into two channels. Those perturbations that are odd under the transformation

y → −y comprise the so-called transverse channel (labeled by ⊥), and those even

under y → −y make up the longitudinal channel (labeled by ∥). We now examine

each of these channels in turn.

3.2.1 Transverse Channels

The Chern-Simons term allows some of the perturbations to combine into circu-

larly polarized modes, as discussed in Nakamura et al. (2010); Hartnoll et al. (2016).

This permits us to make the following identification for gauge and metric perturba-

tions:

δA±(r)ei(kx−ωt) ≡ δAy ± iδAz δgt±(r)ei(kx−ωt) ≡ δgty ± iδgtz, (3.10)

The choice of polarization (+ or -) corresponds to choosing αE0 > 0 or αE0 < 0,

respectively. This can be seen from the low energy limit (ω → 0) of the linearized

equations of motion, presented below in (3.11). A brief examination of (3.11) reveals

that α → −α corresponds to interchanging gauge field polarizations, i.e. δA+ →

−δA−

2δA′′
±(r) − 4

√
6 δg′

t±(r) − k(k ∓ 8
√

6α)δA±(r)
6r2 = 0

6r2 δg′′
t±(r) + 12rδgt±(r) −

√
6δA′

±(r) − 1
2
k2δgt±(r) = 0.

(3.11)

The transverse channel can thus be split into two subchannels, one for each polariza-

tion.
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We look for solutions to the linearized equations of motion that have a simple

radial scaling:

δA±(r) = a±r
λ± δgt±(r) = gt±r

γ± . (3.12)

The equations of motion allow us to determine the scaling exponents λ± and γ± as

a function of momentum k and Chern-Simons coupling α. As described in detail

in Goutéraux and Martin (2017), these exponents are directly related to the scaling

exponent νk of the low energy spectral weight, introduced in (3.5). Thus the problem

of calculating low energy spectral weight is reduced to the problem of determining

these exponents and coefficients, to obtain

σ⊥
k = lim

ω→0

ImGR
J⊥J⊥

(ω, k)
ω

∼ lim
ω→0

ω2ν⊥
k −1 (3.13)

We now proceed to look at the results of this computation. Solving for the exponents

in (3.12), we find that

σ⊥
k = lim

ω→0

ImGR
J⊥J⊥

(ω, k)
ω

=
{ ∞ ν⊥

k < 1
2

0 ν⊥
k > 1

2

}
(3.14)

with

ν⊥
k =

√
k2 + 4

√
6αk + 15 − 2

√
6
√
k
(
4α2k + 4

√
6α + k

)
+ 6

2
√

3
(3.15)

As discussed in Anantua et al. (2013), the infinity in (3.14) is because we are at zero

temperature. Turning on a small nonzero black hole temperature endows this with a

finite value. The important part for us is that, for each α, the condition ν⊥
k = 1

2 picks

out a special momentum k = k⋆, below which we have low energy spectral weight at

finite momentum. As we explained in the introduction, this is an indication that the

Pauli exclusion principle is at work, and our system is exhibiting a smeared Fermi

surface momentum space structure at low energies. The critical value k⋆(α) is shown

in Figure 3.1 as the line separating the regions ν⊥
k < 1

2 and ν⊥
k > 1

2 .
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From (3.15) we can also see that there is a certain critical α = αcrit above which

ν⊥
k can become imaginary. Because ν⊥

k is related to the conformal dimension of the

dual field theory operator via ∆⊥
k = ν⊥

k + 1
2 , we see that imaginary ν⊥

k signals an

instability. The results for the transverse channel are depicted in Figure 3.1. The

αcrit that we report is the same value reported in Nakamura et al. (2010).

Figure 3.1: Transverse Channel. This is a region plot of the exponent ν⊥
k , occurring

in σk = limω→0 ω2ν⊥
k −1. The upper shaded region, labeled Im[σ⊥

k ] ̸= 0, represents the

parameter space where an instability occurs. The αcrit reproduces the result of Nakamura

et al. (2010). In the blue region there is low energy spectral weight at nonzero momentum,

and in the red region there is not.

To make clearer the parallel between our approach and that followed by Nakamura

et al. (2010), note that the general form of the exponent νk in AdS2 × IRd with fields

charged under the relevant gauge group in consideration is given by Hartnoll et al.

(2016)

νk =
√

1
4

+m2 l2AdS2
− Q({ϕi}, lAdS2) (3.16)
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The quantity Q depends on the matter content in question. For the Einstein-Maxwell-

Chern-Simons theory any charge present is carried only by the AdS-RN black-hole

and thus this quantity is not present. One can quickly verify that plugging the νk

found in (3.15) into the expression (3.16) we reproduce the quantity m2 obtained by

Nakamura et. al. (with a consistent choice of parameters, cf. eq. 3.11 in Nakamura

et al. (2010)).

3.2.2 Longitudinal Channel

A significant simplification arises in the longitudinal channel. Because our back-

ground Maxwell field only has an electric component, the Chern-Simons term does

not contribute to the perturbed equations of motion in this channel. Thus we are

effectively looking at Einstein-Maxwell theory. For modes in the longitudinal chan-

nel we find no instability. However, we do again observe Pauli exclusion, where for

k < k∗ we have non-zero low energy spectral weight at finite momentum. Explicitly,

the exponent ν∥
k is

ν
∥
k =

√
k2 + 15 − 4

√
2k2 + 9

2
√

3
, (3.17)

from which we see that k∗ = 2
√

2. This low energy spectral weight is shown in Figure

3.2.
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Figure 3.2: Plot shows longitudinal channel exponent ν
∥
k . Note that below ν

∥
k = 1/2

spectral weight exists, i.e. limω→0 ω2ν∥
k

−1 ̸= 0.

3.3 Einstein-Maxwell-Dilaton-Chern-Simons

We now turn to Einstein-Maxwell-dilaton-Chern-Simons (EMDCS) theories, char-

acterized by the action

S =
∫
d5x

√
−g

[
R − 1

2
∂mϕ∂

mϕ− 1
4
Z(ϕ)FabF ab − V (ϕ) + α

3!
ϵabcde√

−g
AaFabFcd

]
.

(3.18)

EMDCS theories admit a generalized version of the near-horizon AdS-RN geometries

as solutions. We call these solutions η geometries, and the metric is given by

ds2 = r−η
(

−dt2 + dr2

r2 + dx2 + dy2 + dz2
)
. (3.19)

The value η = 0 corresponds to near-horizon AdS-RN. These η geometries can also be

obtained from hyperscaling violating geometries Huijse et al. (2012); Charmousis et al.

(2010); Fisher (1986); Dong et al. (2012) by taking the dynamical critical exponent

z → ∞ while keeping a ratio of z and the hyperscaling violating exponent θ fixed:

η ≡ −θ/z. These more general η geometries were not viable solutions in the previous

Einstein-Maxwell-Chern-Simons thoery, but the addition of a dilaton allows for them.
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As before, we take the background gauge field to have only an electric field compo-

nent. The scalar field runs logarithmically in the radial coordinate to provide scaling

solutions. The forms on Z(ϕ) and V (ϕ) are motivated by top-down constructions (see

for example Iizuka et al. (2013); Goutéraux (2014))

At = A0r
ζ−1 Ai = 0 ϕ(r) = ϕ0 log r (3.20)

Z(ϕ) = eγϕ V (ϕ) = V0e
−δϕ.

The scaling ansatz (3.20) only pertains to the near-horizon geometry. Obtaining con-

sistent solutions of the field equations further constrains the background parameters,

i.e. the exponents γ, δ and ζ satisfy the following conditions:

δ = − η

ϕ0
γ = 2η

ϕ0
ζ = −3η

2
. (3.21)

In addition, we also have the following conditions for the coefficients associated with

the cosmological constant term V , the background electric field and the scalar field

V0 = −1
4

(2 + 3η)2 ϕ0 = −
√

3 η (η + 2)
2

A0 = 2√
2 + 3η

. (3.22)

These parameters are required to be real and are further constrained by the null energy

condition. Consistency with the NEC implies that η > 0. It is also worth noting that

as we approach η → 0, the dilaton field vanishes and the result reduces to the one

obtained for the Einstein-Maxwell-Chern-Simons theory in the previous section. As

before, we decompose modes into the longitudinal and transverse channels, and these

modes carry momentum along IR3. That is, we have gmn → gmn + δgmn(r)eik.x, and

similarly for the gauge field Am → Am + δAm(r)eik.x. To reiterate, we work in the

radial gauge where δgmr = 0 and δAr = 0.
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3.3.1 Transverse Channels

We now move to the computation of the exponent ν⊥
k for the two transverse

directions. Recall that, as was shown in the previous section, these can be packaged

together into polarizations. Choosing either positive or negative values of the Chern-

Simons coupling is equivalent to swapping polarizations. The functional form of the

transverse channel scaling exponent is:

ν⊥
k = 1

4

(
3η(3η + 4) + 16k

(
−2α

√
3η + 2 + k

)
+ 20

− 8
√

(3η + 2)
(
3η + 4k

(
−2α

√
3η + 2 + 4α2k + k

)
+ 2

))1/2

.

(3.23)

The exponent ν⊥
k only becomes complex for α > 0, as was the case for the Einstein-

Maxwell-Chern-Simons theory. Thus instabilities only exist for positive values of α.

Just as in the discussion surrounding Figure 3.1, there is a critical value α = αcrit

above which the theory is unstable. However, now we see that αcrit depends upon the

metric parameter η. This dependence is shown in Figure 3.3. Interestingly, η = 2/3

appears to be a special value for which no stable theories exist.

Figure 3.3: This figure shows the regions of stability and instability in the transverse

channel for various values of η. The shaded region is stable, while the unshaded region

where Im[ν⊥
k ] ̸= 0 indicates an instability.
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Figure 3.4: These figures elucidate the effect of the background metric parameter η and

the Chern-Simons coupling on the exponent ν⊥. In the 3D plots, ν⊥ is plotted with the

ν⊥ = 1/2 plane, below which spectral weight exists (that is, σ(k) ∝ ω2ν⊥
k −1 → ∞). As

η increases between 0 < η < 2/3, the ν⊥
k surface falls below the 1/2 plane. For η > 2/3

the ν⊥
k surface rises again. For η > 4/3 no spectral weight exists. The bottom right plot

shows how k∗ changes for different values of α. We see that k∗ increases for increasing α.

For positive values of α the theory can become unstable, and these regions are indicated by

dashed lines on the α = 1/4 curve.
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We can also see that this channel possesses low energy spectral weight at finite

momentum for certain values of α < 06 and for η < 4/3. For values of η greater than

this value no smeared Fermi surface structure is present. The critical momentum

k⋆ above which no spectral weight exists varies non-monotonically with increasing η.

For 0 < η < 2/3, k⋆ increases with increasing η, and then decreases for increasing η

between 2/3 < η < 4/3. This is displayed in Figure 3.4 above.

Further, it is worth noting that increasing the value of η never results in the

formation of a Fermi shell (as opposed to a Fermi surface). That is, in Figure 3.5

the exponent ν⊥
k intersects the ν⊥

k = 1/2 line only once. The critical value of the

Chern-Simons coupling α above which the theory becomes unstable depends on the

metric parameter η. Taking η → 0 reduces to the condition for αcrit obtained by

Nakamura et al. (2010).

Figure 3.5: The exponent ν⊥
k intersects the ν⊥

k = 1/2 line only once, indicating the presence

of a smeared Fermi surface as opposed to a Fermi shell.

3.3.2 Longitudinal Channel: General Dimension

Since our background gauge field is purely electric, the Chern-Simons term does

not contribute towards the longitudinal channel spectral weight at leading order.

6Taking α < 0 ensures that we are well outside of the instability region.
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Thus our EMDCS theory effectively reduces to the Einstein-Maxwell-dilaton theory

in the longitudinal channel. The low energy spectral weight of the Einstein-Maxwell-

dilaton theory was studied in Anantua et al. (2013). In this section we give a simple

augmentation of that analysis by studying the low energy spectral weight of Einstein-

Maxwell-dilaton theory in general dimensions. The general dimension (d > 3) longi-

tudinal channel exponent is:

ν
∥
k(d, η) = 1

2

[
4k2(2 + η) + 1

4(10 + η)(2 + (d− 2)η)2

2 + η

− 8
2 + η

√√√√(1 + 1
2

(d− 2)η
)4

+ (d− 3)k2(2 + η)(2 + (d− 2)η)2

2(d− 2)

]1/2

.

(3.24)

We have verified explicitly that (3.24) holds for 3 < d < 13. We will discuss the large

d behavior of this expression shortly. We also see from (3.24) that ν∥
k(d, η) is real for

all d and η, and thus no instability exists in this channel.

(a) (b)

Figure 3.6: Left: For 3+1 bulk dimensions, the longitudinal channel exponent ν
∥
k is plotted

against the background metric parameter η and momentum k. Right: For 4+1 bulk di-

mensions the longitudinal channel exponent is shown. Note that the 3+1 dimensional case

is the critical case where no spectral weight is observed, whereas in 4+1 dimensions (and

higher) spectral weight exists.
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We can now analyze the appearance of low energy spectral weight in the Einstein-

Maxwell-dilaton theory for general dimension d > 3. The authors of Anantua et al.

(2013) found that, for the geometry and matter content that we are considering

in this subsection, the longitudinal low-energy spectral weight vanishes for all η in

d = 4 dimensions. Interestingly, Figure 3.6 shows that this result is unique to d = 4

dimensions. Figure 3.6b shows that for d = 5 the ν∥
k surface dips below the ν∥

k = 1/2

plane, which corresponds to a non-vanishing spectral weight. Furthermore, Figure

3.6b shows that when spectral weight is present it exists between two nonzero values

k+ and k−. This signals the presence of a Fermi shell, and from Figure 3.6b we

can see that the shell thickness k+ − k− monotonically decreases as η increases. We

will see that this behavior is distinct from what is observed upon making the gauge

field massive, as in 3.12a, where k+ − k− is not monotonically decreasing in η. At

η = 0, k− = 0 for all d. Thus for η = 0 only we have a smeared Fermi surface in the

longitudinal channel, rather than a shell. This is shown in Figure 3.7.

(a) (b)

Figure 3.7: Left: For η = 0 and d > 4 low energy spectral weight is present in the form

of a smeared Fermi surface. For d = 4 there is no spectral weight. Right: Increasing η

immediately lifts the smeared Fermi surface to a Fermi shell, as in Figure 3.6b above.
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Another observation that we can make from Figure 3.6b is that, for each spacetime

dimension d, there exists a critical value of η above which no spectral weight exists

for any momenta. For d = 4 dimensions this critical value is η = 0.

(a) (b)

Figure 3.8: The critical value of the metric parameter η (above which no spectral weight

exists) is plotted as a function of dimension d. At d = 11, the ηcrit reaches a maximum

value. In the large d limit non-zero low energy spectral weight is suppressed.

