
Experimental Analysis on Collaborative Human Behavior

in a Physical Interaction Environment

by

Pallavi Shrinivas Shintre

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved November 2020 by the
Graduate Supervisory Committee:

Wenlong Zhang, Chair
Jennie Si
Yi Ren

ARIZONA STATE UNIVERSITY

December 2020

ABSTRACT

Daily collaborative tasks like pushing a table or a couch require haptic communication

between the people doing the task. To design collaborative motion planning algorithms

for such applications, it is important to understand human behavior. Collaborative tasks

involve continuous adaptations and intent recognition between the people involved in the

task. This thesis explores the coordination between the human-partners through a virtual

setup involving continuous visual feedback. The interaction and coordination are modeled

as a two-step process: 1) Collecting data for a collaborative couch-pushing task, where both

the people doing the task have complete information about the goal but are unaware of each

other’s cost functions or intentions and 2) processing the emergent behavior from complete

information and fitting a model for this behavior to validate a mathematical model of agent-

behavior in multi-agent collaborative tasks. The baseline model is updated using different

approaches to resemble the trajectories generated by these models to human trajectories.

All these models are compared to each other. The action profiles of both the agents and

the position and velocity of the manipulated object during a goal-oriented task is recorded

and used as expert-demonstrations to fit models resembling human behaviors. Analysis

through hypothesis teasing is also performed to identify the difference in behaviors when

there are complete information and information asymmetry among agents regarding the

goal position.

i

DEDICATION

To my family and my fiance, who have always inspired me to work hard and let me do

whatever I wished to do. I would not be able to accomplish this without your support and

patience with me.

ii

ACKNOWLEDGMENTS

I would like to acknowledge my advisor, Dr.Wenlong Zhang for guiding me and pro-

viding valuable insights throughout my research at the RISE lab. I am deeply thankful to

Yiwei Wang for his continuous support and leadership throughout the project. I would also

like to acknowledge YiZhuang Garrard and Shatadal Mishra for guiding me throughout the

process of software design of the experimet. I would further like to extend my gratitude

towards Sunny Amatya, Venkatesh Vaidyanathan, Bradley Edward Goldberg for helping

with the experiment conduction and data collection. I would also like to thank the mem-

bers of RISE Lab for helping with the alpha testing of the experimental setup and also for

being a strong support system throughout. I would like to thank all my roommates for their

constant support throughout my Masters course. I would like to thank Karishma Patnaik,

for being a constant motivator and an inspiration whenever I needed it. I would like to thank

my committee, Dr. Jennie Si and Dr. Yi Ren for their invaluable comments and feedback

on the work. Lastly, I would like to thank my parents, my family and my fiance for always

believing in me.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

1 INTRODUCTION . 1

1.1 Background. 1

1.1.1 Modelling Human Behavior in Collaborative Tasks 2

1.1.2 Inverse Optimal Control to Model Expert Behaviours 3

1.1.3 Virtual Human in the Loop Experiments . 5

1.2 Motivation and Overview . 6

2 EXPERIMENTAL AND HARDWARE SETUP . 9

2.1 Experimental Setup . 9

2.1.1 Hardware Setup . 9

2.1.2 Software Setup . 13

2.2 Experiment Scenarios . 13

2.2.1 Complete Information . 14

2.2.2 Information Asymmetry . 14

2.3 Procedure and Participation . 16

3 PRE-PROCESSING THE DATA FOR ANALYSIS . 18

3.1 System Identification of the Virtual Physics Engine 18

3.1.1 Derivations for the Velocity Set-Points . 19

3.1.2 System Identification . 24

4 MODELING HUMAN-HUMAN COLLABORATIVE BEHAVIOUR 36

4.1 Development of Baseline Model . 37

iv

CHAPTER Page

4.1.1 Inverse Optimal Control to Model the Collaborative Human Be-

havior . 37

4.1.2 Forward Algorithm to Generate the Trajectories 39

4.1.3 Optimization Solver: Genetic Algorithm. 41

4.1.4 Fitness Function . 43

4.1.5 Re-Sizing the Data Before Analysis . 44

4.1.6 The Proposed Optimization Formulation . 45

4.1.7 Preliminary Analysis . 49

4.2 Update 1: Dtw Distance As New Fitness Function . 49

4.2.1 Fitness Function: Dynamic Time Warping . 50

4.2.2 Mathematical Description of the Dynamic Time Warping algo-

rithm . 50

4.2.3 Comparison of the Fitness Functions: Dtw distance and Frobe-

nius Norm . 52

4.2.4 Analysis . 54

4.3 Update 2: Assume Different Cost Function for Partner 54

4.3.1 Analysis . 57

4.4 Update 3: Stochastic Inputs Using Bounded Rationality 57

4.4.1 Incorporating Stochastic Inputs . 58

4.4.2 Analysis . 62

4.5 Update 4: Original Fitness Function With Stochastic Inputs 65

4.5.1 Analysis . 66

4.6 Discussion . 69

5 CONCLUSIONS, SUMMARY AND FUTURE WORK . 71

v

CHAPTER Page

5.1 Conclusions . 71

5.2 Summary . 72

5.3 Future Work . 74

REFERENCES . 76

APPENDIX

A MODEL ANALYSIS FOR 4 DIFFERENT PAIRS . 81

B IRB APPROVAL FOR DATA COLLECTION INVOLVING HUMAN SUB-

JECTS . 83

vi

LIST OF TABLES

Table Page

3.1 Identification of the Transfer Function for Linear Velocity 29

3.2 Identification of the Transfer Function for Angular Velocity 30

3.3 Root Mean Squared Errors Between the Actual and Computed States for 7

of the Pairs’ Trial-2’s . 33

4.1 Comparison of Fitness Values From Updates 1 and 2 With the Baseline

Algorithm. 57

4.2 Comparison of fitness values from updates 1 and 2 with the baseline algo-

rithm.

