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ABSTRACT

Neuron models that behave like their biological counterparts are essential for

computational neuroscience. Reduced neuron models, which abstract away biological

mechanisms in the interest of speed and interpretability, have received much attention

due to their utility in large scale simulations of the brain, but little care has been

taken to ensure that these models exhibit behaviors that closely resemble real neurons.

In order to improve the verisimilitude of these reduced neuron models, I developed an

optimizer that uses genetic algorithms to align model behaviors with those observed

in experiments. I verified that this optimizer was able to recover model parameters

given only observed physiological data; however, I also found that reduced models

nonetheless had limited ability to reproduce all observed behaviors, and that this

varied by cell type and desired behavior. These challenges can partly be surmounted

by carefully designing the set of physiological features that guide the optimization.

In summary, we found evidence that reduced neuron model optimization had the

potential to produce reduced neuron models for only a limited range of neuron types.
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Chapter 1

INTRODUCTION

1.1 Why Model the Brain?

Diseases of the brain are very widespread and cost world governments a significant

amount of money (Di Luca et al., 2018). The 2015 Global Burden of Disease study

estimates that about a third of the population worldwide is affected by mental or

neurological disorders across their lifespans. Disorders of the brain rank among the

leading causes of ill-health and disability and account for 35% of Europe’s total disease

burden with a yearly cost of 800 billion euros, of which 60% are related to direct

health care and non-medical costs (Di Luca et al., 2018).

1.1.1 Computational Models

In addition to producing actions and goal directed behaviors, the mammal nervous

system filters and processes signals in steps that are increasingly understood at

mechanical and algorithmric levels (Marr and Poggio, 1976). The recent success of

“deep-neural networks" and “recurrent neural networks" is due in part to the simple

application of rudimentary neural design principles to networks of computational units.

Innovations in artificial intelligence (AI) have been achieved by recapitulating just a

few such algorithms observed in the brain. For example, artificial neural networks

trained to navigate a landscape spontaneously exhibit the emergence of nodes (cell
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analogues) exhibiting the same behavior as so-called “grid" and “place" cells that

encode spatial location in mammalian brains (Banino et al., 2018).

However, further progress in both human health and artificial intelligence (AI) is

likely to require a greater understanding of how the brain actually works. Biophysically

realistic computational models of neurons and neural circuits have emerged as useful

tools to elucidate brain function in health and disease. Developing and testing these

models may be required to give programmers and engineers insight into the neural

principles that underlie human learning and reasoning, so that these principles can

be implemented in an electronic substrate. Because improvements in AI directly

contribute to improvements in robotics, and because computers and robots can

perform some unsafe and repetitive tasks with high precision, substantial gains in

global economic productivity are at stake. AI may also help to push the frontier

of scientific research itself. Our medical understanding of the brain and digital

implementations of brain algorithms would likely improve if existing models for neuron

and neural circuits were more tractable, both conceptually and computationally.

In this thesis, I describe and document tools I developed that improve the speed

and accuracy of some classes of neural models. The speed improvements come from the

implementation of a low-level model simulation, largely relying on existing research. I

also identify and exploit some opportunities for faster model dispatch and simulation.

The accuracy improvements, which constitute most of the novelty here, derive from

application of optimization techniques to improve the agreement between models and

corresponding “wet lab" experiments in neurons. By improving single cell models,

these tools will also serve as a basis for improved neural circuit models, of which many

neuron types are among the components. Since network models many consist of many

thousands (or more) of cell models, both speed and accuracy are essential.
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1.1.2 Simulation as an Experimental Platform

The human brain is inaccessible to many experiments for technical and ethical

reasons. Neuroscience relies instead on “model systems" for understanding the human

brain. One such model system is the animal model (of which there are many), chosen

due to biological similarities to the organization of the human brain, and the relatively

smaller ethical issues associated with experimentation. However, animal models have

limitations which can make them scientifically unfavorable Animal models often involve

years of investment, genetic engineering, complex surgery, or complicated behavioral

learning paradigms. Many things can go wrong while developing an assay, potentially

ruining a costly experiment, and diminishing years of work. Furthermore, experiments

are still limited by technology; arbitrary control of neural activity is generally not

tractable. Therefore causality and identifiability are still major issues.

For example, in a rodent model of Alzheimer’s disease, it is possible to investigate

rodent behavior for Alzheimer’s symptoms, and to attempt to identify associated

changes in physiology, such as changes in cell-specific firing rates or circuit dynamics.

However, the density of placement of recording electrode arrays is very limited, and

so the read out of brain activity from electrode arrays is sparse. Immune reactivity

and glial scarring may undermine the fidelity of the underlying system, and make

such recordings more difficult. In in vitro recordings, recorded cells are susceptible to

“run-down" (Colquhoun, 1994), where the membrane of the recorded neuron membrane

its ionic complement changes too much from its in vivo conditions. Cell run-down

creates a small time window for learning about cells in animal experiments, fortunately,

cell-run down is obviously not a problem for in-silico models.

In-silico model systems, e.g. computational models represent an alternative
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approach. Rather than simply thinking of computational models as systems of

differential equations used to describe and represent the biological processes under

investigation, we can think of them as experimental platforms. Much detail will

inevitably lost, and a main assumption is that the important features of the biological

processes are reflected in electrical activity, e.g. changes in membrane potential, and

that other details abstracted out of the model, for example long-term changes to

genes and protein expression, are not essential to understand the problem at hand.

This assumption may be reasonable for investigations of short-time scale phenomenon

(e.g. instantaneous responses to stimuli) but not longer-time scales (e.g: glial cell

re-organisation associated with learning new skills (Draganski and May, 2008)).

However, all model systems are imperfect; the in vitro brain slice is not an in vivo

brain, and lacks many putatively important features of a real brain, such as long-range

connectivity or even complete axonal or dendritic trees. The limitations expressed

in the paragraph above may limit measurement quality. Ultimately, the question is

whether results from the model system will translate to the biological system, and how

and whether a good simulation platform can outperform an in vitro animal model

system is an open question. To achieve this, it is likely that the simulation platform

will need to utilize model components as faithful to the biological system as possible,

and thus it is important that reduced neural models are the most faithful to the cell

behavior they represent.

1.2 Why Model Neurons?

The idea that neurons are the fundamental computational units of the brain dates

to the 19th century (Shepherd, 2015; Jones, 1999). A large fraction of computational
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models have thus included the neuron, at some level of abstraction. Conventionally,

each neuron has been regarded as an independent generator of events (e.g. synaptic

conductance’s or currents in postsynaptic neurons) and selective receiver of the same

events, these inputs summed in some fashion across time and space.

Although cortical neurons have many interconnections (Ball et al., 2014), these

connections themselves are plastic, changing with development and learning. In

contrast, the dynamics of the neurons themselves are typically considered less variable

over most relevant timescales, i.e. the parameters of the underlying equations may be

fixed. Consequently the rules governing these neurons are assumed to be static over

short time-scales. whicat the center of modeling efforts, and letting only synapses

change over time, one can still model a large number of relevant neuroscience problems.

But just because the modeled neurons can be approximated with static rules does not

mean they should be considered monolithic: there are many thousands of different

classes of neurons, each with its own idiosyncratic dynamics and connectivity. And

many such classes might be essential for the generation of even simple behaviors.

Therefore understanding the brain may require the ability to accurately model not

just neurons per se, but many kinds of neurons.

Alternatively, one could model subcellular processes to get an even more accurate

picture of biology than is obtained from considering the neuron as the basic unit of

the brain. However, this approach greatly increases computational complexity and is

even more limited by the availability of experimental data (or theory). It is an open

question whether such detail improves the predictive or explanatory accuracy of models

anyway. Simplifying assumptions are often needed in modeling, and the simplifying

assumption that I choose here is to abstract away these subcellular processes into a
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small number of state equations that describe observable physiology at the whole cell

level.

One could also model above the level of neurons, by creating mean-field and

population models of brain tissue. However, this makes it difficult to understand

intra-circuit computations occurring in local circuits, or to understand how a change

to e.g. a single conductance might affect a behavior. Some also argue that spiking

is necessary to reproduce some kinds of population dynamics, especially those that

evade intuitive understanding. And model-as-simulation-platform is less compelling if

the outcomes of the simulations are obvious in advance.

In AI, spiking neural networks are useful for distinguishing sequential features

in temporal signals. Spiking and temporal feature discrimination are necessary for

"online-learning". In online-learning, neural networks are constantly being remodeled

in response to constant and changing signals from the environment

1.2.1 Conductance-based Models

Conductance-based models are mathematical representations of the electrical

and chemical behavior of semi-permeable neuronal membranes. The phospho-lipid

membrane of neurons, otherwise a insulative capacitor, contains a variety of conductive

pores (ion channels), each permitting the passage of specific ions at specific rates. These

rates are determined by free energy gradients, jointly determined by transmembrane

ionic concentration gradients (entropy) and on the transmembrane voltage changes

adjacent to the channel (potential energy). Conductance-based models use ordinary

differential equations to represent the balance of currents and the kinetics for the gating

of the channels, where these models differ in their representation of cell geometry.
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Some conductance-based models represent an isoelectric patch of membrane (in this

case the model is abstract and dispenses with the notion of space in nervous tissue).

When the spatial aspects of the electrical properties of a neuron are of interest,

conductance based models can be combined with a multi-compartment framework

where the geometry of the neuron is "modelled", but it is approximated using coupled

compartments that create systems of branching patterns (Rall, 1962; Hodgkin and

Huxley, 1952).

Rall (1962) took the numerical methods used for modelling heat and electrical

conductance in cables and showed that similar equations could be used to accurately

predict current flow in a cable representing a neuron dendrite or axon. This cable

equation forms the basis for the electrical properties in the multi-compartment ap-

proach.

In the context of modelling realistic morphologies, conductance based, multicompart-

ment models are typically slow to solve because they contain many (tens or more)

coupled differential equations which must be solved at every discrete location across

the neuron. These locations (segments or compartments) may have unique param-

eters, which are as simple as segment diameter (corresponding to e.g. tapering of

dendrites) or as complex as distance-dependent changes in the distribution of specific

ionic conductances. Many of these fine structural variations are incorporated into

biophysically-detailed brain models. Because the geometric structure of the morphol-

ogy affects the neural firing dynamics, even a generic set of principles may result in

distinct dynamics across different realizations of the same class of neuron. Clearly,

there multicompartment modeling brings a large cost in simulation performance and

in generalizability.
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1.2.2 Reduced Models

Conductance-based models can be complex–both conceptually through implemen-

tation details and in computational demands–so it is common to employ a variety

of simplifications that retain the general input/output behavior of the full model.

These “reduced models" ignore the precise neuron biophysics, usually retaining only

the medium-time-scale (milliseconds to tens of milliseconds) dynamics, by assuming

that anything faster occurs instantaneously and anything slower can be ignored. The

3D structure of biological cells is reduced to a point onto which currents impinge and

voltages evolve over time. There is a great diversity of biological neurons, all of which

differ substantially in their electrical behavior (Quadrato et al., 2017). There are a

few different classes of general purpose neuronal models that can reproduce these

different types of electrical behaviours, given appropriate parameterizations of the

models. A selection of key reduced models is described below.

1.2.3 Adaptive Exponential Integrate and Fire Model

The Adaptive Exponential (AdExp) IF model (Brette and Gerstner, 2005), is

another type of reduced neural model The AdExp model is a special instance of leaky

integrate and Fire model. The AdEx model most often appears with an exponential

spike shape. For a full derivation of the adaptive exponential model see the publication:

Brette and Gerstner (2005) This model’s instantaneous spiking rate is calculated by

consulting the recent spike history in a time “window". Adaptation is achieved by

looking back into the window and counting the number of spikes that occurred in
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the previous 10ms, for example, the instantaneous value of firing frequency is able to

reflect adaptation or slowing of firing frequency as observed in-vitro.

1.2.3.1 Izhikevich Model

One existing family of neuron models, often referred to as the Izhikevich model

(Izhikevich, 2003), was published with parameter sets believed to produce model

outputs that accurately align with a variety of outputs from experimentally derived

neuron data. Is it possible to choose parameters for the Izhikevich model that allow the

electrophysiological behavior of any neuron to be capture?. The original formulation

of that model involves the integration of a quadratic function. For the derivation of

the Izhikevich equation see the publication: Izhikevich (2003)

An alternative, more versatile implementation (which is used here) includes addi-

tional parameters. The additional parameters allows the coefficients in the quadratic

to vary.

The Izhikevich model and the AdEx model are both related to simple Integrate

and Fire model. The Izhikevich model accounts for the change in membrane potential,

dVM
dt

, in response to and externally supplied current (e.g. from a patch pipette or a

synaptic current), the membrane capacitance, and internal cellular mechanisms that

are abstracted away. dVM
dt

in the Izhikevich model is quadratic in V , in contrast to the

GLIF and the AdExp models which are exponential in V .

Typically, a network simulation is only as fast as the slowest neuron model that is

part of the network, since the next updated state of the network may depend on that

neuron. Consequently, replacing biophysically detailed models with the reduced models

described above may be required to complete simulations in a reasonable amount
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of time. However, the accuracy of these models in representing neuron behavior is

also paramount. Yet there are no reports of large numbers of reduced models with

demonstrated agreement with many characteristics of experimental data.

Because multi-compartment conductance models represent more details about the

biophysical properties of the membrane, it is tempting to think that this modelling

paradigm is likely to produce models that maximally agree with data, however, newer

generations of simpler models such as the GLIF model, may actually be better at

recapitulating some experimental measurements (Meunier and Segev, 2002).

1.2.4 Simulation of Reduced Models

Although this class of model is in principle potentially fast due to the limited

number of equations and state variables, python implementations of it are typically

slow due to code that was written to make running populations of many neurons fast,

at the expense of running single neurons.

1.3 Parameter Fitting and Model Optimization

Model parameters dictate model behavior, but many parameters either (a) cannot

be easily measured in experiments for technical reasons or (b) don’t correspond to any

measurable quantity. As an example of the latter, consider any “emergent behavior"

with observables that do not map directly onto any specific model parameter. In the

transition from conductance-based models to reduced models, the number of unknown

parameters of form (b) increase relative to those of form (a). In either case, these

unknown parameter values make specification of realistic models difficult.
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One strategy for inferring model parameters, sometimes called “parameter-fitting",

is to identify those parameter values which produce model simulation data which agree

(according to some criteria) with corresponding observable experimental measurements.

For example, a common approach for approximating unknown ion channel densities is

to ‘optimize’ or iteratively simulate the model, altering the parameters systematically

until the simulated time series for V matches some membrane potential trace recorded

under similar conditions in a neuron.

What does it mean for the simulated and experimental time series of V to match?

Recall that both neuron models and neurons can be injected with specific amounts of

current. Because neurons are electrically excitable, the somatic membrane potential

departs from the resting membrane potential in response to current injections. For

many classes of cells, abundant experimental data exist concerning the responses

(membrane potential time series) to each magnitude or shape of somatic current

injection. A crude measure of error would be to simply directly compare the model

and biological time series, using the mean-squared-difference, for example. However,

because excitability reflects a non-linear transformation between input and output,

this means that very small differences in input (or parameters) can have massive

differences on output, especially its timing. A single action potential shifted by a

millisecond (approximately the width of one action potential) might be insignificant

from a practical perspective, but produce a massive “error" signal using mean-squared

difference. Consequently, I use an approach based on more robust statistical summaries

of the membrane potential, including those believed to be meaningful in neural coding.

These are described in more detail below.

The process of optimization involves what is known as an “inverse" problem. A

naive approach to solving this inverse optimization problem works on the principle
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of elimination. A large number of unsatisfactory parameter sets must be sampled,

to rule out the possibility that each candidate parameter set is not worse than some

currently favored parameter set. Doing this exhaustively, using a grid search across all

combinations of parameter values with sufficient resolution, is often computationally

intractable. Consider the Izhikevich model above. In its most general form, it contains

10 tunable parameters. Evaluating even 25 values of each parameter implies 2510

parameter sets, or nearly 100 trillion parameters sets. Even if one million parameter

sets could be checked every second, evaluating all parameter sets would require three

years, where this cost grows exponentially with increases in parameter resolution or

number.

Fortunately, more efficient approaches exist, but the utility depends on the shape

of the so-called “error surface". For any specific instance of a model, with a given

set of parameter values, its suitability is evaluated according to some "objective

function" that compares the simulated output under one or more conditions to some

corresponding experimental data. By convention, the objective function may report

this suitability as an error metric, minimal when the simulated and biological results

disagree to the smallest extent possible (which may not be zero, see below). Model

“optimization" then corresponds to finding the parameter set which minimizes this

objective function. Because the objective function returns a measure of error, the

“error surface" corresponds to the output of the objective function for each possible

set of parameter values. Ideally, this surface is perfectly “convex", meaning that there

is a single minimum, and from any starting point one can follow some variant of a

gradient descent strategy to find that minimum.
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1.3.1 Genetic Algorithms

A variety of numerical optimization techniques exist, where algorithm performance

depends on the demands of the problem. For functions with many local minima, it is

often best to broadly sample the error surface, rather than attempt a “greedy" search

for the global minimum. Several notable algorithms including genetic algorithms (GA,

Figure 1) and stochastic gradient descent (SGD) have been developed to address this

use case. Both of these algorithms are able to avoid putting all of their "eggs" in one

local minimum “basket", allowing them to discover over many iterations that a lower

minimum is available. For example, given enough samples, a genetic algorithm will

learn the global minimum of the Rastrigin’s function, although it is very likely to

sample wells of the error function at many depths on the way to the solution.

Figure 1: Schematic of Genetic Algorithm Flow. Genetic algorithms (GA) find satisfactory
solutions by incompletely sampling the solution space. The evolution of the algorithm is guided by
the combined application of stochastic sampling and selective pressure. Stochastic contributions that
guide GA sampling provide incentives for exploring regions beyond the local minima. Stochasticity
is applied in the combined actions of cross-over and mutation. Model parameterizations are encoded
as binary strings called genes. When genes breed, eligible pairs of genes are aligned and the status of
a bit is exchanged at random locations.
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I use genetic algorithms in the work presented here, and while there are many

variations on this approach, they all involve some combination of the following features:

1.3.1.1 Chromosomes

In the context of genetic algorithms, a chromosome is the complete set of model

parameters that are necessary to fully define the model being optimized, in this case

a neuron model. These parameter sets are collections of floating point numbers, for

example -65.7 for a reversal potential in mV.

1.3.1.2 Genes

In the context of genetic algorithms, a gene is a single model parameter. Conse-

quently, the number of genes in a chromosome is equal to the number of parameters

in the model. There are at least two stochastic operations that over time provide a

gentle “exploratory drive" for the algorithm, that cause genes to either double down on

exploration of a local minimum, or possibly “jump" out of a local minimum to realize

lower error. These operations are applied, with some user-determined frequency, with

each “generation" of the population of chromosomes, to determined the members of

the subsequent generation.

1.3.1.3 Simulated Genetic Recombination: Cross-over

Cross-over is the exchange of genes between chromosomes. In a population

of many chromosomes, one can “mate" two of them, producing off-spring which
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represent a fraction of genes from parent 1 and the remainder from parent 2. If each

chromosome represents two opposing vertices of an n-dimensional hypercube (for n

model parameters), then cross-over is capable of producing offspring representing any

of the other vertices in that hypercube.

1.3.1.4 Simulated Genetic Mutation

A mutation reflects a (random) change to a single gene, i.e. a change to a single

model parameter. In some implementation this is achieved by flipping one bit in the

binary representation of the floating-point value of the parameter, with the magnitude

of the resulting change in the parameter value depending on which binary digit was

flipped. Often mutations are limited to a particular range for a given parameter.

Later in this work I will talk about a property denoted η this property controls

the magnitude or step-size of gene changes made via either mutation or cross over. In

the cross-over context, η describes how similar child chromosomes are to their parents.

In the context of mutation, η changes the location of bits (from Least Significant

position to Most Significant Bit). At specified bit locations the bits that encode genes

are randomly toggled on or off in mutation.
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Figure 2: Rastrigin’s Function Rastrigin’s function is challenging to optimize, as it contains
hundreds of local optima which would trap a gradient descent algorithm (Rastrigin, 1974). This
function offers a paradigm for testing and examining the capabilities of an optimization algorithm.

1.3.2 Local Minima

Many practical optimization problems have error surfaces that are not perfectly

convex but instead are rippled, with multiple troughs of similarly low error value (local

minima). These ripples make navigating the error surface non-trivial. Rastrigin’s

function (Rastrigin, 1974) is a function for creating error surfaces to test the robustness

of algorithms that attempt to overcome moderately difficult error surfaces that are

densely populated with local minima, but with a global convex shape. The surface

described by the function is densely populated by local minima, each of which is placed

on a globally convex envelope, such that the true minimum of Rastrigin’s function is

at its centre. As a certain number of genes are retained between generations, genes
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made on previous generations act as memories of previously experienced error surface.

Due to this memory effect, the genetic algorithm is able to exploit the global shape of

Rastrigrin’s function 2. It should be noted that there are error functions that contain

no useful or learn-able information in the error surface. A satisfactory solution to

such problems might still be obtained due to the exploratory and stochastic nature of

the GA, however, much of the advantage of the genetic algorithm approach is lost, as

the approach presupposes learn-able features about error surfaces.

1.3.2.1 Elitism

The number of chromosomes (model instantiations) in each generation is typically

fixed, with some chromosomes in generation n+ 1 coming from crossover of chromo-

somes in generation n and others from mutation. The remainder are often chosen from

the fittest, i.e. lowest error, members of generation n, a strategy known as elitism.

The degree of elitism essentially controls the amount of evolution that is allowed to

occur in each generation.

1.3.3 Multi-objective Optimization

Multi-objective optimization problems are a subset of optimization problems. In

a multi-objective optimization, model fitness is evaluated using multiple “objective

functions" of model fitness, each contributing either independently or in conjunction

to the error surface. Each function may ask a different question about the model; for

example, one may ask how well the model reproduces the shapes of action potentials,

and another function may ask how well the model reproduces the counts of action
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potentials. The output of each such function is a scalar, with a lower values representing

greater model/data agreement, i.e. lower error. These functions are sometimes called

constraints.

1.3.3.1 Weighted Optimization

A simple strategy is to turn a multi-objective optimization problem into a single

objective optimization problem, for example by summing the outputs of objective

functions together. This is an common strategy, but this approach comes with a

significant price. Optimization using a sum over multiple error measurements leads to

a situation where a single constraint has an especially deep error surface, such that the

gradient of the overall summed error surface is dominated by that single constraint.

In other words, minimizing overall error mostly corresponds to satisfying only one

constraint. The optimizer invests most of its search effort achieving a low error on one

constraint, leaving the others unacceptably high. This problem can in principle be

ameliorated by re-scaling the objective functions to have similarly deep error surfaces,

but in general the shapes of the error surfaces cannot be known in advance, so this

sort of approach cannot generalize.

1.3.3.2 Non-dominated Sort

A less appreciated but perhaps more important drawback to collapsing multiple

objectives to a single one is that it imposes an opinion about the relative importance

of each objective. However, while there may be underlying “true values" for measured

biological variables, there is no underlying truth about which variables are more

18



important than others. In problems where not all measurements can be perfectly

replicated by models (in part because the models are simplifications of biology),

this problem becomes even more pressing. The experimental data may also come

from multiple data sources, leading to solutions for a single objective that reflect the

diversity of the underlying system (e.g. physiological diversity of neurons of a given

type), which is lost with the collapse to a single objective.

A multi-objective optimization paradigm that admits diverse sets of solutions

to a list of constraints might better reflect biology, while also imposing less opinion

about which measurements are most important. The so-called “non-dominated sort"

is one such paradigm. This approach considers each objective function separately,

and only considers one chromosome to be superior to another if it “dominates" that

other, meaning that the objective function output is lower (i.e. smaller error) for each

objective function. If even a single objective function has a larger value for the latter

chromosome, then it is not dominated. Any chromosome that is not dominated by any

other chromosome is considered “non-dominated" and is retained (i.e. for mutation,

cross-over, or elitist selection) into the next generation.