However for higher dimensions ηcrit increases with d, until it eventually reaches a

maximum and begins to decrease. It is amusing to note that this maximum occurs

at d = 11, the dimension of the conjectured M-theory and the associated low energy

11-dimensional supergravity. The quantity ηcrit is plotted as a function of spacetime

dimension in Figure 3.8 above.

3.4 Holographic Superfluid Plus Chern-Simons

We now examine the effect of a Chern-Simons term on the spectral weight of the

holographic superfluid studied in Goutéraux and Martin (2017). The main technical

difference between this section and Section 3.3 is that the massive vector lets us add

another tunable parameter to the theory (namely the exponent ζ in Equation (3.27)).
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The results of Section 3.3 are recovered when ζ = −3η/2. As before, we work with η

geometries with only an electric field present. We work with the background metric,

ds2 = r−η
(

−dt2 + dr2

r2 + dx2 + dy2 + dz2
)

(3.25)

and action

S =
∫
d5x

√
−g

[
R − 1

2
∂mϕ∂

mϕ− 1
4
Z(ϕ)FabF ab − 1

2
W (ϕ)AmAm − V (ϕ)

+ α

3!
ϵabcde√

−g
AaFabFcd

]
.

(3.26)

We again ensure that we have a scaling solution by imposing the background condi-

tions

At = A0r
ζ−1 Ai = 0 ϕ(r) = ϕ0 log r

Z(ϕ) = eγϕ V (ϕ) = V0e
−δϕ W (ϕ) = W0e

−χϕ.

(3.27)

The background equations of motion relate these background parameters in the fol-

lowing way:

V0 = 1
4
(
4ζ − 9η2 − 6η − 4

)
A0 =

√
2

1 − ζ

ϕ0 =
√

3η2 − 4ζ
2

W0 = 1
2

(1 − ζ)(2ζ + 3η)
(3.28)

Some of the parameters introduced above are further constrained when we require

that we are in a physically relevant parameter space. For example, we require that

the null energy condition is satisfied, that our “cosmological constant” term V0 < 0,

the reality of all theory parameters, and a consistent radial deformation analysis

described in detail in Goutéraux and Martin (2017); Goutéraux (2014). This results

in the following constraints on the parameter space.

0 < η ≤

(√
33 − 3

)
6

& − 3η
2

≤ ζ <
3η2

4

Or

η >

(√
33 − 3

)
6

&−3η
2

≤ ζ <
(2 − 3η)

4

(3.29)
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The shaded region in Figure 3.9 provides the allowed region of parameter space that

is consistent with all of these conditions. Note from (3.28) that the line ζ = −3η
2

appearing in Figure 3.9 corresponds to the massless vector case, when W0 = 0. We

now proceed to discuss our results in detail for the two sets of transverse channels

and the longitudinal channel.

Figure 3.9: The shaded region represents the allowed values of the parameter ζ for different

values of η. The Chern-Simons term does not constrain the parameter space, due to the

simplicity of our electric field-only background.

3.4.1 Transverse Channel

In the transverse channel the spectral weight exponent ν is now a quantity which

depends on ζ, η and α. The closed form expression for the transverse channel exponent

here is,
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ν⊥
k = 1

4

(
9η2 + 12η + 16k2 − 32

√
2αk

√
1 − ζ + 20

− 8
√

(3η + 2)2 − 8 (4α2 + 1) (1 − ζ)k2 + 8
√

2αk(3η + 2)
√

1 − ζ

)1/2

.

(3.30)

We can now investigate the combined effect of the massive vector and the Chern-

Simons term on the region of instability and the low-energy spectral weight. The first

thing that we can do is compare the instability plot from Section 3.3 ( Figure 3.3) to

the instability plot in Figure 3.10.

Figure 3.10: This plot demarcates the critical value of α above which the theory becomes

unstable, as a function of η and for different values of ζ.

We can see from Figure 3.10 that η = 2/3 is no longer of special significance in the

presence of a massive vector. The effect of increasing ζ is to lift the instability region,

so that more stable theories are possible. However, one result of staying within our

allowed parameter space is that the instability region never disappears completely.

45



Figure 3.11: This plot illustrates the combined effect of the Chern-Simons coupling α and

the massive vector (via the exponent ζ) on the exponent ν⊥
k . The 3D plot corresponds to

η = 1. Above the ν⊥
k = 1/2 plane no spectral weight exists. The curves plotted in the

ν⊥
k = 1/2 plane represent the critical momentum k∗ for different values of ζ.

We now investigate the effect of the massive vector parameter ζ and the Chern-

Simons coupling α on the low-energy spectral weight. Figure 3.11 illustrates that

increasing either ζ or α decreases the critical momentum k∗, but only appreciably

for α > 0. Thus the Chern-Simons term and the massive vector both have similar

effects on the spectral weight, though they break different symmetries (translation

symmetry and U(1) invariance, respectively).

3.4.2 Longitudinal Channel

Since the Chern-Simons term does not contribute to the spectral weight in the

longitudinal channel, the theory effectively becomes a holographic superfluid. The

spectral weight for the holographic superfluid was analyzed in Goutéraux and Martin
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(2017), where they reported a finite k instability and a Fermi shell (that is, non-

zero low energy spectral weight occurring between a k+ and k−) in the longitudinal

channel. The only difference between our system and Goutéraux and Martin (2017)

is that we work in five spacetime dimensions rather than four. Thus we will keep

this section short and refer the reader to Goutéraux and Martin (2017) for more

details (particularly regarding the finite k instability). We will, however, include

plots regarding the Fermi shell structure of this theory that were absent in Goutéraux

and Martin (2017) for completeness. We leave an analysis of this system in general

dimension to future work.

One intriguing aspect of the Fermi shell in this channel is that the shell thickness

∆k ≡ k+ − k− does not change monotonically in η for a given ζ. Figure 3.12a shows

that, for a particular value of ζ, ∆k first decreases with increasing η until it vanishes

completely, but then reappears for some larger η. This vanishing spectral weight for

certain values of η does not occur for all ζ, however. This is shown in Figure 3.12b.

(a) (b)

Figure 3.12: Left: The longitudinal channel exponent ν
∥
k shows nonzero spectral weight

between two nonzero values k+ and k−, both of which depend on η. We call this a Fermi

shell. The shell thickness ∆k varies non-monotonically with η. Right: For more negative

values of ζ, the spectral weight can disappear entirely for a certain range of η.
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3.5 Discussion

We have calculated the low energy spectral weight of a holographic superfluid

model with an additional Chern-Simons term in a five-dimensional near-horizon η

geometry and electric field-only background gauge field. One motivation for this

was to compare the influence of the Chern-Simons term and the condensate charge

on the spectral weight and the instability regions when they occur. In this section,

we try to draw conclusions based on spectral weight calculations of the five theories

that we have mentioned: 1) Einstein-Maxwell-dilaton (EMD) Anantua et al. (2013),

2) Einstein-Maxwell-Chern-Simons (EMCS) Nakamura et al. (2010), 3) Einstein-

Maxwell-dilaton-Chern-Simons (EMDCS), 4) holographic superconductor (HS)

Goutéraux and Martin (2017), and 5) holographic superconductor with Chern-Simons

(HSCS).

There is something in common among all five theories that we’ve mentioned in

this work: the transverse channels all possess low-energy spectral weight of the form

(3.6), which we call a smeared Fermi surface. This underscores that it is really the

geometry that is responsible for the presence of spectral weight, rather than any

particular matter content. Furthermore, it shows that the η geometries in particular

are robustly fermionic in nature. This fermionic quality is not present, for example, in

the more general hyperscaling violating geometries Hartnoll and Shaghoulian (2012).

Another thing that all7 of these theories have in common is that the longitudinal

channel possesses low-energy spectral weight of the form (3.7), which we call a Fermi

shell. This was a somewhat surprising result, given that Anantua et al. (2013) found

that, for the EMD theory, low-energy spectral weight did not exist in the longitudinal

7Due to the simplicity of our electric field-only background gauge field, the Chern-Simons term

does not effect any of the longitudinal channels. Therefore we can effectively only compare the EMD

theory and the holographic superconductor in this channel.
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channel. It turns out, though, that this result is unique to d = 4 spacetime dimensions.

We found that for d > 4 the longitudinal channel supports low energy spectral weight

in the form of a shell. This is another indication that the role of η is to determine the

overall presence or absence of spectral weight. It is interesting to note that Fermi shells

also appear in top-down constructions in N = 4 supersymmetric Yang-Mills DeWolfe

et al. (2012) and ABJM theory DeWolfe et al. (2015). In top-down constructions

the matter content of the dual field theory is known, and it was seen explicitly that

Fermi shells arise from a superposition of two Fermi surfaces (which result from two

distinct fermions). In our bottom-up construction we don’t have access to the dual

field theory matter content, but perhaps the presence of the Fermi shell signals what

sort of dual field theory we might expect. It is interesting and puzzling, however, that

the presence of our Fermi shells seem to depend on the geometry rather than matter

content. However, in a way the η geometry solutions are tied to matter content, in

the sense that a dilaton is necessary for them to exist (Einstein-Maxwell theory is not

enough, for example).

It appears that the role of both the Chern-Simons term (parameterized by α) and

the massive vector (parameterized by ζ) is to dictate whether or not instabilities are

present. Furthermore, we saw in Section 3.4.1 that both α and ζ act in the same

way: increasing either one of them lifts the instability region so that more stable

theories are possible. It appears, though, that the Chern-Simons coupling α more

often controls transverse channel instabilities, whereas the vector mass parameter

ζ tends to control the presence of an instability region in the longitudinal channel.

This could be due to our choice of background gauge field. We leave the addition of

a magnetic field for future work.

We generalized the result obtained in Nakamura et al. (2010) for the critical value

of α above which the theory becomes unstable. For EMCS, Nakamura et al. (2010)
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found that αcrit = .2896, which we generalized to αcrit(η) for EMDCS and αcrit(η, ζ)

for HSCS. For the latter we found that η = 2/3 is a special value for which no stable

theories exist. It might be the case that this is only true for d = 5 dimensions, and

we leave checking that conjecture to future work. The authors of Nakamura et al.

(2010) also commented that the value of α imposed by the UV complete superstring

theory that they considered barely satisfied the stability bound α < αcrit. It would

be interesting to identify a UV completion of the theories considered here and check

whether or not the corresponding stability bound holds in our more general cases.

We leave this for future work.

As we already mentioned, we extended the analysis of Anantua et al. (2013),

which calculated the low-energy spectral weight of EMD in η geometries in d = 4, to

general d. We found that the dimension d = 4 is in fact a special case that contains

no spectral weight: for d > 4 low-energy spectral weight is always present (Figure

3.7). Furthermore, in Figure 3.8 we plotted the critical η above which the spectral

weight vanishes as a function of dimension. It is amusing to note that this ηcrit(d)

plot peaks at the value d = 11, the dimensionality of the conjectured M-theory and

associated 11d supergravity. Beyond d = 11 spectral weight decreases, and then is

suppressed for large d.
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Chapter 4

FROM EINSTEIN TO NAVIER-STOKES: THE FLUID GRAVITY DUALITY

In this chapter we provide an introduction to the fluid-gravity duality in its various

forms and set the stage for our calculations, the results of which are presented in

chapter 5. We expound on select works in the field to provide a chronological context

for our research. This includes early work by Damour (1978, 1979), to work on the

membrane paradigm by Thorne et al. (1986); Price and Thorne (1986), finally to

modern day formulations of the fluid-gravity duality by Policastro et al. (2001); Kov-

tun et al. (2003); Son and Starinets (2007); Bhattacharyya et al. (2009a); Bredberg

et al. (2011, 2012); Bredberg and Strominger (2012).

We will elucidate various aspects of the tools and methodologies utilized. This

includes the framework for classifying space-times based on Weyl tensors, also known

as the Petrov classification Stephani et al. (2003), our chosen methodology for these

computations following Cocke (1989), specifics on the form of the fluid-gravity duality

we follow: Bredberg et al. (2012); Bredberg and Strominger (2012) and lastly we

briefly touch upon the double copy paradigm we adopt Luna et al. (2019). A further

discussion of the double copy approach can be found in chapter 5.

4.1 Historical Overview

Discussions of the fluid-gravity duality inevitably begin with the work of Damour

[Damour (1978, 1979)]. Motivated by work on the emergence of black-hole thermo-

dynamics, as had been discussed by [Hartle (1973, 1974); Hawking and Hartle (1972)]

and others, Damour (1982) set out to study "mechanical properties" associated with
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null hypersurfaces of black-holes, their horizons. Damour, attempting to compute

a local conservation of momentum for these null hyper-surfaces, obtained a Navier-

Stokes like expression in the process. He thereby demonstrated that horizons locally

behave similar to surfaces of viscous fluid bubbles carrying negative surface tensions

with pressure being proportional to the surface gravity κ and viscosity η = (16πGN)−1

1. This expression can be stated as,

LlπA = −∇A
κ

8π
+ 1

8π
∇Bσ

B
A − 1

16π
∇Aθ − lµTµA (4.1)

where the vector lµ is null and normal to the horizon. The quantity πA is Damour’s

definition of the surface momentum density associated with black-hole horizons, κ

refers to the surface gravity of the black-hole. In addition, based on the extrinsic

curvature KAB with respect to the horizon induced metric γAB, we have the following

defintions,

σAB = −γACκCB + 1
2
γABθ θ = −KA

A. (4.2)

Expression eq. (4.1) is very similar to a Navier-Stokes equation where the time

derivative of velocity term (here identified by the Lie derivative of πA) relates to

the spatial derivative of a pressure term (identified by surface gravity κ) with shear

viscosity η = 1/16π and bulk viscosity ζ = −1/16π and lastly an external driving

force provided by the stress tensor contraction, fA = −lµTµA. This Navier-Stokes like

expression is also known as the Damour-Navier-Stokes equation. If the black-hole in

question is charged than one can similarly ascribe a resistivity to this fluid surface.

These developments lead us to the membrane paradigm of black-hole mechanics,

whereby the dynamics of horizons, and thus its associated microstates are modeled

as membranes whose thermodynamic, mechanical and electrical properties are known

[Thorne et al. (1986); Price and Thorne (1986)].

1For the remainder of this chapter GN → 1.
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There are multiple formulations of the fluid-gravity correspondence. For instance,

in the context of the AdS/CFT correspondence [Rangamani (2009)] one obtains a

map between black-hole solutions in the bulk of the spacetime which describe hydro-

dynamics for fluid flows associated with the boundary field theory. Notable successes

of this approach include [Policastro et al. (2001, 2002a,b)], where hydrodynamics for

N = 4 Super Yang-Mills were linked to quasinormal modes for AdS black branes.

Specifically [Policastro et al. (2001, 2002a)] found the existence of a lower bound on

viscosity for arbitrary fluids that are not superfluids and have non-vanishing entropy

density, specifying that the viscosity cannot be arbitrarily small,

η

s
≥ ℏ

4π
. (4.3)

The ratio of shear viscosity to entropy for quark gluon plasmas has proven to be

tantalizingly close to this number and consistent with the bound [Teaney (2003);

Shuryak (2004)].

