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ABSTRACT  

 

Bicycle stabilization has become a popular topic because of its complex dynamic 

behavior and the large body of bicycle modeling research. Riding a bicycle requires 

accurately performing several tasks, such as balancing and navigation which may be 

difficult for disabled people. Their problems could be partially reduced by providing 

steering assistance. For stabilization of these highly maneuverable and efficient machines, 

many control techniques have been applied – achieving interesting results, but with some 

limitations which includes strict environmental requirements. 

 This thesis expands on the work of Randlov and Alstrom, using reinforcement 

learning for bicycle self-stabilization with robotic steering. This thesis applies the deep 

deterministic policy gradient algorithm, which can handle continuous action spaces which 

is not possible for Q-learning technique. The research involved algorithm training on 

virtual environments followed by simulations to assess its results. Furthermore, hardware 

testing was also conducted on Arizona State University’s RISE lab Smart bicycle platform 

for testing its self-balancing performance. Detailed analysis of the bicycle trial runs are 

presented. Validation of testing was done by plotting the real-time states and actions 

collected during the outdoor testing which included the roll angle of bicycle. Further 

improvements in regard to model training and hardware testing are also presented. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1   Motivation 

 

Two wheelers (bicycles and E-bikes) are one of the efficient means of 

transportation in highly crowded areas, offer better accessibility and save time of travel. 

People travelling via bicycles are offered great benefits and have dedicated bicycle lanes 

for safe travel on roads. Also, taking into consideration of the disabled and handicapped 

people who are unable to ride on them, there should be some means by which it could auto-

stabilize itself. This also has advantages of helping kids and teenagers learning to ride a 

bicycle or motorbike. 

But why bicycle? As the world continues to urbanize, people in cities will have to 

face new challenges which requires new innovative solutions for infrastructure, services 

and mobility. New mobility demands for a commute solution which is efficient, easy, 

inexpensive and reliable which would ensure faster and easier means for flow of people 

and goods around cities and thus minimize locomotion problems. In these scenarios, 

bicycles are the best option for short commute distances or as first or last mile solutions in 

connection to mass population transit.   

Though bicycles offer great benefits but at the same time it is a pain for starters 

learning to ride it especially when it comes to controlling and balancing. An increased 

consequence of this leads to major disasters on roads and deaths. As per the Pedestrian and 



  2 

Bicycle Information Centre (PBIC), most of the bike accidents and collisions happen 

during turning/maneuverability of bicycle. Also, as per the report of Chicago Department 

of Transportation “Chicago’s Street for cycling plan 2020” which shows that there has been 

an increase in the bicycle crashes with increase in bicycle usage. Another report provided 

by NHTSA showed that there were 783 bicyclists killed in motor vehicle crashes.  

In addition, with the advent of autonomous vehicles which is the emerging future 

of transportation offering V2V and I2V communication, the bicycle models can be 

leveraged in order to perform communications with vehicles (B2V communication) and 

hence increase the safety margin and reduce the collision rate. With the help of deep 

learning and computer vision techniques used with appropriate sensors, bicycles can be 

made smarter and independent to conduct its own decision-making process. One of the key 

aspects which makes the bike autonomous is self-balancing and it is important that while 

commuting the bike has maximum stability by overcoming the obstacles.     

Bicycle control has been achieved before using the classical control methods and 

reinforcement learning techniques as shown in Cam et al. (2013) and Fawaz et al. (2019). 

These techniques either require robust hardware systems or cannot achieve results due to 

learning methods such as Deep Q learning and SARSA algorithm use discrete action 

spaces. Therefore, work on an improved algorithm which can support continuous control 

required for bicycle stabilization was required. 
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1.2   Focus 

 

This thesis focuses on achieving bicycle stabilization using robotic steering 

mechanism which is actuated via deep deterministic reinforcement learning algorithm. 

This was mainly to achieve velocity balancing of bike and also serves as an extended work 

to previous research which achieved stationary balancing using Control Moment 

Gyroscope in Arizona State University’s RISE Laboratory.  

The implementation of algorithm was studied in detail and tested on the custom 

bike environment which served as a part of software testing. It was also tested on the 

physical bike with usage of appropriate sensors and actuators as a part of hardware testing. 

Detailed study of algorithm and using complex reward function will create variations to 

the bicycle hardware system. 

 

1.3   Existing Work 

 

 Reinforcement Learning for balancing of bicycle was first introduced by Randlov 

and Alstrom. It presented a way of how bicycle would drive itself with learning from the 

SARSA algorithm, an on-policy reinforcement learning technique. This enabled the 

bicycle to balance and drive itself towards a goal using shaping. This work used a basic 

reward function and most important used an algorithm which uses discrete action space 

(Randlov & Alstrøm, 1998). 

 Stanford university paper uses a Deep Q learning technique for controlling a bicycle 

which worked on extending Randlov’s work and formation of new reward function for 
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further improving the control process (Cam, Dembia, & Israeli, 2013). But the algorithm 

does not work for continuous action spaces and it claims that a robust reward functions 

needs to be designed for improving the bicycle controllability. Also, in regard to the 

punishment function, it is defined at a threshold roll angle value of 30˚ which seems to 

unfavorable and hence a better threshold value less than 30˚ should be used. 

 Some researchers from the research lab of Kyung Hee University, Seoul, South 

Korea worked on designing controller for self-driving bicycle using the deep reinforcement 

learning techniques which included using three methods and compare their results by 

implementing algorithms in various scenarios (Choi, 2019). But there were no signs of 

hardware implementation done which could truly test the performance of the algorithm on 

a physical bicycle. 

 MIT Autonomous Bicycle Project came up with a new innovative means of 

balancing the bicycle which offers improved user experience by bringing the convenience 

of mobility-on-demand-systems to bicycle sharing. The bicycle’s innovative design made 

use of two rear tires which provides two different configurations as shown in the Figure 

1.1. The first configuration is the same as regular bike in which both the rear tires remain 

intact and act as single tire for normal bicycle operation by user. While the second 

configuration provides autonomous driving operation which transforms the bike into 

tricycle with the rear tires separated with the help of linear actuators (Sanchez, 2020). 