63

4.3 Comparison of Fitness Values From 5 Runs of the Optimization Algorithm . 63

4.4 Comparison of Fitness Values Between Baseline and Update-4 66

4.5 Comparison of Fitness Values From 5 Runs of the Update-4 67

4.6 Comparison of Root Mean Squared Error Values Between Baseline and 5

Runs of Update-4 . 67

A.1 Comparison of Fitness Values Between the Baseline Algorithm and Up-

dates 1,2, 3 (Comparison Metric Is DTW Distance). 82

A.2 Comparison of Fitness Values Between the Baseline Algorithm and Update

4 (Comparison Metric Is Frobenius Norm) . 82

vii

LIST OF FIGURES

Figure Page

1.1 Concept of Theory of Mind [1] . 3

1.2 Visualization of Virtual Experiment Setups From Reviewed Literature 6

2.1 Experimental Setup . 12

2.2 Falcon Illustration . 12

2.3 Experiment Scenarios: Complete Information . 15

2.4 Experiment Scenarios: Information Asymmetry . 16

3.1 Visualization of Center and Radii of Rotation for Different Cases of Input

Pairs . 21

3.2 Visualization of the Inputs and Calculation of Linear Velocity at the Center . 23

3.3 Illustration of States of the Object . 24

3.4 Illustration to show, linear velocity set-points are mapped through a first

order transfer function. 25

3.5 Illustration to Show, Angular Velocity Set-Points Are Mapped Through a

First Order Transfer Function . 26

3.6 Visualization for Comparison of the Velocities With and Without Using the

Transfer Function on Experiment Data . 34

4.1 Trajectories for the Actual and Simulated Trajectories for Pair-9, Trial-1

Tuned Using the Algorithm . 48

4.2 Trajectories for the Actual and Simulated Trajectories for Pair-9, Trial-1

Tuned Using the Algorithm . 48

4.3 Comparison of Baseline Model and Update-1 Model With Human Trajec-

tories . 53

4.4 Comparison of Baseline Model and Update-1 Model With Human Trajec-

tories . 53

viii

Figure Page

4.5 Comparison of Trajectories Generated From Baseline and Updated Models

With Actual Human Trajectory . 56

4.6 Comparison of Trajectories Generated From Baseline and Updated Models

With Actual Human Trajectory . 56

4.7 Exponential Functions for PDF Generation . 60

4.8 Plot for the Exponential Function, y = e−x and y = emax–x 61

4.9 Comparison of Trajectories Generated From Baseline and Updated Models

With Actual Human Trajectory . 61

4.10 Comparison of Trajectories Generated From Baseline and Updated Models

With Actual Human Trajectory . 62

4.11 Comparison of Trajectories Generated From 5 Runs of the Stochastic Input

and Dtw Fitness Function Models, With Actual Human Trajectory 64

4.12 Comparison of Trajectories Generated From 5 Runs of the Stochastic Input

and DTW Fitness Function Models, With Actual Human Trajectory 64

4.13 Comparison of Trajectories Generated From Baseline and Updated Models

With Actual Human Trajectory . 65

4.14 Comparison of Trajectories Generated From Baseline and Updated Models

With Actual Human Trajectory . 66

4.15 Comparison of Trajectories Generated From 5 Runs of the Model Consider-

ing Stochastic Input and Frobenius Norm As Fitness Function, With Actual

Human Trajectory . 68

4.16 Comparison of Trajectories Generated From 5 Runs of the Model Consider-

ing Stochastic Input and Frobenius Norm As Fitness Function, With Actual

Human Trajectory . 68

ix

Figure Page

B.1 IRB page-1 . 84

B.2 IRB page- 2 . 85

x

Chapter 1

INTRODUCTION

1.1 Background

Human-robot interaction is an interesting field of study that tackles the problem of

modeling human and engineered behaviors. Humans are very complex entities. It is not

easy to predict their actions or intentions accurately. Therefore, designing robotic devices

that can work with humans is a difficult problem. Previously, robotics researchers have

worked with the problem of human-robot interaction that involves the prediction of human

behaviors for effective and safe control of robotic devices interacting with them [2; 3].

A big challenge in this problem is intent recognition and generating an accurate response

to it. This process involves signaling and decision making between the involved agents

[4; 5]. Intent can be anything ranging from strategy (cost function) involved for reaching the

goal, the goal position, hidden obstacles only known to a few agents, etc. However, intent

detection requires the agents to have some prior knowledge about the motion planning

framework of their partner and also a medium of communication between them [6]

There has also been previous research on using interaction models from economic the-

ories to simulate multi-agent interaction behaviors [7; 8; 9; 10]. While these behaviors

work well with simulations and application to multi-robot interaction scenarios, there has

not been enough work on verification of these behaviors with multi-human interactions. It

is important to understand and mathematically model multi-human interactions, to apply

the theoretical algorithms that work in the case of multi-robot interactions. The behavior

of humans collaborating with other humans would be different from them collaborating

with robotic devices. However, to design robots that collaborate with humans, modeling

1

human-human interaction behavior is an important step. The behavior of humans can be

expected to follow a similar model when they interact with robots, though not be the same

as the human-human collaboration models.

1.1.1 Modelling Human Behavior in Collaborative Tasks

The following presents a review of work related to modeling human behavior in general

as well as in human-robot interaction tasks.

The problem of modeling human behavior has been widely explored across different

tasks such as load transport, walking and dancing, and also to understand human behavior

in human-robot interaction scenarios [11; 12; 13; 14; 15]. Humans tend to build prediction

models during a task to complete the task in a fast, accurate, and optimized manner [16]. A

data-driven approach for robots to learn from human demonstrations and to model human

behavior is proposed in [17]. Modeling roles such as leader-follower and teacher-student

for cases involving information asymmetry in human-robot teams has been explored and

studied by [6; 18]. Improvements like negotiations based on haptic feedback to improve

interaction behaviors in virtual human-computer interaction tasks have been suggested by

[19]. A real-time continuous scenario based on the existing game-theory and negotiation

literature has been used in their work. Visualization algorithms for searching, reinforce-

ment learning, and computational game theory for an extensive form of games has been

discussed by [20]. The work discusses games that are designed based on partially and fully

observable scenarios. Besides the game theory approach, Bayesian Estimation has been

used to model the humans in [21]. Recursive Bayesian filtering approach models and the

use of multiple non-verbal observations to identify the user’s goal has been presented in

[22]. Another Bayesian method to estimate human intent in a human-robot collaborative

task has been proposed by [23].

2

The use of theory of mind to model human behaviour has been proposed by [1] (refer

to figure-1.1) and [24]. They have suggested that humans make decisions based on certain

objective functions. The theory of mind concept has been used in [25] to solve problems

with purely cooperative games with two to five players and imperfect information. A com-

parison between model-free, black-box model-based, and Theory-of-Mind-based methods

for human-robot interaction in the driving domain has been presented by [26].

Figure 1.1: Concept of theory of mind as illustrated in [1]. This concept has been
extensively used to model human behaviors in several works.

Concepts describing human behavior in collaborative tasks, e.g. Bayesian Persuasion

[27]. Hidden Markov Models [28], theory of mind [29] etc also explain patterns in human

behaviour in collaborative tasks.

1.1.2 Inverse Optimal Control to Model Expert Behaviours

There has been a lot of work on the theoretical development of multi-agent interaction

algorithms. Human behavior can be described as a solution to an optimization problem

[30]. It could be the minimization of a cost function or maximization of a reward function.