Lastly we turn our attention to the form of the fluid-gravity duality that we adopt

in this paper. This is largely based on the work by [Bredberg et al. (2012); Bredberg

and Strominger (2012); Lysov and Strominger (2011)]. In comparison to the previous

approaches, the techniques adopted in these papers provides for an exact realization

of the Navier-Stokes equations if the vacuum Einstein equations are satisfied. In the

following section we discuss these developments in detail.

4.2 The Cutoff Surface/Wilsonian Approach to the Fluid-Gravity Duality.

The cutoff surface approach of [Bredberg et al. (2011, 2012)] attempts to construct

a more explicit formulation of the fluid-gravity duality wherein Einstein’s equations

exactly give the incompressible Navier-Stokes equations. This approach involves in-

troducing a cutoff surface Σc at some cutoff radius rc > rh, the horizon radius. Then
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by imposing infalling boundary conditions on the horizon and considering graviton

modes that originate from this cutoff surface. Bredberg et al. (2011) showed that

the dispersion relations of these modes correspond to that of linearized limit of the

Navier-Stokes equations, and finally Bredberg et al. (2012) extended this approach

to include non-linear portions of the incompressible Navier-Stokes equation as well.

Damour’s approach involves explicit constructions on horizons, the approach adopted

by [Policastro et al. (2001)] involves considering timelike hypersurfaces at spatial in-

finity in AdS backgrounds. The work by Bredberg et al. (2011, 2012) in someways

allows for a connection between the two prior approaches. Given that in holography

changing scaling the radial coordinate from the horizon to infinity is associated with

a holographic formulation of the renormalization group flows [Bianchi et al. (2001,

2002); Skenderis (2002)], the authors of Bredberg et al. (2011) identified their ap-

proach to the fluid-gravity duality as a Wilsonian approach.

It should be pointed out that the approach adopted in this work is perturbative,

however versions of the fluid-gravity duality that extend to all orders have been

found, eg. [Compere et al. (2011)]. Further details of the calculation and additional

discussions are presented in chapter 5.

4.3 Methodology

We now describe the methodology adopted by us in Keeler et al. (2020), the results

of which are expounded in the following chapter. We describe properties of the Weyl

tensor that allow us to classify spacetimes, known as the Petrov classification. These

classifications will prove to be important for us in finally implementing the double-

copy picture proposed by Luna et al. (2019) for fluid spacetimes. We will conclude
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with explanations of our implementations of the Newman-Penrose formalism using

the methodology of Cocke (1989).

4.3.1 The Petrov Classification and Algebraic Speciality

Spacetimes in 4 dimensions2 can be classified on the basis of the eigenbivectors of

their associated Weyl tensors. For the Weyl tensor Cµνρσ we have,

1
2
CµνρσX

ρσ = λXµν (4.4)

A complex conjugate for these expressions can be defined, assuming real eigenvalues

we have,
1
2
C∗
µνρσX

∗ ρσ = λX∗µν (4.5)

Consider a timeline unit vector uµ with u2 = −1. Contracting both sides of the above

expression by uµ and using u2 = −1, we obtain a rank 2 tensor Q obtained from the

Weyl tensor, Qµν = −C∗
µνρσu

ρuσ.

These identifications allow us to recast the eigenbivector problem of the Weyl

tensor eq. (4.4) as an eigenvector proble, we are now in a position to discuss the

Petrov classification in more detail.

QµνX
ν = λXµ (4.6)

2Classifications in higher dimensions using a similar methodology are possible, see for instance

Lysov and Strominger (2011). However the complexity and associated labels change. For the purpose

of keeping our discussion pertinent and to avoid unnecessary complexity we will restrict ourselves

to 4 dimensions.

55



The eigenvalues of this matrix Q, identify for us the Petrov classification (c.f. table

4.1 Stephani et al. (2003) ), we have,

Petrov type I : (Q− λ1I)(Q− λ2I)(Q− λ2I) = 0

Petrov type D : (Q+ 1
2
λI)(Q− λI) = 0

Petrov type II : (Q+ 1
2
λI)2(Q− λI) = 0

Petrov type N : Q2 = 0.

Petrov type III : Q3 = 0.

Petrov type O : Q = 0.

(4.7)

In our work we perform this classification of spacetimes by computing invariants

I,J,K, L and N [c.f. appendices A and B as well as the following subsection].

4.3.2 Spin Coefficients and Weyl Scalars.

As was alluded to above, instead of direct computations of the eigenbivectors of

the Weyl tensor Wµνρσ we reformulate our computations using SL(2,C) spinor rep-

resentations of various geometric quantities thus computing the Weyl spinor CABCD

instead. The Weyl spinor can be obtained from the tensor by using the appropriate

curved space Pauli matrices(appendix A),

CABCD = 1
2
Wµνρσσ

µν
ABσ

ρσ
CD (4.8)

This approach is known as the Newman-Penrose formalism. In this section we will

discuss the methodology we follow in implementing this formalism which ultimately

will give us a handle on the Petrov classification for spacetimes as we use them, details

of this are compactly stated in appendices A and B.

The first step in implementing the Newman-Penrose (NP) formalism is the identi-

fication of a tetrad set consisting of 2 real and 2 complex vectors whose outer product
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produces the metric,

gµν = −l(µnν) +m(µmν) (4.9)

The tetrad components are null and obey the following conditions,

l2 = n2 = m2 = 0, m ≡ m∗, l.n = −1, l.m = n.m = 0, m.m = 1. (4.10)

Scalar products of the tetrad components and various directional derivatives above

allow us to define spin coefficients and eventually a set of scalars that identify geo-

metric properties of the space-time. The directional derivatives based on our tetrad

set are,

D = lµ∇µ, ∆ = nµ∇µ, δ = mµ∇µ, δ̄ = m̄µ∇µ. (4.11)

Note that the approach we adopt here for the computation of these coefficients is

based on Cocke (1989), see table 4.1 below. We adopt this approach over the original

approach [Cocke (1989); Stephani et al. (2003)] for computing spin-coefficients since

it is computationally quicker and easier. The reason is that in the [Cocke (1989)]

approach several covariant derivatives are replaced by partial derivatives since the

curl of the tetrad components are instead used for the calculation.
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Spin Coefficient f(lµ, nµ,mµ,mµ)

κ 2l[µ,ν]m
µlν

ϵ l[µ,ν]n
µlν + 1

2(l[µ,ν]m
µmν +m[µ,ν]m

µlν +m[µ,ν]l
µmν)

π l[µ,ν]n
µmν +m[µ,ν]n

µlν + n[µ,ν]l
µmν

σ 2m[µ,ν]m
µlν

β m[µ,ν]m
µmν + 1

2(m[µ,ν]n
µlν + n[µ,ν]m

µlν + l[µ,ν]n
µmν)

µ n[µ,ν]m
µmν +m[µ,ν]n

µmν +m[µ,ν]n
µmν

ρ m[µ,ν]m
µlν +m[µ,ν]m

µlν + l[µ,ν]m
µmν

α m[µ,ν]m
µmν + 1

2(m[µ,ν]n
µlν + n[µ,ν]m

µlν + l[µ,ν]n
µmν)

λ 2m[µ,ν]n
µmν

τ n[µ,ν]m
µlν + l[µ,ν]m

µnν +m[µ,ν]n
µlν

γ n[µ,ν]n
µlν + 1

2(n[µ,ν]m
µmν +m[µ,ν]m

µnν +m[µ,ν]n
µmν)

ν 2n[µ,ν]n
µmν

Table 4.1: Table of spin coefficients based on [Cocke (1989), c.f. Table 1], note that

l[µ,ν] ≡ ∂µl − ∂νl, similar definitions follow for n,m and m.

Using the above spin coefficients and directional derivatives as well as the Ricci

scalar for the spacetime we compute the Weyl scalars {Ψ0,Ψ1,Ψ2,Ψ3,Ψ4, }.

Ψ0 = Dσ − δκ− (ρ+ ρ̄+ 3ε+ ε̄)σ + (τ − π̄ + ᾱ + 3β)κ

Ψ1 = Dβ − δε− (α + π)σ − (ρ̄− ε̄)β + (µ+ γ)κ+ (ᾱ− π̄)ε

Ψ2 = Dµ− δπ + (ε+ ε̄− ρ̄)µ+ (ᾱ− β − π̄)π + νκ− σλ−R/12

Ψ3 = δ̄γ − ∆α + (ρ+ ε)ν − (τ + β)λ+ (γ̄ − µ̄)α + (β̄ − τ̄)γ

Ψ4 = δ̄ν − ∆λ− (µ+ µ̄+ 3γ − γ̄)λ+ (3α + β̄ + π − τ̄)ν,

(4.12)

The Weyl scalars, as noted above, will be required for computing the Weyl spinor

CABCD. It is important to note that the Weyl scalars are not independent of the tetrad
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choice. The transformations of Weyl scalars under tetrad rotations are summarized

[c.f. ch.3 Stephani et al. (2003)].

Finally having assembled all of the necessary pieces for the computation, we can

use the Weyl scalars and thus rewrite the Weyl Spinor.

CABCD = Ψ0ιAιBιCιD−4Ψ1o(AιBιCιD)+6Ψ2o(AoBιCιD)−4Ψ3o(AoBoCιD)+Ψ4oAoBoCoD,

(4.13)

where the spinors ιA, oA are also known as principal null flag-poles and are such that

o2 = 0 and oAιA = −1. In order implement the Petrov classification (as was done in

eq. (4.7)) of the spacetime we compute a set of invariant scalars that are independent

of the tetrad choice one makes. These invariants care obtained from the Weyl spinors

by,

I ≡ Ψ0Ψ4 − 4Ψ1Ψ3 + 3Ψ2
2,

J ≡

∣∣∣∣∣∣∣∣∣∣∣∣

Ψ4 Ψ3 Ψ2

Ψ3 Ψ2 Ψ1

KaΨ2 Ψ1 Ψ0

∣∣∣∣∣∣∣∣∣∣∣∣
,

K ≡ Ψ1Ψ2
4 − 3Ψ4Ψ3Ψ2 + 2Ψ3

3,

L ≡ Ψ2Ψ4 − Ψ2
3,

N ≡ 12L2 − Ψ2
4I.

(4.14)

Depending on these invariants we can now compute the Petrov classification and as

promised we have done so without the direct computation of the Weyl tensor or its

eigenvalues eq. (4.7),
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Petrov Type Condition

Type I I3 ̸= 27J2, K,L and N carry no additional constrains.

Type II I3 = 27J2, I ̸= J and K ̸= N and L carries no additional constrains.

Type D I3 = 27J2, I ̸= J , K = N = 0 and L carries no additional constrains.

Type III I3 = 27J2, I = J = 0, K ̸= L and N carries no additional constrains.

Type N I3 = 27J2, I = J = 0, K = L = 0 and N ̸= 0

Table 4.2: Petrov Classification Based on Scalar Invariants Of The Spacetime

A succinct flow chart associated with this classification can be found in [Stephani

et al. (2003), c.f. Fig. 9.1]. For flat space each of these invariants vanishes.

In our work the metric is perturbatively known only upto some finite order. A

consequence of this as we shall see is that that the above statements on the Petrov

classification can be sensibly made upto a finite order in the chosen expansion pa-

rameter. A detailed discussion of this is presented in the appendix D.

4.4 The Weyl Double-Copy

The third duality which is a topic of this thesis is the Weyl double-copy picture

of Luna et al. (2019). The Weyl double copy states that for a Weyl spinor CABCD we

have,

CABCD = 1
S
fABfCD (4.15)

The spinor fAB above can be inverted to obtain a tensor Fµν by using appropriate

curved space vierbiens and Pauli matrices [see appendix A]. The Weyl double-copy

picture then states that for certain algebraically special space-times a consistent back-

ground choice, g(0)
µν exists such that the tensor Fµν satisfies vacuum Maxwell’s equa-
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tions, dF = 0 and d∗F = 0 and the scalar S above satisfies the wave equation on this

background.

Lastly, it is worth making a note that the first hints towards the existence of such

a map trace back to Walker and Penrose (1970) where the authors showed that for

type-D space-times the Weyl tensor could be decomposed in the following manner,

CABCD = [χ]−5χ(ABχCD) [χ]2 = χABχ
AB. (4.16)

For type-D spacetimes the spinor χ can be suitably inverted to obtain a tensor which

satisfies Maxwell’s equations and similarly one can identify a scalar, S = [χ]−1. How-

ever while this approach works for type-D spacetimes, for type-N space-times this

approach runs into issues, the reason has to do with the spinor structure of χ for

type-N space-times. As well see in the next chapter, for type-N spacetimes, χ ∼ oAoB,

a consequence of this structure is that the inner product [χ] → 0, thus a scalar iden-

tified this way would diverge. In our work this issue does not arise since we make

a different choice for the scalar S, that infact trivially satisfies the wave equation.

However it would be an interesting exercise to elucidate the full relationship between

the decomposition of the Weyl spinor in Walker and Penrose (1970) and Luna et al.

(2019).

In the next chapter we will see how we apply this formalism to fluid-metrics whose

Einstein’s equations explicitly reduce to the incompressible Navier-Stokes equations

and discuss our findings.
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Chapter 5

FROM NAVIER-STOKES TO MAXWELL, VIA EINSTEIN

This chapter, including appendices A to C, is a reproduction of the paper Keeler et al.

(2020) of the same title as published in the Journal of High Energy Physics1. It has

been appropriately formatted for inclusion in this document.

5.1 Introduction

The fluctuations of spacetime near a horizon can be described by a fluid equation,

as first found almost forty years ago Damour (1978, 1979). Further development of

this idea led to the membrane paradigm Thorne et al. (1986); Parikh and Wilczek

(1998); Eling and Oz (2010); Eling et al. (2009); Gourgoulhon and Jaramillo (2006);

Gourgoulhon (2005); Gourgoulhon and Jaramillo (2008), in which the fluid lives on

a stretched horizon. The advent of AdS-CFT duality twenty years ago allowed for a

version of fluid-gravity duality where the dual fluid arises from the gauge theory living

on the AdS boundary Policastro et al. (2001, 2002a); Kovtun et al. (2003, 2005); Son

and Starinets (2007); Bhattacharyya et al. (2009b); Iqbal and Liu (2009); Oz and

Rabinovich (2011); Faulkner et al. (2011); Eling and Oz (2013); for reviews see Son

and Starinets (2007); Damour and Lilley (2008); Rangamani (2009); Padmanabhan

(2010); Hubeny et al. (2012).

More recently, the cutoff surface approach to fluid-gravity duality, pioneered in

Bredberg et al. (2011, 2012) and extended in Brattan et al. (2011); Compere et al.