However, it limits the bicycle for autonomous navigation only while reaching to the user 

and after the user has left the bicycle to drive itself to the next.  
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Figure 1.1: MIT Autonomous Bicycle Configurations (Sanchez, 2020)  

 

 Another research done in University of Tsukuba, Tsukuba, Japan on an 

experimental autonomous bicycle as shown in Figure 1.2 was developed and stabilized 

using a simple feedback controller . The feedback controller was designed to apply steering 

torque under the feedback of other states of bike. The author claims that using cubed 

steering angle feedback term is effective to achieve good stabilization for the experimental 

model. However, it does not explain much about the feasibility of the feedback term 

introduced in the paper (Tsubouchi, Suzuki, Koyanagi, & Yuta, 2001). 

 

 

  

 

 

 

Figure 1.2: Autonomous Bicycle (Tsubouchi, Suzuki, Koyanagi, & Yuta, 2001) 
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Many researchers working on the bicycle stabilization also used gyroscopic 

stabilization in order to balance the bike. Gyroscopic stabilization is a method of balancing 

by using a heavy rotating flywheel which provides the reaction force in order to balance 

the bicycle. Though this is a really good method, but it requires robust hardware installation 

and a faster feedback from the sensors especially from the IMU in order to decide the 

orientation of flywheel. Moreover, its application is mostly found in cases of stationary 

balancing. As seen in Yetkin et al. (2014), it presents two controllers sliding mode 

controller and PID controller designed for the inverted pendulum and bicycle setup in order 

to validate the robust capabilities of Control Moment Gyroscope (CMG) used for static 

stabilization. Similar work can also be found in Lam et al. (2011).  

 

 

 

 

 

 

 

Figure 1.3: Bicycle Setup (Yetkin, et al., 2014) 

 

 Arizona State University’s RISE Lab also achieved bicycle balancing using 

steering control when the bicycle speed is more than 4.6 m/s or more. However, the weight 

to torque ratio was not sufficient to balance the bicycle analyzing from their preliminary 

plans. (Deng, Moore, Bush, Mabey, & Zhang, 2018)  
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 As a step towards understanding human/bicycle interactions, Zhang  and Yi (2010) 

presented a dynamic model and balance control of human/bicycle systems. The dynamic 

model in this paper considered number of assumptions, the main assumption being human 

modeled as a point mass on the bicycle system. Balance control design by using a coupled 

two sliding mode surface approach and integrating the controller with nonlinear 

disturbance observer was also presented followed by comparison of simulation results 

obtained by considering sliding mode control with and without nonlinear disturbance 

observer. Experimental testing and validation are still undergoing at Rutgers university 

(Zhang & Yi, 2010). 

 Arizona State University developed a self-balancing bicycle system as shown in 

Figure 1.4. The system includes the bicycle, a sensor coupled to bicycle, steering control 

assembly for adjusting the steering angle and a controller coupled to sensor and steering 

control assembly configured to receive the value from sensor and adjust the steering angle 

based on value received respectively. (Zhang , Moore, Jonathan, Mabey, & Wenhao, 2020) 

 

  

 

 

 

 

 

Figure 1.4: Self-balancing Bicycle (Zhang , Moore, Jonathan, Mabey, & Wenhao, 2020) 
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1.4   Thesis Outline 

 

 This thesis presents robotic steering stabilization of bicycle using a reinforcement 

learning technique. Talking about the contribution that was made in this thesis, the first 

part is the complete design of the algorithm for the software testing process and also 

improving the performance by tweaking parameters, addition of noises and actor-critic 

networks in order to get the trained model to be utilized for further implementations.  The 

other main part is the hardware implementation of the deep deterministic algorithm by 

using the trained model and also how it could be integrated with the existing hardware with 

the required manipulations. The contribution to the hardware included integration of the 

Jetson Tx2 with the central PSoC 5 microcontroller which acts as the main component for 

controlling the bicycle moving components and its regularization and also with installation 

of safety mechanisms which included servo braking and steering angle control using radio 

control in case of extreme bicycle behavior conditions. Furthermore, this thesis includes 

the results obtained from simulations as well as hardware testing on a physical bike model. 

The organization of the remaining part of this thesis is as follows: 

 Chapter 2 presents the complete dynamic model of bicycle. This model is made by 

modifying the Randlov’s dynamic equations and each of the terms defined are explained 

in detail in this chapter. 

 Chapter 3 covers the complete explanation of the Deep Deterministic Policy 

Gradient algorithm (DDPG). This algorithm is deployed on the bicycle model to achieve 

its stabilization. It includes the explanation for using this algorithm and why it was selected. 
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The complete neural structure with the complete learning process for the system is also 

presented.   

 Chapter 4 presents the complete software testing process. It includes the testing on 

the OpenAI pendulum environment and custom bicycle environment designed along with 

the results presented. 

 Chapter 5 presents the hardware testing on the Arizona State university RISE Lab’s 

bicycle model. It presents the components used, algorithm workflow process and the results 

obtained from the testing on the bike model. 

 Chapter 6 summarizes the work and points out some ideas for future directions. 



  10 

CHAPTER 2 

 

DYNAMIC MODEL  

 

2.1   Dynamic Model of Bicycle 

 

 The bicycle system has multiple components all of which contribute to the final 

dynamic model in an interesting manner. It is necessary to get a proper dynamic model as 

it plays a crucial role in getting the appropriate state values feeded to the algorithm and 

output the response or action directed to the actuator. In this paper, a modified Randlov 

dynamic model was used which was derived using the Euler-Lagrange equations.  

  Before deep diving into the dynamic equations, the understanding of the 

parameters used in modeling of bicycle is important. The Figure 2.1 shows the side view 

and back view of the bicycle labeled with the various parameters used in the dynamic 

equation. 

 

 

 

 

 

 

 

 

Figure 2.1: Bicycle Side View 

T 

v 

r 
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Figure 2.2: Bicycle Rear View 

 

As seen in the Figure, θ represents the steering angle of the bicycle handle and 𝟂 

represents the roll angle of bicycle measured from the vertical. These two parameters serve 

as vital components in the dynamic and govern the complete system. 

The following equations describe the mechanics of the bicycle system completely. 