The cost/reward function is a function of the features that the agent controls for optimally

3

achieving the goal. The features are task-specific. They can include anything ranging from

visual feedback, auditory feedback to force, or haptic feedback [31; 32]. Similarly, the

control can be in the form of continuous or discrete inputs. Inputs can also be in the form

of speech, gaze, physics quantities such as force or velocity setpoints, or written/typed

messages [33; 34]. Each of the features has a weight assigned to it (which may differ for

different agents, be it a human or an autonomous agent). The weight determines how much

importance is given to a feature. These cost/reward functions can be linear, quadratic,

or higher orders based on how the features are related to the actual cost function [34;

31]. Modeling the agent behavior using the inverse optimal control approach is a task

of finding the best weights assigned to the features that result in a trajectory that has the

closest resemblance to the agent’s trajectory. In this problem, the optimization framework

remains constant. This means that the task-specific features remain the same. Also, the

nature of the cost function (linear/quadratic) also remains the same. This problem can be

stated as inverse optimal control or inverse reinforcement learning.

Inverse optimal control is ultimately an optimization problem. This optimization prob-

lem runs the forward optimal control loop at every iteration. The forward optimal control

is a function of the weights therefore the inverse optimal control is also a function of the

weights. The optimizer fits these weights to replicate the reference behavior. Existing liter-

ature in inverse optimal control attempts to fit cost functions to imitate human trajectories

[35; 36]. However, using the inverse optimization technique to describe more complex

forward problems like multi-agent co-ordination behaviors has not been explored.

Similarity of a fitted model with the expert (agents’) behavior can be evidence to show

that an agent uses the same features as selected for the inverse problem. It also shows that

while the values of weights may be different, the forward model can be generalized as a

baseline framework used by most of the agents doing the task. To obtain the expert tra-

jectories, ‘humans’ in our case, conduction of human-human collaboration experiments is

4

required. The design of these experiments must involve intent-recognition and decoding, as

the main aim is to model collaborative multi-agent behaviors. A lot of prior work involves

experimental analysis for studying human interaction patterns. There have been studies

based on physical as well as virtual experimental setups for the collection of interaction

data.

1.1.3 Virtual Human in the Loop Experiments

This portion discusses a review of the existing work concerning virtual experiments

involving human subjects.

A shared-control interaction methodology has been described in [37; 38] using haptic

interface systems to collect experimental data. The virtual experimental setup must con-

tain a haptic device to collect the user input. A technique of obtaining continuous user

input from the NOVINT Falcon Haptic device, one of the haptic devices suitable for such

experiments has been shown in [39].

Study of human-human interaction using the haptic interface for assistance and train-

ing can be found in [40]. A similar system was used to understand the haptic interactions

between two people elucidating the behavior of an individual working alone has been used

in [41]. The work sheds light on understanding how humans can intuitively and coopera-

tively work with a robot on physical tasks. An example of how a system can be used to

perform dynamic tasks, by providing real-time visual and haptic feedback through a virtual

environment can be found in [42; 43]. Studying the distribution of authority and the role

allocation in multi-human teams performing the collaborative task has also been a subject

of interest [44]. Haptic interaction patterns in such a shared virtual environment have been

studied in both collaborative and conflicting decision situations in [45; 46]. A virtual setup

to collect human inputs in human-human interaction tasks have been presented in both of

these works (refer to figures-1.2(a)), 1.2(b).

5

Furthermore, a subjective analysis of the performance measures in such an interaction pat-

tern has also been performed in [47]. An analysis that associates the energy flow between

interacting partners with role distributions has been presented in [48].

(a) Virtual experiment setup by [46] (b) Virtual experiment setup by [45]

Figure 1.2: Visualization of virtual experiment setups from reviewed literature

1.2 Motivation and Overview

It can be observed from the review of literature that there has been a substantial amount

of work in mathematical model development of multi-agent collaborative systems. A lot

of work has also been done on analyzing human-human interaction with hypothesis prov-

ing. Researchers have also worked on understanding the optimization features that humans

consider during tasks. Work has also been performed on building robot models that work

in human-robot teams with conduct safer, more reliable performance. However, work on

building human models in human-human interaction behaviors based on the theoretical

multi-agent models has not been found in the reviewed literature. Modeling the behavior

of humans when they collaborate with other humans is an important step to develop robots

that have effective prediction models of collaborative human behavior. Such robots would

be able to work more efficiently on collaborative tasks with human partners.

6

This thesis explores the process of building mathematical models that resemble collab-

orative human-human behavior. To perform analysis that is the most relevant to this study,

available data from open source resources could not be used. Therefore, data collection is

necessary. The first step is designing an experiment to conduct collaborative human-human

experiments.

A large advantage of designing virtual experiments is that the environment is fully

controlled and therefore simpler to model. The design also demands the incorporation of

a mode of interaction. The task is designed such that the collaborating agents get other

agents’ feedback through the states governed by the underlying joint dynamics. The object

to be manipulated is controlled by both the agents and can be manipulated to the goal only

if the agents show active collaboration throughout the task. The interaction framework is

adapted from [34] which also uses underlying joint dynamics for interaction between the

agents.

Pre-requisites of the experiment conduction include the development of a virtual plat-

form for experiment conduction, preliminary testing of the setup, automating the experi-

mental procedure as much as possible for the efficiency of conduction and application, and

approval of an IRB for conducting the study with human subjects.

After the pre-requisites for the experiment conduction are met, data collection with

human subjects must be performed, followed by the analysis of the data for model devel-

opment. To begin modeling and simulation of the high-level interaction dynamics between

the agents, a low-level dynamic model (physics) of the UNITY physics engine is required.

Therefore, system identification of the dynamic model in the UNITY engine is performed.

Data for different input patterns simulated for long periods is collected and used for the

analysis. Once the low-level dynamic model is available, the work proceeded to the opti-

mal control framework formulation and identification of the cost functions from it (inverse

optimal control).

7

The experimental framework for simulating multi-agent collaboration is designed to

receive constant feedback from the states and find optimal inputs for each agent, separately.

The agents find Nash equilibrium input sets from the action candidate set and apply these

optimal inputs. Nash equilibrium is a concept from game theory. When multiple agents

are involved in a game, the best inputs that can be applied by these agents are called Nash

equilibrium sets [49].

Model fitting using the above framework (baseline) began with the implementation of

a baseline inverse optimal control approach to model the agent behavior (cost functions of

the participating agents) that resulted in trajectories closest to human trajectories. Further

amendments were made to this model to improve the error between trajectories generated

by these models and the human trajectories. Amendments included changing the fitness

function to capture the trends in the human trajectories rather than trying to replicate them.

Another amendment is to design every agent to predict their and their partner’s inputs

using different cost functions. Therefore, each agent would consider that their partner

doesn’t have the same decision-making framework as themselves. The final amendment

is, incorporating a stochastic component in the input selection of each agent. Analysis and

comparisons between results obtained from several such amendments are performed, to

make conclusions about the model that can describe human behavior most closely.