(2011, 2012); Taylor (2018); Bredberg et al. (2012); Lysov and Strominger (2011);
1Note that the Journal of High Energy Physics uses alphebatized authorship. This work is

reproduced here with permission from the co-authors.
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Pinzani-Fokeeva and Taylor (2015); De et al. (2019); Dey et al. (2020), built a precise

version of the membrane paradigm which defines the fluid via the extrinsic curvature

of an intrinsically flat hyperbolic ‘cutoff’ surface held outside the horizon. In the

formulation of cutoff surface fluid-gravity we follow in this paper, Bredberg et al.

(2012), the Einstein constraint equations on the hyperbolic cutoff surface become

the nonlinear incompressible Navier-Stokes equations, while solving the remaining

Einstein equations defines the rest of the spacetime. We will work mostly with the

low order terms in the long-wavelength or hydrodynamic limit, which amounts to a

gradient expansion; as shown in Compere et al. (2011), this procedure does allow a

full perturbative expansion.

The classical double copy as first presented in Monteiro et al. (2014) builds a

map between classical gravity solutions and classical Yang-Mills solutions, based on

the color-kinematics duality valid at the amplitude level (see Bern et al. (2019a) for

a comprehensive review). Since the metric of the gravitational solution is built out

of two copies of the classical Yang-Mills solution, the Yang-Mills solution is referred

to as the ‘single copy’ of the corresponding metric, and there is also a corresponding

Klein-Gordon scalar solution termed the ‘zeroth copy’. As an example, the single copy

of the Schwarzschild black hole metric is the field arrangement due to a color charge

at the origin, when the dilaton expectation value is tuned to zero Luna et al. (2020).

Many other examples of the classical double copy have been built Luna et al. (2015,

2017); Monteiro et al. (2019); Alfonsi et al. (2020); Ridgway and Wise (2016); Adamo

et al. (2018); Bahjat-Abbas et al. (2017); Carrillo-González et al. (2018); Ilderton

(2018); Gurses and Tekin (2018); Carrillo González et al. (2019); Lee (2018); Bah

et al. (2020); Andrzejewski and Prencel (2019); Goldberger and Li (2020); Kim et al.

(2020); Bahjat-Abbas et al. (2020), including to some broad classes of spacetime Luna

et al. (2019). Furthermore Goldberger et al. (2017); Luna et al. (2018); Goldberger
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and Ridgway (2018); Shen (2018); Cheung et al. (2018); Kosower et al. (2019); Bern

et al. (2019c); Antonelli et al. (2019); Bern et al. (2019b); Kälin and Porto (2020)

have used this classical mapping to improve the perturbative series used in analytic

calculations of black hole collisions.

We build herein the single copy gauge fields which map to fluid-dual metrics,

for two different classes of Navier-Stokes solutions. We are able to accomplish this

map by relying on the algebraic specialty of these fluid-dual metrics. A spacetime is

algebraically special if its Weyl tensor exhibits extra symmetry; specifically, if two or

more of its principal null vectors coincide. In four dimensions, spacetimes of Petrov

type D have two pairs of coinciding principle null vectors, while spacetimes of type

N have all four principal null vectors coincident. Using the constrained form of the

Weyl tensor for algebraically special spacetimes, Luna et al. (2019) exhibited a single

copy gauge field (and zeroth copy scalar field) valid for every type D vacuum solution

to general relativity.

As Bredberg et al. (2012); Lysov and Strominger (2011) note, the spacetime corre-

sponding to the fluid metric is algebraically special; for four dimensions, the spacetime

has Petrov type II. As we will show, further restricting the fluid results in higher al-

gebraic specialty. We focus on two special fluid classes: constant vorticity fluids and

potential flows. Constant vorticity fluids are dual to spacetime metrics with Petrov

type D, while potential flow fluids are dual to metrics with Petrov type N. Such flu-

ids have also been studied in the context of holography, for instance for flows with

vorticity Leigh et al. (2012b,a). Consequently, using the Weyl double copy proposed

in Luna et al. (2019), we are able to exhibit the single copy gauge fields whose double

copy metric is then dual to either a constant vorticity fluid or a potential flow fluid.

Since these these gauge fields are in the U(1) sector of the Yang-Mills theory, we have

thus mapped two classes of Navier-Stokes solutions to Maxwell solutions.
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The gauge field corresponding to the constant vorticity fluid matches the constant

axial field within a large solenoid, while the zeroth copy is a constant. For the

potential flow fluids, the gauge field is the same for every potential flow; it corresponds

to a static Maxwell field with Poynting vector pointing towards the horizon. We find

the scalar flow potential maps to the zeroth copy scalar field. Thus, just as the

nontrivial details of the constant vorticity fluid map to the single copy field, the

nontrivial details of the potential flow fluid map instead on to the zeroth copy scalar

potential.

In section 5.2 we begin by reviewing the cutoff approach to fluid-gravity duality

from Bredberg et al. (2012). In section 5.3, we briefly review the classical double

copy story, focusing on the Weyl double copy as developed in Luna et al. (2019). In

section 5.4 we show that constant vorticity fluids map to type D vacuum metrics,

while potential flow fluids map to type N metrics. In sections 5.5 and 5.6 we build

the single copy for the gauge fields associated with these metrics. In section 5.7 we

discuss the physical implications of our results and speculate on the viability of a

classical double copy picture for generic fluid-dual spacetimes.

5.2 The Hydrodynamic Limit and Near-Horizon Expansion

In this section we review the cutoff surface formulation of fluid-gravity duality

and reiterate the equivalence between the hydrodynamic limit and the near hori-

zon expansion explored in Bredberg et al. (2012). In order to obtain Navier-Stokes

equations from Einstein’s equations, we begin with a background Rindler spacetime

written in ingoing Eddington-Finkelstein coordinates:

ds2
0 = −rdτ 2 + 2dτdr + dxidx

i. (5.1)
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Here i, j will be the spacelike fluid directions; for a fluid in 2 + 1 dimensions, i, j run

over 1, 2 and the associated metric is four-dimensional. Constant r hypersurfaces in

these coordinates are intrinsically flat and foliate the spacetime metric into hyperbolic

slices.

We then choose one such slice, r = rc, and perturb the spacetime there, generating

extrinsic curvature for the r = rc slice as embedded in the full spacetime. We identify

this extrinsic curvature κab with the fluid stress tensor Tab; here a, b run over the

directions along the rc slice (that is, a, b take values τ or i, j). The intrinsic metric of

this slice γab thus satisfies

γab = −rcdτ 2 + dxjdxj, γabκ− κab ∼ TNSab . (5.2)

For these perturbations, we impose regularity and infalling boundary conditions at

the null horizon r = 0, thus generating the fluid-dual metric

ds2 = − rdτ 2 + 2dτdr + dxidx
i

− 2
(

1 − r

rc

)
vidx

idτ − 2vi
rc
dxidr

+
(

1 − r

rc

) [
(v2 + 2P )dτ 2 + vivj

rc
dxidxj

]
+
(
v2

rc
+ 2P

rc

)
dτdr

− (r2 − r2
c )

rc
∂2vidx

idτ + O(ϵ3).

(5.3)

The ϵ here refers to the order in the hydrodynamic or long wavelength expansion,

explicitly

∂i → ϵ, ∂τ → ϵ2, v → ϵ, P → ϵ2. (5.4)

The metric in (5.3) is arranged with background terms of order O(ϵ0) in the first line,

O(ϵ) terms in the second, and so on.
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With these identifications, the r = rc constraint components of Einstein’s equa-

tions, Gττ and Gτi, become incompressibility and the Navier-Stokes equation:

G00 = 0 =⇒ ∂ivi = 0,

G0i = 0 =⇒ ∂τvi − η∂2vi + ∂iP + vj∂jvi = 0,
(5.5)

where the shear viscosity η is identified2 with rc.

As in Bredberg et al. (2012), to relate the hydrodynamic limit to the near horizon

limit, we introduce hatted coordinates and variables:

xi = rcx̂i
ϵ
, τ = rcτ̂

ϵ2 , r = r̂rc, vi = ϵv̂i P = ϵ2P̂ . (5.6)

Next, we rescale the metric and define a new perturbative parameter λ:

ds2 → dŝ2 = ϵ2

r2
c

ds2 z2 − t2 = 4rc → 4λ, λ ≡ ϵ2

rc
. (5.7)

This new expansion parameter λ controls the near horizon expansion. The limit

λ → 0 sets the r = rc hypersurface to be null, just like the r = 0 Rindler horizon. In

the near horizon expansion the metric thus becomes

dŝ2 = − r̂

λ
dτ̂ 2

+
[
2dτ̂dr̂ + dx̂idx̂

i − 2(1 − r̂)v̂idx̂idτ̂ + (1 − r̂)(v̂2 + 2P̂ )dτ̂ 2
]

+ λ
[
(1 − r̂)v̂iv̂jdx̂idx̂j − 2v̂idx̂idr̂ + (v̂2 + 2P̂ )dτ̂dr̂

+ (r̂ − 1)[−(r̂ + 1)∂̂2v̂i + (v̂2 + 2P̂ )2v̂i + 4∂̂iP̂ ]dx̂dτ̂
]

+ O(λ2).

(5.8)

In this sense Bredberg et al. (2012) demonstrate that the near horizon expansion

matches the long wavelength limit, consistent with the perspective that horizons

behave as incompressible fluids.

As discussed further in appendix C, the replacements

xi → ϵxi, τ → ϵ2τ, v → ϵv, P → ϵ2P. (5.9)
2Note that in the near horizon expansion η → 1.
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allow derivation of the incompressible Navier-Stokes equation starting from a solution

of more complicated equations; essentially, any other terms become higher order

terms in the ϵ expansion. Additionally, these replacements will bring a Navier-Stokes

solution that is not initially in the long wavelength limit (5.4) into that limit. The

near horizon expansion makes these replacements explicit, so it is valid for Navier-

Stokes solutions that are not naturally in the hydrodynamic limit, such as vortices.

Consequently, although we mostly use the hydrodynamic expansion ϵ below, we will

return to the near horizon λ expansion when necessary.

5.3 Classical Double Copy

In the past few decades, significant steps have been made towards a deeper un-

derstanding of graviton scattering amplitudes and their relation to gauge scatter-

ing amplitudes. Most relevant for this article is the double copy prescription (see

Bern et al. (2019a) and references within for a comprehensive review of the subject).

Stated simply, the double copy obtains complicated graviton scattering amplitudes

from simpler gauge theory amplitudes. The gauge theory amplitude AYM is written

in a generalized gauge such that it takes the schematic form

AYM ∼
∑
k

nkck
propagators

, (5.10)

where the sum is over all three-point vertex graphs, the nk are the kinematic numera-

tors associated with each graph, and the ck are the color factors that satisfy a Jacobi

identity of the form ci + cj + ck = 0. The basic principle in obtaining the graviton

amplitude relies on a particularly simple duality between color and kinematics, the

BCJ duality first presented in Bern et al. (2008), being made manifest.

The double copy prescription then provides the corresponding graviton amplitude,

Mgrav ∼
∑
k

nknk
propagators

, (5.11)
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where the color factors ck have been replaced with a second set of kinematic numera-

tors nk that are organized to also satisfy a Jacobi identity of the same form. There is

also a ‘zeroth copy’ in the amplitudes story, where starting with (5.10), replacing the

kinematic numerators ni with a second set of color factors c̃i builds scalar amplitudes

of the form

Ascalar ∼
∑
k

ckc̃k
propagators

, (5.12)

for bi-adjoint scalars ϕaa′ . As we will see below, a zeroth copy scalar can also be found

in the classical double copy story; it will play a significant role for the potential flow

fluid class.

When the double copy procedure is applied to pure (non-supersymmetric) Yang-

Mills theory, the resulting theory on the gravity side is general relativity coupled to

a two-form field and a dilaton. Although these amplitude relations are perturbative

quantum statements, the authors of Monteiro et al. (2014) used these relations to

inspire a double copy mapping between classical solutions in general relativity and

classical solutions in the U(1) sector of Yang-Mills.3 This relation is referred to as

the classical double copy.

5.3.1 Kerr-Schild Double Copy

The key connection between the classical gravity and gauge theory solutions first

presented in Monteiro et al. (2014) is the use of Kerr-Schild coordinates, where

gµν = ηµν + ϕkµkν . (5.13)

Here, ϕ is a scalar function that plays the role of the zeroth copy, and satisfies the

wave equation over the flat background, ηµν∂µ∂νϕ = 0. The vector kµ is null with

3Some nonabelian behavior is covered in e.g. Alfonsi et al. (2020); Bahjat-Abbas et al. (2020),

but here we focus on only the abelian sector.
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respect to both the full and background metrics,

gµνkµkν = ηµνkµkν = 0. (5.14)

This feature serves to truncate the inverse metric to gµν = ηµν − ϕkµkν , with the

further consequence that the null vector can be raised with either the background or

full metric, kµ = gµνkν = ηµνkν .

The classical double copy states that if gµν is a solution to the Einstein equations,

then the gauge field given by

Aaµ = caϕkµ (5.15)

is a solution to Yang-Mills theory. Since the ca are just constant color factors in these

solutions, these solutions really live in a U(1) sector of the gauge theory; that is,

Aµ = ϕkµ will be a Maxwell solution. We refer to (5.15) as the single copy, in line

with terminology in the amplitudes story.

The connection between the classical story and amplitudes story can be seen by

replacing the color vector ca in (5.15) with the null vector kµ in (5.13) to obtain hµν

from the gauge theory, akin to replacing ck → nk. Moreover, the zeroth copy analogy

can be seen by replacing kµ → ca
′ in (5.15) to get ϕaa′ = caca

′
ϕ, in the same spirit as re-

placing ni → c̃i to obtain (5.12) from (5.10). The mapping (5.15) has been extensively

studied for various exact solutions living on flat space Monteiro et al. (2014); Adamo

et al. (2018); Luna et al. (2015); Goldberger and Ridgway (2018); Carrillo González

et al. (2019); Ridgway and Wise (2016); Luna et al. (2016); Goldberger and Ridgway

(2017); Berman et al. (2019); Gurses and Tekin (2018); P. V. and Manu (2020); Ilder-

ton (2018) and extended to solutions living on maximally-symmetric backgrounds

Carrillo-González et al. (2018); Bahjat-Abbas et al. (2017).

Some classical solutions that have been shown to exhibit a reasonable double copy

necessitate an extension to the ansatz (5.13); Luna et al. (2015, 2019); Lee (2018)
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write the full metric in double Kerr-Schild form, where

gµν = ηµν + ϕkµkν + ψlµlν . (5.16)

Here the vectors k and l are individually null as well as orthogonal (orthonullity);

k2 = l2 = k · l = 0. (5.17)

Again, the indices for both vectors can be raised and lowered with either the full

metric gµν or the background metric ηµν . This form was necessary for the single copy

study of the Taub-NUT solution Luna et al. (2015) as well as for the generic type D

vacuum solutions in Luna et al. (2019), where the gauge field is given by

Aaµ = ca
(
ϕkµ + ψlµ

)
. (5.18)

5.3.2 Weyl Double Copy

In our work, we will utilize a different realization of the classical double copy,

referred to as the Weyl double copy Luna et al. (2019). This prescription for the

double copy relies on the spinor formulation of general relativity Penrose and Rindler

(2011, 1988) in conjunction with the Petrov classification (see Stephani et al. (2003)

chapters 3 and 4 for a review of both concepts) to build the map between the gravita-

tional and gauge theories. This version of the double copy applies to four-dimensional

spacetimes, although Monteiro et al. (2019) builds towards an extension to higher di-

mensions; for now we review the four-dimensional picture.