The roll acceleration can be given as:  

  

𝜔̈ =
1

𝐼bicycle + CMG 
(𝑀ℎ𝑔 sin 𝜔 − cos 𝜔 (𝐼𝑑𝑐𝜎̇𝜃̇ + sign(𝜃) ⋅ 𝑣2 (

𝑀𝑑𝑟

𝑟𝑓
+

𝑀𝑑𝑟

𝑟𝑏
+

𝑀ℎ

𝑟CM
)))     (2.1) 

𝜔̈ =
1

𝑀ℎ2 (𝑀ℎ𝑔 sin 𝜔 − cos 𝜔 (𝑀𝑑𝑟2𝜎̇𝜃̇ + sign(𝜃) ⋅ 𝑣2 (
𝑀𝑑𝑟

𝑟𝑓
+

𝑀𝑑𝑟

𝑟𝑏
+

𝑀ℎ

𝑟CM
)))    (2.2) 

 

 

𝜔 

𝜔̇ 
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The equation for steering acceleration is  given by: 

 

𝜃̈ =
𝑇−𝐼𝑑𝑣𝜎̇𝜔̇

𝐼𝑑𝑙
                                                         (2.3) 

                                 𝜃̈ =
𝑇−

3

2
𝑀𝑑𝑟2𝜎̇𝜔̇

1

2
𝑀𝑑𝑟2

                                                     (2.4) 

The above equations contain the moment of inertia of the tires which are substituted with 

the respective mass radius product, the inertias are considered about the axis passing 

through the center of tire, along the steering column and along the bicycle velocity as 

shown in the Figure 2.3. The equations are as follows: 

 

𝐼𝑑𝑐 = 𝑀𝑑𝑟2                                                          (2.5) 

𝐼𝑑𝑣 =
3

2
𝑀𝑑𝑟2                                                         (2.6)      

𝐼𝑑𝑙 =
1

2
𝑀𝑑𝑟2                                                         (2.7) 

 

 

 

 

 

 

 

 

Figure 2.3: Axis for Moments of Inertia for Tire (Randlov & Alstrøm, 1998) 
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The front and back tires of the bicycle follow different paths and hence have different 

radius, same goes for the radius traced by the center of mass of the bike. The radii of the 

tires and center of mass (CM) is shown in the Figure 2.4 below:  

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Radius of Front Tire and Back Tire (Randlov & Alstrøm, 1998)  

 

Hence the equations for the radii of front tire, back tire and center of mass of bike are: 

 

𝑟𝑓 =  
𝑙

|cos(
𝜋
2

−𝜃)|
=

𝑙

|sin 𝜃|
                                                (2.8) 

𝑟𝑏 = 𝑙 |tan (
𝜋

2
− 𝜃)| =

𝑙

|tan 𝜃|
                                            (2.9) 

𝑟CM =  √(𝑙 − 𝑐)2 +
𝑙2

(tan 𝜃)2                                             (2.10) 

 

Front  

tire 

Back tire 
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Equations 2.2 and 2.4 are the final dynamic equations for the bicycle. The main 

reason for modifying the Randlov’s dynamic model (Randlov & Alstrøm, 1998) as it 

considers the cyclist and its inertial term but for the current case, Control Moment 

Gyroscope (CMG) is present on the actual bike and therefore the inertia of the complete 

bike including the CMG is considered as shown in equation 2.2.  

 The equation considers the effects from the gravitational forces, angular 

momentum of the tires, inertias of the complete bike system (including the gyroscope) and 

the centrifugal forces considered for front tire, back tire and center of mass. It also 

considers an important term that aids the stabilization of system which is the cross effects 

originating from conservation of angular momentum of tires.  

 The current system of equations does not consider the moment of inertias arising 

from the CMG as it is not considered functional. These effects would be required to be 

added to the equation 2.2 if the system is integrated and made to work simultaneously with 

the robotic steering mechanism. 
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CHAPTER 3 

 

ALGORITHM 

 

3.1   Selection of Reinforcement Learning Technique 

 

 There are a number of reinforcement learning algorithms that exist and selection of 

one algorithm was a crucial task as there is no comprehensive distinction between the 

methods. But there were some aspects which helped in the decision making and are 

researched in detail. 

 Randlov’s paper (Randlov & Alstrøm, 1998) highlights using SARSA algorithm 

for learning a bicycle. SARSA which stands for State-Action-Reward-State-Action is an 

on-policy algorithm which means it learns the Q value based on the action obtained from 

the current policy. The major drawback is that it can only handle discrete action spaces.     

 Other algorithm which was explored was Deep Q Learning technique (DQN) that 

is capable of achieving good performance for Atari video games (Mnih, et al., 2013). This 

algorithm overcomes the limitation of the Q learning which is the lack of generality and  

achieved success for high dimensional observation spaces, but the action space that it can 

handle is still discrete and low dimensional. It relies on finding action that maximizes the 

value function but in case of continuous domains an iterative optimization process is 

required. One method of adapting DQN to continuous domain is to discretize the action 

space but the action space generated is too large and also can lead to throw away important 

information.    
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 After exploring Deep Q algorithm in depth, Rainbow algorithm (Hessel, et al., 

2017) was researched. This paper examines the six extensions to the DQN algorithm and 

presents an integrated agent Rainbow made using combination of all these baselines. 

Furthermore, it provides performance analysis of integrated agent with these baselines and 

details about how the agent outperforms others. However, the agent focuses on value-based 

methods and does not consider policy based RL algorithms nor the actor critic methods. 

The integrate agent is based on methods which involve DQN and thus have discrete action 

space which is unlikely to work on the bicycle system as it requires continuous control.  

 Finally, Deep Deterministic Policy Gradient (DDPG) algorithm (Lillicrap, et al., 

2019) was explored. DDPG is an off-policy, model free algorithm which uses the actor-

critic method and tackles estimating values by learning policies in high dimensional 

continuous action spaces. In case of bicycle stabilization task, continuous observation and 

action spaces is a requirement which is fulfilled using the DDPG algorithm. Hence it was 

best suited algorithm selected. 

 

3.2   Deep Dive into Deep Deterministic Policy Gradient Algorithm 

3.2.1   Basic Introduction 

 

DDPG is an off-policy algorithm that uses the deep neural networks to represent 

the policy. Some of the features of the algorithm include. Firstly, it uses the actor-critic 

approach, Actor and Critic are the two components around which the algorithm is centered. 

The actor network takes responsibility of the policy which takes in states as input and 

outputs an action. The critic network is responsible for generating the action value function 
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Q(s, a) by taking combination of states and action as input. It assesses how well is the actor 

network performing. Second, it adopts the feature of replay buffer and using separate target 

networks from DQN, replay buffer is used as a storage buffer to store the states, rewards 

and actions and use it to train the networks while target networks help in updation of 

network weights. Finally, for performing the action exploration the noise is added to the 

action term which follows the Ornstein-Uhlenbeck process (Uhlenbeck & Ornstein, 1930). 

