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ABSTRACT

Image super-resolution (SR) is a low-level image processing task, which has many

applications such as medical imaging, satellite image processing, and video enhance-

ment, etc. Given a low resolution image, it aims to reconstruct a high resolution

image. The problem is ill-posed since there can be more than one high resolution

image corresponding to the same low-resolution image. To address this problem, a

number of machine learning-based approaches have been proposed.

In this dissertation, I present my works on single image super-resolution (SISR)

and accelerated magnetic resonance imaging (MRI) (a.k.a. super-resolution on MR

images), followed by the investigation on transfer learning for accelerated MRI re-

construction. For the SISR, a dictionary-based approach and two reconstruction-

based approaches are presented. To be precise, a convex dictionary learning (CDL)

algorithm is proposed by constraining the dictionary atoms to be formed by non-

negative linear combination of the training data, which is a natural, desired prop-

erty. Also, two reconstruction-based single methods are presented, which make use

of (i)the joint regularization, where a group-residual-based regularization (GRR) and

a ridge-regression-based regularization (3R) are combined; (ii)the collaborative rep-

resentation and non-local self-similarity. After that, two deep learning approaches

are proposed, aiming at reconstructing high-quality images from accelerated MRI

acquisition. Residual Dense Block (RDB) and feedback connection are introduced

in the proposed models. In the last chapter, the feasibility of transfer learning for

accelerated MRI reconstruction is discussed.
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Chapter 1

INTRODUCTION

Image super-resolution (SR) is an inverse problem. It aims to reconstruct a high

quality image while a low quality image is given. Solving such kind of problems

is meaningful to many real world applications such as medical imaging, or satellite

image processing, etc.

However, these problems are difficult due to their ill-posedness, since there can be

more than one high resolution image corresponding to the same low-resolution image.

In this dissertation, I present the proposed machine learning models to solve the super-

resolution problem in natural image domain, and accelerated MRI reconstruction. I

also analyze the flexibility of transferring knowledge learned from natural images to

reconstruct high quality MR images.

1.1 Super-resolution for Natural Images

In recent years, dictionary learning approaches have been used in image super-

resolution, achieving promising results. Such approaches train a dictionary from

image patches and reconstruct a new patch by sparse combination of the atoms of

the dictionary. Typical training methods do not constrain the dictionary atoms. In

this dissertation, I propose a convex dictionary learning (CDL) (Ding et al., 2017)

algorithm by constraining the dictionary atoms to be formed by non-negative linear

combination of the training data, which is a natural, desired property. We evaluate

our approach by demonstrating its performance gain over typical approaches.

Also, I propose a reconstruction-based single image super resolution (SR) method

by using joint regularization (Chang et al., 2018b), where a group-residual-based reg-
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ularization (GRR) and a ridge-regression-based regularization (3R) are combined.

In GRR, non-local similar patches are grouped together, and the group weights are

calculated so as to adaptively constrain the residual values in the gradient domain.

In 3R, we adopt the ridge-regression-based method to establish the projection ma-

trices from an external high-resolution (HR) training set, so that the external HR

information can be utilized. To obtain an estimation of the targeted HR image, an

efficient algorithm is designed for solving the joint formulation. Experimental results

on different image datasets indicate that the proposed method is able to achieve the

state-of-the-art performance.

I also proposed an effective single image SR algorithm by using collaborative

representation and exploiting non-local self-similarity of natural images (Chang et al.,

2018a). In particular, the collaborative-representation-based method is applied to

build the so-called self-projection matrices from a training set of HR images. Then the

learned self-projection matrices are used to establish the collaborative-representation-

based regularization (CRR), which is responsible for introducing the external HR

information. Furthermore, to guarantee a reliable estimation of the HR image, the

non-local low-rank regularization (NLR) which exploits internal prior of images is also

taken into consideration. Since the CRR term and NLR term are complementary,

they are assembled together to form a new reconstruction-based framework for SR

recovery. Finally, to implement the proposed framework, an iterative algorithm is

designed to gradually improve the quality of the SR results. Extensive experimental

results indicate that the proposed approach is capable of delivering higher quality of

SR results than several state-of-the-art SR methods.

2



1.2 Accelerated MRI Reconstruction

Typical Magnetic Resonance Imaging (MRI) scan may take 20 to 60 minutes.

Reducing MRI scan time is beneficial for both patient experience and cost consider-

ations. Accelerated MRI scan may be achieved by acquiring less amount of k-space

data (down-sampling in the k-space). However, this leads to lower resolution and

aliasing artifacts for the reconstructed images. There are many existing approaches

for attempting to reconstruct high-quality images from down-sampled k-space data,

with varying complexity and performance. In recent years, deep-learning approaches

have been proposed for this task, and promising results have been reported. Still,

the problem remains challenging especially because of the high fidelity requirement

in most medical applications employing reconstructed MRI images. In this work, we

propose a deep-learning approach (Ding et al., 2019), aiming at reconstructing high-

quality images from accelerated MRI acquisition. Specifically, we use Convolutional

Neural Network (CNN) to learn the differences between the aliased images and the

original images, employing a U-Net-like architecture. Further, a micro-architecture

termed Residual Dense Block (RDB) is introduced for learning a better feature rep-

resentation than the plain U-Net. Considering the peculiarity of the down-sampled

k-space data, we introduce a new term to the loss function in learning, which effec-

tively employs the given k-space data during training to provide additional regular-

ization on the update of the network weights. To evaluate the proposed approach,

we compare it with other state-of-the-art methods. In both visual inspection and

evaluation using standard metrics, the proposed approach is able to deliver improved

performance, demonstrating its potential for providing an effective solution.

Inspired by the recent findings on this regard, I note that the feedback connections

can improve model performance by refining the low level features with the high level
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features. Moreover, since some of the weights in the network are used multiple time,

we are allowed to design a more complicated model with same number of parameters.

In this paper, I propose a Variational Feedback Network (VFN) for accelerated MRI

reconstruction. Specifically, we extend the previous proposed variational network with

recurrent neural network (RNN), which is designed to achieve the feedback manner.

We analyze the influence of our proposed model by comparing it to other state-

of-the-art methods. Quantitative and qualitative evaluations demonstrate that our

proposed model performs superiorly against other compared methods on accelerated

MRI reconstruction.

1.3 Transfer Learning for Accelerated MRI Reconstruction

As training data are typically scarce in medical applications, deep learning tech-

niques often employ transfer learning, which attempts to incorporate knowledge

learned from abundant natural images. Nevertheless, we have yet to see a systematic

study on this for MRI reconstruction. In this paper, we investigate the feasibility

and potential effects of applying transfer learning in accelerated MRI reconstruc-

tion. First, we degrade the natural images in the frequency domain such that they

have similar artifacts which are caused by the k-space undersampling scheme. Af-

ter that, we use these image pairs to pretrain a neural network and analyze if it is

possible to transfer the knowledge to improve the performance on accelerated MRI

reconstruction. Experiments were designed to evaluate and compare reconstruction

performance with and without transfer learning, using the popular UNet architecture

as the building block. Our results suggest that transfer learning does not provide

significant performance gain in this application. This is further analyzed by visu-

alizing the learned features from different layers of the network, which appears to

suggest that knowledge learned from natural images is eventually washed out during
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the training using MRI data.
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Chapter 2

SINGLE IMAGE SUPER-RESOLUTION

2.1 Convex Dictionary Learning

High-resolution images are useful in many real world applications, such as medical

imaging and satellite imaging. When only low-resolution images are available, super-

resolution is a common technique deployed for resolution enhancement. The task of

single-image super-resolution, which is the focus of this paper, is to reconstruct a

high-resolution version from only a low-resolution image. Conventional techniques

for solving this problem can be categorized into interpolation-based (such as bilinear

interpolation )(Hou and Andrews, 1978), reconstruction-based (Farsiu et al., 2004;

Tipping and Bishop, 2003), and example-based methods (Chang et al., 2004; Sun

et al., 2008). Interpolation-based schemes tend to generate over-smoothed images,

and thus complex details are often missing in the reconstructed high-resolution im-

ages. In the reconstruction-based methods, super-resolution is viewed as an inverse

problem, which is typically ill-posed, and thus different regularization schemes have

been introduced. Most existing efforts on this regard show that such approaches

only work for small up-scaling factor. Example-based approaches use images in the

training set as priors for reconstruction. Typically they require a huge dataset of

high-resolution and low-resolution patch pairs as the examples.

In recent years, dictionary learning-based methods (Yang et al., 2010b, 2012a;

Mairal et al., 2008) have been proposed and promising results have been reported.

There are also studies (Kulkarni et al., 2012) on relations between such approaches and

the theory of compressed sensing (Donoho, 2006). In a dictionary-learning-based ap-
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proach, a compact dictionary is learned from some training image patches and future

super-resolution would be based on only this compact dictionary. In a representative

algorithm of this kind (Yang et al., 2010b), a pair of dictionaries are learned such that

both high-resolution and low-resolution image patches can be transformed into the

same sparse representation. Other examples of such approaches include (Wang et al.,

2012; Zhang et al., 2012a; Jia et al., 2013). Most existing such efforts base the learning

on the basic K-SVD algorithm (Aharon et al., 2006) or its variants. K-SVD, as a gen-

eralized K-means algorithm, is mainly concerned with minimum-mean-squared-error

reconstruction, but less concerned with whether the learned dictionary is physically

meaningful (and thus potentially optimal in some sense). For example, while the

learned dictionary atoms are supposedly some de facto ”basis” image patches, most

existing approaches would allow such patches contain negative components and/or

allow sparse codes under the dictionary to be negative.

Aiming at learning dictionaries whose atoms are closer to natural image patches as

well as support non-negative combinations to form new image patches (both intuitive

and desirable properties for a dictionary-based scheme), we propose a new algorithm

for training a dictionary for super-resolution. The key idea and main contributions

of this paper are thus:

• We introduce a convexity constraint to the dictionary, which forces the atoms

of the dictionary to lie within the convex cone of the training patches, and

thus formulate a new dictionary learning problem ”convex dictionary learning”

(CDL).

• We propose an optimization algorithm for solving the CDL problem to obtain

a solution, and demonstrate with experiments the effectiveness of the proposed

formulation and algorithm.
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2.1.1 Super-resolution, Sparse Coding and Dictionary Learning

The problem of super-resolution can be described as follows: let xh ∈ Rh be the

vector denoting the original high-resolution image, xl ∈ Rl be the vector denoting the

low-resolution version of the original image, H : Rh → Rh and S : Rh → Rl be the

blur and decimation operators respectively, then the relation between xh and xl can

be written as:

xl = SHxh (2.1)

Given xl, the problem of super-resolution is to find x̂h ∈ Rh such that x̂h ≈ xh. Note

that the number of columns is larger than the number of rows for SH, and thus the

super-resolution problem is ill-posed.

Let X be the input data, which contains M -dimensional N input signals, i.e.

X = (x1, ..., xN) ∈ RM×N . Learning a reconstructive dictionary with K columns, is

equivalent to the following optimization problem:

< D, Y >= arg min
D,Y
‖X −DY ‖2F

s.t. ‖yj‖0 ≤ T ∀j ∈ {1, ..., N}
(2.2)

where D = (d1, ..., dn) ∈ RM×K is a over-complete dictionary with K > M , Y =

(y1, ...yN) ∈ RK×N is the sparse representation matrix of input data X, ‖y‖0 is the

number of non-zero entries in y, T is the sparsity constraint constant, and ‖X−DY ‖2F

is the reconstruction error.

To construct D, we need to minimize the reconstruction error and fulfill the spar-

sity constraints in (2.2). The optimization problem in (2.2) can be split into the

following two sub problems (2.3) and (2.4):

min
Y
‖X −DY ‖2F s.t. ∀j ∈ {1, ..., N}, ‖yj‖0 ≤ T (2.3)
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and

D = arg min
D
‖X −DY ‖2F (2.4)

The main idea of dictionary learning is to find a dictionary such that every in-

put can be approximated as a linear combination of the columns of the dictionary.

Several dictionary training methods have been proposed, such as method of optimal

directions(MOD) (Engan et al., 1999) and KSVD algorithm (Aharon et al., 2006),

the latter is widely used in many real world applications.

For dictionary-based super-resolution, Yang etal. (Yang et al., 2012a) proposed a

coupled dictionary training model:

min
DH ,DL,yj

∑
j

‖xHj −DHyj‖22 + ‖xLj −DLyj‖22

s.t. ‖yj‖0 ≤ T ∀j ∈ {1, ..., N}

(2.5)

where xHj and xLj are the patches extracted from the high-resolution image and its

corresponding feature vector in the low-resolution image at the same location re-

spectively. yj is the sparse representation for the jth pair of low-resolution and

high-resolution patches. The core idea of this approach is, the sparse coefficient of

the high-resolution patch, after the process described in Eq. (2.1), should remain

unchanged.
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Figure 2.1: A Synthetic Data Sets with Several Clusters. The Red”+” Are the
Columns of the Dictionary Constructed by CDL.

2.1.2 Convex Dictionary Learning

We now present the details of our proposed model, which is centered at imposing

convexity to dictionary learning.

Problem Formulation

A baseline dictionary-learning approach like Eq. (2.2) does not constrain the columns

of the dictionary D = (d1, ..., dK). We impose a convex constraint on the dictionary

such that the column vectors of D lie in the convex cone formed by the column vectors

of the input data matrix X, that is:

dj = Xaj, ‖aj‖1 = 1, aj ≥ 0 ∀j ∈ {1, ..., K} (2.6)

where ‖ ·‖1 denotes the l1 norm. We say that dj is a convex combination of x1, ..., xN ,

if there exists ci ≥ 0,∀i ∈ {1, ..., N} such that dj = c1x1 + ... + cNxN and
∑

i ci = 1.

In this case, dj lies in the convex cone which is formed by some xi, where c1, ..., cN

is the barycentric coordinates.

After imposing this constraint, the objective function for dictionary construction
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can be defined as:

min
D,Y
‖X −DY ‖2F s.t. ∀j ∈ {1, ...N}

D = XA,A ≥ 0, ‖aj‖1 = 1, ‖yj‖0 ≤ T

(2.7)

where A = (a1, ..., aK) ∈ RN×K
+ is the convex cone matrix. Since we can rewrite D

into XA, Eq. (2.7) can be simplified to Eq. (2.8):

min
A,Y
‖X −XAY ‖2F s.t. ∀j ∈ {1, ...N}

A ≥ 0, ‖aj‖1 = 1, ‖yj‖0 ≤ T

(2.8)

Adding the convexity constraint to the dictionary gains us some desired properties

for the dictionary. Suppose the data are from some clusters, and the optimization is

done correctly, the columns of the dictionary should be close to the centroids of the

clusters. Getting those centroids is meaningful, since the training data is part of the

population, we are trying to recover the original distribution of the data, where the

means (centroids) serve as an important role. Another benefit is that, if xi and xj

are close enough, they will be in the same cluster, which means their sparse code yi

and yj will be similar. So, CDL preserves the distance among the data in the sparse

representation. From this viewpoint, the convex constraint encourages that there are

fewer dominating non-zero entries in each sparse representation. Fig. 2.1 illustrates

these points for CDL on a synthetic data set.

Optimization

The initialization will be discussed in Sect. 2.1.3. After the initialization, we update

Y and A alternatively until they converge. To approximate the optimal solution, we

introduce a matrix multiplicative update rule as follows:

Step 1: Update Y (with others fixed): The minimization problem with

respect to Y can be decomposed into N sub-problems. The sparse representation Yj
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Figure 2.2: Visual Comparison of Sr Results on ”Lenna”, ”Barbara”. The First,
Second and Last Column Are from Bicubic, KSVD, CDL Respectively.

can then be computed by using any non-negative pursuit algorithm:

∀j ∈ {1, ..., N}, min
yj
‖xj −XAyj‖22 s.t. ‖yj‖0 ≤ T (2.9)

Step 2: Update A (with others fixed): The minimization problem with

respect to A can be solved by a multiplicative rule, which is stated as follows:

Bij ← Aij

√
[(XTX)+Y T + (XTX)−AY Y T ]ij
[(XTX)−Y T + (XTX)+AY Y T ]ij

(2.10)

Aij ←
Bij∑
iBij

(2.11)

Here, Mij is the element located in the ith row and the jth column in M , M+ and

M− are the positive part and negative part of M respectively, i.e.

M+ = (|M |+M)/2 M− = (|M | −M)/2 (2.12)

Step 3: Increase the iteration counter: J = J + 1
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Algorithm 1: Algorithm for CDL

Input: X,A0,Y0,T

while J = 1 : max iteration number do

update Y using eqt. (2.9);

update A using eqt. (2.10)and (2.11);

update J = J + 1;

Calculate D = XA and normalize it.

Output: D

Step 1, 2, 3, should be repeated until convergence. For the update of A, it satisfies

the KKT condition and the proof can be found in (Ding et al., 2010), and thus

convergence is guaranteed. The procedure is summarized in Algorithm 1.

