














































Chapter 1

INTRODUCTION

In applications involving turbulent flows, large eddy simulation (LES) is used to

circumvent the impractical computational burden that would be associated with a

direct numerical simulation (DNS). LES solves spatially filtered governing equations,

and thus produces resulting fields that are resolved only to length scales as small as

the filter scale, which typically is set implicitly by the local computational mesh size.

Early development and applications of LES focused primarily on simulating turbu-

lent flows themselves, and then using the results to understand certain aspects of these

flows and the turbulence physics in them. However, in most practical situations the

underlying turbulent flow itself is not of primary interest. Instead it is other physical

processes that are occurring within the turbulent flow – such as mixing of chemical

constituents, highly exothermic combustion reactions, particle or droplet formation

and transport, phase changes and interactions between phases, etc. – that are of

primary interest. In most cases these physical processes can be strongly affected by

details of the turbulence near the smallest resolved scales in the underlying flow. As a

consequence, in such situations the LES must provide sufficiently high fidelity in its

resulting filtered fields, even at or near the smallest resolved scales, in order for the

physical processes that are of primary interest to be accurately simulated.

As high performance computing resources become more widely available, and as

advances in methodologies such as wall treatments [1–4] are improving simulation

accuracy, LES is being increasingly applied to such complex multiphysics turbulent

flows [5–15], enabling simulations that address coupled physical processes such as

scalar mixing [16–19], chemical reactions and heat transfer [20–22], phase changes [23,

24], droplet and particle dynamics [25, 26], and numerous other phenomena.
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1.1 Governing Equations and Subgrid Terms

In such multiphysics problems, the relevant governing equations can each be

expressed as a sum of linear and nonlinear terms, respectively L(u, ϕ) and N(u, ϕ),

expressed in velocity and scalar fields, respectively u(x, t) and ϕ(x, t), as

L(u, ϕ) +N(u, ϕ) = 0 . (1.1)

Applying a suitable spatial filter [27–30] denoted by (̃ ) that has characteristic length

scale ∆̃, then (1.1) can be written in the filtered fields ũ(x, t) and ϕ̃(x, t) as

L(ũ, ϕ̃) +N(ũ, ϕ̃) = −
[
Ñ(u, ϕ)−N(ũ, ϕ̃)

]
, (1.2)

where the left-hand side is of the same form as (1.1) but in the filtered variables

ũ and ϕ̃, and the right-hand side consists of all subgrid terms that arise from the

nonlinearities in N(u, ϕ).

To solve such filtered governing equations, the subgrid terms on the right in (1.2)

must be related to ũ(x, t) and ϕ̃(x, t) to obtain a closed set of equations. Traditionally,

this closure is done with prescribed models that involve substantial ad hoc treatments

[27, 31–36]. Resulting errors from such models can be large even for subgrid terms

such as the subgrid stress [14, 27, 31–33, 37–44] that are fundamental to LES.

1.2 The Subgrid Stress Tensor τij(x, t)

In the governing equation for conservation of momentum, the nonlinear product

uiuj in the advection term leads via (1.2) to a subgrid stress tensor of the form

τij ≡ ũiuj − ũiũj , (1.3)

with the corresponding form of the filtered momentum equation being

∂ũi
∂t

+ ũj
∂ũi
∂xj

= −1

ρ

∂p̃

∂xi
+ ν

∂2ũi
∂xj∂xj

− ∂τij
∂xj

. (1.4)

Widely used subgrid models that prescribe particular forms for τij in terms of

the resolved-scale variables include the basic Smagorinsky model [45], the dynamic
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Smagorinsky model [31, 46–49], the Bardina scale-similarity model [31, 50–52], and

mixed models [42–44, 53–57] that combine scale-similarity and dissipative models.

However, all of these models have been shown in a priori tests to produce substantial

errors in their representation of the subgrid stress field τij(x, t), thereby limiting the

accuracy with which momentum and kinetic energy exchange are represented between

resolved and subgrid scales in the simulation [3, 27, 31–33, 37].

Because the velocity field ũ(x, t) is determined primarily by the largest resolved

scales, if simulating the velocity were the only objective then continued reliance on

such traditional prescribed models might be acceptable, since the filter scale ∆̃ could

simply be made sufficiently small, albeit at greater computational cost, so that errors

introduced by the subgrid model would not substantially affect larger scales of the

flow. However, as noted above, LES is being increasingly used to simulate not only

the velocity field ũ(x, t), but also concurrent physical processes, many of which are

determined primarily by the smallest resolved scales in ũ(x, t) and ϕ̃(x, t). In such

cases, inaccuracies in the corresponding subgrid models can create large errors in

the resolved fields that are of interest. Achieving high fidelity in such multiphysics

simulations may therefore require new approaches for representing subgrid terms,

including τij and other subgrid terms involved in the simulation, that are substantially

more accurate across all resolved scales than are current prescribed models.

1.2.1 Resolved-Scale Kinetic Energy

Depending on how τij in (1.3) and (1.4) is modeled, the resulting LES may not

only be inaccurate near the smallest resolved scales, but the simulation may also

become unstable in the sense that the resolved kinetic energy

k ≡ 1

2
ũiũi , (1.5)

associated with the resulting velocity field ũ(x, t) can increase without bound. Al-

though the precise reasons for such instabilities remain poorly understood, certain
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insights into the resulting k(x, t) field can be gained from considering its governing

equation and the associated kinetic energy subgrid production term within it.

1.2.2 Subgrid Production P (x, t) of Resolved Kinetic Energy

From (1.4) and (1.5) the governing equation for k(x, t) is obtained as

∂k

∂t
+ ũj

∂k

∂xj
= − ∂

∂xj

(1

ρ

(
p̃ũj
)
− 2ν

(
ũiS̃ij

)
+
(
ũiτij

))
− 2νS̃ijS̃ij + τijS̃ij , (1.6)

where

S̃ij ≡
1

2

(∂ũi
∂xj

+
∂ũj
∂xi

)
(1.7)

is the resolved-scale strain rate tensor. On the right-hand side of (1.6), the three

terms in parentheses appear in divergence form and thus account, respectively, for the

conservative redistribution of resolved-scale kinetic energy by (i) the normal stress

due to pressure, (ii) the viscous stress, and (iii) the subgrid stress. The remaining

viscous term on the right-hand side involves a square product and thus must always

be negative; it accounts for viscous dissipation of the resolved-scale kinetic energy.

The rightmost term in (1.6), which can in general be positive or negative at various

points and times in the simulation, accounts for the subgrid production of resolved-scale

kinetic energy from interaction between the subgrid stress tensor τij(x, t) and the

resolved strain rate tensor S̃ij(x, t). The importance of this term in the stability or

instability of a simulation is widely recognized. Accordingly, the present study will

pay particular attention to the kinetic energy subgrid production field, defined as

P (x, t) ≡ τijS̃ij , (1.8)

associated with various ways of representing the subgrid stress τij(x, t) in the resolved-

scale variables.

1.3 The Subgrid Scalar Flux Vector zi(x, t)

Analogous to the subgrid stress, in the governing equation for any conserved scalar

quantity ϕ the nonlinear product ujϕ in the advection term leads via (1.2) to a subgrid
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scalar flux vector of the form

zj ≡ ũjϕ− ũjϕ̃ , (1.9)

with the corresponding form of the filtered scalar transport equation being

∂ϕ̃

∂t
+ ũj

∂ϕ̃

∂xj
= D

∂2ϕ̃

∂xj∂xj
− ∂zj
∂xj

, (1.10)

where D is the scalar diffusivity.

There are widely used subgrid models that prescribe particular forms for the

subgrid scalar flux zi in terms of the resolved variables in the simulation. Most

are direct analogs of corresponding prescribed models for the subgrid stress τij, as

discussed in Chapter 7 – the most common subgrid scalar flux model is obtained by

direct analogy with the basic Smagorinsky model. However, as seen in Chapter 7,

all of these prescribed models produce substantial errors in their representations of

the subgrid scalar flux field zi(x, t), thereby limiting the accuracy with which they

can represent scalar mixing in the resolved scales and scalar energy exchange between

resolved and subgrid scales, especially near the smallest resolved scales. In so doing

they limit the accuracy with which physical processes involving scalar fields can be

simulated in multiphysics LES.

1.3.1 Resolved-Scale Scalar Energy

Analogous to the role of the resolved-scale kinetic energy in (1.5) for understanding

the accuracy of subgrid stress models, it is productive to similarly define the resolved-

scale scalar energy as

Eϕ ≡
1

2
ϕ̃2 . (1.11)

This allows the corresponding scalar energy transport equation to be obtained, from

which insights can be gained into the effect of the subgrid scalar flux model for zi on

the resolved-scale scalar energetics in a simulation.
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1.3.2 Subgrid Production Π(x, t) of Resolved Scalar Energy

From (1.10) and (1.11), the governing equation for the scalar energy Eϕ(x, t) is

obtained as

∂Eϕ
∂t

+ ũj
∂Eϕ
∂xj

= − ∂

∂xj

(
−D∂Eϕ

∂xj
+ ϕ̃zj

)
−D ∂ϕ̃

∂xj

∂ϕ̃

∂xj
+ zj

∂ϕ̃

∂xj
. (1.12)

On the right-hand side of (1.12), the two terms in the parenthesis appear in divergence

form and thus account for the conservative redistribution of resolved-scale scalar

energy by (i) the scalar diffusive flux and (ii) the subgrid scalar flux. The remaining

diffusive term on the right-hand side involves a square product and thus must always

be negative; it accounts for the diffusive dissipation of the resolved scalar energy, and

is commonly called the scalar energy dissipation rate.

The rightmost term in (1.12), which can in general be positive or negative at

various points and times in the simulation, accounts for the subgrid production of

resolved-scale scalar energy from interaction between the subgrid scalar flux vector

zj(x, t) and the resolved scalar gradient vector ∂ϕ̃/∂xj(x, t). Analogous to the kinetic

energy subgrid production field in (1.8), the present study will pay particular attention

to this scalar energy subgrid production field, defined as

Π(x, t) ≡ zj
∂ϕ̃

∂xj
, (1.13)

and how it relates to various ways of representing the subgrid scalar flux zi(x, t) in

the resolved-scale variables.

1.4 Autonomic Closure and Subgrid Representations for τij and zi

In contrast to traditional prescribed models noted above for the subgrid stress

τij and subgrid scalar flux zi, an entirely different approach to subgrid closures,

termed “autonomic closure”, has recently been proposed [58–62]. Autonomic closure is

described in detail in Chapter 2. It circumvents the need to specify a particular fixed

parametric closure relation for any subgrid term, and instead allows a fully-adaptive
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self-optimizing closure methodology. This approach to subgrid closure is autonomic

in the sense that the simulation itself determines the optimal relation at each point

and time between the subgrid term and the resolved-scale variables in the simulation.

In some respects, autonomic closure can be regarded as a high-dimensional dynamic

closure approach that avoids the narrow prescribed relations used in various traditional

prescribed closure models [31, 46, 47].

Autonomic closure can be nonparametric in the sense that the generalized rep-

resentation for the subgrid term is formulated in the resolved primitive variables of

the simulation. Alternatively, it can be parametric in the sense that the generalized

representation is written in various parameters, presumed to be appropriate for the

subgrid term, that can be formed from the primitive variables. In both cases, a

substantial number of degrees of freedom in the generalized representation allows the

representation to adapt to widely varying local turbulence conditions, including the

local degrees of nonlinearity, nonlocality, nonequilibrium, and other characteristics of

the turbulence state at each point and time in the simulation.

Since fully dynamic implementations of autonomic closure must, as described below,

solve a local system identification problem at each point and time in the simulation to

determine the local coefficients in the underlying generalized representation, this can

potentially make the computational cost of autonomic closure substantially higher

than that of traditional closure based on prescribed subgrid models. That is certainly

the case when the number of degrees of freedom in the generalized representation of a

subgrid term is very large, as has been the case in prior studies [58–62]. However if,

as in the present study, the underlying generalized representations are restricted to

tensorally-correct parametric forms, then the number of degrees of freedom becomes

far smaller without loss of generality in the representation, and the computational

cost can then become comparable to that of traditional dynamic closures based on far

more restrictive prescribed models.
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The present study therefore focuses on formulating, testing and implementing

tensorally-correct generalized representations for τij and zi in autonomic closure of LES.

It uses a priori tests to determine the fundamental accuracy of each such generalized

representation, and then assesses their resulting computational stability in forward

simulations. From those results, it then demonstrates substantially improved accuracy

in a posteriori tests of autonomic closure for τij and zi in large eddy simulations of

turbulent conserved scalar mixing.

1.5 A Priori Tests of Subgrid Representations

A priori tests of subgrid models have long been used to directly determine the

accuracy with which a given closure represents its corresponding subgrid term. Such

tests begin with DNS fields, which are filtered to produce pseudo-LES fields that then

serve as inputs to the subgrid model. At the same time, the DNS fields permit exact

evaluation of the subgrid term at every point in the field. The resulting exact subgrid

fields are then compared with the subgrid fields obtained from the subgrid model. The

comparisons can be done on a statistical basis, which addresses only the distribution

of values without regard to similarities or differences in the structure of the exact

and modeled fields, and can also be done on a structural basis, in which the detailed

spatial structure of the exact and modeled fields are directly compared.

Although such a priori tests give direct insights into the accuracy of a given

subgrid closure, they do not address whether the subgrid closure – when implemented

in an LES code and used in a forward simulation – will allow the simulation to remain

stable or will lead to computational instability, in which the kinetic energy or the

scalar energy increase without bound. For example, several classical subgrid models

for τij that are deemed to perform reasonably well in a priori tests, including the

Bardina scale similarity model, lead to nearly immediate computational “blow-up”

when they are implemented in a forward simulation. For this reason, a priori tests

allow comparisons of the relative accuracy of various subgrid closures, but such tests
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alone cannot assess the computational stability of the closure. The latter requires

so-called a posteriori tests, in which the closure is implemented in an LES code and

used in forward simulations.

The present study uses a priori tests to assess the accuracy of various tensorally-

correct generalized representations for τij and zi in autonomic closure, and to compare

the resulting accuracies with those of traditional prescribed closure models. From the

resulting insights, it identifies representations that are accurate yet efficient enough

from a computational perspective to enable their practical use for forward simulations

when implemented in an LES code.

1.6 Forward Runs, Subgrid Energetics, and Computational Stability

Assessing the computational stability of any generalized representation for auto-

nomic closure, or of any traditional prescribed subgrid model, requires the closure

approach to be implemented in an LES code and tested in forward runs. However, not

all LES codes can provide equally objective assessments of computational stability.

Different codes may be based on substantially different numerical methods, including

relatively low-order spatial differencing schemes that can introduce sufficient artificial

dissipation (dispersion error) to make an otherwise unstable subgrid model appear to

be inherently stable. Thus, to objectively assess the inherent stability or instability

of any closure approach requires forward runs with an LES code based on numerical

methods that effectively eliminate all or most such artificial dissipation.

The pseudo-spectral method is particularly well suited for such assessments of

closure stability. It is well known that this method can be viewed as the limit of

finite differences with infinite order of accuracy. With this method, dispersion errors

are essentially eliminated, enabling the inherent subgrid energetics of the closure

approach to determine the resulting stability or instability of the simulation. However

the common use of Fourier basis functions restricts such pseudo-spectral codes to

domains having periodic boundary conditions. That nevertheless allows simulations of
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homogeneous isotropic turbulence in periodic domains, in which naturally-occurring

large differences in the local turbulence state at various points across the domain and

various times throughout the simulation enable robust assessments of the inherent

stability or instability of any given closure approach.

For this reason, the present study uses a pseudo-spectral LES code that is based

on Fourier collocation spectral methods for the spatial discretization, which thereby

eliminates the stabilizing effects of artificial dissipation that would result from low-

order spatial differencing methods, and uses an explicit fourth-order Runge-Kutta

scheme for time advancement. As a consequence, this is an exceedingly challenging

code from the perspective of closure stability, and effectively requires a subgrid closure

approach to be manifestly stable in order to obtain stable forward simulations.

1.7 A Posteriori Tests of Subgrid Representations

A posteriori tests of subgrid closures are based on the resulting resolved fields

obtained from a forward simulation with a sufficiently high-order LES code that

implements the particular closure approach. As described above, the assessment

of whether the simulation remains stable or not is the most basic result from an a

posteriori test. But beyond that, the resolved fields obtained from a stable simulation

can be examined in detail to gain insights into whether one closure approach gives more

accurate resolved fields than does another closure approach. Aside from assessing

closure stability, such insights regarding accuracy are the primary purpose of a

posteriori tests.

A particularly useful way to do this is to compare statistics obtained from forward

simulations using various closure models against corresponding statistics obtained

from filtering the fields produced by DNS of the same test problem. By using

conserved scalar mixing in homogeneous isotropic turbulence in a periodic domain

as the test problem, obtaining the requisite DNS fields is well within computational
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reach. The resulting filtered DNS statistics then provide the “truth data” against

which corresponding LES results using any chosen closure approach can be compared.

This study conducts such a posteriori tests for conserved scalar mixing in ho-

mogeneous isotropic turbulence, which provides statistics for both the velocity field

and the scalar field, as well as joint velocity-scalar statistics, for comparison against

the corresponding filtered DNS statistics. In these tests, the turbulence is forced

at large scales to maintain statistical stationarity in the underlying turbulent flow,

while the scalar field is statistically unstationary and thus continually progresses

toward asymptotic homogenization. It will be seen in Chapter 9 that use of the

present tensorally-correct representations for τij and zi in autonomic closure provides

substantially more accurate a posteriori results for scalar mixing statistics than do

conventional prescribed closure models.

1.8 Present Study

1.8.1 Objectives

The present study seeks to demonstrate, for the first time, practical LES based

on a fully dynamic implementation of autonomic closure for the subgrid stress τij.

It also seeks to extend this to demonstrate, for the first time, a fully dynamic

implementation of autonomic closure for the subgrid scalar flux zi. It further seeks to

combine these fully dynamic implementations of autonomic closure for τij and zi and

thereby demonstrate, for the first time, practical LES of turbulent conserved scalar

mixing via fully dynamic autonomic closure. In so doing, it seeks to demonstrate

that autonomic closure is a viable approach to replace traditional prescribed subgrid

models in practical LES of multiphysics turbulent flow problems. It further seeks to

show that the results from autonomic closure can be substantially more accurate than

those from traditional prescribed subgrid models, especially for physical processes that

are sensitive to phenomena at or near the smallest resolved scales in the simulation.
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To achieve this, the study seeks to leverage the inherent computational efficiency

made possible by tensorally-correct generalized representations in terms of parametric

quantities for both the subgrid stress and the subgrid scalar flux. Toward that end

it seeks to use the fundamental representation theory of Smith (1971) to develop

tensorally-correct generalized parametric representations for τij and zi. It also seeks

to assess the accuracy of these representations via a priori tests, and to compare

with the corresponding accuracy from alternative nonparametric representations

and from traditional prescribed subgrid models. It further seeks to understand the

computational stability of these tensorally-correct parametric representations for τij

and zi, including the extent to which any added stabilization is needed in any of them

to ensure computational stability, and to compare against the added stabilization

needed in traditional prescribed subgrid models. From these results it then seeks

to conduct the first practical LES of turbulent conserved scalar mixing via a fully

dynamic implementation of autonomic closure, and to conduct a posteriori assessments

of the resulting accuracy in comparision to traditional prescribed subgrid models.

1.8.2 Organization of the Dissertation

The remainder of the dissertation is organized as follows:

• Chapter 2 describes the autonomic closure methodology for both the subgrid

stress τij and the subgrid scalar flux zi. It first outlines how generalized representations

for these subgrid terms are expressed in the resolved variables at the LES-filter scale

and at a test-filter scale, and points to Chapter 3 for a complete description of

tensorally-correct representations for these subgrid terms. It then describes how the

required local system identification problem is solved at each point and time in the

simulation, using test-scale filtering and the resulting test-scale subgrid terms to

determine the local coefficients in any such generalized representation. It then outlines

how the coefficient values obtained at the test-filter scale are rescaled to the LES-filter
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scale, using fundamental inertial-range scaling concepts based on the dimensions of

each tensor basis element, and points to Chapter 4 for a complete description of this

fully general rescaling procedure.

• Chapter 3 then uses complete and minimal tensor representation theory to

develop tensorally-correct generalized representations for the subgrid stress tensor

τ = τij and for the subgrid scalar flux vector z = zi. It first summarizes the

representation theory of Smith (1971) and shows how it provides the complete and

minimal set of tensor basis elements mi for any representation. It then uses this

to develop complete and minimal tensorally-correct parametric and nonparametric

representations for the subgrid stress τ , and compares these with traditional prescribed

subgrid stress models. It also develops tensorally-correct parametric and nonparametric

representations for the subgrid scalar flux z via this fundamental representation theory,

and compares these with traditional prescribed subgrid models.

• Chapter 4 then provides a complete description of the procedure for rescaling

coefficients in the generalized representations for the subgrid stress tensor τ and

subgrid scalar flux vector z from the test-filter scale to the LES-filter scale. It first

goes through a simple example for a generalized representation of τ entirely in terms

of the strain rate tensor S, to show how this is based on the dimensions of each basis

element mi in the generalized representation. It then develops a general result for

the LES-scale to test-scale coefficient ratio that can be used for any term in any

generalized representation for the subgrid stress τ , and a corresponding general result

for any term in any generalized representation for the subgrid scalar flux vector z.

• Chapter 5 then assesses the accuracy of each tensorally-correct generalized

representation from Chapter 3 for the subgrid stress τ in autonomic closure via

a priori tests, and compares to the accuracy of traditional prescribed subgrid models.

It pays particular attention to the accuracy in the resulting subgrid production field

13



P (x, t) associated with each generalized representation and each prescribed subgrid

model. These comparisons include not only the magnitudes of the stress and production

fields, but also the detailed spatial structure in these fields. From those results, it

confirms the tensorally-correct representation for τ denoted herein as “TF5” provides

the most efficient results with the smallest number of coefficients.

• Chapter 6 then conducts forward simulations with each representation in

Chapters 3 and 5 for the subgrid stress τ . It determines the minimum level of

stabilization needed to achieve long-time stability in simulations, and compares with

the minimum stabilization needed for each of the traditional prescribed subgrid

models. From those results it identifies the tensorally-correct and parametric TF5

representation for τ as being both accurate in a priori tests and fully stable by itself

in forward simulations without needing any added stabilization.

• Chapter 7 uses a priori tests to assess the accuracy of each representation

developed in Chapter 3 for the subgrid scalar flux z in autonomic closure, and compares

to the accuracy from traditional prescribed subgrid models. It also quantifies how

the accuracy found in these a priori tests depends on the LES filter scale and test

filter scale relative to the inertial and dissipative scale ranges. From these results it

identifies one of the tensorally-correct parametric representations for z, herein denoted

the “VF6” representation, as providing the most accurate results.

• Chapter 8 then presents results from forward simulations of turbulent conserved

scalar mixing to assess the computational stability of autonomic closure based on

the TF5 representation for the subgrid stress τ and the VF6 representation for the

subgrid scalar flux z. In particular, it determines the resulting minimum required

level of stabilization for the combined TF5/VF6 representations, and compares with

the corresponding minimum levels of stabilization needed for various combinations of

traditional prescribed subgrid models for τ and z, including the basic Smagorinsky
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model, the dynamic Smagorinsky model, and the Bardina scale-similarity model.

Whereas the TF5 representation for the subgrid stress τ is found in Chapter 6 to be

inherently stable by itself, all of the models for the subgrid scalar flux z are found to

require at least some level of added stabilization.

• Chapter 9 then goes beyond assessing the stability of these representations for the

subgrid stress τ and subgrid scalar flux z, by conducting a posteriori tests of turbulent

conserved scalar mixing to assess the accuracy of results obtained from forward

simulations of autonomic closure using the combined TF5/VF6 representations. It also

conducts corresponding a posteriori tests for traditional closure based on prescribed

subgrid models for τ and z of the basic Smagorinsky form, and additionally conducts

DNS of the same turbulent conserved scalar mixing problem. Then it compares the

resulting statistics of the velocity, scalar, and joint velocity-scalar fields from autonomic

closure using the TF5/VF6 representations with those from traditional closure via

prescribed subgrid models and from the filtered DNS results. Those comparisons

show a substantial increase in accuracy of LES based on autonomic closure using

the combined TF5/VF6 representations for τ and z, compared to LES based on the

traditional prescribed subgrid models.

• Chapter 10 summarizes major conclusions from this study.
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Chapter 2

THE AUTONOMIC CLOSURE METHODOLOGY

2.1 The General Autonomic Closure Methodology

Autonomic closure of LES is based on (1) highly generalized representations of

subgrid terms, each having a sufficient number of degrees of freedom to allow the local

relation between the subgrid term and the resolved variables to adapt freely to the

local turbulence state, (2) a local system identification problem at a test-filter scale

in which test-scale values of the subgrid term can be obtained from corresponding

local test-filtered variables and used to express the generalized representation at

the test-filter scale, (3) solution of the local system identification problem as an

overdetermined system formed by expressing the generalized test-scale representation

at a sufficient number of local reference points, to determine the test-scale coefficients

associated with the degrees of freedom in the generalized representation, (4) rescaling

of the resulting local coefficients from the test-filter scale to the LES-filter scale, using

inertial-range scaling relations, and (5) using the resulting local coefficients at the

LES-filter scale in the generalized representation to evaluate the subgrid term from

the resolved variables.

Thus, autonomic closure is fundamentally based on scale similarity, which implies

that the local relation between any unknown LES-scale subgrid term and the LES-

filtered variables can be obtained from the local relation between the known test-scale

subgrid term and the test-filtered variables, via inertial-range rescaling of coefficients

in the generalized representation from the test-filter scale to the LES-filter scale.