 

3.2.2   Structure of Actor-critic Networks 

Figure 3.1: Structure of Actor Network (Left) and Critic Network (Right) 

 

 As the algorithm contains two networks actor and critic, both of them would be 

discussed in detail. The complete internal structure is shown in the Figure 3.1. The actor 

network takes in a 5-dimensional state vector and outputs the 1-dimensional action. The 
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network has following layers, 2 fully connected layers of 400 and 300 units respectively 

with glorot-normal initializers and a final tanh activated layer. Considering the critic 

network, it takes in the combination of the states and actions and generates the action value 

function Q(s, a).  The layers for the critic network include the first 2 layers are similar to 

the actor network and the final layer outputs the q value. Also, the actions were included 

directly in the second hidden layer of the critic network. The final layer weights for both 

actor and critic are taken from uniform distribution [-3 x 10−3, 3 x 10−3]  and biases are 

zero. Adam optimizer is used in both networks with learning rate of 0.0001 and 0.001 for 

actor and critic respectively. Replay buffer size is set to 106. The values for the parameters 

used are different from the experiment section of DDPG paper (Lillicrap, et al., 2019) as it 

allows user defined flexibility in order to explore different settings. 
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3.2.3   Bicycle Learning 

             

 

 

 

 

 

 

  

 

 

 

Figure 3.2: Complete Ddpg Algorithm Workflow 

 

This section outlines the complete workflow of algorithm implemented on the 

bicycle as shown in the Figure 3.2. The various states of the bicycle include (𝜔, 𝜔̇, 𝜔̈, 𝜃, 𝜃̇) 

where 𝜔, 𝜔̇, 𝜔̈ are the roll angle, roll velocity and roll acceleration of the bike measured 

from the vertical axis and 𝜃, 𝜃̇ are the steering angle and steering velocity of the handlebar 

of the bicycle respectively. These states are sent from the sensors on the bicycle to the 

controller and returns the action torque T. The complete process is described as follows: 

The bicycle observes the state 𝑠𝑡 which is sent to the actor network, the network 

takes in the state and outputs the action 𝑎𝑡 as per the following equation: 

𝑎𝑡  =  µ(𝑠𝑡|θµ ) + 𝑁𝑡                                                    (3.1) 
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This part of the process refers to the action exploration stage where for given state, actions 

are calculated and the term 𝑁𝑡 refers to the noise term which comes from the Ornstein-

Uhlenbeck process.  

Next, the bicycle sends the other state at time t+1, 𝑠𝑡+1 and returns reward 𝑟𝑡 to the 

agent. The parameters obtained [𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1 , 𝑟𝑡] are then sent to the replay buffer R and 

stored in order to be used later for training of the networks. 

The above process continues in a loop and soon the replay buffer has N minibatch 

samples available to be sent to the networks. As R fills up, a minibatch of data is sent to 

the networks where actor network takes in the states 𝑠𝑡+1 , critic network takes in the states 

𝑠𝑡 , 𝑠𝑡+1 and the actions 𝑎𝑡 while the loss function takes in the reward 𝑟𝑡 for its calculation. 

Next stage is the training of the critic network which includes minimizing of the 

loss function. Q(s, a|𝜃𝑄) and 𝑄′(s, a|𝜃𝑄′
) are the main network and target network of the 

critic where 𝜃𝑄 and 𝜃𝑄′ refer to the weight of the main critic network and target network 

respectively. 𝜃𝑄 is optimized by minimizing the loss function given by: 

𝐿 =
1

𝑁
∑  𝑖 (𝑦𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖 ∣ 𝜃𝑄))

2
                                       (3.2) 

where  𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑡+1, 𝜇′(𝑠𝑡+1 ∣ 𝜃𝜇′
) ∣ 𝜃𝑄′

)                           (3.3) 

 Following that is the training of the actor network. Considering µ(s, a |θµ) and 

µ′(s, a|𝜃µ′
) be the main network and the target network of the actor, the main actor is 

updated using the deterministic policy gradient theorem which is: 

 

∇𝜃𝜇𝜇|𝑠𝑖
≈

1

𝑁
∑  𝑖 ∇𝑎𝑄(𝑠, 𝑎 ∣ 𝜃𝑄)|

𝑠=𝑠𝑖,𝑎=𝜇(𝑠𝑖)
× ∇𝜃𝜇𝜇(𝑠 ∣ 𝜃𝜇)|𝑠𝑖

                (3.4) 
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Finally, the parameters of target networks are updated using soft update technique 

with learning rate 𝜏 by using the following equations: 

𝜃𝑄′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

                                         (3.5) 

𝜃𝜇′
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′

                                          (3.6) 

 

 The bicycle learning process involved training algorithm with three conditions no 

noise, with Ornstein-Uhlenbeck (OU) noise and Gaussian noise. In case of no noise 

condition, the training was done without considering any noise in the algorithm. For 

algorithm with OU noise, the noise was added to the actions coming from the actor network 

which followed the Ornstein-Uhlenbeck process. Finally, the last condition used for 

learning process was training using addition of Gaussian noise to the neural network.   
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CHAPTER 4 

 

SOFTWARE TESTING 

 

4.1   Device Configuration 

 

The DDPG algorithm and the bicycle environment is developed and implemented 

on the Windows 64-bit OS, i5-8300H CPU @ 2.3GHz processor. PyCharm is used as an 

integrated development environment (IDE) with Python 3.7 as the programming language. 

There were number of packages used, out of which the most important ones include 

Pandas3D game engine (Goslin & Mine, 2004), TensorFlow 2.1 framework was used for 

the algorithm implementation and OpenAI gym (Brockman, et al., 2016) for creation of 

the custom bicycle environment.  

 

4.2   Agent Information 

 

The class Agent_DDPG developed using the PyCharm IDE is used to initialize the actor 

and critic networks, replay memory and the noise functions. It specifies 3 functions: bike 

learning, evaluate and hardware implementation. Bike learning function exhibits the exact 

procedure explained in the algorithm section starting from action exploration, training of 

the networks, getting the actions and rewards for every step executed and saving the learned 

model as checkpoints file. Evaluate function restores the saved learned model and is 

implemented on the custom bicycle environment made using Pandas3D game engine. It 
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basically using the trained actor network and inputs the states received from the custom 

environment step and creates a simulation video of the executed actions calculated using 

the received states. It acts as a verification of how the bike performs and its stabilization 

ability. Whereas the hardware function is for communication with the hardware devices. 