The non-dominated set of chromosomes has a simple interpretation: each of its

members would minimize a single, weighted objective function for some set of weights.

If no other chromosome has strictly equal-or-lower objective function evaluation for all

constraints, then there exists a linear combination of weights which would give that

chromosome the minimal evaluation (minimal error, maximal fitness) across the entire

population. Thus, retaining this population is equivalent to retaining all possible

“opinions" about appropriate weights for the entire optimization process.

The NSGA2 algorithm (Deb et al., 2000) is a common implementation of this

strategy, and is used throughout this work. Its performance can be compared to, for
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example, an exhaustive “grid search" across sets of model parameters, at least in low

dimensions.

1.3.4 The Curse of Dimensionality

Brute-force exploration of parameter space requires computation time that scales

exponentially with the number of parameters. In contrast, more efficient searches can

be polynomial (e.g. linear or quadratic) in dimension number. However, if constraints

are weak, or conflicting, or the error surface is especially non-convex, many of these

gains are lost, and exponential search times may return. Thus, there is no guarantee

in advance that reduced model optimization, with existing experimental data, is a

problem that can be solved in reasonable time for sufficiently high-dimensional reduced

models.

1.4 Data Fitting and Optimization with NeuronUnit

The ASU ICON laboratory previously developed a Python package called “SciUnit"

for scoring scientific models according to their agreement with various experimentally-

derived data (encoded as “validation tests") (Omar et al., 2014). The objective

functions that I use here are implemented using this scoring process. In particular, I

used a SciUnit-based Python library called “NeuronUnit" which provides a number of

such validation tests for neuron models, and I developed additional tests in the course

of my research.
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1.4.1 Constraint Scoring

The scoring mechanism within these tests determines the output of each objective

function to be minimized. There are many candidate scoring mechanisms, depending

on what one means by “the model agrees with the data". Each first computes some

summary of model output, for example the resting membrane potential, called a

“feature". Here, the two most frequently used scoring mechanisms are: (1) compute

the ratio between the model output feature and the experimental data feature mean,

and (2) compute a Z-score reflecting the normalized distance between the model output

feature and the distribution of experimental data features. In both cases, the relevant

experimental data distribution might be within trials, across trials, across recorded

cells, or even across labs, producing many sources of hetereogeneity. For example,

resting membrane potential (measured in (mV )), may vary in some dataset according

to a distribution with a mean and standard deviation of (µ, σ) = (−65mV, 15mV ).

The optimizer may sample a model (with some parameters) with a simulated resting

potential of −68mV . NeuronUnit would then use these values to compute a Z-Score of

(−68− (−65))/15 = 0.2. A model with a Z-Score of 0 would reflect perfect agreement

with experimental data, and very low or very high values would represent poor

agreement. Our lab previously showed models can be scored on very large numbers of

such tests, corresponding to experimental data for particular neuron types, and then

used to build biophysically detailed neuron models for the mammalian olfactory bulb

(Birgiolas, 2019).
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1.4.2 Data Aggregation

NeuronUnit thus converts a quantitative measure of model/data agreement into

a useful error signal that can guide model optimization. But a second function

of NeuronUnit is to aggregate the relevant experimental data, in order to make

construction of the tests described above possible. And a third function is to apply

some signal processing and feature extraction steps to these data in order to produce

something that can be scored. These features were present at the beginning of this

project, but I have extended them to cover more datasets and more features, as

described in the Methods.

1.5 Model Simulation and Exchange

The NEURON (Carnevale and Hines, 2006) simulator is a software suite that wraps

powerful and fast ordinary differential equation solvers based in the C programming

language inside a mixed compiled/interpreted environment targeted at research scien-

tists. NEURON is somewhat analogous to older, analog circuit simulators; however,

rather than describing complex resistor-capacitor circuits, NEURON instead solves

equations for the time varying membrane potential of multi-compartment models.

In contrast to reduced models, multi-compartmental models digitally encode the

form of membrane tissue: cables of varying diameters and lengths that represent the

morphology of neurons, and these cables support smaller scale representations of ion

channels, and ion currents in the membranes. These neuronal models can be coupled

together into a network, where the electrical state of one neuron has an impact on

the state of coupled neurons through synaptic currents. Specifying the system of
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differential equations representing these neuronal morphologies, ion channels, and

synaptic connections is complicated, but NEURON makes multi-compartment neuron

simulation efficient, convenient, and achievable. Models expressed in NEURON code

are procedural in nature, and the code consists of low-level implementation details.

Procedural descriptions of models are difficult to extend and re-use, leading to a need

for a declarative model description language.

NeuroML (Gleeson et al., 2010) is an extensible markup language (XML) tasked

with describing these complex network models. In principle, any simulator (not just

NEURON) can execute a simulation based on a NeuroML file, so NeuroML models

are readily executed across different types of simulators (ideally with identical results).

This facility makes NeuroML an excellent format for model sharing, and permits

cross-examination of results if they vary across simulators, but also allows different

modeling communities to retain the tools that they know best. Because NeuroML

is extensible and component based, it also incentivizes a “plug-in" environment for

re-using existing model components in large-scale models for different contexts. These

existing components may include reduced models, for example embedded into larger

neural circuits.

Open Source Brain (Gleeson et al., 2019) is a collaborative, model development

environment based on the NeuroML format, which contains collections of model-

descriptions and model implementations, along with tools for simulation and visual-

ization. These collections are well tested and understood, and the Open Source Brain

platform was a practical tool for learning the Izhikevich models correct parameter

ranges (which can vary depending on preferred units).

NEURON focuses on efficient simulation of multi-compartmental models, while

NeuroML provides for model exchange. However, neither tool was designed with the
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optimization of reduced models in mind. In optimization, the same model may be

re-executed hundreds of thousands of times (with different parameter sets), so any

computational overhead (for example, associated with reading/writing a file) is quite

costly. There are other tools that may result in faster optimizations, but as I show

here, even these are not optimally fast. Consequently, it is best to think of tools like

NEURON and NeuroML as useful for running and sharing optimized models, but not

necessarily useful for the optimization process.

1.6 Analysis of Model and Experimental Variance

It is common to observe large variations in measurements of a single electrophys-

iological entity from neurons of the same classification (Tripathy et al., 2014). For

example, measured input resistance may be different when recorded from different

cerebellar Purkinje cells. Such differences may be due to intrinsic physical differences

in cells (for example different surface area), due to differences in experimental methods

across organisms or investigators, or simply due to the finite and limited number of

samples available in the experimental literature. Aggregated data have been collected

from mice, rats, marmosets, macaques, or even humans, where human data may have

been collected under any number of disease states.

Understanding and modeling within-neuron-type variation should be considered

an essential component of the scientific merit of computational modeling of a neuron-

type. However, the impact of this experimental variation on the production of

neuron-type-specific models has not previously been explored. Consequently, I will

present here a large-scale analysis of the consequences of this variability–across many

electrophysiological features–on the effort to produce canonical reduced models of
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several common neuron-types. We would like to understand whether the space

of existing or potential neuron models accurately represents the variability in the

experimental data, and to help researchers map data collected from a number of

experimental preparations onto a standardized rodent electrophysiological phenotype

space.

1.6.1 Relationship between Missing Data Imputation and Optimization

Existing data sets are incomplete, consisting of a sparse sampling of cells in the

rodent brain. By necessity, models are constrained using these incomplete data sets.

These missing data occur at multiple levels including exact neuron to neuron wiring

patterns, un-sampled morphologies, unknown synapse activation times, and unknown

axon and dendrite synapse locations. More relevant to reduced models, even very

basic information about spiking patterns in response to simple current injections may

be unavailable. However, since most fast numerical methods are incompatible with

missing data, an additional component of model development–especially in the context

of optimization–remains, which is the synthesis of plausible missing values.

1.6.2 Closed Loop Development

The speed of simulation is critical to successful optimization. However, even when

using High Performance Computing (HPC) resources, errors may arise and require

special handling or visualizations to diagnose. These errors may even reveal errors in

the model specification, but this may not be revealed until thousands of simulations

have already run. The ability to address and correct such mistakes requires rapid
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and verbose feedback during optimization, as well as simulations of sufficient speed to

allow error “breakpoints" to be reached in a reasonable amount of time.

1.6.3 Successful Optimization

Integrating the above ideas, I aimed to develop a framework for rapid optimization

of reduced neuron models subject to multiple constraints forged by experimental data,

and to use this framework to optimize and share such models. Here I will describe

a number of methods and simulation experiments which demonstrate the successful

implementation of many of these ideas, focusing on genetic algorithms that retain a

diverse set of model parameterizations, potentially reflecting within-type neuronal

diversity.

The interactions between model constraints cannot always be known in advance,

and in fact some constraints are mutually exclusive, either causing optimization to fail,

or leading to a compromise. I also aimed to catalog such cases and use this knowledge

to produce a more robust set of constraints, implemented via NeuronUnit tests for

future optimization work.

No model–including those that are published– should be regarded as final. Instead,

I aimed to develop tools to improve these models by making them agree with experi-

mental data, in the hopes that such models may be of general use to the neuroscience

community in future work. At best, replacing complex cell models with simplified

models is a way to reduce the complexity of electrical brain activity to fundamental

mechanisms (Teeter et al., 2018). At worst, simplified cell models may capture only a

subset or a single aspect of important traits such as spike times (Hertäg et al., 2012).

There are currently many optimization packages for optimizing multi-compartment
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conductance based models (Friedrich et al., 2014) (Van Geit et al., 2016b) (Vella and

Gleeson, 2012), these optimization packages are exclusively intended to work with the

NEURON simulator. There are at least two packages for optimizing reduced neuronal

models, but one the these packages is used to fit models to spike times (Rossant et al.,

2010), not spike shapes. This optimization framework uses specialized hardware and

software GPU and CUDA, so this solution is not accessible to the average neuronal

modeller.

Additionally, the Brian2 simulator supports some model fitting (Stimberg et al.,

2019b),(Stimberg et al., 2019a). Although Brian2 can fit spike shapes by comparing

traces, the type of optimization performed is not multiobjective, as it computes the the

RMSE of whole waveforms, and uses it as a single objective error function. Brian2

can also optimizes on spike times, but its not clear if it does this in a multiobjective

context. Additionally, performance of brian2 was not reliable.

Some core components of the optimization procedure detailed here do not deviate

from those described elsewhere (Druckmann et al., 2008; Van Geit et al., 2016b). These

established optimization approaches use a multi-objective feature-based framework;

however, there are several key differences. Critically, in this work we fit reduced models

instead of conductance-based models, and this work seeks to formalize the quality

of fits using Z-score, χ2 distributions, allowing us to compare the overall quality of

data driven fits within and between model types. This allows us to answer questions

such as: “Does one model type lead to better fits?" and “Are some in vivo neuron

measurements outside of the reduced model parameter’s intended range?" Additionally,

in this body of research we fit models using a novel range of electrical properties. One

such property is the firing rate versus current (FI) slope, which is chosen to guide

optimization because it produces models that are believed to be pre-tuned for use
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in networks. Models that fit the same FI-slope have the ability to fire at prescribed

rates for a given amount of excitatory current. It is important that network neurons

are calibrated in this respect, such that the behavior of the modelled network has

balanced firing rates and realistic interspike intervals.
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Chapter 2

METHODS

In addition to the deployment of existing methods to achieve my research goals,

this dissertation contains a number of innovations which are best described as method-

ological. I include some of these innovations here, especially those of an extremely

technical nature. Some other methodological innovations, especially those of more

interest to the computational neuroscience community, are reported later in Results.

2.1 Approach to Optimization Using NeuronUnit

Model optimization follows the following basic approach:

1. Identify a model class whose parameters are to be optimized, e.g. the Izhikevich

model.

2. Identify experimental data associated with a neuron that will be used to guide

optimization.

3. Identify a suite of tests that can use the experimental data to guide the optimizer.

4. Execute optimization of that model class against that suite of tests to return an

optimized model.

Within these steps are a number of smaller decisions, including where the experimental

data will be obtained and what kind of simulator will be used to run the model. Using

NeuronUnit, the steps above take the follow pseudo-code form:
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# Import code from NeuronUnit

from sciunit import TestSuite

from neuronunit.models import MyModelClass

from neuronunit.tests import MyTestClass1, MyTestClass2, MyTestClass3

from neuronunit.data import get_data_from_database_x

# Get data about some neuron

neuron_type = "CA1 Pyramidal Cell"

neural_data = get_data_from_database_x(neuron_type)

test1 = MyTestClass1(neural_data[1]) # Test based on data feature 1

test2 = MyTestClass2(neural_data[2]) # Test based on data feature 2

test_suite = TestSuite([test1, test2])

# Optimize a model against this test suite

optimized_model = test_suite.optimize(MyModelClass)

This approach was used to obtain the majority of results in this work; however,

some other important results were obtained using a second equally import code pattern,

which is stated in the Appendix (Section B).

2.2 Pre-Existing Model Class Implementations

First I accessed an implementation of the Izhikevich model that was translated from

jNEUROML into a NEURON simulator implementation. However, this implementa-

tion fragmented the family of Izhikevich models into chattering and non-chattering

subtypes. The model implementation also seemed to have an internal conflict be-
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tween two capacitive terms and could not reproduce all of the original publication

figures. Although the NEURON simulator is designed to be fast, there is a cost

associated with reloading the NEURON environment many times in fast succession,

and implementation odel execution times were not brief enough to be useful for

optimization.

2.3 Other Model Class Implementations

For various reasons described in detail below, existing implementations of some

models were not adequate for this research. These reasons included speed, generality,

and consistency.

2.3.1 Model Execution: The Need for Speed

Because optimization may involve an extremely large number of independent

simulations of the same class of model, each varying only in model parameter values,

it is critical that both time costs–both the overhead for model instantiation and the

duration of simulation itself–be as low as possible. Existing modeling tools contain

overhead associated with model initialization and shuttling results in memory. These

costs are trivial for single simulations, but begin to add up in optimization runs of

thousands or even millions of simulations. Even the marginal cost of simulation–

expressed as seconds on a wall clock per seconds of model output simulated–is often

slower than expected using existing tools, due to some of these tools being written

to accommodate more complex, biophysical models, rather than engineered for raw

speed. During optimization, many parameter sets are explored, and the speed of
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simulation can be determined by the parameter values. For example, those parameter

sets which produce many spikes in a given simulation run more slowly, because dVM
dt

changes rapidly throughout the simulation, necessitating reductions in simulation step

size to avoid numerical instability.

2.3.2 Model Design: Lack of Generality

Significant time was spent in the early years of this project shoe-horning pre-

existing tools into the desired optimization framework, with limited success. These

tools included, among others, model designers and neural simulators such as PyNN,

Brian2, NEURON, and jNeuroML. However, several unexpected road blocks were

encountered on the way.

2.3.2.1 NEURON

The NEURON simulator is a very mature and respected neuron and neural network

modelling framework (Carnevale and Hines, 2006). This simulator specializes in multi-

compartment conductance based models of neurons and neuronal networks, but the

simulator has also been made to accommodate many reduced model implementations.

The NEURON implementation of the Izhikevich model is fractured in that there are

different NEURON NMODL implementations of the equations for different parameter

regimes.

When running only a single model simulation this is not much of a problem.

However, switching between Izhikevich model regimes during optimization (as would

occur when a parameter value crossed a regime boundary) is a non-trivial exercise.
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Even if successful, any multi-language source code successfully implementing this

would be complicated, unreadable, and lack generality. Specifically, NEURON requires

NMODL files to be compiled for each different regime, and it may be difficult to know

in advance which regimes the optimizer is likely to sample from. Additionally, the

promise of fast performance due to the C-based NEURON library is not actualized

with this model. Because NEURON is well-understood within the OSB and NeuroML

community, I used it only to produce reference simulations to verify that the output of

my model implementations were in fact accurate according to community standards.

2.3.2.2 PyNN

PyNN provides the convenience of working in Python, and with a convenient

procedural interface for model design and execution (Davison et al., 2009). However,

its implementations of most reduced models (e.g. Izhikevich) are simply “wrapped"

versions of NEURON models; consequently PyNN has the same disadvantages as

NEURON. PyNN is also designed with network simulations in mind, which means

its designers have chosen performance trade-offs that favor network simulations over

single neuron simulations. For example, a data-type called the “lazy-array" is the most

elemental container for neuron models in PyNN, but it is meant to store populations

of neurons as opposed to single neurons; as such the lazy-array adds overhead to

accessing single model results.

Additionally, the NEURON implementations that underlie the PyNN-provided

AdEx and Izhikevich model classes suffer from some fidelity issues under certain

regimes and parameter sets, compromising optimization quality (see Davison (2020a,b)

for details).
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2.3.2.3 Brian2

Brian2 (Stimberg et al., 2019a) is, in principle, an excellent simulator for working

with reduced neuron models, as it allows for differential equations to be expressed in

an intuitive form, while also keeping track of dimensions and units. However, it may

not be mature enough for complex applications, as it produced errors in optimization

contexts that did not occur during routine simulation of single-parameter sets.

Even when these errors did not occur, (e.g. using the Brian2 AdExp model),

certain optimization steps (such as identifying the rheobase current for a given set of

model parameters) took 2-3 times more simulation time then a reference approach

(described in the next section). This slowness was not caused by the simulation

mechanics themselves (Brian2 is relatively fast and efficient, as described in Stimberg

et al. (2019a).) Instead, these delays are caused by the way the model is internally

defined, specifically using a so-called “neurodynamics" layer (Gerstner et al., 2014).

While it is very likely that this implementation is useful and correct in many

contexts (Gerstner is an author of one of the original AdEx model publications (Brette

and Gerstner, 2005), and the Brian2 implementation is derived directly from his work),

it is problematic for the feature extraction step required in optimization. Specifically,

these implementations do not formally contain any notion of “overshooting" spikes,

since when the spike threshold is reached, the membrane potential is simply set to

some reset value; the presence and timing of a spike is recorded only when a separate

process is explicitly set to watch for such an event. This is not technically wrong, but it

violates a key assumption in the NeuronUnit feature extraction protocol (the existence

of an action potential waveform to extract), and the extra layer for detection of spiking

adds computational overhead. Imputing a spike-like waveform near threshold can help
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solve the problem, but then optimization results and performance becomes contingent

on the design of this waveform imputation, and not on the model itself.

Lastly, over the course of evaluating the Brian neural dynamics model (Gerstner

et al., 2014), I encountered some problems specific to genetic algorithm optimization.

This context is not identical to simply running a series of simulations in series, because

optimization operates in parallel, must fit into computer memory, and thus requires

that simulation objects be created, simulated, and then destroyed rapidly and en

masse. Since Brian2 was designed for stability, is was not designed to make model

disposal computationally efficient (the problem of clearing objects from memory

efficiently is, from a computer science perspective, trickier than it might initially

sound). Therefore, performance of Brian2 suffered when I re-purposed its code to

work in an optimization context. Brian2 does support its own internal scheme for

model fitting (Stimberg et al., 2019b), however this scheme was only published late in

this thesis work, and it is unknown what technical tricks they employed to enforce

model garbage collection. Additionally this scheme is highly divergent from the multi-

objective DEAP framework described in Section 2.6, so it is not readily interoperable

with the model fitting workflow described here.

2.3.2.4 My Approach

In summary, despite several choices for existing, free, open-source software (FOSS)

reduced model implementations, these implementations were not useful, or significant

intervention would have been required to apply them within an optimization framework.

To overcome this and accelerate optimization, I built faster “direct" implementations of

two neuronal models (the Izhikevich model and the AdEx model). One of the these was
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inspired from the existing MATLAB forward Euler implementation of the Izhikevich

model, while the other was adapted from an existing Python implementation of the

AdEx model using vectorized code. While neither of these was especially fast, they

provided the basic recipe upon which a faster Python implementation could be built.

Do note that the purpose of these new implementations was not model exploration,

analysis, or sharing; existing tools are adequate for these purposes. The purpose of

the new implementations was simply to make large optimization runs computationally

tractable.

Although typically much faster than R, Python does not have a reputation for

speed; implementation details have a large impact on performance. Therefore, I

used a tool called Numba (Lam et al., 2015) that enables Just-In-Time compilation

(JIT) of Python code, making it comparable in speed to compiled C code. This tool

cannot be applied to any arbitrary Python code, so functions to which it is applied

must be designed with only a fairly plain subset of the usual syntax and library

of Python. In other words, it cannot be used to simply speed up any pre-existing

Python code. I crafted the two model types above to be JIT-compliant, with the

result that both became significantly faster than analogous models using NEURON or

Brian2 simulators. Importantly, simulation outputs retained a binary near-match in

all cases, confirming that nothing was lost in the course of gaining this performance

improvement. I used these new implementations extensively throughout the project,

and they are available to others at Jarvis (2020b). The code that implements them

is fairly easy to understand, share, and execute, and I hope they may be useful to

others who have similar performance needs, either for optimization contexts or in large

network models on generic commodity computer hardware where small performance

gains are worth chasing.
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Some models were executed in their native implementations using the NEURON

simulator with an adaptive time step. After each model run, the variable time step

vectors were resampled into fixed time step vectors using interpolation. I accelerated

this inherently slow process by applying the JIT framework to prior code contributed

by a colleague (Birgiolas, 2019).

Below, I profile my implementations and compare them to the existing FOSS

implementations. My implementations led to faster per-simulation evaluations of

simulations involving somatic current injection. Furthermore, my implementation

exhibited over-shooting spikes (spikes crossing 0 mV, as occurs in real neurons), making

them more compatible with NeuronUnit feature extraction.

2.3.3 Profiling the Models

Obtaining the rheobase of a model for a single parameter set requires simulating

it many times at different values of somatic current injection until the minimum

action-potential inducing current is obtained (to within some tolerance; here I used

0.1 pA, near the standard deviation of thermal noise). This takes 10-15 simulations,

on average.

My AdExp implementation:

Single model simulation: 0.00126 s

Rheobase computation: 0.183 s

My Izhikevich implementation:

Single model simulation: 0.002 s

Rheobase computation: 0.462 s
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2.3.3.1 Comparison of Speed and Accuracy Versus Brian2

In-order to implement NeuronUnit-compatible Brian2 AdEx model simulations,

I imputed spike waveforms (at recorded spike locations) immediately following each

simulation. The simulation time of this model is determined by multiple factors, as

discussed elsewhere. Execution time is also not uniform across model parameterizations;

in particular, parameter sets exhibiting more spikes take longer to solve numerically.

I compared this with the same parameter sets in my implementation, with the results

shown below:

A large fraction of the time spent simulating models under a single set of parameters

is spent obtaining the rheobase current, upon which several subsequent tests and

extracted features depend.

The JIT implementation of the AdExp model was approximately 1000× faster

than the Brian2 model. Another benefit of the JIT implementation was that it did

not require imputation of action potential waveforms (as was required for the Brian2

implementation); without additional work, the JIT implementation produced much

more realistic-looking action potential waveforms under most model parameterizations.

To the extent that action potential shape is an optimization target, this is a decisive

advantage for the JIT implementation.

2.3.3.2 Comparison of Speed and Accuracy vs NEURON

I also compared the performance of my implementation of the Izhikevich model to

the one generated by NEURON from the OpenSourceBrain Izhikevich model NeuroML2
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Figure 3: Brian2 Simulation of the AdEx Model. Simulated membrane potential trace from
the AdEx model at rheobase using the Brian2 simulator. The action potential waveform has been
interpolated at the time when the simulator reported a spike. The horizontal axis shows time in
seconds.

Figure 4: JIT Simulation of the AdEx Model. Simulated membrane potential trace from the
AdEx model at rheobase using my JIT implementation. In contrast to Fig. 3, the dynamics of the
action potential arise naturally from the integrated equations and do not require interpolation.

files. This NEURON implementation has several drawbacks, including: 1) It depends

on an external file which must be recompiled each time this project is recreated; 2)

The build environment of NEURON is non-trivial; 3) The model implementation code
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is less generalizable than than the published Izhikevich model itself. For example, the

standard NEURON-NeuroML2 code only covers the Regular-Spiking flavors of this

model, and does not support the full range of model parameterizations; 4) Name space

conflicts between built-in NEURON parameters and Izhikevich model parameters.