Because autonomic closure is based on highly generalized representations of subgrid

terms, as described in Section 2.2, it circumvents the need to specify a prescribed

model for any subgrid term, and instead allows a fully-adaptive self-optimizing closure
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methodology, in which the simulation itself determines the optimal relation at each

point and time between each subgrid term and the resolved variables. Autonomic

closure can be thought of as a high-dimensional dynamic closure approach based

on generalized representations having far more degrees of freedom than the narrow

prescribed relations used in current dynamic models, such as the single coefficient in

the dynamic Smagorinsky model. As a result, autonomic closure can adapt far more

freely to widely varying local turbulence conditions, including the local degrees of

nonlinearlity, nonlocality, nonequilibrium, and other characteristics of the turbulence

state at each point and time in the simulation.

2.1.1 Representations for the Subgrid Stress τij

In autonomic closure, the local subgrid stress τij ≡ ũiuj − ũiũj is related to the

local resolved variables ũ and p̃ at the LES-filter scale through a highly generalized

representation having a sufficient number of degrees of freedom to enable the wide

adaptability of this relation as the local turbulence state changes. As described in

Section 2.2, with each degree of freedom there is an associated coefficient, the value

of which depends on the local turbulence state and is free to change. For any local

turbulence state, the corresponding complete set of coefficient values in the generalized

representation defines the particular local relation between the local subgrid stress

and the local resolved variables.

This generalized representation can be expressed in any desired form, and since

it has many degrees of freedom it does not specify a particular relation between the

subgrid stress and the resolved variables. Instead it represents a broad class of possible

relations, with any particular relation corresponding to a particular set of values of

the coefficients. This generalized representation may be expressed in nonparametric

form in terms of the resolved variables, or it may be expressed in parametric form in

terms of derived quantities that can be evaluated from the resolved variables.

Thus the generalized representation for τ ≡ τij, denoted F̃ , can be expressed
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parametrically or nonparametrically in terms of ũ and p̃ as

τ (x, t) ≈ τF(x, t) ≡ F̃
[
ũ(x + x′, t), p̃(x + x′, t) ∀ x′ ∈ S̃

]
, (2.1)

where S̃ is a set of points x′ that define a stencil with separation ∆̃ on the LES grid.

Analogous to τij, local test stresses Tij ≡ ̂̃uiũj − ̂̃uî̃uj can be obtained from the

resolved velocities ũi by applying a test filter (̂ ) [27–32, 42–49, 53, 54] having a length

scale ∆̂ ≥ ∆̃. Since F̃ reflects the local turbulence state at x via (2.1), then in the

same way that τij is related to ũi and p̃ on S̃, so also should Tij be related to ̂̃ui and ̂̃p
on the corresponding stencil Ŝ with separation ∆̂. As a result, T ≡ Tij will follow the

same generalized representation as τ in (2.1), but in the test-filtered variables, namely

T(x, t) ≈ TF(x, t) ≡ F̂
[ ̂̃u(x + x′, t), ̂̃p(x + x′, t) ∀ x′ ∈ Ŝ

]
. (2.2)

The central principle in autonomic closure is that the known values of T, ̂̃u, and ̂̃p
in (2.2) can be used to determine the local form of F̂ at x, as described in Section

2.3. The resulting F̂ then determines F̃ in (2.1) by inertial-range rescaling of the

coefficients from the test-filter scale to the LES-filter scale, as described in Section 2.4.

The resulting F̃ and the resolved variables ũ and p̃ then determine τ via (2.1).

2.1.2 Representations for the Subgrid Scalar Flux zi

Analogous to the generalized representation for the subgrid stress, in autonomic

closure the local subgrid scalar flux zi is related to the local resolved variables ũ and

ϕ̃ at the LES-filter scale through its own highly generalized representation, which also

has a sufficient number of degrees of freedom to enable it to adapt widely as the local

turbulence state changes. As described in Section 2.2, there is a coefficient associated

with each degree of freedom, the value of which depends on the local turbulence state

and is free to change. For any local turbulence state, the corresponding complete

set of coefficient values in the generalized representation defines the particular local

relation between the local subgrid scalar flux zi and the local resolved variables ũ and

18



ϕ̃. The generalized representation representing this broad class of possible relations

can be expressed in nonparametric form in terms of the resolved variables ũ and ϕ̃, or

in parametric form in terms of derived quantities that can be evaluated from these

resolved variables.

Thus the generalized representation for z ≡ zi, denoted J̃ , can be expressed

parametrically or nonparametrically in terms of ũ and ϕ̃ as

z(x, t) ≈ zJ (x, t) ≡ J̃
[
ũ(x + x′, t), ϕ̃(x + x′, t) ∀ x′ ∈ S̃

]
, (2.3)

where S̃ is a set of points x′ that define a stencil with separation ∆̃ on the LES grid.

Analogous to zi, local test scalar fluxes Zi ≡ ̂̃uiϕ̃− ̂̃ui ̂̃ϕ can be obtained from the

resolved ũi and ϕ̃ by applying a test filter (̂ ) [27–32, 42–49, 53, 54] having a length

scale ∆̂ ≥ ∆̃. Since J̃ reflects the local turbulence state at x via (2.3), then in the

same way that zi is related to ũi and ϕ̃ on S̃, so also should Zi be related to ̂̃ui and ̂̃ϕ
on the corresponding stencil Ŝ with separation ∆̂. Therefore Z ≡ Zi follows the same

generalized representation as z in (2.3), but in the test-filtered variables, namely

Z(x, t) ≈ ZJ (x, t) ≡ Ĵ
[ ̂̃u(x + x′, t), ̂̃ϕ(x + x′, t) ∀ x′ ∈ Ŝ

]
. (2.4)

The same central principle in autonomic closure applies here to the subgrid scalar

flux, namely that the known values of Z, ̂̃u, and ̂̃ϕ in (2.4) can be used to determine the

local form of Ĵ at x as described in Section 2.3, and then the resulting Ĵ determines

J̃ in (2.3) by inertial-range rescaling of the coefficients from the test-filter scale to

the LES-filter scale as described in Section 2.4. The resulting J̃ and the resolved

variables ũ and ϕ̃ then determine z via (2.3).

2.2 Tensorally-Correct Representations for F and J

Autonomic closure requires a generalized representation F for the subgrid stress in

(2.1) and the corresponding test stress in (2.2). If the simulation includes conserved

scalars then it also requires a generalized representation J for the subgrid scalar flux
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in (2.3) and the corresponding test scalar flux in (2.4). While these representations

must have sufficient degrees of freedom to let them adapt freely to changes in the local

turbulence state, if the number of degrees of freedom is too large then fully dynamic

implementations of autonomic closure will be too computationally burdensome.

This motivates the use of tensorally-correct representations for F and J , in which

each of the resulting degrees of freedom is required by the frame invariance properties

of the tensor or vector quantity being represented. Such representations are efficient

in the sense that they ensure each degree of freedom is required for the quantity being

represented, given the quantities on which it is assumed to depend. The framework

for determining tensorally-correct representations is called representation theory.

Chapter 3 uses the complete and minimal representation theory of Smith (1971)

[63] to construct tensorally-correct representations for the stress tensor and the scalar

flux vector. The Smith (1971) representation theory is complete, in the sense that its

tensor and vector bases suffice to represent any tensor or vector quantity. It has also

been shown by Pennisi & Trovato (1987) [64] to be minimal, in the sense that there

can be no other complete tensor and vector bases consisting of fewer basis elements.

The generalized representations F and J are expressed as sums over these minimal

tensor or vector basis elements, with each basis element multiplied by a separate

coefficient h that is determined by solving a local system identification problem at the

test-filter scale, as described in Section 2.3. It is the resulting full set of these coeffi-

cients, denoted h, that adapts the generalized representation to the local turbulence

state. In fully dynamic implementations of autonomic closure, new coefficients h are

determined at every point and time in the simulation.

2.3 Solution of the Local System Identification Problem

For the particular turbulence state at x, the particular coefficient values in the

generalized representations F̂ in (2.2) and Ĵ in (2.4) are obtained by solving a local

system identification problem in the immediate vicinity of x. This involves solving an
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overdetermined system formed by expressing the generalized test-scale representation

at a sufficient number of local reference points in the vicinity of x to determine the

test-scale coefficients associated with the degrees of freedom in F̂ . The procedure is

described below for F̂ , and a completely analogous procedure is used for Ĵ .

The generalized test-scale representation F̂ involves a substantial number N of

degrees of freedom, each of which has a test-scale coefficient ĥ associated with it, the

value of which depends on the local turbulence state. The complete local set of N

coefficients forms the test-scale coefficient vector ĥ. In a tensorally-correct generalized

representation, the coefficient vector ĥ must be the same for all components of

Tij ≡ ̂̃uiũj − ̂̃uî̃uj, which are known from the ̂̃u and ̂̃p values. Thus (2.2) can be

equivalently written at x for each of the six independent components of T as

Tij ≈ TFij = v̂ij ĥ , (2.5)

where v̂ij is the length-N row vector containing the known values of all terms in F̂

for that ij-component of T from the test-filtered variables ̂̃u and ̂̃p at all points on

the stencil Ŝ, and where ĥ is the length-N column vector containing the coefficients

of all the terms in F̂ . Grouping all six independent ij-components of T, (2.5) can be

written as

T ≈ TF = v̂ ĥ , (2.6)

where T is a length-6 column vector containing the six Tij components at x, and v̂ is

a 6×N matrix, each row of which is the corresponding length-N vector v̂ij in (2.5).

Placing the stencil Ŝ at each of M reference points (x1, . . . ,xM) within a local

bounding box containing the current point of interest x, in which variations in the

turbulence state embodied in F̂ are taken to be negligible, defines a 6M ×N matrix

V̂ ≡ [v̂(x1), . . . , v̂(xM)]. With Υ denoting the corresponding 6M -length column

vector consisting of the known Tij values at the M reference points, from (2.6) this

gives

Υ ≈ ΥF = V̂ ĥ . (2.7)
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Since the vector Υ and the matrix V̂ are known, the system in (2.7) may be solved

by any number of means. The present study uses a damped least-squares optimization

[60] of the form

ĥ =
(
V̂

ᵀ
V̂ + λI

)−1

V̂
ᵀ
Υ , (2.8)

where λ is the damping coefficient. When M/N � 1, prior work [61, 62] has shown

that the value of λ is relatively unimportant over a wide range of sufficiently small

values, and thus the value λ = 10−3 is used. By contrast, when M/N ≤ O(1), this is

set λ = 10−1 to avoid over-fitting of the coefficients.

Once the local test-scale coefficients ĥ have been determined via (2.8), they are

rescaled from the test-filter scale to the LES-filter scale as described in Section 2.3 to

produce the corresponding LES-scale coefficients h̃. Those coefficients can then be

used to evaluate the local subgrid stress τij , since in the same way that (2.2) could be

written in the form in (2.5), so also can (2.1) be written as

τij ≈ τFij = ṽ h̃ , (2.9)

where ṽ is the length-N row vector containing the known values of all terms in F̃

from the resolved variables ũ and p̃ at all points on the stencil S̃.

In fully dynamic implementations of autonomic closure, new coefficients h̃ are

found at each point and time in the simulation, by solving this system identification

problem at each (x, t) to evaluate τij(x, t).

2.4 Coefficient Rescaling from Test-Filter Scale to LES-Filter Scale

The generalized representations in (2.1), (2.2), (2.3) and (2.4) are, when practical,

expressed as complete and minimal sums over dimensional tensor or vector basis

elements mi, and the coefficient hi associated with each basis element has dimensions

that are implied by the dimensions of that basis element. Thus when transferring

coefficients from the test-filter scale to the LES-filter scale, the coefficients must

be rescaled so that in nondimensional form the generalized representations at both
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scales are identical. The requirement that, in nondimensional form, the generalized

representations F̂ and F̃ for the stress, and Ĵ and J̃ for the scalar flux, must be

identical at the test-filter scale and the LES-filter scale is the precise statement of

scale similarity on which autonomic closure is based.

Chapter 4 details the procedure for rescaling the coefficients in these representations.

At the test-filter scale in (2.2) and (2.4), each basis element is nondimensionalized

with the test-filter length scale ∆̂ and with the characteristic test-scale velocity Û and

test-scale scalar value Ŷ . Similarly, at the LES-filter scale in (2.1) and (2.3), each

basis element in these representations is nondimensionalized with the LES-filter length

scale ∆̃ and with the characteristic LES-scale velocity Ũ and scalar value Ỹ . Classical

inertial-range scaling relates Ũ/Û and Ỹ /Ŷ to ∆̃/∆̂. Equating each nondimensional

basis element in the LES-scale representation, including its coefficient h̃, with the

corresponding nondimensional basis element in the test-scale representation, including

its coefficient ĥi, then gives h̃i/ĥi = (∆̃/∆̂)pi , where the scaling exponent pi depends

on the dimensions of the basis element mi. The resulting h̃i/ĥi ratios for all the basis

elements allow the complete set of coefficients ĥ from the test-scale representation,

based on (∆̃/∆̂), to determine the complete set of coefficients h̃ in the LES-scale

representation.

2.5 Implementations of Autonomic Closure

Autonomic closure is meant to be applied in a fully dynamic manner, in which

new coefficients are obtained at each point and time in the simulation, as described

above. It will be seen in following chapters that, for tensorally-correct forms of the

generalized representations, the number of coefficients involved can be small enough

while maintaining sufficient generality in the underlying subgrid representations that

such fully dynamic implementations are entirely feasible from the perspective of the

required computational burden.

However, it is conceivable that for some types of representations, and especially for
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representations that are not tensorally correct, the associated computational burden

may be too large to enable a fully dynamic implementation. In such cases there

are at least two options. The first is a zonal dynamic implementation, in which the

computational domain is divided into a set of defined spatial zones, and at each time

step a set of coefficients is found for each zone. The zonal nature reduces the number

of times that the coefficients need to be determined throughout the simulation. The

second option is a static implementation, in which coefficients are determined ahead

of time, for example from simulations of a similar nature as the problem at hand, and

then applied in a static sense throughout the simulation.

While such zonal or static implementations may be useful for certain applications

of autonomic closure, when using tensorally-correct forms of the underlying generalized

representations – as is the focus of the present study – then the number of coefficients

that must be determined at each point and time in the simulation can be small enough

that a fully dynamic implementation is entirely feasible from the perspective of the

required computational burden.
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Chapter 3

COMPLETE AND MINIMAL TENSOR REPRESENTATIONS

Representation theory formally provides the most general expression for any tensor

quantity, such as the subgrid stress tensor τ or subgrid scalar flux vector z, in terms

of any set of tensors Ak (k = 1, . . . , N) and vectors vl (l = 1, . . . ,M) in a way that

preserves the frame-invariance properties of the tensor quantity. With regard to

frame rotation and reflection invariance, for any proper orthogonal tensor Q (i.e.,

QikQkj = δij with det Q = ± 1) that transforms Cartesian coordinate frame x into a

new Cartesian frame x′ as x′i = Qijxj , the tensors τ and τ ′ in the two frames must be

related as τ ′ij = Qik τklQ
T
lj, and the invariants I = τii, II = τijτji, and III = τijτjkτki

must be the same in both coordinate frames.

Smith (1971) [63] provides a complete representation theory for tensors up to

rank-two, meaning its tensor polynomial bases formed from Ak and vl is sufficient

to represent any such tensor quantity. Pennisi & Trovato (1987) [64] subsequently

proved that this representation is minimal, meaning there can be no smaller tensor

polynomial basis set that is complete.

This complete and minimal representation theory allows fully generalized represen-

tations for F and J in (2.1), (2.2), (2.3) and (2.4) to be obtained. Their underlying

tensor polynomial bases can be formulated in vectors such as the velocity u and scalar

gradient ∇ϕ, in tensors such as the resolved strain rate S and rotation rate R, where

S = Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.1a)

R = Rij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
(3.1b)

and even in tensor gradients such as ∇S and ∇R. The resulting generalized repre-

sentations F and J are guaranteed to be complete and minimal. The minimality
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guarantees the resulting tensor polynomial representations involve the smallest possible

number of coefficients, and the completeness guarantees there is no loss of generality

in the representations despite their minimality.

3.1 Rank-Two Tensor Representations

Following Smith (1971) [63] we seek the most general representation f of a rank-two

tensor B in terms of any assumed set of rank-two tensors Ak (k = 1, . . . , N), namely

B = f
(
Ak

)
, (3.2)

that satisfies the symmetry, translation, rotation and reflection invariance of rank-two

symmetric tensor. Translational invariance is enforced by requiring f to depend only

on velocity gradients. With regard to frame invariance, if Q is a proper orthogonal

tensor that transforms Cartesian coordinate frame x into a new Cartesian frame x′,

then this requires

B′ = Q B QT = f
(
QAk QT

)
, (3.3)

in such a way that the three tensor invariants of B′, namely I = B′ii, II = B′ijB
′
ji, and

III = B′ijB
′
jkB

′
ki, are the same as those of B. Note since B is a rank-two tensor, for

each A in (3.3) it is understood that QAQT = Qik AklQ
T
lj so that A is contracted

with both Q and QT . The general approach for obtaining the complete and minimal

tensor polynomial representation f is given in Refs. [63], [64], [65] and [66].

The N tensors Ak are each separated into symmetric and anti-symmetric parts as

symmetric part: Mi ≡
1

2

(
Ai + AT

i

)
i = 1, 2, . . . ,m ≤ N (3.4a)

anti-symmetric part: Wp ≡
1

2

(
Ap −AT

p

)
p = 1, 2, . . . , w ≤ N (3.4b)

Similarly, B = f(Ak) is separated into symmetric and anti-symmetric parts as

symmetric part: BS ≡
1

2

(
B + BT

)
(3.5a)

anti-symmetric part: BA ≡
1

2

(
B−BT

)
(3.5b)
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from which B can then be reconstructed as B = BS + BA .

Following Smith (1971), Pennisi and Trovato (1987), and Itskov (2007), the

symmetric part BS can be a function only of the following invariant symmetric rank-2

tensor polynomial bases

m
(0)
S = I (3.6a)

m
(1,i)
S = Mi (3.6b)

m
(2,i)
S = M2

i (3.6c)

m
(3,ij)
S = MiMj + MjMi (3.6d)

m
(4,ij)
S = M2

iMj + MjM
2
i (3.6e)

m
(5,ij)
S = MiM

2
j + M2

jMi (3.6f)

m
(6,p)
S = W2

p (3.6g)

m
(7,pq)
S = WpWq −WqWp (3.6h)

m
(8,pq)
S = W2

pWq −WqW
2
p (3.6i)

m
(9,pq)
S = WpW

2
q −W2

qWp (3.6j)

m
(10,ip)
S = MiWp −WpMi (3.6k)

m
(11,ip)
S = WpMiWp (3.6l)

m
(12,ip)
S = M2

iWp −WpM
2
i (3.6m)

m
(13,ip)
S = WpMiW

2
p −W2

pMiWp (3.6n)

for all i < j = 1, 2, . . . ,m and all p < q = 1, 2, . . . , w. The symmetric part of B is

then a tensor polynomial formed by the sum over all the tensor bases in (3.6), with

each term weighted by its own coefficient h.

Similarly, the anti-symmetric part BA can be a function only of the following

invariant rank-2 anti-symmetric tensor polynomial bases

m
(1,i)
A = Wp (3.7a)

m
(2,pq)
A = WpWq −WqWp (3.7b)
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m
(3,ij)
A = MiMj −MjMi (3.7c)

m
(4,ij)
A = M2

iMj −MjM
2
i (3.7d)

m
(5,ij)
A = MiM

2
j −M2

jMi (3.7e)

m
(6,ij)
A = MiMjM

2
i −M2

iMjMi (3.7f)

m
(7,ij)
A = MjMiM

2
j −M2

jMiMj (3.7g)

m
(8,ijk)
A = MiMjMk + MjMkMi + MkMiMj

−MjMiMk −MiMkMj −MkMjMi (3.7h)

m
(9,ip)
A = MiWp + WpMi (3.7i)

m
(10,ip)
A = MiW

2
p −W2

pMi (3.7j)

for all i < j = 1, 2, . . . ,m and all p < q = 1, 2, . . . , w. The anti-symmetric part of B

is then a tensor polynomial formed by the sum over all the tensor bases in (3.7), with

each term weighted by its own coefficient h.

Smith (1971) showed the symmetric and anti-symmetric tensor polynomial bases

in (3.6) and (3.7) to be complete, meaning that any BS and BA can be written as

a linear sum of the corresponding polynomial terms m
(α)
S and m

(α)
A , each weighted

by a corresponding coefficient h. However, a complete tensor polynomial basis is not

minimal if it is reducible to an even smaller basis set that suffices to represent any

rank-2 polynomial B. This arises from the fact that there may be tensor polynomial

relations among various terms in the basis set that allow the number of tensor

products in the basis set to be further reduced. Such relations are generally called

Rivlin identities that result from the generalized Cayley-Hamilton theorem

An
k − I

(1)
A A

(n−1)
k + I

(2)
A A

(n−2)
k + . . .+ (−1)nI

(n)
A I = 0 (3.8)

where the I(i)
A are scalar invariants of A defined as I(1)

A = tr(A), 2I
(2)
A = tr(A)2−tr(A2),

. . . , nI = det(A). By differentiating (3.8) repeatedly with respect to A, numerous
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Rivlin identities can be generated in the form of relations among tensor products of

various orders.

Pennisi & Trovato (1987) proved the irreducibility of Smith’s (1971) tensor bases in

(3.6) and (3.7), thereby establishing these as a complete and minimal basis. Previously

a number of rank-2 tensor polynomial bases had been proposed that were complete

but were not minimal. Zemach (1998) discusses completeness and minimality of tensor

polynomial bases, and Itskov (2007) uses modern tensor notation and algebra to more

clearly derive the complete and minimal bases in (3.5) and (3.6) than was done by

Smith (1971). Even complete and minimal bases may not appear unique, since Rivlin

identities may allow terms in one basis to be expressed equivalently but differently in

another basis. The minimality of a basis simply means that there is no other basis

that can be complete and have a smaller number of basis tensors m(k).

3.1.1 Representation of τ in S

In this case, N = 1 and the only tensor involved in the representation is A1 = S.

Thus except for M1 = S all the other Mi are zero, and all the Wp are zero. Since τij

is symmetric, its representation is entirely in the symmetric bases mS in (3.6), and of

these only the following are not zero.

m
(0)
S = I

m
(1)
S = S

m
(2)
S = S2

(3.9)

As a result the complete and minimal representation for τ in S is

τ = h0 I + h1 S + h2 S2 (3.10)

where the coefficients h0, h1 and h2 are scalars. In representation theory these can

at most be functions of the finite set of scalar invariants formable from I, S, and

S2. Traditional prescribed subgrid models are based on conjectures regarding how
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the coefficients depend on these invariants or on other parameters that are presumed

relevant. For example, Smagorinsky models force h2 ≡ 0 and prescribe a dimensional

relation for h1 in terms of ∆̃ and S; the basic Smagorinsky model fixes the value of

the constant in that relation, while in the dynamic Smagorinsky model the constant

is allowed to vary. In contrast, if autonomic closure were done with the representation

for τ in (3.10), the coefficients h0, h1 and h2 would be determined dynamically at

each point and time in the simulation, as described in Chapter 2.

3.1.2 Representations of τ in S and R

In this case, N = 2 and the only tensors involved in the representation are A1 = S

and A1 = R. As a result, except for M1 = S and W1 = R all the other Mi and Wp

are zero. Since τij is symmetric its representation is entirely in the symmetric bases

mS in (3.6), and of these all m
(k)
S ≡ 0 except

m
(0)
S = I m

(10)
S = SR−RS

m
(1)
S = S m

(11)
S = RSR

m
(2)
S = S2 m

(12)
S = S2R−RS2

m
(6)
S = R2 m

(13)
S = RSR2 −R2SR

(3.11)

The stress τ is then a sum of these eight tensor bases, each with a coefficient h, as

τ = h0 I + h1 S + h2 S2 + h3 R2 + h4 (SR−RS) + h5 RSR

+ h6 (S2R−RS2) + h7 (RSR2 −R2SR)

(3.12)

In autonomic closure, these eight coefficients hi are determined dynamically as de-

scribed in Chapter 2. Importantly, the eight tensor bases in (3.11) and (3.12) are

guaranteed to be a complete and minimal representation for τ in S and R. The tensor

form in (3.12) in eight coefficients will be referred to as TF8.

Previous work [58–61] has shown that subgrid stress representations extending only

up to second order products of local velocities are sufficient to provide high accuracy

in a priori tests of autonomic closure. That motivates a further tensorally-correct

30



representation, in which (3.12) is truncated to remove terms involving third- and

higher-order tensor products. Doing so provides a further representation for the

subgrid stress τ as

τ = h0 I + h1 S + h2 S2 + h3 R2 + h4 (SR−RS) (3.13)

The representation in (3.13) is not complete, since it was truncated from the complete

and minimal form in (3.12), but it is tensorally correct. The tensor form in (3.13) in

five coefficients will be referred to as TF5.

A different tensorally-correct representation for τ in terms of S and R, involving

11 tensor bases, has been used in fluid dynamics for over three decades, namely

τ = h0 I + h1 S + h2 S2 + h3 R2 + h4 (SR−RS) + h5 (S2R−RS2)

+ h6 (SR2 + R2S) + h7 (S2R2 + R2S2) + h8 (SRS2 − S2RS)

+ h9 (RSR2 −R2SR) + h10 (RS2R2 −R2S2R)

(3.14)

This was originated by Lumley (1970) [67] and put in this form by Pope (1974) [68],

prior to the Smith (1971) formulation of the complete and minimal representation

theory. It has subsequently been used by Lund & Novikov (1992) [69], Gatski &

Speziale (1993) [70], and others to model the turbulent stress in Reynolds-averaged

turbulence simulations, and to propose traditional prescribed closure models for

the subgrid stress in LES. Yet the representation in (3.14) involves 11 tensor bases

in S and R, extending to fifth-order tensor products, whereas the complete and

minimal representation in (3.12) involves only eight tensor bases and extends to only

fourth-order tensor products.