 

4.3   OpenAI Gym Pendulum Environment Testing 

4.3.1   Setup 

 

Before testing the algorithm implementation on the custom bicycle environment, it 

was implemented on OpenAI pendulum environment (Brockman, et al., 2016) in order to 

verify algorithm’s capability. The setup was easy which required using the gym 0.17.2 

package and loading the pendulum environment. It takes in two dimensional states and 

outputs only one action torque which is applied to the pendulum so that it remains vertically 

balanced. The environment was chosen as it is similar to the bicycle stabilization problem 

having the same goal. The environment is predefined containing the dynamic model of 

pendulum which calculates the new states at definite timestep and rewards.  

 

4.3.2   Network Structure Design for Pendulum Environment 

 

The actor network takes in a 3-dimensional state vector and outputs the 1-

dimensional action. The network has three layers, 2 fully connected layers of 400 and 300 

units respectively with kernel initializers and bias initializers equal to weights and bias 

calculated as a uniform distribution function of fan-in layer and a final tanh activated layer. 
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Considering the critic network, it takes in the combination of the states and actions and 

generates the action value function Q(s, a). It also has three layers; the first 2 layers are 

similar to the actor network and the final layer outputs the q value. Also, the actions were 

included directly in the second hidden layer of the critic network. The final layer weights 

and biases for both actor and critic are taken from uniform distribution [-3 x 10−3, 3 x 

10−3] and [-3 x 10−4, 3 x 10−4] respectively. Adam optimizer is used in both networks 

with learning rate of 0.001 and 0.01 for actor and critic respectively denoted as alpha and 

beta. Gamma value is taken as 0.99. Replay buffer size is set to 106. 

     

       4.3.3   Results 

 

            The following results shown are snaps of the PyCharm IDE on which the test was 

conducted with the total reward function plotted. The training was conducted for 1000 

episodes.  
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Figure 4.1: PyCharm Ide Snapshots for Pendulum Environment and Total Reward Plot 
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 Plot shows that during the training process, the reward value starts from around -

1900 and it decreases and reaches around -1200 at the end of 1000 episodes. The simulation 

results do show network learning as the mean score decreases and thus this validated that 

the algorithm can be used further to be implemented on the custom bicycle environment.  

 

4.4   Custom Bicycle Environment Testing 

4.4.1   Setup 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Bicycle Custom Environment 

 

            Bicycle environment setup followed the same steps of the pendulum environment 

and had to be created as custom environment with gym registration in order to use its 

features. The custom environment BicycleBalanceEnv developed have the features as 

follows: 
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            The Initialization function defines the parameter values related to the bicycle. The 

values used are taken from the physical bicycle model which was used in hardware testing. 

It also initializes the values of masses of tires, masses of bicycle system, position of center 

of mass, velocity of bike and many other components. The main initialization parameters 

considered are listed. 

 Angles at which the episode is considered failed and to start a new episode is 

dependent on the angles 𝜔 (Roll angle) and 𝜃(steering angle) set as 20˚ and 90˚ 

respectively. For defining the observation space , low and high limits were set as 𝜔 = [-20, 

20] and 𝜃 = [-80, 80]. While for the action space,  output torque 𝑇 was set as [-2 , 2] N-m. 

 The step function in the environment is highly accessed function as it defines the 

complete dynamic equations of the bicycle. It is responsible to return the observed states 

and rewards to the agent.  

 

4.4.2   Reward Function 

 

            The reward function was designed considering the most important parameters that 

affect the bicycle environment which were found to be roll angle 𝜔, roll velocity 𝜔̇ and 

roll acceleration 𝜔̈. The coefficients of the reward function were assigned depending on 

the importance and desired domination required. For the bicycle problem, two approaches 

were considered given in detail as follows:  
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Approach 1: Importance given to roll angle 𝜔; 

Reward function = 𝒓(𝑠, 𝑎) = { 
 last reward before falling down     |𝜔| >

𝜋

9

−(𝜔2 + 0.1𝜔̇2 + 0.01𝜔̈2)    |𝜔| <
𝜋

9

 

 

where the term takes responsibility for balancing the bicycle. In this reward function, the 

bicycle is considered as falling down if the angle between the bicycle and the vertical plane 

is greater than π/9 rad (or 20 degree). When the bicycle falls down, the reward at this time 

is used until the end of the episode. The coefficients for each term are selected based on 

their contributions to the reward. Particularly, we use a coefficient of 1.0 for 𝜔2, which is 

the most important in the balancing term while the other terms are given less importance. 

The effects of the components on the reward value are discussed in the results section. The 

model training was done for 10000 episodes and individual contribution of each term and 

total reward were plotted.  

 

Approach 2: Importance given to roll acceleration 𝜔̈; 

Reward function = 𝒓(𝑠, 𝑎) = { 
 last reward before falling down     |𝜔| >

𝜋

9

−(0.01𝜔2 + 0.1𝜔̇2 + 𝜔̈2)    |𝜔| <
𝜋

9

 

 

Experimentation of reward function was done in order to explore different possibilities and 

to see if better and faster learning of the model can be achieved.  In this reward function, 

we use a coefficient of 0.01 for 𝜔2, which means giving least importance to roll angle and 

instead giving highest priority to the acceleration term by setting its coefficient as 1.0. The 
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figures in results section shows the effects of the components on the reward value 

individually as well as total contribution shown by total reward plot. 

            Both the reward functions were able to achieve satisfactory stabilization for the 

bicycle model but to select the best performing model was important in order to be used 

for evaluation on the physical bike model. The detailed analysis is performed in the next 

section. 

4.4.3   Results 

 

            After setup of the custom environment the execution of the algorithm was divided 

into three main steps, bike learning, evaluation and simulation. Considering the bike 

learning stage, this is the basic core code which defined the efficiency of other steps. This 

stage encompassed the complete neural networks training using the parameters obtained 

from the environment. The rewards and reward terms plots are obtained which are 

calculated at each timestep and saved as NumPy array file (.npy) format which gives an 

idea of the training level achieved. Whereas the evaluation and simulation stages use the 

saved model to evaluate the performance of trained actor network by passing in random 

states.   

            The training was conducted for 10000 episodes in order to ensure the proper 

training of model is achieved. As discussed in the bicycle learning process, the training of 

networks considered the variations of having no noise, addition of action noise according 

to the Ornstein-Uhlenbeck process and addition of gaussian noise. The individual reward 

terms and total reward obtained during the training for these trained models are compared 

for both the approaches and the inferences made are discussed in detail as follows.  
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Figure 4.3:  Comparison of Models Considering No Noise and with Noise Addition 

with Reward Function Based on Approach 1 
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Considering Approach 1, in case of the results obtained for reward term 1, the maximum 

value reached at the end of training for model considering no noise, OU noise and Gaussian 

noise are 0.0295 rad2 , 0.001 rad2 and 0.00013 rad2 respectively. Thus, the roll angle 𝜔 

calculated would be + 9.84˚,  + 1.812˚ and + 0.6532˚ . As seen from the calculated values, 

all the values are below the threshold hence all of them attained satisfactory results. From 

the plots, it can be observed that model that considered noise performed better than others 

and boosted the performance. But out of the two, introduction of gaussian noise gave more 

boost and better performance.  