The NEURON implementation of the Izhikevich model took 78 seconds to identify

the rheobase current. In contrast, my implementation identified the rheobase in only

0̃.5s. This represents a very dramatic speed up, which can largely be attributed

to overhead associated with initializing successive simulations. Furthermore, my

implementation generalizes to all possible parameter values for the Izhikevich model

parameters, thus allowing for all of the many diverse spiking behaviors exhibited in

the original publication by Izhikevich (2003).

2.3.3.3 The GLIF Model: a Limited Model

Although GLIF models are intentionally limited in behavior to below threshold

firing dynamics, these models are still relevant to the neuronal modelling community.

I developed a Generalized Leaky Integrate-and-Fire (GLIF) model by manipulating

some pre-existing code until it was interoperable with the NeuronUnit framework.

Because GLIF models do not include spike waveforms (like the AdEx implementations

discussed above), imputation of these waveforms is required for broad spike shape

optimization. GLIF models are not particularly fast, nor have they historically been

good at predicting spike timing in neurons Teeter et al. (2018). However, GLIF

models are widely-used within the Allen Institute, with that organization providing

cell-specific GLIF models for each neuron that they record. So I included them here

for completeness and for comparison to previous work.
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2.4 Parallel Rheobase Determination

In the preceding section, I discussed determination of the rheobase of a model as

one of the most computationally expensive steps in evaluating a given set of model

parameters.

2.4.1 Why is the Rheobase Important?

The rheobase is defined as the minimum current required to elicit at least one

action potential. In slice physiology experiments, this usually means a square pulse of

somatically-injected current lasting for a fixed amount of time, for example 500ms.

The rheobase not only characterizes the excitability of a cell, but it also serves as

a landmark or anchor for computing many other features of a cell’s suprathreshold

behavior. For example, once the rheobase is known, one can compute a so-called

“FI curve" – the number or frequency of action potentials in response to a given

amount of injected current – at fixed multiples of the rheobase, providing a compact

summary of excitability. Both the Allen Institute and the Blue Brain Project use

such rheobase-linked excitability measures. The rheobase current can also be used

to compute features of spike waveforms. These features may vary with the amount

of injected current, because the rising phase of an action potential may include both

sodium current and patch pipette current. By restricting the analysis of single action

potential waveforms to those evoked using the rheobase current, this confound is

minimized because at rheobase the patch pipette current is roughly offset by outward

currents (were the pipette current any less, the outward currents would have prevented
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a spike, by the definition of rheobase). Consequently, action potential waveform

features like threshold, width, and height are often performed at the rheobase current.

2.4.2 How is the Rheobase Determined?

Determining the rheobase involves repeated application of a more general algorithm

that runs one simulation to determining the number of action potentials evoked by

a particular magnitude and duration of somatic current injection. Because the

rheobase value partitions suprathreshold stimulus amplitudes from subthreshold ones,

its determination can be accelerated by treating its determination as a search tree

problem. In a search tree, the search space is adaptively narrowed between two

endpoints until a target is identified. For the rheobase, this means asking (1) “What

is maximum current injected so far that resulted in zero spikes?" and (2) “What is

the minimum current so far that resulted in one or more spikes?" and then running

a simulation at some current amplitude in between those two values (e.g. halfway

between in the case of a binary search tree).

2.4.2.1 Serial Rheobase Determination

The procedure above can be run in serial (i.e one simulation after another) until

the rheobase is narrowed down to an acceptably narrow range, e.g. +/- 1 pA. The

initial search begins with no knowledge of any minimum suprathreshold or maximum

subthreshold current amplitudes, so I use the starting range 300 pA to -100 pA,

respectively. A binary search is applied within this space, with additional code to

handle edge cases outside this range. Ignoring those edge cases, such a binary search
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requires log2(I/i) simulations, where I is the range being searched (here, 400 pA) and

i is the resolution of the solution (here, 1 pA). Thus, ∼ 9 simulations are required to

obtain the rheobase using this binary search strategy.

2.4.2.2 Parallel Rheobase Determination

This process can be accelerated by running simulations in parallel. Each step of

the search requires knowledge of the outcomes of the previous simulations, so there

can be no parallelism across steps (other than brute force parallel search of the entire

range of currents, which is extremely inefficient). However, it is possible to parallelize

within each step, so I exploited this approach. A binary search partitions the search

space in two by simulating a current injection at (sub + super)/2 pA, where sub is

the previous maximum subthreshold current, and super is the previous minimum

suprathreshold current. The value (sub+ super)/2 pA either does or does not produce

a spike, leading to its value being used to update either super or sub, respectively. The

search space is thusly cut in half, so this simulation effectively generates one additional

bit of information about the amplitude of the rheobase. This repeats ∼ 9 times

until all 9 bits of uncertainty (from the initial 400 pA) range have been eliminated. I

accelerated this with parallelism by applying an N-ary search (rather than a binary

search), where N is the number of parallel processes, and N+1 the number of regions

of current amplitude to search. This is described in Figure 5.

Consider the initial 400 pA range. With only one thread, this range is bisected and

a simulation run at it midpoint (−100pA+ 300pA)/2 = 100pA. With seven threads,

this range can be octo-sected, with concurrent simulations run at each of seven values,

i.e. −50, 0, 50, ..., 300, 350 pA. The highest of these seven values that produces a spike
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is assigned to sub and the lowest that does not to super, resulting in the search space

now being restricted to only one of these 50 pA wide regions. This is 1/8 as a wide

as the initial space, so 3 bits of information about the rheobase have been obtained.

This parallel process is then repeated serially (i.e. octo-section of the new 50 pA

region, octo-section of the ensuing 6.25 pA region, etc.), until the rheobase has been

determined. Because 3 bits of information are obtained in every step instead of 1 bit,

the search is 3x faster. In general, the parallel N-ary approach is log2(N + 1) faster

than the plain serial binary search approach, with speedup gain therefore growing

logarithmically in the number of concurrent threads (usually, proportional to the

number of CPU cores) being used. As architectures with hundreds of cores are now

common, speedups of 7-10 fold are achievable.

Figure 5: Parallel Rheobase Algorithm. I developed a generic algorithm which finds the minimal
current injection value needed for one spike (rheobase). Rather than a brute force or binary search, I
implemented an N-ary search that uses multiple parallel simulations to rapidly identify the rheobase.
This leads to significant speed-ups for testing and optimization in all models.
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2.4.3 Practical Application

I benchmarked this approach using simulations of multi-compartment neuron

models. The parallel rheobase determination algorithm resulted in a significant speed

up relative to the serial algorithm. To amplify the effect, I also considered a scenario

where one wants to learn the value of the rheobase with much more precision (down

to small fractions of a pA), for example in studies of dynamics in the neighborhood

of a bifurcation where all other state variables can be considered nearly unchanged

as one crosses incrementally between sub- and suprathreshold scenarios. To achieve

such precision, i.e. for a small value of i such as i = 0.0001 ∗ pA, the number of

simulations log2(I/i) may be ∼ 20. Since additional model features may require only

a few additional simulations to extract, it is clear that in this scenario the rheobase

completely dominates the bulk of the total simulation budget.

In this scenario, using only 16 threads (with a theoretical speedup of log2(16+1) ∼

4.09), I achieved the following results:

NEURON simulation of multicompartmental model

Serial Rheobase determination: 18.7 s

Parallel Rheobase determination: 4.8 s

Speed up = 3.9x

Brian2 simulation of AdEx model

Serial Rheobase determination: 0.791 s

Parallel Rheobase determination: 0.259 s

Speed up = 3.0x

The total speedup approached but fell a bit short of the theoretical speedup due to
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overhead in the parallel search algorithm itself. As the complexity of each simulation

increases, and as the number of CPU cores brought to bear increases, this overhead

should become a vanishingly small fraction of the total rheobase determination time.

2.4.4 Generalization to Target Spike Counts

This approach for determining rheobase was also generalized into a more funda-

mental algorithm for determining the amplitude of current required to generate any

target number of action potentials. In other words, it can be used to invert a model’s

“F-I" function, finding the “I" associated with a given “F". For more information, see

the test at (https://github.com/russelljjarvis/neuronunit/blob/master/neuronunit).

2.5 Electrophysiological Measurement Distributions From the Experimental Litera-

ture

Organized, publicly available electrophysiological measurements from single, bi-

ological neurons can form an optimization target. Together, they can be used to

parameterize a suite of tests against which a model is optimized. Optimization aims

to find model parameters so that electrophysiological measurements based on model

simulations are as similar as possible to those observed in neurons.

2.5.1 NeuroElectro

One general source of such experimental measurements is The NeuroElectro

Project (Tripathy et al., 2014), which contains experimental values for 47 distinct
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electrophysiological measurements across 235 different neuron types. As with most of

the data discussed here, most (but not all) of these measurements were obtained from

slice physiology experiments in rodents. These measurements were programatically

extracted from peer-reviewed journal articles over a ∼ 20 year period from ∼ 1990−

2012, and are made easy to access by an application programming interface (API) that

NeuronUnit provides bindings to. Importantly, the measured values–even for a single

neuron type–reflect experiments done in many labs using (in some cases) variable

methods. Therefore, the mean of these values (e.g. the mean input resistance across

reported Purkinje cells) averages over heterogeneity across cells within a slice, slices

within an animal, animals within a lab, and labs within the field. The sample size

for one measure (e.g. input resistance) may be larger than for another (e.g. resting

potential) meaning that these measures may reflect different subsets of experiments.

With those caveats in mind, NeuroElectro remains the most direct way to get a large

number of optimization-constraining data values for most neuron types.

In order to verify that the data from NeuroElectro was plausible and was being

captured correctly for the purposes of the work in this thesis, I used the API along

with a batch visualization pipeline to visualize the distributions of electrophysiological

measurements and inspect them for a) quality control and b) evidence of multimodality.

Multimodality, meaning multiple peaks in the histogram of a single measurement

type for a single cell, could be evidence of a physiological heterogeneity not easily

explained by random measurement error. Two peaks in the histogram, for example,

could result from two distinct subclasses of a single nominal neuron type, each with

its own (narrower) distribution of the same measurement. In some instances, the

mean and standard deviation alone described the measurement distributions well, as

would be expected for random, normally-distributed measurements of a single cell
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type under reasonably consistent conditions. These values were then “approved" for

use in model-fitting. In other cases, these conditions were not met, as exemplified in

the figures below.

For the majority of cell types and electrophysiological features, the distributions

obtained from NeuroElectro were well-described by a normal (or log-normal) distribu-

tion. However, I manually identified and labeled those cases where the data were not

well-behaved, as these cases are likely to produce optimized models that do not reflect

anything of biological relevance.

Methods for verifying that a distribution is unimodal exist (Maechler, 2013);

however, rather than entrust this job to top-down automation, I decided to apply my

own human knowledge of statistics in order to assess each distribution individually.

I estimated that across all NeuroElectro data sampled here, about 2/3 of distri-

butions are well represented by a unimodal and normal distributions (e.g. Figure 6).

In the remaining 1/3, where this did not hold, I observed a small but still significant

number of odd cases: highly skewed distributions (Figure 7), bimodal distributions

(Figure 8), uniform-like distributions, and distributions with insufficient samples to

make any judgement.
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Figure 6: AP Threshold Data Distribution for Layer 5 Pyramidal Cell. The majority of
NeuroElectro data sets followed a normal distribution, where the mean is surrounded by a very high
density of samples, which slowly thin out with increasing distance from the mean. The distribution
is approximately symmetrical. Top Panel: A histogram of AP Threshold measurements from Layer 5
Pyramidal Cells; Bottom Panel: A violin plot and a box plot summarizing the same distribution. In
this plot, the mean and mode are close together (a necessary condition for near-normality). Analagous
plots were generated and inspected for all electrophysiological features computed here.
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Figure 7: Input Resistance Data Distribution for Layer 5 Pyramidal Cell. Similar to Figure
6, except for Input Resistance. Unlike in that figure, the distribution shows a strong skew towards
higher values. The mean and the mode are no longer well-aligned, and therefore the mean is no
longer representative of the most typical value of this feature for this neuron type.
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Figure 8: Resting Potential Data Distribution for the Olfactory Bulb Mitral Cell. Similar
to the previous figures, but for a different cell type and electrophysiological feature. In this case,
the distribution is clearly bimodal, with each mode containing a similar density of the data. Now
both the mean and the median (small red line in box plot) are especially unrepresentative, lying in a
region of low probabilty density.

2.5.2 EFEL and The Allen Institute Cell Types Database

The Electrophysiology Feature Extraction Library (EFEL) (Van Geit, 2015b) was

developed as part of the Blue Brain Project. Although EFEL computes common spike

train statistics related to spike timing, approximately 2/3rds of features extracted by

EFEL pertain to spike shape, where some of these features are shown below. The Allen

SDK comes with a very comprehensive Python-based feature extraction suite. Like
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EFEL, the Allen suite well-represents a large number of spike shape measurements

as well as spike train statistics. Unfortunately, the Allen SDK feature extractor is

significantly slower than EFEL, as EFEL was implemented using the very fast language

C + +. The performance cost may not be felt when dispatching single runs, but slow

performance is a significant impediment to optimization. In optimisation, feature

extraction is directly coupled to chromosome fitness calculations, and it is executed

very often across the evolution of the genetic algorithm. Additionally by default,

the Allen SDK feature extractor assumes that the user will apply very high sample

frequency and noisy traces encoded in the NeuronData Without Borders (Teeters

et al., 2015) standardized format. These traces require filtering before computing

the Allen features, where significant intervention is required to turn off filtering.

Inappropriately applying filtering to model traces causes problems, because the the

lower sampling frequency intrinsic to simulated model traces is not predicted by the

digital filter. Overall, the EFEL was fast enough to be useful, and its default settings

were appropriate to my use case (Garcia et al., 2014b).

Data available through NeuroElectro cover a large number of cell types; however,

recording conditions and measurement algorithms are heterogeneous. It is unclear

whether the distribution of measurements across such an ensemble is actually a good

summary of any one individual neuron. In order to ensure that reduced models

could be optimized against data recorded exclusively from single neurons, I also used

data from the Allen Institute Cell Types Database (Institute, 2015), a project of

the Allen Institute for Brain Science. This Cell Types database consists of summary

physiological, morphological, and histological data for thousands of individual neurons

(across a few dozen subtypes) from mouse visual cortex, obtained using patch clamp

recordings in slices. Each experiment is done using exactly the same methods and with
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the same sequence of stimuli (Institute, 2015), ensuring not only that models generated

using this data are directly comparable, but that each such model is reflective of an

individual neuron.

The Cell Types Database provides some limited pre-computed measures of action

potential waveform characteristics. However, the data are not organized in a way

that makes it is useful for the types of optimization and data analysis performed here.

Specifically, I require features that are computed on cell responses to current injection

values that are fixed multiples of rheobase. Additionally, the pre-computed features

are thin relative to those that used for the optimizations described in the Results

section. Because raw data are available through the Cell Types API, I re-computed all

necessary features from this raw data, according to the consistent standards reflected

in the NeuronUnit code.

In contrast to NeuroElectro, the Cell Types database also has a great deal more

information relevant to the above threshold dynamics of neurons, such as the number

and pattern of action potentials they discharge in response to somatically-injected

currents much larger than rheobase, or in response to non-square injected currents.

In order to exploit these, I developed several additional NeuronUnit tests using EFEL

(describe later in sections 2.6.4.2), such as: “time to first spike test", “mean AP

amplitude test", “time to last spike test" and “adaption index". In principal any

feature measured in the Cell Types Data could be upgraded to a NeuronUnit test,

and I created a code-generation template to accelerate this task. Effectively, code

generation meant, that any EFEL feature, could be turned into a NeuronUnit test. In

principle Allen tests can be generated from templates in much the same way. The final

set of operational tests were EFEL Van Geit (2015b) tests that were adapted from

descriptions of feature extraction in the literature and shown in Table 1. Features are
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shown in Figures 9 and 10. I also crafted additional NeuronUnit tests to supplement

these including one that measures the slope of the FI curve (FISlopeTest) and one

that measures the coefficient of variation of the ISI distribution for suprathresholds

stimuli (ISICV Test), a measure of burstiness.

Figure 9: Passive Membrane Properties from a Hyperpolarizing Stimulus. Applying a
negative (outward, hyperpolarizing) current stimulus minimially activates voltage-dependent ion
channels, making it a good method for measuring “passive" membrane properties such as the
input resistance (measured as the difference between the resting potential (red) and steady-state
hyperpolarization (green). Nonetheless, some intrinsic conductances are activated, allowing for
measurment of additional features such as the sag amplitude or ratio (green trough vs blue steady
state). Figure from EFEL documentation (EFEL-Developers, 2018).

Figure 10: Action Potential Features Measured from a Depolarizing Current Stimulus.
A positive (depolarizing, inward) current of sufficiently amplitude produces one or more action
poentials. Many features can be computed from these, including their absolute amplitudes (in color),
relative amplitudes, widths, thresholds, and afterhyperpolarizations (AHPs). Additional features
about their number and relative timing can also be computed (not shown). Figure from EFEL
documentation (Van Geit, 2015a).

These tests can be used to assess the agreement between neuron models and

biological neurons on supra-threshold dynamics, largely reflected in patterns of spiking
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such as bursting and adaptation, but also mean spike height and mean spike width,

resting membrane potential, mean trough depth, and upstroke times.

2.5.3 The Blue Brain Project Neocortical Microcircuit Portal

I also made use of an additional data source, the The Blue Brain Project Neocortical

Microcircuit Portal, similar in some ways to the Allen Institute Cell Types Database

but reflecting measurements taken from mouse somatosensory cortex (again in patch-

clamp recordings from slices). From this dataset I exclusively used a collection of

experiments from animal B95, which for reasons unknown yielded a tremendous

amount of data (Ramaswamy et al., 2015). Conceptually, this dataset did not add

anything new, but it did allow for high-quality optimized models to be produced

from another brain region (somatosensory, rather than visual cortex). These data are

also linked to–and constrain–the on-going Human Brain Project effort to simulate

biophysically-detailed multi-compartmental models of the same neurons (and whole

neural circuits). This means that the reduced models produced here can be compared

directly to those more detailed models, or that the general NeuronUnit-driven genetic

optimization framework developed here could be used to optimize detailed models

which should, in principle, be similar to those produced through the larger Human

Brain Project effort. Indeed, the Human Brain Project is already a user of the SciUnit

framework developed in my lab, on which NeuronUnit is based.

The tests which lead to the best fits in the above threshold experiments were the

tests made from application of EFEL features to Allen data sources (Figure 9). The

measurement type and the test type did not change between Allen Cell Types and
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Test Name Test Description

adaptation-index Measures spiking fatigue in response to constant current
adaptation-index2 The same as Adaption index1, except it is used as an alternative when spikes below 0mV occur.
time-to-first-spike amount of time elapsed until first spike
mean-AP-amplitude The average spike height in a spike train
spike-half-width The width of a spike is obtained at point when spike height is half its total amplitude
AHP-depth The after hyperpolarisation depth
minimum-voltage The minimum voltage
peak-voltage the maximum voltage, usually a spike peak.
time-to-last-spike The time of last spike onset
AHP-depth-abs After Hyperpolarisation depth (absolute value).
all-ISI-values All interspike interval times
voltage-base minimum voltage while undergoing stimulus, often below the threshold of APs.
min-voltage-between-spikes Needed because during high frequency firing AHPs may be skipped.
Spikecount Just the number of spikes that occured in the provided stimulus window

Table 1: 14 key features identified in the EFEL (Van Geit, 2015b) library that I impemented and
encoded into NeuronUnit tests for optimization.

Blue Brain Data. Only the reference data which informed comparison measurements

changed.

Table 1 constitutes a summary of both NeuroElectro and Allen experimental data

reports.

Test Name / Cell Type CA1 Pyramidal Purkinje NCP Layer 5-6 Mitral Cell 623960880 623893177 471819401 482493761

RheobaseTest 189.24 pA 680.79 pA 213.85 pA NaN 70.0 pA 190.0 pA 190.0 pA 70.0 pA
InputResistanceTest 107.08 MΩ 142.06 MΩ 120.67 MΩ 130.08 MΩ 241.0 MΩ 136.0 MΩ 132.0 MΩ 132.0 MΩ
TimeConstantTest 24.5 ms NaN 15.73 ms 24.48 ms 23.8 ms 27.8 ms 13.8 ms 24.4 ms
CapacitanceTest 89.8 pF 620.27 pF 150.58 pF 235.75 pF NaN NaN NaN NaN
RestingPotentialTest -65.23 mV -61.59 mV -68.25 mV -58.14 mV -65.1 mV -77.0 mV -77.5 mV -71.6 mV
InjectedCurrentAPWidthTest 1.32 ms 0.41 ms 1.21 ms 1.61 ms NaN NaN NaN NaN
InjectedCurrentAPAmplitudeTest 86.36 mV 71.23 mV 80.44 mV 68.4 mV NaN NaN NaN NaN
InjectedCurrentAPThresholdTest -47.6 mV -46.89 mV -42.74 mV -38.9 mV NaN NaN NaN NaN
FISlopeTest NaN NaN 0.05 Hz/pA NaN 0.18 Hz/pA 0.12 Hz/pA 0.18 Hz/pA 0.09 Hz/pA

Table 2: Data for 9 tests (features) across 8 cells. The first 4 cells are specific cell types spanning
several brain regions, and the corresponding data comes from neuroelectro.org. The remaining 4
are single (cortical) cells comes from the Allen Cell Types database, and the features were directly
computed using NeuronUnit tests. “NCP" indicates neocortical pyramidal.

2.5.4 Novel Data-Driven Tests for Model Optimization

At the onset of this project, NeuronUnit contained a range of model validation

tests, but these were inadequate for for optimization. Most such tests were restricted to

56



measurements of passive membrane properties or action potential waveforms. However,

the rich diversity of neuronal physiology is also reflected in the rate, timing, and

sensitivity of patterns of action potentials.

As noted in Section 2.5 there were two experimental data types, each of which was

used to constrain models differently: raw data from which features were (re-)calculated,

and pre-computed features as reported in the literature. The distinction is important

here because in the former case new feature extraction routines are required. In order

to developed tests based on these newly calculated features, I created an interface to

the Allen Cell Types API; this allowed me to automatically create NeuronUnit tests

parameterized by features extracted from the membrane potential traces available

from the Allen Institute through that API. In order to create the new NeuronUnit

tests, one must query the Cell Types Database, impose a new organization on the

data, extract relevant features, and convert model features for use with NeuronUnit

tests. A similar API was created in order to work with the Blue Brain data described

in section 2.5.3, so that both of these data sources could then guide model fitting.

These APIs and their use in generating NeuronUnit tests are documented in Jarvis

(2020a).

At this stage the range of tests available for optimization in NeuronUnit was still

incomplete; the data was adequate, but several key features that distinguish one

pattern of spiking from another were still missing. Therefore, I implemented another

series of tests in NeuronUnit using the EFEL features (Van Geit, 2015b) (section

2.6.4.2). I developed the ability for all of the EFEL features (Table 1) to be calculated

on NeuronUnit models, as well as a new test to compute the slope of the F-I curve. I

organized these tests into new "at threshold" and suprathreshold test suites, which
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included features such as interspike-interval (ISI) statistics, after-hyperpolarization

(AHP) depths, spike frequency adaption ratios, etc.

Adaptation in spike trains is commonly occurring. When fitting models to spike

trains it is best to measure adaptation directly, and to use it as one of many equally

weighted objective functions. Fitting models against adaptation directly is important

for taking full advantage of the Adaptive Exponential model type.