The rest of the document is organized as follows. The experimental and hardware setup

used for data collection is described under Chapter 2. Chapter 3 discusses the procedure

for pre-processing the data for analysis which involves system identification of the UNITY

physics engine. Formulation of the human-model fitting problem is explained in Chapter

4, followed by the analysis, Chapter 5 contains the conclusion, summary, and future work.

8

Chapter 2

EXPERIMENTAL AND HARDWARE SETUP

An experimental study was planned to analyze human behavior in a collaborative setup. A

collaborative couch-pushing experiment was designed and a virtual setup was developed

to conduct this experiment. This section presents the experiment setup and design used for

this study as well as the procedure followed for the experiment conduction.

2.1 Experimental Setup

The visual feedback for each participant and the physics engine for simulating the dy-

namics was developed in the UNITY environment. The setup of the experiment has been

shown in figure 2.1. The grasping points on the object for both participants were displayed

as blue and yellow colored handles. The current frame and the desired end position were

visually presented on the display screen for both the agents. The final configuration was

displayed as a colored block, the same size as the manipulated object. For the scenes with

complete information scenarios, it can be observed that the final (goal) configuration is a

green colored block.

2.1.1 Hardware Setup

Both agents were able to apply their inputs orthogonal to the object at the given grasping

point present at the opposite ends of it. Each of the participants was asked to apply input

forces on the knob of the respective NOVINT Falcon Haptic device provided to them. PD

feedback control was implemented to convert the force inputs applied on the knob of the

haptic device to input values for the UNITY physics engine. The participants were able

to feel a sense of difficulty applying higher inputs than the lower ones due to the addition

9

of damping factor (PD control). For all the experiments, the interface was connected to

the respective computer for visual feedback during the task. The Falcon’s sensors can keep

track of the handle’s position to sub-millimeter resolution, and the motors are updated 1000

times per second (1kHz), giving a realistic sense of touch.

The NOVINT Falcon Haptic Device

The knob of the haptic device can be displaced laterally along the x, y, and z directions

[39]. A neutral position =

[
xneutral yneutral zneutral

]
is set in terms of co-ordinates of the

knob. The PD feedback control is used to convert the displacement and velocity of the

knob with respect to the neutral position to the input value for the UNITY physics engine

(explanation of inputs and dynamics of the UNITY physics engine is given in section-

3). The vectors of proportionality constants, Kp and derivative constants, Kd are set as

Kp =

[
100 1000 1000

]
and Kd =

[
10 10 10

]
.

Let p(t) =
[

x(t)− xneutral y(t)− yneutral z(t)− zneutral

]′
be the position vector of the

knob with respect to the neutral position and let

d(t) =
[
(x(t)−x(t−1))

∆t
(y(t)−y(t−1))

∆t
(z(t)−z(t−1))

∆t

]′
be the first order derivative of the posi-

tion (velocity) of the knob. Therefore, at time t, the output of the PD control, which is fed

as an input to the UNITY physics engine, U(t) =
[

ux(t) uy(t) uz(t)

]′
is calculated as,

U(t) = Kp · p(t)+Kd ·d(t) (2.1)

The computed input values were fed to two locations.

1. The UNITY environment where they were treated as velocity set points to the two

ends of the virtual object.

2. The internal control system of the haptic device, which requires continuous feedback

of the inputs applied to it.

10

The inputs were manipulated using thresholds (clipped) to obtain discrete values before

they were sent to the UNITY environment using a zero MQ publish-subscribe communica-

tion protocol. The thresholds applied to the calculated values before they were published

to the UNITY physics engine were as follows. The inputs were discretized to simplify the

model development which was to be done for the collected data. The clipped inputs were

obtained as follows:

• 2.1 for a large displacement of the knob of the haptic device

• 1.4 for a medium displacement of the knob of the haptic device

• 0.7 for a small displacement of the knob of the haptic device

To add constraints to the movement of the participants, the movement along the y and

the z axis was disabled. Therefore, the inputs applied by the participants are only in the

x-dimension (Figure 2.2). These inputs were applied perpendicular to the ends of the object

(the couch) in the UNITY scene. See Figure-2.1.

11

Figure 2.1: Experimental setup consists of two participants, provided with their own haptic
devices for input application. The participants are seated facing away from each other. Each
participant is also provided with their own screen for visual feedback of the task.

Figure 2.2: Illustration of the magnitude and direction of Forces for the NOVINT Falcon
Haptic device. The displacement of the knob is directly proportional to the magnitude of

Forces applied on the knob.

12

2.1.2 Software Setup

The communication of data between the haptic device, the scripts for the objects in

the Unity scenes, and the python program to record the data was achieved using a robust

IoT (internet of things) library available in all the languages used, ’zero MQ’. To avoid

delay in data communication and saturation of the topics to which the data is published and

subscribed, multi-threading was implemented for all these processes that run in parallel.

The software for the visual feedback was implemented in the UNITY environment.

The physics engine would receive the discrete (clipped) input values (velocity setpoints)

from the Falcon over a server-client protocol and apply them to the object to simulate the

physical dynamics. The control algorithm for the system was run at a frequency of 1kHz.

Data Collection

A python script was used for data collection. Input values from both the participants, states,

and timestamps were collected for each trial. The frequency for data collection was set as

25Hz.

2.2 Experiment Scenarios

To analyze interaction patterns, different scenarios for collaborative physical interaction

were designed. The task demands two people to move an object to a goal location. The

task was designed such that one agent could not complete the task alone. The goal location

consisted of a pre-determined position and orientation. The tasks can be categorized into

two broad categories, complete information, and information asymmetry.

For complete information, both the participants were provided with the target location.

For information asymmetry, the potential target locations were displayed for both partici-

pants, however, only one participant was aware of the exact goal from these options. The

13

design ensured that for all the scenarios, participants had to collaborate to complete the

task. In the case of information asymmetry, the participant unaware of the exact goal had

to learn it and the participant aware of it had to teach it to their partner during the task. 10

trials were conducted for each task. Following is a summary of the different scenarios.

2.2.1 Complete Information

In these scenarios, both participants are provided with the target location (goal). Hence,

no conflict in terms of the final goal/ target is expected.

• Translation: Figure 2.3(a) represents the screen visual shown to each participant

where they have to find the best combination inputs applied at a given time to reach

the goal accurately in a time-frame of 10 seconds. This scenario is designed to have

a goal that can be reached by a collaborative translation of the object.

• Translation and Rotation: This scenario is designed to have a combination of trans-

lation and rotation goals. Here the participants have to collaboratively translate and

rotate to reach the end position as seen in Figure 2.3(b), in a time-frame of 10 sec-

onds.

2.2.2 Information Asymmetry

Here, both the participants are not presented with complete information about the goal.

Possible end positions are presented in the scenario however only one participant is made

aware of the end goal. The participant who knows the goal remains constant in all the

experiments. As a result, the participant without the knowledge of the exact goal must

learn it while the two collaborate to accomplish the target.