It is likely that the tensor basis in (3.14) is complete, however it cannot be minimal

since the basis in (3.12) from the Smith (1971) generalized formulation for complete

and minimal tensor representation in S and R involves fewer terms. There may be

Rivlin identities that relate the fifth-order tensor products in (3.14) to fourth- and

lower-order products as in (3.12), but that alone would only reduce the 11 tensor
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bases in (3.14) by one. This suggests there may be other relations that can reduce

this representation to the same number of bases as in (3.12).

Indeed, Lund & Novikov (1992) [69] showed that, under the additional assumption

that the strain rate S is not in an axisymmetric state (i.e., when S does not have

repeated eigenvalues) and when the vorticity vector corresponding to R is not aligned

with any of the strain rate eigenvectors, then the number of independent tensor bases

in (3.14) is reduced from eleven to six, and the number of independent scalar invariants

on which the coefficients for these bases can depend is reduced from seven to five.

While the assumptions involved in that reduction will not apply in a fully general

representation, it suggests there are ways to reduce (3.14) to the same number of

tensor bases as in the minimal and complete representation in (3.12).

It does not appear to be widely known in the fluid dynamics community that

(3.14) is not a minimal basis [65, 67, 68, 70–74], and that the tensor basis in (3.12) –

obtained from the general tensor basis formulation of Smith (1971) in Section 3.1 – is

complete and minimal for representing τij in terms of S and R.

Despite (3.14) not being a minimal tensor basis, Section 5.1.3.2 uses a priori tests

to assess its accuracy as a generalized representation for τ . That representation is the

sum over the 11 tensor bases, each weighted by a corresponding coefficient h that is

determined as part of the autonomic closure methodology. That tensor form in 11

coefficients will be referred to as TF11.

3.1.3 Representations of τ in S, R, ∇S and ∇R

In this case, in addition to

A1 = S ≡ Sij (3.15a)

A2 = R ≡ Rij (3.15b)

this section also uses ∇S ≡ ∂Sij/∂xk and ∇R ≡ ∂Rij/∂xk to formulate tensorally-

correct representations for τ . Importantly, ∇S and ∇R are rank-3 tensors. The

32



Smith (1971) complete and minimal representation theory [63] does not apply to

rank-3 tensors, and there is no general formulation for a rank-2 tensor polynomial

representation in terms of rank-2 and rank-3 tensors that would apply to this situation

[75].

However, prior work [59–62] has shown that τ can be accurately represented by

generalized representations that extend only up to second order in velocity component

products. For that reason, this study forms rank-2 tensors from ∇S and ∇R, via

contractions of the form of ∇Sα, ∇Rβ, and ∇Sγ∇Rδ, and includes the resulting

rank-2 tensors with S and R in the tensors Ak that are used in the general formulation

in Section 3.1.

3.1.3.1 Rank-2 contractions involving only ∇Sα

Since ∇S is a rank-3 tensor, this section determines the powers α that contract

∇Sα to a rank-2 tensor. For any α, ∇Sα involves 3α indices, so two of these must

be the free indices i and j, and the remaining indices must be repeated in integer m

pairs. Thus allowable values of α > 1 must satisfy 3α − 2 = 2m for integer m ≥ 1,

which is the case only for α = 2, 4, 6, . . .. For α = 2 there are eight possible tensor

products of the form ∇S2, namely

∂Skk
∂xi

∂Sll
∂xj

,
∂Skl
∂xi

∂Skl
∂xj

,
∂Sik
∂xk

∂Slj
∂xl

,
∂Sik
∂xl

∂Slj
∂xk

∂Sik
∂xk

∂Sll
∂xj

,
∂Sik
∂xl

∂Skl
∂xj

,
∂Skk
∂xi

∂Slj
∂xl

,
∂Skl
∂xi

∂Skj
∂xl

(3.16)

For each of α = 4, 6, . . . there are far larger numbers of tensor products of the

form ∇Sα that can form rank-2 symmetric tensors. Many of these may be reducible

via the equivalent of Rivlin identities among them, though for rank-3 tensors there

appears to be no equivalent of the Cayley-Hamilton theorem from which to obtain such

identities. Such an approach could potentially lead to a minimal tensor polynomial

basis set. However, while there are efficiencies gained from a tensor representation in

a minimal basis, there is no loss of generality if a non-minimal basis is used. Moreover,
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lacking the equivalent of a Cayley-Hamilton theorem for rank-3 tensors leaves open

the question of whether it is even possible for there to be a finite set of tensor products

∇Sα that can form rank-2 symmetric tensors.

Thus, while including such higher tensor products ∇Sα for α > 2 may be necessary

to obtain a complete tensor polynomial basis set, even if only the ∇S2 products are

included in the representation of τ they will allow effects of ∇S to be reflected in

the subgrid stress. The complete set of unique second-order rank-2 contractions ∇S2

consists of

A3 =
∂Skk
∂xi

∂Sll
∂xj

(3.17a)

A4 =
∂Skl
∂xi

∂Skl
∂xj

(3.17b)

A5 =
∂Sik
∂xk

∂Slj
∂xl

(3.17c)

A6 =
∂Sik
∂xl

∂Slj
∂xk

(3.17d)

A7 =
∂Sik
∂xk

∂Sll
∂xj

(3.17e)

A8 =
∂Sik
∂xl

∂Skl
∂xj

(3.17f)

A9 =
∂Skk
∂xi

∂Slj
∂xl

(3.17g)

A10 =
∂Skl
∂xi

∂Skj
∂xl

(3.17h)

3.1.3.2 Rank-2 contractions involving only ∇Rβ

Because in Section 3.1 the tensors Ak are identified without regard to their

symmetry, since ∇R is a rank-3 tensor it is possible by direct analogy with the

rank-2 contractions ∇S2 in (3.17a-h) to write corresponding rank-2 contractions ∇R2.

However, due to the anti-symmetry of R, Rkk ≡ 0 even when Skk 6= 0, and this
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eliminates three of the eight corresponding contractions ∇R2, leaving only

A11 =
∂Rkl

∂xi

∂Rkl

∂xj
(3.18a)

A12 =
∂Rik

∂xk

∂Rlj

∂xl
(3.18b)

A13 =
∂Rik

∂xl

∂Rlj

∂xk
(3.18c)

A14 =
∂Rik

∂xl

∂Rkl

∂xj
(3.18d)

A15 =
∂Rkl

∂xi

∂Rkj

∂xl
(3.18e)

3.1.3.3 Rank-2 contractions involving ∇Sγ∇Rδ

Because ∇S and ∇R are both rank-3 tensors it is again possible by direct analogy

with the rank-2 contractions in (3.17a-h) to write corresponding second-order rank-2

mixed contractions ∇S∇R. Contractions involving Rkk are again eliminated since

Rkk ≡ 0, but in this case this eliminates only two of the eight contractions. Additionally,

the symmetry of S and the anti-symmetry of R require SklRkl ≡ 0 , but due to resulting

chain-rule terms this does not eliminate any of the remaining six contractions. Thus,

retaining only second-order rank-2 mixed contractions ∇S∇R leaves

A16 =
∂Skl
∂xi

∂Rkl

∂xj
(3.19a)

A17 =
∂Sik
∂xk

∂Rlj

∂xl
(3.19b)

A18 =
∂Sik
∂xl

∂Rlj

∂xk
(3.19c)

A19 =
∂Sik
∂xl

∂Rkl

∂xj
(3.19d)

A20 =
∂Skk
∂xi

∂Rlj

∂xl
(3.19e)

A21 =
∂Skl
∂xi

∂Rkj

∂xl
(3.19f)
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3.1.3.4 Symmetric and antisymmetric tensors Mk and Wp

The symmetric and anti-symmetric parts of each of the tensor elements Ak in

(3.15), (3.17), (3.18), and (3.19) are formed via (3.4a,b). Some of the resulting

symmetric parts Mk are duplicates upon addition in (3.4a), and thus are listed only

once, and some of the resulting anti-symmetric parts Wk are zero upon subtraction

in (3.4b). The resulting unique symmetric parts are

M1 = Sij (3.20a)

M2 =
∂Skk
∂xi

∂Sll
∂xj

(3.20b)

M3 =
∂Skl
∂xi

∂Skl
∂xj

(3.20c)

M4 =
∂Sik
∂xk

∂Slj
∂xl

(3.20d)

M5 =
∂Sik
∂xl

∂Slj
∂xk

(3.20e)

M6 =
1

2

(
∂Sik
∂xk

∂Sll
∂xj

+
∂Sll
∂xj

∂Sik
∂xk

)
(3.20f)

M7 =
1

2

(
∂Sik
∂xl

∂Skl
∂xj

+
∂Skl
∂xi

∂Sjk
∂xl

)
(3.20g)

M8 =
∂Rkl

∂xi

∂Rkl

∂xj
(3.20h)

M9 =
∂Rik

∂xk

∂Rlj

∂xl
(3.20i)

M10 =
∂Rik

∂xk

∂Rlj

∂xl
(3.20j)

M11 =
1

2

(
∂Rik

∂xl

∂Rkl

∂xj
+
∂Rkl

∂xi

∂Rjk

∂xl

)
(3.20k)

M12 =
1

2

(
∂Sik
∂xk

∂Rlj

∂xl
+
∂Rli

∂xl

∂Sjk
∂xk

)
(3.20l)

M13 =
1

2

(
∂Sik
∂xl

∂Rlj

∂xk
+
∂Rli

∂xk

∂Sjk
∂xl

)
(3.20m)
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M14 =
1

2

(
∂Skk
∂xi

∂Rlj

∂xl
+
∂Rli

∂xl

∂Skk
∂xj

)
(3.20n)

M15 =
1

2

(
∂Skl
∂xi

∂Rkj

∂xl
+
∂Rki

∂xl

∂Skl
∂xj

)
(3.20o)

Thus there are m = 15 symmetric parts that can be formed from the tensor elements

Ak in (3.15)-(3.18). Similarly, the resulting unique non-zero anti-symmetric parts are

W1 = Rij (3.21a)

W2 =
1

2

(
∂Sik
∂xk

∂Sll
∂xj
− ∂Sll
∂xi

∂Sjk
∂xk

)
(3.21b)

W3 =
1

2

(
∂Sik
∂xl

∂Skl
∂xj
− ∂Skl

∂xi

∂Sjk
∂xl

)
(3.21c)

W4 =
1

2

(
∂Skk
∂xi

∂Slj
∂xl
− ∂Sli
∂xl

∂Skk
∂xj

)
(3.21d)

W5 =
1

2

(
∂Rik

∂xl

∂Rkl

∂xj
− ∂Rkl

∂xi

∂Rjk

∂xl

)
(3.21e)

W6 =
1

2

(
∂Rkl

∂xi

∂Rkj

∂xl
− ∂Rki

∂xl

∂Rkl

∂xj

)
(3.21f)

W7 =
1

2

(
∂Skl
∂xi

∂Rkl

∂xj
− ∂Rkl

∂xi

∂Skl
∂xj

)
(3.21g)

W8 =
1

2

(
∂Sik
∂xk

∂Rlj

∂xl
− ∂Rli

∂xl

∂Sjk
∂xk

)
(3.21h)

W9 =
1

2

(
∂Sik
∂xl

∂Rlj

∂xk
− ∂Rli

∂xk

∂Sjk
∂xl

)
(3.21i)

W10 =
1

2

(
∂Sik
∂xl

∂Rkl

∂xj
− ∂Rkl

∂xi

∂Sjk
∂xl

)
(3.21j)

W11 =
1

2

(
∂Skk
∂xi

∂Rlj

∂xl
− ∂Rli

∂xl

∂Skk
∂xj

)
(3.21k)

W12 =
1

2

(
∂Skl
∂xi

∂Rkj

∂xl
− ∂Rki

∂xl

∂Skl
∂xj

)
(3.21l)

Thus there are w = 12 anti-symmetric parts that can be formed from the tensor

elements Ak in (3.15)-(3.18).
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3.1.3.5 Symmetric rank-2 tensor polynomial basis m
(k)
S

From the general formulation in Section 3.1, any symmetric rank-2 tensor can

be expressed as a tensor polynomial in the frame-invariant symmetric rank-2 bases

m
(k)
S given in (3.6a-n). These are based on the rank-2 symmetric tensors Mi for i =

1, 2, . . . , 15 in (3.20), and on the rank-2 anti-symmetric tensors Wp for p = 1, 2, . . . , 12

in (3.21). The resulting number of m
(k)
S is large. For instance, the first few m

(k,α)
S for

k = 0, 1, 2, 3, ..., 13 are given by

k = 0 m
(0)
S = I (3.22a)

k = 1 m
(1,1)
S = M1 (3.22b)

m
(1,2)
S = M2 (3.22c)

...

m
(1,15)
S = M15 (3.22d)

k = 2 m
(2,1)
S = M2

1 (3.22e)

m
(2,2)
S = M2

2 (3.22f)

...

m
(2,15)
S = M2

15 (3.22g)

k = 3 m
(3,1)
S = M1M2 + M2M1 (3.22h)

m
(3,2)
S = M1M3 + M3M1 (3.22i)

m
(3,3)
S = M1M4 + M4M1 (3.22j)

...

m
(3,14)
S = M1M15 + M15M1 (3.22k)

m
(3,15)
S = M2M3 + M3M2 (3.22l)

m
(3,16)
S = M2M4 + M4M2 (3.22m)
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m
(3,17)
S = M2M5 + M5M2 (3.22n)

...

m
(3,30)
S = M2M15 + M15M2 (3.22o)

...

m
(3,108)
S = M14M15 + M15M14 (3.22p)

It is easy to determine how many m
(k,α)
S there are, given that i < j = 1, 2, . . . , 15

and p < q = 1, 2, . . . , 12. Specifically

m
(0)
S : 1 (3.23a)

m
(1,α)
S : 15 (3.23b)

m
(2,α)
S : 15 (3.23c)

m
(3,α)
S : (152 − 15)/2 = 105 (3.23d)

m
(4,α)
S : (152 − 15)/2 = 105 (3.23e)

m
(5,α)
S : (152 − 15)/2 = 105 (3.23f)

m
(6,α)
S : 12 (3.23g)

m
(7,α)
S : (122 − 12)/2 = 66 (3.23h)

m
(8,α)
S : (122 − 12)/2 = 66 (3.23i)

m
(9,α)
S : (122 − 12)/2 = 66 (3.23j)

m
(10,α)
S : 15 · 12 = 180 (3.23k)

m
(11,α)
S : 15 · 12 = 180 (3.23l)

m
(12,α)
S : 15 · 12 = 180 (3.23m)

m
(13,α)
S : 15 · 12 = 180 (3.23n)

Thus the total number of invariant symmetric rank-2 tensor polynomial bases m
(k)
S in

(3.6a-n) is 1276. This is far too large to allow use of this tensorally-correct generalized

representation in a fully dynamic implementation of autonomic closure. In a static
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implementation of autonomic closure based on this generalized representation, these

1276 coefficients would need to be determined just once in advance of the simulation.

Yet even in such a static implementation, a substantial computational burden may

come from the large number of tensor component multiplications required at every

point in the simulation to calculate the m
(k)
S in (3.19a-p) via the Mi in (3.20a-o) and

the Wp in (3.21a-l).

3.1.3.6 Truncation to second-order tensor products

Chapter 5 shows that truncating a nonparametric series representation in the

local velocities to retain velocity products only up to second order (i.e., CL24) is

sufficient to obtain excellent representations for the subgrid stress and the associated

subgrid production. Anticipating that at least comparable accuracy will be obtained if

(3.22a-p) are similarly truncated to retain at most second-order products of velocities,

it is necessary to determine where velocity products of various orders appear in each

of the tensor bases m
(α)
S .

The strain rate S and rotation rate R are each linear in the velocity components

ui, and therefore M1 in (3.20a) and W1 in (3.21a) are each linear in the velocities.

The remaining Mi in (3.20b-r) and Wp in (3.21b-l) all involve rank-2 contractions

of the forms ∇S2, ∇R2, and ∇S∇R, and therefore are second-order in the velocity

components ui. From these, the order of the velocity products in each of the tensor

bases m
(α)
S in (3.6a-n) can be readily determined. Zeroth-order velocity products

appear only in m
(0)
S ≡ I. First-order velocity products appear only in m

(1)
S , since only

M1 and W1 are linear in the velocities, and M1 appears linearly in m
(1)
S while W1

enters only via tensor products of second order or higher in (3.6g-n). Second-order

velocity products are present only in m
(1)
S for i > 1, in m

(2)
S for i = 1, in m

(6)
S for

p = 1, and in m
(10)
S for i = p = 1. All other terms in (3.22) are of order three or

higher in the velocity components.

Thus the representation for τ in the tensor bases in (3.22a-p) can be truncated to
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retain only terms that are up to second-order in the velocities, which gives

τ = h0I + h1m
(1,1)
S︸ ︷︷ ︸

S

+
15∑
α=2

h1,αm
(1,α)
S︸ ︷︷ ︸

∇S2,∇R2,∇S∇R

+h16m
(2,1)
S︸ ︷︷ ︸

S2

+h17m
(6,1)
S︸ ︷︷ ︸

R2

+h18m
(10,1)
S︸ ︷︷ ︸

(SR−RS)

(3.24)

The four non-gradient terms in (3.24) can be expressed directly in S and R as indicated

above, and from (3.6b) m
(1,α)
S in the gradient terms is simply equal to M(α) in (3.20b-r),

allowing (3.24) to be written as

τ = h0I + h1S + h16S
2 + h17R

2 + h18(SR−RS)

+
7∑

α=2

hαM(α)︸ ︷︷ ︸
∇S2

+
11∑
α=8

hαM(α)︸ ︷︷ ︸
∇R2

+
15∑

α=12

hαM(α)︸ ︷︷ ︸
∇S∇R

(3.25)

The form of τ in (3.25) with the M(α) in (3.20) involves 19 terms and 19 corre-

sponding coefficients, and is the most general tensorally-correct representation for τij

when the stress is taken to depend on I, S, R, ∇S2, ∇R2, and ∇S∇R in terms that

extend up to second order in the velocity components ui. Section 5.1.3.1 uses a priori

tests to assess the accuracy of this generalized representation for τ as the sum over

the 19 tensor bases in (3.25), each weighted by a corresponding coefficient h that is

determined as part of the autonomic closure methodology. That tensor form in 19

coefficients will be referred to as TF19.

3.2 Vector Representations

Following Smith (1971) [63] we seek the most general representation f of any

vector z, such as the subgrid scalar flux, in terms of any assumed set of rank-two

tensors Ak (k = 1, . . . , N) and vectors vl (l = 1, . . . , P ), namely

z = f
(
Ak,vl

)
, (3.26)

that satisfies the translation, rotation and reflection invariance of a rank-one tensor

(i.e., a vector). Translational invariance is enforced by requiring f to depend only on
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velocity gradients in the case of parametric representations, and on relative velocities

in the case of nonparametric representations. With regard to frame invariance, since

z is a vector, for any proper orthogonal tensor Q that transforms Cartesian frame x

into a new Cartesian frame x′, then this requires

z′ = Q z = f
(
Q Ak QT ,Q vl

)
(3.27)

in such a way that the sole tensor invariant of z′, namely I = z′iz
′
i, is the same as that

for z. For each v in (3.27) it is understood that Qv = Qijvj.

The N tensors Ak are each separated into symmetric and anti-symmetric parts as

symmetric part: Mi ≡
1

2

(
Ak + AT

k

)
i = 1, 2, . . . ,m ≤ N (3.28a)

anti-symmetric part: Wp ≡
1

2

(
Ak −AT

k

)
p = 1, 2, . . . , w ≤ N (3.28b)

From Mi, Wp and vl the complete and minimal vector basis is given by Smith (1971)

as

m(1,l) = vl (3.29a)

m(2,il) = Mivl (3.29b)

m(3,il) = M2
ivl (3.29c)

m(4,ijl) =
(
MiMj −MjMi

)
vl (3.29d)

m(5,pl) = Wpvl (3.29e)

m(6,pl) = W2
pvl (3.29f)

m(7,pql) =
(
WpWq −WqWp

)
vl (3.29g)

m(8,pql) =
(
MiWp −WpMi

)
vl (3.29h)

for all i < j = 1, . . . ,m, all p < q = 1, . . . , w, and l = 1, . . . , P . This produces a total

of 1 +m(m+ 1) + w(w + 1) vector bases m(α) in (3.29). The complete and minimal

representation for z is the sum over all these vector bases, each having a coefficient

that is determined as part of the autonomic closure methodology.
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3.2.1 Representation of z in ∇ϕ, S, and R

Assuming the subgrid scalar flux vector z at any point x depends only on the

scalar gradient vector ∇ϕ and the strain rate and rotation rate tensors S and R, then

l = 1 with

v1 = ∇ϕ (3.30)

and N = 2 with Ak = {S,R}, giving

M1 = S (3.31a)

M2 = 0 (3.31b)

W1 = 0 (3.31c)

W2 = R (3.31d)

The complete and minimal vector basis in (3.29) then is

m(1) = ∇ϕ (3.32a)

m(2) = S∇ϕ (3.32b)

m(3) = S2∇ϕ (3.32c)

m(4) = 0 (3.32d)

m(5) = R∇ϕ (3.32e)

m(6) = R2∇ϕ (3.32f)

m(7) = 0 (3.32g)

m(8) = (SR−RS)∇ϕ (3.32h)

There are six non-zero vector bases m(α) in (3.32), so the resulting complete and

minimal representation of the subgrid scalar flux z in S, R, and ∇ϕ is

z = h0∇ϕ+ h1 S∇ϕ+ h2 S2∇ϕ+ h3 R∇ϕ+ h4 R2∇ϕ+ h5 (SR−RS)∇ϕ (3.33)

This vector form in six coefficients will be referred to as VF6. Section 7.3.1 uses

a priori tests to assess the accuracy of this generalized representation for z as the
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sum of the six terms in (3.33), each weighted by a corresponding coefficient that is

determined as part of the autonomic closure methodology.

3.2.2 Representations of z in ∇ϕ and u

In this case, the subgrid scalar flux z at any point x is assumed to depend on

the scalar gradient ∇ϕ at x and the velocities in the immediate vicinity of x. First

we consider the absolute velocities on a 3 × 3 × 3 stencil centered on x. These are

converted to relative velocities by subtracting the stencil-center velocity to enforce

Galilean invariance, and the resulting relative velocities ul (l = 1, . . . , 27) can then be

used with ∇ϕ to form a complete and minimal representation for z.

We first try using the 27 relative velocities ul to form all possible rank-two tensors

from their outer products ui ⊗ uj for i = 1, . . . , 27 and j = 1, . . . , 27, where the outer

product is defined as

a⊗ b =


a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

 . (3.34)

For each i and j, the associated ui ⊗ uj corresponds to a rank-two tensor Ak in

Section 3.2. Since ui ⊗ uj is not ij-symmetric, there are N = 272 = 729 such

tensors. In principle these tensors Ak (k = 1, . . . , 729) could be used in (3.28) to

form Mi and Wp, which together with v1 = ∇ϕ could be used in (3.29) to obtain

a corresponding complete and minimal generalized representation for z. However,

the resulting number of vector bases m(α), and thus the corresponding number of

coefficients in the associated generalized representation, would be far too large for use

in a fully dynamic implementation of autonomic closure.

An alternative is to restrict the set of Ak to only the N = 27 collocated (i = j)

outer products (ui ⊗ ui). In that case Ak = AT
k , so from (3.28) there will be m = 27

unique Mi, and since then all the Wp ≡ 0 we have w = 0 . As a result, from (3.29)
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this will produce 1 +m(m+ 1) + w(w + 1) = 757 vector bases m(α), which is also far

too large for use in fully dynamic autonomic closure.

Another alternative is to use the smallest spatially unbiased stencil, which would

consist of just P = 6 points centered around x. Even then, ui ⊗ uj for i = 1, . . . , 6

and j = 1, . . . , 6 would produce 36 rank-two tensors Ak. However, recognizing that

A(ij) = AT
(ji) because (ui ⊗ uj) = (uj ⊗ ui)

T , there would be only m = 18 unique

Mi and w = 18 unique Wp in (3.28). From (3.29) this would produce a total of

1 +m(m+ 1) + w(w + 1) = 343 vector bases m(α). That is still far too large for use

in a fully dynamic implementation of autonomic closure.

These two alternatives suggest combining the smallest spatially unbiased stencil,

consisting of P = 6 points, with the restricted set of Ak formed from the corresponding

N = 6 collocated outer products (ui ⊗ ui). In that case, from (3.28) there will be

m = 6 unique Mi, and again w = 0 since all the Wp ≡ 0. From (3.29) this will

produce 1 + m(m + 1) + w(w + 1) = 43 vector bases m(α), and thus 43 associated

coefficients. Such a representation for z is still relatively large for use in a fully

dynamic implementation of autonomic closure, compared to the VF6 representation

in (3.33), which involves only six tensor bases and thus six coefficients.

Thus, all four of the alternatives described above produce tensorally-correct gener-

alized representations for z in terms of ∇ϕ and u, but all of them are too large for

implementation in fully dynamic autonomic closure. Therefore, we instead consider an

ad hoc vector form that is not derived from the Smith (1971) formulation for complete

and minimal representations, namely a contraction of (ui ⊗ ui) with ∇ϕ of the form

z = h0Iv +
P=27∑
i=1

hi(ui ⊗ ui)∇ϕ , (3.35)

where Iv is the unit vector. This vector form involves nominally 27 coefficients, and

will be referred to as VF27b. Section 7.2.2 uses a priori tests to assess the accuracy

of this generalized representation for z.
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3.2.3 Representations of z in ϕ and u

Recognizing from Section 3.2.2 that tensorally-correct representations of z in ∇ϕ

and u are not viable for fully dynamic implementations of autonomic closure, an ad

hoc representation of z in ϕ and u is considered of the form

z = h0Iv +
P=27∑
m=1

hmum ϕ . (3.36)

This also involves nominally 27 coefficients, and will be referred to as VF27a. Section

7.2.1 uses a priori tests to assess the accuracy of this generalized representation for z.