In order to optimize reduced models, it was necessary to develop “optimizer-friendly"

implementations of these models. As described in section 2.3.2.4, I developed three

different optimizer-friendly reduced models: the Izhikevich model (spanning seven

dynamical regimes), the Adaptive Exponential Integrate and Fire (AdEx) model, and

the GLIF model. Additionally I created one slower single-compartment conductance-

based model and I retrofitted a pre-existing multi-compartment conductance based

model to make a broader array of comparisons across model types.

2.5.5 Conversion Between Types and Model Exchange Across Threads

Multi-core and or multi-threaded optimization requires that information about

model properties be shareable across various processor threads. However, some very

common data types used in programming are not easily shareable between CPUs. The

release of Python 3.8 solved a subset of these problems, but this did not occur until

late 2019 so I implemented an alternative scheme for cross-thread sharing of models.

I created a new NeuronUnit class “Data Transport Container" (DTC), which can

circulate essential data about model parameters and state variables between threads.

Models on one thread were coalesced into this container, shared between threads,

and then reconstituted on a new thread. This added a small amount of overhead,
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but this computational cost was negligible when measured against the gains of using

multi-threaded processing.

Beyond the multi-threading context described above the DTC class constitutes

the necessary expansion of Neuronunit model class needed to make optimization work.

The DTC class enables the creation chromosomes from models to evaluate the fitness

of any single chromosomes, and to convert chromosomes back to models, these types

of conversions are essential to visualising Genetic Algorithm jobs.

2.5.6 Web Application for Optimization

In order to both control optimization parameters and visualize optimization results,

I also developed a web application that requires no programming skill to use, and

allows a user to select among multiple cell-specific constraints, and multiple model

types. Once the user has specified enough parameters to define an optimization job,

the job can launch, and return interactive results to the user after the optimization

job completes (typically in minutes). This is described in section 3.6.

2.6 Technical Details of the Optimizer

The sections above describe my innovations in model construction and simulation,

as well as the experimental data brought to bear on optimization. These data are used

to parameterize NeuronUnit tests, one per measurement type. For example, input

resistance data for one neuron type in NeuroElectro, or one specific neuron in the Cell

Types database, is passed to an InputResistanceTest defined in NeuronUnit. This test

“asks" the model to generate a corresponding simulation, measures the input resistance
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in this simulation output, and then assesses model/data agreement, resulting in a

score. These mechanics have been described at length previously in Omar et al. (2014),

Gerkin et al. (2019), and Birgiolas (2019).

2.6.1 Generating and Using Scores

Figure 11: Z-scores for NeuronUnit Tests. As discussed in the section 1.4, error functions were
evaluated with the assistance of the NeuronUnit library. This involves obtaining an experimental
distribution over electrophysiology feature measurements for a cell type, measuring corresponding
model output features, and then locating those features in that experimental distribution. Scores that
are closer to the experimental mean are identified as low error. The Z-score encodes this information;
a Z-score of 0 is the lowest possible error.

One way to ask whether the simulated feature is a good match to the biological

data distribution is to use a Z-score. The Z-score is defined as:

Z − Score =
s− bµ
bσ

(2.1)

where s is the value of the feature in the model simulation, and bµ and bσ are the

mean and standard deviation of that feature in the biological data distribution. The
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Z-score does not specifically assume that the biological data are normally distributed,

although this generates the most natural interpretations. In cases when the biological

data from one neuron type comes from a single experiment on a single neuron (as

with some data from the Allen Cell Types database or the Blue Brain Project), there

is no mean or standard deviation, so I compute a RatioScore:

Ratio− Score =
s

b
(2.2)

where b is the observed biological feature value. Both types of scores were then

normalized to produce an error signal in the range (0, inf) for use by the optimizer. For

example, suppose a feature(e.g. the rheobase current) had value µ±σ = (100pA±40pA)

in the biological data, and 110pA in the simulated model output. Then the following

steps were taken to transform it into an error signal:

1. A Z-score is computed: 110pA−100pA
40pA

= 0.25

2. This is converted to the range (0, 1) using the error function: abs(erf(Z)) = 0.27

3. The logarithm is computed: log10(0.27) = 0.56

The value 0.56 above represents a larger model/data disagreement than the “best"

possible value of 0 (corresponding to a Z-score of 0), but less disagreement then the

“worst" possible value of inf (truncated in practice at 100) representing a Z-score of

+∞ or −∞. The summed error signal over all n NeuronUnit tests (e.g. rheobase,

input resistance, spike rate adaptation, etc.) is:

TotalError =
n∑
i

errori (2.3)

i.e. the sum of all of the errors. Again, 0 would represent perfect model/data agreement

across all tests.

While the optimizer attempts to minimize the total error of the model according

to the equation above, evaluation of the quality of the optimized model is evaluated
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using a hypothesis testing framework. Specifically, I ask whether there is sufficient

evidence that the optimized model is representative of the distribution of feature

values observed in the biological data. The null hypothesis can be states as “the

observed features of the optimized model were drawn from the distribution of features

of biological neurons". In order to generate a test statistic for hypothesis testing, I

compute χ2, defined as (in the case of Z-scores):

χ2 =
n∑
i=1

(Z2
i ) (2.4)

This equation arises from the fact that a Z-score is simply a standardized normal

variable, and a chi-squared distribution with n degrees of freedom is simply the

distribution of n independent, squared normal variables. I compute a p-value by

comparing the observed chi2 statistic to the cumulative distribution function of the

chi2 distribution with degrees of freedom equal to the number of NeuronUnit tests

used (which is equal to the number of Z-scores produced). If this p-value is small (e.g.

< 0.05), that can serve as evidence to reject the null hypothesis, indicating that the

optimized model did not “fit in" well with the observed biological data. In contrast,

failure to reject the null hypothesis would suggests that the optimized model was

somewhat convincing in its mimicry of a biological neuron, for the features in question.

2.6.2 Mechanics of Optimization Using NeuronUnit

Here I will describe how I generate these scores concurrently for many parame-

terizations of the same model and how they guide the optimization path. I created

two different optimization code bases based on the DEAP Python package for genetic

optimization (Fortin et al., 2012), one that relied on DEAP directly, and one that relied

on the BluePyOpt package produced by The Human Brain Project (Van Geit et al.,
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2016b) (These have since been merged together), in order to achieve optimization

using NeuronUnit. A few key modules are essential to both approaches. I wrote the

file optimization-management.py to contain the logic of and methods for managing

complex optimization jobs. It helps the optimizer handle both fixed and varying

model parameters, contains methods for random sampling of model parameter spaces,

can plot models output for visualization of this space, and assists in computing the

F-I curve. I also add several methods for inter-converting between representations of

the models themselves and the chromosomes that represent only parameter values.

A created a NUFeature_standard_suite class to convert NeuronUnit features to

BluePyOpt objective functions, as outlined in simpler terms in the enumerated list

above. These classes contain a complicated nesting of fault handling statements, as

there are many reasons why a candidate model could return unusable simulation

output (typically non-biological parameter values), resulting in values like NaN and

inf; such values must be recast as poor but finite errors so that the optimizer can

see a smooth error surface. There are two flavors of NUFeature_standard_suite,

one for supra-threshold simulation experiments and another for at threshold or sub-

threshold experiments, since each experiment type produces different feature requiring

different feature extractors, and producing different sets of edge cases to be handled

independently. For example, there are more ways for a model to fail to elicit multiple

action potentials (causing all ISI-based feature extraction functions to return NaN

values), than there are to fail to exhibit a hyperpolarizing response to a small outward

current injection for the measurement of input resistance.

I created a model-parameters.py file, a collection of ordered dictionaries, that

informed the optimizer which parameters should be modifiable (in the highest-

dimensional cases, all of them) and what are reasonable (biologically plausible) search
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boundaries. This file also contains example parameter sets representing notable dy-

namical regimes, such as those shown in Izhikevich (2003). I also made this file and

its methods inter-operable with BluePyOpt model parameter management scheme.

2.6.2.1 Optimization Parameters

Optimization requires searching for better and better solution across multiple

generations of chromosomes (parameter sets), as noted in section 1.3.1. Robust

optimization for the models used here required NGEN ∼ 150 generations with a

population size (number of parameter sets explored in each generation) of µ = 35.

In other words, it took about 150 generations of mutation, crossover, and selection

to achieve convergence, and in each generation about 35 models had each of their

feautures computed and scored. These parameter values achieved an acceptable

balance between exploration of the parameter space and exploitation of favorable

regions. In some cases, values as small as NGEN = 10 and µ = 10 were tolerable,

for example when optimizing only low-dimensional cross-sections of parameter space.

In other cases, such as when the number of optimization objectives (i.e. the number

of electrophysiological features being tested) was NOBJ > 25, values as high as

NGEN = 300 and µ = 100 were required to obtain adequate results.

2.6.2.2 Multiobjective Scoring and Selection

One potential scientific goal is to maintain a diverse set of solutions (i.e. very

different parameter sets that nonetheless each produce simulations that adequately

match observed experimental measurements). The optimization literature has devel-
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oped many competing approaches for doing this (Deb et al., 2000), but it usually

involves two popular algorithms, named IBEA and NSGA2, which I investigated here.

NSGA2 uses some additional ranking mechanisms, to re-weight the perceived fitness

of each chromosome and influence the probability that it survives (or is bred into) the

next generation. For example, it tries to minimize “crowding distance", penalizing

chromosomes that aggregate in clusters, as persistent cluster formation means that

the GA becomes preoccupied with more limited regions of the solution space, harming

solution diversity. Another meta-constraint called “non-dominated sorting" ranks most

highly each chromosomes that is not unanimously defeated by any other chromosome

on any feature score. For example, though one parameter set P might produce a model

which score poorly on all features except Input Resistance, if no other parameter set

has a higher-scoring Input Resistance feature then P is retained. Consistent with

personal communication with Van Geit et al. (2007), adding in crowding distance

and non-dominated sorting typically harms optimizer performance, in the context of

neuronal model optimization, though the reason for this is not argued conclusively,

I speculate on a likely cause in the discussion of this work. A simpler “select best"

algorithm (labelled IBEA) dispenses with these tricks, performs no meta-constraint

scoring, and simply retains the fittest chromosomes for mutation, crossover, and

selection. This simpler selection algorithm was found to work well when optimizing

reduced neuronal models.
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2.6.3 Comparison to Previous Approaches to Optimization

2.6.3.1 Time-dependent Mutation

Other labs have previously developed schemes to optimize neuron models, e.g.

Druckmann et al. (2007). I retained the conceptual insights of these approaches where

they were useful for the problems at hand. For example, I utilized a time-dependent

mutation magnitude (η). The idea is that big mutations are more helpful in the

early stage of optimization, when it is important to explore the vast hyper-volume of

parameter sets and get a general picture of the error surface, and that these mutations

should be smaller during the later “refinement" stage of optimization, as the best

solutions are approached. Time diminishing η did improve genetic algorithm on

reduced model optimization problems.

2.6.3.2 Variants on Somatic Current Injection

Nearly all neuron optimization work (including this one) relies on the responses to

somatically-injected current as the domain for optimization. This is largely motivated

by the existence of a common and simple experimental analogue using patch clamp

(which drives experimental design for both the Allen Cell Types Database and The

Blue Brain Project). But there are three different strategies for choosing the subset of

these experiments that are recapitulated in optimization.

In the optimization framework I tested many different strategies for constraining

models with current injections, there were only two important differences between

all four strategies: one type of strategy constrains cell behavior at multiple values of

66



current injection, and the other strategy constrains cell behavior at a single current

injection value (rheobase or otherwise). Each strategy seeks to resolve a “bias variance

trade-off" differently, and so knowledge of bias variance trade-off is important for

understanding the dramatically different quantities of fit found.

When only one current injection value is used seemingly great fits of spike shape,

and spike time can be achieved, because the reduced models are more able be over-

fitted with respect to a limited range of data. When a model is constrained relative

to multiple current injection values, over-fitting of the model is less possible. The

optimizer produces a model that is compromised on almost all constraints, with few

exceptions.

Deliberately over-fitting models was an important optimization strategy in the

earlier development of the optimizer, as at the time the highest priority was to

verify that the optimizer was functional in a multi-spiking context, however, now

with functionality well established producing less good but more generalized fits will

become a higher imperative.

2.6.4 Feature Extraction

Each NeuronUnit test used in the optimizer represents the evaluation of a single

feature of simulated output, for example the Input Resistance. I greatly extended

the number of such features/tests covered by NeuronUnit in order to produce a rich,

multi-objective optimizer that could capture important spiking dynamics and to obtain

insights into what would be the most compact subset for subsequent use in unique

identification of models.
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2.6.4.1 Elephant Features Test Suite

Elephant (Denker et al., 2018) provides feature extraction capabilities for mem-

brane potential time series expressed using the Neo library in Python (Garcia et al.,

2014a). Eight NeuronUnit tests (five used here) are derived from Elephant feature ex-

traction, particularly those associated with passive membrane properties assessed with

subthreshold stimuli, or action potential waveform properties assessed at rheobase.

Fundamental quantities such as capacitance or input resistance are among these,

though they are not “emergent properties" of the model since they are roughly pre-

dictable from the parameters of the model equations.

2.6.4.2 Electrophysiology Feature Extraction Library (EFEL)

The Blue Brain Project developed the Electrophysiology Feature Extraction Library

(EFEL) to compute many such statistics from spike trains, and I used these to generate

tests of suprathreshold dynamics for optimization (Van Geit, 2015b).

2.6.4.3 Allen Institute Software Development Kit (Allen SDK)

The Allen Institute offers yet another set of tools for feature extraction, applying

to both sub- and suprathreshold features of neuron responses to current injection. The

reason to use Allen features in addition to the above is that some of these features

are predicated on particular current stimuli (e.g. a stimulus that is exactly 20 pA

stronger than the rheobase current).

Such stimuli either were or were not delivered to the various experimentally recorded
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neurons, and for the purposes of this thesis there is no going back and delivering

additional ones. Consequently, for model testing and optimization it makes sense to

use features–and the stimuli that generated them–that can be directly compared to

the recorded neurons. For the biological neurons in the Allen Cell Types database,

these features are available in the Allen SDK.
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Chapter 3

RESULTS

In the Results section I hope to help the reader understand what I discovered

about optimization of reduce neuron models. How well did it work? What do these

optimized models look like? And is it possible to improve existing published models

via optimization?

In section 3.1, I show how well and under what circumstances the optimizer can

work on recovering ground-truth model parameters using simulated data as input.

This is an essential step, since if an model optimized on simulated data does not

match the model that simulated it, the whole enterprise can be called into question.

In section 3.2, I use various suites of biological-data-driven tests to optimize reduced

models corresponding to real neuron types. I show how some of the assumptions and

methodological approaches underlying the a subset of the tests might be problematic,

and determine their impact on optimization quality.

In section 3.3 and 3.4, I assess the quality of these optimizations. While I focus on

representative cases in this section, an exhaustive account of all optimized models is

also available in the Appendix. I show which models lead to the best fits overall, and

for which neuron types.

In section 3.5, I show that most published models actually deviate significantly from

biological experimental data. I locate specific features underlying this disagreement,

and explain how this creates an opportunity for optimization to close the gap. I then

show that optimization can bring the behavior of the model and biological neuron

back into agreement.
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Finally, in section 3.6, I demonstrate an novel web application for optimization that

I created to showcase the work described in the other sections. This web application

can be used to setup, execute, and visualize optimization in real applications or to

teach the relevant technical concepts to trainees.

3.1 Verification of the Optimizer

The reduced models I used are known to be too simple to precisely match all

electrophysiological features exhibited by all cell types; this can be an advantage, as

this also means that they are too inflexible to fit the “noise" in the data, whether

it be random thermal fluctuations or systematic recording errors. These latter may

be quite common; sites like NeuroElectro control only whether the extracted data is

faithful to that reported in the publication, not that it reflects what was seen in the

actual experiments, or that those experiments were carefully performed. Therefore,

if the first step were applying the optimizer to fit models to real biological data, we

would have no idea whether any optimization failures (poorly fitting models) reflected

the limitations of the biological data, the limitations of the underlying model, or the

limitations of the optimizer algorithms.

It is therefore necessary to create data-source independent “ground truths", by

simulating data using the models, and using the optimizer to see if those model

parameters can be recovered using that simulated data. Because genetic algorithms

(such as the DEAP (Fortin et al., 2012) implementation used here) have notably good

performance in handling complicated error surfaces (such as Rastrigrin’s function), I

expect that my optimization frame work, which derives from it, should also be able
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to handle potentially complicated features spaces such as one would expect from the

output of a complex dynamical system like a neuron.

I wrote an algorithm that senses the edges of defined model parameter boundaries,

and defines uniformly distributed random numbers within those boundaries. Alter-

natively I could have chosen to draw numbers from uniformly distributed random

number generators, but doing so would risk testing only typical optimization cases

and excluding edge cases.

Observations Predictions Z-Scores

RheobaseTest 1.62 pA 1.62 pA 0
TimeConstantTest 13.18 ms 13.18 ms 0
RestingPotentialTest -77.43 mV -77.43 mV 0
InputResistanceTest 270.84 megaohm 270.84 megaohm 0
CapacitanceTest 48.65 pF 48.65 pF 0
FITest 7.51 Hz/pA 7.51 Hz/pA 0

Table 3: “Observed" and “Predicted" electrophysiological features match to within a few decimal
places. Here, “observed" refers to values extracted from traces simulated from a ground-truth model.
The optimizer has no knowledge of the parameters of that model, but uses these “observed features"
to attempt to discover the parameters using a genetic algorithm. The algorithm modified these
parameters in order to bring the “predicted" features values, extracted from new simulations, in line
with the “observed" ones. Each row refers to a distinct NeuronUnit test used to simulate the model,
extract a single electrophysiological feature, and compute a Z-score. The outcome of this algorithm
is shown in this table, demonstrating that the optimizer has identified a parameter set that perfectly
reproduces these features.
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Figure 12: Radar Plot of Optimizer Verification against Ground Truth. “Target" refers to
parameters from the ground-truth model. “Optimum" refers to parameters obtained by the optimizer
when trying to match the features shown in Table 3. Despite having no knowledge of the ground
truth parameters, the optimizer can discover them by feature-matching, producing a near perfect
match. Nearly all of the 11 Izhikevich model parameters are accurately recovered, with only a trivial
discrepancy in vspike.
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Figure 13: Optimizer Verification Example 1. The orange trace shows the model waveform
recovered during the process of optimization. Blue trace (not visible due to occlusion by orange
trace) depicts the simulated trace (in response to the rheobase current) from the ground truth
Izhikevich model that was used to guide optimization. The horizontal axis shows simulation time in
seconds. Clear agreement is shown in between simulated responses of the ground truth model and
the optimized model from Figure 12.
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Figure 14: Optimizer Verification Example 2. Similar to Figure 13, but with a hyperpolarizing
current injection value of −10pA applied between 100ms − 600ms to the Izhikevich model. Here
the red trace represents the response in the ground truth model, and the green trace represents
the response in the optimized model, demonstrating that responses to subthreshold stimuli can be
adequately reproduced by the optimizer.

75



Figure 15: Optimizer Verification Example 3. Similar to Figure 14, but for the AdEx model.
Because model parameters are assigned to the ground truth model randomly, an unusually small
value of C in the AdEx model produces rebound spikes and bursts. This demonstrates that the
match between the ground truth model and the optimized model is not limited to a single stimulus
condition or exclusively to only typical model parameters.

3.1.1 Verification Endpoints

My optimizer was capable of identifying model parameterizations that nearly

perfectly matched the parameters of the “ground truth" models that generated the

constraining simulated data (Figure 12). Simulated output of the two models matched

closely as well (as expected from similar model parameters) (Figures 13, 15, 14).

NeuronUnit-based electrophysiological features extracted from the traces shown in

these figures, and from other traces simulated in the course of optimization, also

showed a near-perfect match (i.e. Z-score of 0, indicating perfect optimization) (Table

3).

In these results, only a small number of features were used (Time Constant, Ca-

pacitance, Rheobase, Resting Potential, Input Resistance, and FISlope); interestingly
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only two of these involved a measurement of action potentials. Other NeuronUnit

tests that measure and judge models according to action potential Width, Amplitude,

or Threshold did not participate in guiding optimization, for reasons that will be

described in Section 4.2.4.

Results for additional models and parameterizations are given in the Appendix.

Failure of optimization verification, when it occurs, could be indicative of insufficient

constraints. By analogy, when solving a system of linear equations, finding a unique

solution requires that the number of constraining equations is greater than the number

of free variables you are solving for. Similarly, in a genetic optimization algorithm we

solve for unknown variables using stochastic principles, but the number of variables

(i.e. model parameters) we can identify is still limited by the number of independent

measurements of model output that we use. In other words, assuming that the number

of objectives in the multiobjective optimization problem, NOBJ is greater than

NDIM , the number of model parameters, optimization should be achievable. Even

when NOBJ < NDIM , such as in the examples above, optimization can still work

due to correlations or redundancies in the model that lead the actual manifold on

which models live to be of lower dimension than NDIM itself.

3.1.2 Verification Efficiency

My optimizer can recover ground truth models from simulated data in several

cases. Does it do so efficiently? How long does this optimization take, and does it get

stuck exploring irrelevant regions of parameter space?

In Figure 16, I show how the optimized model converges towards the ground truth

model over time. In can require up to 200 generations of parameter set evolution for
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tight convergence to be realized. This takes approximately 10− 20 minutes on a my

personal laptop.
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Figure 16: Evolution of Optimized Model Quality over Generations. The green line tracks
the lowest error in each generation of candidate AdEx models, the blue line shows the average
error, and the orange line shows the highest error. Optimization hyperparameters were: Number of
Generations=200, Population Size=50, Crossover Probability=0.3, Mutation Probability=0.2. The
periodic jumps in the orange error represent mutation or crossover events in which poor-performing
models were generated. These were not typically selected into the subsequent generation. Because the
crossover and mutation probabilities only sum to 0.5, the remaining half of all parameter sets in each
generation either filtered out by selection or are carried over to the subsequent generation. Extensive
hyperparameter tuning (not shown) demonstrated that this level of chromosome conservation was a
good balance between exploration and exploitation.
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3.1.3 Alternatives for Verification

The ground truth is known independently of the optimizer, so one can test

alternative strategies to see if there is a solution that represent a better match to

ground truth than the one obtained through optimization. For example, one can

exhaustively search the solution space to look for the best model. An exhaustive

search might be a reasonable (but lazy) approach when there are only a small number

of free parameters, however using a sampling grid of 25 distinct parameter values

for each of N parameters mean that 25N total models must be examined. Even for

a simple model (N = 5) this represents nearly 10,000,000 model evaluations, and

of course the problem gets much worse with each additional parameter. 25 values

for each parameter may also be insufficient resolution when the parameter regime

exhibiting the desired behavior is narrow.

3.1.4 Implications of a Verified Optimizer

This success suggests that for reduced models, there is unlikely to be much

degeneracy in model parameters where distinct combinations of parameters produce

identical simulated responses across a range of stimuli. This might also be expected

from the motivation of reduced models, which is to identify and consolidate redundant

or unimportant biophysical equations/parameters into a handful of key reduced model

equations/parameters. Importantly, I showed that the electrophysiological features

used here, which correspond to measurements that can be made in real neurons, were

sufficient for this task.

Confident that the optimizer can identify model parameterizations that can generate
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observed electrophysiological features in principle, the focus of the remaining sections

becomes the localization of other potential sources of model/data disagreement.