2.1.3 Experimental Results

We apply our CDL method to single image super-resolution, and compare our

algorithm to others using the model described in (Yang et al., 2012a). In our ex-

periments, we use the same training images used in (Yang et al., 2012a). The low-

resolution images in the training set are generated by the high-resolution images using

down-sampling with bicubic interpolation. Eight popular images for super-resolution

are chosen as the testing set. We use 5× 5 image patch pairs for a up-scaling factor

3, and the number of columns of the dictionary is 256. Part of the codes are provided

by (Yang et al., 2012a) and (Li and Ngom, 2013).

Experimental Setting

We describe how to initialize A and Y for CDL. We can pick a random vector for

Y (0), uniformly distributed from 0 to 1, and then set A(0) = (Y (0))TP , where bj

equals to the l2 norm of the jth row of Y (0) and P = diag(1/b1, ..., 1/bK). Another
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way is to do a K-means clustering on X. Suppose we obtained the cluster indicator

matrix C = (c1, ..., ck), where the elements of C is either 0 or 1. Then, by setting

Y (0) = C + µE, where E is a matrix of all 1s, and µ is a small value (e.g. µ = 0.2).

The centroids of the clusters can be used to be the columns of dictionary D, then ∀j,

dj = Xcj/bj or D = XCB where B = diag(1/b1, ..., 1/bK). Follwed by calculating B,

we then have A = CB. This method is also used in (Ding et al., 2010). We use the

first method in our implementation.

Comparison

We compare our model with bicubic interpolation (Hou and Andrews, 1978), and

KSVD (Aharon et al., 2006) under the model described in (Yang et al., 2012a) . In

Table 2.1, we compare the peak signal to noise ratio (PSNR) and structural similarity

index (SSIM) for the reconstructed high resolution images. The result shows that our

approach is consistently better. As illustrated in Fig. 2.2, bicubic interpolation

generates over-smoothed results, KSVD’s results are a little bit blurry at the complex

texture, and some artifacts appear near the edges. Our algorithm gives better results

for not just recovering more texture details, but also presenting sharper edges with

fewer artifacts.

2.1.4 Further Discussion

KSVD is a dictionary-learning algorithm using the singular value decomposition

approach, which makes the dictionary built by KSVD captures as much of the energy

of the training data. However, in many real world applications, the testing data

may not be identical to the training data, which means KSVD may not be the best

approach for reconstructing the testing data. Our approach practically attempts to

capture the clusters of the data and thus is less affected by such mismatch between

15



training and testing data.

For time complexity, CDL uses a matrix multiplicative update rule for training,

which makes its training time much longer than KSVD. However, since training is

typically done offline, this is not a practical concern.
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2.2 Single Image Super Resolution Using Joint Regularization

The task of single image super-resolution (SR) is to restore a high-resolution (HR)

image from a given low-resolution (LR) image. Usually, the following degradation

model is considered to relate the HR image to the observed LR image

Y = SHX + n (2.13)

where Y and X respectively stand for the LR image and its HR version, H is a

blurring matrix, S represents the decimation operator, and n is the additive noise

vector.

Among different types of SR methods, the learning-based methods are commonly

studied. Its basic idea is to learn the mapping function from the LR space to the HR

space. To this end, many methods train the basic models by using an external dataset,

and the representative works include the nearest-neighbor-based methods Freeman

et al. (2002); Chang et al. (2004); Gao et al. (2012), the sparse-representation-based

methods Yang et al. (2010b); Zeyde et al. (2010); Kulkarni et al. (2012), the regression-

based methods Kim and Kwon (2010); Yang and Yang (2013); Timofte et al. (2013,

2014); Jiang et al. (2017), the deep-learning-based methods Dong et al. (2016a,b);

Wang et al. (2015a); Kim et al. (2016b), etc. To relax the dependence on the simi-

larity between the training dataset and the test images, some approaches make use

of the internal examples Yang et al. (2010a); Yang and Wang (2013); Huang and

Ahuja (2015), and assume that the patches in a natural image frequently recur at

various scales of the same image. As both the external- and the internal-example-

driven methods suffer from their respective drawbacks, approaches which jointly take

advantage of the external and the internal examples have also been proposed Wang

et al. (2015b); Cheong and Park (2017).

Apart from the learning-based strategies, another important type of the SR meth-
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ods is the reconstruction-based methods, where prior information is applied to regular-

ize the solution spaces. There are different kinds of prior information, including local

priors (Rudin et al., 1992; Takeda et al., 2007; Bredies et al., 2010; Hu and Jacob,

2012; Lefkimmiatis et al., 2015), non-local self-similarity (NLSS) priors (Chierchia

et al., 2014; Buades et al., 2005; Gilboa and Osher, 2008; Zhang et al., 2010; Mag-

gioni et al., 2013; Dong et al., 2014), sparsity priors (Elad and Aharon, 2006; Dong

et al., 2011, 2013), etc. To obtain superior performance, many algorithms assemble

complementary priors (Dong et al., 2011, 2013; Zhang et al., 2012b; Ren et al., 2016,

2017; Chen et al., 2017; Liu et al., 2017). For instance, in (Zhang et al., 2012b),

steering kernel regression (Takeda et al., 2007) and non-local means (Buades et al.,

2005) were combined, while in (Ren et al., 2016, 2017), NLSS and local geometric

duality were incorporated. Besides the above priors, some works assume that in some

applications, an HR patch of the image is available (El Gheche et al., 2017; Hidane

et al., 2016, 2014), and therefore it can be used to guide the reconstruction of the

whole HR image.

we propose a reconstruction-based single image SR algorithm, and the main con-

tributions are threefold: First, a group-residual-based regularization (GRR) approach

is proposed, which can well characterize the local structure and the NLSS prior of nat-

ural images. Second, in order to integrate the advantages of the reconstruction-based

and the learning-based SR methods, we present a ridge-regression-based regulariza-

tion (3R), where the HR features from an external dataset are introduced. Finally, an

optimization algorithm named JRSR (joint-regularization-based SR) is designed for

solving the minimization problem which incorporates both GRR and 3R. To facili-

tate evaluation and further exploration, the implementation of JRSR will be available

online 1 after this letter is formally published.

1http://www.public.asu.edu/%7ebli24/
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Figure 2.3: SR Results by Different Methods on ppt3 (×3). From Left to Right:
SelfExSR(Huang and Ahuja, 2015) (PSNR: 25.69dB, SSIM: 0.9179), SRCNN(Dong
et al., 2016a) (25.94dB, 0.9172), SKR-NLM(Zhang et al., 2012b) (25.18dB, 0.9050),
NCSR(Dong et al., 2013) (25.90dB, 0.9246), JRSR (27.58dB, 0.9599), Ground Truth.

2.2.1 The Proposed Joint Regularization

We propose to reconstruct X from Y through solving the following minimization

problem:

X̂ =
X

1

2
‖Y − SHX‖22 + αΨGRR(X) + βΨ3R(X) (2.14)

where α and β are trade-off parameters. In problem (2.47), besides the data fidelity

term, two additional regularization terms are incorporated, where ΨGRR(X) exploits

the structural information in images, and Ψ3R(X) introduces the HR information

from an external dataset. As the two priors are complementary, jointly considering

them can lead to a better result. Now let us discuss them in detail.

2.2.2 Group-Residual-based Regularization (GRR)

As a traditional model, total variation (TV) regularization is good at describing

piecewise smooth structures in natural images. It can be formulated by

ΨTV(X) = ‖DX‖1 (2.15)

where D = [D1
h
T
,D1

v
T

]T , with D1
h and D1

v representing the matrices that generate the

horizontal and the vertical first-order derivatives, respectively.

However, TV regularization is a global model, which tends to smear out the edges

and the details in texture regions. To achieve a better result, one alternative way
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is to adaptively regularize the gradient value at each pixel by exploiting non-local

similarity within an image. In this letter, we propose the following framework

ΨGRR(X) =
∑
i

‖Wi ◦ (FiDX− Ei)‖1 (2.16)

where Fi stands for the matrix which extracts the ith group of similar patches in the

gradient domain; Ei denotes the estimation of the ith group of similar patches in the

gradient domain; (FiDX − Ei) is the residual of a group of similar patches in the

gradient domain. Motivated by our previous work (Chang et al., 2016a), a weight

matrix Wi is introduced to compensate the unreliable estimation for the ith group,

so that the compensated result could be more sparse. ◦ in (2.16) is the Hadamard

product.

To utilize model (2.16), an image is divided into overlapped squared image patches

with size ps × ps. For the ith exemplar patch, we calculate the l2 distance between it

and all the candidate patches in a search window with size ws×ws. After the (Np−1)

nearest patches are located, the similar patches are combined as a group, and their

positions are recorded so as to build Fi.

Let xi,m be the mth patch in the ith group in the gradient domain, where m =

1, 2, ..., Np. Since the patches in the same group are similar to each other, we can

obtain an estimation for xi,m by averaging the other patches in the group

ei,m =
1

Np − 1

∑
n6=m

xi,n (2.17)

Hence the prediction of the whole group can be formed by stacking all ei,m into a

matrix, i.e., Ei = [ei,1, ei,2, ..., ei,Np ].

Notice that ei,m in Eq. (2.17) is actually the expectation of a group of similar

patches except xi,m. Therefore, to appropriately establish Wi, we make use of the
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variance of these similar patches, which is computed by

vi,m =

[
1

Np − 1

∑
n6=m

(xi,n − ei,m)◦
2

]◦ 12
(2.18)

where ◦ 1
2 and ◦2 stand for the Hadamard root and power, respectively. According to

the way we perform estimation, a larger variance could lead to a worse estimation.

Consequently, our weight matrix is built by Wi = [wi,1,wi,2, ...,wi,Np ], where wi,m =

v◦
−1

i,m , and ◦−1 is the Hadamard inverse.

21



T
a
b
le

2
.2

:
T

h
e

P
S
N

R
(d

B
)

an
d

S
S
IM

R
es

u
lt

s
on

T
en

T
es

t
Im

ag
es

(×
3)

M
et
h
o
d
s

B
u

tt
er

fl
y

P
a
rr

o
ts

P
a
rt

h
en

o
n

B
ik

e
F

lo
w

er
G

ir
l

H
a
t

L
ea

ve
s

P
la

n
ts

R
a
cc

oo
n

A
ve
ra
g
e

A
+

26
.8
9

29
.5
4

2
6
.8
4

2
4
.3
0

2
8
.8
1

3
3
.4
3

3
0
.9
9

2
5
.9
1

3
3
.3
2

2
8
.9
2

2
8
.9
0

0.
90
18

0.
90
77

0
.7
3
4
3

0
.7
7
9
4

0
.8
3
7
7

0
.8
2
0
6

0
.8
7
2
2

0
.8
9
3
1

0
.9
1
0
3

0
.7
5
0
7

0
.8
4
0
8

S
el
fE
x
S
R

26
.2
5

29
.6
7

2
6
.8
6

2
4
.1
1

2
8
.9
9

3
3
.6
0

3
0
.6
4

2
5
.8
4

3
3
.2
4

2
9
.1
5

2
8
.8
3

0.
87
86

0.
91
02

0
.7
3
9
0

0
.7
7
7
4

0
.8
4
4
7

0
.8
2
8
7

0
.8
6
6
6

0
.8
8
2
7

0
.9
1
0
8

0
.7
6
7
9

0
.8
4
0
6

S
R
C
N
N

27
.6
9

29
.7
7

2
6
.9
4

2
4
.4
1

2
8
.8
9

3
3
.3
1

3
0
.8
8

2
6
.4
7

3
3
.3
2

2
9
.0
4

2
9
.0
7

0.
89
99

0.
90
72

0
.7
3
7
3

0
.7
8
1
2

0
.8
3
6
9

0
.8
1
8
1

0
.8
6
5
5

0
.8
9
9
8

0
.9
0
6
7

0
.7
5
7
0

0
.8
4
1
0

S
K
R
-N

L
M

26
.7
3

29
.7
4

2
6
.7
4

2
4
.3
0

2
8
.9
4

3
3
.4
6

3
0
.7
7

2
6
.1
4

3
3
.1
1

2
9
.0
2

2
8
.8
9

0.
88
88

0.
90
55

0
.7
3
1
0

0
.7
8
4
3

0
.8
4
0
7

0
.8
2
2
5

0
.8
6
4
7

0
.8
8
8
7

0
.9
0
4
1

0
.7
5
9
5

0
.8
3
9
0

N
C
S
R

28
.1
5

30
.2
6

2
7
.1
2

2
4
.6
9

2
9
.3
5

3
3
.6
2

3
1
.2
6

2
7
.5
7

3
3
.9
9

2
9
.3
0

2
9
.5
3

0.
91
70

0.
91
17

0
.7
4
7
1

0
.8
0
1
8

0
.8
5
2
9

0
.8
2
7
1

0
.8
7
4
2

0
.9
2
2
7

0
.9
1
7
3

0
.7
7
0
2

0
.8
5
4
2

J
R
S
R

2
9
.7
4

3
0
.5
1

2
7
.3
4

2
5
.0
9

2
9
.8
4

3
3
.4
9

3
1
.8
1

2
8
.5
5

3
4
.5
7

2
9
.1
9

3
0
.0
1

0
.9
3
8
6

0
.9
1
7
1

0
.7
5
6
5

0
.8
1
9
1

0
.8
6
6
4

0
.8
2
3
3

0
.8
8
4
9

0
.9
4
2
4

0
.9
2
4
7

0
.7
6
2
4

0
.8
6
3
5

22



2.2.3 Ridge-Regression-based Regularization (3R)

Inspired by the success of ANR (Timofte et al., 2013) and A+ (Timofte et al.,

2014), we propose a ridge-regression-based regularization (3R), so that the HR in-

formation of an external dataset can be effectively utilized. However, different from

ANR and A+, we consider the ridge regression problem in the HR space.

Suppose that Nj is the jth neighborhood in the HR space, which is the most

suitable one for representing the feature of the lth HR image patch fl. The ridge

regression problem for finding the corresponding coefficient ĉl can be written as

ĉl =
cl
‖fl −Njcl‖22 + λ‖cl‖22 (2.19)

with λ denoting the trade-off parameter. The solution of problem (2.39) is given by

ĉl = (NT
j Nj + λI)−1NT

j fl (2.20)

By multiplying both sides of the equal sign in Eq. (2.40) with Nj, we have

Nj ĉl = Pjfl (2.21)

where Pj = Nj(N
T
j Nj +λI)−1NT

j is the projection matrix, which is computed offline

and stored for online reconstruction.

With Eqs. (2.39) and (2.21), it is easy to know that Pjfl should be close to fl.

Hence we can use this knowledge to build a new regularization framework, which is

formulated by

Ψ3R(X) =
∑
l

‖RlBX−PjRlBX‖1 (2.22)

where Rl denotes the matrix which extracts the feature of the lth image patch, and B

is the feature transformation matrix. Following (Yang et al., 2010b), the first-order

and second-order derivatives of the patches are used as the representation. Thus
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Algorithm 2: Learning DH and {Pj} (Offline Training)

Input: An external HR dataset

Extract features of image patches from the HR dataset;

Learn an HR dictionary DH with M atoms by K-SVD (Aharon et al., 2006);

For each atom aj in DH

1. Locate the K nearest neighbours for aj in NT training samples and build Nj ;

2. Compute Pj = Nj(N
T
j Nj + λI)−1NT

j ;

End for

Output: DH, {Pj}.

B = [D1
h
T
,D1

v
T
,D2

h
T
,D2

v
T

]T , with D2
h and D2

v denoting the matrices that produce

the horizontal and the vertical second-order derivatives, respectively.

In order to provide enough diversity, the total number of the projection matrices

should be large. Furthermore, for each image patch, it is necessary to locate the most

suitable matrix Pj. For these two reasons, at the stage of offline training, a dictionary

DH in the HR space needs to be learned, and then the K nearest neighbours of the

jth dictionary atom aj are found and grouped into the matrix Nj. The algorithm for

learning DH and {Pj} is listed as Algorithm 4. When performing online reconstruc-

tion, the feature of each image patch is compared with all the atoms in DH. After

the nearest atom aj is found, its index j can lead us to the related Pj.

2.2.4 Optimization Algorithm for Single Image SR

To efficiently solve problem (2.47), we define d1,i = FiDX − Ei and d2,l =

(I − Pj)RlBX. By applying split-Bregman method (Goldstein and Osher, 2009)

and dividing the target problem (2.47) into a number of subproblems, our joint-
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Algorithm 3: JRSR (Online Reconstruction)

Input: S, H, Y, DH, {Pj}, α, β, γ, η

Use bicubic interpolation to obtain the initial result X0;

For k = 0, 1, ..., Ns − 1

If mod(k, 30) == 0

Use Xk to calculate {Fi}, {Wi} and {Ei};

End if

Locate the suitable Pj for each image patch;

Compute A by (2.25) and G by (2.26);

Use the CG method to solve (2.24) and get Xk+1;

If k ≥ 120 and ‖Xk+1 −Xk‖22/N < e

Break;

End if

Compute {dk+1
1,i } by (2.27) and {dk+1

2,l } by (2.29);

Update {bk+1
1,i } and {b

k+1
2,l } according to (2.23);

End for

Output: X̂ = Xk+1.

regularization-driven iteration is formulated as follows

Xk+1 = X
1
2
‖Y − SHX‖22

+γ
2

∑
i ‖dk1,i − (FiDX− Ei)− bk1,i‖22

+η
2

∑
l ‖dk2,l − (I−Pj)RlBX− bk2,l‖22

dk+1
1,i = d1,i

α‖Wi ◦ d1,i‖1

+γ
2
‖d1,i − (FiDXk+1 − Ei)− bk1,i‖22

dk+1
2,l = d2,l

β‖d2,l‖1

+η
2
‖d2,l − (I−Pj)RlBXk+1 − bk2,l‖22

bk+1
1,i = bk1,i + (FiDXk+1 − Ei)− dk+1

1,i

bk+1
2,l = bk2,l + (I−Pj)RlBXk+1 − dk+1

2,l

(2.23)
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where γ and η are two trade-off parameters, k is the iteration number, and the

auxiliary variables {bk+1
1,i } and {bk+1

2,l } are updated according to the Bregman itera-

tion (Goldstein and Osher, 2009).