The Petrov classification labels metrics by the multiplicities of the principle null

directions of their Weyl tensors. A principle null direction kµ satisfies

kµk
µ = 0, k[σWµ]νρ[σkλ]k

νkρ = 0, (5.19)

where Wµνλγ is the Weyl tensor. All four-dimensional metrics will have four (not

necessarily unique) solutions kµ to these equations, but they can appear with differ-

ent multiplicities. A spacetime is algebraically special if any two or more of these
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principle null vectors coincide. If only two coincide, the spacetime is Petrov type II;

if two pairs coincide, then it is type D. If all four principle null vectors coincide, then

the spacetime is type N. The Weyl double copy will apply to type D and type N

spacetimes, essentially factoring their principle null vector pairs.

Since a basic understanding of curved space spinor formalism is necessary to work

with the Weyl double copy, we review the essentials in appendix A. We rewrite the

usual Weyl tensor Wµνλγ in terms of the completely symmetric Weyl spinor CABCD

using the formula

CABCD = 1
4
Wµνλγσ

µν
ABσ

λγ
CD, (5.20)

where σµνAB are defined in terms of the Pauli sigma matrices as in (A.7).

The form of the Weyl spinor CABCD is directly related to the Petrov classification

of spacetimes, since the Weyl spinor can be decomposed as

CABCD = α(AβBγCδD), (5.21)

where the four principle spinors {αA, βB, γC , δD} carry the information of the four

principle null directions of the spacetime. The principle spinors can be related to the

principle null vectors using the Pauli 4-vectors via (B.11).

Since the spinors composing CABCD are directly related to the principle null vec-

tors, their multiplicity also depends on the Petrov type. If all four spinors are unique,

the spacetime is algebraically general, of Petrov type I. Otherwise the spacetime is al-

gebraically special. We focus on Petrov type D, where there are two unique principle

spinors with multiplicity two, and Petrov type N, where there is one unique principle

spinor. Their Weyl spinors can be written

CD
ABCD ∼ α(AαBβCβD), CN

ABCD ∼ αAαBαCαD, (5.22)

where here α (and β, for type D) are the principle null spinors.
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On the gauge theory side, the spinor field strength fAB is the key object, and can

be obtained from the field strength tensor Fµν directly using

fAB = 1
2
Fµνσ

µν
AB. (5.23)

In the same sense as the Weyl spinor, the fAB corresponding to a type D spacetime

can be written as fD
AB ∼ α(AβB), whereas in the type N case we have fN

AB ∼ αAαB.

Thus we find

CABCD = 1
S
f(ABfCD), (5.24)

where S is a complex scalar field satisfying the wave equation in the flat background

on which fAB lives, and whose real part coincides with the Kerr-Schild scalar ϕ up to

an overall constant. Therefore the scalar S plays the role of the zeroth copy in the

Weyl double copy map.

We will use the decomposition of the Weyl spinor CABCD in terms of a spinor

basis {oA, ιB}:

CABCD = Ψ0ιAιBιCιD−4Ψ1o(AιBιCιD)+6Ψ2o(AoBιCιD)−4Ψ3o(AoBoCιD)+Ψ4oAoBoCoD.

(5.25)

Here, the ΨI ∈ C, I = 0, 1, 2, 3, 4 are called Weyl scalars, and are also related to the

Petrov classification (see section 5.4). We will see that the ΨI , and the invariants

built out of them, play a significant role in the Weyl double copy.

As Luna et al. (2019) shows, solutions built from this Weyl double copy picture

match the expectations from the Kerr-Schild double copy as built in Monteiro et al.

(2014). In addition to specific examples like the Kerr metric, Luna et al. (2019)

also shows this matching for the most general type D vacuum solution as written in

Plebanski-Demianski coordinates Plebanski and Demianski (1976) (see Griffiths and

Podolsky (2006) and Podolsky et al. (2018) for an extended treatment).
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We next look to analyze solutions to Navier-Stokes from the fluid gravity per-

spective that result in spacetimes that are candidates for the Weyl double copy. As

we will now show, by constraining the velocity fields in the fluid metric (5.3) in one

of two ways, we find that the resulting spacetime is either Petrov type N or type D,

allowing for a double copy treatment via the Weyl method.

5.4 Fluid Solutions

The eigenbivectors of the Weyl tensor for the fluid metric reveal that it is alge-

braically special Bredberg et al. (2012); Lysov and Strominger (2011); specifically

it is a type II spacetime according to the Petrov classification, with two coinciding

principal null vectors. Below, we use the Newman-Penrose formalism to find which

fluids correspond to metrics with even higher algebraic speciality. Additional details

pertaining to the formalism and our choice of conventions can be found in Appendix

B or in Stephani et al. (2003).

Briefly, the Newman-Penrose formalism relies on rewriting the metric in terms of

a tetrad set l, n, m, m̄, as in (B.1). The tetrad set is then used to compute the Weyl

scalars, which then can be used to compute the invariants I, J, K, L, and N as in

(5.27). While the Weyl scalars depend on the tetrad choice, the invariants do not and

thus we will look at these invariants to classify our spacetimes.

We work in the hydrodynamic limit of the metric (5.3), where the first terms we

do not write explicitly4 arise at O(ϵ3). Thus we only know our Weyl scalars up to the

4Lysov and Strominger (2011) show that algebraically special spacetimes can be obtained to

arbitrary order in the context of the fluid gravity duality in 5 or higher spacetime dimensions. Cai

et al. (2013) also consider similar spacetimes in d ≥ 5, however posit that additional constraints may

be needed in Lysov and Strominger (2011) at higher orders to maintain algebraic specialty. Compere

et al. (2011) construct a formulation that progresses to arbitrary order, however this construction

deviates from algebraic specialty and in doing so relates the higher order pieces in the metric to
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same order, and our algebraic classification of the spacetime is perturbative as well.

In this limit, our tetrad choice (C.2) yields the following Weyl scalars up to O(ϵ3),

which is where we would start to see contributions from neglected higher terms in the

metric(5.3):

Ψ0 = 0 + O(ϵ3),

Ψ1 = 0 + O(ϵ3),

Ψ2 = −i ϵ
2

4rc
(∂xvy − ∂yvx) + O(ϵ3), (5.26)

Ψ3 = 0 + O(ϵ3),

Ψ4 = − ϵ2

2r
(∂xvx − ∂yvy + i(∂xvy + ∂yvx)) + O(ϵ3).

Ψ2 is proportional to the vorticity of the fluid, while Ψ4 is proportional to the deriva-

tive of vx + ivy with respect to the complex coordinate z̄ ≡ x− iy.

In order to evaluate the algebraic speciality of our spacetimes, we compute the

invariants I, J, K, L and N, via the following relations:

I ≡ Ψ0Ψ4 − 4Ψ1Ψ3 + 3Ψ2
2,

J ≡

∣∣∣∣∣∣∣∣∣∣∣∣

Ψ4 Ψ3 Ψ2

Ψ3 Ψ2 Ψ1

Ψ2 Ψ1 Ψ0

∣∣∣∣∣∣∣∣∣∣∣∣
,

K ≡ Ψ1Ψ2
4 − 3Ψ4Ψ3Ψ2 + 2Ψ3

3,

L ≡ Ψ2Ψ4 − Ψ2
3,

N ≡ 12L2 − Ψ2
4I.

(5.27)

corrections to the Navier-Stokes equations. Since our interest is primarily in making connection

with the Weyl double copy picture, we restrict ourselves to the first few nontrivial orders of this

metric. For more on convergence of the gradient expansion in a hydrodynamic and fluid gravity

context, see Pinzani-Fokeeva and Taylor (2015); Grozdanov et al. (2019).
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For a generic fluid-dual metric, we find

I = 3ϵ4
[
i

(
∂xvy
4rc

− ∂yvx
4rc

)]2

+ O(ϵ5),

J = ϵ6
[
i

(
∂xvy
4rc

− ∂yvx
4rc

)]3

+ O(ϵ7).
(5.28)

These I and J satisfy I3 − 27J2 = 0, or more precisely,

=⇒ I3 − 27J2 = 0 + O(ϵ13), (5.29)

which implies that the general fluid metric is Petrov type II up to this order.

Next we look at the invariants K, L, and N :

K = 0 + O(ϵ7),

L = ϵ4
[

− ∂xvx
2r

+ ∂yvy
2r

− i
∂yvx
2r

− i
∂xvy
2r

][
i
∂yvx
4rc

− i
∂xvy
4rc

]
+ O(ϵ5),

N = 9ϵ8
[

− ∂xvx
2r

+ ∂yvy
2r

− i
∂yvx
2r

− i
∂xvy
2r

]2[
i
∂yvx
4rc

− i
∂xvy
4rc

]2

+ O(ϵ9).

(5.30)

Although K is in fact 0 through this order, that is not enough for further algebraic

speciality (see Figure 9.1 in Stephani et al. (2003)). The nonzero invariants L and N

are proportional to both the vorticity (from Ψ2) and ∂z̄(vx + ivy) (from Ψ4).

Before we begin an analysis of which special fluids have dual metrics with higher

algebraic speciality, we must mention briefly the perturbative nature of the metrics we

use in this paper. While Lysov and Strominger (2011) constructed fluid-dual space-

times by requiring algebraic speciality to hold at all orders, here we instead constrain

ourselves only to the lowest orders necessary in order to establish the incompressible

Navier-Stokes equations. Accordingly, we only establish the higher algebraic specialty

of our spacetimes to lowest order.

To these orders discussed, the condition that the fluids spacetime is a type II

metric, I3 − 27J2 = 0, is satisfied in either the near-horizon or the hydrodynamic
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expansion:

I3
ϵ − 27J2

ϵ = 0 + O(ϵ13), I3
λ − 27J2

λ = 0 + O(λ). (5.31)

Note that the highest non-error order available in the near-horizon λ expansion dif-

fers from the ϵ hydrodynamic expansions, but both spacetimes satisfy the type II

constraint to at least one nontrivial order.

Specifically, in the near-horizon expansion, we find

Iλ = − 3
16

(∂yvx − ∂xvy)2 + O(λ),

Jλ = − i

64
(∂yvx − ∂xvy)3 + O(λ),

(5.32)

which matches (D.4) except for the expansion order. Since the order of terms differs

between the two expansions, in the near-horizon expansion it turns out to be necessary

to account for terms of order O(λ2) in the metric (5.8), as was done in Bredberg

et al. (2012). Accordingly we use the generic form of the tetrad (C.3) to perform

computations in this expansion.

Since the fluid constraints required to produce higher algebraic speciality are the

same at the lowest order of both expansions, we thus concentrate on only the ϵ hy-

drodynamic expansion for the remainder of this section. As we show below, constant

vorticity fluids will correspond to type D spacetimes while potential flows correspond

to type N metrics.

5.4.1 Petrov Type D Fluid Solutions

A Petrov type D spacetime satisfies the following conditions for the invariants:

I3 − 27J2 = 0; I, J ̸= 0; K = N = 0. (5.33)

Based on the forms of L and N in (5.30) and I and J in (D.4), these conditions imply

∂xvy − ∂yvx ̸= 0, −∂xvx + ∂yvy − i
(
∂yvx + ∂xvy

)
= 0. (5.34)
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These constraints imply that each component of the velocity satisfies Laplace’s equa-

tion ∂2vi = 0, where i ∈ {x, y}.

These conditions are solved by the fluid velocities

vx(τ, y) = −ωy + hx(τ),

vy(τ, x) = ωx+ hy(τ),
(5.35)

with pressures

P (τ, x, y) = ω2

2
(
x2 + y2

)
+
(
ωhy − ∂τhx

)
x−

(
ωhx + ∂τhy

)
y + c(τ). (5.36)

In this paper, we will concentrate on the steady state solution centered at the

origin; that is, we set hi(τ) = c(τ) = 0. Turning these functions on would correspond

to a vortex whose center follows the path (x0(τ), y0(τ)) = (
∫
hxdτ,

∫
hydτ) as time

τ passes; a diffeomorphism returning to coordinates centered on the moving vortex

would tune the effective time dependence back to zero.

Thus the fluid profile we study as representative of fluids dual to type D metrics

satisfies

vx(τ, y) = −ωy, vy(τ, x) = ωx, P = ω2 (x2 + y2)
2

, (5.37)

consistent with vanishing pressure and velocity at the origin as would be expected for

a fluid rotating with constant vorticity, centered at the origin.

5.4.2 Petrov Type N Fluid Solutions

To obtain a type N spacetime, the invariants must satisfy

I = 0, J = 0, K = 0, L = 0, N ̸= 0. (5.38)

For the general fluid metric, we already have K = 0 and the invariants I, J (D.4) and

L (5.30) are each proportional to a positive power of the vorticity, so setting the fluid

vorticity ∂xvy − ∂yvx to zero leaves us with a type N dual metric.
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The velocity and pressure profiles of vorticity-free fluids can be written in terms

of a scalar potential ϕ:

vi = ∂iϕ, ∂iP = −∂i∂τϕ− ∂jϕ∂i∂jϕ. (5.39)

For incompressible fluids, ϕ satisfies Laplace’s equation ∂2ϕ = ∂2
xϕ + ∂2

yϕ = 0, so

vorticity-free incompressible fluids are referred to as potential flows.

These potential flows can be written cleanly in complex coordinates, i.e. using

z ≡ x+ iy. Since ∂2ϕ = 0, we can rewrite a general solution for the potential ϕ using

the sum of a holomorphic function f and an antiholomorphic function g:

∂z∂z̄ϕ = 0, ϕ = f(z) + g(z̄). (5.40)

Imposing reality conditions so as to obtain real velocity and pressure fields requires

that the antiholomorphic function g(z) must be the complex conjugate of the function

f(z):

ϕ = f(z) + f̄(z̄), f̄(z̄) ≡ (f(z))∗. (5.41)

Returning to the dual fluid metric, the vorticity-free condition sets Ψ2 = 0, leaving

only Ψ4 nonzero. We can express this nonzero Weyl scalar compactly as

Ψ4 = −2
r
∂2
z̄ϕ = −2

r
∂2
z̄ f̄(z̄), (5.42)

while the Weyl tensor becomes

CABCD = Ψ4oAoBoCoD. (5.43)

Since the function f(z) is holomorphic, we can write a general fluid solution as a

Laurent series in z (and z̄ for f̄):

ϕ =
∞∑

n=−∞
αn+2z

n+2 + c.c., (5.44)
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where αn are in general complex valued coefficients and the holomorphic function

f(z) ≡ ∑∞
n=−∞ αn+2z

n+2. Consequently the Weyl scalar Ψ4 can also be written as a

Laurent series.