14

• Information Asymmetry Translation: Figure 2.4(a) represents the screen shown to

each participant where the possible goal positions are presented in green, white, and

orange blocks. One of the agents is given information about the exact goal location.

The pair is asked to reach the goal in the time frame of 10 seconds.

• Information Asymmetry Translation and Rotation: A translation and orientation-

based possible goal positions are presented in green, white, pink, and orange blocks

as seen in Figure 2.4(b). The same participant as for the pure translation case is

given the information about the exact goal-location. Again, the experiment must be

completed in a 10 seconds time-frame.

(a) Scenario for translation goal with com-

plete information distribution among agents

(b) Scenario for translation as well as rota-

tion goal with complete information distribu-

tion among agents

Figure 2.3: Experiment scenarios: Complete Information

15

(a) Scenario for translation goal with infor-

mation asymmetry among agents

(b) Scenario for translation as well as ro-

tational goal with information asymmetry

among participants

Figure 2.4: Experiment scenarios: Information asymmetry (Only one participant knows
the exact goal option while both the participants know the goal options or the goal

candidate set as shown above)

2.3 Procedure and Participation

The study was conducted after a successful application and approval from the Institu-

tional Review Board (IRB) at Arizona State University. The study was registered with the

IRB ID: STUDY 00011502. A total of 30 participants (paired to form 15 teams) volunteered

to take part in the experiment. It was ensured that the recruited participants were adults and

students at Arizona State University. The participation was voluntary and the participants

were permitted to leave in case they experienced discomfort. On successful completion

of the experiment, they were rewarded for their participation in the form of gift cards to

a local coffee-shop. The participants were informed about this reward before the task to

ensure their complete attention during the experiment. The collected data was re-named to

ensure that it remained de-identified. The entire experiment for a pair was conducted on

the same day in an hour.

16

The participants were first given detailed instructions regarding experiment conduction.

They were then allowed to individually familiarize with the setup. This allowed them to

understand the working of the hardware. To avoid over-familiarization, they were only

allowed to spend a few minutes with the setup. They were then instructed to avoid any

form of verbal communication with their partners. At least two instructors were present at

every trial to conduct the trial effectively.

Then, the participants were briefed about the complete information scenarios. After the

briefing, the trials for complete information scenarios were conducted. Each scenario was

run for 10 trials. The trial number was verbally announced before starting the trial. After

every trial, the participants were asked to fill out a form, evaluating their collaborative

performance for the trial. After completing the complete information case scenarios, the

participants were briefed about the information asymmetry scenarios. In this section of the

experiment, the participant aware of the goal position remained constant to avoid confusion.

Again, 10 trials were conducted for each scenario and both the participants were asked to

fill out an evaluation sheet after every trial.

17

Chapter 3

PRE-PROCESSING THE DATA FOR ANALYSIS

To model collaborative behavior, an inverse modeling algorithm must be formulated. The

inverse algorithm requires the dynamics of the system. Therefore, system identification of

the virtual physics engine in UNITY was necessary.

3.1 System Identification of the Virtual Physics Engine

The system consists of two inputs on either side of the object (the couch) that were

applied orthogonal to it. The inputs were identified to be in the form of velocity setpoints

(u1 and u2). The two human participants would apply forces on the knob of their respective

haptic devices, which were used to compute their respective inputs to be published (sent)

to the UNITY physics engine as input velocity set-points for the two ends of the object (as

described in section-2.1.1). The linear positions and velocities (for x and y) and the angular

position and velocity of the midpoint of the object were dependants on the combination of

inputs applied by the participants to the object.

18

3.1.1 Derivations for the Velocity Set-Points

The equations describing the relationship between the input velocity setpoints (v1 and

v2) applied to the two ends of the object and the resultant angular and linear velocities of

the center of the object (vx, vy and ω) can be derived as follows.

Derivation for the angular velocity set point

First, the equation for the angular velocity at the center of the object is derived, given the

input velocity set points at both the ends of the object. The problem is explored in two

possible cases.

When Inputs Are Applied in the Opposite Direction

Please refer to figure 3.1(a). The red dot is the center of rotation. First, the center of

rotation is calculated, followed by calculation of the radii of the rotation (ri) for both the

inputs, vi (i = 1,2). The radius of rotation is the distance between the center of rotation and

the point at which the input is applied. Let the radius of rotation for the end at which v2 is

applied, be denoted by x (refer to the figure-3.1(a)). Therefore, x = r2. The angular velocity

is defined as the linear velocity applied orthogonal to the radius divided by the radius of

rotation, (v2
x). It can be stated that if unequal input velocities are applied to the object in

opposite direction, the sum of the radii of rotation is equal to the length of the object (l)

and that the ratio between the radii of rotation would be equal to the ratio of the applied

velocities, as the angular velocity remains constant throughout the rigid body.

Hence, vi
ri

remains constant for both v1 and v2. Therefore, v1
r1
= v2

r2
, where r1 and r2 are

the radii of rotation for the points where the velocities v1 and v2 are applied respectively.

(In this case, the center of rotation is present on the object).

19

Considering that the anticlockwise direction is positive, the formulation could be de-

scribed as follows.

v1

l− x
=
−v2

x
(3.1)

... as r2 = x, r1 = l− x. Therefore,

v1

−v2
=

l− x
x

(3.2)

v1− v2

−v2
=

l− x+ x
x

=
l
x

(3.3)

... by adding 1 on both sides.

Therefore,

x =
l×−v2

v1− v2
(3.4)

Therefore, angular velocity (constant throughout the rigid body) can be calculated as,

w =
vi

ri
=
−v2

r2
=
−v2

x
=
−v2× (v1− v2)

l×−v2
=

(v1− v2)

l
(3.5)

When the inputs are applied in the same direction

When the inputs are applied in the same direction but have different magnitudes. Please

refer to figure 3.1(b). The red dot is the center of rotation. In this case, the center of rotation

is present outside the object. Again, anticlockwise direction is considered as positive. The

ratio of the radii is equal to the ratio of the input velocities, as v1
r1
= v2

r2
, where r1 and r2 are

the radii of rotation for the points where the velocities v1 and v2 are applied respectively,

and let r2 = x .
v1

l− x
=
−v2

x
(3.6)

... as r2 = x, r1 = l + x. Therefore,
v1

v2
=

x+ l
x

(3.7)

20

(a) Inputs applied in opposite direc-

tion

(b) Inputs applied in same direction

with unequal magnitude

Figure 3.1: Visualization of the center and radii of rotation for the different cases of
inputs. l is the length of the object and x is the distance between the center of rotation and

the point on the object where the input-2 is applied.

v1− v2

v2
=

x+ l− x
x

=
l
x

(3.8)

...subtracting 1 on both sides of equation-3.7.