Since the objective function with respect to X in Eq. (2.23) is quadratic, by setting

its derivative to be zero, the closed form solution of X can be written as follows

Xk+1 = G−1A (2.24)

where

A =(SH)TY + γDT

[∑
i

FT
i (Ei + dk1,i − bk1,i)

]

+ ηBT

[∑
l

RT
l (I−Pj)

T (dk2,l − bk2,l)

] (2.25)

G =(SH)T (SH) + γDT (
∑
i

FT
i Fi)D

+ ηBT

[∑
l

RT
l (I−Pj)

T (I−Pj)Rl

]
B

(2.26)

However, directly calculating Eq. (2.24) requires large computational complexity.

Therefore, we use the conjugate gradient (CG) method to solve the linear system

problem GXk+1 = A and obtain Xk+1.

To solve the subproblem on d1,i in Eq. (2.23), the shrinkage formula is used to get

the closed-form solution (Chang et al., 2016a)

dk+1
1,i = shrink(FiDXk+1 − Ei + bk1,i, αWi/γ) (2.27)

With a vector X and a threshold ε, the shrinkage operation is defined by

shrink(X, ε) = max(|X| − ε, 0) ◦ sgn(X) (2.28)

For the subproblem on d2,l in Eq. (2.23), the solution is

dk+1
2,l = shrink((I−Pj)RlBXk+1 + bk2,l, β/η) (2.29)
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As all the subproblems have been addressed, JRSR is summarized as Algorithm 5,

where Ns is the maximum number of iterations, e is a scalar which controls the con-

vergence of JRSR, and N is the number of pixels in an image. In practice, for several

images it was observed that the PSNR does not vary much above 120 iterations.

Therefore, after 120 iterations, if the relative change of Xk is too small, JRSR will

terminate.

2.2.5 Experimental Results

To evaluate the effectiveness of JRSR, five state-of-the-art SR algorithms are

compared, including three learning-based methods (A+ (Timofte et al., 2014), Self-

ExSR (Huang and Ahuja, 2015), and SRCNN (Dong et al., 2016a)) and two reconstruction-

based methods (SKR-NLM (Zhang et al., 2012b) and NCSR (Dong et al., 2013)). For

simplicity, different SR methods are only applied on the luminance channel, while

bicubic interpolation is used for the chromatic channels. The experiments are car-

ried out under MATLAB 2014b environment and on a PC with Intel(R) Core(TM)

i7-4790 CPU and 8G RAM.

In order to generate the LR images, we first blur the original images by a 7 × 7

Gaussian filter with a standard deviation of 1.6, and then down-sample the blurred

images by a factor of 3. For a fair comparison, the models of A+ (Timofte et al.,

2014) and SRCNN (Dong et al., 2016a) are re-trained according to the particular blur

kernel used in this letter, and the degradation model used in the back-projection step

of SelfExSR (Huang and Ahuja, 2015) is also modified.

To learn our DH and {Pj}, the commonly used 91 training images (Yang et al.,

2010b) are selected as the external dataset. The settings of offline learning are:

NT = 5000000, M = 1024, K = 2048, and λ = 1.2. When performing online

reconstruction, we set ps = 5 for both of the GRR and 3R terms. To group similar
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patches, the search window size ws = 25, and the group size Np = 10. The other

settings of JRSR are: Ns = 150, α = 0.006, β = 0.00025, γ = α/20.0, η = β/20.0,

and e = 0.001.

The peak signal to noise ratio (PSNR) and the structure similarity (SSIM) results

of the luminance channel on ten commonly used test images (Dong et al., 2011) are

shown in Table 2.2, where the best methods are highlighted in bold. It can be observed

that the proposed JRSR outperforms the other methods in most cases, and the average

PSNR and SSIM gains over the second best method (i.e., NCSR (Dong et al., 2013))

are 0.48dB and 0.0093, respectively. To comprehensively test JRSR, we further carry

out experiments on other three image datasets, including Set5 (Bevilacqua et al.,

2012), Set14 (Zeyde et al., 2010) and BSD100 (Timofte et al., 2014), and the average

PSNR and SSIM results are given in Table 2.3.

For visual comparison, the SR results of ppt3 from Set14 are presented in Fig.1.

We can see that JRSR not only produces sharper edges, but also suppresses the

artifacts better than the other methods. Due to length limitation, we report more

visual comparisons in the supplementary material.

The average running time for super-resolving a 256× 256 test image is shown in

Table 2.4. The running time of JRSR is comparable to NCSR, but is much longer

than the learning-based methods. The computational burden mainly focuses on: 1)

computing {Fi} and {Wi} cost O(p2sw
2
sNe) and O(p2sNpNe), respectively, where Ne

denotes the number of exemplar patches in an image; 2) locating the suitable Pj for

all patches takes O(p2sMNe); 3) updating Xk by the CG method needs O(N2Ng),

where Ng is the number of iterations of the CG method. More discussions about the

implementation of JRSR can be found in the supplementary material.

Among the tested methods, JRSR, A+ (Timofte et al., 2014) and SRCNN (Dong

et al., 2016a) need offline training. It takes O(p2sMNT) to train the model of JRSR,
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Table 2.3: The Average PSNR(dB) and SSIM Results on Set5, Set14 and BSD100
(×3)

Methods
Set5 Set14 BSD100

PSNR SSIM PSNR SSIM PSNR SSIM

A+ 32.30 0.9027 28.88 0.8089 28.01 0.7703

SelfExSR 32.33 0.9021 28.89 0.8155 28.06 0.7792

SRCNN 32.37 0.9010 28.97 0.8107 28.07 0.7739

SKR-NLM 32.34 0.9007 28.82 0.8102 28.08 0.7754

NCSR 33.01 0.9100 29.27 0.8197 28.35 0.7837

JRSR 33.44 0.9156 29.57 0.8239 28.56 0.7875

Table 2.4: Average Running Time(s) on 256 × 256 Test Images

A+ SelfExSR SRCNN SKR-NLM NCSR JRSR

0.19 18.13 1.67 95.58 192.45 197.34

leading to a training time of 5639.1 seconds. Compared with SRCNN, the training

phase of which lasts for days, JRSR is much faster and does not require GPU. Since

A+ conducts dimensionality reduction for the features, training the model of A+

costs 1328.6 seconds, which is less than JRSR. It should be pointed out that the basic

models of both A+ and SRCNN are learned according to a given degradation model.

When the model changes (i.e., the magnification factor or the blur kernel changes),

it is necessary to re-train their models, which is inconvenient in real applications. On

the contrary, the training phase of JRSR is independent of the degradation model.

Therefore, after one-time training, JRSR is able to work with different degradation

models.
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2.3 Single Image Super-resolution Using Collaborative Representation and

Non-local Self-similarity

Many multimedia applications involve the task of resolution-enhancement for im-

ages or videos as a post-processing technique for overcoming the limitation of the ac-

quisition camera’s sensor resolution (Yue et al., 2016). Single image super-resolution

(SR) is such a technique that aims to estimate a high-resolution (HR) output from

a given low-resolution (LR) image. Generally, the observed LR image is regarded as

a degraded version of the inaccessible, true HR image, and the relationship between

them can be modeled by the following equation

Y = SHX + n (2.30)

where Y and X are the observed LR image and the corresponding HR image, re-

spectively, S denotes the down-sampling matrix, H stands for the blurring operator,

and n represents the additive Gaussian white noise. The existing SR techniques

can be roughly divided into three categories: the interpolation-based methods, the

learning-based methods and the reconstruction-based methods.

The interpolation-based SR methods predict the unknown pixels in a HR grid.

Among them, the linear kernels, such as Bicubic and Lanczos, are widely used due to

low complexity. Nevertheless, the linear kernels tend to generate noticeable artifacts

such as ringing, aliasing, and blurring in images full of edges and details. To address

this problem, some locally adaptive kernels have been proposed, such as (Li and

Orchard, 2001; Zhang and Wu, 2006). The locally adaptive kernels are helpful to

approximate local structures, but details in fine structure regions still cannot be

preserved well.

In the learning-based methods, usually it is assumed that there exists a mapping

relationship between the LR space and the HR space. To learn the basic models, many
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methods require an external set of HR images, and the corresponding LR images are

generated according to the degradation model (2.30). In the nearest-neighbor-based

approaches (Freeman et al., 2002; Chang et al., 2004; Gao et al., 2012), the LR

and HR image patches are supposed to form low-dimensional nonlinear manifolds

with similar local geometry. Through learning an LR and HR dictionary pair, the

sparse-representation-based methods (Yang et al., 2010b; Zeyde et al., 2010; Kulkarni

et al., 2012; Peleg and Elad, 2014) enforce the corresponding signals in the LR space

and the HR space to have the same sparse representations. In (Wang et al., 2017b)

and (Wang et al., 2017a), the non-linear mapping relationship from the observed

LR space to the latent HR space is learned by Gaussian process regression. To

ensure a fast and accurate SR, collaborative representation is applied to compute

the mapping matrices in (Timofte et al., 2013, 2014; Zhang et al., 2016b). Owing

to the requirement of external data, the performance of the above learning-based

methods highly depends on the similarity between the images for training and for

testing. To break this dependence, some self-similarity-based SR algorithms have

been proposed (Zhu et al., 2014; Yang et al., 2010a; Huang and Ahuja, 2015). In very

recent years, deep learning techniques have attracted substantial academic interests

in their usage for image SR, such as (Dong et al., 2016a,b; Liu et al., 2016). However,

the training time of the deep-learning-based methods is very long.

To make the SR problem well-posed, the reconstruction-based methods adopt

the prior knowledge of natural images to regularize the solution spaces. The typical

categories include local priors, non-local self-similarity (NLSS) priors and sparsity

priors. Among them, the local priors exploit local statistics of images in the spatial

domain. As classic models, the total variation (TV) regularization (Rudin et al., 1992)

is effective in restoring smooth regions but tend to smear out the edges and details.

As an alternative, the piecewise autoregressive (AR) model (Dong et al., 2011) can
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provide better results. Due to the fact that natural images usually contain much

non-local redundancy, many NLSS priors have been studied. Representative works

include the non-local means (NLM)-based regularization (Dong et al., 2011; Zhang

et al., 2012b, 2016a, 2018; Chang and Li, 2015; Li et al., 2016), the non-local TV

(NLTV)-based regularization (Gilboa and Osher, 2008; Zhang et al., 2010), the non-

local low-rank regularization (NLR) (Dong et al., 2014; Chang et al., 2015, 2016a),

etc. With the development of sparse representation techniques (Aharon et al., 2006),

several sparsity-based regularization models have also been proposed (Dong et al.,

2011, 2013; Elad and Aharon, 2006). To achieve the superior performance, many

reconstruction-based SR methods assemble different kinds of regularization models.

For example, the local geometric duality and the NLSS of images are jointly exploited

in (Ren et al., 2017) and (Ren et al., 2016); in (Zhang et al., 2012b), steering kernel

regression (Takeda et al., 2007) is combined with the NLM model; AR, NLM and

sparsity models are incorporated together in (Dong et al., 2011). Note that some

methods utilize the complementary properties of both the learning-based and the

reconstruction-based methods. For instance, Zhang et al. (Zhang et al., 2015) and

Jiang et al. (Jiang et al., 2017) take advantage of NLM (Buades et al., 2005) to

improve the outcomes of the learning-based methods; in (Zhang et al., 2017), local

structural, NLSS and collaborative representation are simultaneously applied to refine

the initial estimate obtained by the learning-based method; in (Chen et al., 2017),

the gradient of the final reconstructed SR image is required to be similar to that of

the result generated by the learning-based method.

It is well known that the performance of the reconstruction-based SR methods

highly relies on the reasonability of the incorporated prior information. In order

to preserve fine details and suppress annoying artifacts in the resultant images, we

propose a novel reconstruction-based single image SR method which takes both the
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external and internal priors into consideration. Inspired by the success of the learning-

based SR methods, we design a new regularization model to introduce HR informa-

tion from an external dataset. Furthermore, aiming at increasing the reliability of

the reconstruction-based framework, the internal structures of images are also char-

acterized. In summary, the main contributions of this paper are threefold:

1. A new collaborative-representation-based regularization (CRR) model which ex-

ploits external prior is developed. Similar to anchored neighborhood regression

(ANR) (Timofte et al., 2013) and A+ (Timofte et al., 2014), our model learns

the projection matrices from an external set of HR images offline. Nonetheless,

the learning process is independent of the degradation model. Therefore, when

the degradation model changes, there is no need to re-train our model.

2. A powerful joint regularization term which combines CRR and NLR is pre-

sented, where CRR is responsible for introducing the external HR information,

and NLR exploits the internal prior (to be more specific, the NLSS property) of

natural images. As the two priors are complementary, combing them together

could well pose the SR problem.

3. An iterative algorithm is proposed to solve the optimization problem that as-

sembles the global reconstruction constraint and the joint regularization. The

proposed algorithm, which is called super-resolution by collaborative represen-

tation and non-local self-similarity (CRNS), solves each sub-problem iteratively

and finally outputs the best SR results. To facilitate evaluation and further

exploration of the proposed approach, the source code will be available on the

corresponding author’s webpage 2 after this paper is published.

2http://www.public.asu.edu/%7ebli24/
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The remainder of the paper is organized as follows. The related background is

briefly reviewed in Section 2.3.1. The proposed CRR model, the joint regularization

model and the CRNS algorithm are detailed in Section 2.3.2. Extensive experimental

results and discussions are provided in Section 2.3.3.

2.3.1 Related Background

Collaborative-representation-based image SR

In the collaborative-representation-based methods (Timofte et al., 2013, 2014), the

following collaborative representation (also known as ridge regression) problem is

considered

ŵi =
wi

‖yi −NL
j wi‖22 + λ‖wi‖22 (2.31)

where yi is the ith LR image patch, wi is the coefficient of yi over an LR neigh-

bourhood NL
j , λ is a trade-off parameter. The closed-form solution of (2.31) is given

by

ŵi = (NL
j

T
NL
j + λI)−1NL

j

T
yi (2.32)

With ŵi, the HR image patch xi is calculated by

xi = NH
j ŵi (2.33)

where NH
j is the related HR neighborhood.

In the training phase, an LR dictionary DL = [dL
1 ,d

L
2 , ...,d

L
M ] in the LR space

needs to be trained, where M stands for the size of the dictionary, dL
i denotes the

ith atom. In addition, the neighborhood NL
j is built by grouping the K nearest

neighbors of the jth dictionary atom dL
j , which is the closest atom to yi. In (Timofte

et al., 2013), NL
j is learned on DL, while in (Timofte et al., 2014), the whole training

material in the LR space is used. To increase the computing speed, the corresponding
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projection matrix Pj is computed as

Pj = NH
j (NL

j

T
NL
j + λI)−1NL

j

T
(2.34)

In the testing phase, it is needed to search over DL and find the matched atom

dL
j for each LR image patch, so that the suitable Pj can be located. Finally, the ith

HR image patch is computed by xi = Pjyi.

Non-local self-similarity (NLSS) -based regularization

In the reconstruction-based methods, the following framework is frequently considered

X̂ =
X

Ψ(X) s.t. Y = SHX (2.35)

where Ψ(X) denotes the regularization term which incorporates the prior information.

Many kinds of regularization exploit NLSS within natural images. For instance,

the regularization term based on NLM filter (Buades et al., 2005) is expressed as (Dong

et al., 2011; Chang and Li, 2015)

ΨNLM(X) =
∑
i

‖xi − bTi pN
i ‖22 (2.36)

where pN
i denotes the non-local pixels of the ith pixel xi in an image, bi contains the

corresponding weights.

Let xi and xj be two image patches whose central pixels are xi and xj, respectively.

The weight for pixel xj is calculated by

bi,j = exp(−‖xi − xj‖22/h)/ci (2.37)

where h stands for a scalar, and ci denotes the normalization factor.

Apart from the NLM-based regularization, NLR is another successful NLSS-based

regularization method (Dong et al., 2014). To apply NLR, an image should be divided
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into overlapped patches with a size of
√
Ps ×

√
Ps. For the ith exemplar patch, the

Np1 nearest similar patches are found in a search window and grouped into a matrix

xG
i . With xG

i , the NLR term can be expressed as

ΨNLR(X) =
∑
i

(
1

2
‖xG

i − Li‖22 + γRank(Li)) (2.38)

where γ is the trade-off parameter, and Li is the low rank matrix which is close to

xG
i .