It is instructive to look at the forms of the fluid potential and the Weyl scalars

for a few specific fluid solutions here5. We begin by turning on only the n = 0 term

in (5.44). For convenience we additionally choose α2 = −α/4, with α real, obtaining

the potential

ϕ(z, z̄) = −α

4
(z2 + z̄2). (5.45)

The corresponding fluid velocity and pressure profiles become

vx = −αx, vy = αy, P = P0 − α2 x
2 + y2

2
. (5.46)

This fluid profile is known as planar extensional flow; extensional flows have been

well studied in the fluid-mechanics/materials science community, see e.g. Barnes

et al. (1989). Our main interest in this fluid will be its simplicity in terms of the

double copy prescription, as we will see below.

Using (5.42), for this fluid we find

Ψ4 = α

r
. (5.47)

Due to its simplicity and utility as a physical example, we begin with this fluid when

we study the double copy prescription for the Type N fluid dual metrics in section

5.6.1.

Other potential flows can also be written compactly in terms of z and z̄, using the

form (5.44), as in Table 5.1. We will study the double copy of type N metrics dual

to the generic potential flow fluid with potential (5.44) in section 5.6.2 below.
5Note as for the type D case, we neglect the time dependence that could be allowed in the

α coefficients of the fluid potential and instead consider only steady state flows. As before, time

dependence here will correspond to translating these steady state solutions.
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Type of fluid solution Fluid Potential ϕ(t, x, y) ϕ(z, z̄) Ψ4

Source/Sink α ln(x2 + y2) α ln(zz̄) 2 α r−1z̄−2

Source to Sink (dipole) αδx
x2+y2

αδ
2
z+z̄
zz̄

2 r−1αδz̄−3

Line Vortex α arctan(y/x) α
2i ln

(
z
z̄

)
iα r−1z̄−2

Extensional flow −α
2 (x2 − y2) −α

4 (z2 + z̄2) α
r

Table 5.1: Some examples of standard fluid solutions and the corresponding non-

vanishing scalar Ψ4 for type N solutions. For the dipole flow, δ refers to the distance

between the source and the sink.

5.5 Type D Double Copy

5.5.1 Weyl Double Copy

Now that we’ve obtained velocity and pressure fields that correspond to either

Petrov type D or type N, we look to build the Weyl double copy (5.24) corresponding

to the particular fluid solutions. Accordingly, we use our results for the Weyl scalars

(5.26) and the expansion of the Weyl spinor CABCD, given by (5.25). As we showed in

section 5.4.1, the type D constraint leaves us with constant vorticity fluid solutions.

The time-independent solution (5.35) and (5.36) takes the form

vx = −ωy, vy = ωx, P = ω2 (x2 + y2)
2

. (5.48)

From the expression for the Weyl scalars ΨI for arbitrary velocity fields (5.26), we

find that the solution (5.48) leaves us with

Ψ2 = −iϵ2 ω

2rc
+ O(ϵ3), (5.49)

while all other ΨI vanish to O(ϵ3). Consequently, the Weyl spinor is CABCD =

6Ψ2o(AoBιCιD).
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Using the Weyl double copy as defined in (5.24), we find the zeroth copy scalar

and single copy gauge field are, to lowest order in ϵ,

S = iωrc
3
e2iθ, fAB = eiθω

1 0

0 −1

 , (5.50)

where θ is a constant (global) phase to be interpreted shortly. Since the double copy

relation (5.24) and the vanishing of all ΨI ̸=2 force fAB ∝ oAιB, the matrix structure

of fAB here arises from the form of oA and ιB as in (B.11).

Next, we use the relation between the spacetime formalism and the spinor for-

malism as reviewed in appendix A to obtain the tensor form of the field strength F µν

from the spinor fAB. These relationships necessitate a vierbein for the background

on which the gauge fields live. We choose to interpret the gauge fields as living on

the Rindler background

ds2
(0) = −rdτ 2 + 2drdτ + dx2 + dy2, (5.51)

where the scalar satisfies the wave equation, ∇(0)µ∇(0)
µ S = □(0)S = 0. The ∇(0)

µ are

the covariant derivatives with respect to (5.51). From (B.10), we obtain the vierbeins

e(0),0
µ = (−

√
r,

1√
r
, 0, 0),

e(0),1
µ = (0,− 1√

r
, 0, 0), (5.52)

e(0),2
µ = (0, 0, 1, 0),

e(0),3
µ = (0, 0, 0, 1).

Using (A.13) to obtain F µν in terms of fAB, the Pauli matrices, and the vierbeins,

we find the only nonzero components are

F τr = −ω cos θ, F xy = −ω sin θ. (5.53)
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Recalling that the gauge field is in the U(1) sector of Yang-Mills, the Maxwell

equations

∇(0)
ν F µν = 0, ∇(0)

[µ Fρσ] = 0, (5.54)

indeed show that the field strength (5.53) is a vacuum solution. This is to be expected,

since the fluid solutions are obtained by demanding the Einstein equations are satisfied

in vacuum, Gµν = 0, so we expect the single copy to follow suit. In the classical

double copy, it is possible for the spacetime to have a singularity that maps to a

gauge field source, as the point mass maps to a point charge in the Schwarzschild

solution Monteiro et al. (2014) when parameters are chosen to turn off the dilaton

Luna et al. (2020); Kim et al. (2020). Because Rindler space is free from singularities,

no sources will be found on the gauge theory side, consistent with (5.54).

5.5.2 Effective Electric and Magnetic Fields

Interpreting the single copy gauge field strength (5.53) as a Maxwell solution

allows us to discuss the electric and magnetic fields whose double copy generates the

metric dual to a constant vorticity fluid.6 These fields are defined covariantly by

Eν = Fνµξ
µ, Bν = 1

2
εµνρσF

ρσξµ, (5.55)

where ξ is the (timelike) Killing vector ξ = ∂τ . For the field strength under consider-

ation, we find

Eν = ω cos θδrν , Bν = −ω sin θδrν . (5.56)

We interpret these fields by choosing the global phase to be θ = 3π
2 , which leaves

us with a constant magnetic field pointing in the r direction, perpendicular to the

x− y plane. Under this choice of θ, the classical vector potential A⃗, which constructs
6Note that unlike references Ilderton (2018) and Andrzejewski and Prencel (2019), which discuss

gauge and gravity solutions with vorticity, we are discussing metrics dual to fluids with vorticity.
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the magnetic field by B⃗ = ∇ × A⃗, coincides with the velocity fields directly: A⃗ ∝ v⃗.

Since the magnetic field is unchanged when the vector potential shifts by a constant,

we see that the single copy gauge fields will similarly be unchanged when we shift the

velocity by a constant.

We also compute the electromagnetic stress tensor

T ρσ = F ρ
µF

σµ − 1
4
gρσFµνF

µν , (5.57)

finding the nonzero components

T τr = −ω2

2
, T rr = −rω2

2
, T xy = ω2

2
. (5.58)

The associated energy with respect to the Killing vector ξ is given by

T µνξµξν = ω2r/2, (5.59)

while the spatial components of the Poynting vector, from T µνξµ, become zero.

Physically, we can understand the fluid (5.48) as the solution inside of a slowly

rotating cylinder with its axis along the r-direction and no-slip boundary conditions

at the wall, where we have taken the radius of the cylinder to be large (with respect to

all other scales in the problem). The corresponding single copy gauge field, B⃗ = ωr̂,

matches the uniform magnetic field along the axis of a solenoid with n turns per unit

length whose current I is proportional to ω/n. The axis of the solenoid is aligned

with the axis of the cylinder containing the fluid.7 The double copy mapping therefore

associates the vorticity of the fluid with the magnitude of the current sourcing the

magnetic field. The field moreover has energy dependent on the radial location r, but

has vanishing Poynting vector as expected for a pure magnetic field. In addition, we
7The velocity fields rotate counter-clockwise in the x − y plane. After exchanging the vortic-

ity parameter with a current parameter, the resulting magnetic field then points along positive r̂,

consistent with choosing θ = 3π/2.
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see from (5.50) that the zeroth copy S plays a passive role in that it trivially solves

the wave equation. We thus find that all of the nontrivial information that is mapped

through the double copy is contained in the field strengths fAB or F µν for the type

D spacetime.

5.5.3 Weyl Double Copy in the Near Horizon Expansion

The hydrodynamic limit can be related to a near horizon expansion of the metric

by rescaling the metric as in (5.7) (Bredberg et al., 2012). Since the full fluid solution

(5.48) does not actually lie in the hydrodynamic regime8, we repeat here the same

analysis as in section 5.5.1, repeated in the near horizon expansion (5.8). We again

find the same results.

Using the tetrad (C.3), we find the Weyl scalars for the near horizon metric (5.8)

with the constant vorticity fluid (5.48). The only nonzero Weyl scalar is

Ψ2 = iω

2
+ O(λ). (5.60)

All other Weyl scalars vanish at O(1), and have contributions from neglected pieces

of the metric at O(λ) or higher. Following the method in section 5.5.1, we identify

the zeroth copy scalar and single copy gauge field spinor:

S = 1
3
ei(π+2θ), fAB = ωeiθ

1 0

0 −1

 . (5.61)

8The fluid solution (5.48) is only in the hydrodynamic regime (5.4) for x, y ∼ ϵ−1 while the

vorticity satisfies ω ∼ ϵ2. For either small x, y or large vorticity, the solution exits the hydrodynamic

regime, although of course it still solves Navier-Stokes. Because of this technicality, the metric (5.3)

is not trustable for small x, y. However, in the near-horizon expansion, because of the rescaling

(5.7), the fluid solution does not need to be in the hydrodynamic regime, since this expansion is

rewritten explicitly in terms of the hatted coordinates in (5.6) that are of O(1). Here we explore an

explicit realization of the near-horizon expansion, for completeness, as provided in equation (5.8).

85



As before, we obtain the appropriate flat space vierbien by setting the velocities and

pressures to zero in the full tetrad and using eq. B.10; we find

e(0),a
µ =



r+λ
2λ

r−λ
2λ 0 0

−1 −1 0 0

0 0 1 0

0 0 0 1


. (5.62)

Using this flat space vierbien the gauge field strength tensor in the λ expansion

becomes

F τr = −ω cos θ, F xy = −ω sin θ, (5.63)

which should be thought of as living on a flat Rindler background. We then identify

effective electric and magnetic fields, which are identical to the previous result (5.56)

obtained in the hydrodynamic limit:

Eν = ω cos θ δ rν , Bν = −ω sin θ δ rν . (5.64)

5.6 Type N Weyl Double Copy

In this section we will analyze the single copy gauge fields and zeroth copy scalar

fields corresponding to the metrics dual to potential flow fluids. As we saw in section

(5.4.2), these potential flows are the most general solution whose dual metrics satisfy

the Petrov type N constraint. As potential flows, their velocity can be written as the

gradient of a scalar potential, vi = ∂iϕ, where ϕ satisfies Laplace’s equation in R2.

For convenience, we defined z = x+ iy and its conjugate z̄ so that we may write the

Laplacian as ∂2 = ∂z∂z̄, decomposing the scalar potential as ϕ(z, z̄) = f(z) + f̄(z̄).

The resulting Weyl scalar, Ψ4, is given by (5.42), and all others vanish. Therefore

the Weyl double copy should satisfy

CABCD = −2
r
∂2
z̄ f̄(z̄)oAoBoCoD = 1

S
fABfCD. (5.65)
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5.6.1 Planar Extensional Flows

Let us start with the simple case of planar extensional flow, where ϕ(z, z̄) =

−α
4 (z2 + z̄2) with α a real constant. The corresponding velocity fields are (5.46)

vx = −αx and vy = αy.

We can satisfy the double copy relation (5.65) by choosing

S = e2iθ

α
, fAB = eiθ√

r

1 1

1 1

 , (5.66)

where we again allow for a global phase θ. Here, since we have ΨI ̸=4 = 0, we have

fAB ∝ oAoB, therefore the matrix structure in (5.66) arises from (B.11). Although

we could make another choice for S, this constant choice trivially satisfies □(0)S = 0,

and fAB is the only choice which will satisfy the gauge field equations as we show

below.

As for the type D case, we specify our background spacetime by using (B.10) to

find the vierbeins corresponding to the tetrads used to compute Ψ4, and then setting

vi = P = 0. The resulting vierbeins turn out to have the same form as (5.52). We

then obtain the gauge field strength tensor via (A.13), finding

F rx = − sin θ, F ry = − cos θ, F τx = −2 sin θ
r

. (5.67)

As in the type D case, since this field strength has no nontrivial color factor depen-

dence, we treat it as an effective Maxwell field; indeed it satisfies the vacuum Maxwell

equations over the Rindler background (5.51) for arbitrary θ.

We obtain the electric and magnetic fields using the covariant expressions (5.55),

yielding

Eν = (0, 0, sin θ,− cos θ) (5.68)

and

Bν = (0, 0, cos θ,− sin θ). (5.69)
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Again, as in the type D case, we choose θ = 3π/2 as a convenient parametrization;

picking another θ will just result in a rotation in the x, y plane. Computing the

electromagnetic stress tensor (5.57), we find

T ττ = 4
r2 , T τr = 2

r
, T rr = 1. (5.70)

The energy becomes

T µνξµξν = 1, (5.71)

while the spatial components of the Poynting vector become

Si = −δir. (5.72)

We interpret this gauge field as the single copy field necessary to build up any fluid

which has a potential component. Since any two-dimensional vector field can be

decomposed, via the two-dimensional version of Helmholtz decomposition, we can

write the velocity field as

vi = ∂iϕ+ ϵijk∂jAk, (5.73)

where the vector fluid potential for the two-dimensional case satisfies A⃗ = |A|(x̂× ŷ),

and i, j, k run over the directions x and y as well as the direction x̂ × ŷ. For the

potential flows whose gravity duals are type N, we have only the first term; that is,

|A| = 0. Most of the information in ϕ will be carried instead by the scalar S, so the

field profile (5.67) is only building up the fluid-dual spacetime necessary to support

a velocity field with a nonzero ∂iϕ term.

The nonzero Poynting vector (5.72) indicates the dissipative nature of these flows.

The gravitational dual is carrying energy away from the r = rc hypersurface, towards

the null horizon, satisfying the infalling Rindler boundary conditions that underlie

the derivation of the fluid-dual metric (5.3). The same flow of energy towards the

null horizon arises in the Poynting vector aligned in the −r̂ direction.
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5.6.2 General Potential Flows

As we will show, the analysis in section 5.6.1 will work very similarly for a potential

flow ϕ = f(z) + f̄(z̄) with generic holomorphic function f(z).