3.2.4 Representations of z in ϕ, ∇ϕ, and u

Since tensorally-correct representations for z in ϕ, ∇ϕ and u are not viable in

autonomic closure, a further ad hoc representation of z in these quantities is considered

that combines VF27a and VF27, of the form

z = h0Iv +
P=27∑
m=1

(
hmum ϕ+ hm+27 (um ⊗ um)∇ϕ

)
. (3.37)

This involves nominally 54 coefficients and will be referred to as VF54. Section 7.2.3

uses a priori tests to assess the accuracy of this generalized representation for z.
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Chapter 4

COEFFICIENT RESCALING FROM TEST- TO LES-FILTER SCALE

Because the generalized representations in (2.1), (2.2), (2.3) and (2.4) are, when

practical, expressed as complete and minimal sums over dimensional tensor or vector

basis elements mi, as discussed in Chapter 3, the coefficient hi associated with each

basis element has dimensions that are implied by the dimensions of that basis element.

Thus when transferring coefficients from the test-filter scale to the LES-filter scale,

the coefficients must be rescaled so that in nondimensional form the generalized

representations at both scales are identical. The requirement that, in nondimensional

form, the generalized representations F̂ and F̃ for the stress, and Ĵ and J̃ for the

scalar flux, must be the same at the test-filter scale and the LES-filter scale is the

precise statement of scale similarity on which autonomic closure is based.

This chapter details the procedure for rescaling the coefficients in these representa-

tions. At the test-filter scale in (2.2) and (2.4), each basis element is nondimensional-

ized with the test-filter length scale ∆̂ and with the characteristic test-scale velocity Û

and test-scale scalar value Ŷ . Similarly, at the LES-filter scale in (2.1) and (2.3), each

basis element in these representations is nondimensionalized with the LES-filter length

scale ∆̃ and with the characteristic LES-scale velocity Ũ and scalar value Ỹ . Classical

inertial-range scaling relates Ũ/Û and Ỹ /Ŷ to ∆̃/∆̂. Equating each nondimensional

basis element in the LES-scale representation, including its coefficient h̃i, with the

corresponding nondimensional basis element in the test-scale representation, including

its coefficient ĥi, then gives h̃i/ĥi = (∆̃/∆̂)pi , where the scaling exponent pi depends

on the dimensions of the basis element. The resulting h̃i/ĥi ratios for all the basis

elements mi allow the set of coefficients ĥ from the test-scale representation to be used

with (∆̃/∆̂) to determine the set of coefficients h̃ in the LES-scale representation.
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4.1 General Methodology

To describe the general principle for rescaling the coefficients in any given general-

ized representation for τ , consider the subgrid stress representation in (3.10), where

τ is represented solely in S. At the LES-filter scale and test-filter scale this is

τ = h̃0 I + h̃1 S̃ + h̃2 S̃2 (4.1a)

T = ĥ0 I + ĥ1 Ŝ + ĥ2 Ŝ2 (4.1b)

The coefficients h̃i and ĥi in (4.1a,b) are not dimensionless, since the stress on the left

of each equation has dimensions U2, and the strain rate on the right of each equation

has dimensions (U/∆).

Using Ũ and Û to respectively denote local characteristic velocities at the LES-scale

and the test-scale, and ∆̃ and ∆̂ to denote the corresponding characteristic length at

each of these scales, (4.1) can be equivalently written in nondimensional form as

τ

Ũ2
= c0 I + c1

S̃

(Ũ/∆̃)
+ c2

S̃2

(Ũ/∆̃)2
(4.2a)

T

Û2
= c0 I + c1

Ŝ

(Û/∆̂)
+ c2

Ŝ2

(Û/∆̂)2
(4.2b)

where the coefficients ci are now dimensionless and therefore independent of scale.

Rearranging (4.2) as

τ = (c0 Ũ
2) I + (c1 Ũ∆̃) S̃ + (c2 ∆̃2) S̃2 + · · · (4.3a)

T = (c0 Û
2) I + (c1 Û∆̂) Ŝ + (c2 ∆̂2) Ŝ2 + · · · (4.3b)

and then comparing (4.3) to (4.1) shows

h̃0 = (c0 Ũ
2) h̃1 = (c1 Ũ∆̃) h̃2 = (c2 ∆̃2) (4.4a)

ĥ0 = (c0 Û
2) ĥ1 = (c1 Û∆̂) ĥ2 = (c2 ∆̂2) (4.4b)
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Since the ci are the same at both scales, (4.4) gives

h̃0

ĥ0

=

(
Ũ

Û

)2
h̃1

ĥ1

=

(
Ũ

Û

)(
∆̃

∆̂

)
h̃2

ĥ2

=

(
∆̃

∆̂

)2

(4.5)

Section 4.4 shows that classical inertial-range scaling arguments require(
Ũ

Û

)
=

(
∆̃

∆̂

)1/3

, (4.6)

which with (4.5) gives the coefficient ratios as

h̃0

ĥ0

=

(
∆̃

∆̂

)2/3
h̃1

ĥ1

=

(
∆̃

∆̂

)4/3
h̃2

ĥ2

=

(
∆̃

∆̂

)2

(4.7)

Once values of the local test-scale coefficients ĥ0, ĥ1 and ĥ2 have been determined

by solving the local system identification problem, as described in Section 2.3, corre-

sponding values of the LES-scale coefficients h̃0, h̃1 and h̃2 can then be obtained from

the scaling ratios in (4.7).

Although the general methodology for coefficient rescaling is shown above for

the generalized representation in (4.1), the same procedure can be applied to find

coefficient scaling ratios analogous to those in (4.7) for any generalized representation.

4.2 Rescaling for Subgrid Stress Representations

Section 4.1 shows that the rescaling from the test-scale to the LES-scale for the

coefficient hi associated with any term in a τ representation is independent of all the

other terms in the representation, and depends only on the dimensions of the tensor

basis element mi associated with that term. Consequently, a completely general form

for rescaling the coefficient associated with any term in any stress representation can

be obtained, as shown below.

As shown in Chapter 3, generalized representations for τ and T are sums over a

set of the tensor basis elements m associated with that representation. Thus any such

generalized representation can be written as

τ =
∑
α

h̃α mα (4.8a)

49



T =
∑
α

ĥα mα (4.8b)

where the h̃α and ĥα are dimensional. Now consider any i-th term, namely

τ = · · · + h̃i mi + · · · (4.9a)

T = · · · + ĥi mi + · · · (4.9b)

where the dimensions of the corresponding basis element mi are

mi ∼
[
Ln

Tm

]
∼ Um ∆n−m (4.10)

and where U and ∆ are the characteristic velocity and length scales associated with

that scale. When (4.9) are made nondimensional with U and ∆, namely

τ

Ũ2
= · · · + ci

mi

Ũm∆̃n−m
+ · · · (4.11a)

T

Û2
= · · · + ci

mi

Ûm∆̂n−m
+ · · · (4.11b)

then the coefficients are now nondimensional and therefore scale-independent, and

thus denoted by ci . Multiplying in (4.11) by U2 gives

τ = · · · + ci
mi

Ũm−2∆̃n−m
+ · · · (4.12a)

T = · · · + ci
mi

Ûm−2∆̂n−m
+ · · · (4.12b)

Equating each term in (4.12) with the corresponding term in (4.9) gives

h̃i =
ci

Ũm−2∆̃n−m
(4.13a)

ĥi =
ci

Ûm−2∆̂n−m
(4.13b)

Since the ci are scale-independent, (4.13) gives

h̃i

ĥi
=

(
Ũ

Û

)2−m(
∆̃

∆̂

)m−n

, (4.14)
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and from Section 4.3 classical inertial-range scaling requires

Ũ

Û
=

(
∆̃

∆̂

)1/3

, (4.15)

which therefore gives

h̃i

ĥi
=

(
∆̃

∆̂

) 2
3

(m+1)−n

, (4.16)

The coefficient scaling ratio in (4.16) is completely general for any term in any

stress representation. It can be applied to any particular term in any particular

representation via the n and m associated with the dimensions of the corresponding

basis element mi in (4.10). The corresponding test-scale coefficient ĥi obtained from

solution of the local system identification problem, as described in Section 2.3, can

then be used in (4.16) to obtain the corresponding LES-scale coefficient h̃i.

4.3 Inertial-Range Scaling for Ũ/Û

At the test-filter scale and LES-filter scale the corresponding stress, T or τ , scales

on dimensional grounds with the square of the corresponding characteristic velocity Û

or Ũ , as seen in (4.2), where

Ũ ≡ ∆̃ · 〈̃q2〉1/2 (4.17a)

Û ≡ ∆̂ · 〈̂q2〉1/2 (4.17b)

where q can be any dimensionally-correct and Galilean-invariant quantity that in

(4.17) characterizes the velocities at that scale; e.g., q2 ∼ [S2 + R2] or any other

suitable choice for which the dimensions of q are [L0/T 1], as required in (4.17).

Since any general quantity q having dimensions [Ln/Tm] has an associated energy

spectrum Q(k) for which

〈q2〉 =

∫ ∞
0

Q(k) dk , (4.18)

the dimensions of the spectrum Q must be [L2n+1/T 2m]. Following classical inertial-

range scaling arguments, in the inertial range Q(k) will depend on the average
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kinetic energy dissipation rate ε ∼ [L2/T 3] and wavenumber k ∼ [1/T ], and thus on

dimensional grounds Q must scale as

Q(k) ∼ ε
2
3
m k

4
3
m−(2n+1) (4.19)

Since in (4.17) q has dimensions [L0/T 1], namely n = 0 and m = 1, its energy

spectrum must scale as

Q(k) ∼ ε2/3 k
1/3

(4.20)

Integrating this spectrum up to k∆̃ and k∆̂ then gives

〈̃q2〉 ∼
∫ k

∆̃

0

ε2/3 k1/3 dk ∼ ε2/3 k
4/3

∆̃
(4.21a)

〈̂q2〉 ∼
∫ k

∆̂

0

ε
2
3 k1/3 dk ∼ ε2/3 k

4/3

∆̂
(4.21b)

Then from (4.17) and (4.21) the ratio Ũ/Û is

Ũ

Û
=

∆̃ · 〈̃q2〉1/2

∆̂ · 〈̂q2〉1/2
=

∆̃

∆̂
·

(
ε

2
3 k

4/3

∆̃

)1/2

(
ε

2
3 k

4/3

∆̂

)1/2
=

∆̃

∆̂
·

(
∆̂

∆̃

)2/3

(4.22)

and therefore
Ũ

Û
=

(
∆̃

∆̂

)1/3

(4.23)

4.4 Rescaling for Subgrid Scalar Flux Representations

Analogous to Section 4.2, a similarly general form for rescaling the coefficient

associated with any term in any scalar flux representation can be obtained. As shown

in Chapter 3, generalized representations for z and z are sums over a set of the tensor

basis elements m associated with the scalar flux representation. Thus any generalized

representation can be written as

z =
∑
α

h̃α mα (4.24a)

Z =
∑
α

ĥα mα (4.24b)
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where the h̃α and ĥα are dimensional. Now consider any i-th term, namely

z = · · · + h̃i mi + · · · (4.25a)

Z = · · · + ĥi mi + · · · (4.25b)

where, using A to denote the dimensions of the scalar ϕ, the dimensions of the

corresponding basis element mi are

mi ∼
[
Ap

Ln

Tm

]
∼ Y p Um ∆n−m , (4.26)

and where Y , U and ∆ are characteristic scalar, velocity and length scales associated

with that scale. When (4.25) are made nondimensional with Y , U and ∆, namely

z

Ỹ 2
= · · · + ci

mi

Ỹ p Ũm∆̃n−m
+ · · · (4.27a)

Z

Ŷ 2
= · · · + ci

mi

Ŷ p Ûm∆̂n−m
+ · · · (4.27b)

then the coefficients ci are now nondimensional and therefore scale-independent.

Multiplying in (4.27) by Y 2 gives

z = · · · + ci
mi

Ỹ p−2 Ũm∆̃n−m
+ · · · (4.28a)

Z = · · · + ci
mi

Ŷ p−2 Ûm∆̂n−m
+ · · · (4.28b)

Equating each term in (4.28) with the corresponding term in (4.25) gives

h̃i =
ci

Ỹ p−2Ũm∆̃n−m
(4.29a)

ĥi =
ci

Ŷ p−2Ûm∆̂n−m
(4.29b)

Since the ci are scale-independent, (4.13) gives

h̃i

ĥi
=

(
Ỹ

Ŷ

)2−p(
Ũ

Û

)−m(
∆̃

∆̂

)m−n

. (4.30)

From Section 4.3
Ũ

Û
=

(
∆̃

∆̂

)1/3

, (4.31)
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and from Section 4.5 classical inertial-range scaling requires

Ỹ

Ŷ
=

(
∆̃

∆̂

)1/3

, (4.32)

therefore
h̃i

ĥi
=

(
∆̃

∆̂

) 2
3

(m+1)−n− 1
3
p

, (4.33)

The coefficient scaling ratio in (4.33) is completely general for any term in any

scalar flux representation. It can be applied to any particular term in any particular

representation via the n, m, and p associated with the dimensions of the corresponding

basis element mi in (4.26). The corresponding test-scale coefficient ĥi obtained from

solution of the local system identification problem, as described in Section 2.3, can

then be used in (4.33) to obtain the corresponding LES-scale coefficient h̃i.

4.5 Inertial-Range Scaling for Ỹ /Ŷ

Analogous to (4.17), at the test-filter scale and LES-filter scale the corresponding

scalar flux, Z or z, scales on dimensional grounds with the square of the corresponding

characteristic scalar value Ŷ or Ỹ , where we take

Ỹ ≡ ∆̃ · ˜〈∇ϕ · ∇ϕ〉
1/2

(4.34a)

Ŷ ≡ ∆̂ · ̂〈∇ϕ · ∇ϕ〉
1/2

(4.34b)

where ∇ϕ is the scalar gradient. Using A to denote the dimension of the scalar ϕ,

then the scalar gradient ∇ϕ has the dimensions [A1/L1], and thus ∇ϕ · ∇ϕ has the

dimensions [A2/L2], as required in (4.34).

We define the inertial-range spectrum Σ(k) for the energy ∇ϕ · ∇ϕ associated

with the scalar gradient, namely

〈∇ϕ · ∇ϕ〉 =

∫ ∞
0

Σ(k) dk , (4.35)

thus the dimensions of Σ must be [A2/L1]. Following classical inertial-range scaling

arguments, in the inertial range Σ(k) will depend on the scalar energy dissipation rate
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χ ≡ D∇ϕ · ∇ϕ, the kinetic energy dissipation rate ε, and the wavenumber k, namely

Σ(k) = f(χ, ε, k) . (4.36)

Since χ has dimensions of [A2/T 1], ε has dimensions of [L2/T 3], k has dimensions of

[1/L1] and Σ has dimensions of [A2/L1], dimensional consistency in (4.36) requires

Σ(k) ∼ χ ε−1/3 k1/3 . (4.37)

Integrating this spectrum up to k∆̃ and k∆̂ then gives

˜〈∇ϕ · ∇ϕ〉 ∼
∫ k

∆̃

0

χ ε−1/3 k1/3 dk ∼ χ ε−1/3 k
4/3

∆̃
(4.38a)

̂〈∇ϕ · ∇ϕ〉 ∼
∫ k

∆̂

0

χ ε−1/3 k1/3 dk ∼ χ ε−1/3 k
4/3

∆̂
(4.38b)

Then from (4.34) and (4.38) the ratio Ỹ /Ŷ is

Ỹ

Ŷ
=

∆̃ · ˜〈∇ϕ · ∇ϕ〉
1/2

∆̂ · ̂〈∇ϕ · ∇ϕ〉
1/2

=
∆̃

∆̂
·

(
χ ε−1/3 k

4/3

∆̃

)1/2

(
χ ε−1/3 k

4/3

∆̂

)1/2
=

∆̃

∆̂
·

(
∆̂

∆̃

)2/3

, (4.39)

and therefore
Ỹ

Ŷ
=

(
∆̃

∆̂

)1/3

. (4.40)
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Chapter 5

A PRIORI TESTS: SUBGRID STRESS REPRESENTATIONS

Results from prior work [58–62] have shown that autonomic closure for the sub-

grid stress can provide a significant improvement over traditional closures based on

prescribed subgrid stress models in terms of the accuracy with which they represent

the structure and magnitude of the momentum and energy exchange fields between

resolved and unresolved scales. While that improved accuracy does not guarantee

stability in forward simulations, it does suggest that it may be possible for some

representations of the subgrid stress in autonomic closure to be stable with only

minimal limiters, added dissipation, or other ad hoc treatments to provide stability.

This chapter uses a priori tests to assess the fundamental accuracy of subgrid stress

representations for use in autonomic closure. The stability of these subgrid stress

representations is then assessed in Chapter 6 using forward simulations.

5.1 Subgrid Stress Representations

The subgrid stress representations assessed in this chapter can be grouped into

nonparametric and parametric representations. Nonparametric stress representations

are expressed directly in the test-filtered velocities on the stencil Ŝ at the test-filter

scale ∆̂, and in the LES-filtered velocities on the stencil S̃ at the LES-filter scale ∆̃.

Parametric stress representations are formulated in quantities that can be obtained

from these velocities on the stencils Ŝ and S̃, including the strain rate tensor Ŝij and

rotation rate tensor R̂ij at the test-filter scale, and S̃ij and R̃ij at the LES-filter scale,

and in some cases may even including gradients of these quantities, as discussed in

Chapter 3. In general, the advantage of tensorally-correct parametric representations

is that they provide as much tensorally-valid information as a nonparametric represen-

tation, but with substantially fewer terms in the representation and thus with fewer
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coefficients that must be determined via the local system identification problem as

described in Section 2.3, which makes them more computationally efficient.

5.1.1 Traditional Prescribed Models for τij

The prescribed models that are considered in the a priori tests in this chapter,

and in the forward simulations in Chapter 6, include the basic Smagorinsky model,

the dynamic Smagorinsky model [31, 46–49], and the Bardina scale similarity model

[31, 50–52]. The basic Smagorinsky model has long been used in LES, in part because

it is known to be manifestly stable. The dynamic Smagorinsky model is also widely

used in LES, though it is known to be unstable and thus must be artificially stabilized

by some means. The Bardina model is also often used, but it too is known to be

unstable and thus is typically used in mixed models, where it is combined with the

basic Smagorinsky model to achieve computational stability.

5.1.1.1 Basic Smagorinsky model

The basic Smagorinsky model is a simple eddy-viscosity model based on the

gradient transport hypothesis, and thus it models the subgrid stress as

τij = −νsgs S̃ij , (5.1)

where νsgs is assumed to depend only on the LES-filter length scale ∆̃ and the local

strain rate magnitude |S̃| = (S̃ijS̃ij)
1/2. Thus on dimensional grounds νsgs = CS∆̃2|S̃|,

and therefore the representation for the subgrid stress is

τij = −CS∆̃2|S̃| S̃ij , (5.2)

which in tensor notation is

τ = −CS∆̃2|S̃| S̃ . (5.3)

The coefficient CS is the called Smagorinsky constant, and is typically chosen based

on an average of values that best match commonly used reference cases. The present

study uses CS = 0.173.
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The resulting subgrid production of resolved kinetic energy in (1.8) is P = τ : S,

and from (5.3) this gives

P = −CS∆̃2|S̃|2 , (5.4)

which for CS > 0 is always negative, and thus from (1.6) acts to reduce the kinetic

energy in the resolved scales of the simulation. As a result, the basic Smagorinsky model

is purely dissipative, and consequently it is manifestly stable in forward simulations.

For that reason, it is often combined with unstable subgrid stress representations in

order to provide additional dissipation to achieve stability in forward runs.

5.1.1.2 Dynamic Smagorinsky model

The dynamic Smagorinsky model is derived from the basic Smagorinsky model in

(5.2), but allows the value of CS to vary in such a way that it can take on locally positive

or negative values in the simulation, and thereby produce positive and negative values

of subgrid production. Specifically, CS is calculated dynamically using information at

a test filter scale (̂ ) having length scale ∆̂. It first defines

Nij ≡ ̂̃uiuj − ̂̃ui ̂̃uj , (5.5)

and represents this with a basic Smagorinsky model as in (5.2), namely

Nij = −CS∆̂2|̂̃S| ̂̃Sij . (5.6)

It also represents the subgrid stress

τij ≡ ũiuj − ũiũj , (5.7)

with the basic Smagorinsky model in (5.2), namely

τij = −CS∆̃2|S̃| S̃ij , (5.8)

Applying the test filter (̂ ) to (5.8) gives

τ̂ij = −CS∆̃2 |̂S̃| S̃ij . (5.9)
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Subtracting (5.9) from (5.6) gives

Lij ≡ Nij − τ̂ij = CSMij (5.10)

where

Mij ≡ ∆̃2 |̂S̃| S̃ij − ∆̂2 |̂̃S| ̂̃Sij . (5.11)

Contracting (5.10) with Mij and dividing then gives

CS =
LijMij

MklMkl

(5.12)

The resulting CS from (5.12) can be positive or negative, and is then used in (5.8) to

determine the local value of the subgrid stress as

τ = −CS∆̃2|S̃| S̃ . (5.13)

Since CS can be positive or negative, the resulting subgrid production

P = −CS∆̃2|S̃|2 , (5.14)

can also be positive or negative.

5.1.1.3 Bardina scale similarity model

The Bardina scale similarity model applies a test filter (̂ ) having length scale ∆̂

to the LES-filtered velocities ũi to define a test stress

Tij ≡ ̂̃ui ũj − ̂̃ui ̂̃uj . (5.15)

It then takes the local subgrid stress to be directly proportional to the local test stress,

namely

τij = CBTij , (5.16)

or equivalently

τ = CBTij . (5.17)

The constant CB is typically chosen based on an average of values that best match

commonly used reference cases. The present study uses CB = 0.45.

59



5.1.2 Nonparametric Representations for Autonomic Closure

Nonparametric representations are formulated in the resolved primitive variables of

the simulation, and thus for the subgrid stress τ are written in the resolved velocities u.

Results from a priori tests of two nonparametric representations for τ are presented

in this chapter.

5.1.2.1 CL24 representation

Prior work [61, 62] developed a nonparametric subgrid stress representation,

referred to as CL24, that consists of all first- and second-order combinations of

collocated velocity components on a 3× 3× 3 stencil. Each component of the subgrid

stress is separately represented as a sum of 244 terms, with each term having an

associated coefficient hi. Such a representation is not tensorally correct, but it involves

a sufficiently large number of degrees of freedom that it nevertheless has been found in a

priori tests to accurately represent subgrid stress fields τij(x, t) and associated subgrid

production fields P (x, t). However, the number of coefficients involved in this CL24

representation is too large to be practical for use in fully dynamic implementations of

autonomic closure, though it can be applied in static implementations.

5.1.2.2 TF27 representation

A tensorally-correct nonparametric representation for the subgrid stress in the

collocated velocity components on a 3× 3× 3 stencil is possible by forming the set of

m = 1, . . . , 27 tensors (um ⊗ um), where um are the relative velocities at the stencil

points and ⊗ denotes the outer product in (3.34), as

τ = h0I +
27∑
m=1

hm(um ⊗ um). (5.18)

As in all tensorally-correct representations, the same set of coefficients hm applies to

all six components of the subgrid stress τ ≡ τij . While this representation is tensorally

correct, it is not complete in the sense described in Chapter 3. It does, however,
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involve only 27 nontrivial coefficients and therefore from a computational perspective

is efficient enough for use in fully dynamic implementations of autonomic closure.

This tensorally-correct form in 27 coefficients is referred to as TF27.

5.1.3 Parametric Representations for Autonomic Closure

Parametric representations are formulated in derived quantities that can be eval-

uated from the resolved variables in the simulation. For the subgrid stress, these

include the strain rate and rotation rate tensors S and R, and their gradients ∇S and

∇R. Chapter 3 shows how the tensor representation theory of Smith (1971) [63] can

be used to obtain complete and minimal representations for τ in these parametric

quantities, and how the resulting complete representations can be truncated to reduce

the number of coefficients involved. Results from a priori tests of four parametric

representations for τ are presented in this chapter.

5.1.3.1 TF19 representation

Section 3.1.3 showed that the complete and minimal representation for the subgrid

stress tensor τ in tensor products of S, R, and rank-2 contractions of ∇S and ∇R

would consist of 1276 terms. This number of coefficients hi is far too large for practical

implementation in fully dynamic autonomic closure. That section also showed that

if tensor products extending only up to second order in the velocities are retained

then this produces a tensorally-correct representation for τ that involves only 19

coefficients, namely

τ ij = h0I + h1S + h16S
2 + h17R

2 + h18(SR−RS)

+
7∑

α=2

hαMα︸ ︷︷ ︸
∇S2

+
11∑
α=8

hαMα︸ ︷︷ ︸
∇R2

+
15∑

α=12

hαMα︸ ︷︷ ︸
∇S∇R

(5.19)

where M2 through M15 are given in (3.20). From a computational perspective is

efficient enough for use in fully dynamic implementations of autonomic closure. This

tensorally-correct form in 19 coefficients is referred to as TF19.
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5.1.3.2 TF11 representation

Section 3.1.2 shows that, when τ is represented solely in S and R, without their

gradients, then the number of terms in any complete representation is substantially

reduced. It notes that one such representation was originally proposed by Lumley

(1970) [67] and Pope (1975) [68], independent of the Smith (1971) [63] formulation for

complete and minimal tensor representations, and has since been widely used (e.g.,

Gatski & Speziale 1993 [70]) to represent nonlinear models for τ in the form

τ = h0 I + h1 S + h2 S2 + h3 R2 + h4 (SR−RS) + h5 (S2R−RS2)

+ h6 (SR2 + R2S) + h7 (S2R2 + R2S2) + h8 (SRS2 − S2RS)

+ h9 (RSR2 −R2SR) + h10 (RS2R2 −R2S2R)

(5.20)

This representation is tensorally complete, but it is not minimal. It involves 11

coefficients and thus from a computational perspective is efficient enough for use in

fully dynamic implementations of autonomic closure. This tensorally-correct form in

11 coefficients is referred to as TF11.