2.3.2 The Proposed Method

Collaborative-representation-based regularization (CRR)

In the collaborative-representation-based methods, the projection matrices {Pj},

which map LR image patches to the HR space, are trained according to the degrada-

tion model (2.30). When the magnification factor or the blur kernel in model (2.30)

changes, {Pj} have to be re-learned. This characteristic makes the collaborative-

representation-based methods difficult to implement in practice.

To address this problem, we consider the collaborative representation problem in

the HR space, i.e.,

ŵi =
wi

‖xi −NH
j wi‖22 + λ‖wi‖22 (2.39)

where xi denotes the ith HR image patch. The closed-form solution of (2.39) is

ŵi = (NH
j

T
NH
j + λI)−1NH

j

T
xi (2.40)

It is noteworthy that in (2.31), the neighborhood NL
j in the LR space is applied

to represent the ith LR image patch yi, while in (2.39), the HR neighborhood NH
j is

utilized to represent the ith HR image patch xi. To establish {NH
j }, an HR dictionary

DH should be learned beforehand, and the matrix NH
j is built by grouping the K
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training samples which are the closest to the jth dictionary atom dH
j in the HR

space.

As ŵi is the solution of problem (2.39), the distance between NH
j ŵi and xi should

be small. Therefore, this prior knowledge can be used to develop a new regularization

term called CRR. Using the way of expression in Section 2.3.1, CRR is defined as

ΨCRR(X) =
∑
i

1

2
‖xi −Pjxi‖22 (2.41)

where Pj is built by

Pj = NH
j (NH

j

T
NH
j + λI)−1NH

j

T
(2.42)

Similar to (2.34), our projection matrices {Pj} can also be learned offline, as

detailed in Algorithm 4. It should be pointed out that:

[1)]The training of our {Pj} only involves the images in the HR space, which

means it is unrelated to the degradation model. {Pj} in (Timofte et al., 2013)

and (Timofte et al., 2014) are used to map image patches from the LR space

to the HR space, while our {Pj} connect HR image patches to themselves.

To distinguish our {Pj} from the other works, our {Pj} are named as self-

projection matrices. In order to find the most suitable Pj for the ith image

patch xi, we need to search for the dictionary atom to which xi is matched.

After the matched atom dH
j is found, the index j can be used to locate Pj.

Therefore, the trained dictionary DH should also be stored for the further SR

reconstruction.

Nonetheless, empirically it is found that directly minimizing (2.41) does not lead

to a satisfactory result. First of all, since Pj is trained by using the external data,

there might exist some patches which cannot be well represented in the absence of

suitable examples. Secondly, as ‖xi −Njwi‖22 is not the only regularization term in

(2.39), if we multiply Pj with xi, the result is just close, but not equal to xi.
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Algorithm 4: Training of Self-Projection Matrices

1.2.3. Input: HR images, M , K, λ

Extract image patches from an external HR database;

Train a HR dictionary DH with size M via K-SVD (Aharon et al., 2006);

For each atom dj in DH

Find the K nearest neighbours of dj in the whole HR database and form NH
j ;

Calculate Pj via (2.42);

End for

return {Pj}, DH.

To improve the accuracy of our CRR model, let us assume that there is a precise

estimation of xi named Ei. The original model (2.41) is modified as

ΨCRR(X) =
∑
i

1

2
‖(xi −Pjxi)− (Ei −PjEi)‖22 (2.43)

We define (xi − Pjxi) in Eq. (2.43) as the projection error of xi. If Ei is very

similar to xi, it is quite natural that the projection error of Ei should be close to that

of xi. As a result, it is more reasonable to minimize (2.43) than to minimize (2.41).

Generally, there are many potential ways to compute {Ei}. However, due to the

fact that the original HR images are not available in practice, utilizing the NLSS

property of natural images is a good solution. For a given xi, we find the Np2 nearest

similar patches in a search window, and then a good estimation can be computed as

Ei =
∑
q

ωi,qxi,q (2.44)

where xi,q denotes the similar patches of xi. Inspired by (Buades et al., 2005; Dong

et al., 2011), {ωi,q} are set as

ωi,q = exp(−‖xi − xi,q‖22/h)/ci (2.45)
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Note that the weight in (2.37) is pixel-wise, while the weight in (2.45) is patch-wise.

Owing to the fact that {xi,q} can only be extracted from the latest established HR

image, to guarantee the accuracy of {Ei}, it is necessary to design a reconstruction

algorithm which iteratively updates {Ei} and X multiple times. Such an algorithm

will be presented in Section 2.3.2.

Joint regularization by using collaborative representation and non-local

self-similarity (NLSS)

Since CRR requires a training set of HR images to establish both {Pj} and DH, it can

be regarded as an external prior. In addition to the external priors, the internal priors

can also play an important role in effectively regularizing the solution spaces for the SR

problem. Among different kinds of internal regularization, NLR is very effective and

has been successfully utilized in previous works such as image demosaicking (Chang

et al., 2015) and compressive sensing recovery of images (Chang et al., 2016a,b). For

the expression of the NLR term, please refer to Eq. (2.38).

To achieve a more robust and reliable SR result, we propose to combine both the

CRR and NLR terms together, leading to the following problem

X̂ =
X

1

2
‖Y − SHX‖22 + αΨCRR(X) + βΨNLR(X) (2.46)

Reconstruction framework (2.46) is an unconstraint problem, where the first term

indicates that the resultant image needs to be consistent with the LR input. α and

β are two trade-off parameters which are responsible for balancing the data fidelity

term, the CRR term and the NLR term. It is worth noting that the values of α and

β are very important to the effectiveness of the framework (2.46). We will illustrate

how to choose the suitable α and β through experiment in Section 2.3.3.
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Solving the optimization problem

For convenience of expression, we let RiX = xi and FiX = xG
i , where Ri denotes

the matrix extracting patch xi from X, and Fi stands for the matrix extracting the

similar patches group for the ith exemplar patch from X, respectively. Moreover,

it should be noticed that besides X, the low rank matrices {Li} are also unknown.

Thus problem (2.46) can be rewritten as

{X̂, {L̂i}} =
X,{Li}

1

2
‖Y − SHX‖22

+
α

2

∑
i

‖(RiX−PjRiX)− (Ei −PjEi)‖22

+ β
∑
i

(
1

2
‖FiX− Li‖22 + γRank(Li))

(2.47)

To obtain the solution of (2.47), the original problem is divided into the following

two sub-problems

{L̂i} = {Li}
∑

i(
1
2
‖FiX− Li‖22 + γRank(Li))

X̂ = X ‖Y − SHX‖22 + β
∑

i(‖FiX− Li‖22)

+α
∑

i ‖(RiX−PjRiX)− (Ei −PjEi)‖22

(2.48)

The “{Li}” sub-problem is a rank minimization problem, which is NP-hard. The

usual way to tackle this problem is to replace the matrix rank with the nuclear

norm (Candès et al., 2011). However, the non-convex surrogate is found to approx-

imate the rank better than the nuclear norm (Dong et al., 2014). Therefore, the

log det(·) surrogate function is used here, and the “Rank(Li)” in (2.48) is replaced

with a newly defined function as below

L(Li, ε) = log det((LiL
T
i )1/2 + εI) (2.49)

where I is the identity matrix, and ε denotes a small constant. By treating each Li
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separately, we resort to

L̂i =
Li

1

2
‖FiX− Li‖22 + γL(Li, ε) (2.50)

Based on the proximal operator of weighted nuclear norm in (Dong et al., 2014),

the solution of (2.50) can be found through an iterative way, and the result at the kth

iteration is calculated by (the interested readers are referred to (Dong et al., 2014)

for the proof)

Lk
i = U(Σ− γ diag(Wk−1))+VT (2.51)

where the lth element in the vector Wk−1 is calculated by W k−1
l = 1/(σk−1l + ε),

σk−1l stands for the lth singular value of Lk−1
i , UΣVT denotes the singular value

decomposition (SVD) of FiX, and (x)+ = max(x, 0). In practice, executing Eq. (2.51)

one time is enough. By setting FiX as the initial guess, the solution of (2.50) is

Li = U(Σ− γ diag(Z))+VT (2.52)

where Zl = 1/(Σl + ε).

Due to the reason that the objective function in the “X” sub-problem is strictly

convex, by setting the derivative of the objective function to be zero, we can find the

closed form solution of X as follows

X̂ = A−1V (2.53)

where

A =(SH)T (SH) + β
∑
i

FT
i Fi

+ α
∑
i

RT
i (I−Pj)

T (I−Pj)Ri

(2.54)

V =(SH)TY + β
∑
i

FT
i Li

+ α
∑
i

RT
i (I−Pj)

T (I−Pj)Ei

(2.55)
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Figure 2.4: The Flowchart of the Proposed Method

However, the complexity of directly calculating X̂ via (2.53) can be high. There-

fore, conjugate gradient (CG) method is used to obtain the result. Please see the

Appendix for more details.

By iteratively solving the “{Li}” sub-problem and the “X” sub-problem, the

results of both {Li} and X can be gradually improved until the variables converge.

Summary of the proposed method

The flowchart of our method is given in Fig. 2.4, and a detailed description of the

proposed algorithm named CRNS is summarized as Algorithm 5, where Xk and X̃t

represent the results in the inner loop and the outer loop, respectively, Km and Tm are

the maximum iteration numbers of the inner loop and the outer loop, respectively.

At each inner iteration of Algorithm 5, every newly updated HR image patch xi is

compared with all the atoms in DH. After the nearest neighbour of xi is found, the

position j is used to locate the matched Pj.

To guarantee a reliable result, {ωi,q}, {Ei} and {Fi} are updated multiple times

in Algorithm 5. Note that although the searching of similar patches is required for
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Algorithm 5: CRNS

Input: S, H, Y, {Pj}, DH, α, β, γ

Using Bicubic interpolation to get the initial guess X̃0;

Outer loop for t = 0, 1, ..., Tm − 1

Use X̃t to compute {ωi,q} according to (2.45);

Use X̃t to update {Fi};

Set X0 = X̃t;

Inner loop for k = 0, 1, ..., Km − 1

Use Xk and {ωi,q} to calculate {Ei};

For each image patch in Xk, find the matched Pj;

Calculate each Lk+1
i according to (2.52);

Use CG method to solve (2.53) and get Xk+1;

End for

Set X̃t+1 = XKm ;

End for

return X̂ = X̃Tm .

constructing both {Fi} and {Ei}, they should be performed separately. By doing

so sufficient flexibility can be provided for CRR and NLM terms, as the two terms

are allowed to have different patch sizes, different numbers of overlapping pixels and

different numbers of similar patches in a group.

2.3.3 Experimental Results

In this section, we conduct estensive experiments to evaluate the effectiveness of

the proposed CRNS algorithm. All the experiments are carried out on an Intel(R)

Core (TM) i7-4790 PC under the MATLAB R2014b programming environment.
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Ten methods are selected for comparison, including six learning-based methods

(Zeyde’s method (Zeyde et al., 2010), ANR (Timofte et al., 2013), A+ (Timofte et al.,

2014), LANR-NLM (Jiang et al., 2017), SRCNN (Dong et al., 2016a), FSRCNN (Dong

et al., 2016b)), and four reconstruction-based methods (ASDS (Dong et al., 2011),

ASDS-AR (Dong et al., 2011), ASDS-AR-NL (Dong et al., 2011), NCSR (Dong et al.,

2013)).

To evaluate the objective quality of the results, peak signal to noise ratio (PSNR),

structure similarity (SSIM) index (Wang et al., 2004) and feature similarity (FSIM)

index (Zhang et al., 2011) are applied. Due to the fact that human visual system is

more sensitive to the luminance component, all the tested methods are only used to

reconstruct the luminance component, while the Bicubic interpolation is applied for

the chromatic components. Therefore, all the PSNR/SSIM/FSIM values only assess

the quality of the luminance channel.

Experimental settings

Ten commonly used images shown in Fig. 2.5 (Dong et al., 2011, 2013) are selected for

testing. To generate the degraded LR images, all the test images are first blurred by

a Gaussian filter with a size of 7 × 7 and a standard deviation of 1.6, and then down-

sampled by a factor of 3. Note that Zeyde (Zeyde et al., 2010), ANR (Timofte et al.,

2013), A+ (Timofte et al., 2014), SRCNN (Dong et al., 2016a) and FSRCNN (Dong

et al., 2016b) all use the Bicubic kernel as the blur kernel in their papers. Thus for a

fair comparison, their models are re-trained with the particular blur kernels used in

our experiments.

In our experiments, the 91 training images proposed in (Yang et al., 2010b) are

used to train the self-projection matrices {Pj} for the proposed CRR term. The

same training set is also applied for the six benchmark learning-based methods. The
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Figure 2.5: The Test Images. From Left to Right and Top to Bottom: Butterfly,
Parrots, Parthenon, Bike, Flower, Girl, Hat, Leaves, Plants, Raccoon.

number of training samples, the dictionary size M and the neighborhood size K in

Algorithm 4 are respectively set as 5000000, 1024 and 2048, which are the same as

the standard settings of A+ (Timofte et al., 2014). The trade-off parameter λ is equal

to 0.9.

In Algorithm 5, the empirical settings of the trade-off parameters are: α = 0.0015,

β = 0.005 and γ = 8.75. The numbers of the inner iterations Km and the outer

iterations Tm are selected as 20 and 10, respectively. For CRR, we use 5× 5 patches

with an overlap of 3 pixels, and Np2 is 10. On the other hand, 5× 5 patches with an

overlap of 2 pixels, and Np1 = 12 are chosen for NLR. h in Eq. (2.45) is 75, and the

sizes of the search windows for CRR and NLR are both set as 25.
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Figure 2.6: SR Results of Butterfly (×3) Provided by Different Methods. From
Left to Right and from Top to Bottom: Zeyde (Zeyde et al., 2010) (PSNR: 25.21
dB), ANR (Timofte et al., 2013) (25.37 dB), A+ (Timofte et al., 2014) (26.89 dB),
LANR-NLM (Jiang et al., 2017) (26.01 dB), SRCNN (Dong et al., 2016a) (27.69 dB),
FSRCNN (Dong et al., 2016b) (27.81 dB), ASDS-AR-NL (Dong et al., 2011) (27.33
dB), NCSR (Dong et al., 2013) (28.15 dB), CRNS (29.20 dB), Original Image.

Figure 2.7: SR Results of Leaves (×3) Provided by Different Methods. From Left
to Right and from Top to Bottom: Zeyde (Zeyde et al., 2010) (PSNR: 24.55 dB),
ANR (Timofte et al., 2013) (24.73 dB), A+ (Timofte et al., 2014) (25.91 dB), LANR-
NLM (Jiang et al., 2017) (25.21 dB), SRCNN (Dong et al., 2016a) (26.47 dB), FSR-
CNN (Dong et al., 2016b) (26.58 dB), ASDS-AR-NL (Dong et al., 2011) (26.84 dB),
NCSR (Dong et al., 2013) (27.57 dB), CRNS (28.41 dB), Original Image.

SR results (×3) on 10 test images

The PSNR, SSIM and FSIM obtained by different methods are listed in Table 2.5. The

reconstructed images Butterfly and Leaves are given in Figs. 2.6 and 2.7, respectively.
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It is obvious that Zeyde (Zeyde et al., 2010) and ANR (Timofte et al., 2013) have the

worst performance and tend to generate blurry results. A+ (Timofte et al., 2014),

LANR-NLM (Jiang et al., 2017), SRCNN (Dong et al., 2016a) are more competitive

than Zeyde (Zeyde et al., 2010) and ANR (Timofte et al., 2013) in terms of both

objective and subjective quality. Nevertheless, fine details in the resultant images are

still not well recovered. FSRCNN (Dong et al., 2016b), ASDS-AR-NL (Dong et al.,

2011) and NCSR (Dong et al., 2013) outperform the other comparison baselines.

They are capable of well preserving the edge sharpness and image structures, but are

still inferior to our CRNS algorithm. It can be seen in Table 2.5 that the proposed

CRNS algorithm achieves the highest objective quality in most of the cases. The

average PSNR, SSIM and FSIM gains over the second best method (i.e., NCSR (Dong

et al., 2013)) are 0.40dB, 0.0068 and 0.0059, respectively. In Figs. 2.6 and 2.7, both

fine structures and sharp edges are well recovered by CRNS, leading to the highest

subjective quality.

Effectiveness of different regularization priors
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Figure 2.8: SR Results of Hat (×3) Produced by Different Regularization Terms.
From Left to Right: CRR (PSNR: 31.51 dB, SSIM: 0.8782), NLR (31.40 dB, 0.8792),
CRNS (31.66 dB, 0.8814), Original Image.

In Eq. (2.46), besides the data fidelity term, both the CRR and NLR priors are

involved. To validate the effectiveness of different regularization terms, we report the

PSNR, SSIM and FSIM values of the SR results by different priors in Table 2.6.