3.2 Limitations of Optimization using Experimental Data

3.2.1 When is Optimization Possible Using Real Biological Data?

Not all of the available data-sets are conducive to optimizing reduced models. For

example, consider the cerebellar Purkinje cell. The Purkinje cells has a very large

surface area (much of it the dendrites that support 100, 000 synaptic inputs). It

consequently has a large capacitance and a low input resistance, and as such it demands

a very large current stimulus to elicit a rheobase spike: 680pA. However, most reduced

cells typically cannot exhibit such a large rheobase under any parameterization that

otherwise looks like a neuron model. The fact that an expansive dendritic tree is able

to absorb so much somatically injected current may be difficult for a reduced model

to capture. Specifically, the upper limit for rheobase found in results was typically

as 350− 400pA, but even this comes at the expense of sacrificing fit quality for all

other electrophysiological features. Consequently, optimized models of the Purkinje

cell always failed to be biologically plausible. The p-value of the χ2 statistic was

always sufficiently low to reject the null hypothesis that such optimized models were

representative of the biological data distribution. Like the Purkinje cell, the Mitral

cells of the main olfactory bulb also escaped successful model fitting. These mitral

cells also have high membrane capacitance 235pF , and reduced models could not

reproduce their features well. The Izhikevich model was achieved the lowest overall

χ2 statistic for Purkinje cells and Mitral cells, being slightly more flexible than the
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Test name observations predictions Z-Scores

RheobaseTest 190.0 pA 199.52 pA 0.04
TimeConstantTest 13.8 ms 6.21 ms 0.32
RestingPotentialTest -77.5 mV -39.29 mV 0.26
InputResistanceTest 132.0 MΩ 44.94 MΩ 0.45

Table 4: Predicted and observed features for neuron 471819401 from the Allen Cell Types database,
following optimization of the AdEx model against data from this neuron. Other neurons showed
similar optimization performance, and are shown in the Appendix.

AdEx or conductance based models (see Tables 4 and 5). In general, however, these

reduced models may have been developed with smaller, more electronically compact

cortical and hippocampal cells in mind.

3.2.2 Conflicts between Experimental Features Constraining Optimization

Feature values extracted from multiple data sets appeared to be in conflict for

some cell types. For example in the section below I show that the rheobase value was

often incompatible with some passive electrophysiological feature values, such that

good optimization could be achieved with one set or the other, but not both together.

3.2.2.1 Tradeoff Patterns in Data-driven Tests in Subtheshold and at Threshold

Electrical Properties

Using data from the Allen Cell Types neuron with ID 471819401, I was able
to optimize both AdEx and Izhkevich models, such that both models would agree
with rheobase, time constant, resting membrane potential, and input resistance,
experimental values. Some tradeoffs were needed in order match all of the values, as
these features could not all be perfectly matched at once.
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observations predictions Z-Scores

RheobaseTest 190.0 pA 190.48 pA 0
TimeConstantTest 13.8 ms 1.9 ms 0.94
RestingPotentialTest -77.5 mV -70.65 mV 0.03
InputResistanceTest 132.0 MΩ 25.47 MΩ 0.74

Table 5: Same as the Table 4 but for the Izhikevich model.

observations predictions Z-Scores

FITest 0.18 Hz/pA 0.18 Hz/pA 0.01
RheobaseTest 70.0 pA 70.26 pA 0

chi_square 0.000083
p_value 1.000000

Table 6: Summary statistics of fit quality using AdEx model, when it is constrained against FITest,
and Rheobase Test alone. The very low χ2 statistic (and high p-value) indicate that there was no
evidence that this optimized cell model produced behavior outside of the range of biological neurons
of the same type, at least for the features examined here.

3.2.2.2 6239608801 AdEx

The need to match the rheobase appeared to be interfering with the ability of the

optimizers to match many other features. The rheobase is essentially the knee of the

FI curve. An alternative strategy is to produce models that match the slope of the FI

curve. Here I show two out of 12 examples demonstrating that that fitting models to

the FISlope and rheobase only, leads to generally better agreement as there is less

conflict between these two tests.
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Features observations predictions Z-Scores

FITest 0.18 Hz/pA 0.18 Hz/pA 0
RheobaseTest 70.0 pA 66.61 pA 0.04

chi_square 0.00155
p_value 1.00000

Table 7: Similar to Table 6, but for Izhikevich model. Since two major model classes are better able
to fit to FITest and Rheobase alone, it suggests that these two measurements might be less conflicted
in models.

3.2.2.3 6239608801 Izhikevich

By “good optimization" I mean that the optimized model exhibited behavior that

was consistent with all of the features. Models seemed to have particular difficulty

in recapitulating an accurate fit for rheobase, while simultaneously satisfying the

fitness criteria imposed by the time constant, input resistance, capacitance and resting

membrane potential. This was less problematic when using the slope of the FI curve

as a feature, suggested that it was not spiking per se that caused the problem.

This was also evident when working across datasets. For example, when optimizing

against data from both NeuroElectro and the Allen Cell types database, it was typically

impossible to satisfy data-derived features from both sources simultaneously, even

when the same nominal neuron type was being described.

3.2.3 Experiment Fitted Model Results on Reported Data Types

Because some features derived from the data were incompatible or unreliable, it

was necessary to create additional NeuronUnit tests from other feature extraction
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Source Cell ID Subset of already listed tests Sample type

Allen 48249376[1] Y Single cell
Allen 47181940[1] Y Single cell
Allen 623893177[1] Y Single cell
Allen 623960880[1] Y Single cell
Allen 482493761 N Single cell
Allen 471819401 N Single cell
Allen 623893177 N Single cell
Allen 623960880 N Single cell

NeuroElectro Olfactory Mitral Cell N Mean of cells
NeuroElectro Neocortex pyramidal cell layer 5-6 N Mean of cells
NeuroElectro Cerebellum Purkinje cell N Mean of cells
NeuroElectro Hippocampus CA1 pyramidal cell N Mean of cells

Table 8: Properties of the experimental data used in this section. Two data sources (NeuroElectro
and the Allen Cell Types database) were used to fit neuron models. All Allen Cell Types data come
from cortical neurons of various types. Allen Cell Types data correspond to individual recorded cells,
and NeuroElectro data come from mean feature values reported across many neurons of the same
nominal type.

name CA1 pyramidal Purkinje NCP Layer 5-6 Mitral 623960880 623893177 471819401 482493761 6239608801 6238931771 4718194011 4824937611

RheobaseTest 189.24 pA 680.79 pA 213.85 pA NaN 70.0 pA 190.0 pA 190.0 pA 70.0 pA 70.0 pA 190.0 pA 190.0 pA 70.0 pA
InputResistanceTest 107.08 Mohm 142.06 Mohm 120.67 Mohm 130.08 Mohm 241.0 megaohm 136.0 megaohm 132.0 megaohm 132.0 megaohm NaN NaN NaN NaN
TimeConstantTest 24.5 ms NaN 15.73 ms 24.48 ms 23.8 ms 27.8 ms 13.8 ms 24.4 ms NaN NaN NaN NaN
CapacitanceTest 89.8 pF 620.27 pF 150.58 pF 235.75 pF NaN NaN NaN NaN NaN NaN NaN NaN
RestingPotentialTest -65.23 mV -61.59 mV -68.25 mV -58.14 mV -65.1 mV -77.0 mV -77.5 mV -71.6 mV NaN NaN NaN NaN
InjectedCurrentAPWidthTest 1.32 ms 0.41 ms 1.21 ms 1.61 ms NaN NaN NaN NaN NaN NaN NaN NaN
InjectedCurrentAPAmplitudeTest 86.36 mV 71.23 mV 80.44 mV 68.4 mV NaN NaN NaN NaN NaN NaN NaN NaN
InjectedCurrentAPThresholdTest -47.6 mV -46.89 mV -42.74 mV -38.9 mV NaN NaN NaN NaN NaN NaN NaN NaN
FITest NaN NaN NaN NaN NaN NaN NaN NaN 0.18 Hz/pA 0.12 Hz/pA 0.18 Hz/pA 0.09 Hz/pA

Table 9: Reported Cell Features for 12 cells. The first 4 are taken from NeuroElectro and the
remaining 8 from the Allen Cell Types database. Unreported data values are encoded as “NaN".

libraries, as described in the Methods. We used data from four different distinct cell

types with data obtained from NeuroElectro and four different single cortical cells from

the Allen Cell Types database, for a total of eight sets of feature data to optimize. We

then optimized against this data using a suite of nine NeuronUnit tests. Additionally,

to explore if FITests, and Rheobase fitted better on their own, an additional four

non-unique test sets where also created. The entire set of tests is presented in tabular

form (9). See C in the Appendix for the URLS for the data sources.

I then used three different models (AdEx, Izhikevich, and a conductance-based

point neuron) and optimized them using these test suites. I attempted to also use GLIF
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Model Type Experimental Data ID χ2 p-value

IZHI 4824937611 0.034791 1.000000e+00
IZHI 4718194011 0.051691 1.000000e+00
IZHI 6238931771 0.086530 9.999999e-01
IZHI 6239608801 0.001550 1.000000e+00
IZHI 482493761 1.292924 9.956362e-01
IZHI 471819401 1.443618 9.936050e-01
IZHI 623893177 1.334789 9.951233e-01
IZHI 623960880 1.014464 9.981553e-01
IZHI Olfactory Bulb Mitral Cell 6915.484007 0.000000e+00
IZHI Neocortex pyramidal cell layer 5-6 2.443396 9.643182e-01
IZHI Cerebellum Purkinje cell 19.885113 1.077956e-02
IZHI Hippocampus CA1 pyramidal cell 1.273070 9.958661e-01

Table 10: Fit quality for two model types optimized against the data in Table 9. Lower χ2 and higher
p-value represents a better fit. p-values > 0.05 lack evidence to reject the null hypothesis that the
optimized model comes from the same distribution as the experimental data. p=1 indicates perfects
agreement between the optimized model and the experimental data on all measured features.

models here, although test results often looked convincing, GLIF model waveforms

looked strange. The result is 3 × 8 = 24 model-data combinations. For each each

member of this 24 element matrix we wanted to know if the fitted model behaved

in a biological plausible manner, we were interested to know if fitted models were

convincing mimics of in vivo cells, at least with respect to the measurements models

were trained to fit. In the process of coalescing results the single 24 element matrix,

the matrix was broken into two: one 24 element matrix (Table 8) and a smaller matrix

consisting of only the conductance based model test combinations that executed

without failure (Table 12).
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Model Type Experimental Data ID χ2 p-value

ADEXP 4824937611 0.000017 1.000000e+00
ADEXP 4718194011 0.011029 1.000000e+00
ADEXP 6238931771 0.005062 1.000000e+00
ADEXP 6239608801 0.000083 1.000000e+00
ADEXP 482493761 86.949529 1.887379e-15
ADEXP 471819401 0.370856 9.999575e-01
ADEXP 623893177 0.273030 9.999870e-01
ADEXP 623960880 0.140222 9.999990e-01
ADEXP Olfactory Bulb Mitral Cell 10.353878 2.410614e-01
ADEXP Neocortex pyramidal cell layer 5-6 0.013262 1.000000e+00
ADEXP Cerebellum Purkinje cell 353.692447 0.000000e+00
ADEXP Hippocampus CA1 pyramidal cell 0.735616 9.994308e-01

Table 11: Same as Table 10, but for AdEx models.

Model type Experimental Data ID χ2 p-value

conductance model Hippocampus CA1 pyramidal cell 17.21 0.027
conductance model olf-mit 26487.51 0.0
conductance model Neo cortex pyramidal cell layer 5-6 2.56 0.95
conductance model 4824937611 2.17 0.97
conductance model 471819401 0.870 0.99
conductance model 482493761 0.036 0.99
conductance model 6238931771 1.441259 0.993641

Table 12: Same as Table 10, but for a single-compartment conductance-based model.

3.2.4 Across Model Performance Comparisons

As stated in the Methods, I use the χ2 statistic as a summary of optimized model

quality, with smaller values reflecting fits that better recapitulate the biological exper-

imental data, and non-significant p-values–lack of evidence that the model disagrees

with that data–as evidence of success. The Izhikevich Model and a Conductance-Based
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Point Neuron Model were able to achieve such small χ2 statistics (and non-significant

p-values) when seven or eight of the tests (excluding rheobase) were considered to-

gether. For example the Izhikevich model fitted to a Hippocampus CA1 pyramidal

cell data achieved (χ2, p-value) = (2.13, 0.98), and the Olfactory Bulb Mitral cell

achieved (χ2, p-value) = (2.02, 0.98). A model whose every feature was exactly equal

to the mean observed in the experimental data would have all Z-scores equal to 0, a

χ2 statistic of 0, and a p-value of 1, by definition. Thus an extremely high p-value

(such as those above) is evidence that the optimized model is much closer to the mean

of the data distribution than a random experimental neuron. This is exactly the result

one would expect from successful optimization.

3.2.5 Sources of Optimization Failures

When optimization was not successful, was this due to a fundamental inability of

a given reduced model to represent the behavior of a given neuron type? In order to

make this claim, I first had to rule out alternative possibilities.

3.2.5.1 Distributions not Well-summarized by the Mean

The optimizer fits to the mean of a feature value, but as shown in section 2.5.1, the

mean value of a feature is in some cases a misleading summary of the typical values.

For example, the olfactory bulb Mitral cell exhibited bi-modal feature distributions

(possibly due to lumping with the Tufted cell, a distinction that may not have been

appreciated when the data was originally collected). Beyond that, the Neuroelectro

data reflects a mean over different laboratories, animals, and recording epochs. The
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mean of a population can often be a robust summary, however there are circumstances

when this is not true. I plotted all the feature distributions for all the neurons used

here (see Appendix), examined these by eye and made note of those where the mean

was not a good summary of the typical value (due to multimodality, extreme skew, or

small sample size). Note that this only applies to the Neuroelectro data; the other

data sources report features for single instances of neurons, so the model being fit is a

model of that specific neuron, not of a neuron type more generally.

3.2.5.2 Distributions with an Uncertain Mean

The NeuroElectro data represented distributions over cells of the same nominal

type. For some cell types, reduced models were hard to optimize against these data

even when the distributions are normal-like, and thus the mean and the mode are

well-matched. In order to understand whether the source of these difficulties was

in the data themselves, I examined the standard error of the mean (SEM) for each

feature. Like the standard deviation, the SEM is a prediction of uncertainty in

each measurement, but it reflects uncertainty about the value of the mean itself,

rather than simply the variability in the measurement across neurons of the same

type. A large SEM might reflect such variability, or simply a small sample size. In

either case, a large SEM means that the optimization target may not reflect the true

properties of a typical neuron of that type. These SEM values, for several cells and

electrophysiological features, are shown in Table 13.
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Rheobase SpikeThreshold SpikeHalfWidth SpikeAmplitude MembraneTimeConstant RestingMembranePotential InputResistance
Neuron Type

Hippocampus CA1 pyramidal cell 122.88 1.85 0.12 3.68 3.88 0.72 12.57
Olfactory bulb (main) mitral cell NaN 5.69 0.12 2.83 5.42 1.39 20.17
Cerebellum Purkinje cell 419.81 2.00 0.05 0.57 NaN 3.69 19.26
Neocortex pyramidal cell layer 5-6 128.87 1.92 0.17 1.49 2.56 1.84 27.93

Table 13: The standard error of the mean (SEM) described the uncertainty that the sample mean
value of a feature (across neurons) is close to the population mean. The SEM values describe that
uncertainty for the sample means of various features for each of 4 cell types in NeuroElectro.

3.2.6 What is the Value of a Model Based on Average Feature Values?

I am not the first to observe that fitting a model to the mean of feature values across

a distribution of cells of the same type may not result in a model that well-described

an actual neuron from that distribution. Neuron modelers have some awareness of

this problem which has been thoroughly characterized in Marder and Taylor (2011),

though it remains underappreciated. This is especially obvious when the feature

distribution is multi-modal (such as inset-e in the figure below), but it could also

result from hidden covariance structure among the features (Figure 17).
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Figure 17: Lessons from Marder. As shown in Marder and Taylor (2011), when neurons of a
given type are distributed through parameter space, the mean of these parameters across neurons
(red cross) is at a separate location from the model one would obtain by using different neurons to
contrain different parameters (blue triangle).

Previously in the Methods (Section 2.5.1), we showed that some feature distribu-

tions are bimodal. Consider a cell type which had an underlying bimodal distribution

for input resistance, with a mean exactly between the two modes. If we optimize

a neuron against this mean value, then the optimized neuron does not describe the

modes (where most of the cells are actually located) at all. Conversely, suppose that

we optimize each neuron from the distribution individually, and then produce a model

which just averages across the parameter values of each of these optimized models. Its
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entirely conceivable that that this “mean model" would produce measurements that

were similar to the mean of the feature distribution. However, when we are dealing

with a nonlinear dynamical system, this is by no means certain (and perhaps not even

likely). This mean model could also exhibit much higher or lower feature values. For

example, we expect that even these comparatively simple reduced models have multiple

regimes characterized by sharp transitions in parameter space between, for example,

regular spiking behavior and bursting behavior, or tonic-bursting vs chattering. What

would it even mean to split the difference between two such fundamentally different

regimes?

In order to examine this question further in the context of my optimizer applied

to reduced models, I created two models from each model class (e.g. Izhikevich) with

different sets of parameter values. I simulated each of these models, computed all of the

measurements associated with the core NeuronUnit tests (rheobase, input resistance,

capacitance, and membrane time constant), and then simply averaged them together

across the two models. I call these the “mean features" as each one reflects the mean

across two parameterizations of the model. In parallel, I also create a “mean model"

(Figure 18) which reflects the average of the parameters themselves, and then measure

the same set of features for this mean model. I then ask the question: "Do the features

from the mean model match the mean features?" If these match nearly all of the time,

we can feel confident that optimizing a model based on the mean features will produce

a model that is representative of the parameter space of the neurons individually. In

other words, if we had access to the measurements from the individual neurons, and fit

models to those, then the mean model obtained above should lie somewhere between

those models in parameter space. By contrast, if the mean model does not match the
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mean features, that would suggest that models obtained by optimizing against mean

features may not be representative in this context.

The results are shown below. In Figure 18, I show a representative example using

two random locations in parameter space. While some of the differences between

the two parameter sets may look small, this is only a reflection of the scale being

dominated by the parameters that intrinsically have the largest values.

Figure 18: Construction of a Model from the Mean. Two random AdEx models (yellow and
purple traces) are drawn from multivariate uniformly distributed random number generators. The
mean model (red trace) is defined as the location in parameter space exactly in between the two
random models in every dimension. Logarithms and absolute values are used to scale the radial
dimension for clarity.

I then compute an index of agreement between features derived from the mean
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model vs mean features observed across the original two models. This index, α =

| (x−a)
(b−a) |, where a and b are the feature values for the original two models, and x is the

feature value for the mean model, can be interpreted as follows: If α = 0.5, then the

mean model produces features precisely in between those produced by the two original

models (Figure 19). If α = 0 or α = 1, then the mean model is nearly identical (in

that feature) to one of the original models. An example of values ranging between 0

and 1 is shown in Figure 20. If α > 1, then the mean model produces entirely new

feature values that would not be expected from an interpolating between the two

original models.

Figure 19: Example of Mean Model vs Mean Feature Agreement. Two random models can
produce feature values whose mean (green) is equal to the feature values (red) produced by a model
defined by the mean of their parameters. In such case the index of agreement α = 0.5.
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Figure 20: Example of Mean Model vs Mean Feature Disagreement. Similar to Figure 19,
but now showing several disagreements, between mean model and mean feature value (in Capacitance,
Time Constant, and AP Amplitude).

Figures 21 and 22 show that, while α = 0.5 is the mode of the distribution as

might be expected, considerable mass lies outside the mode, including many values of

α > 1. Therefore any model optimized against the mean feature value across neuron

cannot be equivalent to a model drawn from the mean of those neurons’ multivariate

parameter distribution.

95



Figure 21: Mean Model vs Mean Features for AdEx Model. For 100 pairs of randomly
sampled AdEx models, I computed the index α of mean model vs mean feature agreement, defined
(see text) such that a value of 0.5 indicates that the mean model produces features identical to those
obtained by simply averaging feature values produced by the original models. The mode lies at 0.5,
but density in other regions indicates that many mean models do not agree with the mean feature
value.
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Figure 22: Mean Model vs Mean Features for the Izhikevich Model. Same as Figure 21,
but for the Izhikevich model.

In Figures 19 and 20, I show the computed feature values from simulations of the

constructed as in Figure 18. While in some cases the mean model produces feature

values that lie between (are equal to the mean of) the feature values of the original

two models, in other cases there is a massive discrepancy. This discrepancy appears

more common in the Izhikevich model than in the AdEx model, potentially because

there is a greater likelihood that the two original random models describe different

dynamical regimes.

During the course of this work I observed that generally the mapping between

reduced model parameters space and the feature space is not isomorphic, and thus

fitting models to the mean feature values for a distribution of neurons is a dangerous

exercise even if the data are normal-like.
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3.3 Which Limitations are Due to Abstract Models?

Some of the limitations in the optimization of reduced models may come from

their form; the abstractions they encode in their equations and parameters may come

at the price of failing to exhibit key electrophysiological behaviors.

3.3.1 A Somatosensory Layer 5 Pyramidal Neuron Model

In order to test this, I extend the same optimization framework to a multi-

compartmental, conductance based layer 5 pyramidal cell model (Van Geit et al.,

2016a) (Figure 23). This model subserved as one of many component neurons in the

original formulation of the Blue Brain Project Markram et al. (2015).
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Figure 23: Visualization of a Reconstructed Layer 5 Pyramidal Neuron. Unlike the reduced
model which has point geometry, the Layer 5 pyramidal neuron is spatially extended. Regions of the
neuron with distinct sets of parameters are color coded: apical dendrites (magenta), basal dendrites
(red), and axons (purple).

This elaborate biophysical model is philosophically the opposite of the reduced

models focused on in the majority of my thesis work. This model incorporates complex,

biophysically detailed phenomena instead of excluding them in the hopes of capturing

the key dynamics of membrane potential time series. For example, this model is

capable of a phenomenon the back-propagating action potential (BaP). BaPs can

move travel in reverse direction, when they originate from distal dendrites and arrive

at the soma where BaPs are free to sumate with incoming EPSPs (Spruston et al.

(2013)).
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This results in action potential waveforms far more complex than those produced

by reduced models (none of which implement BaP waveforms at all) are capable of

(Figs. 24 and 25).

Figure 24: AP Waveform in the L5PC Model. A current injection just sufficient for causing a
single action potential (AP) is applied to the L5PC model soma, for one second from 100ms−1100ms
in this model. The AP waveform is briefer but more complex than reduced model AP shapes. After
the AP is complete, the somatic voltage plateaus at a depolarized level for the entire length of the
simulation. Genuine plateau potentials do occur in the L5PC dendrites, where Ca2+ channels play a
role (Zhu, 2000). Plateau potentials in the dendrites typically result in a burst in the soma in vitro.
By contrast, a plateau potential in the soma is less common. This phenomenon is driven by coupling
to the distal dendrites, and are thus obviously neglected in reduced models of point neurons.
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Figure 25: AP Waveform in the L5PC Model. Same as Fig. 24, but zoomed into show spike
onset and after hyperpolarization.

The model itself is extremely complex and contains many free parameters. Some
of these can be seen in the partial list of parameters in Figure 14. For example, these
parameters include a number of distinct ionic conductances with distinct values in
the soma, apical dendrites, and axon. There are also other parameters (not displayed
in Figure 14) which are fixed, i.e. they are not modified during optimization.

An existing model of a layer 5 somatosensory rat, hind leg region was acquired by

cloning an the BluePyOpt GitHub Repository (Van Geit et al., 2016a). In order to

optimize this model using NeuronUnit tests, I used a novel methodological approach

described in the Appendix (B). I “streamed" waveforms that were evoked in the

complex model, and assigned them to a temporary NeuronUnit model types as needed.

The code used to implement this approach is available in the public repository: (Jarvis,

2020c).