5.1.3.3 TF8 representation

Unlike TF11 in (5.20), which is not based on the Smith (1971) [63] theory for

complete and minimal tensor representations, Section 3.1.2 shows that an alternative

representation for τ in S and R can be obtained from the Smith (1971) theory as

τ = h0 I + h1 S + h2 S2 + h3 R2 + h4 (SR−RS) + h5 RSR

+ h6 (S2R−RS2) + h7 (RSR2 −R2SR)

(5.21)

This is tensorally-correct and is a complete and minimal representation that involves

only 8 coefficients, so from a computational perspective it is efficient enough for use

in fully dynamic implementations of autonomic closure. This tensorally-correct form

in 8 coefficients is referred to as TF8.
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5.1.3.4 TF5 representation

As noted in Section 3.1.2, the fact that the CL24 has been found to accurately

represent the subgrid stress even though it involves only velocity products up to

second order suggests a further representation in which the tensor products of third

and higher orders are truncated. This gives

τ = h0 I + h1 S + h2 S2 + h3 R2 + h4 (SR−RS) (5.22)

Since this involves only five coefficients, from a computational perspective it is the

most efficient of all these representations for use in fully dynamic implementations of

autonomic closure. This tensorally-correct representation in five coefficients is referred

to as TF5.

5.2 A Priori Tests: Comparisons of τij Representations

As described in Section 1.5, a priori tests are the most direct way to determine

the accuracy of the τij(x, t) fields and their associated subgrid production fields

P (x, t) that result from any given subgrid stress representation. Such tests allow

direct comparisons of the fields produced by the subgrid stress representation and the

corresponding exact fields. Although a priori tests do not address the computational

stability of the stress representation – that is addressed via forward simulations in

Chapter 6 – they provide complete information on the accuracy of the representation.

These a priori tests used Direct Numerical Simulation (DNS) data for homogeneous

isotropic turbulence at Reλ = 433 from the Johns Hopkins Turbulence Database [76,

77]. The velocity fields on the 10243 DNS grid were first downsampled onto a uniformly

spaced 2563 grid with grid spacing ∆ to produce u(x, t). These velocity fields were

then filtered in the spectral domain with a spectrally sharp LES-scale filter (̃ ) having

cutoff wavenumber at k∆̃ = 40 to produce the pseudo-LES velocity fields ũ(x, t). From

the resulting ũ(x, t) and the original u(x, t) together with the LES-scale filter (̃ ), the

true subgrid stress field τij(x, t) was then constructed as τij = ũiuj − ũiũj.
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The pseudo-LES velocity fields ũ(x, t) were then test-filtered in the spectral domain

with a spectrally sharp test-scale filter (̂ ) having cutoff wavenumber at k∆̂ = 20 to

produce test-filtered velocity fields ̂̃u(x, t). From the resulting test-filtered velocities

ũ(x, t) and the LES-filtered velocities ũ(x, t) together with the test-scale filter (̂ ), the

test stress fields Tij(x, t) was then constructed as Tij = ̂̃uiũj− ̂̃uî̃uj . These test stresses
are the inputs for solving of the local system identification problem at each point x, as

described in Section 2.3, which determines the local set of coefficients h. The resulting

local coefficients at x are then used in the generalized subgrid stress representation

F to determine the resulting local subgrid stresses τFij (x). This is repeated at every

point x in the 2563 field to produce the subgrid stress field τFij (x, t), which is then

compared with the true subgrid stress field τij(x, t).

Figure 1 shows the kinetic energy spectrum computed from the 2563 velocity

field u(x, t), which shows the expected k−5/3 inertial range extends to the maximum

wavenumber kmax = 128. The figure also shows the cutoff wavenumbers at k∆̃ = 40

for the LES-filtered velocity fields and at k∆̂ = 20 for test-filtered velocity fields,

confirming that both are well within the inertial range. As a result, the classical

inertial-range scaling used in section 4.2 are clearly valid.

Figures 2, 3 and 4 show typical a priori test results from traditional prescribed

models for the subgrid stress τij(x, t), including the basic Smagorinsky model in

Section 5.1.1.1, the dynamic Smagorinsky model in Section 5.1.1.2, and the Bardina

scale similarity model in Section 5.1.1.3. Figure 2 shows results for a typical normal

stress component τ11(x, t), Figure 3 shows results for a typical shear stress component

τ12(x, t), and Figure 4 shows results for the corresponding subgrid production P (x, t) =

τij S̃ij. In each case, the resulting field from the corresponding traditional prescribed

model must be compared with the corresponding true field in the uppermost panel

of each figure. It is apparent in these figures that both the basic and dynamic

Smagorinsky models give remarkably poor representations for the subgrid stresses
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and the subgrid production. The Bardina scale similarity model is substantially

more accurate, especially in the subgrid production field P (x, t) in Figure 4, though

there are clear differences apparent between it and the true production field in the

uppermost panel.

Figures 5, 6 and 7 show corresponding typical a priori test results from ato-

nomic closure using nonparametric generalized representations for the subgrid stress

τij(x, t), including static and fully dynamic implementations of the 244-term CL24

representation in Section 5.1.2.1, and fully dynamic implementation of the 27-term

TF27 representation in Section 5.1.2.2. Figure 5 shows results for a typical normal

stress component τ11(x, t), Figure 6 shows results for a typical shear stress compo-

nent τ12(x, t), and Figure 7 shows results for the corresponding subgrid production

P (x, t) = τij S̃ij. In each case, the resulting field from the corresponding nonparamet-

ric generalized representation must be compared with the corresponding true field in

the uppermost panel of each figure. The static and dynamic CL24 representation is

not tensorally correct, yet both show relatively good agreement with the corresponding

true field in the uppermost panel of each figure, especially for the subgrid production

field P (x, t) in Figure 7. More importantly, the results from the tensorally-correct

TF27 representation, despite involving only 27 coefficients, are substantially more

accurate than those from the two 244-term CL24 representations. This shows one

of the main benefits from the use of tensorally-correct representations in autonomic

closure. Moreover, comparing the bottommost panels in Figures 4 and 7 with the

corresponding true field in the uppermost panels shows that the TF27 representation

gives substantially more accurate results for the subgrid production field than does

the Bardina scale similarity model.

Figures 8, 9 and 10 show corresponding typical a priori test results from atonomic

closure using parametric generalized representations for the subgrid stress τij(x, t),

including fully dynamic implementations of the 19-term TF19 representation in
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Section 5.1.3.1, the 11-term TF11 representation in Section 5.1.3.2, the 8-term TF8

representation in Section 5.1.3.3, and the 5-term TF5 representation in Section 5.1.3.4.

Figure 8 shows results for a typical normal stress component τ11(x, t), Figure 9 shows

results for a typical shear stress component τ12(x, t), and Figure 10 shows results for

the corresponding subgrid production P (x, t) = τij S̃ij . In each case, the resulting field

from the corresponding nonparametric generalized representation must be compared

with the corresponding true field in the uppermost panel of each figure. Unlike the

other generalized representations in these figures, the results from TF19 – which is the

only representation that includes terms accounting for ∇S and ∇R – show excessive

fine-scale features and excessively large positive and negative values. The reasons for

this have not been determined.

More importantly, in comparison with the results from the traditional prescribed

models for the subgrid stress in Figures 2, 3, and 4, the TF11, TF8, and TF5

representations in Figures 8, 9, and 10 show remarkably good agreement with the

corresponding true field in the uppermost panel of each figure. This is attributed to

the larger number of degrees of freedom in these tensorally-correct representations.

Equally important is the observation that there is little, if any, loss of accuracy in the

results from the TF11, TF8, and TF5 representations as the number of degrees of

freedom decreases from 11 to 5. The fact that the TF5 representation is essentially

as accurate as are representations having larger numbers of degrees of freedom is

consistent with the observation that retaining terms up to only second-order in velocity

products in nonparametric representations such as CL24 is sufficient to obtain accurate

results for subgrid stress and subgrid production fields.
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Figure 1. Inertial-range kinetic energy spectrum E(k) from the Johns Hopkins
DNS data used in the present a priori tests, showing LES-filter wavenumber
k∆̃ = 40 and test-filter wavenumber k∆̂ = 20.
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Figure 2. Typical results from a priori tests of traditional prescribed models for
τij, showing a normal stress component τ11 in a typical plane.
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Figure 3. Similar to Fig. 2 but showing results from traditional prescribed models
for a shear stress component τ12 in the same plane.
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Figure 4. Similar to Figs. 2 and 3 but showing results from traditional prescribed
models for the subgrid production P in the same plane.
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Figure 5. Typical results from a priori tests of nonparametric representations
for τij in autonomic closure, showing a normal stress component τ11 in a typical
plane. Note CL24 is not tensorally correct, whereas TF27 is tensorally correct.
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Figure 6. Similar to Fig. 5 but showing results from nonparametric representa-
tions of a shear stress component τ12 in autonomic closuree. Note CL24 is not
tensorally correct, whereas TF27 is tensorally correct.
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Figure 7. Similar to Figs. 5 and 6 but showing results from nonparametric
representations for the subgrid production P in autonomic closure. Note CL24
is not tensorally correct, whereas TF27 is tensorally correct.
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Figure 8. Typical results from a priori tests of parametric representations of τij
in autonomic closure, showing a normal stress component τ11 in a typical plane.
TF19, TF11, TF8, and TF5 are all tensorally-correct representations.
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Figure 9. Similar to Fig. 8 but showing results from parametric representations
of a shear stress component τ12 in autonomic closure. TF19, TF11, TF8, and
TF5 are all tensorally-correct representations.
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Figure 10. Similar to Figs. 8 and 9 but showing results from parametric rep-
resentations for the subgrid production P in autonomic closure. TF19, TF11,
TF8, and TF5 are all tensorally-correct representations.
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Chapter 6

STABILITY OF SUBGRID STRESS REPRESENTATIONS

While a priori tests such as those in Chapter 5 are the most direct way to determine

the accuracy of any traditional prescribed model for the subgrid stress τij, or of any

generalized representation for τij in autonomic closure, assessing the computational

stability of any of these forms for τij requires its implementation in an LES code to

enable forward simulations. However, as noted in Section 1.6, the numerical methods

on which the underlying LES code is based must be be sufficiently non-dissipative

(non-dispersive) to allow the inherent stability of the τij closure to be assessed. This

chapter uses a high-order pseudo-spectral code to assess the inherent stability or

instability of autonomic closure based on each of the generalized representations for

which a priori results are presented in Chapter 5, and also assesses the corresponding

stability or instability of each of the traditional prescribed models for τij . In particular,

for each it determines the minimum amount of added dissipation, if any, that is needed

to achieve computational stability, as well as the amount of added dissipation, if

any, that is needed to produce clear k−5/3 inertial-range scaling in the kinetic energy

spectrum E(k) extending up to or near the smallest resolved scales in the simulation.

6.1 The Pseudo-Spectral LES Code

These forward simulations were done using SpectralLES, a high-order pseudo-

spectral LES code developed at CU Boulder. The present study implemented auto-

nomic closure in this code for each of the generalized representations for τij in Sections

5.1.2 and 5.1.3, as well as traditional closure with each of the prescribed models for

τij in Section 5.1.1. The code was used to simulate homogeneous isotropic turbulence

in a periodic domain, discretized on a 643 grid with side lengths L = 2π and having

periodic boundary conditions in all three directions, with a non-dimensional viscosity
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ν = 1.85(10−4). Fourier collocation methods were used for the spatial discretization

and an explicit fourth-order Runge Kutta scheme was employed for time advance-

ment. The turbulence is sustained by a spectrally-truncated linear energy forcing at

wavenumbers 2 ≤ k < 4 with a non-dimensional energy input rate of 0.103. De-aliasing

was performed by explicitly filtering the velocity fields with a spectrally sharp filter

at k = 30 to remove all contributions from doubly and triply aliased wavenumbers.

Each simulation was run sufficiently long past the startup phase and well into the

statistically stationary phase, and thereby produced homogeneous isotropic turbulence

that was uncontaminated by the initial conditions. The inherently high-order nature

of this pseudo-spectral code guarantees numerical dissipation to be insignificant in

comparison to the kinetic energy production resulting from the subgrid stress model.

Two reference cases were first simulated to clarify the energetics involved in such

simulations and provide baseline results for comparison with results from subgrid stress

representations in autonomic closure and prescribed models in traditional closure.

The first is a case where no subgrid stress model was used. This was done by literally

setting τ ≡ 0 in the LES code, while leaving all other parameters as described above.

Since the subgrid stress is zero, the subgrid production P ≡ τ : S is also zero, meaning

that no kinetic energy can be transferred out of the resolved scales into subgrid scales.

Instead, the only mechanism for removing kinetic energy from the simulation is the

viscous dissipation rate −2νS̃ijS̃ij in (1.6). As a consequence, in such a simulation

the velocity gradients in S̃ij must increase until the resulting viscous dissipation rate

is sufficient to balance the energy input rate at the largest scales.

Figure 11 presents results from such a simulation, where panel (a) shows the kinetic

energy 1
2
ũ · ũ versus time at a typical point x in the domain, panel (b) shows the time

evolution of the volume-averaged kinetic energy
〈

1
2
ũ · ũ

〉
V
, and Figure 11(c) shows

the resulting kinetic energy spectrum E(k). Figure 11(a) verifies that the simulation

ran stably for more than 55 characteristic time scales (k/ε) before being intentionally

78



stopped, while Figure 11(b) verifies that the simulation remained stable across all

points in the domain. Figure 11(c) clarifies how the energetics adjust when τ ≡ 0, as

described above. In particular, since aliasing has been removed, a “bottleneck” occurs

in the small scales, where the energy accumulates until the velocity gradients at these

small scales become large enough to produce a sufficiently large viscous dissipation rate

to balance the rate at which energy is input at the largest scales. The pseudo-spectral

code remains stable in such τ ≡ 0 simulations despite the resulting exceedingly high

accumulation of energy near the smallest scales of the simulation.

The second reference case is a simulation with the basic Smagorinsky model for the

subgrid stress. As noted in (5.4), this traditional prescribed model is purely dissipative,

thus providing a guaranteed-stable baseline case against which the other simulations

may be compared. Furthermore, due to its inherently dissipative nature, the basic

Smagorinsky model is often combined with other higher-accuracy models that may

be unstable by themselves to produce mixed models that will be computationally

stable in forward simulations. Results obtained from the pseudo-spectral LES code

with the basic Smagorinsky model are shown in Figure 12, where the panels are

arranged the same way as in Figure 11 and in Figures 13-20. Figure 12(a) shows

that the simulation was again run for more than 55 characteristic time scales (k/ε)

before being intentionally stopped. Comparing Figure 12(a, b) with the corresponding

panels in Figure 11 shows how the subgrid dissipation in the basic Smagorinsky model

alters the energetics at a typical point and averaged over the domain. Importantly, in

Figure 12(c) the energy spectrum E(k) shows that there is little or no inertial range,

due to the dissipative roll-off occuring over a very wide range of wavenumbers k in

the highly dissipative basic Smagorinsky subgrid model.

With insights from these references cases, the next section examines the stability

of τ representations in forward simulations with this pseudo-spectral LES code.
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6.2 Computational Stability of Subgrid Stress Representations

Each of the aforementioned τij representations in Section 5.1.1 for traditional

closure, and in Sections 5.1.2 and 5.1.3 for autonomic closure, have been implemented

in the pseudo-spectral LES code and used in forward simulations. As in Figures

11 and 12, for each case the kinetic energy 1
2
ũ · ũ at a typical point in the domain

and its average
〈

1
2
ũ · ũ

〉
V
over the whole domain were used to assess the resulting

computational stability, and for stable cases the resulting kinetic energy spectrum E(k)

was used to assess how accurately it produces the required k−5/3 inertial-range scaling.

Additionally, the computational time required for LES with each stable representation

was determined to assess its computational cost and practicality.

With the exception of the purely dissipative basic Smagorinsky model, all the

prescribed models for τij in traditional closure led to unstable simulations, and most

of the generalized representations for τij in autonomic closure also produced unstable

simulations. For this reason, each of the τij representations was implemented in a

mixed model by combining it with the purely dissipative basic Smagorinsky model as

τij = (1− cBS) τRij + cBS τ
BS
ij (6.1)

where τRij is the subgrid stress from the representation being considered, τBSij is the

subgrid stress from basic Smagorinsky model, and 0 ≤ cBS ≤ 1 is an adjustable

constant that controls how much dissipation is being added by the basic Smagorinsky

part of the mixed model. When cBS = 0 then the basic Smagorinsky part is “turned

off”, and as cBS is increased the inherent dissipation from the basic Smagorinsky part

increases to assist with computational stability.

For each representation, beginning at a relatively large value that ensures stability,

cBS was systematically decreased to determine the minimum value that provides

sufficient added dissipation from the basic Smagorinsky part in (6.1) to achieve

stable long-time forward simulations. Further, for stable cases the value of cBS was
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determined that provides “good” k−5/3 inertial-range scaling in the resulting E(k).

Since “goodness” of the energy spectrum was assessed visually and thus to some extent

is subjective, in some cases a range of such cBS values is reported.

The remainder of this section provides an overview of the results obtained in regard

to computational stability of each subgrid stress representation for traditional closure

or for autonomic closure. Detailed results for each representation and closure method

are then presented in following sections.

Table 1 summarizes the main results found from these forward simulations with

each subgrid stress representation and closure approach. The first two entries are

for traditional closure using prescribed subgrid models for τij, including the dynamic

Smagorinsky model in Section 5.1.1.2 and the Bardina scale similarity model in

Section 5.1.1.3. The remaining entries are for autonomic closure based on various

generalized representations for τij . The first of these is the non-tensorally-correct CL24

representation [61, 62] summarized in Section 5.1.2.1. The others are all tensorally-

correct representations, including TF27 in Section 5.1.2.2, TF19 in Section 5.1.3.1,

TF11 in Section 5.1.3.2, TF8 in Section 5.1.3.3, and TF5 in Section 5.1.3.4.

The results in Table 1 show that two subgrid stress representations in autonomic

closure are stable in forward simulations without any added dissipation, namely

with cBS = 0. These are the static CL24 representation and the dynamic TF5

representation. Furthermore, these two manifestly stable representations for the

subgrid stress in autonomic closure also require only comparatively small amounts

of additional dissipation to achieve a “good” energy spectrum E(k). This can be

contrasted with the minimum added dissipation needed for stability in traditional

closure with the dynamic Smagorinsky model and with the Bardina scale similarity

model, which respectively needed 40% and 5% added dissipation from the basic

Smagorinsky model part in (6.1) to achieve stability, but needed large amounts of

added dissipation to achieve a “good” E(k).
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Another important consideration in comparing these closure methods is the compu-

tational cost of each. Table 2 gives the average run-time required for one computational

time step with each of these subgrid stress representations. The run-time per time step

varies slightly, so an average was taken of run-time per time step in the statistically

stationary phase of each forward simulation. Since there are many computational

factors that can affect the run-time per time step, all of these forward simulations

were done on the same ASU Agave cluster with the same amount of memory, number

of processors, and type of processors in an attempt to make these comparisons as

meaningful as possible.

As expected, Table 2 shows the implementations of autonomic closure based on

τij representations involving large numbers of degrees of freedom, such as TF27 and

TF19, were computationally expensive. At the other extreme, the run-time per time

step with the static CL24 representation was comparable to that of traditional models.

Most importantly however, the run-time per time step in a fully dynamic im-

plementation of autonomic closure based on the TF5 representation for the subgrid

stress is only slightly more than three times longer than for traditional closure with

the dynamic Smagorinsky model. Yet as can be seen by comparing Figures 2-4 with

Figures 8-11, the TF5 representation produces far more accurate subgrid stress fields

and subgrid production fields than does the dynamic Smagorinsky model. Additionally,

since the TF5 representation in autonomic closure requires only a small amount of

added dissipation from the basic Smagorinsky part in (6.1) to achieve a good E(k),

whereas the dynamic Smagorinsky model in traditional closure requires at least 50% of

the subgrid stress in (6.1) to come from the clearly inaccurate basic Smagorinsky model

(see Figures 2-4), the difference in accuracy between the two in forward simulations

is even far larger. Especially in multiphysics problems that require high accuracy in

the resolved fields, the factor of three longer run-time per time step may be entirely

acceptable to gain this substantially increased accuracy.
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6.2.1 Traditional Closure with Prescribed Models

6.2.1.1 Dynamic Smagorinsky model

Figure 13 shows results from forward simulations with the dynamic Smagorinsky

model for various levels of added dissipation via cBS in (6.1). The minimum value

for which a stable simulation was possible was cBS = 0.40, which corresponds to 40%

added dissipation from the basic Smagorinsky part. As can best be seen in Figure

13(b), with this level the added dissipation the simulation is barely stable, as evident

from the large spikes in the kinetic energy versus time at a typical point, and the

corresponding kinetic energy spectrum E(k) in Figure 13(d) accordingly shows a large

“bottleneck” of energy at high wavenumbers.

Figure 13(b) shows that cBS must be further increased until 50% or more of the

dissipation comes from the basic Smagorinsky part to eliminate the sharp spikes in

the kinetic energy versus time at a typical point. Even at these large cBS values, the

spectrum E(k) in Figure 13(d) does not show a clear k−5/3 inertial-range scaling.

6.2.1.2 Bardina scale similarity model

Figure 14 shows corresponding results from forward simulations with the Bardina

scale similarity model for various levels of added dissipation via cBS in (6.1). As seen

in Table 1, the model is unstable without any added dissipation, but requires only 5%

added dissipation to become stable. However, the associated energy spectrum E(k) in

Figure 14(d) shows large “bottlenecks” of energy near both the test-scale wavenumber

and the LES-scale wavenumber. For the spectrally sharp filters used in this study, the

nature of the Bardina scale similarity model as described in Section 5.1.1.3 inherently

creates large steps in its resulting E(k) at these two wavenumbers, since it represents

the subgrid stresses as being simply proportional to the test-scale stresses. Even with

increasing cBS values, the resulting steps in E(k) at k∆̂ become increasingly larger in

this prescribed model for traditional closure.
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6.2.2 Autonomic Closure with Nonparametric Representations

6.2.2.1 CL24 representation

Figure 15 shows results from forward simulations with a static implementation of

autonomic closure based on the nonparametric CL24 representation [61, 62]. These

simulations are stable even with no added dissipation, though in that case the

kinetic energy spectrum E(k) in Figure 15(c) shows a significant “bottleneck” at high

wavenumbers. However, adding even 5% added dissipation via cBS = 0.05 in (6.1)

removes most of this “bottleneck”, and with just 10% added dissipation the resulting

E(k) in Figure 15(c) shows clear k−5/3 inertial-range scaling over the entire range of

resolved scales in the simulation. This is what the energy spectrum should look like

from a large eddy simulation that properly transfers momentum and energy within

the resolved scales and between the resolved and subgrid scales.

6.2.2.2 TF27 representation

Figure 16 and Table 3 show results from forward simulations with a fully dynamic

implementation of autonomic closure based on the nonparametric TF27 representation.

This is solving the local system identification to determine 27 coefficients at each point

and time in the simulation. This is computationally expensive, as seen in Table 2,

so the simulation was run for a shorter duration before being intentionally stopped.

This representation requires a minimum of 20% added dissipation from the basic

Smagorinsky model in (6.1) to be computationaly stable. As seen in Figure 16(c) there

is only a small “bottleneck” in the spectrum E(k) with this level of stabilization, and

increasing the added dissipation via cBS to 25-30% produces clear k−5/3 inertial-range

scaling over the entire range of resolved scales in the simulation. As also seen from

autonomic closure with CL24 in Section 6.2.2.1, this is what the energy spectrum

should look like from a large eddy simulation that properly transfers momentum and

energy within the resolved scales and between the resolved and subgrid scales.
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6.2.3 Autonomic Closure with Parametric Representations

6.2.3.1 TF19 representation

Figure 17 and Table 4 show results from forward simulations with a fully dynamic

implementation of autonomic closure based on the parametric TF19 representation.

This still involves 19 coefficients, so the local system identification to determine these

at each point and time in the simulation is computationally expensive, as seen in

Table 2. While TF19 involves substantially fewer coefficients than TF27, it requires

the additional cost of computing all the gradients of S and R and the resulting

tensor products of their components. For this reason, the simulation was run for a

shorter duration before being intentionally stopped. As seen in Figure 17, the TF19

representation requires just 5% added dissipation from the basic Smagorinsky model

in (6.1) to be computationaly stable. Figure 17(c) shows there is only a relatively

small “bottleneck” in E(k) with this level of stabilization, and increasing the added

dissipation via cBS to 10-15% produces clear k−5/3 inertial-range scaling over the

entire range of resolved scales in the simulation. As seen from autonomic closure with

the CL24 and TF27 representations in Sections 6.2.2.1 and 6.2.2.2, this is what the

energy spectrum should look like from a simulation that properly transfers momentum

and energy within the resolved scales and between the resolved and subgrid scales.

6.2.3.2 TF11 representation

Figure 18 and Table 5 show results from forward simulations with a fully dynamic

implementation of autonomic closure based on the parametric TF11 representation.

Since only 11 coefficients are involved in this generalized representation for the subgrid

stress, solving the local system identification to determine these coefficients at each

point and time in the simulation is substantially faster than for TF27 or TF19, but is

still computationally expensive as seen in Table 2. For this reason the simulation was

run for only about 45 characteristic time scales before being intentionally stopped. As
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seen in Figure 18 and Table 5, the TF11 representation requires a minimum of 30%

added dissipation from the basic Smagorinsky model in (6.1) to be computationaly

stable, though Figure 18(b) shows it is only marginally stable at this level of added

dissipation. With 35% added dissipation it is fully stable. The corresponding E(k)

in Figure 18(c), from a simulation with TF11 that remained stable, shows a roughly

k−5/3 inertial-range scaling over the entire range of resolved scales. With increasing

levels of added dissipation, the resulting E(k) for TF11 is only weakly affected, and

for all cases it follows k−5/3 more closely than does the dynamic Smagorinsky model

in Figure 13 or the Bardina scale similarity model in Figure 14.