Therefore,

x =
l× v2

v1− v2
(3.9)

Therefore, angular velocity (constant throughout the rigid body) can be calculated as,

w =
vi

ri
=

v
r
=

v2

x
=

v2× (v1− v2)

l× v2
=

(v1− v2)

l
(3.10)

Therefore, it can be concluded that irrespective of the direction of the inputs, the equa-

tion for angular velocity remains ω = (v1−v2)
2 .

As the angular velocity of every point in a rigid body remains same, according to the

properties of a rigid body, the above derivation proves that,

ωmp =
(v1− v2)

2
(3.11)

where, ωmp is the angular velocity at the mid point of the object. The value of ωmp is

determined, given the applied inputs, v1, v2.

21

Derivation for the linear velocity set point

Next, the equations for the linear velocities along x and y directions are derived for the

center of the object, given the input velocity set points at the two ends of it. Refer to figure

3.2. From equation 3.11, the angular velocity at the midpoint of the object is known.

Considering properties of a rigid body with respect to velocities, it can be stated that

if P and Q are two points on a rigid body, the the instantaneous linear velocity at point

Q, given the instantaneous linear velocity at point P (vP), the vector distance between the

points P and Q (rPQ) and the angular velocity of the rigid body (ωrb) can be defined as,

vQ = vP +ωrb× rPQ (3.12)

Let vmp be the instantaneous linear velocity at the mid point of the object. Therefore,

vmp = v2 +
(v2− v1)

l
× l

2
= v2 +

(v2− v1)

2
=

2v2 + v1− v2

2
=

v1 + v2

2
(3.13)

However, calculation of the components of the linear velocity in x and y directions is re-

quired. The components can be defined as vx = vcos(γ) and vy = vsin(γ), where γ is the

angle between the velocity vector and the x-axis. Here, the velocities are applied orthog-

onal to the horizontal as the object is placed along the horizontal. Therefore, the angle,

γ = π

2 +θ , where θ is the angular position of the object (which can be calculated using the

angular velocity ωmp of the object).

Therefore, the components of instantaneous linear velocity of the mid point of the ob-

ject, along the x and y directions can be calculated as,

vx = vmpcos
(

π

2
+θ

)
= vmp

[
cos
(

π

2

)
cos(θ)− sin

(
π

2

)
sin(θ)

]
=−vmpsin(θ) (3.14)

vy = vmpsin
(

π

2
+θ

)
= vmp

[
sin
(

π

2

)
cos(θ)+ cos

(
π

2

)
sin(θ)

]
= vmpcos(θ) (3.15)

22

As vmp =
v1+v2

2 ,

vx =−
(

v1 + v2

2

)
sin(θ) (3.16)

vy =

(
v1 + v2

2

)
cos(θ) (3.17)

The equations 3.16 and 3.17 denote values of the linear velocities of the object along x and

y, given the applied inputs v1 and v2.

Figure 3.2: Visualization of the inputs and calculation of linear velocity at the center

From the above description and explanation, it can be stated that the set points for linear

velocities along x and y and the angular velocity of the mid point of the object (according to

the UNITY environment) are determined by the equations 3.16, 3.17 and 3.11. However, it

was observed that the set points were not directly applied to the object at every time step.

They were mapped through a first order dynamics equation before and then applied to the

object (rigid-body in case of the UNITY environment).

23

3.1.2 System Identification

As described above, the system consists of two inputs on either sides of the object that

were applied orthogonal to it. The inputs were in the form of velocity set points (u1 and

u2). However, it was observed that these input velocities were not applied directly to the

system, as mentioned above. They were mapped by a first order transfer function in the

UNITY environment. The states can be defined as

s(k) =

x(k)

y(k)

vx(k)

vy(k)

θ(k)

ω(k)

(3.18)

The inputs (velocities) were denoted as u1(k) and u2(k). Here, x(k), y(k) are the x and y

co-ordinates of the center of the object and θ(k) is the angular position of the object (rigid

body) with respect to the horizontal, at the time step, k. vx(k), vy(k) are the velocities in

the x and y directions and ω(k) is the angular velocity of the rigid body, at the time step, k.

Please refer to figure-3.3 for the illustration of the states.

Figure 3.3: Illustration of states of the object

24

System identification was performed by collecting the data for all patterns of inputs.

The system could be visualized in the state space as follows,

s(k+1) = As(k)+B1(k)u1(k)+B2(k)u2(k) (3.19)

The value of A, B1 and B2 could only be computed after identifying this first order transfer

function.

Several data sets were collected for different pairs of inputs from the available input

candidate set. The inputs were applied at a stretch for 20 seconds. The figure 3.4(a) and

3.5(a) show the effect of the first-order transfer function, highlighted by a black line. The

figure was plotted with the actual data and the calculated velocity value considering only a

proportional mapping.

(a) The effect of first order transfer

function on y- velocity

(b) Comparison between actual y-

velocity and models with and with-

out considering the first order trans-

fer function
Figure 3.4: Illustration to show that linear velocity set-points are mapped through a first

order transfer function. The inputs to the system are u1 =−1.4, u2 =−1.4

The structure of A, B1 and B2 was specified from the state transition equations (depen-

dant on the equations-3.20, 3.21 and 3.22), but the values of the terms in the matrices could

only be calculated after identifying the first-order transfer function. The identification of

this first-order transfer function was carried out using the System Identification application,

25

(a) The effect of first order transfer

function on angular velocity

(b) Comparison between actual an-

gular velocity and models with and

without considering the first order

transfer function
Figure 3.5: Illustration to show that angular velocity set-points are mapped through a first

order transfer function. The inputs to the system are u1 = 0, u2 =−2.1

from the system identification toolbox in MATLAB. The application requires an input vec-

tor and an output vector to be fed in for identifying a transfer function (this portion was

black-box modeling). The input was given as the vector of the values of angular velocity,

calculated according to the kinematic equation for angular velocity which has been derived

in section-3.1.1 and the output vector fed to the application was recorded values of angular

velocity (from the collected data). The values of angular velocity were calculated consid-

ering the inputs, u1(t) and u2(t), which are the velocity setpoints applied to the two ends of

the object.

ω(t) =
u1(t)−u2(t)

2
(3.20)

While the basic structure of A, B1 and B2 was formulated considering the dynamics,

with inputs as velocity set-points mapped by a first-order transfer function. As the identifi-

cation of this first-order transfer function was done using black-box modeling, the system

identification can be described as grey-box modeling.

26

The application returned the proportional term (k) and the pole (p) for the first-order

transfer function, H(s) = k
s+p . This process was carried out for all the collected samples.