I then applied my optimizer to this model and evaluated the quality of the resulting

optimized model (Table 15). The unoptimized model had statistics:

(χ2, pvalue) = (13.56, 0.094)

Whereas the optimized model produced statistics:

101



Parameter Name Value

gNaTs2_tbar_NaTs2_t.apical 0.0261
gSKv3_1bar_SKv3_1.apical 0.0042
gImbar_Im.apical 0.000143
gNaTa_tbar_NaTa_t.axonal 3.138
gK_Tstbar_K_Tst.axonal 0.0893
gamma_CaDynamics_E2.axonal 0.00291
gNap_Et2bar_Nap_Et2.axonal 0.00683
gSK_E2bar_SK_E2.axonal 0.00710
gCa_HVAbar_Ca_HVA.axonal 0.000990
gK_Pstbar_K_Pst.axonal 0.974
gSKv3_1bar_SKv3_1.axonal 1.022
decay_CaDynamics_E2.axonal 287.2
gCa_LVAstbar_Ca_LVAst.axonal 0.00875
gamma_CaDynamics_E2.somatic 0.000609
gSKv3_1bar_SKv3_1.somatic 0.303
gSK_E2bar_SK_E2.somatic 0.00841
gCa_HVAbar_Ca_HVA.somatic 0.000994
gNaTs2_tbar_NaTs2_t.somatic 0.984
decay_CaDynamics_E2.somatic 210.5
gCa_LVAstbar_Ca_LVAst.somatic 0.000333

Table 14: The Layer 5 Pyramidal Cell model (L5PC, (Van Geit et al., 2016a) ) contains hundreds of
parameters, but only a subset of these are tunable. A subset of 20, spanning conductances in the
soma, apical dendrite, and axon, are shown here. Most models considered in this thesis have < 14
parameters; by contrast, having 20 parameters makes many approaches to model fitting intractable.
My optimizer explore the space spanned by these 20 parameters to produce a Primar Somatosensory
Cortex Layer 5 Pyramdial Cell model that agrees with the experimental data.

(χ2, pvalue)=(6.63, 0.57).

Therefore, both the optimized and unoptimized model are not decisively outside

the realm of biological plausibility according to the core NeuronUnit features, and

optimization clearly improves such plausibility. In both cases, this may in part reflect

the highly variable nature of the biological/experimental results, rather than the

verisimilitude of the optimized model. Note that high variability of the values recorded
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for a given feature makes it very easy to achieve a Z-score of low magnitude (by the

definition of a Z-score).

Test Name Observations Predictions Z-Scores SEM

RheobaseTest 213.9 pA 225.0 pA 0.065 128.9
InputResistanceTest 120.7 Mohm 50.7 Mohm -0.90 27.9
TimeConstantTest 15.7 ms 16.76 ms 0.14 2.6
CapacitanceTest 150.6 pF 330.7 pF 1.28 1.49
RestingPotentialTest -68.3 mV -78.1 mV -1.5 44.0

InjectedCurrentAPWidthTest 1.21 ms 0.15 ms -1.98 0.175
InjectedCurrentAPAmplitudeTest 80.4 mV 89.6 mV 0.72 1.49
InjectedCurrentAPThresholdTest -42.7 mV -59.6 mV -2.09 1.92

Table 15: Observed and Predicted features for the Layer 5 Pyramidal Cell. After equip-
ping the L5PC model for NeuronUnit testing, this model was optimized against L5PC data from
NeuroElectro. Observed and predicted values could be made to agree on a subset of tests, such
as rheobase and time constant, however in the larger test ensemble there was still a tradeoff in
optimizing for one value vs another. While this model falls within the range of biological plausibility
(χ2 = 13.6; p = 0.094), the failure of the optimized model to achieve Z-scores consistently near zero
suggests that, even with an extremely flexible conductance based model containing many parameters,
the mean feature values reported in Neuroelectro are mostly likely mutually incompatible within a
single neuron.

It is also worth noting that optimized models vary depending upon which features

are used to generated the constraining NeuronUnit test; one can improve optimization

quality by choosing a subset of tests, as there was an irreconcilable trade-off between

the membrane time constant, the action potential width, and the input resistance,

with optimization only able to match the experimentally-reported means of only

1-2 (but not all 3) of these simultaneously. Given this experimental variability and

this trade-off between features, the optimization is at least satisfactory. However,

the inability of the optimizer to find an even better solution, with Z = 0 across all

features, indicated that there are fundamental conflicts between reported mean values

across NeuroElectro features. This conflict limits not only the possibility of optimizing

reduced models, but also complex, multi-compartmental conductance-based models.
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Therefore, reduced models do not appear to be the limiting concern; rather, data

quality/consistency is.

3.3.1.1 Caveats to the L5PC Optimization

It is also likely that many of the reported values in NeuroElectro were taken

from experiments conducted at non-physiological temperatures. Since temperature

modulates action potential width Goldin and Mindlin (2017) (and indeed all kinetic

parameters), it is possible that a different result would be obtained if all data had

been collected under the same, physiological temperature.

NeuroElectro lumps together layer 5 cortical pyramidal cells neurons from prefrontal

cortex, somatosensory cortex, and primary visual cortex together into one dataset.

Therefore it is also possible that while mean features across neurons of a single L5PC

type (e.g. somatosensory) would have been mutually consistent, the frankenstein

resulting from lumping all of these together was the source of the problems.

Finally, the L5PC model was very slow to simulate relative to the reduced models

developed in this thesis work. Where a single simulation of a typical reduced model

described here is evaluated on average took only 0.0025 seconds, the L5PC model on av-

erage took 5.74 seconds; evaluating the rheobase current required 34.8 seconds. Conse-

quently it was difficult to run tens of thousands of simulations (across chromosomes and

generations), especially in a development/debugging context. The L5PC model docu-

mentation provide by the Blue Brain Project, suggests that NGEN = 100;µ = 100

would define an appropriate GA search scale, however, due to time limitation I used

smaller values. I nonetheless do not believe that longer optimization would have

changed the major results, as the gains in fit quality would have been small. However
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this unintentionally supports a major thrust of this thesis: if simulating very complex,

very slow models doesn’t solve any problems that simulating simple, fast ones does,

then why bother with the former?

3.4 Optimized Single Neurons

In the previous sections we saw that optimization of models to the mean features

reported across many neurons, even of the same nominal type, is conceptually and

empirically flawed. The remainder of the optimization results will focus instead on

the optimization of single neurons. In other words, I will produce optimized models

that used only features extracted from recordings of the same neuron, and those

models will putatively represent any neuron that behaves as that one did. This

conveniently eliminates not only variability across neurons of the same type, but

also variability across recordings sessions or labs, since by experimental necessity

intracellular recordings are collected in a matter of minutes in a single lab.

Table 16 which constraints (i.e. NeuronUnit tests were used to guide this process.

These constaints were different from those used in the NeuronUnit tests for two

reasons: a) NeuronUnit contains very little data about some of these features and

b) the single neuron data used here was collected using a family of suprathreshold

stimuli that allow many complex spike-pattern features to be calculated.
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Feature Name Description
adaptation-index Adaption Index for above 0mV spikes
adaptation-index2 Adaption Index for a mixture of above and below 0mV spikes
time-to-first-spike The time in seconds to first spike

mean-AP-amplitude The average in AP amplitude
spike-half-width Spike width measured at half amplitude
AHP-depth After Hyperpolarization Depth

minimum-voltage Minimum voltage in VM recording
peak-voltage Peak voltage in VM recording

time-to-last-spike Time elapsed until final spike.
AHP-depth-abs Mean after-hyperpolarization amplitude.
all-ISI-values All Inter Spike Interval Values
voltage-base The base voltage of VM while undergoing stimulus. Often not the minimum VM

min-voltage-between-spikes The minimum voltage between spike in VM , while neuron undergoing stimulus
Spikecount Number of spikes observed in model, given appropriate AP

Table 16: These 14 features were identified from Van Geit (2015b) as useful for fitting single neuron
models for which responses to suprathreshold stimuli were available. Unlike the features used in
NeuroElectro, these features can distinguish between different temporal patterns of spiking. Special
care was taken to minimize the impact of AHP depth and Minimum Voltage between spikes, as
reduced models struggle to match these due to inherently impoverished dynamics.

3.4.1 Optimization of Blue Brain Project Neurons

I use two data sources for these results. First, I use a somatic current injections

conducted on a rat somato-sensory hind limb neurons as part of the Blue Brain

Project.

Figure 26 shows an example of an AdEx model optimized against data from such

a neuron, which provided a challenging response (to somatic current injection) to fit.

For example, while spike rate adaptation can be observed in this neuron, it is not

monotonic: while the inter-spike-intervals (ISIs) are generally increasing, the final ISI is

actually slightly shorter than the penultimate one. Nonetheless, the optimizer achieves

a reasonably good match to this pattern of spikes, as well as to the resting potential

and the spike threshold. It performs less well at capturing the hyperpolarization

between spikes. Similar results are shown using an Izhikevich model (Figure 27). The

AdEx model is somewhat better at matching spike times than the Izhikevich model,

consistent with the literature (Rossant et al., 2011).
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Figure 26: An Adaptive Exponential (AdEx) model was optimized to both the spike times and
shapes from a single neuron in the Blue Brain Project (BBP) Microcircuit Portal data (taken from
animal ID B95). The real biological neuron is the orange trace, and the simulated trace is shown
in blue. While there as some “misses" in the subthreshold behavior in between spikes, and in the
amplitudes of the spikes, due to fundamental limitations in the dynamics of the model, the basic
pattern of spiking is successfully recapitulated.

Figure 27: Similar to Fig. 26, but instead using an Izhikevich model. Here optimisation is a bit
worse, but not poorer than the best out-of-sample predictions of spike timing from previous efforts.
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3.4.2 Allen Cell Types Database Neurons

I then used similar data for mouse neurons taken from primary visual cortex and

optimized the AdEx model (which gave the best results for the BBP data considered

above). These results were improved over those using the BBP neuron data. As shown

in Figures 28 and 29, optimized models of this flavor were capable of reproducing

patterns of spikes and (to a better extent than using the BBP data) subthreshold

dynamics. The same optimized model was also capable of reproducing the patterns of

spikes in response to different amplitudes of somatic current injection (Figs 28 and

29).

Figure 28: An AdEx Model was fitted to suprathreshold responses from Allen Cell Types cell id
476053392. The optimized model matches the spikes times of the experimental data in response to
the same stimulus.
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Figure 29: Optimized AdEx Model from Allen Cell Types (B). Same as above, but for a
somatic current injection of larger magnitude.

3.4.3 Comparison to Best-case Scenarios

Since these result now concern fits to single neurons, I cannot use the χ2 measure

of agreement between the optimized model and the distribution of the data; the

distribution now has only a single member per optimization. Instead, I will compare

the quality of these results to best-cases scenarios from prior research. I will use the

“variance explained ratio" between the experimentally recorded data and the model

simulation in response to the same stimulus.

Previously, a competition was held (Naud et al., 2009) inviting participants to

predict spike times (in response to specific patterns of somatic current injection)

for well-characterized cortical neuron. The best models in this competition were

only able to predict ∼ 86% of spike times (Fig. 30), and this under conditions with

fluctuating somatic currents that actually produce more spike-timing regularity than
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square currents (Mainen and Sejnowski, 1995). Consequently, it is unlikely that in

silico models can be expected to produce a perfect match of spike times in response

to square wave current injection, tempering expectations for my optimizer. As noted

in the previous optimization efforts (Druckmann et al., 2007), it is probably mistaken

to fit models to precise spike times; real cortical neurons produce and receive noisy

currents, and likely rarely exhibit identical spike trains even in response to the same

nominal stimulus. Optimization on derived features of spike timing and rate, such as

statistics of distributions of ISIs, of F-I curves, is a more promising approach.

Figure 30: Conflicts between Spike Timing and Spike Shape. This figure from Rossant et al.
(2011) shows how reduced models that can fit spike times typically cannot also fit spike shape.
Several models are shown in this figure including the Izhikevich model used in current work and
a “MAT2" model, which is a more well-equipped version of the AdEx model. The MAT2 model
correctly predicts 86% of experimental spike times, but exhibits a spike threshold (a components of
spike shape) that is much higher in the model compared to the experiment. The Izhikevich model
only predicts 62% of spike times (this is also consistent with the results in this thesis), but it displays
richer subthreshold and more accurate peri-threshold behavior than the more mercenary MAT2
model.
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3.5 Published Models vs Optimized Models

Neural models and real neurons may have divergent features. Ideally, we would

identify such features and modify the parameters (or form) of the models to eliminate

this divergence. This divergence may arise for two reasons: A the model class

was not flexible enough to simultaneously satisfy all of the constraints associated

with those features, or B : the model was incorrectly fitted to constraints that are

inherently conflicting, due to issues in the underlying experimental data (see results

for NeuroElectro data in previous sections).

In the absence of complete knowledge about the sources of model/experiment

divergence for a given model, it is unknown which features should be used to fix

the problem. Modifying parameters to bring some features into alignment with

experimental data may cause other features to fall out of alignment. Ideally, we would

identify that subset of features which, when handed to the optimizer, would produce

a model which satisfies not only that feature subset, but all other features as well.

I presented some features of membrane potential waveforms back in Section 2.5.

Here I conducted a multivariate analysis analyzing hundreds of such features, asking

which were useful for optimizing published neuron models to better reflect experimental

data. This high dimensional feature space is then summarized by a lower-dimensional

subspace of key features on which optimized models differ from their pre-optimized

published counterparts, as well as from experimental data.
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3.5.1 Models and Features

In order to conduct this analysis I used 972 neuron models found in NeuroML-DB

(Birgiolas et al., 2016) and 448 experiments on cortical neurons in vitro from Gouwens

et al. (2018) (example in Fig. 31) and Markram (2006) (example in Fig. 32). Although

missing data imputation was used successfully to fill out the dataset, handling features

that could not be fully imputed based on the available waveforms, about half of all

initial models and experiments were nonetheless excluded from a final analysis, because

they did not all capable of meeting inclusion criteria. These include straightforward

rules such as “does this neuron exhibit spikes?", but also requirements about which

stimuli were tested, and whether these were appropriate for computing the features

that I used. Ultimately, 47 features were used for the subsequent analysis (out of a

total of 466 from the initial list that are technically computable in some scenarios; see

the Appendix for the full list).

Figure 31: Example data from the Allen Cell Types database. Response of a cortical cell to
a supra-threshold stimulus in the Allen Brain Institute Cell Types Database (Gouwens et al., 2018).
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Figure 32: Example Data From the Blue Brain Project. Response of a cortical cell to a
supra-threshold stimulus from the Blue Brain Microcircuit Portal (Toledo et al., 2016).

I applied feature extraction to the raw data from these experiments, using three

approaches, which I adapted to NeuronUnit: (1) EFEL, developed by the Human Brain

Project and described in section 2.6.4.2, (2) the Allen Institute SDK, developed as a

companion to the Cell Types Database (but not exclusively so) and (3) Druckmann

et al. (2013), a general-purpose set of features for spike pattern analysis, as previously

implemented for NeuronUnit in Birgiolas (2019). A common patterns was to apply

somatic current injection at fixed multiples of rheobase, and extract features from the

resulting spike patterns (Table 17).

3.5.2 Identification of Salient Features

In order to identify the electrophysiological measurements or “features" that

characterized variance in the models and the experimental data, as well as their

differences, I performed Sparse Principle Component Analysis (Sparse PCA) (Zou
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Injection 1 Injection 2 Injection 3

1.0× Rheobase current 1.5× Rheobase current 3.0× Rheobase current

Table 17: Under the so-called three-step protocol, the rheobase current is first determined uniquely
for each model or experiment, and features extracted from the response to this stimulus. Then
mutiples of rheobase (×1.5 and ×3.0) are provided as stimuli, producing additional features that can
be extracted using the library provided by Van Geit (2015b). In the experiments, similar protocols
had been run (but using additive increments rather than multiples of rheobase). I used interpolation
to identify which of these additive increments to use as a proxy for the multiples of rheobase required
to extract the current features.

et al., 2006) on the ensemble. Sparse PCA, unlike conventional PCA, yields readily

interpretable components, each of which includes only a handful of features, rather

than an indecipherable mix of all possible features. A low-dimensional embedding

of models and data can then be obtained by re-plotting their features along the

principal axes suggested by these components. Sparse PCA yields an interpretable

list of features, that build the principle components.

The non-zero loadings of Principle Component 1 are shown in Table 18. This

principal component did not distinguish between models and experiments, instead

capturing a source of variance that was common to both of them. By contrast, the

second Principal Component discriminated models and experiments, indicating that

it had captured some systematic difference between most published models and the

experimental data for similar (but not necessarily the same) neurons. It’s non-zero

loadings are shown in Table 19. Models and experiments shared the same breadth of

variability across the first principal component, with only slightly more variance in

the experiments than in the data. Allen Cell Types Database experiments exhibited

the greatest variability out of all models and experiments (Figure 34). Altogether,

these two principal components were sufficient to partition models and data into

three separate clusters (right panel in Figure 34). The full set of PCs are shown
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in the figure below. Perhaps surprisingly, models clustered tightly and varied less

than experimental data–one subset of Allen Cell Types database experiments even

formed their own cluster–suggesting that perhaps past modeling efforts have been

insufficiently bold in accounting for the diversity of cortical neuron types.

Figure 33: Sparse PCA was applied to the collection of features extracted from models and data
features. Component loadings from each feature were examined. Features are organized hierarchically,
such that features with similar PC loadings are near each other.

Of the 47 features considered, the features described in the table above make up

the first two prinicipal components of sparse PCA decomposition, and are responsible

for ∼ 50% of the overall variance (left panel in Fig. 34) in the ensemble of models and

data. Interestingly these features mostly belong to the Allen SDK feature extraction

set, with two exceptions: peak-indices-1.5x and min-AHP-indices-1.5-times which
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Feature Name Feature Description Extraction Library Stimulus Strength
upstroke-t The time of upstrokes, this is the below VT first upward phase of AP Allen 1.5× Rheobase
peak-t Time(s) maximum VM occurs Allen 1.5× Rheobase
threshold-t Time(s) VT is surpassed Allen 1.5× Rheobase
fast-trough-t the times when when begginings of troughs were detected Allen 1.5× Rheobase
fast-trough-t Same as above but at 3× Rheobase Allen 3.0× Rheobase
upstroke-t Same as above but at 3× Rheobase Allen 3.0× Rheobase
peak-t Same as above but at 3× Rheobase Allen 3.0× Rheobase
threshold-t Same as above but at 3× Rheobase Allen 3.0× Rheobase
peak-indices Indexs into array where peak voltages occur EFEL 1.5× Rheobase
min-AHP-indices Indexs into array where minimum After Hyperpolarisation occur EFEL 1.5× Rheobase

Table 18: I identified the features associated with principal component 1 in the sparse PCA
decomposition shown in the figure below: 33. These features explained 1

3 of all of the variance (across
models and data together), and were mainly associated with the timing of spikes and spike-associated
events. Notably, this principal component was not useful for separate models from experimental
data.

Feature Name Feature Description Extraction Library Stimulus Strength
fast-trough-index Index into array when begging of trough occurs Allen 1.5× Rheobase
peak-index-1.5x Index into array when peaks occurs Allen 1.5× Rheobase
upstroke-index-1.5x index into array of detection of first upward phase of AP Allen 1.5× Rheobase
threshold-index-1.5x Description Allen 1.5× Rheobase
fast-trough-time The time when a trough is commenced Allen 1.5× Rheobase
fast-trough-index Indexs into array when the start of a trough is entered Allen 3.0× Rheobase
peak-index indexs into array when voltage peak(s) occur Allen 3.0× Rheobase
upstroke-index Index into array when first upward phase of a spike commences Allen 3.0× Rheobase
threshold-index Index into array when threshold(s) are surpassed Allen 3.0× Rheobase

Table 19: The second principal component from the sparse PCA of Figure 33 contained features
which describe spike shape. Here, “index" describes the location in the array of the extracted spike
where an event occurs, thus it is relative to the timing of the spike itself, not to the timing of the
stimulus. These features contributed to the separation of models from experimental data.

belong to EFEL. This suggests that the Allen SDK might be nearly sufficient for both

characterizing and discriminating between existing models and data.
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Figure 34: Sparce PCA Clusters and Variance Explained. Left panel: Sparse PCA could
explain ∼ 95% of the variance in the ensemble of model and experimental data features using ∼ 15
components, but the first two were sufficient to explain ∼ 50% of the variance. Right panel: A
cluster analysis revealed revealed three major clusters of feature values. Models and experimental
data could be distinguished by PC 2. Individual dots refer to experiments from the Allen Institute
Cell Types database (blue), model published by the Allen Institute (orange), experiments published
by the Blue Brain Project (red), and models published by the Blue Brain Project (orange).

A small majority of features identified by sparse PCA are derived from the 1.5×

rheobase stimulus, slightly fewer are from the 3.0× rheobase stimulus. This may be

because spike time and spike count variability in the most sensitive (highest slope)

part of the FI curve, slightly above rheobase, is greater than under the highest current

injections, where the neuron is much close to responding as quickly as possible (i.e.

near its absolute refractory period).
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3.5.3 What Distinguishes Published Models from Experimental Data?

Disagreement between models and real neurons may reflect limitations of model

design and can be investigated by probing the features identified by a classifiers trained

to distinguish these two populations. Figure 36 shows the distributions of two features

for models (red) and for experimental data (blue). Rather than the distributions

being separable, the major observation is that the distribution of these features across

published models is simply much narrower. The diversity of feature values in real

neurons is simply not being adequately captured by published models.

Figure 35: Comparison of Model and Experiment Feature Distributions (A). The variance
of single features across biological neurons (blue) is much greater than that observed in published
models. The feature shown here (fast-trough-index) reflects the latencies of the post-spike trough
relative to its peak. Biological neurons clearly exhibit a wide range of such latencies, where as models
exhibit a narrow range possibly limited by their underlying dynamics.
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Figure 36: Comparison of Model and Experiment Feature Distributions (B). Unlike Figure
35, some features showed comparably wide distributions in model and biological neurons. The
distribution of spike counts is similarly skewed in both cases. This suggests that, in contrast to spike
shapes, reduced models are able to reflect the diversity of overall firing rate statistics seen in biology.

3.6 A Web Application for Optimization and Visualization

In order to make this optimization framework available to researchers, students,

and anyone who would prefer not to work with the code itself, I developed a web

application that implements its major components. I developed this tool using the

python library “Streamlit" (Steamlit-Team, 2020), which facilitates the transformation

of algorithms and visualizations to a web application. Fortunately for the developer,

coding in Streamlit web framework requires no handling of html, javascript, or other

distractions. Instead, Streamlit provides tools for converting Python code directly

into interactive tables and plots.

This web application is initialize with a choice of three models and four data-sets

(Figure 37), although it would be straight-forward to add additional ones.
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Figure 37: A Web Application for Optimization: Part A. I created a web application to guide
a user through the entire optimization process for reduced neuron models. The side-pane of the web
application provides users with a choice of three models, and four data sets that can be used to fit
data.

The user is given a choice of very simple optimisation choices including what model

type to use and the experimental data that will be used to guide the optimizer (Figure

38).
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Figure 38: A Web Application for Optimization: Part B. Once the optimizer (running on the
web server) has completed finished optimizing a model against NeuroElectro data, a table showing
model/data agreement is shown to the user. The user can also optionally scroll through a visualisation
of model fitness metrics, such as the χ2 test value. They can also inspect interactive model waveforms,
and download a serialized representation ready to run locally in Python.

When optimization is complete the user is shown the parameters of the optimized

model as well as key membrane potential traces (i.e. response to the rheobase current

injection) for inspection (Figure 39).
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Figure 39: A Web Application for Optimization: Part C. The application shows an interactive
visualisation of the optimized model neuron firing in response to (its computed) rheobase current
(shown above), and also under a hyperpolarizing current used to compute other features (not shown
above).
.

Finally, the user is shown the χ2 statistic (and p-value) for the optimized model,

and provided with a link is provided to download these parameters for their own use

(Figure 40). Future work will allow the user will be able to download a NeuroML file

of the optimized model.
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Figure 40: A Web Application for Optimization: Part D. The application provides a prompt
to download an optimized version of the model. In future work this feature will supportthe download
of a NeuroML version of the model for use on alternative simulators.
.