6.2.3.3 TF8 representation

Figure 19 and Table 6 show results from forward simulations with a fully dynamic

implementation of autonomic closure based on the parametric TF8 generalized rep-

resentation for the subgrid stress. It involves 8 coefficients, and Table 2 shows that

solving the local system identification to determine these coefficients at each point and

time in the simulation is still computationally expensive. For this reason the simulation

was run only for about 45 characteristic time scales before being intentionally stopped.

Recall from Section 3.1.2 that both TF11 and TF8 represent the subgrid stress

solely in tensorally-correct products of S and R, though TF8 was obtained from the

complete and minimal tensor representation theory of Smith (1971) [63], whereas TF11

was not. As a result, TF11 is likely to also be complete but it cannot be minimal.

This suggests that whereas TF8 is more computationally efficient than TF11, both

representations are likely to be similarly accurate. Indeed this was seen in the a priori

tests in Figures 8, 9 and 10, and suggests that TF8 is likely perform similarly to TF11

in forward simulations.

This is in fact verified by comparing the results in Figure 19 with those in Figure

19. The TF8 representation is requires a minimum of 25% added dissipation from the

basic Smagorinsky model in (6.1) to be computationaly stable, though Figure 19(b)
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shows it to also be only marginally stable at this level of added dissipation. With

30% added dissipation it is fully stable. At this level of added dissipation, the energy

spectrum E(k) in Figure 19(c) shows a roughly k−5/3 inertial-range scaling over the

entire range of resolved scales, and as seen for TF11 in Figure 18(c) the spectrum is

only weakly affected as the level of added dissipation is increased.

6.2.3.4 TF5 representation

Figure 20 and Table 7 shows results from forward simulations with a fully dynamic

implementation of autonomic closure based on the parametric TF5 representation for

the subgrid stress. These simulations are stable even with no added dissipation, though

in that case the kinetic energy spectrum E(k) in Figure 20(c) shows a significant

“bottleneck” at high wavenumbers. However, introducing just 10-15% added dissipation

via cBS in (6.1) removes most of this “bottleneck”, and the resulting E(k) in Figure

20(c) shows clear k−5/3 inertial-range scaling over the entire range of resolved scales in

the simulation. This is what the energy spectrum should look like from a large eddy

simulation that properly transfers momentum and energy within the resolved scales

and between the resolved and subgrid scales.

TF5 involves just five coefficients, and therefore solving the local system identi-

fication problem to determine these five coefficients at each point and time in the

simulation is computationally efficient. As seen in Table 2, the run-time per time step

in these forward simulations based on a fully dynamic implementation of autonomic

closure with the TF5 representation for the subgrid stress is only slightly more than

three times longer than for traditional closure with the dynamic Smagorinsky model.

Yet as discussed at the end of Section 6.2, comparing Figures 2-4 with Figures 8-11

shows that the TF5 representation produces far more accurate subgrid stress fields and

subgrid production fields than does the dynamic Smagorinsky model. Furthermore,

the TF5 representation in autonomic closure is seen in Figure 20 to require only a

small amount of added dissipation from the basic Smagorinsky part in (6.1) to achieve
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a good E(k), whereas the dynamic Smagorinsky model in traditional closure is seen

in Figure 13 to require at least 50% of the subgrid stress in (6.1) to come from the

clearly inaccurate basic Smagorinsky model (see Figures 2-4). As a consequence, the

difference in accuracy between traditional closure with the dynamic Smagorinsky

model and fully dynamic autonomic closure with the TF5 representation, at the levels

of added stabilization for each that are required for stable forward simulations, is even

far larger than was seen in the a priori tests by comparing the dynamic Smagorinsky

results in Figures 2-4 with the TF5 results in Figures 8-10. In simulations that require

high accuracy in the resolved fields, the factor of three longer run-time per time step

may be entirely acceptable to gain this substantially increased accuracy.

Lastly, note it is interesting that 30% added dissipation is needed for stability in the

TF8 representation and 35% added dissipation is needed for the TF11 representation,

but 0% is needed for the TF5 representation and just 5-10% appears to be needed for

the TF19 representation. This could suggest that using higher-order velocity products,

such as the 4th-order products in the TF8 representation and 5th-order products

in the TF11 representation, may make subgrid stress representations more unstable,

since the TF5 and TF19 representations involve only 2nd-order products of velocities.
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Table 1. Stabilization Requirements for Each Subgrid Stress Representation

Subgrid Stress (cBS)min Required (cBS)min Required
Representation for Stability for “Good” E(k)

Dynamic Smagorinsky 40% 50-55%
Bardina Scale Similarity 5% 25-50%

Static CL24 0% 5-10%

Dynamic TF27 20% 20-25%
Dynamic TF19 5% 10%
Dynamic TF11 35% 35%
Dynamic TF8 30% 30%
Dynamic TF5 0% 10-15%
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Table 2. Run-time per Time Step

Subgrid Stress Method Run-time per Time Step (s)

No Model 0.7
Basic Smagorinsky 0.9

Dynamic Smagorinsky 2.8
Bardina Scale Similarity 1.1

Static CL24 1.2

Dynamic TF27 150
Dynamic TF19 130
Dynamic TF11 45
Dynamic TF8 24
Dynamic TF5 9.5
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Table 3. Computational Stability of TF27 Representation

BS Amount Result Blow-up Time

0% Blow-up t = 0.47
5% Blow-up t = 0.72
10% Blow-up t = 0.81
15% Blow-up t = 1.40
20% Stable t −→∞
25% Stable t −→∞
30% Stable t −→∞
35% Stable t −→∞
40% Stable t −→∞
45% Stable t −→∞
50% Stable t −→∞

Table 4. Computational Stability of TF19 Representation

BS Amount Result Blow-up Time

0% Blow-up t = 1.53
5% Stable t −→∞
10% Stable t −→∞
15% Stable t −→∞
20% Stable t −→∞
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Table 5. Computational Stability of TF11 Representation

BS Amount Result Blow-up Time

20% Blow-up t = 0.47
25% Blow-up t = 1.14
30% Blow-up t = 13.0
35% Stable t −→∞
40% Stable t −→∞
45% Stable t −→∞

Table 6. Computational Stability of TF8 Representation

BS Amount Result Blow-up Time

0% Blow-up t = 0.47
5% Blow-up t = 0.50
10% Blow-up t = 0.86
15% Blow-up t = 2.03
20% Blow-up t = 5.44
25% Blow-up t = 13.0
30% Stable t −→∞
35% Stable t −→∞
40% Stable t −→∞
45% Stable t −→∞
50% Stable t −→∞

92



Table 7. Computational Stability of TF5 Representation

BS Amount Result Blow-up Time

0% Stable t −→∞
5% Stable t −→∞
10% Stable t −→∞
15% Stable t −→∞
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Figure 11. Results from forward simulations with no subgrid stress model,
including (a) time evolution of turbulence kinetic energy at a single point in the
domain, (b) time evolution of volume-averaged turbulence kinetic energy, and
(c) energy spectrum.
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Figure 12. Results from forward simulations with the basic Smagorinsky model,
including (a) time evolution of turbulence kinetic energy at a single point in the
domain, (b) time evolution of volume-averaged turbulence kinetic energy, and
(c) energy spectrum.

95



Figure 13. Results from forward simulations with the dynamic Smagorinsky
model, including (a) time evolution of turbulence kinetic energy at a single point
in the domain, (b) time evolution of volume-averaged turbulence kinetic energy,
and (c) energy spectrum.
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Figure 14. Results from forward simulations with the Bardina scale similarity
model, including (a) time evolution of turbulence kinetic energy at a single point
in the domain, (b) time evolution of volume-averaged turbulence kinetic energy,
and (c) energy spectrum.
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Figure 15. Results from forward simulations with static CL24, including (a)
time evolution of turbulence kinetic energy at a single point in the domain, (b)
time evolution of volume-averaged turbulence kinetic energy, and (c) energy
spectrum.
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Figure 16. Results from forward simulations with TF27, including (a) time
evolution of turbulence kinetic energy at a single point in the domain, (b) time
evolution of volume-averaged turbulence kinetic energy, and (c) energy spectrum.

99



Figure 17. Results from forward simulations with TF19, including (a) time
evolution of turbulence kinetic energy at a single point in the domain, (b) time
evolution of volume-averaged turbulence kinetic energy, and (c) energy spectrum.
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Figure 18. Results from forward simulations with TF11, including (a) time
evolution of turbulence kinetic energy at a single point in the domain, (b) time
evolution of volume-averaged turbulence kinetic energy, and (c) energy spectrum.
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Figure 19. Results from forward simulations with TF8, including (a) time
evolution of turbulence kinetic energy at a single point in the domain, (b) time
evolution of volume-averaged turbulence kinetic energy, and (c) energy spectrum.
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Figure 20. Results from forward simulations with TF5, including (a) time
evolution of turbulence kinetic energy at a single point in the domain, (b) time
evolution of volume-averaged turbulence kinetic energy, and (c) energy spectrum.
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Chapter 7

A PRIORI TESTS: SUBGRID SCALAR FLUX REPRESENTATIONS

Analogous to the results from a priori tests presented in Chapter 5 to assess the

accuracy of subgrid stress representations, here corresponding results are presented to

assess the accuracy of subgrid scalar flux representations. Such a priori tests are the

most direct way to determine the accuracy of any representation. Forward simulations

to assess their computational stability are presented in Chapter 8.

The subgrid scalar flux representations in this chapter include prescribed models of

the type used in traditional closure, and nonparametric and parametric representations

for use in autonomic closure. Nonparametric subgrid scalar flux representations are

expressed directly in the velocities u and scalar values ϕ on the stencil Ŝ at the test-

filter scale ∆̂, and on the stencil S̃ at the LES-filter scale ∆̃. Parametric representations

are formulated in quantities that can be obtained from these velocities and scalar values

on these stencils, including the strain rate tensor Sij and rotation rate tensor Rij , and

the scalar gradient vector ∂ϕ/∂xi. Tensorally-correct parametric representations can

provide as much tensorally-valid information as a nonparametric representation, but

with substantially fewer terms in the representation and thus with fewer coefficients

that must be determined via solution of the local system identification problem. This

can make tensorally-correct parametric representations more computationally efficient,

but this chapter first seeks to determine how the accuracy of such representations

compares to nonparametric representations and traditional prescribed models.

7.1 Prescribed Models for Traditional Closure

The prescribed models for the subgrid scalar flux zi = ũi ϕ − ũi ϕ̃ that are con-

sidered in this chapter, and in the forward simulations in Chapter 8, include a basic

Smagorinsky model, a dynamic Smagorinsky, and a Bardina scale similarity model.
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Each of these is developed through direct analogy with the corresponding prescribed

model for the subgrid stress in Section 5.1.1, as described below.

7.1.1 Basic Smagorinsky Model

For the subgrid scalar flux, the corresponding basic Smagorinsky model is also

a linear eddy-viscosity model based on the gradient transport hypothesis, and thus

relates the subgrid scalar flux to the scalar gradient as

zi = −νsgf
∂ϕ̃

∂xi
(7.1)

where νsgf is assumed to depend only on the LES-filter length scale ∆̃ and the local

strain rate magnitude |S̃| = (S̃ijS̃ij)
1/2. Thus on dimensional grounds νsgf = CZ∆̃2|S̃|,

where CZ is the Smagorinski constant for the subgrid scalar flux, and thus the

representation for the subgrid scalar flux is

zi = −CZ ∆̃2 |S̃| ∂ϕ̃
∂xi

, (7.2)

or equivalently in tensor notation

z = −CZ ∆̃2 |S̃| ∇ϕ . (7.3)

The value of CZ is typically chosen based on an average of values that best match

commonly used reference cases. The present study uses CZ = 0.173.

The subgrid production of resolved scalar energy in (1.13) is Π = z · ∇ϕ, and from

(7.3) this gives

Π = −CZ ∆̃2 |S̃| (∇ϕ · ∇ϕ) , (7.4)

which for CZ > 0 is always negative, and thus in (1.12) acts to reduce the scalar energy

in the resolved scales of the simulation. As a result, the basic Smagorinsky model for

zi is purely dissipative, and consequently it is manifestly stable in forward simulations.

For that reason, it is often combined with unstable subgrid scalar flux representations

to provide additional dissipation to achieve stability in forward runs.
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7.1.2 Dynamic Smagorinsky Model

The dynamic Smagorinsky model for the subgrid scalar flux is derived from the

basic Smagorinsky model in (7.2), but allows the CZ value to vary in such a way that

it can take on locally positive or negative values in the simulation, thereby producing

positive and negative values of Π in (7.4). It first defines

Zi = ̂̃ui ϕ̃− ̂̃ui ̂̃ϕ , (7.5)

via a test filter scale (̂ ) having length scale ∆̂, analogous to

zi ≡ ũi ϕ− ũi ϕ̃ (7.6)

at the LES-filter scale (̃ ) having length scale ∆̃. It then represents both zi and Zi

with the basic Smagorinsky model in (7.2) as

zi = −CZ ∆̃2 |S̃| ∂ϕ̃
∂xi

(7.7)

and

Zi = −CZ ∆̂2 |̂̃S| ∂ ̂̃ϕ
∂xi

. (7.8)

Applying the test filter (̂ ) to zi gives

ẑi = −CZ ∆̃2
̂
|S̃| ∂ϕ̃

∂xi
. (7.9)

Subtracting (7.9) from (7.8) gives

Li ≡ Zi − ẑi = CZMi (7.10)

where

Mi ≡ ∆̃2
̂
|S̃| ∂ϕ̃

∂xi
− ∆̂2 |̂̃S| ∂ ̂̃ϕ

∂xi
. (7.11)

Contracting (7.10) with Mi and dividing then gives

CZ =
LiMi

MkMk

(7.12)

The resulting CZ from (7.12) can be positive or negative, and is then used in (7.2)

to determine the local value of the subgrid scalar flux. Since CZ can be positive or

negative, the resulting subgrid production Π in (7.4) can also be positive or negative.
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7.1.3 Bardina Scale Similarity Model

The Bardina scale similarity model for the subgrid scalar flux applies a test filter

(̂ ) having length scale ∆̂ to the LES-filtered velocities ũi and scalar values ϕ̃ to define

a test scalar flux

Zi = ̂̃ui ϕ̃− ̂̃ui ̂̃ϕ . (7.13)

It then takes the local subgrid scalar flux to be directly proportional to the local test

scalar flux, namely

zi = CBZi . (7.14)

The constant CB is typically chosen based on an average of values that best match

commonly used reference cases. The present study uses CB = 0.45.

7.2 Nonparametric Representations for Autonomic Closure

Nonparametric representations are formulated in the resolved primitive variables

of the simulation, and thus for the subgrid scalar flux z are written in the resolved

velocities u and scalar values ϕ. Section 3.2 applied the complete and minimal tensor

representation of Smith (1971) [63] to develop three nonparametric representations

for the subgrid scalar flux.

7.2.1 VF27a Representation

Section 3.2.3 developed an ad hoc 27-term representation in the velocities u and

scalar values ϕ on a 3× 3× 3 stencil centered on x as

z = h0 Iv +
27∑
m=1

hm um ϕ . (7.15)

7.2.2 VF27b Representation

Section 3.2.2 developed another 27-term representation in the velocities u on a

3× 3× 3 stencil centered on x, together with the scalar gradient ∇ϕ at x, as

z = h0Iv +
27∑
m=1

hm(um ⊗ um)∇ϕ , (7.16)
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where ⊗ is the outer product in (3.34).

7.2.3 VF54 Representation

Section 3.2.4 developed a 54-term representation from VF27a and VF27b for use

on a 3× 3× 3 stencil centered on x as

z = h0Iv +
P=27∑
m=1

(
hmum ϕ+ hm+27 (um ⊗ um)∇ϕ

)
. (7.17)

7.3 Parametric Representations for Autonomic Closure

Parametric representations are formulated in derived quantities that can be evalu-

ated from the resolved variables in the simulation. For the subgrid scalar flux z, these

include the strain rate and rotation rate tensors S and R, and the scalar gradient

vector ∇ϕ. Results from only one parametric representation for the subgrid scalar

flux are presented in this chapter.

7.3.1 VF6 Representation

Section 3.2 shows how the tensor representation theory of Smith (1971) [63] leads to

the complete and minimal tensorally-corrrect representation parametric representation

for the subgrid scalar flux z in S, R, and ∇ϕ as

z = h0∇ϕ+ h1 S∇ϕ+ h2 S2∇ϕ+ h3 R∇ϕ+ h4 R2∇ϕ+ h5 (SR−RS)∇ϕ (7.18)

In addition to being tensorally-correct, despite being complete this scalar flux repre-

sentation involves only six coefficients.

7.4 Metrics for Assessing Accuracy in A Priori Tests

In analyzing results from a priori tests there is a need for more precise and useful

means of quantifying accuracy beyond just average values and statistical distributions.

For example, Figures 2-10 from such tests of the subgrid stress show obvious structural

similarities in fields such as the subgrid production P (x, t), even in many of the

detailed features of these fields, including regions where large positive and negative
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values are concentrated. Yet point-by-point differences between two apparently highly

similar fields are large, due to the high intermittency in these fields. This led prior

work [61] to develop metricsM1 andM2 based on the structure of the spatial support

on which large production magnitudes are concentrated.

The support of a field is the subset of the domain on which the field values are

substantially non-zero. Following [61], the support on which large magnitudes of

production are concentrated is defined by thresholding the absolute value of the field

at a fixed fraction γ of its rms. This defines the support field Σ(x, t) that is either

zero or one, depending on whether the absolute value of the production is below or

above the threshold. Thus points where Σ = 1 are on the support of large production

magnitudes.

The support field can be separated into different scales to allow scale-by-scale

comparison. From the support Σ(x, t), a corresponding support-density field G(x, t)

is defined as

G(x, t) ≡
∫
V

Σ(x′, t)Γ∆(|x− x′|)x′, (7.19)

where Γ∆(|x− x′|) is a convolution filter kernel with filter length scale ∆Γ. Standard

Gaussian filters are used for Γ∆ in (7.19). Whereas the support Σ(x, t) is a discon-

tinuous binary-valued field, the support-density G(x, t) is a continuous real-valued

field to which standard error measures can be applied. These G fields can be used

to accurately identify the locations, sizes, and shapes of the regions in which large

subgrid values are concentrated.

Successive filter length scales ∆Γ in (7.19) allow scale-dependent structure in the

support-density fields to be determined. Comparisons at the same filter scale between

true support-density fields GF and those obtained from the subgrid model allow for

quantitative assessment of the accuracy at any given scale in the field. Using successive

filter length scales allows for the creation of two metrics used to quantitatively compare
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spatial structure. At any scale-ratio ∆Γ/∆̃ these metrics are defined as

M1 ≡
〈G′(x, t)G′F (x, t)〉V

〈G′(x, t)〉1/2V 〈G′F (x, t)〉1/2V

and M2 ≡

√√√√〈[G(x, t)−GF (x, t)
]2〉V

〈
[
G(x, t)

]2〉V (7.20)

whereM1 is the correlation between the modeled fields G(x, t) and the true fields

GF (x, t), andM2 is the normalized rms difference between the two. NoteM1 → 1

as the two support-density fields become perfectly correlated, andM2 → 0 as the

two support-density fields become identical. The changes in these metrics with the

scale-ratio allow quantitative comparisons of the support-density fields.

7.5 Comparisons of A Priori Test Results

A priori tests determine the accuracy of z(x, t) fields and their associated produc-

tion fields Π(x, t) for any subgrid scalar flux representation. Such tests allow direct

comparisons of the fields produced by the subgrid scalar flux representation and the

corresponding exact fields. While such tests do not address the computational stability

of these representations – that is addressed via forward simulations in Chapter 8 –

they provide complete information on the accuracy of such representations.

Such a priori tests were conducted with the three prescribed models for traditional

closure in Section 7.1, with the three representations for autonomic closure in Section

7.2, and with the tensorally-correct complete and minimal representation for autonomic

closure in Section 7.3. Direct numerical simulation (DNS) data from two simulations

of conserved scalar mixing in homogeneous isotropic turbulence were used to these

tests. The first, provided by Professor P.K. Yeung, was generated with a pseudo-

spectral DNS code [78] at Reλ = 140 and Sc = 1, and is referred to herein as the

high-Re dataset. The first, provided by by Dr. Colin Towery, was generated with the

Athena-RFX DNS code [79, 80] at Reλ = 35 and Sc = 1, and is referred to herein as

the low-Re dataset.

As described in Section 2.4 and Chapter 4, coefficients in the autonomic closure

methodology must be rescaled from the test-filter scale to the LES-filter scale based
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on scale similarity and inertial-range scaling. This suggests that both the LES-filter

and test-filter length scales, ∆̃ and ∆̂, must be in the inertial scale-range to achieve

accurate results from autonomic closure. However, it is unclear how strongly the

resulting accuracy will degrade one or both filter scales enters the dissipation scale-

range. The high-Re and low-Re datasets allow this to be tested, by choosing the

corresponding spectrally-sharp cutoff wavenumbers k∆̃ and k∆̂ as shown in Tables 8

and 9. Based on the kinetic energy spectra E(k) and scalar energy spectra Eϕ(k) for

the two datasets in Figure 21, for each case these Tables note whether both cutoff

wavenumbers are in the inertial range, (Inertial), one is in the inertial range and one in

the dissipative range (Transitional), or both are in the dissipative range (Dissipative).

Results from these a priori tests of the subgrid scalar flux representations from

the high-Re dataset are shown in Figures 22-40, and from the low-Re dataset are

shown in Figures 58-71. For each subgrid scalar flux representation, the results from

these a priori tests include (i) comparisons of typical planes from subgrid scalar flux

fields zi(x, t) and subgrid scalar energy production fields Π(x, t), (ii) comparisons of

probability density functions for each field from each representation, and (iii) subgrid

production support density fields G(x, t) and metrics M1 and M2 obtained from

them for each field from each representation.

Moreover for each of these subgrid scalar flux representations, the forward simula-

tions in Chapter 8 determine the minimum added scalar dissipation that is needed for

a computational stable simulation. Accordingly, the probability density functions in

Figures 25-41 and the metricsM1 andM2 in Figures 42-57 for each field from each

representation show results without and with this minimum added dissipation. In so

doing, these results show the accuracy that is achieved with each representation by

itself and when it is implemented with the minimum added dissipation in a forward

simulation.

In these results, it can be seen in the high-Re cases that the tensorally correct,
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complete, and minimal VF6 representation performs best among all the generalized

representations for autonomic closure, far outperforming the dynamic Smagorinsky

model and showing some improvement over the Bardina scale similarity model. The

traditional models interestingly seem to perform better for the subgrid scalar flux here

than they did for the subgrid stress in Chapter 3, relative to the respective true fluxes

and stresses.

Comparing results for the various cutoff wavenumbers (k∆̂, k∆̃) in Tables 8 and 9

reveals that, except for the (30, 60) and (5, 10) cases in the high-Re dataset, all other

cases appear to be about equally accurate. Regarding the (30, 60) case, both these

cutoff wavenumbers can be seen in Figure 37 to clearly be in the dissipative range,

so the inertial-range rescaling of the coefficients in autonomic closure is expected

to fail. Regarding the (5, 10) case, energy input in the high-Re simulations was via

forcing at k = 2 and 3, so based on Figure 22 the test filter at k = 5 was potentially

contaminated by this forcing, leading to inaccurate results.

Comparing the probability density functions for the subgrid scalar energy produc-

tion Π shows that the VF6 representation accurately represents scalar energy transfer

from the resolved scales into the subgrid scale, called “forward scatter”, but that it

produces excessive “backscatter” of scalar energy from the subgrid scales into the

resolved scales. Figures 31 and 36 for (k∆̃, k∆̂) = (20,10) and (40,20), respectively,

are of particular importance in this regard. They show that, with and without the

minimum added dissipation needed for stable forward simulations, the Bardina scale

similarity model is generally about as accurate in representing the subgrid scalar

energy production Π as is the VF6 representation, and both these representations are

far more accurate than the basic or dynamic Smagorinsky models.

Results for support density fields are shown in Figures 42-49, and for the corre-

sponding support-density metricsM1 andM2 in Figures 50-57. These are largely

consistent with what is seen in the zi(x, t) and Π(x, t) fields and in the probability
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density functions resulting from them. The VF6 representation for autonomic closure

performs best in producing the correct spatial structure in subgrid scalar energy

production Π(x, t) across all scales. It is somewhat more accurate in this regard than

the Bardina scale similarity model, and far more accurate than the basic or dynamic

Smagorinsky models.

Results from the low-Re data are not as useful as those from the high-Re dataset,

since the low-Re nature of that simulation leads to only a very limited inertial range.

However those results do generally confirm and support the observations from the

high-Re dataset that the VF6 representation is the most accurate in representing the

subgrid scalar fields zi(x, t) and subgrid scalar energy production fields Π(x, t) among

all the representations considered in these a priori tests.
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Test and LES E(k) from Eϕ(k) from
Filter Lengths High-Re Data High-Re Data

(k∆̂,k∆̃) = (5,10) Inertial Inertial
(k∆̂,k∆̃) = (10,20) Transition Inertial
(k∆̂,k∆̃) = (20,40) Dissipative Transition
(k∆̂,k∆̃) = (30,60) Dissipative Dissipative

Table 8. Spectral ranges in the kinetic energy spectrum E(k) and scalar energy
spectrum Eϕ(k) where wavenumbers corresponding to test-scale (∆̂) and LES-
scale (∆̃) filters are located for the high-Re DNS dataset.