Considering the total reward plot, training that included gaussian noise was quite 

stable than the other two plots throughout. Though all of the plots showed faster learning 

but the convergence results for model considering gaussian noise was better.    
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Figure 4.4:  Comparison of Models Considering No Noise and with Noise Addition 

with Reward Function Based on Approach 2 

 

Considering Approach 2, in case of the results obtained for reward term 1, the 

maximum value reached at the end of training for model considering no noise, OU noise 

and Gaussian noise are 0.00003 rad2 , 0.00002 rad2 and 0.000085 rad2 respectively. Thus, 

the roll angle 𝜔 calculated would be + 3.14˚,  + 2.56˚ and + 5.28˚ . As seen from the 

calculated values, all the values are below the threshold hence all of them attained 

satisfactory results, but the roll angle values were greater than the ones in approach 1 except 

for no noise condition. The results considering the condition of noises, the model with OU 

noise performed better than the gaussian noise.  
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While in case of total reward plot, the training in approach 1 was better than the 

ones in approach 2. Considering the total training process, the values of reward in case of 

approach 1 were significantly less than the ones in approach 2.   

After assessing the results of both the approaches, approach 1 gave promising 

results. Hence, after careful consideration Approach 1 was selected for further deployment 

on the hardware testing process.  

During the preliminary stage, comparison was done between considering the no 

noise and OU noise condition. Hence, the hardware testing performed before was done by 

implementing the model which considered OU noise and reward function based on 

approach 1 which proved to be better than the no noise condition. Then considering the 

improvement required, the addition of gaussian noise to the network was performed for 

training process which gave better results than the former and this model would be 

implemented on the hardware system as a future work.  
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CHAPTER 5 

 

HARDWARE TESTING  

 

5.1   Overview of the Self Balancing System 

5.1.1   System Overview 

 

 

Figure 5.1:  System Block Diagram 
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The complete hardware system with all the components used on the bicycle are 

shown in the block diagram. The main subsystems on the bicycle include robotic steering 

and the control moment gyroscope but for implementation of algorithm only robotic 

steering is used. The steering control system allows the angular position of the bicycle front 

fork to be controlled so that the bike can be steered while in motion.   

The DDPG algorithm is implemented on the supercomputing edge device Nvidia 

Jetson Tx2 and it is communicated with the PSoC 5 microcontroller through UART port  

which acts as a central member for the complete process. More components include mRo 

Pixhawk which is actually designed for flight control application and contain embedded 

processors better that the PSoC 5. But while considering integration of multiple systems 

into one, it was found that flexibility of PSoC seems to be better than the former. However, 

Pixhawk is used for application of Inertial Measurement Unit (IMU) and uses UART 

communication with the RX line connected to the PSoC 5. Pixhawk flight controller is able 

to transmit the motorcycle’s attitude data at real-time frequency to the PSoC and these 

values are then transmitted to the Jetson Tx2 as state values. It also has editable filter and 

level-horizon offset calibration once it is installed on a vehicle.  

Considering the robotic steering control, it uses 1:49 planetary gear brushed DC 

motor which is responsible for the torque generation on the handlebars. The selection of 

the motor was depending on steering system is a low frequency and static torque system. 

The associated motor driver used is Pololu G2 which provides current sensing required for 

accurate torque control of the steering actuator. For sending the instantaneous state values 

for the steering to the PSoC 5, hall effect absolute encoders were used. 
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Considering the frame of the bicycle, two adult sized training wheels were added 

in order to serve two purposes; (1) Safety of the bicycle and components when it tends to 

collapse and (2) The training wheels were set in a manner that when one side of the wheel 

touches the ground it makes an angle equal to the threshold value set at which bicycle is 

said to fail balancing task with respect to the vertical. 

The hardware system of the bicycle had the components installed with the required 

electronics which was done for previous research on the bicycle for stationary balancing 

using control moment gyroscope and robotic steering control. The complete overview of 

the system used and its role is discussed in detail below. The deployment of the DDPG 

algorithm discussed in the software testing required more components to be added and also 

modifications to the current robotic steering mechanism which used torque control 

replacing the position control for actuating the steering motor. It also involved addition of 

safety mechanisms to the bicycle. The system discussed here is only related to the robotic 

steering mechanism which is required to be functional.  

 

5.1.2   Power System 

 

The power system is responsible for distribution of  electrical energy to various 

components for their working. It includes 4 voltage rails, the 48V rail is for high power 

applications such as the CMG powered directly from the battery with 30A fuse for 

protection and emergency stop button which triggers a relay to disconnect all the powered 

applications. A regulated 24V DC rail for intermediate power applications, such as robotic 

steering and high-level computing, is derived from the 48V rail with a step-down voltage 
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regulator that can supply up to 20A. A regulated 12V supply in order to power the Nvidia 

Jetson TX2 for its functioning stepped down for 48V rail.  Finally, voltage is reduced to 

5V DC rail for microcontroller and other peripherals.   

 

5.1.3   Robotic Steering Actuator 

 

 The balancing of bicycle is achieved with the help of steering the handlebars. 

Therefore, some mechanism should be present in order to transmit the torque and finally 

cause the steering which was achieved using the robotic steering actuator. The robotic 

steering system initially developed in Deng et al (2018) was implemented for the bicycle. 

The robotic steering system shown in Figure 5.3 enables automated balance and trajectory 

control while the bicycle is moving forward. This system consists of the steering control 

DC motor, shown in Figure 5.2, motor driver and an encoder. This system can operate as 

a closed-loop torque actuator. 

 In order to accommodate the application of high static torque, low speed and low 

frequency of the robotic steering a high planetary gear ratio 24 V brushed DC motor was 

selected.  