Because some of the details of the scoring associated with optimization are un-

familiar to most people, another visualization is provided (Figure 41 which helps

the user visualize the meaning of a Z-score in an optimization context, and displays

this information for each feature used to constrain the optimization. Additional

information about the stimuli used and the time taken to run the simulations are also

provided.
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Figure 41: A Web Application for Optimization: Part E. The application describes additional
statistics about the computed features, including an explanation of the Z-score and how it was
computed for a given feature. It also provides information about model performance.

124



Chapter 4

DISCUSSION

In this thesis I have described a number of methods that I developed and imple-

mented to optimize reduced neuron models against experimental data collected from

real neurons. I then verified that this optimizer works in the sense of being able to

recover ground truth models given only simulated data from those models. I showed

that successful optimization depends upon certain characteristics of the experimental

data and the features extracted from it, and identified a flaw in the approach of

optimizing against aggregated data from neural populations. I demonstrated that the

optimizer does an adequate job at fitting reduced neuron models to real experimental

data from single neurons, and that certain models (and cell types) are easier to

optimize than others. I showed that published models differ from the experimental

data they ought to be explaining, on which features they differ most, and I show

proto-typed analysis pathway that is capable of demonstrating if and when optimized

models can better match experimental data, compared to other published models.

Finally, I presented a tool to bring this optimization framework to the masses.

Efficient optimization of reduced neuron models is significantly non-trivial, as

an alternative, obtaining merely satisfactory biologically plausible models is several

degrees easier. Below I provide a number of examples of optimization pitfalls which

were not obvious at the start of my research, but which I discovered during my research,

and which were on ongoing source of confusion, not just for me, but for my whole

research team. I believe that it is important to share these conceptual traps with my

readership, including those who may wish to continue such optimization work.
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4.1 What is Required for Successful Optimization?

For optimization to both succeed and be useful, several criteria must be met

(Van Geit et al., 2007):

• Relevance: The objective function should reflect fundamental and important

properties of the data that a good model would reproduce.

• Speed: The objective function should be fast to calculate, since typically a large

number (potentially millions) of evaluations are performed during the search,

many of which may require re-simulation of the model.

• Efficient Convergence: The solution space should be as continuous and convex as

possible, so that the search algorithm can rapidly converge to a global optimum.

4.1.1 Relevance of the Objective Function

4.1.1.1 Source of Data Constraining the Objective Function

Due to the abundance and diversity of data available through the NeuroElectro

Project Tripathy et al. (2014), my initial work relied heavily on that data source.

However, that data is enriched in passive membrane properties as well as the details

of individual action potential waveforms. But what distinguishes, say, a Layer 5

pyramidal cell in motor cortex from a Layer 5 pyramidal cell in visual cortex, in terms

of the computational principles that systems neuroscientists might care about (e.g.

decoding, information, etc.) is more likely to be reflected in the patterns of spiking

and not the dynamics of single spikes or subthreshold behavior. Furthermore, most
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reduced models are not implemented in way that allows for richly detailed action

potential waveforms to be reproduced.

Together, this implies that reduced models optimized against data exclusively from

NeuroElecto may be the worst of both worlds: they fail to capture the sub-millisecond

dynamics of the action potential encoded in that data, while also failing to exhibit

any of the suprathreshold dynamics (e.g. types of bursting) that distinguish one cell

type from another, in the mind of a systems neuroscientist. This problem is mitigated

by including complementary data sources (like the Allen Cell Types database) that

can address these dynamics. Future optimization efforts should take care to identify

the data sources that capture the dimensions of the experimental data along which

meaningful differences between cell types can be resolved, and which models are rich

enough to express.

4.1.1.2 Number of Components in the Objective Function

Theoretically every additional component included in the objective function–every

constraint derived from some experimental feature–should make the error surface a

better answer to the question, “Is this a realistic model of the neuron of interest?".

Although they might increase the computation time required per objective function

evaluation, such additional components may rapidly exclude large volumes of parameter

space from unnecessary exploration. For example, when modeling a bursting neuron,

including burst-statistics as one of the features under evaluation will quickly exclude

non-bursty regions of parameter space from consideration.

And yet a successful optimization recipe should not naively involve the use of

all available computable features. Some features might be biologically irrelevant, or
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impossible for some model class to reproduce, or have extremely discontinuous error

surfaces. This makes the task of neuronal model optimization, much more supervised

and much less automatic compared to many other machine learning paradigms –careful

human guidance is needed to curate the appropriate features for the task.

4.1.2 Speed of Optimization

4.1.2.1 Speed of the Objective Function

A large fraction of the compute cycles spent evaluating each parameter set are

expended on identifying the rheobase current, thus unlocking the calculation of several

subsequent measurements. Fortunately, for slower model implementations this can

be sped up significantly through parallelism, as described in Section 2.4. In some

applications, parallel code scheduling is incompatible with with the just-in-time (JIT)

compilation approach described in Section 2.3.2.4, so parallelism sometimes trade off

against raw model simulation speed.

4.1.2.2 Speed of Parallel Exploration

In this work it was sometimes memory pressure and not clock speed that produced

the major bottleneck. This was especially true when mining features from pre-existing

databases. In these contexts I made use of a delayed iterator provided by the Dask

library Dask (Rocklin, 2015) to stream very large amounts of data in memory-friendly

chunks as needed. Delayed evaluation using the Dask library also resolved conflicts

Additionally delayed evaluation caused fewer conflicts with JIT code.
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4.2 Sensitivity to Error Surface Quality

In the spirit of the list above provided by Van Geit et al. (2007), the next item

should be called “Efficient Convergence", but this efficiency really comes down to the

nature of the error surface created by the choice of models, tests, and experimental

data.

4.2.1 Objective Function Dimensionality vs Model Parameter Dimensionality

If a given class of models is capable of describing the behavior of a given real

neuron, then the number of independent, reliable tests used to generate the objective

function can be as large as desired; more tests just provide more information to quickly

rule out irrelevant regions of parameter space. On the other hand if a model class is

only capable of describing a fraction of the real neuron’s behavior, too many distinct

tests will result in an optimization problem that can never be fully satisfied. Since “all

models are wrong, but some are useful" (Box, 1976), let us imagine that we usually in

the latter case.

4.2.2 When Does Genetic Optimization Get Stuck?

Genetic algorithms are known as derivative-free optimizers, since they do not

follow any gradient down the error surface, or even know of the existence of such a

gradient. Chromosomes only survive and reproduce differentially according to their

location on the error surface. Thus, genetic optimization is never truly "stuck" inside

a local minima on the error surface, as mutation or crossover can always produce
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new chromosomes outside the basin of attraction. Despite this robustness, just like

in gradient descent, genetic algorithms can only be guided by information in the

error surface. When the objective function has a low-dimensionality, for example

when it is based upon tests that mostly compute small variations on the same small

number of features of the simulation output, it may not provide enough information

to distinguish one location in parameter space from another one close by, even though

the first may be closer to the optimal solution than the second. In other words, many

regions of parameter space may be locally flat at a mesoscopic scale, and local minima

at a microscopic scale may thus be difficult to escape. No lower error solution may be

available within a reasonable distance (in parameter space) from the current one. A

variety of potential error surfaces are presented in Figure 42.
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Figure 42: Challenging Error Surfaces. Fitness here should be relabeled "Error". The top panel
shows an error surface where an optimizer is unlikely to identify the global minimum error. Any
exploration of the region leading towards that minimum is likely to be abandoned prematurely. Only
an extremely lucky set of initial chromosomes or a random mutation might result in exploration of
the region immediately around the global minimum. The middle panel is more hopeful, showing an
error surface that does not actively block the global minimum from being explored. However, the
surface is still mostly uninformative. The bottom panel shows a cross-section of Rastrigrin’s function
(described in the Introduction). Despite its hype, this is really the least challenging of the three
error surfaces shown here, as there as at least long-range structure to the error surface that a genetic
algorithm can exploit.
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4.2.3 Defects in the Error Surface

The real error surfaces that guide optimization here have “defects", for example

discontinuities (due perhaps to bifurcations in the underlying dynamical system,

e.g. from spiking to non-spiking) or to deep local minima, that make optimization

challenging. I coined the term “corrugated" to describe surfaces low amplitude

oscillatory disturbances across the error surface.

Some optimization techniques require a perfectly convex error surface to converge.

Genetic algorithms are more tolerant, up to a point, but an extremely high dimensional

optimization problem with a large number of optima can still be intractable. So which

error surface defects are truly harmful? This largely comes down to scale. The

corrugation observed in the error surfaces here was typically on a much smaller scale

than the long-range structure that guides optimization. Consider something analogous

to a signal-to-noise ratio (SNR), describing the information that guides optimization

vs the wrinkles that impede it. When SNR is larger, defects are less consequential.

Figure 43 gives an example of an error surface that, while not totally continuous or

convex, is nonetheless easily handled by the optimizer.
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Figure 43: A Non-convex but Manageable Error Surface. The vertical axis shows error
(model-data disagreement) for “sag-ratio" feature computed at 1.5 × rheobase as the value fo the b
parameter in the Izhikevich model is slowly varied. The blue dots show the actual error values, and
the orange curve shows a low-order polynomoial regression fit. While the fit is clearly not perfect,
the fact that the error surface can be approximated by a low-order polynomial suggests that it will
not be difficult to find the minimum (red dot).

I observed that the NSGA2 selection algorithm was particular vulnerable to defects

in the error surface, and required a higher SNR to obtain optimal solutions. NSGA2 is

a fundamentally conservative and short-range approach to evolution, so it may simply

lack the drive to escape problematic regions of the error surface. Unlike NSGA2, IBEA

was less sensitive to such defects, and required a lower SNR to converge rapidly.

However, in any algorithm as the optimum is approached, the rate of mutation

must slow down to enable efficient short-range exploitation of the peri-optimum region.

one should not expect to see evidence of efficient-learning. In later phase of learning

when the optimizer will be more sensitive to small amplitude corrugations, which

become large relative to the smaller improvements of error.

The multiobjective function is derived from the objective functions associated with

each feature used in optimization. As such, the multiobjective function will be more

133



corrugated if more of the component objective functions are corrugated. Consequently,

optimization is more likely to converge if the number of corrguated components is

kept to a minimum. In practice, I observed satisfactory solutions even when only

> 1
2
total number of objectives had no corrugation. For example, in a four-objective

problem, if the 4th objective is uninformative, but not actively misleading, inclusion

of that 4th objective may only slow down the speed of optimizer convergence, but

not actually change the final outcome. By contrast, if that 4th objective is actively

misleading, the optimizer will likely find a satisfactory (but non-optimal) solution by

compromising with the dominant 3 objective functions.

4.2.4 Contingent Discontinuities

Some tests used to compute the objective function may depend on the results of

other tests. They may depend on the measured value of one feature, for example,

a test of the action potential width at half-height depends on the height measured

from threshold which depends on the threshold. Or they may depend on a stimulus

parameter derived from a previous test; for example, computing the first inter-spike

interval (ISI) at 1.5x rheobase first requires computing rheobase, and then multiplying

the rheobase value by 1.5 to generate the stimulus for the ISI test. Such an ISI

test–and its results–is thus “contingent" on the results of the rheobase test. This has

confounding implications. Suppose that as some model parameter X is increased,

the cell becomes more excitable. All things being equal, more excitability would be

associated with a lower rheobase, and with a narrower first inter-spike interval at a

fixed current. But because the rheobase determines the value of the actual current

injected in the ISI test (i.e. the ISI test is contingent), the ISI could go up or down; it
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would go down if the direct effect of greater excitability associated with increased X

dominates; it would go up if the indirect effect of a smaller current injection dominates.

In fact, it is impossible (or at least impractical) to predict which of these will "win",

and the resulting error surface for the ISI test becomes extremely corrugated, as

small increments in X cause increases and then decreases in the error of the objective

function, with no discernible pattern.

4.2.4.1 Examples of Contingent Discontinuities

Figure 44 provides a concrete example of the discontinuous error surface that

results from such contingencies.

Figure 44: A Non-convex and Unmanageable Error Surface. Similar to Figure 43, but showing
the error in another feature (the membrane potential at the start of the AP waveform) as the same
parameter is varied. This error surface is extremely corrugated, the polynomial fit has no hope of
approximating what is going on for b < 6, and the optimizer stands little change of finding the global
minimum, if such a minimum is even meaningful here.

The problem is even more extreme when the contingent test can produce missing
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values. For example, an ISI test depends on their being an inter-spike interval to

measure, i.e. it requires a second spike to be produced. If there is no second spike,

this test will emit a missing value. Thus as X is increased, the error surface associated

with the ISI test will be pocked with missing values every time the underlying change

in excitability is offset too much by the ensuing change in rheobase-derived injected

current. An example of this even more challenging case is given in Figure 45.

Figure 45: Another Non-convex and Unmanageable Error Surface. Similar to Figure 44, but
now for differences in the depth of the after-hyperpolarization across repeated spikes. This feature is
actually uncomputable for some values of the parameter b varied along the x-axis, because as this
parameter changes, the rheobase changes, and the number of spikes observed at the rheobase varies
between 1 and 2. When the number of spikes is 1, any parameters that describes differences across
spikes is undefined. Because the optimizer cannot work with missing data, a very larger error (1000)
is imputed. However, this means that it is nearly impossible to identify the global minimum, because
many promising chromosomes mutate onto the peaks of the error surface and do not make it into
subsequent generations. A genetic algorithm sees the region b < 6 as essentially random.

136



4.2.4.2 Causes of Contingent Discontinuities

And an error surface plagued with too many missing values is essentially unusable.

These contingent discontinuities present a major problem to the logic of contingent

testing that underlies most of the optimization presented here. I verified that the

reasoning above was matched by the observed changes in simulated behavior in

response to changes in model parameters. I found that slowly varying a single model

parameter in a reduce model can cause two extracted features to vary inconsistent

ways (Figures 46 and 47).
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Figure 46: The Causes of Corrugation in Error Surfaces: Part A. I identified the main cause
of corrugated error surfaces by re-calculating feature values as single parameters were varied. Here, I
vary parameter a in the AdEx model. The orange trace shows the computed rheobase current as
this parameter is varied. Note that it grows in a step-like manner, not according to the smooth
linear fit (blue). During periods when the rheobase is not increasing (but the parameter value is),
the parameter may cause some other feature, computed at the current that causes 14 spikes to
fire to vary in one direction. Once the 14 spike current jumps, the stimulus used to compute the
feature has changed, so that same feature may vary in the other direction. Consequently, a computed
feature-value may zig-zag, rather than exhibiting a smooth change, as a parameter is varied.

In Figure 47, I show a more concrete example of the same phenomena.
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Figure 47: The Causes of Corrugation in Error Surfaces: Part B. Using an Izhikevich model,
I vary a single odel parameter (a) as in Figure 46, and plot the rheobase current (orange, normalized
to its mean value) but also compute the value of the spike threshold (blue, also normalized). Note
the non-linear behavior of the response of this feature value to the change in the model parameter.
This non-linear behavior is mainly driven by a change in the amplitude of the injected current used
to evoke it (the rheobase current), and not to underlying non-linearity in the location of the spike
threshold for a fixed current.

This can also be visualized in the waveforms themselves. In Figure 48 the location

(in time) of the threshold relative to the peak of the action potential varies in

unpredictable ways as a single parameter of the model is increased.
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Figure 48: The Causes of Corrugation in Error Surfaces: Part C. In order to see this effect
directly in the responses themselves, I plot the action potential waveforms for the Izhikevich model
as the value of parameter a increases in small steps from the bottom panel to the top panel. At each
value of this parameter, rheobase is computed and the waveform of the spike evoked at rheobase is
extracted. Each such spike is aligned across panel, so that differences in the lead up to that spike
can be examined. The spike threshold, identified by the moment when the slope of the membrane
potential reaches a target value, is shown with each blue dot, and the time that the threshold is
reached is indicated by each vertical line. It is clear that while the time of the threshold changes as a
is varied, it does not do so systematically. Therefore the resulting error surface will not be useful for
optimization. This demonstrates that making features contingent upon the responses to the rheobase
current results in major challenges to optimizaton.
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4.2.4.3 Overcoming Contingent Discontinuities

With sufficient care taken to avoid too many corrugations in the error surface,

optimization can still be viable. However, this may mean discarding otherwise useful

features that could in principle distinguish between competing regions of parameter

space. An alternative approach is to discard the rheobase entirely as a contingency,

making tests depend not on the rheobase value obtained from each parameterization

of the model, but on the rheobase observed in the experimental data itself. In other

words, if the rheobase of the biological neuron is 100 pA, then the 1.5× rheobase ISI

test should be performed with a current injection of 150 pA, even if the rheobase of

the current model parameterization is some entirely different value.

Another approach is to dispense with the rheobase entirely, and simply test using

a fixed set of current amplitudes that span the suprathreshold portion of the F-I curve,

e.g. 200pA, 350pA, and 500 pA for a typical neuron. This seems extremely direct,

but it in some cases it fails to explore the most interesting peri-threshold portion of

the F-I curve, where the dynamics of single spikes contain a great deal of information

about peri-threshold dynamics. For example, an after-hyperpolarization that is visible

after single spike at rheobase may become completely swamped by the combination of

inward pipette current and sodium current at values of injected current that are high

above threshold.
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4.2.5 Does a Genetic Algorithm Adequately Report the Contours of the Error

Surface?

The error surface is vast, corresponding to all possible combinations of parameters

at infinite resolution. Naturally, this is only sparsely and strategically sampled.

Consequently there is no guarantee that it is has been adequately explored, and

that lower error parameter sets do not exist somewhere that the optimizer did not

adequately explore.

Next I describe how to visibly “clean" corrugations from the error surface when

using an approach based on a small list of non-contingent errors vs an alternative

approach using models whose measurements are contingent on parameter dependent

current values.

For each model a current is found that forces the model to fire at 12 spikes.

Although not the exactly the same as rheobase, the algorithm is structurally identical,

and the problems are the same. When eliciting a pre-determined spike count for any

model parameterization (1 or x). This algorithm has the same propensity as the

rheobase algorithm to introduce small current excesses into readings of subsequent

tests, in this case EFEL tests of spike train shape. Figures 49 and 50 below show

error surfaces from each paradigm. Each of these figures depicts a heatmap of a

2D cross-section of the error surface. The sensitivity of the objective function to

systematic changes (grid search) of two parameters, centered around the optimizer’s

own solution, was explored. All other parameters were held constant at the optimal

values. This effectively depicts a cross-section of the error surface near that solution.
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Figure 49: 2D Cross-section of the Error Surface for an Izhikevich Model with No
Contingent Tests. The model was optimized against simulated data using 5 features. Any other
features whose calculation is contingent on the rheobase were deliberately excluded. A 2D grid search
was then applied (for parameters C and k) around the resulting optimal set of parameters in order to
visualize the local error surface. Although only 2 dimensions are explored here, there is no evidence
of corrugation in this error surface, indicating that manageable, convex error surfaces can be realized
when contingencies are removed.
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Figure 50: 2D Cross-section of the Error Surface for an AdExModel using EFEL Features.
Similar to Figure 49 except using an AdEx model and all 14 EFEL features. As the approach for
creating multispiking model fits also contained contingent tests, the error surface is complex and
Rastrigin-like

I suspect that other pre-existing optimizers that aim to fit neuronal models are

largely ignorant of the error surface they face. In fact, without comprehensive data

about the convergence rates of various competing approaches to optimization, we

cannot now how efficiently each obtains its solutions, nor about alternative solutions

that may have been missed.

Nonetheless, I am confident that genetic algorithms (in general) are preferable

to to exhaustive search (which is impractical for all but the smallest models) and to

gradient-descent-like approaches (due to the nature of the error surface). However,

successful optimization may benefit from periodic exhaustive, local grids searches of
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the parameters space near the optimized values, in order to evaluate whether the error

surface was tractable in the first place.

4.3 Satisficing Versus Optimizing

Unless hunting for a new prime number, few are willing to run compute jobs lasting

for months, thus there are steeply limited budgets for exploring solution spaces. It

therefore seems prudent to accept solutions which are are not optimal but are “good

enough", especially if these solutions can be obtained in a small fraction of the time.

Not all real neurons, even of the same nominal type, have identical properties, so

perhaps we should embrace such variability in optimization results as well. If the

highest objective is to recover biologically plausible models, and many fitted models

can easily meet this objective, then weaknesses in the ability of the optimizer to

succeed in identifying the exact optimum in a very complex error surface can be

tolerated.

Fortunately the coupling of Neuronunit to a Genetic Algorithm facilitates either

optimizing or “satisficing" as appropriate. The term “satisfice" means that a measured

property is either deemed optimal or merely satisfactory (Simon, 1956). Although

we may not know if a true optimum has been achieved, by using NeuronUnit in the

evaluation, we can determine if the result is satisfactory enough, and then terminate

optimization early. This could be done by tracking the χ2 statistic during optimization

and ending as soon as it drops below a certain level.
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4.4 Appropriate Optimization Constraints

4.4.1 Conflicting Optimization Constraints

I identified multiple conflicts between features used for optimization. In some

cases, the conflicts may arise from limitations of the model, i.e. the model may lack

the richness to lie at precisely the points in features space that some real neurons

lie in. However, I found that even for biophysically detailed neuron models, this

limitation was sometimes still observed. Thus, there must be some other source of

these conflicts, which I identified as a conceptual pitfall in optimization: feature values

computed from the mean of the corresponding features across many neurons (as in

NeuroElectro) may not actually describe any real, single neuron (or in some cases any

possible neuron). This was typical when combining the Rheobase, Input Resistance,

and Time Constant, for example.

4.4.2 Conflicts in Neuroelectro Measurements

Membrane Time Constant measurements were consistently harder to use for

guiding optimization, being incompatible with other features in almost all model

types (including conductance based models, reduced models, and including all data

types (NeuroElectro data and Allen Cell Types single experiment data). This value is

proportional to cell surface area, and it may be that cells taken from, for example,

slices of different thicknesses have different capacitances but that this has minimal

impact on other measurements. Alternatively, most capacitance measurements could

be in error due to recording pipette capacitance artifacts. Regardless, when the
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membrane time constant was not included, optimized models were still able to behave

in most other respects like their experimental counterparts

As discussed in section 2.4 rheobase is strictly defined as the minimum current

injection to evoke exactly one spike. It does not fully define the FI curve, and

there are an infinite number of FI curves that contain the points (Rheobase−, 0) and

(Rheobase+, > 0).

Interestingly, if selecting only one suprathreshold feature to pair in optimization

with the remaining physiological features, the FI slope was a better fit than the

rheobase. It may be that by considering the whole FI curve in optimization counter-

intuitively makes optimization more flexible by allowing small misses on matching the

rheobase in exchange for a better overall match to the remaining suprathreshold spike

counts.

4.4.3 Sufficient Optimization Constraints

Avoiding conflict constraints, which tests are minimally sufficient to produce good

optimization results? Tests that worked within optimization: Via Elephant toolchain:

FITests, Rheobase, Capacitance, Input Resistance, Time Constant, Resting Membrane

Potential. Via.

Druckmann et al. (2007) optimized neuron models using only suprathreshold

stimuli by considering (1) spike rate; (2) an accommodation index; (3) latency to

first spike;(4) average AP overshoot; (5) average depth of after hyperpolarization

(AHP); and (6) average AP width. However, when optimizing reduced neuron models,

I found that the those 6 features measurements were insufficient for optimization, and
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additional constraints were required. Overall, I found that the following features from

the EFEL library were sufficient:

1. AHP-depth

2. all-ISI-values

3. Spikecount

4. adaptation-index

5. mean-AP-amplitude

6. min-voltage-between-spikes

7. minimum-voltage

8. peak-voltage

9. spike-half-width

10. time-to-first-spike

11. time-to-last-spike

12. voltage-base

4.5 How Good was the Optimizer?

When the optimizer is applied to the Izhikevich model for each of the four different

classes of experimental cell types, it obtains solutions that are within the range of

empirical variability. Because the optimizer was not able to resolve conflicts between

certain measurements, such as usually rheobase vs (time constant,input resistance,

and membrane capacitance) performance is be even better if some of these conflicting

features are removed.