Test and LES E(k) from Eϕ(k) from
Filter Lengths Low-Re Data Low-Re Data

(k∆̂,k∆̃) = (5,10) Transition Inertial
(k∆̂,k∆̃) = (10,20) Dissipative Dissipative
(k∆̂,k∆̃) = (20,40) Dissipative Dissipative

Table 9. Spectral ranges in the kinetic energy spectrum E(k) and scalar energy
spectrum Eϕ(k) where wavenumbers corresponding to test-scale (∆̂) and LES-
scale (∆̃) filters are located for the high-Re DNS dataset.
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Figure 21. Kinetic energy spectra E(k) (left column) and scalar energy spectra
Eϕ(k) (right column) from high-Re DNS dataset (upper row) and low-Re DNS
dataset (lower row).
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Figure 22. Locations of test-scale and LES-scale filters for (k∆̂, k∆̃) = (5, 10) in
kinetic energy spectrum E(k) (left) and scalar energy spectrum Eϕ(k) (right)
from the high-Re DNS dataset.
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Figure 23. Typical results for subgrid scalar flux component z1(x, t) from a
priori tests with the high-Re dataset using box filters with (k∆̂, k∆̃) = (5, 10).
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Figure 24. Typical results for subgrid scalar energy production Π(x, t) from a
priori tests with the high-Re dataset using box filters with (k∆̂, k∆̃) = (5, 10).
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Figure 25. PDFs for z1(x, t) from a priori tests with high-Re data using box
filters having (k∆̂, k∆̃) = (5, 10), for cBS,z = 0 in (8.11) (top) and with minimum
required cBS,z value from Chapter 8 for stable forward simulations (bottom).
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Figure 26. PDFs for Π(x, t) from a priori tests with high-Re data using box
filters having (k∆̂, k∆̃) = (5, 10), for cBS,z = 0 in (8.11) (top) and with minimum
required cBS,z value from Chapter 8 for stable forward simulations (bottom).
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Figure 27. Locations of test-scale and LES-scale filters for (k∆̂, k∆̃) = (10, 20)
in kinetic energy spectrum E(k) (left) and scalar energy spectrum Eϕ(k) (right)
from the high-Re DNS dataset.
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Figure 28. Typical results for subgrid scalar flux component z1(x, t) from a
priori tests with the high-Re dataset using box filters with (k∆̂, k∆̃) = (10, 20).
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Figure 29. Typical results for subgrid scalar energy production Π(x, t) from a
priori tests with the high-Re dataset using box filters with (k∆̂, k∆̃) = (10, 20).
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Figure 30. PDFs for z1(x, t) from a priori tests with high-Re data using box
filters having (k∆̂, k∆̃) = (10, 20), for cBS,z = 0 in (8.11) (top) and with minimum
required cBS,z value from Chapter 8 for stable forward simulations (bottom).
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Figure 31. PDFs for Π(x, t) from a priori tests with high-Re data using box filters
having (k∆̂, k∆̃) = (10, 20), for cBS,z = 0 in (8.11) (top) and with minimum
required cBS,z value from Chapter 8 for stable forward simulations (bottom).
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Figure 32. Locations of test-scale and LES-scale filters for (k∆̂, k∆̃) = (20, 40)
in kinetic energy spectrum E(k) (left) and scalar energy spectrum Eϕ(k) (right)
from the high-Re DNS dataset.
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Figure 33. Typical results for subgrid scalar flux component z1(x, t) from a
priori tests with the high-Re dataset using box filters with (k∆̂, k∆̃) = (20, 40).
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Figure 34. Typical results for subgrid scalar energy production Π(x, t) from a
priori tests with the high-Re dataset using box filters with (k∆̂, k∆̃) = (20, 40).
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Figure 35. PDFs for z1(x, t) from a priori tests with high-Re data using box
filters having (k∆̂, k∆̃) = (20, 40), for cBS,z = 0 in (8.11) (top) and with minimum
required cBS,z value from Chapter 8 for stable forward simulations (bottom).

129



Figure 36. PDFs for Π(x, t) from a priori tests with high-Re data using box filters
having (k∆̂, k∆̃) = (20, 40), for cBS,z = 0 in (8.11) (top) and with minimum
required cBS,z value from Chapter 8 for stable forward simulations (bottom).
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Figure 37. Locations of test-scale and LES-scale filters for (k∆̂, k∆̃) = (30, 60)
in kinetic energy spectrum E(k) (left) and scalar energy spectrum Eϕ(k) (right)
from the high-Re DNS dataset.

131



Figure 38. Typical results for subgrid scalar flux component z1(x, t) from a
priori tests with the high-Re dataset using box filters with (k∆̂, k∆̃) = (30, 60).
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Figure 39. Typical results for subgrid scalar energy production Π(x, t) from a
priori tests with the high-Re dataset using box filters with (k∆̂, k∆̃) = (30, 60).
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Figure 40. PDFs for z1(x, t) from a priori tests with high-Re data using box
filters having (k∆̂, k∆̃) = (30, 60), for cBS,z = 0 in (8.11) (top) and with minimum
required cBS,z value from Chapter 8 for stable forward simulations (bottom).
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Figure 41. PDFs for Π(x, t) from a priori tests with high-Re data using box filters
having (k∆̂, k∆̃) = (30, 60), for cBS,z = 0 in (8.11) (top) and with minimum
required cBS,z value from Chapter 8 for stable forward simulations (bottom).
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Figure 42. Typical results for support density fields G∆Γ
(x, t) at various k∆Γ

/k∆̃

for subgrid scalar flux fields z1(x, t) from a priori tests with high-Re dataset
using box filters having (k∆̂, k∆̃) = (5, 10).
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Figure 43. Typical results for support density fields G∆Γ
(x, t) at various k∆Γ

/k∆̃

for subgrid scalar energy production fields Π(x, t) from a priori tests with
high-Re dataset using box filters having (k∆̂, k∆̃) = (5, 10).
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Figure 44. Typical results for support density fields G∆Γ
(x, t) at various k∆Γ

/k∆̃

for subgrid scalar flux fields z1(x, t) from a priori tests with high-Re dataset
using box filters having (k∆̂, k∆̃) = (10, 20).

138



Figure 45. Typical results for support density fields G∆Γ
(x, t) at various k∆Γ

/k∆̃

for subgrid scalar energy production fields Π(x, t) from a priori tests with
high-Re dataset using box filters having (k∆̂, k∆̃) = (10, 20).
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Figure 46. Typical results for support density fields G∆Γ
(x, t) at various k∆Γ

/k∆̃

for subgrid scalar flux fields z1(x, t) from a priori tests with high-Re dataset
using box filters having (k∆̂, k∆̃) = (20, 40).
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Figure 47. Typical results for support density fields G∆Γ
(x, t) at various k∆Γ

/k∆̃

for subgrid scalar energy production fields Π(x, t) from a priori tests with
high-Re dataset using box filters having (k∆̂, k∆̃) = (20, 40).
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Figure 48. Typical results for support density fields G∆Γ
(x, t) at various k∆Γ

/k∆̃

for subgrid scalar flux fields z1(x, t) from a priori tests with high-Re dataset
using box filters having (k∆̂, k∆̃) = (30, 60).
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Figure 49. Typical results for support density fields G∆Γ
(x, t) at various k∆Γ

/k∆̃

for subgrid scalar energy production fields Π(x, t) from a priori tests with
high-Re dataset using box filters having (k∆̂, k∆̃) = (30, 60).
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Figure 50. Metrics for scale-by-scale accuracy in support density G∆Γ
(x, t)

for zi(x, t) with cBS,z = 0 in (8.11) and (cBS,z)min from Chapter 8 for stable
forward simulations, from a priori tests with high-Re data using box filters
(k∆̂, k∆̃) = (5, 10). Smaller values correspond to greater accuracy.
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Figure 51. Metrics for scale-by-scale accuracy in support density G∆Γ
(x, t)

for Π(x, t) with cBS,z = 0 in (8.11) and (cBS,z)min from Chapter 8 for stable
forward simulations, from a priori tests with high-Re data using box filters
(k∆̂, k∆̃) = (5, 10). Smaller values correspond to greater accuracy.
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Figure 52. Metrics for scale-by-scale accuracy in support density G∆Γ
(x, t)

for zi(x, t) with cBS,z = 0 in (8.11) and (cBS,z)min from Chapter 8 for stable
forward simulations, from a priori tests with high-Re data using box filters
(k∆̂, k∆̃) = (10, 20). Smaller values correspond to greater accuracy.
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Figure 53. Metrics for scale-by-scale accuracy in support density G∆Γ
(x, t)

for Π(x, t) with cBS,z = 0 in (8.11) and (cBS,z)min from Chapter 8 for stable
forward simulations, from a priori tests with high-Re data using box filters
(k∆̂, k∆̃) = (10, 20). Smaller values correspond to greater accuracy.
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Figure 54. Metrics for scale-by-scale accuracy in support density G∆Γ
(x, t)

for zi(x, t) with cBS,z = 0 in (8.11) and (cBS,z)min from Chapter 8 for stable
forward simulations, from a priori tests with high-Re data using box filters
(k∆̂, k∆̃) = (20, 40). Smaller values correspond to greater accuracy.

148



Figure 55. Metrics for scale-by-scale accuracy in support density G∆Γ
(x, t)

for Π(x, t) with cBS,z = 0 in (8.11) and (cBS,z)min from Chapter 8 for stable
forward simulations, from a priori tests with high-Re data using box filters
(k∆̂, k∆̃) = (20, 40). Smaller values correspond to greater accuracy.
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Figure 56. Metrics for scale-by-scale accuracy in support density G∆Γ
(x, t)

for zi(x, t) with cBS,z = 0 in (8.11) and (cBS,z)min from Chapter 8 for stable
forward simulations, from a priori tests with high-Re data using box filters
(k∆̂, k∆̃) = (30, 60). Smaller values correspond to greater accuracy.
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Figure 57. Metrics for scale-by-scale accuracy in support density G∆Γ
(x, t)

for Π(x, t) with cBS,z = 0 in (8.11) and (cBS,z)min from Chapter 8 for stable
forward simulations, from a priori tests with high-Re data using box filters
(k∆̂, k∆̃) = (30, 60). Smaller values correspond to greater accuracy.
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Figure 58. Locations of test-scale and LES-scale filters for (k∆̂, k∆̃) = (5, 10) in
kinetic energy spectrum E(k) (left) and scalar energy spectrum Eϕ(k) (right)
from the low-Re DNS dataset.
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Figure 59. Typical results for subgrid scalar flux component z1(x, t) from a
priori tests with the low-Re dataset using box filters with (k∆̂, k∆̃) = (5, 10).
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Figure 60. Typical results for subgrid scalar energy production Π(x, t) from a
priori tests with the low-Re dataset using box filters with (k∆̂, k∆̃) = (5, 10).
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Figure 61. PDFs for z1(x, t) from a priori tests with low-Re data using box
filters having (k∆̂, k∆̃) = (5, 10), for cBS,z = 0 in (8.11) (top) and with minimum
required cBS,z value from Chapter 8 for stable forward simulations (bottom).
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Figure 62. PDFs for Π(x, t) from a priori tests with low-Re data using box
filters having (k∆̂, k∆̃) = (5, 10), for cBS,z = 0 in (8.11) (top) and with minimum
required cBS,z value from Chapter 8 for stable forward simulations (bottom).
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Figure 63. Locations of test-scale and LES-scale filters for (k∆̂, k∆̃) = (10, 20)
in kinetic energy spectrum E(k) (left) and scalar energy spectrum Eϕ(k) (right)
from the high-Re DNS dataset.
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Figure 64. Typical results for subgrid scalar flux component z1(x, t) from a
priori tests with the low-Re dataset using box filters with (k∆̂, k∆̃) = (10, 20).
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Figure 65. Typical results for subgrid scalar energy production Π(x, t) from a
priori tests with the low-Re dataset using box filters with (k∆̂, k∆̃) = (10, 20).
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Figure 66. PDFs for z1(x, t) from a priori tests with low-Re data using box filters
having (k∆̂, k∆̃) = (10, 20), for cBS,z = 0 in (8.11) (top) and with minimum
required cBS,z value from Chapter 8 for stable forward simulations (bottom).
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Figure 67. PDFs for Π(x, t) from a priori tests with low-Re data using box filters
having (k∆̂, k∆̃) = (10, 20), for cBS,z = 0 in (8.11) (top) and with minimum
required cBS,z value from Chapter 8 for stable forward simulations (bottom).
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Figure 68. Locations of test-scale and LES-scale filters for (k∆̂, k∆̃) = (20, 40)
in kinetic energy spectrum E(k) (left) and scalar energy spectrum Eϕ(k) (right)
from the high-Re DNS dataset.
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Figure 69. Typical results for subgrid scalar flux component z1(x, t) from a
priori tests with the low-Re dataset using box filters with (k∆̂, k∆̃) = (20, 40).
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Figure 70. Typical results for subgrid scalar energy production Π(x, t) from a
priori tests with the low-Re dataset using box filters with (k∆̂, k∆̃) = (20, 40).
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Figure 71. PDFs for z1(x, t) from a priori tests with low-Re data using box filters
having (k∆̂, k∆̃) = (20, 40), for cBS,z = 0 in (8.11) (top) and with minimum
required cBS,z value from Chapter 8 for stable forward simulations (bottom).
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Figure 72. PDFs for Π(x, t) from a priori tests with low-Re data using box filters
having (k∆̂, k∆̃) = (20, 40), for cBS,z = 0 in (8.11) (top) and with minimum
required cBS,z value from Chapter 8 for stable forward simulations (bottom).
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Chapter 8

STABILITY OF SUBGRID SCALAR FLUX REPRESENTATIONS

Results from the a priori tests in Chapter 7 showed that the subgrid scalar flux

representation VF6 in (3.33) – which in Section 3.2 is shown to be the complete and

minimal tensorally-correct representation for the subgrid scalar flux z in the strain

rate and rotation rate tensors, S and R, and the scalar gradient vector ∇ϕ – is the

most accurate of the subgrid scalar flux representations considered there. This chapter

now uses forward simulations to assess the computational stability of autonomic

closure with the VF6 representation for the subgrid scalar flux, and compares with

the stability of traditional LES closure based on the dynamic Smagorinsky model in

Section 7.1.2 and the Bardina scale similarity model in Section 7.1.3.

8.1 Scalar Mixing Simulations with the Pseudo-Spectral LES Code

The filtered scalar transport equation in (1.10) was added in the pseudo-spectral

code to enable forward simulations of turbulent conserved scalar mixing with high-

order accuracy. All cases simulated an initial scalar field being mixed by statistically-

stationary homogeneous isotropic turbulence in a 643 domain with periodic boundary

conditions. The underlying turbulent flow was sustained by forcing at wavenumbers

2 ≤ k ≤ 4, as described in Section 6.1. The scalar field was initialized only after the

turbulence had reached its statistically-stationary state, with the initial scalar field

consisting of a one period of a sinusoidal variation with 0 ≤ ϕ ≤ 1 along one direction

of the domain, as shown in the upper row of Figure 73. Thereafter the scalar field

was mixed by the underlying turbulent flow and reached a statistically homogeneous

isotropic state, as shown in the bottom row of Figure 73. The Schmidt number in all

cases was Sc = 1. Since no scalar energy is added during the simulation, the scalar
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field ϕ(x, t) gradually homogenizes and the associated scalar energy Eϕ(x, t) thus

decreases during the course of the simulation.

For the given sinusoidal initial condition, the domain-averaged scalar energy

Eϕ(t) ≡ 1

V

∫
V

1

2
ϕ̃2 dV (8.1)

has initial value Eϕ(0) ≡ Eϕ, 0 = 0.1875, and when the scalar field fully homogenizes

as t→∞ it reaches Eϕ(∞) ≡ Eϕ,∞ = 0.125. Defining the relative scalar energy as

Σϕ(t) ≡ Eϕ(t)− Eϕ,∞
Eϕ, 0 − Eϕ,∞

, (8.2)

then this satisfies

Σϕ(0) = 1 and Σϕ(∞) = 0 . (8.3)

8.1.1 Asymptotic Scalar Energy Decay Scaling

For the statistically homogeneous scalar field in these simulations, from (1.12) the

domain-averaged scalar energy Eϕ satisfies

dEϕ
dt

= −Dϕ

〈
∂ϕ̃

∂xi

∂ϕ̃

∂xi

〉
V

≡ −χ , (8.4)

where χ is the domain-averaged scalar energy dissipation rate. With k(t) denoting

the turbulence kinetic energy and ε(t) its dissipation rate, it can be anticipated that

χ = f
(
Eϕ , (k/ε)

)
, (8.5)

for which dimensional consistency then requires

χ ∼ Eϕ (ε/k) . (8.6)

Using Cχ to denote the proportionality constant, which must be dimensionless and

universal, then gives
dEϕ
dt

= −CχEϕ (ε/k) . (8.7)

Defining the scaled time τ = t/(k/ε) this becomes

dEϕ
dτ

= −CχEϕ . (8.8)
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and thus

Eϕ(t) = Eϕ, 0 · exp− Cχ(τ − τ0) . (8.9)

For τ � τ0, (8.9) and (8.2) with (8.3) then show that the asymptotic scalar energy

decay scaling in these simulations must be

Σϕ(t) = exp− Cχ
(

t

(k/ε)

)
(8.10)

8.1.2 Comparison with Simulation Results

To test the scaling in (8.10), Figure 74 shows the scalar energy from a simulation

with the basic Smagorinsky model for the subgrid stress and also the basic Smagorinsky

model for the subgrid scalar flux. Since both models are purely dissipative, this

simulation is guaranteed to remain stable. The top panel shows the time evolution of

Eϕ, which as noted above has the initial value Eϕ, 0 = 0.1875 and the asymptotic final

value Eϕ,∞ = 0.125, where the latter is shown by the dashed line in Figure 74. The

bottom panel in Figure 74 shows the corresponding relative scalar energy in (8.2) in

semi-logarithmic form, for which the exponential asymptotic decay in (8.10) would

appear as a straight line with its slope equal to Cχ. It is apparent in the lower panel

that, after a time τ0 ≈ 2, during which all memory of the initial conditions in the

scalar field is lost, the relative scalar energy Σϕ(t) clearly follows the asymptotic decay

in (8.10), as the underlying homogeneous isotropic turbulence acts to homogenize

the scalar field and thereby drive Σϕ → 0. By τ ≈ 35 the relative scalar energy has

decreased to near the machine limit of the simulation.

Figure 75 shows results from several such simulations, graphed the same way as in

the bottom panel of Figure 74, that have different values for Ef in the kinetic energy

forcing and different values for the initial scalar energy Eϕ,0. The changes in Ef cause

k(t) and ε(t) to differ among these cases, and as a result in the top panel of Figure 75

where the relative scalar energy Σϕ is graphed in the dimensional time t, the slopes are

different, corresponding to different decay rates. However in the bottom panel, where
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the same results are graphed in the scaled time τ = t/(k/ε) as in (8.10), the curves

essentially collapse to within the statistical convergence limits of the volume average

due to the finite domain size. This is supported by Figure 76, showing the derivative

of each curve, where the variations between cases are seen to be no larger than the

variations with time for any given case. Table 10 gives the resulting average slope,

which corresponds to the universal constant Cχ in (8.10), and the 95% statistical

uncertainty interval for each case, where the differences between cases are indeed seen

to be smaller than the statistical uncertainty.

In rest of this chapter, results from forward simulations based on traditional and

autonomic closure with various combinations of subgrid stress representations and

subgrid scalar flux representations, and with various levels of added dissipation, are

presented in the same form as the upper and lower panels in Figure 74 to assess the

computational stability of these representations.

8.2 Computational Stability of Turbulent Conserved Scalar Mixing

As in Figure 74, which corresponds to Case 1 in Table 11, Figures 77-85 show the

domain-averaged scalar energy Eϕ(t) in (8.1) and the relative scalar energy Σϕ(t) in

(8.2) from forward simulations of turbulent conserved scalar mixing for all other cases

in Table 11. Each case corresponds to a particular combination of the subgrid stress

representation for τ and the subgrid scalar flux representation for z. As in Section

8.1, in all cases the scalar field was initialized as shown in the top row of Figure

73 only after the underlying turbulent flow had reached its statistically-stationary

homogeneous isotropic state. Since the scalar is passive, from each of the subgrid stress

representations for τ the resulting turbulent kinetic energy k(t), the domain-average

〈k〉(t), and the kinetic energy spectrum E(k) are similar to those shown in Figures

11-20 in Chapter 6.

Importantly, for each case in Table 11, Figures 77-85 show the resulting Σϕ(t) for

varying levels of added dissipation in both the subgrid stress representation for τ and
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the subgrid scalar flux representation for z. Since the basic Smagorinsky models for τ

in Section 5.1.1.1 and z in Section 7.1.1 are both purely dissipative, added dissipation

was introduced in each representation ( )R as

τij = (1− cBS,τ ) τRij + cBS,τ τ
BS
ij (8.11a)

zi = (1− cBS,z) zRi + cBS,z z
BS
i (8.11b)

where ( )BS denotes the basic Smagorinsky model, and cBS,τ and cBS,z are constants

that set the desired amount of added dissipation in each representation.

The following sections identify insights obtained from these forward simulations

as they relate to the computational stability of traditional closure with prescribed

models for τ and z, and the stability of autonomic closure with various generalized

representations for τ and z.

8.2.1 Traditional Closure with Prescribed Models

Cases 1, 2, and 3 in Table 11 correspond to traditional closures for τ and z via

prescribed models. In each case, the basic Smagorinsky model in Section 5.1.1.1 was

used to represent τ , while z was represented with either the basic Smagorinsky model

in Section 7.1.1, the dynamic Smagorinsky model in Section 7.1.2, or the Bardina

scale similarity model in Section 7.1.3. Corresponding results for Eϕ(t) and Σϕ(t) for

each combination are shown in Figures 74, 77, and 78.

In Figure 74, the basic Smagorinsky models for both τ and z are manifestly stable,

though they are seen in Figures 2-4 and Figures 23-74 to give highly inaccurate

representations of the relevant the τij(x, t) and zi(x, t) fields and their associated

subgrid production fields P (x, t) and Π(x, t).

In Figure 77, when instead the Bardina scale similarity model is used for z as

in Case 2, it is technically stable even with no added dissipation, in the sense that

blowup does not occur, but at least 30% added dissipation must be included to avoid

the clearly nonphysical initial increase in domain-averaged scalar energy Eϕ(t), which
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instead must solely decrease with time throughout these simulations. This initial

increase can be best seen in the top panel, and indicates near-instability of the Bardina

scale similarity model. With 10% and 20% added dissipation, this nonphysical initial

increase in Eϕ(t) is reduced but still present. Only when the added dissipation is

increased to 30% does this increase in scalar energy disappear.

In Figure 78, when instead the dynamic Smagorinsky model is used for z in Case

3, it can be seen that at least 50% added dissipation is needed to avoid computational

blowup, though the lower panel shows incipient blowup being encountered repeatedly

during such a simulation. Only when the added dissipation is increased to 60% does

the forward simulation with the dynamic Smagorinsky model remain manifestly stable.

8.2.2 Autonomic Closure with Parametric Representations

Cases 4-10 in Table 11 correspond to autonomic closure for τ and/or z based on

various combinations of the parametric representations TF5 and/or VF6, as well as

with traditional prescribed models for z. Corresponding results for Eϕ(t) and Σϕ(t)

for each combination are shown in Figures 79-85.

In Figure 79, when the tensorally-correct, complete and minimal VF6 representation

is used for z in Case 4, it can be seen that at least 30% added dissipation must be

included in it to achieve a technically stable forward simulation, in the sense that

blowup does not occur. However, both panels indicate near-blowup via the spikes in

the scalar energy. Only when the added dissipation in z is increased to 40% does the

simulation become manifestly stable. This is not only substantially lower than the

corresponding 90% value for the dynamic Smagorinsky model in Figure 82, but the a

priori tests in Chapter 7 showed the VF6 representation to be far more accurate in

representing zi(x, t) fields and their associated subgrid scalar energy production fields

Π(x, t).

Figure 80 shows results for Case 5, in which the basic Smagorinsky model for the

subgrid stress τ is replaced by the TF5 representation without any added dissipation,
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while the basic Smagorinsky model for the subgrid scalar flux z is used. The resulting

simulation is manifestly stable even with any added dissipation in the TF5 represen-

tation. This is to be expected from Figure 20 and Section 6.2.3.4, where the TF5

representation for τ is shown to be stable even without any added dissipation. Since

the scalar is passive, it does not affect the stability of the underlying turbulent flow

from the τ representation.

In Figure 81, when the TF5 representation for τ without any added dissipation is

retained, but now the Bardina scale similarity model without any added dissipation is

used for z, corresponding to Case 6 in Table 11, the forward simulation is unstable.

This instability cannot be due to the TF5 representation for τ , since TF5 is shown

in Figure 20 and Section 6.2.3.4 to be stable without any added dissipation. Thus

the instability results from the Bardina model for z. It can be seen in Figure 81 that

10% added dissipation in the Bardina model produces a technically stable forward

simulation, in the sense that blowup in the scalar energy does not occur. However,

the same clearly nonphysical initial increase in domain-averaged scalar energy Eϕ(t)

occurs as was seen from the Bardina model in Figure 77. Only when the added

dissipation in the Bardina model is increased to 20% does the simulation remain stable

while avoiding the nonphysical increase in domain-averaged scalar energy.

In Figure 82, the TF5 representation for τ without any added dissipation is

retained, but now the dynamic Smagorinsky model is used for z, corresponding to

Case 7. It can be seen that at least 80% added dissipation must be included in the

dynamic Smagorinsky model for z to achieve a stable simulation. This instability

cannot be due to the TF5 representation for τ , since this is shown in Figure 20 and

Section 6.2.3.4 to be stable without any added dissipation, and thus the instability

results from the dynamic Smagorinsky model for z. Even with 80% added dissipation,

the lower panel in Figure 82 shows large spikes that indicate near-blowup of the model.
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Only when the added dissipation in the dynamic Smagorinsky model for z is increased

to 90% does the forward simulation become manifestly stable.