An average value for k and p was calculated. It was observed that the transfer functions

were different for linear velocity and angular velocity mappings. Also, the value for k in

the case of the angular velocity calculation (kr) was different for a few pairs of control

inputs. While the difference between values of k was in the range of 10−2, the response

affected the value of the output. Therefore, for such exceptional cases, the value of k was

set separately.

A similar test was performed for the terms in the linear velocity vectors, (vx(t) and

vy(t)) as well, considering the following equations as velocity setpoints for values of linear

velocities along x and y. (Refer to section-3.1.1 for derivation of the equations)

vx(t) =−
(u1(t)+u2(t))× sin(θ(k))

2
(3.21)

vy(t) =
(u1(t)+u2(t))× cos(θ(k))

2
(3.22)

Refer to the table 3.1 and 3.2, for the computed k and p values and the efficiency of

model fitting obtained for each of them. The table shows the efficiency of the fitted model

for the particular input pair and the generalized model (considering the mean of all the k

and p values), for the velocities in x and y directions and the angular velocity. The value of

efficiency of the model is obtained from the system identification application’s feature ’Fit

to estimation data’ for each of the fitted models. The generalized model is imported in the

system identification application and and it’s efficiency is obtained from the ’best fit’ value

in the ’model output’ feature from the application. The efficiencies of the fitted model and

generalized model for all types of input pairs has been presented in tables 3.1, 3.2.

27

The internal first order transfer functions in UNITY environment which maps the input

set points for the velocities were therefore realized as follows. Let, vsp
x and vsp

y be vectors of

calculated linear velocity set-points using equations-3.21, 3.22 and vdata
x ,vdata

y be the linear

velocity vectors from the collected data. Similarly, let ωsp be the vector of calculated

angular velocities from the collected data and ωsp be the angular velocity vectors from the

collected data. Then,

1. For rotation,

H(s) =
ωdata(s)
ωsp(s)

=
kr

s+0.1866
(3.23)

The value of kr = 0.1553 except for the exception cases, for which their respective

kr is considered.

2. For translation,

H(s) =
vdata

x (s)
vsp

x (s)
=

vdata
y (s)

vsp
y (s)

=
0.0982

s+0.2018
(3.24)

28

Table 3.1: Values of k and p, obtained for corresponding pair of inputs using the system
identification toolbox (MATLAB) for linear velocity from collected data for the system
identification. Average of the k and the p values calculated (k = 0.0982 and p = 0.2018).
Values used for formulation of generalized transfer function. Table contains efficiencies of
the model fitted by system identification toolbox and the generalized transfer function.

Input (Value and direction) Transfer function parameters Model efficiency

k p fitted generalized

small and small (same) 0.076 0.1679 92.31 83.63

medium and medium (same) 0.096 0.2 95.23 94.64

large and large (same) 0.093 0.19 96.75 96.48

zero and small 0.1189 0.211 86.77 83.2

zero and medium 0.1372 0.2651 92.6 89.5

zero and large 0.1314 0.258 95.4 92.5

small and medium (opposite) 0.1235 0.1445 88.13 85.58

small and large (opposite) 0.1155 0.2237 92.63 95.18

medium and small (opposite) 0.077 0.1613 86.25 85.54

medium and large (opposite) 0.1271 0.2406 89.45 85.49

large and small (opposite) 0.098 0.1977 93.52 93.17

large and medium (opposite) 0.093 0.1944 83.78 83.82

small and medium (same) 0.1 0.2 92.26 92.21

small and large (same) 0.08 0.1877 94.33 96.01

medium and small (same) 0.07 0.15 96.86 92.38

medium and large (same) 0.0877 0.1819 98.07 97.02

large and small (same) 0.093 0.193 98.22 98.09

large and medium (same) 0.076 0.1578 96.36 95.06

29

Table 3.2: Values of k and p, obtained for corresponding pair of inputs using the system
identification toolbox (MATLAB) for linear velocity from collected data for the system
identification. Average of the k and the p values calculated (k = 0.1553 and p = 0.1866). k
value for the three exception cases as described above are set separately. For the rest of the
cases, average values used for formulation of generalized transfer function. Table contains
efficiencies of the model fitted by system identification toolbox and the generalized transfer
function.

Input (Value and direction) Transfer function parameters Model efficiency

k p fitted generalized

medium and medium (opposite) 0.1108 0.1694 84.27 60.64

large and large (opposite) 0.2195 0.2755 87.34 72.67

zero and small 0.1237 0.2 57.66 40.29

zero and medium 0.1404 0.1757 87.34 77.94

zero and large 0.1706 92.42 0.1241 85.7

small and medium (opposite) 0.1235 0.1445 93.4 85.3

small and large (opposite) 0.1871 0.2128 95 70

medium and small (opposite) 0.1313 0.1544 94.03 88.93

medium and large (opposite) 0.1487 0.1659 94.33 70.21

large and small (opposite) 0.1591 0.1811 94.59 78.06

large and medium (opposite) 0.1504 0.681 95.03 69.09

small and medium (same) 0.1475 0.171 82.8 77.38

small and large (same) 0.1168 0.1331 88.2 75.35

medium and small (same) 0.1421 0.169 79.36 78.9

medium and large (same) 0.1823 0.2103 77.78 88.72

large and small (same) 0.1667 0.1938 90.51 83.3

large and medium (same) 0.2199 0.2488 77.2 62.7

30

However, the above transfer functions were calculated in the Laplace domain. To for-

mulate the equations for the propagation of the states, these transfer functions had to be

converted to the z-domain, to match the discrete state space of the system.

The transfer functions are converted to the z-domain using the inbuilt MATLAB func-

tion, [transfer function in z] = c2d([transfer function in s, sampling time)]. The sampling

time is considered as 1. This is because the continuous-time transfer function was com-

puted using the already sampled data.

1. For rotation,

P[z] =
mr

z−0.8298
(3.25)

The value of mr = 0.1417 for all the input pairs, except for the exceptional cases for

which their respective mr is considered. The 4 exceptional cases where the value of

mr is different than 0.1417 are as follows,

(a) when one input is small (±0.7) and the other input is = 0. Here, mr = 0.1027.

(b) When the two inputs are small and opposite, e.g. (u1 = 0.7 and u2 = −0.7) or

(u1 =−0.7 and u2 = 0.7). Here, mr = 0.

(c) When the two inputs are medium and opposite, e.g. (u1 = 1.4 and u2 = −1.4)

or (u1 =−1.4 and u2 = 1.4). Here, mr = 0.1019.

(d) When one input is medium (±1.4) and the other input is = 0. Here, mr =

0.1287.

31

2. For translation,

P[z] =
0.08874

z−0.8173
(3.26)

From the kinematic equations of the system, the states, x, y and θ at every time step

could also be written in the form of a transfer function in the z-domain, where the state

vx(t), vy(t) or ω(t) from the previous time step is the input to the transfer function and the

position x, y or θ at the next time step (k+1) is the output of the transfer function.