According to Table 2.6, the following conclusions can be made: Firstly, separately

incorporating the CRR prior or the NLR prior is able to achieve competitive output

results. The average results obtained by CRR and NLR are both superior to the

second best method, i.e., NCSR in Table 2.5. Secondly, by jointly incorporating the

CRR prior and the NLR prior, the proposed algorithm CRNS constantly outperforms

the two separated regularization priors.

The SR results of Hat by different regularization priors are shown in Fig. 2.8.

It can be observed that the NCSR not only can provide sharp edges, but also can

suppress noticeable artifacts in the resultant images. The reason lies in that the

complementary advantages of both the external prior information and the internal

NLSS of natural images are combined by the joint prior, resulting in a more faithful

SR reconstruction.

Empirical study on parameters

In this subsection, the settings of the important parameters of CRNS are discussed.

Note that all the discussions are based on a magnification factor of 3 and a Gaussian
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Figure 2.10: The Effects of λ in CRR and γ in NLR.

kernel with a size of 7× 7 and a standard deviation of 1.6.

1) Trade-off parameters α and β: α and β indicate the importance of CRR term

and NLR term in Eq. (2.46), respectively. We take Butterfly and Leaves as examples

to show how α and β affect the performance of CRNS. The surfaces of PSNR for

Butterfly and Leaves are presented in Fig. 2.9, where β varies from 0.02 to 0.2 and

the ratio of α to β changes from 0 to 1.0. It is obvious that in both cases, the better

results can be obtained when the value of β is lower than 0.04. In addition, the best

ratio of α to β occurs around 0.20 ∼ 0.40. Therefore, after further exploring, we

finally fix α = 0.0015 and β = 0.005.

2) Trade-off parameters λ and γ: λ and γ are the trade-off parameters in (2.39)
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Table 2.7: Effects of Patch Size (×3)

Patch Size
CRR NLR

PSNR SSIM PSNR SSIM

3× 3 28.89 0.8402 28.98 0.8406

4× 4 29.35 0.8496 29.63 0.8552

5× 5 29.75 0.8567 29.74 0.8591

6× 6 29.63 0.8558 29.56 0.8567

7× 7 29.59 0.8543 29.40 0.8546

Table 2.8: Effects of pixel Overlapping (×3)

OverlappingPixels
CRR NLR

PSNR SSIM PSNR SSIM

1 29.22 0.8475 29.65 0.8583

2 29.43 0.8514 29.74 0.8591

3 29.75 0.8567 29.81 0.8598

4 29.83 0.8574 29.85 0.8602

and (2.38), respectively. Fig. 2.10 (a) shows the average PSNR obtained by CRR on

the 10 test images in Fig. 2.5 with various λ, and Fig. 2.10 (b) presents the average

PSNR obtained by NLR with different γ. According to Fig. 2.10, we choose λ = 0.9

and γ = 8.75, where the peak average PSNR values can be reached.

3) Patch Sizes, Numbers of Overlapping Pixels, Number of Similar Patches for

CRR and NLR: The impacts of these parameters of CRR and NLR are evaluated

and respectively listed in Tables 2.7, 2.8 and 2.9, where the average PSNR and SSIM

results on the 10 test images in Fig. 2.5 are given. The results in Table 2.7 imply

that it is better to set the patch size to 5 × 5 for both CRR and NLR. Table 2.8
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Table 2.9: Effects of Number of Similar Patches (×3)

Number ofSimilar Patches
CRR NLR

PSNR SSIM PSNR SSIM

8 29.72 0.8560 29.64 0.8573

10 29.75 0.8567 29.71 0.8584

12 29.75 0.8567 29.74 0.8591

15 29.75 0.8567 29.77 0.8597

20 29.76 0.8568 29.79 0.8599

shows that more overlapping pixels lead to better performance of CRR and NLR.

However, increasing the number of overlapping pixels results in more computational

burden, especially for NLR. Therefore, we assign 2 overlapping pixels for NLR and

3 overlapping pixels for CRR. The results in Table 2.9 reveal that NLR is able to

achieve better performance with a large number of similar patches. However, to

balance between the performance and the complexity, we empirically set it to 12

for NLR. Due to the fact that the improvement of CRR with more than 10 similar

patches is not obvious, this parameter is fixed as 10 for CRR.

Convergence of the CRNS algorithm

Fig. 2.11 shows how the PSNR varies with the number of iterations for different test

images. We can see that all the PSNR curves increase monotonically with the growth

of iteration number (note that CRNS contains an outer loop and an inner loop, and

the iteration number here refers to the total number of updating X via Eq. (2.53)).

In the first few iterations, the PSNR improvements grow rapidly. After about 10

iterations, the rate of change of PSNR decreases, but the curves still gradually rise.

The PSNR curves reach (or almost reach) their peak values at an iteration number of
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Figure 2.11: Verification of the Convergence of CRNS.

Table 2.10: Average PSNR (dB), SSIM and FSIM Results on Different Datasets
(×3)

DatasetMethod A+ SRCNN FSRCNN ASDS-AR-NL NCSR CRNS

Set5

32.30 32.37 32.60 32.62 33.01 33.38

0.9027 0.9010 0.9068 0.9051 0.9100 0.9149

0.9324 0.9344 0.9392 0.9349 0.9427 0.9490

Set14

28.88 28.97 28.95 29.10 29.27 29.45

0.8089 0.8107 0.8137 0.8170 0.8197 0.8226

0.9373 0.9379 0.9393 0.9412 0.9436 0.9452

BSD100

28.01 28.07 28.18 28.25 28.35 28.46

0.7703 0.7739 0.7796 0.7803 0.7837 0.7853

0.8619 0.8674 0.8715 0.8707 0.8741 0.8744

200. This phenomena also verifies that choosing the maximum numbers of the inner

iterations Km and the outer iterations Tm to be 20 and 10 is reasonable.

SR results (×3) on different datasets

In order to comprehensively verify the effectiveness of the CRNS algorithm and the ro-

bustness of the parameters selected by our empirical study, we conduct experiments
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Figure 2.12: SR Results of 86000 from BSD100 (×3), from Left to Right: A+
(Timofte et al., 2014) (PSNR: 26.28 dB, SSIM: 0.8068), SRCNN (Dong et al., 2016a)
(26.33 dB, 0.8104), FSRCNN (Dong et al., 2016b) (26.56 dB, 0.8199), ASDS-AR-NL
(Dong et al., 2011) (27.01 dB, 0.8304), NCSR (Dong et al., 2013) (27.17 dB, 0.8358)
, CRNS (27.58 dB, 0.8479), Original Image.

on other three commonly used image datasets, including Set5 (Bevilacqua et al.,

2012), Set14 (Zeyde et al., 2010) and BSD100 (Timofte et al., 2014). The degra-

dation model used in this subsection is the same as that in Section 2.3.3. Among

all the benchmark methods in Section 2.3.3, the best three learning-based methods

(A+ (Timofte et al., 2014), SRCNN (Dong et al., 2016a) and FSRCNN (Dong et al.,

2016b)) and the best two reconstruction-based methods (ASDS-AR-NL (Dong et al.,

2011) and NCSR (Dong et al., 2013)) are compared with CRNS. Due to the limi-

tation of length, we only show the average PSNR/SSIM/FSIM values of the three

image datasets in Table 2.10, and the super-resolved results of 86000 from dataset

BSD100 in Fig. 2.12. It can be observed from Table 2.10 that CRNS is superior to

the other methods in all cases. In Fig. 2.12, the edges of the windows produced by

CRNS are sharper and cleaner than the other methods.

Robustness to noise

In this subsection, we carry out experiments on noisy images, so as to validate the

robustness of CRNS algorithm to noise. We use the same blur kernel, decimation

factor and test images as that in Section 2.3.3. However, additive Gaussian noise

with a standard deviation σn = 5 is added to the LR images. Note that because of
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Table 2.11: Average PSNR (dB), SSIM and FSIM Results on Noisy Images (×3,
σn = 5)

MetricMethod A+ SRCNN FSRCNN ASDS-AR-NL NCSR CRNS

PSNR (dB) 27.19 26.93 26.33 27.80 28.19 28.42

SSIM 0.7260 0.7077 0.6992 0.7854 0.8002 0.8020

FSIM 0.8394 0.8324 0.8117 0.8525 0.8618 0.8713

Figure 2.13: SR Results of Noisy Butterfly (×3, σn = 5), from Left to Right: A+
(Timofte et al., 2014) (PSNR: 25.87 dB, SSIM: 0.8109), SRCNN (Dong et al., 2016a)
(25.94 dB, 0.7850), FSRCNN (Dong et al., 2016b) (25.56 dB, 0.7689), ASDS-AR-NL
(Dong et al., 2011) (25.96 dB, 0.8577), NCSR (Dong et al., 2013)(26.80 dB, 0.8851)
, CRNS (27.54 dB, 0.8918), Original Image.

the presence of noise, the data fidelity term in problem (2.47) becomes less reliable.

Therefore, to guarantee the quality of SR results, the values of α and β in (2.47)

are enlarged to 0.0375 and 0.125, respectively. The average PSNR/SSIM/FSIM re-

sults obtained by different methods are listed in Table 2.11, and the visual SR re-

sults of Butterfly are presented in Fig. 2.13. Compared with the noiseless case, the

performances of A+ (Timofte et al., 2014), SRCNN (Dong et al., 2016a) and FSR-

CNN (Dong et al., 2016b) decrease significantly, which indicates that these methods

are sensitive to noise. Among the tested methods, CRNS achieves the best objective

results. Furthermore, the image reconstructed by CRNS is clean and with the least

artifacts.
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Table 2.12: Average PSNR (dB), SSIM and FSIM Results at Different Magnification
Factors

Method ×2 ×3 ×4

ASDS-AR-NL

31.36 29.24 26.99

0.8947 0.8473 0.7765

0.9240 0.8896 0.8421

NCSR

31.70 29.53 27.27

0.8993 0.8542 0.7902

0.9301 0.8993 0.8535

CRNS

32.14 29.93 27.52

0.9033 0.8610 0.7965

0.9360 0.9052 0.8599

Figure 2.14: SR Results of Flower (Blur Kernel Size: 7 × 7, Standard Deviation:
1.6, Magnification Factor: ×4), from Left to Right: ASDS (Dong et al., 2011) (PSNR:
26.70 dB, SSIM: 0.7512), NCSR (Dong et al., 2013) (26.93 dB, 0.7685), CRNS (27.16
dB, 0.7765), Original Image.

Experimental results for different degradation models

To fully assess the effectiveness of the proposed CRNS algorithm, different kinds of

degradation models are considered. Note that the settings of CRNS are the same

as described in Section 2.3.3. First of all, we conduct the experiments by applying

the same blur kernel (blur kernel size: 7 × 7, standard deviation: 1.6) at different

magnification factors 2, 3, and 4. Then we carry out experiments by applying the
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Table 2.13: Average PSNR (dB), SSIM and FSIM Results at Different Blur Kernel
Sizes

Method 3× 3 5× 5 7× 7

ASDS-AR-NL

28.44 29.20 29.24

0.8347 0.8480 0.8473

0.8837 0.8903 0.8896

NCSR

29.00 29.55 29.53

0.8513 0.8567 0.8542

0.8989 0.9004 0.8993

CRNS

29.35 29.96 29.93

0.8563 0.8632 0.8610

0.9041 0.9068 0.9052

Figure 2.15: SR Results of Parrots (Blur Kernel Size: 3 × 3, Standard Deviation:
1.6, Magnification Factor: ×3), from Left to Right: ASDS (Dong et al., 2011) (PSNR:
29.25 dB, SSIM: 0.9012), NCSR (Dong et al., 2013) (29.57 dB, 0.9129), CRNS (30.10
dB, 0.9168), Original Image.

Gaussian kernel with the same standard deviation of 1.6 but different sizes 3×3, 5×5

and 7 × 7 at a magnification factor of 3. The reconstruction-based methods ASDS-

AR-NL (Dong et al., 2011) and NCSR (Dong et al., 2013) are selected for comparison

in this subsection.

The average values of PSNR, SSIM and FSIM obtained on the 10 test images

in Fig. 2.5 at different magnification factors and different blur kernel sizes are re-
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spectively given in Tables 2.12 and 2.13. For subjective quality comparisons, the SR

results of Flower and Parrots are given in Figs. 2.14 and 2.15, respectively. We can

find that CRNS is able to achieve the best objective results at different kinds of degra-

dation models. In addition, the subjective results show that the proposed algorithm

is cable of recovering much sharper edges than the other two baseline methods.
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Figure 2.16: Actual Images and Their Corresponding ROI Areas for Testing.
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Table 2.14: No-reference IQA (Using the Metric in (Ma et al., 2017)) on Actual
Images (×3)

Image Bicubic A+ SRCNN FSRCNN ASDS-AR-NL NCSR CRNS

Abbey 4.24 7.33 7.05 7.38 7.23 7.27 7.57

Bus 5.10 6.48 6.79 7.02 6.46 6.45 7.14

Average 4.67 6.91 6.92 7.20 6.85 6.86 7.36

SR results on actual images

In addition to the previous experiments on simulated LR images, we further carry

out experiment on actual LR images (available from the sun database (Xiao et al.,

2010)), so as to validate the feasibility and robustness of the CRNS algorithm in a

real acquisition environment. The selected two actual images and the corresponding

region of interest (ROI) are shown in Fig. 2.16. The SR results of the ROI areas in

Abbey and Bus by different SR methods with a magnification factor of 3 are presented

in Figs. 2.17 and 2.18, respectively. In the two figures, we can find that: firstly, the

bicubic interpolation generates the blurriest images; secondly, the other five baseline

methods are able to produce sharper edges than bicubic interpolation, but they are

not good at suppressing artifacts and noises; finally, the images reconstructed by the

CRNS algorithm have the sharpest edges and the least artifacts/noises. Moreover,

the no-reference image quality assessment (IQA) metric in (Ma et al., 2017), which

is designed to evaluate the quality of the SR results based on human perception, is

adopted here to quantitatively compare different SR methods. The no-reference IQA

values are given in Table 2.14, where we can see that CRNS obtains the highest scores.

Overall, the experimental results in this subsection indicate that the proposed CRNS

algorithm is also effective on actual images.
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Table 2.15: Offline Training Time of Different Methods

Method Zeyde ANR A+ LANR-NLM

Time 102.9 s 103.2 s 1328.6 s 104.4 s

Method SRCNN FSRCNN ASDS-AR-NL CRNS

Time days days 330.7 s 2687.3 s

Table 2.16: Average SR Reconstruction Time on 256× 256 Test Images (×3)

Zeyde ANR A+ LANR-NLM SRCNN FSRCNN ASDS

0.6 s 0.2 s 0.2 s 38.3 s 1.7 s 1.9 s 120.5 s

ASDS-AR ASDS-AR-NL NCSR CRR NLR CRNS CRNS-fast

126.8 s 146.3 s 191.3 s 142.9 s 259.1 s 337.9 s 197.5 s

Analysis of complexity

The computational burden of Algorithm 4 mainly focuses on finding the K nearest

neighbours for the atoms in the dictionary DH. Assume that NT is the number of

training samples, and the size of an atom is Ps. Thus for each dictionary atom, lo-

cating the K nearest neighbours costs O(NTPs). Table 2.15 shows the offline training

time of different methods. Note that the training procedure of the proposed method

is only carried out in the HR space. Therefore, when the degradation model changes,

there is no need to re-train the model of CRNS.

The most complex parts of Algorithm 5 are analyzed below:

1. Finding similar patches for each exemplar patch at each outer iteration: This

procedure costs O(NeW
2
s Ps), where

√
Ps ×

√
Ps is the patch size, Ws ×Ws is

the size of the search window, Ne denotes the number of exemplar patches in

an image.
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2. Updating each Li at each inner iteration: SVD is needed to calculate each low

rank matrix Li. The complexity of thin SVD is O(PsNp2r), where Np2 stands

for the number of similar patches in a group, r is the rank of matrix FiX.

3. Locating the matched Pj for each exemplar patch at each inner iteration: Each

exemplar patch should be compared with the M atoms in dictionary DH. Thus

it takes O(NePsM) to locate Pj for all the Ne exemplar patches.

4. Using CG method to update X at each inner iteration: Because the matrix-

vector product is the dominating part in CG method, the complexity of one

CG iteration is O(N2), where N stands for the number of pixels in an image.

Table 2.16 shows the average running times of different methods spent on 256×256

test images 3 . It can be seen that the learning-based methods (Zeyde et al., 2010;

Timofte et al., 2013, 2014; Jiang et al., 2017; Dong et al., 2016a,b) are much faster

than the reconstruction-based methods. On the other hand, combing both the CRR

and NLR priors makes our CRNS algorithm hard to compute.

To speed up the CRNS algorithm, one possible way is to cluster the image patches

and assign the same self-projection matrix to all the patches in a cluster. However,

this approach suffers from performance degradation, especially when the number of

clusters is small. By analyzing the CRNS algorithm, we know that finding simi-

lar patches, locating the matched Pj, and updating Li for an exemplar patch are

independent from that for the other exemplar patches. Therefore, utilizing the paral-

lelization techniques is another potential solution to accelerate the above procedures,

and this solution does not need to sacrifice any performance. The ‘CRNS-fast’ in

Table 2.16 denotes the implementation of CRNS with the parallel loops in Matlab

3Note that the Matlab implementation of FSRCNN used in this paper (available:
http://mmlab.ie.cuhk.edu.hk/projects/FSRCNN.html) is slower than the one reported in (Dong
et al., 2016b).
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(connecting to 4 workers). It is obvious that CRNS-fast is much faster than the

original implementation of CRNS without using any parallelization technique.