In the single-compartment conductance-based model and in the AdEx model,
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even better solutions were obtained, but in these cases it was the need to match

experimental input resistance that posed the greatest drag on solution quality.

4.6 Distinction of Optimization Approach From Other Approaches

There are several conceptual and technical differences between the work described

here and what has been done previously.

First, I used a formal testing framework–normally used to evaluate model quality–

to drive the optimization itself. This means that we can evaluate not only technical

performance of the optimizer, but the actual quality of the solutions, and compare

these across models and cell types. Other modeling efforts have employed data-driven

testing in model development workflows, but all these efforts have been based on

non-standard ‘in-house’ model types and execution environments. By contrast, this

work expands a pre-existing community driven, standardized model testing framework,

NeuronUnit, so that model validation, optimization, and re-use is broadly applied.

Second, I unified many sources of experimental data and distinct feature types

(subthreshold and suprathreshold) into a unified testing suite. This has the potential

to result in optimized models that reproduce not only specific patterns of spike but

whole input/output transformations. Reproducing these transformations is necessary

if there is any hope for reduced models to be used in network models.

Third, I leveraged the large number of cortical neuron and neuronal network

models are available in the standardized NeuroML format. This allowed me evaluate

the quality of existing models, identify their discrepancies against corresponding

experimental data, and improve upon dozens of them in one stroke. Although the

Allen Institute for Brain Science modeling project and the Blue Brain project both
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rigorously analyzed their single cell models, to the best of my knowledge there has not

been an overarching meta-analysis across different cell and network model sources.

4.7 Generalizing Behavior Across Neuron States

Some neurons may have different behaviors under different stimulation paradigms.

For example, the cerebellar Purkinje cell is sensitive to intricately patterned dendritic

input current combinations. Depending on that cell’s recent history of synaptic

stimulation, it may toggle between coincidence detection and integration modes Ratté

et al. (2013). If the experimental data being used for optimization only describes a

subset of these behaviors, then the optimized model may not generalize to the neuron’s

other behaviors. This may not even require the neuron to have state-dependence; the

neuron may simply have two very different behavioral regimes, where one regime is

difficult to predict even from a large number of observations of behavior in the other

regime.

Making a model that does generalize may thus require a number of stimuli from

each behavioral regime. I included only a handful of subthreshold and suprathreshold

stimuli (which was more than some previous efforts that only included suprathreshold

stimuli), and through NeuroML-DB I also have access to many more precomputed

stimuli. One data sets permitted, I explored the entire the FI curve. It remains

possible that a fully general model may require still more stimuli, such as sinusoidal

stimuli of frozen noise currents. was as much I did here. A fitted model may not

generalize to current stimulus at higher or lower current strengths, Unless the model

is fitted with constraints informed by those different experiments. As discussed above,

the true FI curve is described by a gradient and a bias. When one fits to both the
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slope and the bias of the FI curve, it means that the model will at least be able to

recapitulate the right number of spikes for a given current strength.

Nonetheless, in the cell types I studied here, even optimizing against simple sub-

threshold electrophysiological features alone (Input resistance, Membrane Time Con-

stant, Resting Potential, and Capacitance), in conjunction with a single suprathreshold

feature (Rheobase) was often sufficient to reproduce the remainder of the observed

suprathreshold behaviors.

4.8 Largest Possible Survey of Features

The NeuronUnit core, the Electrophysiology Feature Extraction Library (Van Geit,

2015b)) EFEL, the Allen SDK, and the tests derived from (Druckmann et al., 2008)

all contain independently written algorithms for computing features from simulated

membrane potentials. In some cases, the same feature (e.g. action potential threshold)

is computed in many different ways across these feature extraction libraries. All

compute the threshold by first taking the first difference of the membrane potential,

but they differ in subsequent steps, for example what value the first difference must

reach to be considered at or beyond threshold. This is inconvenient, but one can simply

select one (or more) of the alternatives and apply it consistently. More troubling are

the cases where these algorithms differ in the stimulus used to generate the feature.

For example, the suprathreshold tests of (Druckmann et al., 2008) are based on a

multiple of rheobase (e.g. 1.5× or 3×), whereas those used by The Allen Insitute are

based on additive increments from rheobase (e.g. +20 pA or +40 pA). This means

that cannot simply be applied to the same membrane potential trace, as those who

collected the experimental data are likely to have chosen either multiples or additive
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increments of rheobase, but not both, depending on which lab they happen to work

for.

As discussed in the Methods, I wrote code to restructure the Allen Cell Types and

Blue Brain Project data sets, sorting traces into (approximate) multiples of rheobase,

and the interpolating to select the sweep (in one data set) that is most appropriate

for computing the feature defined in an otherwise-incompatible feature library. In this

way I was able to generate the same set of features from distinct datasets, even those

that had use different stimuli.

One can conceive of more mathematically savvy types of imputation, and these

could be the basis for future work. If a more robust form of imputation was achieve, it

could act as a Rosetta stone to link all the above feature extraction libraries together,

allowing nearly any in vitro dataset that is being collected to be used to produce a

canonical and universal set of features for model optimization.

4.9 Cross-Validation for Feature Selection: One Feature Set to Rule Them All

The features identified during multivariate analysis utlilized the entire collection of

models, data, and stimuli. By contrast, a machine learning approach would have held

out some of these for cross-validation, checking to see whether the features identified

on a training set were in fact that features that best cluster, discriminate, or simply

explain variance in the a held-out set of models and data. For example, future work

could identify a canonical set of stimuli and features fitness criteria, criteria that

can train models to best satisfy multiple experimental protocols, rather than just

one particular experiment. These features would be shuffled (using stratification

according to the stimuli that generated them) the objectives into “train" and “test"

152



sets. Cross-Validation may provide a strategy for dealing with conflicted features,

such as the input resistance test. If a trained model failed to score remotely well on

such a test, this might identify that the model was overfit or simply that the test

was unsatisfiable (given a model fit to the other tests). This would allow for quick

identification of which test combinations cannot work in practice, while also producing

more generalizable models.

4.10 Which is the Best Model Class for Producing Optimized Reduced Models?

In previous spike-time prediction competitions (Naud et al., 2009), multi-time-scale

variants of the AdEx model performed best. It also had an admirable performance

here, however the Izhikevich model was the overall winner.

Considering only features of at or below threshold spiking, the features that where

used to get results below come from the tables

By consulting tables: (8,12), and aggregating scores using python pandas, and

averaging across χ2 statistics (which reflected 12 tests) for all neuron types, the

Izhikevich model had the lowest mean χ2 (AdExp=28.55; Izhikevich=1.39), and the

highest average p− value. However, the Izhikevich model did not have the lowest χ2

for every cell type (see the Appendix for details).

The AdEx model suffered from its performance on the Olfactory Bulb Mitral

Cell and the Cerebellum Purkinje cell (two of the largest cells types that were

optimized). However, if you remove these two cells, and then judge the optimized

models for the remaining cell types, the AdEx model is the winner by χ2 (AdExp=0.51;

Izhikevich=0.99).

When consulting some of the traces for fitted models, it seemed as if either the
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AdExp and Izhikevich models lack the flexibility to model diverse cortical neuron

activity, or the NeuroElectro data was difficult to fit.

Consider two sets of features: RheobaseTest, TimeConstantTest, RestingPotential-

Test, InputResistanceTest or RheobaseTest, FITest. If you consider only the Allen

Cell Types data (all cortical neurons), with these two sets of features, the GLIF model

is associated with χ2 = 1.0; however, if you consider other neurons (and tests), the

mean χ2 value jumps to 364.2. The GLIF model was able to recapitulate the FI curve

slope exactly; however, this caused conflicts with the ability to fit the time constant

and rheobase. Even when the GLIF model was able to optimize cells to be within

a biologically plausible range, simulation was slow and the quality of fits was not

astounding. It is unclear why anyone would choose to use this model outside of a very

narrow range of applications.

Why did the Izhikevich model perform best? I hypothesized that this was related

to its broader coverage of dynamical regimes (as shown in (Izhikevich, 2003)). To test

this, I asked how many of these dozens of regimes were “occupied" by the optimization

solutions obtained here. Specific optimization results (Section 4.12.3). I developed

the Izhikevich model, such that regime type was an explicit integer model parameter.

Numbers 3-7 encoded regime types 1-7, where regimes 1,2,3 follow identical governing

equations and so do not require unique numeric identifiers. I show that all but one of

these regimes were occupied except for one associated with the activity of a dorsal

LGN thalamocortical cell. The ones associated with a barrel cortex low-threshold

spiking (LTS) interneuron and a Layer 5 visual cortex fast-spiking (FS) interneuron

were occupied the most often.
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4.11 Parameter Boundaries

The error surface explored by the optimizer cannot extend infinitely far in all

directions. It must be initialized with boundaries that contain plausible parameter

values. If these boundaries are too narrow, they may exclude the optimal set of

parameter values. However, if they are too wide, then parameter sets that produce

models well outside the range of biological plausibility will be produced. Such

implausible models undermine the assumptions of the features being calculated, and

result in discontinuous or otherwise uninformative error surfaces where the optimizer

wastes time exploring and may struggle to escape. An example of parameter boundaries

from the literature is shown in Figure 52.

Figure 51: Parameter Boundaries Can Frame the Search Space. This error surface plot
(from Van Geit et al. (2007, 2008)) shows how model/data agreement varies as two conductances
from a biophysically-realistic conductance-based model are varied. The large error values for Na < 2
and Kdr < 2 suggest that the decision not to search below the value 1 for either of these parameter
was reasonable. Similar grid searches could help to justify the parameter boundaries for optimization
problems, provided that they can be conducted at low computational cost relative to optimization
itself.
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For example, some parameter sets may cause a divergence in either the simulated

membrane potential or in the features extracted from it. This will be encoded as

either “not a number" (NaN) or inf. A single (NaN) or inf can infect the entire

multiobjective function (i.e. any sum with inf will be inf). Because the optimizer can

only succeed when it can distinguish better parameter sets from worse parameter sets,

any chromosomes that get stuck in regions of parameter space with (NaN) or inf may

not escape, even through mutation or crossover. The error surface is locally “flat" in

a sense, and thus uninformative. In order for the optimizer to survive the existence

of such regions, the population size must be sufficiently large that a large number of

chromosomes will avoid being initialized there.

In the opposite case, consider what might happen if the parameter boundaries are

too narrow. Figure 52 shows another case from the literature, and in this case the

global minimum error is positioned in a deep and narrow well. It would be easy to

have chosen parameter boundaries that miss this well entirely, resulting in a failure to

obtain the optimal parameter set.
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Figure 52: A Challenging Location for the Optimal Value. Again from Van Geit et al. (2008)
I show an example of well-chosen parameter boundaries. These boundaries enclose the (narrow, deep)
global minimum. Notably, choosing to explore only one quadrant of this space, where the error is
roughly invariant to the parameter values, would have led to missing this global minimum entirely.

A possible solution the problems above is to employ algorithms that peek beyond

parameter boundaries and reports back on model stability. This would be done only

sparingly (otherwise it is equivalent to simply expanding the boundaries).

4.12 Future Work

4.12.1 Fixing Currents

Here I identified a problem of contingent tests, which cause sometimes intractable

defects in the error surface. This could be solved by specifying all injected currents

in advance and fitting directly to the entire FI curve. Having been fit, features that

are defined near rheobase (such as spike threshold) should then be computed at a

pre-determined current.
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4.12.2 Model Exchange

The NeuroML model exchange format (Gleeson et al., 2010) offers a portable,

simulator agnostic, description of a neuron model including its parameters. A logical

next step is to capture the results of optimization and use them to specify these

parameters, resulting in an optimized model that anyone can use.

4.12.3 Embedding Models

Reduced models could be especially valuable when embedded into a larger network

that simulated a part of the brain The Allen Institute followed an approach like,

encasing a "core" of biophysically accurate models inside a "shell" of surrounding,

simple, fast and reduced GLIF models (Billeh et al., 2020). Since almost all cortical

neurons experience “tonic" synaptic input, often originating from outside of the local

circuit, such reduced models could be used to provide this input in a semi-realistic

way, even as the neurons they target are simulated in greater detail. Currently, this

is often handled statistically rather than dynamically, by simulating some number

of point processes to provide such input. However, this makes strong assumptions

about the nature of that input, and does not allow it to change dynamically the way

it would if it originated from an actual neuronal or network simulation. Reduced

models can also be extended to include multiple compartments, allowing Local Field

Potential (LFP) analysis to be included among the benefits of such an approach to

network modeling. The statistical approach also severs the link between cause and

effect, and does not have any phenomenological relationship to known physics. Finally,

Izhikevitch and AdExp models are commonly utilized in neuromorphic spiking neural
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networks in artificial intelligence and biomedical modelling contexts, suggesting that

their optimization in software could result in superior implementations of identified

cell types in hardware.
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APPENDIX A

CODE DETAILS
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All of the optimization work newly described here depends on code I developed in
two GitHub repositories:

• Neuronunit https://github.com/russelljjarvis/neuronunit
• BluepyOpt https://github.com/russelljjarvis/BluePyOpt
• Features https://github.com/russelljjarvis/AllenEFELDruckmanFeatures
• JIT models https://github.com/russelljjarvis/jit_hub
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APPENDIX B

COMPLEX MODELS AND STREAMING REMOTE DATA
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* Often model data is streamed from a remote machine for example NeuroML-DB.
In such cases where local simulator capabilities are not required, it is more useful to
make “streamed" remote models eligible for NeuronUnit tests. The code idiom for
NeuronUnit scoring of streamed models is as follows:

import requests
from neuronunit.models import static_model as sm
model_scores = []
# List cell models desired from from the remote machine.
NeuroMLDB_requests = ["Traub L3-Pyramidal-Cell","Traub-Relay-Cell"]
for data in NeuroMLDB_requests:

# Get those cell models
remote_model = requests.get(data)
# Get one membrane potential trace per model
vm = remote_model.json['vm']
# Make the trace usable by NeuronUnit
SM = sm.StaticModel(vm)
# Get a NeuronUnit score for the model
score = test_suite.judge(SM)
model_scores.append(score)

This idiom was also utilized for complex models that lack NeuronUnit support. In
the majority of cases not much is gained by re-implenting complex model simulator
code. Instead, one can simply source simulated models as if they are being streamed
remotely when in fact they coexist in the same python program.
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APPENDIX C

ALLEN EXPERIMENTAL DATA FROM WEB PAGES IN EPHYSIOLOGICAL
REPORT FORM
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*
specimen id 623960880

http://celltypes.brain-map.org/mouse/experiment/electrophysiology/623960880 specimen id
623893177
http://celltypes.brain-map.org/mouse/experiment/electrophysiology/623893177 specimen id
482493761
http://celltypes.brain-map.org/mouse/experiment/electrophysiology/482493761 specimen id
471819401
http://celltypes.brain-map.org/mouse/experiment/electrophysiology/471819401
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APPENDIX D

JULIA IMPLEMENTATION
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* I also created an implementation of some cell models in the Julia programming
language. This provides even more rapid simulation, intuitive code, and no specialized
computing hardware. These are documented at https://github.com/russelljjarvis/
NeuronUnitOpt.jl
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APPENDIX E

TABLES OF FITTED PARAMETERS AND TEST SCORES FOR MODELS AND
DATA USED HERE
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C k vr vt vPeak a b c d regime-type
experiment

4824937611 190.317718 0.766233 -59.750208 -40.787616 42.848335 0.012862 -1.021203 -58.379143 48.911618 6
4718194011 162.783673 1.583689 -66.487855 -48.634210 30.282912 0.057584 -1.159059 -56.473425 135.693471 7
6238931771 187.915295 1.130626 -63.584364 -49.477821 37.111777 0.060086 8.714604 -57.494334 89.571208 1-3
6239608801 190.848367 0.770070 -65.461028 -49.496538 31.461532 0.058770 13.916167 -58.159122 38.738638 7
482493761 70.602307 1.548712 -55.046278 -41.489000 28.329709 0.139405 13.190249 -46.060902 78.195696 5
471819401 120.971231 1.257246 -70.654637 -47.630679 30.290391 0.056750 -0.489954 -56.034978 138.825641 7
623893177 179.359764 1.533041 -56.883517 -35.949970 43.403127 0.101416 -0.536745 -45.430678 148.242124 7
623960880 198.460449 1.598985 -56.469868 -43.352802 48.817602 0.186193 -1.357591 -47.647756 112.958369 6
olf_mit 166.596093 1.029132 -61.718758 -45.325164 48.016614 0.011900 -1.736929 -55.525865 124.999833 1-3
Neocortex pyramidal cell layer 5-6 181.287370 0.850828 -63.836556 -57.404674 25.079898 0.106505 12.399936 -54.668152 85.950173 7
Cerebellum Purkinje cell 24.623228 1.048620 -61.377334 -48.928462 29.775470 0.100447 11.356889 -48.328073 14.756462 6
Hippocampus CA1 pyramidal cell 100.863146 0.713266 -65.220970 -45.078885 29.810374 0.067234 14.615355 -52.826220 97.845439 5

Table 20: Best Model Fitted Parameters Izhikevich model, the final parameter value, regime number,
is a meta parameter that usually modifies u the recovery variable in the Izhikevich equation. Notice
too, that it looks like many row elements are duplicated except for differing by ’1’. Row elements
that are purely numeric denote Allen cell type specimen id’s. The extra ’1’ denotes an easy test set
consisting of only FITest, and Rheobase Test.

*
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cm v_spike v_reset v_rest tau_m a b delta_T tau_w v_thresh spike_delta
experiment

4824937611 224.255872 -38.561812 -77.704682 -51.608658 58.179308 2.244428 7.084609 2.755020 335.852562 -32.236088 27.968109
4718194011 294.893733 -54.915890 -30.929193 -51.337599 53.050157 4.361102 6.922987 4.611617 238.701988 -19.880977 38.495153
6238931771 291.891401 -43.377835 -75.236520 -52.386590 52.730179 1.937321 3.589253 3.682518 349.415730 -18.847586 45.698272
6239608801 147.166079 -45.027618 -32.175811 -51.521467 51.323969 1.787643 5.553571 4.143261 158.661633 -25.749411 15.471554
482493761 207.087442 -20.733319 -58.211088 -49.915523 33.883649 17.839201 4.651201 5.623945 120.739149 -36.109076 62.658869
471819401 239.622839 -39.219402 -66.030658 -39.475175 24.427497 14.761501 1.466630 7.449099 28.434677 -18.631515 25.017075
623893177 722.882514 -26.376059 -54.078109 -45.220146 32.107865 4.329680 9.104058 2.763061 303.871685 -34.368089 20.093434
623960880 178.059407 -20.577870 -26.568107 -46.302651 9.848878 19.140343 10.363827 6.901561 306.946112 -36.222350 56.319297
olf_mit 297.396881 -51.163281 -69.576191 -57.891142 54.798123 16.591664 3.118892 3.912469 344.409426 -23.650788 45.583662
Neocortex pyramidal cell layer 5-6 170.450121 -24.032164 -51.492037 -67.754010 25.453872 6.973876 1.479477 5.686814 230.131055 -32.842579 31.386174
Cerebellum Purkinje cell 717.111118 -48.432357 -34.206502 -62.769947 24.473459 5.282332 11.820173 9.344534 257.794528 -31.630191 40.033220
Hippocampus CA1 pyramidal cell 113.878716 -27.492145 -30.350509 -65.176063 13.857807 18.884843 9.699535 7.508661 349.611826 -37.237156 34.804450

Table 21: Although it looks like many row elements are duplicated except for differing by ’1’. Row
elements that are purely numeric denote Allen cell type specimen id’s. The extra ’1’ denotes an
easy test set consisting of only FITest, and Rheobase Test. Absence of ’1’ denotes a more conflicted
test set of Rheobase, Time Constant, Input Resistance and Resting Membrane Potential. Olfactory
Mitral cell is contracted to just “olf-mit". Olfactory mitral cells, and cerebellum cells where two
universal optimization failures.
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ACROSS MODEL PERFORMANCE COMPARISONS
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model type exp-cell χ2 p-value

conductance model Hippocampus CA1 pyramidal cell 17.21 0.027
conductance model olf-mit 26487.51 0.0
conductance model Neo cortex pyramidal cell layer 5-6 2.56 0.95
conductance model 4824937611 2.17 0.97
conductance model 471819401 0.870 0.99
conductance model 482493761 0.036 0.99

Table 22: Comparable χ2 for optimized results of the conductance based model. Not all models
could be evaluated, as optimization took a long time.

model type exp_cell χ2 p-value

0 IZHI 4824937611 0.034791 1.000000e+00
0 IZHI 4718194011 0.051691 1.000000e+00
0 IZHI 6238931771 0.086530 9.999999e-01
0 IZHI 6239608801 0.001550 1.000000e+00
0 IZHI 482493761 1.292924 9.956362e-01
0 IZHI 471819401 1.443618 9.936050e-01
0 IZHI 623893177 1.334789 9.951233e-01
0 IZHI 623960880 1.014464 9.981553e-01
0 IZHI olf_mit 6915.484007 0.000000e+00
0 IZHI Neocortex pyramidal cell layer 5-6 2.443396 9.643182e-01
0 IZHI Cerebellum Purkinje cell 19.885113 1.077956e-02
0 IZHI Hippocampus CA1 pyramidal cell 1.273070 9.958661e-01
0 ADEXP 4824937611 0.000017 1.000000e+00
0 ADEXP 4718194011 0.011029 1.000000e+00
0 ADEXP 6238931771 0.005062 1.000000e+00
0 ADEXP 6239608801 0.000083 1.000000e+00
0 ADEXP 482493761 86.949529 1.887379e-15
0 ADEXP 471819401 0.370856 9.999575e-01
0 ADEXP 623893177 0.273030 9.999870e-01
0 ADEXP 623960880 0.140222 9.999990e-01
0 ADEXP olf_mit 10.353878 2.410614e-01
0 ADEXP Neocortex pyramidal cell layer 5-6 0.013262 1.000000e+00
0 ADEXP Cerebellum Purkinje cell 353.692447 0.000000e+00
0 ADEXP Hippocampus CA1 pyramidal cell 0.735616 9.994308e-01
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List of Complete Set of 47 Electrophysiological Features Used Here

1. AP1RateOfChangePeakToTroughTest-3.0x
2. AP2DelaySDTest-1.5x
3. AP2DelaySDTest-3.0x
4. AP-end-indices-3.0x
5. AP-fall-indices-1.5x
6. AP-fall-indices-3.0x
7. AP-rise-indices-1.5x
8. AP-rise-time-1.5x
9. AP-rise-time-3.0x
10. APlast-width-1.5x
11. AccommodationRateMeanAtSSTest-3.0x
12. AccommodationRateToSSTest-3.0x
13. ISIBurstMeanChangeTest-3.0x
14. ISICVTest-3.0x
15. ISI-log-slope-skip-3.0x
16. Spikecount-stimint-1.5x
17. Spikecount-stimint-3.0x
18. adaptation-index2-3.0x
19. fast-trough-index-1.5x
20. fast-trough-index-3.0x
21. fast-trough-t-1.5x
22. fast-trough-t-3.0x
23. initburst-sahp-vb-1.5x
24. input-resistance
25. maximum-voltage-1.5x
26. min-AHP-indices-1.5x
27. min-AHP-indices-3.0x
28. peak-index-1.5x
29. peak-index-3.0x
30. peak-indices-1.5x
31. peak-indices-3.0x
32. peak-t-1.5x
33. peak-t-3.0x
34. peak-time-3.0x
35. steady-state-hyper-1.5x
36. steady-state-voltage-1.5x
37. steady-state-voltage-stimed-1.5x
38. threshold-index-1.5x
39. threshold-index-3.0x
40. threshold-t-1.5x
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41. threshold-t-3.0x
42. upstroke-index-1.5x
43. upstroke-index-3.0x
44. upstroke-t-1.5x
45. upstroke-t-3.0x
46. voltage-after-stim-1.5x
47. voltage-after-stim-3.0x
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