Since □(0) on the Rindler background (5.51) will give zero when acting on any

function which is a sum of holomorphic and antiholomorphic terms independent of τ

and r, we can satisfy the type N Weyl double copy relation (5.65) for the metric dual

to a generic potential flow with

S = − e2iθ

2∂2
z̄ f̄(z̄)

, fAB = eiθ√
r

1 1

1 1

 . (5.74)

It is now the case that □(0)S = 0 is nontrivially satisfied, and the resulting gauge field

strength is unchanged from the analysis for the planar extensional flow. Thus for all

potential flow fluids, such as those in Table 5.1, the Weyl double copy admits the

same single copy gauge field as in the extensional flow, (5.67). The information for

a potential flow on the fluid side resides entirely in the potential ϕ; similarly, under

the double copy prescription, we find that the information from the potential resides

entirely in the zeroth copy scalar field S, whereas the single copy gauge field is the

same for all potential flows.

Since the single copy field profile is again (5.67), our interpretation of this field as

building the fluid-dual spacetime for fluids with nonzero potential terms holds again.

We do note that the fields (5.68) and (5.69) are constant; we expect that inclusion of

higher order terms in the ϵ expansion could alter this result, since here we are really

considering only a hydrodynamic expansion in small ϵ around the original r = rc

cutoff surface.
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5.7 Discussion

We have used the Weyl double copy prescription to find the single copy gauge

fields and zeroth copy scalar fields arising from two classes of fluid-dual metrics. The

first class, fluids with constant vorticity, maps to spacetime metrics with Petrov type

D. The second class, potential flow fluids, maps to spacetime metrics with Petrov

type N. For the type D spacetimes dual to fluids with constant vorticity, we find an

(effectively abelian) dual gauge field with vanishing Poynting vector. For the type N

spacetimes dual to potential flows, we find a gauge field whose Poynting vector points

in towards the Rindler horizon, indicating that the dissipation in these fluids maps

in the spacetime to energy flowing across the horizon due to the infalling boundary

conditions there.

We also saw that the single and zeroth copy fields mapping to the two sets of

fluid-dual metric classes store their information differently. In the type D case, the

vector potential for the magnetic field corresponds to the fluid velocity profile, while

the zeroth-copy scalar field is just a constant; only the single-copy gauge field is

carrying nontrivial information about the fluid. For type N spacetimes, the story is

in some sense opposite: the nontrivial components of the fluid are entirely due to the

potential, which shows up only in the zeroth-copy scalar field. Here, the gauge field

is fixed and appears to be the field necessary to build the fluid-dual spacetime for all

potential flow fluids.

In fact, the two fluid classes we have studied fall into two simple classes under

the Helmholtz decomposition, which rewrites the fluid vector field in terms of its

rotational component and its irrotational or potential component, as in (5.73). The

constant vorticity solutions which map to type D spacetimes have ϕ = 0 while the

potential flow solutions that map to type N spacetimes have A⃗ = 0. Under the
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double copy prescription, solutions with nonzero A⃗ map to a nontrivial gauge field

whose behavior depends on the fluid velocity, but to a constant (trivial) zeroth copy

scalar. Similarly, solutions with nonzero ϕ all map to the same gauge field (5.67), so

instead the zeroth copy scalar carries the fluid information: it is proportional to the

second derivative of the fluid potential as in (5.74). Consequently, we propose that

any fluid-dual metric may be mapped to a single copy gauge field and zeroth copy

scalar, each of which is a sum of the corresponding pieces from the rotational and

irrotational components in the Helmholtz decomposition. We hope to explore this

idea in future work.

We should note throughout that we work only to the lowest order in a perturbative

expansion (mainly the hydrodynamic expansion). A more complete treatment may

require understanding of the double copy prescription beyond a linear order; all double

Kerr-Schild prescriptions are essentially linear due to the linearization of the equations

of motion in those coordinates. The Weyl double copy itself is not linear in nature, but

is unclear how it might relate to more advanced treatments that would go beyond a

perturbative expansion as in Luna et al. (2017), such as the convolution prescription

in Luna et al. (2020); Kim et al. (2020). Further development of this convolution

prescription to include algebraically special spacetimes would be of interest.

The double-copy treatment in the fluid-gravity duality context may also be amenable

to analysis using solution generating techniques. For example, the Ehler’s transfor-

mations as implemented in Berkeley and Berman (2013) for fluids and further studied

in Alawadhi et al. (2020); Huang et al. (2019) in the context of the double copy could

allow access to a larger set of double-copy treatments for fluid-dual spacetimes. In-

deed, such an analysis could shed light on the nature of single and zeroth copies for

such spacetimes.
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Since fluid-gravity duality itself can be understood from an AdS-CFT perspective

(including the cutoff-prescription formulation, whose relationship to AdS-CFT was

first understood in Brattan et al. (2011)), we hope the mapping here from fluid

solutions to gravities and then through the double copy prescription to gauge theories

(and scalars) can provide perspective both regarding the relationship of the double

copy prescription to AdS-CFT duality, and also the understanding of fluid-gravity

duality itself, including a deeper understanding of fluids as in Haehl et al. (2016).
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Chapter 6

CONCLUSIONS

In this dissertation I have explored aspects of three sets of dualities, the gauge/gravity

duality, color-kinematics duality or the double-copy paradigm and the fluid-gravity

duality. The overarching theme has been the mapping of symmetries in classical and

quantum field theories onto gravitational theories.

To summarize our results, first the Fermi-surface structure for gravitational the-

ories with spatial modulation was examined. We considered the Einstein-Maxwell-

Chern-Simons theory with a Dilaton and found that such gravitational models admit

a rich phase space structure which depends upon the background geometry. We also

observed Fermi shells in a subset of the cases that we considered.

The second set of dualities considered involved the application of the double-copy

paradigm using the Weyl spinor to evaluate spin-1 representations of fluids space-

times. We find that constant vorticity fluids and irrotational fluid velocity fields can

be each distinctly identified with Petrov type-D and type-N spacetimes respectively.

We also find that for type-D spacetimes, with a suitable gauge choice it is possible

to identify the velocity fields with the gauge field itself. Finally one finds that the

associated magnetic field is proportional to the vorticity of the fluid. For the irrota-

tional potential flows we find that a large class of fluid solutions can be mapped on

to the Weyl spinor. The coefficient of proportionality of the Weyl spinor (the Weyl

scalar Ψ4) can be identified as a Laurent series in z̄ = x− iy, where x and y are the
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coordinates on the hypersurface upon which the fluid lives.

Below I briefly discuss potential future directions associated with the research

presented in this thesis.

6.1 Spatially Modulated Phases and the Membrane Paradigm

A very natural extension of the work in chapter 3 involves the use of the membrane

paradigm and its applications in the context of holographic condensed matter physics.

For instance [Donos and Gauntlett (2015),Guo et al. (2018)]] solve Navier-Stokes

equations for incompressible charged fluids on horizons to obtain DC thermoelectric

conductivities. Spatially modulated phases can also be obtained in holography by

obtaining a striped order on the horizons of black-holes in asymptotically AdS space-

times with appropriate matter fields Donos and Gauntlett (2011).

Such approaches might provide additional tools to study Fermi surface structures

for gravitational duals of spatially modulated phases. In general there are a large set

of holographic models that could be revisited using such approaches.

6.2 The Single Copy of General Fluids.

In chapter 5 we constructed a single copy for the fluids metric. However we were

able to do so when the fluid was either distinctly a potential flow i.e. irrotational

or when it carried a constant vorticity. However this does not represent all possible

types of velocities fluids can carry. It is an interesting question to consider whether it

is possible to obtain a single copy for more general fluids that are described by type

II spacetimes.
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Asking such a question would incidently also provide clues towards the construc-

tion of a more general Weyl double-copy for type-II spacetimes. With regards to

type-II spacetimes the Weyl spinor has the form,

CABCD = 6Ψ2 o(AιBoCιD) + Ψ4ιAιBιCιD
?= 1
S
f

(1)
(ABf

(2)
CD), (6.1)

where we ask if it is possible to find spinors f (i)
AB whose associated tensors satisfy

Maxwell’s equations. The forms of the associated spinors f iAB based on the above

would be,

f
(1)
AB = B

(
i
√

6Ψ2 o(AιB) +
√

Ψ4oAoB

)
f

(2)
AB = S

B

(
−i
√

6Ψ2 o(AιB) +
√

Ψ4oAoB

)
,

(6.2)

where B is some undetermined function and S refers to the scalar function in the

double-copy. The difficulty in the task is with the requirement that the spinors f (i)
AB

be consistent with Maxwell’s equations. To this end it is tantalizing to note that the

Weyl scalars Ψ2 and Ψ4 can be expressed compactly in terms of a general fluid stream

function χ and the complex coordinate z ≡ x− iy as,

Ψ2 = i∂z∂z̄χ Ψ4 = 2i∂z̄∂z̄χ (6.3)

where the stream function χ gives the fluid velocities vi = ϵij∂jχ.

6.3 Concluding Remarks

The fluid-gravity program and more generally the membrane paradigm have been

useful in providing insights on the behavior of black hole horizons. The double copy

paradigm, on the other hand, in addition to providing useful insights has also been

useful for the computation of gravitational waves associated with black-hole mergers.

A union of the two concepts is thus a natural choice and will likely continue to be a

program that yields significant physical insights.
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The AdS/CM program has motivations that are very similar to the initial reasons

that lead Ginzburg, Landau and others towards identifying a theory of phase tran-

sitions for superconductors — in that one follows the symmetries and try to write

effective actions that capture the dynamics of these symmetries. Future work in this

direction is likely to not only provide gravitational models for strongly interacting

systems but more generally also give insights on the nature of gauge/gravity dualities

and the constraints associated with their applicability for physical systems.
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SPINOR FORMALISM
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In our notation, spacetime indices are given by {µ, ν, γ, ...}, frame indices by
{a, b, c, ...} and the spinor indices as {A,B,C, ...} with their conjugates {Ȧ, Ḃ, Ċ, ...}.
The essential objects that translate between the spinor and tensor formalisms are the
Pauli 4-vectors

σaAȦ = 1√
2

(
1, σ⃗

)
AȦ
, σ⃗ = (σx, σy, σz). (A.1)

The σ⃗ are the standard SU(2) generators,

σx =
(0 1

1 0

)
, σy =

(0 −i
i 0

)
, σz =

(1 0
0 −1

)
. (A.2)

A spacetime vector is obtained from a frame vector by Vµ = e a
µ Va, where the

e a
µ are vierbeins that construct the full metric as gµν = e a

µ e
b
ν ηab. Here, ηab = ηab =

diag(-1, 1, 1, 1). The frame indices are raised and lowered with the diagonal Minkowski
space ηab, while spinor indices are raised and lowered with a Levi-Civita symbol, which
we define as

εAB = −εAB =
( 0 1

-1 0

)
. (A.3)

A vector can be written in spinor indices or in frame indices using (A.1);

VAȦ = Vaσ
a
AȦ, ⇔ Va = σaAȦV

AȦ, (A.4)

where σaAȦ = ηabσ
b
AȦ

and V AȦ = εABVBḂε
ḂȦ. The (inverse) vierbein constructs

the Pauli 4-vector in spacetime indices σµ
AȦ

= eµaσ
a
AȦ

which, with its inverse σAȦµ =
gµνε

ABσν
BḂ
εḂȦ, satisfies

σµ
AȦ
σAȦν = δµν , σµ

AȦ
σBḂµ = δBAδ

Ḃ
Ȧ . (A.5)

Any tensor can be written as its spinor counterpart using the index doubling proce-
dure. The Weyl tensor Wµνλγ becomes

Wµνλγ → WAȦBḂCĊDḊ = CABCDεȦḂεĊḊ + C̄ȦḂĊḊεABεCD, (A.6)

where the CABCD and C̄ȦḂĊḊ are symmetric in their indices and related by complex
conjugation. The object1

σµνAB = σ
[µ
AĊ
σ̄ν] ĊCεCB, with σ̄µAȦ = eµaσ̄

aȦA, σ̄aȦA = 1√
2

(
1,−σ⃗

)ȦA
(A.7)

serves to directly obtain the spinor form of a given tensor. For the Weyl spinor,

CABCD = 1
4
Wµνλγσ

µν
ABσ

λγ
CD. (A.8)

1Brackets denote antisymmetrization, and we use the convention [A, B] = AB − BA.
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For the field strength tensor Fµν , we write

Fµν → FAȦBḂ = fABεȦḂ + f̄ȦḂεAB, (A.9)

where the spinor field strength can be computed as

fAB = 1
2
Fµνσ

(0)µν
AB , (A.10)

which is also symmetric in its spinor indices. In the above expression, the zero
superscript is meant to remind that since Fµν lives on flat space, the vierbein that’s
used to construct the σµ

AȦ
in (A.10) is that which constructs the flat space,

σ
(0)µ
AȦ

= e(0)µ
a σ

a
AȦ, e(0)a

µ e(0)b
ν ηab = g(0)

µν . (A.11)

For example in section 5.5.1, g(0)
µν is Rindler space (5.51) and the e(0)a

µ are (5.52). The
vierbeins that are used to build σµνAB in (A.8) instead construct the full spacetime.
For conciseness we will drop the 0-superscript in what follows.

To invert (A.10), it is tedious though straightforward to show

F µν − i

2
εµναβ√

−g
Fαβ = σµAḊfABε

BDσ̄νḊD, (A.12)

where g = detgµν . F µν can be obtained directly by adding the complex conjugate of
the right hand side in (A.12), yielding

F µν = 1
2

σµAḊfABεBDσ̄νḊD + σ∗µȦDf̄ȦḂε
ḂḊσ̄∗ν

DḊ

. (A.13)

For the second term in (A.13), the σ∗ denotes standard complex conjugation, i.e.

σ∗a
ȦA = 1√

2

(
1, σx,−σy, σz

)
ȦA
. (A.14)
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We now briefly describe the Newman-Penrose (NP) formalism which we use to
compute geometric quantities of interest such as the Weyl spinor. The NP formal-
ism utilizes spinor language in order to simplify computations (Penrose and Rindler
(2011),Penrose and Rindler (1988),Stephani et al. (2003)). There primarily are four
sets of objects of interest for us in the NP formalism. Briefly, one rewrites the metric
in terms of a tetrad set, this tetrad set then is used to compute spin coefficients1,

gµν = −l(µnν) +m(µmν). (B.1)

Bilinears of the spin coefficients then give the set of Weyl scalars {Ψ0,Ψ1,Ψ2,Ψ3,Ψ4, },

Ψ0 = Dσ − δκ− (ρ+ ρ̄+ 3ε+ ε̄)σ + (τ − π̄ + ᾱ + 3β)κ
Ψ1 = Dβ − δε− (α + π)σ − (ρ̄− ε̄)β + (µ+ γ)κ+ (ᾱ− π̄)ε
Ψ2 = Dµ− δπ + (ε+ ε̄− ρ̄)µ+ (ᾱ− β − π̄)π + νκ− σλ−R/12
Ψ3 = δ̄γ − ∆α + (ρ+ ε)ν − (τ + β)λ+ (γ̄ − µ̄)α + (β̄ − τ̄)γ
Ψ4 = δ̄ν − ∆λ− (µ+ µ̄+ 3γ − γ̄)λ+ (3α + β̄ + π − τ̄)ν,

(B.2)

where the following are directional derivatives,

D = lµ∇µ, ∆ = nµ∇µ, δ = mµ∇µ, δ̄ = m̄µ∇µ. (B.3)

Finally in terms of these Weyl scalars one can rewrite the Weyl Spinor.