2.3.4 Appendix: Using CG Method to Calculate (2.53)

Consider Eq. (2.53) as the solution of the following linear system problem

AX̂ = V (2.56)

We can easily find that

AT =
[
(SH)T (SH)

]T
+ β

∑
i

(FT
i Fi)

T

+ α
∑
i

[
RT
i (I−Pj)

T (I−Pj)Ri

]T
=A

(2.57)

So matrix A is symmetric. Also, ∀X 6= 0, we have

XTAX =XT (SH)T (SH)X + β
∑
i

XTFT
i FiX

+ α
∑
i

XTRT
i (I−Pj)

T (I−Pj)RiX

=||SHX||22 + α
∑
i

||(I−Pj)RiX||22 + β
∑
i

||FiX||22

>0

(2.58)

So matrix A is positive definite. Therefore, it is beneficial to apply any algorithm

in the family of CG methods to calculate Eq. (2.53). In our implementation, the

Matlab built-in function pcg is applied.
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Chapter 3

DEEP LEARNING FOR ACCELERATED MRI RECONSTRUCTION

3.1 Deep Residual Dense U-net for Resolution Enhancement in Accelerated MRI

Acquisition

Magnetic resonance imaging (MRI) is among the most important imaging methods

for medical diagnosis. Obtaining fully sampled MRI data requires relatively long scan

time. To shorten MRI scan time for improved patient experience and reduced cost,

researchers have investigated accelerated MRI acquisition. One basic idea for accel-

eration is to under-sample in k-space, which may cause aliasing in the reconstructed

images. Parallel MRI (Pruessmann et al., 1999; Griswold et al., 2002) and compressed

sensing (CS) MRI (Donoho, 2006; Lustig et al., 2008) are two popular techniques.

A representative technique of the parallel MRI, generalized auto-calibrating partial

parallel acquisition (GRAPPA) (Griswold et al., 2002), uses interpolation to fill the

missing k-space data with the surrounding data from all the coils, while CS-MRI

randomly samples the k-space data for approximating the original image.

Approaches using low-rank matrix completion technique to solve the CS-MRI /

parallel MRI problem were also investigated. Representatives include SAKE (Shin

et al., 2014) and the annihilating filter based low-rank Hankel matrix approach

(ALOHA) (Lee et al., 2016). However, these algorithms have high complexity and

k-space data are required during the reconstruction, making them impossible for cases

with only image domain inputs.

In recent years, deep learning has become one of the most important tools for

visual computing research (Ren et al., 2015; He et al., 2017), with great performance
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in image classification (Krizhevsky et al., 2012), segmentation (Ronneberger et al.,

2015), recognition (He et al., 2016), super resolution (Tong et al., 2017), etc. There-

fore, some researcher started to utilize deep-learning techniques for medical image

reconstruction. Wang et al (Wang et al., 2016) trained a convolutional neural net-

work (CNN) to learn the mapping from the aliased image to the original fully sampled

reconstruction. The output of the network can be used as an initial guess or regu-

larization term in conventional CS approaches. In ref.70, the authors proposed a

multilayer perceptron for parallel MRI, and in ref.48 the researchers applied CNN on

CS algorithm. Kang et al (Kang et al., 2017) applied the CNN technique on computed

tomography (CT), etc.

The authors of a recent paper (Lee et al., 2017) used U-Net (Ronneberger et al.,

2015) with residual learning to learn the relationship between the aliased and original

images, and the proposed framework outperforms traditional methods like SENSE

and ALOHA. However, since U-Net is originally developed for medical image seg-

mentation, it is likely that directly using it on image reconstruction may not give

us the best performance. For this reason, we propose Residual Dense U-Net (RD-

U-Net), a U-Net based deep neural network to further improve the quality of the

reconstructed image. Inspired by DenseNet (Huang et al., 2017), a residual dense

block for refinement is introduced to improve the quality of the reconstructed image.

Furthermore, we impose the Fourier constraint into the loss function. Experimental

results show that, both visually and numerically, our proposed architecture has a

better performance.

3.1.1 Related Works

In this section, we review the works that related to our proposed RD-U-Net model

for accelerated MRI reconstruction. We note that there is a line of work on super-
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resolution using sparse represent ion (e.g., (Kulkarni et al., 2012)), which has delivered

superior performance for super-resolution in natural images. However, such work

is not amenable for the task of MR image reconstruction in this paper since the

degradation involves structured aliasing.

U-Net

U-Net (Ronneberger et al., 2015) is first proposed for biomedical image segmentation,

which incorporates skip connection and downsampling/upsampling layers. These skip

connection intend to extract local information, while the encoding/decoding proce-

dure provide global information. While obtaining state-of-the-art results, U-Net is

applied to other visual computing field like accelerated MRI reconstruction (Lee et al.,

2017) and pansharpening (Yao et al., 2018).

Residual learning

Optimization is an important procedure to deep learning. A major challenge for the

optimization is the gradient vanishing problem. To overcome this issue, the concept

of residual learning is introduced in the residual network (ResNet) (He et al., 2016).

In this model, a shortcut connection (skip connection) is used in every basic residual

block, which makes the gradient flow in the networks is relatively stable. It is also

shown that in ref.74, adding skip connection leads to the flatness of loss surfaces.

ResNet has provided very promising results on many applications.

Densely Connected Convolutional Networks

Many works have shown that the networks perform better if there are connections

between layers close to the input and the ones close to the output. The authors in

ref.55 propose Dense Convolutional Network (DenseNet), which connects each layer to
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every other layer by using skip connections. Differ from the traditional convolutional

network, every layer in DenseNet takes the feature maps from all preceding layers as

inputs, and its output feature maps are served as inputs for the subsequent layers.

DenseNet achieves state-of-the-art performance in a lot of real world problems.

3.1.2 Proposed Approach

For traditional super resolution, patch-based (Tong et al., 2017; Ding et al., 2017)

approaches are usually used. However, for accelerated MRI reconstruction, the alias-

ing artifacts are of global nature. To diminish the global artifacts, we can use the

whole image as an input. The authors of the ref.72 use U-Net with residual learning

to handle this problem. To be precise, let x be the input image, and f̃ be the function

represented by the U-Net, the output of the model can be defined as:

y = f(x) = x+ f̃(x) (3.1)

where f is the function representing the whole network. In this case f̃(x) = y − x,

and since x and y are the low resolution and high resolution image respectively, f̃

maps x to the residual. Learning such f̃ leads to faster convergence(Lee et al., 2017).

The proposed network architecture is illustrated in Fig. 3.1. Similar to the U-

Net-based approach (Lee et al., 2017), it consists of an encoding path and a decoding

path. The encoding path is a traditional convolutional neural network, which consists

of two 3 x 3 convolutions, each followed by a batch normalization (BN) layer and a

nonlinear activation layer. After that, a 2 x 2 max pooling layer with stride 2 is

applied for down sampling, and the number of channels is doubled after the down

sampling. For the decoding path, at every stage it consists of a 2 x 2 deconvolution

which up sample the feature map and reduce the number of channels by half. After

up-sampling, feature maps from the same level in the encoding path are fed to the
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Figure 3.1: The Illustration of Our Proposed RD-U-Net. Blue Arrow: 3x3 Convo-
lution + Batch Normalization + Nonlinear Activation; Red Arrow: 2x2 Max Pooling
with Stride 2; Yellow Arrow: 2 X 2 Up-convolution; Green Arrow: Skip Connection
with Residual Dense Block.

Residual Dense Block, and the corresponding output is concatenated, followed by

two 3 x 3 convolutional layers, a BN layer and a nonlinear activation layer. A 1 x 1

convolutional layer is used at the final to map all the features to a single channel.

Refinement Using Residual Dense Block

U-Net has its limitations for extracting high frequency data. Since the high frequency

content are only contained in the upper part of the network (the earlier stages of the

encoding part, and the later stages of the decoding part), The network is not deep

enough to extract the high frequency features. Inspired by DenseNet (Huang et al.,

2017), we introduce Residual Dense Block (RDB) to refine the feature map. RDB is

formed by the “dense” part and “residual” part. For the “dense” part, the input is

first passed through a convolutional layer, a batch normalization layer and a nonlinear

activation layer, where the number of filters used in the convolutional layer is the same
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Figure 3.2: The Illustration of the Proposed Residual Dense Block (RDB). Blue
Arrow: 3x3 Convolution + Batch Normalization + Nonlinear Activation; Red Arrow:
Skip Connection; ”Dense” Part: The Input (Blue) Is First Convolved, And Concate-
nate to Itself, And Then the Second Convolution Is Applied; “residual” Part: The
Input and Output of the Dense Part Are Summed Together to Learn the Residual.

GRAPPA U-Net RD-U-Net(α = 0) RD-U-Net(α = 0.01)

0.1483± 0.0052 0.0338± 0.0003 0.0326± 0.0002 0.0319± 0.0002

Table 3.1: The Mse (Mean and Standard Deviation) for Different Models on 5 Trials:
Grappa, U-net, Rd-u-net Without Fourier Constraint (Denoted by α = 0), Rd-u-net
with Fourier Constraint (Denoted by α = 0.01).

as the number of channels of its input. The output is then concatenated with the

input of the RDB, and passed through another convolutional layer again, and reduce

the number of channels by half. At the end the input of the RDB is added to the

output of the “dense” part, to form the “residual” part. Fig. 3.2(a) is an illustration.

Instead of using the plain skip connection (copying the feature maps from the

encoding part to the decoding part), adding a refinement is a more reasonable choice,

as theoretically, the plain skip connection is a special case of the RDB (by setting all

the weights of the second convolution in RDB to be zero).
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Figure 3.3: The Plots for the Testing Loss Versus Number of Epochs Trained in
a Trial. (A) the Testing Loss for Different Value of α; (B) the Testing Loss for U-
Net, RD-U-Net Without Fourier Constraint (Denoted by α = 0) and with Fourier
Constraint (Denoted by α = .01).

Employing Fourier Constraints

L2 loss is usually used in image reconstruction tasks, which is defined as follows:

min ‖y − f(x)‖2 (3.2)

where f is the mapping represented by the neural network. However, given that

the degradation of the images are come from the missing of columns (or rows) of in

the K-space data, we can use this prior to improve the performance, by using the

following loss:

min ‖y − f(x)‖2 + α‖F (y)− F (f(x))‖1 (3.3)

where y and x represent the ground truth and the degraded image, respectively, f is

the mapping represented by the neural network, F is the inverse Fourier transform,

and α is a constant. As we expect the lost information only comes from part of

the rows in the Fourier domain, we use L1 norm for the Fourier regularization term.

With this loss function we can effectively regularize the network learning by the error

coming from those missing k-space data.
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3.1.3 Experiments

In this section, we introduce the dataset we use, followed by the network settings,

and comparative studies.

Magnetic Resonance Dataset

We use the fully sampled knee datasets from mridata.org to evaluate our RD-U-

Net. There are 20 datasets, and the data were acquired in Cartesian coordinate on a

GE clinical 3T scanner, with the following parameters: Receiver Bandwidth = 50.0,

number of coils = 8, acquisition matrix size = 320 × 320, FOV = 160mm × 160mm

× 153.6mm, number of slices = 256, TR = 1550ms, TE = 25ms, FA = 90, sequence

type = SE. For each dataset, we only use the 150 slices from the central part (the 51st

to 200th slices). We randomly pick 1 dataset for training, and 1 dataset for testing.

For data augmentation, we generate 8 times more training samples by rotating and

reflecting the images. The original k-space data are retrospectively down sampled by

4 times with 16 ACS (auto-calibration signal, 5% of total PE). The sampling pattern,

a high resolution reconstructed image and a low resolution reconstructed image (by

zero-filled) are shown in Fig. 3.4.

As the images are acquired under different scan conditions, normalization is nec-

essary for the preprocessing of the data. We applied the following transformation for

every single images:

x← x−mean(x)

std(x)
(3.4)

After the transformation, the pixels in an image will have zero mean and unit variance.
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Experimental Protocols and Results

We train the network for 200 epochs with batch size = 3. Stochastic gradient descent

(SGD) is used with initial learning rate = 0.02 and momentum = 0.5. For every

20 epochs the learning rate is decreased by half. We use PoLU (Li et al., 2018b) as

our activation function. For calculating the error, we use mean square error (MSE),

which can be defined as:

MSE =
‖y − f(x)‖2F

N
(3.5)

where y and x represent the ground truth and degraded images, N represent the

number of pixels, f denotes the function represented by the learned neural network,

‖ · ‖F represents the Frobenius Norm.

To determine the value of α, we first test the our model with α = 0.05, 0.01, 0.005

with 1 trial for each value, using the loss function stated in Eq. 3.3. We use the α

with the least MSE for the remaining experiments. The plot of the testing loss for

different α is in Fig. 3.3(a). To evaluate the performance of the RD-U-Net model,

we compared the reconstruction results with GRAPPA (Griswold et al., 2002) and

U-Net (Lee et al., 2017). Tab. 3.1 report the results for 5 different runs, and Fig.

3.5 illustrates sample visual results. For the zero-filled reconstruction, there exists a

lot of aliasing artifacts (see Fig. 3.4(c)). Although GRAPPA removes the aliasing

artifacts, the reconstructed image is still with a lot of noise (Fig.3.5(a)). The U-Net

approach is better than GRAPPA, but the result is still lack of details (Fig. 3.5(b)).

The proposed RD-U-Net provides a better reconstructed image with the presentation

of residual dense block. In Fig.3.5(c), we can see that the result is sharper at the

edges, and clearer for the details. The Fourier constraint is also useful for obtaining

a better reconstruction, as shown in Fig. 3.3(b), adding the such regularization leads

to lower MSE.
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The network was implemented using Pytorch 0.4.0 with python 3.6.3 on Ubuntu

16.04. All the experiments were performed on a computer with nVidia GTX 1080

GPU and Intel Xeon E5-2603 CPU, although the code was not optimzed to with

respect to the particular computer hardware.

The reconstruction time for GRAPPA is about 20 seconds. The training time for

the U-Net, RD-U-Net(without/with Fourier constraint) are about 13, 15 and 15 hours

respectively. The reconstruction time for all the three compared neural networks are

less than 1 second.
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3.2 Variational Feedback Network for Accelerated MRI Reconstruction

Magnetic resonance imaging (MRI) is an important diagnostic tool for a lot of

diseases. However, compared to other imaging techniques like CT or X-Rays, the

scan time of MRI is relatively longer (can sometimes take up to 2 hours), which leads

to poor patient experience and expansive cost. In order to improve the situation, it is

meaningful to investigate if it is possible to decrease the scan time, while preserving

the quality of the reconstructed images.

Parallel Imaging (PI) (Sodickson and Manning, 1997; Pruessmann et al., 1999;

Griswold et al., 2002) is one of the most important techniques. Instead of sampling

the data points sequentially, PI samples multiple data points at the same time, and

combines them together in software. Compressed sensing (CS) (Donoho, 2006) is

another important technique, which allows the MRI acquisition to be speeded up by

sampling only a subset of k-space data. However, by the Nyquist-Shannon sampling

theorem, the reconstruction under the down-sampling scheme contains aliasing ar-

tifacts. To address this problem, an approach called Generalized Auto-calibrating

Partial Parallel Acquisition (GRAPPA) (Griswold et al., 2002), fills the missing k-

space measurements by applying interpolation on the surrounding data from every

coils; SAKE (Shin et al., 2014) and ALOHA (Lee et al., 2016) use low-rank matrix

completion to approximate the original k-space data. However, these algorithms have

high complexity and take significant time to reconstruct the images, making them less

practical.

Recently, deep learning is used for many tasks in artificial intelligence, such as

image classification (He et al., 2016; Huang et al., 2017), image super resolution

(Ding et al., 2017; Yang et al., 2012b), natural language processing (Kumar et al.,

2016; Conneau et al., 2016), and video analysis (Feichtenhofer et al., 2019; Wu et al.,
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Figure 3.6: The Illustration of Our Feedback Mechanism. Similar to Rnn, The
Output of the Network Is Used as an Input to the Network in the next Fold.

2019), and providing promising results. Researchers then started investigation on how

to utilize deep learning techniques for accelerated MRI reconstruction. The authors

of (Wang et al., 2016) proposed a convolutional neural network (CNN) architecture to

map the aliased images to the original high quality reconstruction. In (Kwon et al.,

2017), a multilayer perceptron was trained to learn the reconstruction for parallel

MRI, and Hammernik et al. (Hammernik et al., 2018) applied a variational network

on CS-MRI algorithm.

The superiority of deep learning based approach mainly comes from the nonlinear-

ity capacity of the neural network (Delalleau and Bengio, 2011; Pascanu et al., 2013;

Montufar et al., 2014), which allows the network to learn a more complicated down-

sampled/fully sampled mapping. In order to increase the complexity of the network,

researchers usually increase the number of layers, which also increases the number

of parameters. However, having a large network not just requires a lot of storage

resources, but also makes the model suffer from the overfitting problem. Recurrent

structure is one of the solutions to reduce the number of parameters, as it reuse part

of the parameters. It has been shown its effectiveness in some recent studies (Liao

and Poggio, 2016; Kim et al., 2016a).