 

 • Nominal Voltage: 24V 

             • No Load RPM: 143 

             • Stall Current: 13A 

 • Stall Torque: 10.39 Nm 

 

Figure 5.2: Devantech 24v, 49:1 Geared Brushed Dc Motor 



  38 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Robotic Steering System 

 

5.1.4   Sensors Information 

 

 The selection of Inertial Measurement Unit (IMU) was based on the robustness and 

modularity of the device selected. mRo Pixhawk 1 2.4.6 was primarily selected for the 

IMU despite its default use which is for flight controller application. Pixhawk systems have 

opensource ground control software which allows the user to calibrate the IMU for specific 

vehicles. Figure 5.4 shows the Pixhawk controller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Pixhawk 1 2.4.6 Flight Controller 
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 Pixhawk is made to communicate with the PSoC 5 microcontroller with the help of 

UART communication where it receives the attitude values. The sending and receiving of 

the messages is done using Mavlink which is a very lightweight messaging protocol for 

communication. 

 Another sensor, hall effect encoder sensor was used in conjunction to the steering 

actuator to get the steering responses and communicated values to PSoC 5. This encoder 

comes prefabricated from US Digital with ball bearing sleeve and a shaft. This allows the 

mechanical system of the robotic steering to be less susceptible to mechanical alignments. 

The main encoder processor and the magnets are shielded from minor magnetic effect with 

a metallic outer hull. Figure 5.5 shows the MA3 miniature absolute encoder.  

 

 

 

 

 

 

 

 

 

Figure 5.5: MA3 Miniature Absolute Magnetic Shaft Encoder 

 

5.1.5   Embedded AI Computing Device 

 

 Embedded AI computing devices make it possible to deploy algorithms on the 

system at ease. The Jetson TK1, TX1 and TX2 models all carry a Tegra processor (or SoC) 



  40 

from Nvidia that integrates an ARM architecture central processing unit (CPU). Jetson is 

a low-power system and is designed for accelerating machine learning applications.  

 For the bicycle application, Nvidia Jetson TX2 kit is used which is flashed with the 

Jetpack 4.4, a Software Development Kit (SDK) for the jetson boards which includes Linux 

for Tegra (L4T) OS. It provides GPU which helps in deploying algorithms at a faster rate.  

• Dual-core NVIDIA Denver2 + quad-

core ARM Cortex-A57 

• 256-core Pascal GPU 

• 8GB LPDDR4, 128-bit interface 

• 32GB eMMC 

• 4kp60 H.264/H.265 encoder & decoder 

• Dual ISPs (Image Signal Processors) 

• 1.4 gigapixel/sec MIPI CSI camera 

ingest 

 

Figure 5.6: Nvidia Jetson Tegra X2 

 

5.1.6   Pololu G2 Motor Driver 

 

 Pololu G2 shown in Figure 5.7 is a high-power motor driver which is used to drive 

the Devantech DC motor. The selection of this motor driver was based on that it included 

current sensing which is required for closed loop torque control for the steering actuator.  
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  Figure 5.7: Pololu G2 High-power Motor Driver 24v21 

   

 The Arizona State University RISE Lab’s bicycle model used for the hardware 

implementation is shown in the Figure 5.8. The bicycle is installed with the required 

sensors and actuators as discussed above in this chapter.  

 

 

Robotic steering Motor driver 

for rear tire 
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Figure 5.8: Complete Hardware Setup on Bicycle  

 

5.2   Algorithm Deployment on Hardware and Its Workflow 

 

  Hardware implementation was the most crucial process after conducting the 

software testing. The trained model during the software testing is saved so that it could be 

used during the hardware implementation.  

            The DDPG algorithm was implemented on the Jetson Tegra X2 and some 

modifications were made in the code in order to setup serial communication with the 

microcontroller. The additions made to the code are explained in detail below with the 

complete workflow: 

 Firstly, the python libraries required for the code to be working were installed and 

verified. These packages included installation of TensorFlow 2.1 and its dependencies, 

OpenAI gym v0.17.3, pySerial 3.4 and also required environment wrappers.  

PSoC microcontroller Jetson Tx2 

Camera 

Voltage 

regulator  

Pololu G2 

motor driver 
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 The next step was defining the hardware function which required the opening of 

serial port of Jetson TX2. The port /dev/ttyTHS2 was used for UART communications 

with a baud rate of 9600 and is able to read and write the data sent and received from the 

PSoC. 

 After opening the port, the code is able to read the data received which is in binary 

form and needs to be unpacked in the form readable by the algorithm. This states data 

received is then sent to the trained actor network with output the action.  

 The action calculated is again packed into the binary form and sent to the PSoC 5. 

Finally, action is converted to an analog signal and fed to the steering actuator which shifts 

the handlebar appropriately.   

            The above steps are made to run continuously for each timestep till the process is 

functional. Detailed code information can be found in appendix B github repositories.  

 

5.3   Results 

5.3.1   Plots and Trial Runs 

 

 After the complete hardware setup, a careful verification test was carried in order 

to check the controllability of sensors and actuators using the central PSoC 5LP 

microcontroller. These tests were made in order to ensure the bicycle does not pose a 

danger to any living being and also to understand about the responses or actions produced 

by the algorithm through a preliminary test.  
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 After successful verification of working components and installation of safety 

mechanisms, an outdoor test was conducted. The bicycle was made to undergo four trial 

runs and roll angle of the bicycle for every time step was monitored using two methods. 

 First method was using roll angle plot in which plots for roll angle v/s number of 

episodes ran by the bicycle were plotted in order to keep a track of roll angle of the bike is 

within the threshold value. Second method was visual inspection in which the bicycle was 

installed with training wheels at an angle equal to threshold roll angle value (angle used 

for failing the episode) which was set at π / 9 or 20˚. 

 The following images show the bicycle position with zero roll angle, completely 

upright and initial start condition of the trial runs as shown in Figure 5.9 (a) and Figure 5.9 

(b) shows the failure of trial when the training wheel touch the ground i.e. bicycle roll angle 

reaches the threshold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) Bicycle upright condition (b) Bicycle failure condition 

Figure 5.9: Bicycle Positions (a) Bicycle Upright Condition and  

(b) Bicycle Failure Condition 
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 Considering the outdoor test that was conducted, the behavior of bicycle was 

closely monitored. The outdoor test conducted consisted of 4 trial runs and Figure 5.10, 

5.11, 5.12, 5.13 depicts snapshots of the experiments with each trial showing the condition 

of initial start, self-balancing and the final failure followed by the plots of the roll angle of 

bicycle versus episodes run which were plotted during the experiment in order to study its 

characteristics. 