CABCD = Ψ0ιAιBιCιD−4Ψ1o(AιBιCιD)+6Ψ2o(AoBιCιD)−4Ψ3o(AoBoCιD)+Ψ4oAoBoCoD
(B.4)

Finally in order to test the algebraic speciality of the spacetime we compute tetrad
invariant combinations of the Weyl scalars; the equation below is equivalent to (5.27)
in the main text as included here for completeness:

I ≡ Ψ0Ψ4 − 4Ψ1Ψ3 + 3Ψ2
2,

J ≡

∣∣∣∣∣∣
Ψ4 Ψ3 Ψ2
Ψ3 Ψ2 Ψ1
Ψ2 Ψ1 Ψ0

∣∣∣∣∣∣ ,
K ≡ Ψ1Ψ2

4 − 3Ψ4Ψ3Ψ2 + 2Ψ3
3,

L ≡ Ψ2Ψ4 − Ψ2
3,

N ≡ 12L2 − Ψ2
4I.

(B.5)

The spinors oA, ιA are related to the frame metric choice one makes. We will make
explicit this connection now. The metric written in terms of vierbiens has the form,

gµν = e aµ e
b
ν ηab where ηab = diag{−1, 1, 1, 1}. (B.6)

1We utilize the method outlined in Cocke (1989) to obtain spin-coefficients, this approach comes
with the computational benefit of replacing certain covariant derivatives with partial derivatives)
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The frame metric ηab can itself be written as outer products of a tetrad set, this will
allow us to make identifications between the vierbiens and the tetrad set.

ηab = −l̂(an̂b) + m̂(am̂b)

=⇒ gµν = e aµ e
b
ν (−l̂(an̂b) + m̂(am̂b))

=⇒ gµν = −l(µnν) +m(µmν)

(B.7)

Where in the last step we have made the identifications,

e aµ l̂a = lµ e aµ n̂a = nµ e aµ m̂a = mµ e aµ m̂a = mµ (B.8)

Now the tetrad set that reproduces the Minkowski frame metric is,

l̂a = 1√
2

{1,−1, 0, 0}

n̂a = 1√
2

{1, 1, 0, 0}

m̂a = 1√
2

{0, 0, i, 1}

m̂a = 1√
2

{0, 0,−i, 1}

(B.9)

The expression B.8 can be inverted to go from tetrads to vierbiens via the following,

e 0
µ = 1√

2
(lµ + nµ) e 1

µ = 1√
2

(lµ − nµ)

e 2
µ = i√

2
(m̄µ −mµ) e 3

µ = 1√
2

(mµ + m̄µ)
(B.10)

In order to obtain the spinors we write these four vectors in an SL(2,C) repre-
sentation by contracting them with relevant σ matrices. Note in our conventions we
have σa

AȦ
= {I, σ⃗}, while the curved space equivalents can be obtained by contracting

these with vierbiens (i.e. σµ
AȦ

= eµa σ
a
AȦ

). For eg., for {oA, ιA} we have,

oAoȦ ≡ l̂a σ
a
AȦ = 1

2

(1 1
1 1

)
=⇒ oA = 1√

2
{1, 1}

ιAιȦ ≡ n̂a σ
a
AȦ = 1

2

( 1 −1
−1 1

)
=⇒ ιA = 1√

2
{1,−1}

(B.11)

Further noting that one can transform from SL(2,C) left to right by complex
conjugation we use the convention,

(oA)∗ ≡ oȦ (B.12)
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This further verifies that the two remaining contractions will hold the following rela-
tions correctly,

m̂a σ
a
AȦ = 1

2

( 1 1
−1 −1

)
= ιAoȦ

m̂a σ
a
AȦ = 1

2

(1 −1
1 −1

)
= oAιȦ

(B.13)
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In the hydrodynamic limit as discussed in section 2 in the body of the paper, the
velocities and the pressure must satisfy the scaling (5.4), where i runs over x and y,
the spacelike coordinates on the cutoff surface r = rc. We can make this scaling of
derivatives explicit by making the following identifications to simplify keeping track
of the ϵ orders:

vi → vi,ϵ ≡ vi(ϵ2τ, ϵxi), P → Pϵ ≡ P (ϵ2τ, ϵxi). (C.1)

With these identifications having been established we can now write out the tetrad
set we use for the computation in the hydrodynamic expansion:

lµ =
{

−
√
r√
2
, 0, 0, 0

}

+ ϵ2

−
√
r
(
4rcPϵ + (3r − 2rc)

(
v2
x,ϵ + v2

y,ϵ

))
4
√

2r2
c

,

√
r
(
v2
x,ϵ + v2

y,ϵ

)
2
√

2r2
c

, 0, 0

+ O(ϵ3);

nµ =

−
√
r

2
,

√
2
r
, 0, 0

+ ϵ2

−
(r − 2rc)

(
4rcPϵ + r

(
v2
x,ϵ + v2

y,ϵ

))
4r2

c

√
2r

, 0, 0, 0

+ O(ϵ3);

mµ =
{

0, 0,− i√
2
,

1√
2

}
+ ϵ2

{
0, 0,

i(r − rc)v2
x,ϵ

2
√

2r2
c

,
i(r − rc)vy,ϵ (2vx,ϵ + ivy,ϵ)

2
√

2r2
c

}
+ O(ϵ3);

m̄µ = m∗
µ.

(C.2)
The mathematical equivalence between the hydrodynamic expansion and the near

horizon expansion involves a rescaling of the metric as was shown in Bredberg et al.
(2012). In computations we present in the near horizon expansion, we utilize the
expansion parameter λ ≡ ϵ2

rc
. Because the λ expansion has reorganized the series, we

write below the tetrad set used for the near horizon computation, in particular for
the type D or rotational velocity and pressure profiles in (5.48). Note that in this
expansion, the coordinates we work with are rescaled to be really x̂ and ŷ; for clarity
in the expressions below we have dropped the hats.
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The near horizon tetrad we use for the fluid metric dual to (5.48) is

lµ =
{

1√
2
, 0, 0, 0

}
+ λ

{
3rω2 (x2 + y2)

4
√

2
, 0, 0, 0

}
+ λ2

{
0,−ω2 (x2 + y2)

2
√

2
, 0, 0

}

+ λ3
{

9r (r2 − 4)ω6 (x2 + y2)3

64
√

2
,−rω4 (x2 + y2)2

2
√

2
, 0, 0

}
+ O(λ4);

nµ = λ−1
{
r√
2
, 0, 0, 0

}
+
{

−((r − 2)r + 2)ω2 (x2 + y2)
2
√

2
,−

√
2,−ryω√

2
,
rxω√

2

}

+ λ

{
3rω4 (x2 + y2)2

4
√

2
,
rω2 (x2 + y2)√

2
,−(r − 1) (4qx + (r − 2)yω3 (x2 + y2))

2
√

2
,

(r − 1) ((r − 2)xω3 (x2 + y2) − 4qy)
2
√

2

}

+ λ2
{

0,
ω
(
2(r − 2)yg(2)

rx − 2(r − 2)xg(2)
ry + 3(r − 1)ω3 (x2 + y2)2)

2
√

2
,

ω
(
4(r−2)yg(2)

xx + (r−1)ω (x2 + y2) (12rqx + (r−1)yω3 (4(r + 1)x2 + (5r + 2)y2))
)

8
√

2
,

−
ω
(
4(r−2)xg(2)

yy + (r−1)ω (x2 + y2) ((r−1)xω3 ((5r + 2)x2 + 6ry2) − 12rqy)
)

8
√

2

}
+ O(λ3);

mµ =
{

−(r − 2)ω(x− iy)
2
√

2
, 0, i√

2
,

1√
2

}

+ λ

{
3r2ω3(x− iy) (x2 + y2)

8
√

2
,
ω(x− iy)√

2
,
(r − 1)yω2(x− iy)

2
√

2
,

− (r − 1)xω2(x− iy)
2
√

2

}

+ λ2
{

0,
4ig(2)

rx + 4g(2)
ry + (r − 2)ω3(x− iy)2(x+ iy)

4
√

2
,

4ig(2)
xx + (r − 1)2yω4 (2x3 − ix2y + 2xy2 − iy3)

8
√

2
,
4g(2)

yy − (r − 1)2x2ω4 (x2 + y2)
8
√

2

}
+ O(λ3);

m̄µ = m∗
µ.

(C.3)
In the above expressions, the functions qi and g(2)

ij refer to higher order terms necessary
in the λ expansion to ensure that Einstein’s equations are appropriately satisfied, as
in Bredberg et al. (2012). These functions do not appear in the lowest order Petrov
invariants. Note that this tetrad has been chosen to ensure that Ψ2 is the only nonzero
ΨI ; the invariants (B.5) do not change under tetrad rotations, but the explicit form
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of the CABCD in terms of ι and o does change. For simplicity, we thus choose a tetrad
which preserves (5.49).
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In this section we quantify the consequences of having the fluids metric accurate
at the most upto and including O(ϵ2) in the hydrodynamic expansion and similarly
to only having an explicit form for the metric in the near horizon expansion till O(λ).
We will provide a detailed discussion of the ϵ expansion here.

Based on the accuracies of the tetrad eq. (C.2)1, we have the following non van-
ishing orders for the spin-coefficients.

ϵ0 ϵ1 ϵ2 ϵ3 ϵ4 ϵ5

κ ✓ ✓
σ ✓ ✓
ρ ✓ ✓
τ ✓ ✓ ✓
ν ✓ ✓
µ ✓ ✓
λ ✓ ✓
π ✓ ✓
ε ✓ ✓ ✓
β ✓ ✓ ✓
γ ✓ ✓ ✓
α ✓ ✓ ✓

Table D.1: Nonzero ϵ-Orders For Spin Coefficients.

We’ve colored the higher order ϵ in red because we do not trust the validity of the
calculation past O(ϵ2).

We next want to use the NP-equations to compute the Weyl scalars Ψi’s:

Ψ0 = Dσ − δκ− (ρ+ ρ̄+ 3ε+ ε̄)σ + (τ − π̄ + ᾱ + 3β)κ
Ψ1 = Dβ − δε− (α + π)σ − (ρ̄− ε̄)β + (µ+ γ)κ+ (ᾱ− π̄)ε
Ψ2 = Dµ− δπ + (ε+ ε̄− ρ̄)µ+ (ᾱ− β − π̄)π + νκ− σλ−R/12
Ψ3 = δ̄γ − ∆α + (ρ+ ε)ν − (τ + β)λ+ (γ̄ − µ̄)α + (β̄ − τ̄)γ
Ψ4 = δ̄ν − ∆λ− (µ+ µ̄+ 3γ − γ̄)λ+ (3α + β̄ + π − τ̄)ν

(D.1)

R is the Ricci scalar2. Even though we have the spin coefficients confidently to O(ϵ2),
it’s important to look carefully at the ϵ-order we can keep for the Weyl scalars.

1Note that in these computations for the spin-coefficients we have interchanged l ↔ n. This
follows from the chronology of our computations, a significant part of the computation was obtaining
suitable a tetrad set. The results however are presented for the correct tetrad and involve simply
interchanging Ψ0 ↔ Ψ4 and Ψ1 ↔ Ψ3

2We know the first nonzero order for R is at O(ϵ4) from the Einstein equations.
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Lowest contribution of tetrad error to scalars ϵk;k=
Ψ0 (3ϵ+ ϵ̄)σ 3
Ψ1 γκ; ϵ(ᾱ− π̄) 3
Ψ2 (ϵ+ ϵ̄)µ 3
Ψ3 ϵν; (β̄ − τ̄)γ 3
Ψ4 (3γ − γ̄)λ 3

Given that Ψ4 is 0 with this choice of tetrads we will need to interchange Ψ0 and
Ψ4 and Ψ1 and Ψ3, in order to follow the classification scheme provided in Stephani
et al. (2003). Explicitly then we find that the Weyl scalars have the form,

A quick inspection of the terms above in D.1 reveals that the Weyl scalars are
sensible only upto and excluding O(ϵ3), stated equivalently the first ϵ order when an
error to the scalars shows up is O(ϵ3). Using these we can quantify the errors in our
Weyl scalars,

ϵ0 ϵ1 ϵ2 ϵ3 ϵ4 ϵ5

Ψ0 ✓
Ψ1 ✓ ✓
Ψ2 ✓ ✓
Ψ3 ✓ ✓
Ψ4 ✓ ✓

Table D.2: Nonzero ϵ-Orders For Weyl Scalars.

As stated in chapter 5 this provides us with the following Weyl scalars,
Ψ0 = 0 +O(ϵ3)
Ψ1 = 0 +O(ϵ3)

Ψ2 = −iϵ2

4rc
(∂xvy − ∂yvx) +O(ϵ3)

Ψ3 = 0 +O(ϵ3)

Ψ4 = − ϵ2

2r
(∂xvx − ∂yvy + i(∂xvy + ∂yvx)) +O(ϵ3)

(D.2)

By trusting terms only to and including O(ϵ2) for the Weyl scalars, we can deduce
the following:

I ∼ O(ϵ4) =⇒ I3 ∼ O(ϵ12)
J ∼ O(ϵ6) =⇒ J2 ∼ O(ϵ12)
K ∼ O(ϵ6)
L ∼ O(ϵ4) =⇒ L2 ∼ O(ϵ8)
N ∼ O(ϵ8)

(D.3)

Further, given that the Ricci scalar shows up at order ϵ4 onwards, the contribution
of the Ricci scalar to the invariants will only show up at O(ϵ8) for I and O(ϵ12) for J.
The invariants I and J are of the form,
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I = 3
[
ϵ2 i

(
∂xvy
4rc

− ∂yvx
4rc

)]2

+O(ϵ5)

J =
[
ϵ2 i

(
∂xvy
4rc

− ∂yvx
4rc

)]3

+O(ϵ7)

=⇒ I3 − 27J2 = 0 +O(ϵ13)

(D.4)

Similar computations can be performed for the near-horizon λ expansion. The
above process allows us to quantify the extent to which we know that our space-time
is algebraically special. That is not to say that it won’t maintain algebraic specialty
beyond this order, however our metric would need additional pieces in order for such
conditions to be accurately met.
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The results presented in this document constitute work published by the author in
the Journal Of High Energy Physics titled “Spectral weight in Chern-Simons theory
with symmetry breaking” by V.L Martin and the author and “From Navier-Stokes to
Maxwell, via Einstein” by C. Keeler and T. Manton and the author. The author has
permission from all co-authors to include the material in this document. Note that
the Journal Of High Energy Physics has alphabetized authorship by last name, the
work presented here has significant or dominant contributions from the author.
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