Compared to traditional CNN, another advantage of using RNN structure is that
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Figure 3.7: An Illustration of Our Feedback Block. In the Figure, Green Thick
Arrows Represents 1 × 1 Convolutional Layers; Blue Thick Arrows Denote 3 × 3
Convolutional Layers, Each of Them Is Followed by a Normalization Layer and a
Nonlinear Activation Layer; Red and Yellow Thick Arrows Represent the Pooling
Layers and Unpooling Layers Respectively; The Skip Connections Are Represented
by the Green Thin Arrows; The Black Thin Arrows Are the Input/Output for the
Feedback Block, While the Red Thin Arrows Represent the Input/Output for the
Feedback Connections.

the high level information is able to be passed back to the lower layers to refine the

low level features. Theoretical studies in cognition theory (Hupé et al., 1998; Gilbert

and Sigman, 2007) state that the response signals can be transmitted from higher

order areas to lower order areas by the feedback connections. Some recent works

in image processing and computer vision are inspired by this observation (Stollenga

et al., 2014; Zamir et al., 2017; Li et al., 2019).

In this paper, we propose a Variational Feedback Network (VFN) for accelerated

MRI reconstruction, which is an extension to a previously proposed variational model

(Chen et al., 2020) with feedback connections and recurrent structure. In order to

achieve the feedback manner, we connect the output of a U-Net-like network to its
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Figure 3.8: The Figure Illustrates Our Feedback Network (FN). The Red Arrows
Indicates the Inputs/Outputs for the Feedback Connections. They Are Indicated as
Red Thin Arrows in Fig. 3.7. See Fig. 3.7 for the Details of the Feedback Network.

input by using skip connection (see Fig. 3.6). We first conduct analysis on the number

of folds of the RNN in our model, followed by the comparisons among different models.

Experimental results demonstrate that our proposed model outperforms other leading

neural networks for accelerated MRI reconstruction.

3.2.1 Background and Related Works

In this section, we review the background of MRI, followed by related works to

our proposed model for accelerated MRI reconstruction.

Accelerated MRI Acquisition

To obtain MR images, MR scanner is used to scan a patient by acquiring measure-

ments. The acquisition is done in the frequency domain, which is also called k-space.

The acquired data is called k-space data, and can be used to obtain the images by

applying an inverse Fourier transform F−1 to them. The relation between a given

k-space data k and the corresponding image can be represented by the following
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equation:

k = F(x) (3.6)

where F is an operator denoting Fourier transform.

To accelerate the acquisition of MRI, we can obtain only part of the k-space data.

Consider a binary mask matrix M , the under-sampled k-space data k̃i for the ith coil

can be described as:

k̃i = M ◦ ki (3.7)

where ◦ represents the Hadamard product.

To obtain the fully sampled and under-sampled images, the root-sum-of-squares

reconstruction approach (Roemer et al., 1990) can be applied to the data in the spatial

domain:

X =

(
nc∑
i=0

|xi|2
)1/2

(3.8)

X̃ =

(
nc∑
i=0

|x̃i|2
)1/2

(3.9)

where X and X̃ represent the reconstruction images from the fully sampled and

under-sampled k-space data respectively.

Deep Learning for Accelerated MRI Reconstruction

Compressed Sensing MRI is well explored by the researchers in the last decade. A

variety of methods have been proposed to help solve the problem. Most of them are

regularized least squares approaches, which treat the reconstruction problem as an

optimization problem. Nonetheless, these methods suffer from the shortcoming of

limited MRI diagnostic information preservation, which is still yet to be overcome.

In view of that, researchers then resort to deep learning techniques and investigate

ways to apply them on accelerated MRI reconstruction. One of the popular choices
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for this task is U-Net (Ronneberger et al., 2015), which is originally proposed for

medical image segmentation. Its architecture contains an encoder and a decoder,

incorporated with several skip connections. The skip connections link the features

from the same levels in the encoder and decoder together. Together with residual

learning, the researchers in (Lee et al., 2017) present a U-Net model to learn the

residual of the reconstruction. In (Hyun et al., 2018), the authors present a deep

learning architecture to handle the reconstruction problem by considering k-space

constraint. The authors of (Ding et al., 2019), instead of using skip connection,

introduce a residual dense block to refine the features.

A variational approach considering sensitivity of the coil is proposed in (Ham-

mernik et al., 2018). As most of the modern scanners contain multiple receiver coils,

and their sensitivity affect the acquisition of the k-space samples, the authors of

(Hammernik et al., 2018) use ESPIRiT (Uecker et al., 2014) to estimate the sensitiv-

ity maps of the coils and use them for the reconstruction of the MR images. In (Chen

et al., 2020), the authors proposed an end-to-end version for the variational network.

In their work, the sensitivity maps estimation become part of the network.

3.2.2 Variational Feedback Network for Accelerated MRI Reconstruction

We propose our Variational Feedback Network (VFN) in this section. The basic

block of our network is a U-Net-like feedback network, which helps extract high level

features. We then use it as part of the recurrent network, which is employed in the

variational network.

Feedback Block

We start from the feedback block. Similar to the traditional U-Net, it consists of an

encoding part and a decoding part. For the encoder, it takes two inputs, one from
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the degraded images after some convolutions, and one from the feedback block in the

previous fold. The inputs are then fused together to become a set of features having

c channels by a 1 × 1 convolutional layer. After that, a 2 × 2 pooling layer with

stride = 2 is applied. The features are then passed through two 3 × 3 convolutional

layers, each of them is followed by a normalization layer and a nonlinear activation

layer. Also, the number of channels is multiplied by two after the first convolution.

Once the second activation layer is reached, another pooling layer with stride = 2 is

applied.

This conv-conv-pool combination is applied several times, depends on the depth of

the feedback block. Note that their weights are not shared. At the end of the encoder,

a 2 × 2 pooling layer with stride = 2 is applied, followed by a 3 × 3 convolutional

layer, where the number of channels of the output remains unchanged.

For the encoding part, the features are first input to an unpooling layer, and

then two 3 × 3 convolutional layers are applied. Similar to the encoder, each of

them is followed by a normalization layer and nonlinear activation layer, and the

number of unpool-conv-conv combination is the same as the number of conv-conv-

pool combination in the encoder. There are skip connections from the corresponding

level in the encoding part, and the first convolution in every level decreases the

number of channel to 1/4. An unpooling layer is applied to the feature at the end of

the decoder, and is output as one of the input for the feedback block in the next fold.

Also, it is convolved with the skip connection that comes from the encoder by a 3× 3

convolutional layer, followed by a normalization layer and activation layer. Fig. 3.7

is an illustration for the feedback block.
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Feedback Network

As illustrated in Fig.3.8, the subnetwork can be divided into three parts: feature

extraction, feedback block, and reconstruction. The first part contains two 3× 3 con-

volutional layers, A normalization layer and an activation layer are applied instantly

right after each convolutional layer. The output of this part in the t-th fold can be

expressed as:

xtin = fFE(IDS) (3.10)

where IDS is the down-sampled data.

The second part is the feedback block, it takes two inputs (one is optional), one

is the output from the feature extraction part in the same fold, and one is the output

from the feedback block from the previous fold, which is optional. If there is no input

from the previous fold, the 1×1 convolutional layer will no be applied. The structure

of the feedback block is described in Sec. 3.2.2. There are two outputs for the this

part. Mathematically, they can be described as:

[xtout, F
t] = fFB(xtin, F

t−1) (3.11)

where F t is the output for the feedback connection in the t-th fold (i.e. it is used as

an input for the feedback block in the next fold).

The last part is about reconstruction. The input is convolved by a 3 × 3 convo-

lutional layer. After that, the output is normalized and passed through a nonlinear

activation function, followed by a 1 × 1 convolutional layer. Together with the skip

connection, the mathematical formulation for this part is:

IREC = fR(xout) + IDS (3.12)

We name this model Feedback Network (FN).
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Variational Network

We employ the variational network structure in (Chen et al., 2020) by using our

feedback mechnism, and call it Variational Feedback Network (VFN). This structure

introduces the estimation of sensitivity maps to help refining the reconstruction. For

our proposed FN, there are multiple inputs and outputs. To fit it into the refinement

modules, we use the same image for all the inputs in the same refinement module.

Only the last refinement module returns all the outputs of the FN, the remaining

modules only return the one in the last fold (t = T ). The illustration of the modified

network is shown in Fig. 3.9,

Network settings

We want to maximize the Structural Similarity (Wang et al., 2003) between the

reconstruction and the ground truth. Therefore, we want to minimize the following

value:

L(x, x∗) = −SSIM(x, x∗) (3.13)

where SSIM is the Structural Similarity Index, x and x∗ represent the reconstruction

and the ground truth respectively. As there are T outputs for our model, we use the

following as our loss function:

L({xt}Tt=1, x
∗) = − 1

T

T∑
t=1

SSIM(xt, x∗) (3.14)

where x1, ..., xT are the outputs of our model. We use xT as our final output.

We use instance normalization (Ulyanov et al., 2016) and leakly ReLU (Maas et al.,

2013) for the normalization layer and activation layer respectively. For the feedback

block, max pooling and bilinear interpolation are used for pooling and unpooling,

number of channel of the features after the first convolution (denoted by c) is set
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T=1 T=2 T=3

NMSE 0.0373 0.0369 0.0367

SSIM 0.7280 0.7305 0.7311

PSNR 31.4851 31.5625 31.5931

Table 3.2: The Normalised Mean Square Error (NMSE), Structural Similarity Index
Measure (SSIM), Peak Signal-to-noise Ratio (PSNR) of the VFN Model for T =
1, 2, 3.

U-Net E2EVN VFN

NMSE 0.0387 0.0373 0.0369

SSIM 0.7244 0.7280 0.7305

PSNR 31.1783 31.4851 31.5625

Table 3.3: The Normalised Mean Square Error (NMSE), structural Similarity Index
Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR) for U-Net, E2EVN and Our
Proposed VFN on 4x Acceleration.

to 18. The depth of the block is 4 (i.e. there are 4 pooling layers and 4 unpooling

layers). Two cascades are used for the variational network.

3.2.3 Experiments

In this section, we first introduce the dataset we use. After that, we describe the

network settings, followed by the comparative studies.

Magnetic Resonance Dataset

The single coil knee datasets from fastMRI are used to evaluate our proposed VFN.

For the experiments described in this section, we run 5 trails for each them, every time

we randomly pick 10 dataset for training and the other 10 for testing. To obtain the

under-sampled data, the original fully-sampled data are retrospectively down-sampled

by 4 times with 25 ACS(auto-calibration signal, about 7.8% of total PE).
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Analysis of the Number of Folds

In this subsection, we analyze the impact of the number of folds of the subnetwork

in our model by comparing the the final output of FN for T = 1, 2, 3. Tab. 3.2

shows that, the models with feedback connections (T > 1) are better than the one

without feedback connection (T = 1). In addition, we can observe that, when T is

increasing, the performance is also becoming better. This suggests that this feedback-

RNN structure is beneficial to the performance.

Experimental Settings and Results

We compare our VFN model with U-Net (Ronneberger et al., 2015), E2EVN (Chen

et al., 2020). We train the networks for 50 epochs with batch size = 8. Adam

algorithm (Kingma and Ba, 2014) is used for with initial learning rate = 0.0001. The

learning rate is multiplied by 0.1 at the 40th epoch. The number of folds T is set to

2.

Tab. 3.3 shows the results from different models under different metrics.

The network was implemented using Pytorch 1.5 (Paszke et al., 2017) with python

3.7 on Ubuntu 18.04. A computer with nVidia GTX 1080GPU and Intel Xeon E5-

2603 CPU is used for the experiments.
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(a)

(b)

(c)

Figure 3.9: The Figure Shows (a) Our Proposed Network. Similar to (Chen et al.,
2020), DC, R, SME Represent the Data Consistency, Refinement and the Sensitivity
Map Estimation Modules Respectively; (b) the Unfolded View of (a); (c) Our Mod-
ified Refinement Module. Fourier Transform, Inverse Fourier Transform and Our
Proposed Feedback Network Are Denoted by IFT, FT and FN Respectively.
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Chapter 4

TRANSFER LEARNING FOR ACCELERATED MRI

Magnetic resonance imaging (MRI) reconstruction is an important technique for

medical imaging that has been used in the diagnosis of a wide range of diseases. To

obtain high quality MRI images, fully sampled MRI data is required, which usually

demands a long scan time (easily exceeding 30 minutes). This leads to high cost and

poor patient experience. Many efforts have been done to cut the time of MRI data

acquisition through both hardware and software developments. Examples include par-

allel imaging (Sodickson and Manning, 1997) and compressed sensing (CS) (Donoho,

2006; Lustig et al., 2008). It is worth to mention that, among these approaches, CS

techniques were a breakthrough in the reduction of the MR acquisition time. Com-

paring to other approaches, it speeds up the scanning by acquiring less measurement

data to reconstruct high quality images. By the Nyquist-Shannon sampling theorem,

such undersampling scheme leads to aliasing artifacts. To eliminate the artifacts,

researchers incorporated additional prior knowledge during the reconstruction. Rep-

resentative approaches include generalized auto-calibrating partial parallel acquisition

(GRAPPA) (Griswold et al., 2002), SAKE (Shin et al., 2014), and the annihilating

filter based low-rank Hankel matrix approach (ALOHA) (Lee et al., 2016).

Recently, deep learning has become one of the most popular tools for machine

learning research, achieving promising result in image classification (He et al., 2016;

Huang et al., 2017), natural language processing (Kumar et al., 2016; Conneau et al.,

2016), image super resolution (Tong et al., 2017; Shocher et al., 2018), and style

transfer (Gatys et al., 2016), etc. Researchers also started to investigate the use of

deep learning to make MRI scans faster. In (Wang et al., 2016), a convolutional neural
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network (CNN) is deployed to map the aliased image to the fully sampled image.

In (Kwon et al., 2017), a multilayer perceptron is learned for parallel MRI, and in

(Lee et al., 2017; Hyun et al., 2018; Ding et al., 2019), the researchers applied UNet

(Ronneberger et al., 2015) or its variants to achieve accelerated MRI reconstruction.

Since deep networks require a lot of data to train, transfer learning is often em-

ployed to improve the performance when only limited data are available in a target

domain. This technique has seen applications in image classification (Ganin and Lem-

pitsky, 2015; Ganin et al., 2016) and computer-aided diagnosis (Maqsood et al., 2019;

Byra et al., 2020), etc., where the focus has been on improving the network architec-

ture. Given typical scarcity of labeled data in the medical domain and the abundance

of natural images, an interesting transfer learning problem is to consider how to to

improve deep learning approaches for a medical imaging task through utilization of

natural images like ImageNet (Russakovsky et al., 2015). While some recent efforts

have studied this problem to some extent (Raghu et al., 2019; Zhu et al., 2018; Knoll

et al., 2019), there is not much direct research on this for accelerated MRI recon-

struction. In this paper we design research and experiments to answer the following

question: is it feasible and beneficial to transfer knowledge learned from natural im-

ages for improving deep-learning-based MRI reconstruction?

Following typical protocols in current practice, the procedure of applying transfer

learning on accelerated MRI reconstruction would be as follows. First, we train a

neural network using a large dataset of natural images, optimizing the performance

by capitalizing the size of the dataset. Then, we fine-tune the network through re-

training with the target data (typically of a much smaller size). To achieve these steps

in this study, we design a way to down-sample the natural images in the sense of k-

space degradation. This enables us to perform systematic evaluation and comparison

of the performance using an exemplar architecture based on the UNet, which has been
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Figure 4.1: Example Images from (a) ImageNet Dataset; (b) FastMRI Dataset
(Knee).
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frequently used for MRI reconstruction. We analyze the weights of the network by

visualizing them (Erhan et al., 2009), and compare their similarity between the model

before and after fine-tuning by CCA (Raghu et al., 2017). While the experimental

results suggest that the above typical transfer learning protocol does not lead to

obvious performance gain, our analysis provides some insights as to why it is the case

and hence points to potential future directions for improved transfer learning for this

domain.

4.1 Related Works

In this section, we review the works which are related to our investigation. It is

worth to mention that there is a lot of works performing state-of-the-art on super-

resolution in natural images. However, such work is not that related to the accelerated

MRI reconstruction as the degradation models are different, and it is clear that the

low resolution images in the problem we are facing involve structured aliasing.

4.1.1 Deep Learning for Accelerated MRI Reconstruction

Over the past decade, researchers have explored the field of Compressive Sensing

MRI deeply. Some works have been done upon the regularized least-squares ap-

proaches, which are set of model-fitting methods aiming to reconstruct MRI image

by introducing a regularization term. However, when using these approaches, it is

difficult to overcome the limitations in preserving diagnostic information in MRI. As

a result, researchers investigate how to apply deep learning techniques to reconstruct

the under-sampled MRI. UNet (Ronneberger et al., 2015), which is first proposed for

medical image segmentation, has soon become a popular choice in this task. In (Lee

et al., 2017), researchers present a UNet model the residual learning. The network

estimates aliasing artifacts from distorted images of undersampled data. The authors
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of (Hyun et al., 2018), present a deep learning framework by imposing k-space con-

straint to tackle the reconstruction problem. In (Ding et al., 2019), in order to extract

better features, a new component which called residual dense block is used to replace

the skip connection in UNet.