 

 

Figure 5.10: Trial Run 1 

 

 

Figure 5.11: Trial Run 2 

(a) Initial start condition (b) Self-balancing condition 

(with rolling) 
(c) Bicycle failing condition  

(a) Initial start condition (b) Self-balancing condition 

(with rolling) 

(c) Bicycle failing condition  
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Figure 5.12: Trial Run 3 

 

 

 

Figure 5.13: Trial Run 4 

 

 

 

 

(a) Initial start condition (b) Self-balancing condition 

(with rolling) 

(c) Bicycle failing condition  

(a) Initial start condition (b) Self-balancing condition 

(with rolling) 

(c) Bicycle failing condition  
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Figure 5.14: Plots of Roll Angle V/S Number of Episodes Run for Four Trial Runs  

During Hardware Testing   
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5.3.2   Trial Run Analysis 

 

 The results of trial run 1 show that the threshold roll angle was reached at 115th 

episode and the bicycle was able to maintain its balance for 17 seconds. Similarly, trial run 

2 failed at 150th episode but it required some support during the start of the run for some 

seconds. The stabilization time with and without support was found to be 20.2 seconds and 

7 seconds respectively. For trial run 3 and 4, the action torque was increased to 4 N-m limit 

(positive and negative domain) which was originally set to be between -2 N-m and 2 N-m. 

For trial run 3, the failing episode was 75 with balancing time of 11 seconds and for trial 

4, the failing episode was 105 with balancing time of 15.5 seconds.  

 During the testing phase, it was observed that the bicycle was able to successfully 

stabilize itself with active steering which was fed with the required torque values for the 

times during trials mentioned above. Just before the failing of the stabilized state it 

undergoes oscillations which gradually increase as seen in the plots and leads to final 

failure or collapsing. It was noted that during this time the state-action response time on 

the Tx2 is delayed and slows down to some extent.  

 Depending upon the system response observed, there are some possible ways in 

which this could be improved. The improvement in the area of model training was 

considered which included addition of gaussian noise during the training process and 

compared with other models as shown in the results section of software testing. It showed 

better performance and hence it would be considered for implementation as a future work. 

Another area of improvement which can be done is improving communication between the 

Jetson and PSoC devices, the current hardware uses UART communication for data 
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transfer and hence the communication rate can be made faster using Serial Peripheral 

Interface (SPI) or other communication peripheral. Considering the robotic steering 

operation, it was noted that the torque value was not sufficient in order to move the steering 

handle, hence torque value could be modeled as a function of states which should increase 

as the roll angle also increases for improved stabilization. One of the methods used in this 

process was transferring the learned model from the software testing process to the bicycle 

hardware and testing it. The possible improvement here could be either training the model 

directly using the physical bicycle model or making the custom bicycle virtual environment 

to be modelled near to physical bicycle conditions.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  50 

CHAPTER 6 

 

DISCUSSION  

 

6.1   Conclusion  

 

            Bicycle or two-wheeler stabilization is a complex task that requires deep 

understanding of methods by which control of bicycle can be achieved in conditions of 

riding with or without human rider. The other aspect which needs to be taken care of is 

bicycle control when the bike is stationary as well as in motion.  

            Previous work on the bike achieved stationary balancing using a Control Moment 

Gyroscope (CMG) with assisted robotic steering mechanism. This system extends on the 

previous work and is capable of working individually without any assistance from the 

CMG related hardware. This work has deep deterministic policy gradient algorithm 

implemented with Tensor Flow 2 which gives the capability of robust model deployment 

and ease of use which decreased the required code lines significantly and boosting the code 

execution on the Jetson hardware. An outdoor test was conducted to verify the system’s 

capability and its performance in conjunction with deployed algorithm. The results 

verification was successfully performed by plotting them as shown in results section of 

hardware testing and also by visual inspection while performing the test. The tests were 

performed in a controlled and safer environment without posing any danger to any living 

thing. 
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            This thesis represents a significant improvement from the results presented in the 

Cam et al. (2013) which used different reinforcement learning algorithm for balancing task 

but have some disadvantages highlighted before and most importantly there are no 

hardware implementations done for this prior to this thesis research.  

             Ultimately, bicycle research is a good platform for future investigation of controls 

and human-robot interaction. The system designed is highly flexible for future additions 

because of modular design and can be upgraded to make it more optimized.  

 

6.2   Future Work 

 

            Future work will include implementation of the new model with the gaussian noise 

that was trained and gave better performance than the previous model on the hardware 

system, adding capability to code in order to perform navigation task and driving the 

bicycle to a particular goal, tested with and without obstructions on the path. This refers to 

trajectory planning and control essential for autonomous driving application. This would 

require designing of complex and robust reward function which includes the goal term 

added with a certain variable coefficient according the level of importance given to it while 

conduction of the task.   

            It would also include integration of the bicycle subsystems to provide balance 

assistance across the full range of bicycle speeds, with and without a human rider. 

Implementation of robust robotic steering system will help the bicycle to balance on uneven 

road conditions and counter other disturbance effects.  
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            Addition of autonomicity to bikes would enable it to extend its horizon for work in 

the areas of delivery systems and bike-sharing which would help in increasing the 

sustainability. Due to the expandability of the Pixhawk flight controller, GPS and 

autonomous driving can be easily implemented. 

            Another area of interests lies in the communication of the bicycle systems with the 

vehicles and infrastructure to establish safer transportation system on street and highly 

crowded regions with inbuilt tracking.     
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APPENDIX A 

BICYCLE PARAMETER VALUES 
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Parameter Parameter Explanation 
Numerical 

values  

c Horizontal distance between front tire and CM 1.0653 m 

h Height of CM over the ground 0.45782 m 

l Distance between front and back tire 1.11 m 

M Mass of complete bicycle system 63.797 kg 

r Radius of tire 0.34 m 

T Torque [-2 , 2] N-m 

v Velocity of bicycle 10 km/hr 

g Acceleration due to gravity 9.82 m/s2 

Md Mass of tire 1.7 kg 

rf Radius for front tire  108 m 

rCM Radius for center of mass 108 m 

rb Radius for back tire 108 m 
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APPENDIX B 

PROJECT GITHUB REPOSITORY 
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The complete code for OpenAI gym pendulum testing can be found in this GitHub 

repository:  

https://github.com/Shubhamturakhia/OpenAI-Pendulum-testing-using-DDPG 

 

The complete code for bicycle testing using the deep deterministic policy gradient 

algorithm can be found in this GitHub repository: 

https://github.com/Shubhamturakhia/RLbike 

https://github.com/Shubhamturakhia/OpenAI-Pendulum-testing-using-DDPG
https://github.com/Shubhamturakhia/RLbike