In Figure 83, the TF5 representation for τ without any added dissipation is

retained, but now the tensorally-correct, complete and minimal VF6 representation is

used for z, corresponding to Case 8. It can be seen that at least 80% added dissipation

must be included in the VF6 representation to achieve a stable simulation. As noted

for Cases 5 and 6, the instability at lower levels of added dissipation in VF6 cannot be

due to the TF5 representation for τ , since it is manifestly stable without any added

dissipation, and is instead due to the VF6 representation for z. It is evident in Figure

83 that adding 80% dissipation to VF6 produces manifestly a stable simulation.

Figure 84 examines the potential benefit of adding a relatively small amount of

dissipation (15%) to the TF5 representation for τ , even though it is stable without

any added dissipation, to understand how this affects the amount of dissipation that

must be added to the VF6 representation for z to achieve a stable simulation. This

corresponds to Case 9 in Table 11, and in Figure 85 it can be seen that 60% added

dissipation in VF6 then suffices for stability, rather than the 80% added dissipation

that was needed in Case 8.

Figure 85 similarly examines the benefit of adding 15% dissipation in the TF5

representation for τ , even though it is stable without any added dissipation, to

understand how this affects the amount of dissipation that must be added to the

dynamic Smagorinsky model for z to achieve a stable simulation. It can be seen that

70% added dissipation then produces a technically stable forward simulation, in the

sense that blowup in the scalar energy does not occur, though this still produces

continual large spikes in the domain-averaged scalar energy. Only when the added

dissipation in the dynamic Smagorinsky model for z is increased to 80% does the

forward simulation become manifestly stable. This is only slightly lower than the 90%
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minimum added dissipation that is needed in Figure 82 for Case 7 that has no added

dissipation in the TF5 representation for τ .
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Case Cχ ± 2σ

1 0.9182± 0.1928
2 0.9537± 0.1716
3 0.9326± 0.3738
4 0.8631± 0.1806
5 0.8136± 0.2706

Table 10. Average and 95% uncertainty interval for decay rate Cχ in asymptotic
scalar energy decay scaling from the five cases shown in Figure 76.

Case SGS Model (cBS,τ )min SGF Model (cBS,z)min Figure

1 Basic Smag N/A Basic Smag N/A Fig. 74
2 Basic Smag N/A Bardina 0-30% Fig. 77
3 Basic Smag N/A Dyn Smag 50-60% Fig. 78
4 Basic Smag N/A VF6 20-40% Fig. 79
5 TF5 0% Basic Smag N/A Fig. 80
6 TF5 0% Bardina 10-20% Fig. 81
7 TF5 0% Dyn Smag 80-90% Fig. 82
8 TF5 0% VF6 80% Fig. 83
9 TF5 15% VF6 60% Fig. 84
10 TF5 15% Dyn Smag 80% Fig. 85

Table 11. Combinations of subgrid stress representation for τ and subgrid scalar
flux representation for z, with corresponding minimum cBS,τ and cBS,z values
needed in (8.11) for stable forward simulations, for each case in Figures 74-85.
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Figure 73. Scalar field initial condition in x, y, and z mid-planes of the domain
(upper row) and typical resulting scalar field ϕ(x, t) at later time (lower row).
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Figure 74. Domain-averaged scalar energy Eϕ(t) (upper panel) and correspond-
ing relative scalar energy Σϕ(t) (lower panel) from basic Smagorinsky model for
τ and basic Smagorinsky model for z (Case 1 in Table 11).
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Figure 75. Similar to lower panel in Figure 74 but for differing levels of energy
forcing and initial scalar energy, showing scalar energy decay in dimensional
time (upper panel) and resulting collapse in properly scaled time (lower panel).
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Figure 76. Scaled-time derivative of the relative scalar energy Σϕ(τ) in the lower
panel of Figure 75. Corresponding average value over 5 ≤ τ ≤ 35 and associated
95% uncertainty level are shown for each case in Table 10.
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Figure 77. Domain-averaged scalar energy Eϕ(τ) (top) and corresponding
relative scalar energy Σϕ(τ) (bottom) from basic Smagorinsky model for τ and
Bardina scale similarity model for z (Case 2 in Table 11) with cBS,τ = 0 and
various levels of added dissipation via cBS,z in (8.11).
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Figure 78. Domain-averaged scalar energy Eϕ(τ) (top) and corresponding
relative scalar energy Σϕ(τ) (bottom) from basic Smagorinsky model for τ
and dynamic Smagorinsky model for z (Case 3 in Table 11) with cBS,τ = 0
and various levels of added dissipation via cBS,z in (8.11). Simulations with
cBS,z < 0.50 produced blowup in the scalar energy.
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Figure 79. Domain-averaged scalar energy Eϕ(τ) (top) and corresponding
relative scalar energy Σϕ(τ) (bottom) from basic Smagorinsky model for τ and
VF6 representation for z (Case 4 in Table 11) with cBS,τ = 0 and various levels
of added dissipation via cBS,z in (8.11). Simulations with cBS,z < 0.20 produced
blowup in the scalar energy.
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Figure 80. Domain-averaged scalar energy Eϕ(τ) (top) and corresponding
relative scalar energy Σϕ(τ) (bottom) from TF5 representation for τ and basic
Smagorinsky model for z (Case 5 in Table 11) with cBS,τ = 0 and cBS,z = 1 in
(8.11).
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Figure 81. Domain-averaged scalar energy Eϕ(τ) (top) and corresponding
relative scalar energy Σϕ(τ) (bottom) from TF5 representation for τ and Bardina
scale similarity model for z (Case 6 in Table 11) with cBS,τ = 0 and various
levels of added dissipation via cBS,z in (8.11). Simulations with cBS,z < 0.20
produced blowup or nonphysical increase in the scalar energy.
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Figure 82. Domain-averaged scalar energy Eϕ(τ) (top) and corresponding
relative scalar energy Σϕ(τ) (bottom) from TF5 representation for τ and dynamic
Smagorinsky model for z (Case 7 in Table 11) with cBS,τ = 0 and various levels
of added dissipation via cBS,z in (8.11). Simulations with cBS,z < 0.90 produced
blowup or nonphysical increase in the scalar energy.
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Figure 83. Domain-averaged scalar energy Eϕ(τ) (top) and corresponding
relative scalar energy Σϕ(τ) (bottom) from TF5 representation for τ and VF6
representation for z (Case 8 in Table 11) with cBS,τ = 0 and various levels of
added dissipation via cBS,z in (8.11). Simulations with cBS,z < 0.80 produced
blowup in the scalar energy.
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Figure 84. Domain-averaged scalar energy Eϕ(τ) (top) and corresponding
relative scalar energy Σϕ(τ) (bottom) from TF5 representation for τ and VF6
representation for z (Case 9 in Table 11) with cBS,τ = 0.15 and various levels of
added dissipation via cBS,z in (8.11). Simulations with cBS,z < 0.60 produced
blowup or nonphysical increase in the scalar energy.
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Figure 85. Domain-averaged scalar energy Eϕ(τ) (top) and corresponding
relative scalar energy Σϕ(τ) (bottom) from TF5 representation for τ and dynamic
Smagorinsky model for z (Case 10 in Table 11) with cBS,τ = 0.15 and various
levels of added dissipation via cBS,z in (8.11). Simulations with cBS,z < 0.80
produced blowup or nonphysical increase in the scalar energy.
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Chapter 9

A POSTERIORI TEST: SCALAR MIXING IN TURBULENT FLOW

Whereas Chapters 5 and 7 assess the accuracy of tensorally-correct representations

for the subgrid stress tensor and subgrid scalar flux vector via a priori tests, and

Chapters 6 and 8 assess the computational stability of these representations via

forward simulations with a high-order pseudo-spectral code, this chapter assesses the

accuracy in the resulting resolved velocity and scalar fields when these representations

with their required minimum added stabilization are used in a forward simulation.

This is done by comparing statistics for the resolved velocity and scalar fields from

a forward simulation based on autonomic closure, using the generalized representation

TF5 for the subgrid stress τ and the generalized representation VF6 for the subgrid

scalar flux z, against corresponding statistics obtained from filtering the velocity

and scalar fields from a direct numerical simulation (DNS) of the same test problem.

Similar comparisons are also made from forward simulations based on traditional

closure using prescribed models for the subgrid stress and subgrid scalar flux. Together

these comparisons against filtered DNS statistics assess the accuracy in the velocity

and scalar fields obtained from autonomic closure versus traditional closure.

By choosing the test problem as conserved scalar mixing in homogeneous isotropic

turbulence in a periodic domain, the required DNS fields are well within computational

reach. The resulting filtered DNS statistics then provide the “truth data” against

which corresponding LES results from any chosen closure approach can be compared.

It will be seen in this chapter that autonomic closure with these tensorally-correct

representations TF5 for τ in (3.13) and VF6 for z in (3.33), with the added dissipation

in (8.11), provide substantially more accurate results for turbulent conserved scalar

mixing than do widely used conventional prescribed closure models.
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9.1 Description of the A Posteriori Tests

The large eddy simulations (LES) were conducted with the same high-order

pseudo-spectral LES code described in Sections 1.6, 6.1, and 8.1 using 323 grids with

side lengths L = 2π and periodic boundary conditions for a dimensionless viscosity

ν = 3.3(10−3). The spectrally-sharp LES-scale filter was applied at k∆̃ = 28, and the

corresponding spectrally-sharp test-scale filter was applied at k∆̂ = 14. The energy

forcing in the velocity field was the same as described in Section 6.1, and the scalar

field initialization was the same as described in Section 8.1.

Based on the results in Chapter 8, LES based on autonomic closure used the

TF5 representation for the subgrid stress with 15% added dissipation, and the VF6

representation for the subgrid scalar flux with 60% added dissipation. For comparison,

a second LES based on traditional prescribed subgrid models was conducted at the

same conditions, but using the basic Smagorinsky model for the subgrid stress and

the basic Smagorinsky model for the subgrid scalar flux.

A direct numerical simulation (DNS) was also conducted with the same high-order

pseudo-spectral code and at the same conditions, but on a 1283 grid. The viscosity

noted above was chosen to produce well-resolved DNS data having a sufficiently wide

inertial range so that the LES-scale filter at k∆̃ = 28 was within the inertial range.

This allowed the DNS velocity and scalar fields to be filtered at the same LES-filter

scale, thereby producing filtered velocity and scalar fields from which statistics could

be obtained for direct comparison with the corresponding statistics from the LES

based on autonomic closure with the TF5/VF6 representations and from LES based

on traditional closure with prescribed subgrid models.

9.2 Statistical Quantities in the Governing Equations

Regarding statistical quantities associated with only the resolved-scale velocity

fields, these a posteriori tests consider the resolved-scale momentum and kinetic

191



energy

ũi and
1

2
ũiũi (9.1)

and terms on the right side of the kinetic energy transport equation in (1.6), including

∂

∂xj

(
ũiS̃ij

)
,

∂

∂xj
(ũiτ̃ij) , S̃ijS̃ij , and τijS̃ij , (9.2)

that account, respectively, for conservative redistribution of kinetic energy by the

viscous stresses and by the subgrid stresses, for viscous dissipation of kinetic energy,

and for subgrid production of kinetic energy.

Similarly, regarding statistical quantities associated with the resolved-scale scalar

fields, these a posteriori tests consider the resolved-scale scalar and scalar energy

ϕ̃ and
1

2
ϕ̃2 (9.3)

and terms on the right side of the scalar energy transport equation in (1.12), including

∂2Eϕ
∂xj∂xj

,
∂

∂xj
(ϕ̃zj) ,

∂ϕ̃

∂xj

∂ϕ̃

∂xj
, and zj

∂ϕ̃

∂xj
, (9.4)

that account, respectively, for conservative redistribution of scalar energy by the

viscous stresses and by the subgrid stresses, for viscous dissipation of scalar energy,

and for subgrid production of scalar energy.

9.3 Inner-Scale and Outer-Scale Statistical Quantities

Each of the quantities q in Section 9.2 is either an inner-scale quantity or an

outer-scale quantity, depending on whether the spectrum associated with its energy

1
2
q2 has, respectively, a positive (p > 0) or a negative (p < 0) inertial-range scaling kp.

Since any general velocity-based quantity q having dimensions [Ln/Tm] has an

associated energy spectrum Q(k) for which

〈q2〉 =

∫ ∞
0

Q(k) dk , (9.5)

the dimensions of the spectrum Q must be [L2n+1/T 2m]. Following classical inertial-

range scaling arguments, in the inertial range Q(k) will depend on the average
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kinetic energy dissipation rate ε ∼ [L2/T 3] and wavenumber k ∼ [1/T ], and thus on

dimensional grounds Q must scale as

Q(k) ∼ ε
2
3
m k

4
3
m−(2n+1) . (9.6)

Based on the dimensions of each of velocity-based statistical quantity in Section 9.2,

from (9.6) it can be determined whether it is an inner-scale or outer-scale quantity.

The effects of an improved subgrid stress closure methodology can be expected to be

most prominent for inner-scale quantities.

Similarly, using A for the units of the scalar, since any general scalar-based quantity

q having dimensions [Aa Ln/Tm] has an associated energy spectrum Q(k) for which

〈q2〉 =

∫ ∞
0

Q(k) dk , (9.7)

the dimensions of the spectrum Q must be [A2a L2n+1/T 2m]. From classical inertial-

range scaling arguments, in the inertial range Q(k) will depend on the average

scalar energy dissipation rate χ ∼ [A2/T ], the average kinetic energy dissipation rate

ε ∼ [L2/T 3] and wavenumber k ∼ [1/T ], and so on dimensional grounds must scale as

Q(k) ∼ χa ε
2
3
m− 1

3
a k

4
3
m−(2n+1)− 2

3
a (9.8)

Based on the dimensions of each of scalar-based statistical quantity in Section 9.2,

from (9.8) it can be determined whether it is an inner-scale or outer-scale quantity.

The effects of an improved subgrid scalar flux closure methodology can be expected

to be most prominent for inner-scale quantities.

9.4 Results from A Posteriori Tests

9.4.1 Velocity-Based Statistics

Velocity-based statistics are affected only by the representation for the subgrid

stress, and not by the subgrid scalar flux representation. For each of the velocity-based

quantities in (9.1) and (9.2), its dimensions determine whether its inertial-range
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scaling exponent kp, as described in Section 9.3, will be positive or negative. Positive

scaling exponents (p > 0) mean that most of the energy associated with fluctuations

in the quantity come from large wavenumbers, corresponding to small length scales,

as thus these are termed “inner-scale quantities”. Negative scaling exponents (p < 0)

mean that most of the energy associated with fluctuations in the quantity come from

small wavenumbers, corresponding to large length scales, as thus these are termed

“outer-scale quantities”.

9.4.1.1 Inner-scale quantities

Only two of the quantities in (9.1) and (9.2) are inner-scale quantities, namely

∂

∂xj

(
ũiS̃ij

)
and S̃ijS̃ij , (9.9)

and thus for these it is expected that the effects of an improved subgrid closure will

be more pronounced than for outer-scale velocity-based statistics. Probability density

functions for these two inner-scale quantities are shown in Figures 86 and 87 from

the filtered DNS fields (black), from LES based on traditional closure with prescribed

subgrid models (red), and from LES based on autonomic closure with the TF5/VF6

representations (blue). In both figures, and especially in Figure 86, substantially

better agreement with the DNS results is seen from LES based on autonomic closure

with the TF5/VF6 representations.

9.4.1.2 Outer-scale quantities

The other quantities in (9.1) and (9.2) are all outer-scale quantities, namely

ũi ,
1

2
ũiũi ,

∂

∂xj
(ũiτ̃ij) and τijS̃ij , (9.10)

and thus for these it is expected that the effects of an improved subgrid closure will

be less pronounced than for inner-scale velocity-based statistics. Figures 88-91 show

probability density functions for these outer-scale quantities from the filtered DNS

fields (black), from LES based on traditional closure with prescribed subgrid models

194



(red), and from LES based on autonomic closure with the TF5/VF6 representations

(blue). As expected, differences in the results from the two LES closure approaches

are less pronounced in these outer-scale quantities.

9.4.2 Scalar-Based Statistics

Unlike velocity-based statistics, scalar-based statistics are affected by both the

subgrid stress representation and the subgrid scalar flux representation. For each of the

scalar-based quantities in (9.3) and (9.4), its dimensions determine whether its inertial-

range scaling exponent kp, as described in Section 9.3, will be positive or negative.

Positive scaling exponents (p > 0) again mean that most of the energy associated

with fluctuations in the quantity come from large wavenumbers, corresponding to

small length scales, as thus these are termed “inner-scale quantities”. Negative scaling

exponents (p < 0) mean that most of the energy associated with fluctuations in the

quantity come from small wavenumbers, corresponding to large length scales, as thus

these are termed “outer-scale quantities”.

9.4.2.1 Inner-scale quantities

Only two of the quantities in (9.3) and (9.4) are inner-scale quantities, namely

∂2Eϕ
∂xj∂xj

and
∂ϕ̃

∂xj

∂ϕ̃

∂xj
(9.11)

and thus for these it is expected that the effects of improved closures for both the

subgrid stress and the subgrid scalar flux will be more pronounced than for outer-

scale velocity-based statistics. Probability density functions for these two inner-scale

quantities are shown in Figures 92 and 93 from the filtered DNS fields (black), from

LES based on traditional closure with prescribed subgrid models (red), and from

LES based on autonomic closure with the TF5/VF6 representations (blue). In both

figures, substantially better agreement with the DNS results is seen from LES based

on autonomic closure with the TF5/VF6 representations than from traditional closure

with prescribed models.
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9.4.2.2 Outer-scale quantities

The other quantities in (9.3) and (9.4) are all outer-scale quantities, namely

ϕ̃ ,
1

2
ϕ̃2 ,

∂

∂xj
(ϕ̃zj) , and zj

∂ϕ̃

∂xj
. (9.12)

Figures 94-97 show probability density functions for these outer-scale quantities from

the filtered DNS fields (black), from LES based on traditional closure with prescribed

subgrid models (red), and from LES based on autonomic closure with the TF5/VF6

representations (blue). In all cases, substantially better agreement with the DNS

results is seen from LES based on autonomic closure with the TF5/VF6 representations

than from traditional closure with prescribed models.

For such outer-scale quantities it might be expected that the effects of improved

closures for both the subgrid stress and the subgrid scalar flux might be less pronounced

than for inner-scale velocity-based statistics. However, it is possible that the combined

effects of the substantially improved subgrid stress representation TF5 compared to

the basic Smagorinski model for the subgrid stress, and the substantially improved

subgrid scalar flux representation VF6 compared to the basic Smagorinski model for

the subgrid scalar flux, together with the inherent ability of the autonomic closure

methodology to adapt far more freely than is possible in traditional closure with

prescribed subgrid models, collectively give the improved agreement seen in Figures

92-97 over traditional closure with Smagorinski models.
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Figure 86. PDFs of the kinetic energy dissipation rate from forward simulations
based on traditional closure with basic Smagorinsky models for both τ and z
(red), autonomic closure with TF5 and VF6 representations for τ and z (blue),
and corresponding filtered DNS (black).
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Figure 87. PDFs of the viscous diffusion of resolved kinetic energy in forward
simulations based on traditional closure with basic Smagorinsky models for both
τ and z (red), autonomic closure with TF5 and VF6 representations for τ and
z (blue), and corresponding filtered DNS (black).
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Figure 88. PDFs of the resolved velocity in forward simulations based on
traditional closure with basic Smagorinsky models for both τ and z (red),
autonomic closure with TF5 and VF6 representations for τ and z (blue), and
corresponding filtered DNS (black).
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Figure 89. PDFs of the resolved kinetic energy in forward simulations based
on traditional closure with basic Smagorinsky models for both τ and z (red),
autonomic closure with TF5 and VF6 representations for τ and z (blue), and
corresponding filtered DNS (black).
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Figure 90. PDFs of the subgrid production P = τijS̃ij in forward simulations
based on traditional closure with basic Smagorinsky models for both τ and z
(red), autonomic closure with TF5 and VF6 representations for τ and z (blue),
and corresponding filtered DNS (black).
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Figure 91. PDFs of the kinetic energy transport by the subgrid stress in forward
simulations based on traditional closure with basic Smagorinsky models for both
τ and z (red), autonomic closure with TF5 and VF6 representations for τ and
z (blue), and corresponding filtered DNS (black).
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Figure 92. PDFs of the scalar energy transport via diffusion in forward simula-
tions based on traditional closure with basic Smagorinsky models for both τ
and z (red), autonomic closure with TF5 and VF6 representations for τ and z
(blue), and corresponding filtered DNS (black).
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Figure 93. PDFs of the scalar energy dissipation in forward simulations based
on traditional closure with basic Smagorinsky models for both τ and z (red),
autonomic closure with TF5 and VF6 representations for τ and z (blue), and
corresponding filtered DNS (black).
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Figure 94. PDFs of resolved scalar values in forward simulations based on
traditional closure with basic Smagorinsky models for both τ and z (red),
autonomic closure with TF5 and VF6 representations for τ and z (blue), and
corresponding filtered DNS (black).
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Figure 95. PDFs of resolved scalar energy in forward simulations based on
traditional closure with basic Smagorinsky models for both τ and z (red),
autonomic closure with TF5 and VF6 representations for τ and z (blue), and
corresponding filtered DNS (black).
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Figure 96. PDFs of scalar energy production Π = zi
∂ϕ̃
∂xi

in forward simulations
based on traditional closure with basic Smagorinsky models for both τ and z
(red), autonomic closure with TF5 and VF6 representations for τ and z (blue),
and corresponding filtered DNS (black).
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Figure 97. PDFs of scalar energy transport by the subgrid scalar flux in forward
simulations based on traditional closure with basic Smagorinsky models for both
τ and z (red), autonomic closure with TF5 and VF6 representations for τ and
z (blue), and corresponding filtered DNS (black).
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Chapter 10

CONCLUSIONS

Autonomic closure is a recently-proposed subgrid closure methodology for large

eddy simulation (LES) that replaces the prescribed subgrid models used in traditional

LES closure with highly generalized representations of subgrid terms, and solution of a

local system identification problem, that allows the simulation itself to determine the

local relation between each subgrid term and the resolved variables at every point and

time. This study has sought to (i) develop computationally efficient tensorally-correct

generalized representations for the subgrid stress tensor τ and the subgrid scalar flux

vector z, (ii) assess the accuracy of these representation via a priori tests, (iii) assess

the computational stability of these representations in forward simulations with a

high-order pseudo-spectral code, and (iv) conduct a posteriori tests of autonomic

closure with these representations to quantify the improvement in accuracy that this

new closure methodology provides for multiphysics LES requiring accuracy extending

across the entire range of resolved scales. Major conclusions from the present study

can be summarized as follows:

1. This study has, for the first time, demonstrated fully dynamic implementations

of autonomic closure for τ and z, and has thereby enabled the first LES based

on fully dynamic autonomic closure for simulating problems involving turbulent

conserved scalar mixing.

2. The fundamentally complete and minimal tensor representation theory of Smith

(1971) enables tensorally-correct generalized representations for subgrid terms

such as τ and z to be expressed in parametric quantities that can be formed from

the resolved variables in the simulation; such tensorally-correct representations
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offer inherent computational efficiencies over nonparametric and non-tensorally-

correct representations.

3. A complete and minimal representation for the subgrid stress tensor in products

of the strain rate and rotation rate tensors, S and R, has been derived in this

study based on the Smith (1971) tensor representation theory. This represen-

tation, termed “TF8” is more compact than a previous 11-term representation

originally proposed by Lumley (1970) and Pope (1975).

4. Based on prior work showing that the subgrid stress tensor τ can be accurately

represented in forms that extend only up to second-order products of velocity

components, the TF8 representation can be truncated to retain tensor products

only up to second-order, producing a tensorally correct representation termed

“TF5”.

5. Using the complete and minimal representation theory of Smith (1971), the

subgrid scalar flux z can be represented in the strain rate and rotation rate

tensors, S and R, and the scalar gradient vector ∇ϕ, in a complete and minimal

6-term form termed “VF6”.

6. A priori tests have shown that the TF5 representation for the subgrid stress

tensor τ , and the VF6 representation for the subgrid scalar flux vector z, produce

substantially more accurate fields for τ (x, t) and z(x, t) than do traditional

prescribed subgrid models, including the basic Smagorinsky model, the dynamic

Smagorinsky model, and the Bardina scale similarity model.

7. A compact and fully general result has been developed for rescaling the coefficient

associated with any term in any generalized representation for the subgrid stress

τ from the test-filter scale to the LES-filter scale. A corresponding compact
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and fully general result has been obtained for rescaling the coefficient associated

with any term in any generalized representation for the subgrid scalar flux z.

8. In forward simulations with a high-order pseudo-spectral code, the TF5 repre-

sentation for τ is inherently stable without the need for any added dissipation

or other stabilization. With just 10-15% added dissipation it produces a kinetic

energy spectrum E(k) that shows k−5/3 inertial-range scaling over the entire

range of scales in the simulation; this is precisely what the energy spectrum

should look like from a large eddy simulation that properly transfers momentum

and energy within resolved scales and between resolved and subgrid scales.

9. A posteriori tests based on forward simulations of turbulent conserved scalar

mixing with the same high-order pseudo-spectral code show that velocity and

scalar statistics from autonomic closure with the TF5 representation for τ

and VF6 representation for z compare substantially better with corresponding

statistics of filtered fields from direct numerical simulation (DNS) than do the

statistics from traditional closure using prescribed models.

10. Collectively, the results from this study have demonstrated that fully dynamic

autonomic closure is a practical approach for LES of multiphysics problems

that require accuracy across all resolved scales, extending even to the smallest

resolved scales in the simulation.
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