4.1.2 Transfer Learning

Transfer learning is a machine learning technique, which is usually used when

the data in the target domain has little data to train. Depends on the goal, there

are different ways to perform transfer learning. For most of the medical imaging

task, a popular standard of transfer learning is to train a network using a natural

image dataset, and then fine-tune it on the medical image dataset. Transfer learning

technique has been employed to several medical applications like chest x-rays (Wang

et al., 2017c; Rajpurkar et al., 2017), and ophthalmology (Abràmoff et al., 2016;

Gulshan et al., 2016) A recent paper (Raghu et al., 2019) investigates the possibility

of transferring learned knowledge from natural images to medical images. However,

most of the previous works are evaluated only on the image classification task, it is

not clear that if such conclusions can also be drawn on image reconstruction task, as

they are very different.
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(a) (b) (c)

Figure 4.3: The Figures Illustrate the Effect of Using Different Phase Part for Under-
sampling. (A) Is the Original Image, (B) and (C) Are the Degraded Images under 2x
Acceleration While Using Different Phase Part. We Can Observe That Although the
Images Are Different, The Aliasing Effect Is Still Preserved.

4.2 Evaluating Transfer Learning for Accelerated MRI Reconstruction

We first introduce the datasets, and then present a scheme for making natural

images (which are in general not from the k-space as MRI images do) useful for our

reconstruction task, followed by the experiments and results.

4.2.1 Datasets

For the source of natural images, we use the ImageNet classification dataset (Rus-

sakovsky et al., 2015). The dataset contains 1000 classes, and more than 1.2 million

images. For the MRI data, we use the knee single-coil k-space data in the fastMRI

dataset (Zbontar et al., 2018). The dataset contains 973 volumes, in total 34,742

slices in the training set, and 199 volumes, in total 7,135 slices in the validation set.

Fig.4.1 shows some examples from both datasets.
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Figure 4.4: The Nmse of the (a) Training Set; (b) Testing Set During the Train-
ing Stage. We Compare 3 Settings: (1) Pretrained on Imagenet, Fine-tune on 100
Volumes of MRI Data; (2) Training on 100 Volumes of MRI Data from Scratch; (3)
Training on 250 Volumes of MRI Data from Scratch.
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4.2.2 Utilizing Natural Images

To create the down-sampled k-space data, under-sampling is performed by retro-

spectively setting part of the columns (phase encoding direction) of the k-space data

to zero, from a fully sampled acquisition. To generate the under-sampling masks, we

first keep a portion of k-space columns, which represent the lowest frequency of the

corresponding signal. After that, the remaining columns are sampled equidistant. As

4x acceleration factor is used in our case, we only keep 1 out of every 4 columns.

The down-sampled k-space data is obtained by simply applying the mask on the fully

acquired k-space data. That is,

ỹi = M ◦ yi (4.1)

where ◦ represents the Hadamard product, yi and ỹi represent the ith coil of the

original and down-sampled k-space data respectively, for i ∈ {1, 2, ..., nc}, nc is the

number of coils.

When both fully acquired and down-sampled k-space data are obtained, the root-

sum-of-squares reconstruction method (Roemer et al., 1990), which is one of the most

popular coil combination methods, can be used to visualize the images. We first apply

the inverse Fourier Transform to the k-space data on each coil,

mi = F−1(yi) (4.2)

m̃i = F−1(ỹi) (4.3)

where F is the function representing Fourier Transform, mi and m̃i denote the fully

acquired and down-sampled image representation of the ith coil respectively.

At this step, mi and m̃i are still in complex domain. To visualize the corresponding
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final images the root-sum-of-squares image can be calculated as:

x =

(
nc∑
i=0

|mi|2
)1/2

(4.4)

x̃ =

(
nc∑
i=0

|m̃i|2
)1/2

(4.5)

For our case, since we are using single-coil data, we have nc = 1, which leads to

x = |m1| (4.6)

x̃ = |m̃1| (4.7)

For the natural images in the ImageNet dataset, usually they have 3 channels

(for RGB images). We convert all the RGB images to grayscale by using the ’con-

vert(’LA’)’ command in the python package Pillow. In order to down-sample the nat-

ural images, we create the phase part for them as it is required in the Fourier/inverse

Fourier Transform. The simplest way is to fill the phase part with zero. By Eq.4.4,

no matter what we choose, we can obtain the original natural images from these em-

ulated k-space data. However, the down-sampled images obtained by using different

phase part can be different. Mathematically, for an image x, we can always find m(1)

and m(2) in complex domain such that

m(1) 6=m(2) (4.8)

x =

(
nc∑
i=0

|m(1)
i |2

)1/2

=

(
nc∑
i=0

|m(2)
i |2

)1/2

(4.9)

and (
nc∑
i=0

|F−1(M ◦ F(m
(1)
i ))|2

)1/2

6=

(
nc∑
i=0

|F−1(M ◦ F(m
(2)
i ))|2

)1/2
(4.10)
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: The Figure Shows (a)-(c) the Reconstructed Image by Different Model.
(a) Pretrained on Imagenet, Fine-tune on 100 Volumes of MRI Data; (b) Training
on 100 Volumes of MRI Data from Scratch; (c) Training on 250 Volumes of MRI
Data from Scratch. For the Remaining Sub-figures, (d) the Mask We Used for Down-
sampling K-space Data; (e) the Degraded Image; (f) the Ground Truth.

Due to this reason, there are a lot of way to do the under-sampling. Fortunately,

as illustrated in Fig.4.3, the degraded images obtained by using different are not

dramatically different. In our case, we randomly choose the phase part from the real

MRI data, and use them as the phase part for the natural images. Fig.4.2 illustrates

why they are different.

All data (for both MRI data and natural images ) are cropped to 320× 320, the

input (low resolution) and output (high resolution) are normalized to have zero mean

and unit variance. which means, we apply the following transformation for every
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100vol-pretrain 100vol-rand init 250vol-rand init

9.3954× 10−9 9.3879× 10−9 9.3156× 10−9

Table 4.1: The Final Nmse of Loss of Different Settings: (1) Pretrained on Imagenet,
Fine-tuned on 100 Volumes of MRI Data; (2) Training on 100 Volumes of MRI Data
from Scratch; (3) Training on 250 Volumes of MRI Data from Scratch.

single image x:

x← x−mean(x)

std(x)
(4.11)

The model settings and the evaluation metric will be discussed in the next section.

4.2.3 Experimental Results

To compare the feasibility of the transfer learning on accelerated MRI reconstruc-

tion, we evaluate the performance in the following two settings: (1) training from

random initialization; (2) transfer learning from ImageNet. We compare the result

by comparing the reconstruction error, and the visualization of the layer features.

We use the UNet architecture in (Zbontar et al., 2018) to train a mapping from

low resolution image to the residual. The high resolution image can be computed by

adding up the input and the output of the network. This kind of residual learning

architecture has been used in the past(Lee et al., 2017; Ding et al., 2019), and provides

state-of-the-art result. An illustration of the network can be found in Fig.4.8(a).

Number of epochs is 50 with batch size = 8. SGD is used with initial learning rate =

0.001. At the 40th epoch the learning rate is decreased to 0.0001. For calculating the

error, we use the normalized mean square error (NMSE) as our metric of measurement,

which can be defined as

NMSE(x, x̂) =
‖x− x̂‖2

‖x‖2
(4.12)

where x is a reference image, x̂ is a reconstructed image, and ‖ · ‖2 is the squared

Euclidean norm.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.6: The Visualization of the Layer Features. The 1st, 2nd, 3rd and 4th
Column Represent the Results from (1) Training on Imagenet; (2) Pretrained on
Imagenet, Fine-tuned on 100 Volumes of MRI Data; (3) Training on Another 100
Volumes of MRI Data from Scratch; (4) Training on 250 Volumes of MRI Data from
Scratch. The Images in the First Row, Second Row and Third Row Are Generated
from a Channel of the (I) Input of the First Pooling Layer; (Ii) Output of the Encoding
Part (the Output of the First Convolution Layer after the Last Pooling Layer) And;
(Iii) Output of the Decoding Part (the Output of the First Convolution Layer after
the Last Unpooling Layer) of the Unet.
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Figure 4.7: The CCA Similarities among Different Models on the Accelerated MRI
Reconstruction Task. (Left) Pretrained on Imagenet + Fine-tune on 100 Volumes of
MRI Data Vs Others; (Middle) Training on Another 100 Volumes of MRI Data from
Scratch Vs Others; (Right) Training on 250 Volumes of MRI Data from Scratch Vs
Others.

We compare the performance of using the following 3 settings:

1. pretrained on ImageNet, fine-tune on 100 volumes of MRI data;

2. training on another 100 volumes of MRI data from scratch;

3. training on 250 volumes of MRI data from scratch.

Fig.4.4 shows the plots of the NMSE of the training and validation set during the

training process, and Tab.4.1 shows the final NMSE. It is natural to see that the

result for setting (3) is obtaining better result than the one from setting (2), it proves

that there is still some room to improve the result of setting (2) If the pretraining

on ImageNet helps, the performance of setting (1) should be better than the one of

(2) (or even better than (3)). However, the result shows that there is no significant

improvement while transfer learning technique is used. Fig.4.5 shows some outputs

from different models.
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Figure 4.8: The Figure Shows (a) the Unet Architecture Used in the Experiment;
(b) the Diagram of Our Intuition for Optimization. The Blue Nodes Represent the
Weights That Are Trained/Fine-tuned by 100 Volumes of MRI Data, While the Green
Node Represents the Weights That Is Trained by 250 Volumes of MRI Data. The
Orange Node Is the Optimal Weights of the Network, The Closer to It, the Lower the
Reconstruction Error.

4.3 Analysis of the Effectiveness of Transfer Learning

In Sec.4.2.3 the result shows that there are limited differences between training

from scratch and fine-tuning from a pretrained model. This phenomenon is counter

intuitive as it suggests that the knowledge learned from the dataset for pretraining

does limited help. In general, pretraining provides us with a model with better

”starting point”, as the model has already gained some knowledge. In this case, it

is likely that the model would converge to some point which is closer to the global

optimum.

In this section, we try to explain this phenomenon by analyzing the learned

weights, which serve as the representation of the neural network. CCA (Raghu et al.,

2017) and the technique of visualizing the weights of the layer(Erhan et al., 2009) are

used for comparing the filters of the networks in different training settings.
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4.3.1 Visualization of the Layer Features of the Network

We investigate the layer features by using the technique proposed in (Erhan et al.,

2009). It allows us to visualize the representation of a selected filter in a specific layer.

To be precise, for a network with fixed weight, we select a channel of the output of a

specific layer, and plot the input (of the network) which maximize the average of the

elements of this channel. This can be done by using gradient descent to update the

input. Fig.4.6 shows the layer features at the output of a lower layer (the 1st row), a

middle layer (the 2nd row) and a higher layer (the 3rd row).

For the images in the second row and the third row, we can see that, the images

obtained from setting (1) and (2) (i.e. the second and the third column of the figure)

are similar, which means that no matter what the initial weights of the network are,

they become similar after some epochs of training. In other words, the knowledge

learned from ImageNet is washed out after fine-tuning on MRI data. Also, comparing

to setting (1), (2) and (3), the pattern in the images obtained from training on only

ImageNet (the first column in the figure) looks quite different, this may imply that,

even if we have a down-sampling scheme to produce aliasing artifacts for the natural

images, the mapping learned from them is still quite different from the one learned

from MRI data. Fig.4.8(b) illustrates our intuition of the learned weights under

different settings.

For the images in the first row, we do not observe any significant difference like

the one we observe for the second row and third row. This may due to the small

receptive field of the lower layer.
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4.3.2 Canonical Correlation Analysis (CCA) for the Layer Features of the Network

In order to investigate how the pretrained weights affects the performance, it is

useful to analyze the representations in different layers. Investigating these latent

layers is difficult because of the curse of high dimensionality. We compare the model

with the 3 settings that we mentioned in Sec.4.2.3 , by using a recent tool CCA (Raghu

et al., 2017), which has been applied to some research on latent representations study

(Saphra and Lopez, 2019; Magill et al., 2018; Gotmare et al., 2018), to evaluate the

similarity of their weights.

Instead of comparing the weights of the model directly, CCA compares the activa-

tions of the neurons. To be more specific, it compares the outputs of the neuron on a

sequence of inputs by searching correlated linear combinations. The higher score, the

higher probability that the two mappings have similar functionality. Fig.4.7 shows

the score in different layers for setting (1) and (2) versus other settings. If pretraining

is helping, the score between setting (1) and (3) should be significantly higher than

the one between setting (2) and (3). However, we do not observe it from the rightmost

figure. Also, the first two figures are very similar, suggesting the pretraining weights

are washed out or do not have a noticeable impact.

4.3.3 Experimental Settings

All the experiments were implemented using Pytorch 1.3, with python 3.7 on

Ubuntu 18.04. They were performed on a computer with nVidia GTX 1080 GPU

and Intel Xeon E5-2603 CPU.
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Chapter 5

CONCLUSION

Super-resolution is an important field of study. Such technique can help increase

the resolution for natural images, and can improve patient experience while doing

the MRI scanning. In this dissertation, I present three works on super-resolution

for natural images, two works on acceleration MRI reconstruction and the feasibility

of transferring knowledge learned from natural images to reconstruct MR images.

It is worth mentioning that some of my other accepted papers are also related to

these topics indirectly. In (Li et al., 2018b), I proposed a new activation function for

increasing the number of response region, and in (Ding et al., 2020), I proposed a

new batch normalization technique, which makes the network to converge better and

faster. Both works help improving the performance of neural network, and thus can

be used for either natural image super-resolution or accelerated MRI reconstruction.

In the following, I summarize my major contributions for each topic, and provides

some potential future works.

5.1 Super-resolution for Natural Images

I proposed a novel dictionary-learning approach to single-image super-resolution.

Adding the convex constraint, which forces the columns of the dictionary to be formed

by the columns of the input data, makes the columns of the dictionary close to the

centroids of the input clusters. We also presented an iterative update algorithm for

finding a solution. Experiments on commonly-used testing images showed that our

approach is able to better reconstruct high-resolution images. Future work includes

applying our proposed approach to multi-frame image super-resolution while consid-
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ering joint regularization (Chang et al., 2016a).

For the first regularization-based model, two new regularization models are pro-

posed for single image SR, including GRR and 3R. GRR exploits both local and non-

local self-similarity of images, while 3R introduces HR information from an external

dataset. In addition, an algorithm called JRSR is designed to solve the optimization

problem. Experiments demonstrated that our algorithm is able to deliver the best

performance among all the tested methods. Moreover, the training phase of JRSR is

independent of the degradation model. This independence is an advantage of JRSR

over the learning-based methods.

For the second regularization-based model, I consider a competitive reconstruction-

based framework which simultaneously utilizes both the external and internal priors

of natural images. First, the suitable local neighbours are collected from external data

so as to establish the CRR prior. After that, to yield a better SR result, the NLR

prior which exploits NLSS of natural images is also incorporated. The effectiveness

of the proposed CRNS algorithm is demonstrated by the experimental results with

comparisons against different SR methods. Particularly, the average improvement of

CRNS over NCSR (Dong et al., 2013) (which provides the second best results among

all the tested methods) is 0.40 dB in terms of PSNR, 0.0068 in terms of SSIM and

0.0059 in terms of FSIM. However, the computational burden of CRNS is higher than

the other benchmark methods. In the future, we will try to extend CRNS to other

applications, such as image deblurring and video SR.

5.2 Accelerated MRI Reconstruction

I proposed a new architecture to approximate the fully sampled MR images from

the down sampled MR ones. The architecture is based on U-Net, and it achieves

low NMSE during the reconstruction of MR images, due to the participation of the
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residual dense refinement and the Fourier regularization. The visual results show that

our proposed model is able to reduce more aliasing artifacts.

Also, I proposed a new network architecture - Variational Feedback Network

(VFN) for Accelerated MRI reconstruction. The feedback connections and the re-

current U-Net structure can transmit the high level features back to the lower layers

and refine the low level features, while reusing a lot of parameters. The experimental

results have demonstrated that, our proposed VFN outperforms other state-of-the-art

methods.

5.3 Transfer Learning for Accelerated MRI Reconstruction

I investigated how critical transfer learning is to reconstructing high quality im-

ages in accelerated MRI acquisition. To support the analysis, we designed a scheme

to generate the phase part of the natural images, such that the images can be de-

graded similar to real MRI data. Through comparing the reconstruction error and

the similarity of the weights, as well as visualizing the layer features, we found that

transfer learning (using a typical pretraining-finetuning protocal) offers little benefit

to performance. Future works could study if it is possible to learn a mapping such

that the natural images can be mapped to a domain which is more correlated to the

MRI data.
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