P[z] =
0.04
z−1

(3.27)

The above transfer functions could now be used to formulate the dynamic equations of

each of the states after calculating the inverse z-transform and writing the dynamic equa-

tions in discrete form. These equations were then used to formulate the state space of the

system as shown above in equations, 3.19, 3.28, 3.29 and 3.30.

The plots in figure 3.6 show the comparison between collected data and computed data,

considering the equations derived using the above transfer functions. The data for Pair-8,

trial-2 with translation goal was considered for the analysis.

It could be observed that the root mean squared error was reduced significantly when

the first-order transfer function was considered instead of just a proportional mapping or 0th

order transfer function. Refer to figure to figure 3.6. The root mean squared errors (RMSE)

observed between the actual and computed states all the pairs’ trial 2’s have been shown

in table-3.3. For 4 of the pairs, data with complete information, translation goal has been

considered. For other 4 of the pairs, data with complete information, translation+rotation

goal has been considered.

32

Table 3.3: Root mean squared errors between the actual and computed states for 7 of the
pairs’ trial-2’s

Pair/goal type x y vx vy θ ω

7/t 0.1529 0.1099 0.0378 0.0358 0.1253 0.0582

8/t 0.0881 0.0935 0.0218 0.0311 0.0666 0.0538

9/t 0.0080 0.1157 0.0070 0.0308 0.0162 0.0349

10/t 0.0316 0.1116 0.0181 0.0277 0.0786 0.0393

11/t+r 0.0624 0.0705 0.0231 0.0334 0.0681 0.0512

12/t+r 0.0705 0.1075 0.0420 0.0316 0.1214 0.1040

13/t+r 0.1633 0.1117 0.0536 0.0590 0.1741 0.0764

14/t+r 0.0420 0.0660 0.0371 0.0431 0.0860 0.0765

Figure 3.6 shows the velocity plots for trial-2 of the translation goal in case of Pair-8.

The sub-figures 3.6(a), 3.6(b), 3.6(c) show the actual and simulated angular velocities when

the simulated velocities were computed by mapping the input set points with a proportion-

ality constant. The sub-figures 3.6(d), 3.6(e), 3.6(f) show the actual and compared angular

velocities calculated by mapping the input set points using a first order transfer function.

33

(a) Velocity of x without using the

first order mapping

(b) Velocity of y without using the

first order mapping

(c) Angular velocity without using

the first order mapping

(d) Velocity of x using the first or-

der mapping

(e) Velocity of y using the first or-

der mapping

(f) Angular velocity using the first

order mapping

Figure 3.6: Visualization for comparison of the velocities with and without using the first
order mapping between the computed set point and the observed states for one of the cases

from table-3.3, translation data for pair-8 trial-2

Therefore, A, B1 and B2 from the discrete-time state space equations-3.19 were identi-

fied as follows.

A =

1 0 ts 0 0 0

0 1 0 ts 0 0

0 0 0.8173 0 0 0

0 0 0 0.8173 0 0

0 0 0 0 1 ts

0 0 0 0 0 0.8298

(3.28)

34

B1(k) =

0

0

−0.08874×sin(θ(k))
2

0.08874×cos(θ(k))
2

0

mr(k)
2

(3.29)

B2(k) =

0

0

−0.08874×sin(θ(k))
2

0.08874×cos(θ(k))
2

0

−mr(k)
2

(3.30)

Here, ts = 0.04 seconds is the sampling time. mr stands for the effect of applied inputs

on the rotational dynamics. As mentioned above, the proportionality constant in the transfer

function for mapping angular velocity, k had a constant value except for a few cases of input

pairs, for which it was set separately. Subsequently, after converting the transfer function to

the discrete domain, as mentioned above (equation-3.25), the value of mr was set separately

for a few of these input pairs.

35

Chapter 4

MODELING HUMAN-HUMAN COLLABORATIVE BEHAVIOUR

To show the improvement in the results over the updates made to the baseline algorithm,

the results from Pair-9 have been displayed. The entire analysis has been performed on the

Trial-1 with purely translation goal.

The baseline algorithm was developed by referring to [36]. The forward optimal control

model in the baseline model is different than the one used in the literature, as the forward

problem, in this case, is to model the collaborative behavior. In the forward model, the

baseline algorithm uses Nash equilibrium solutions to calculate control inputs separately

for all the agents. The genetic algorithm was used as the solver used for the inverse optimal

control, with Frobenius norm between the generated and expert (human) trajectories as the

fitness function. The first update was made to the fitness function of the genetic algorithm.

The new fitness function, DTW was able to generate trajectories that reached the goal

position which was not possible by the baseline model. The second update was built upon

the first update. The update was made to incorporate the realistic assumption that each

agent would predict the optimal inputs for themselves and their partner considering that

their partner’s cost function would be different than their own (refer to section-4.3). The

resulting trajectories from this update were closer to the human trajectories than before.

The third update was built upon the previous (second) update, considering stochasticity in

input application for each agent (refer to section-4.4). However, due to account for non-

unique solutions obtained at each run of the inverse optimal control, an average result from

5 runs of the algorithm was considered for comparison. The fourth update was made by

changing the fitness function from the third update back to the original fitness function from

the baseline algorithm, Frobenius norm (refer to section 4.5). The results from this update

36

were compared with the baseline algorithm due to the similarity in their fitness functions.

Again, an average performance from 5 runs of the algorithm was considered to ensure that

the results were generalized. Results from the fourth update look quite promising and have

a remarkable resemblance to the human trajectory.

4.1 Development of Baseline Model

This section aims to formulate a collaborative model that can describe human behavior.

Therefore, the model must be able to achieve a response, most similar to human trajectories

(from the collected data). A hypothesized structure of the collaborative model, which is

an extended optimal control formulation was developed (refer to section-4.1.2). Then,an

inverse optimal control algorithm was formulated to find the best weights for the optimal

control framework, such that the resulting response is as close as possible to the human

trajectory (refer to section-4.1.1).

4.1.1 Inverse Optimal Control to Model the Collaborative Human Behavior

An inverse optimal control framework to model the cost function for every pair’s data

was formulated [36; 35]. Let ui
i(t), u−i

i (t) be the input predictions by agent i for themselves

and their partner, respectively. Then cost functions for i during the game would be as

follows, Let,

f1(i) =

xg− x(i)

yg− y(i)

θg−θ(i)

u j(i)

(4.1)

where, u j(i) = u1
1(i) or u j(i) = u2

1(i) is the feature vector for agent-1.

37

f2(i) =

xg− x(i)

yg− y(i)

θg−θ(i)

u j(i)

(4.2)

where, u j(i) = u1
2(i) or u j(i) = u2

2(i) is the feature vector for agent-2.

Therefore, the cost functions of the two agents are,

J1 =
h

∑
i=1

(f1(i))TW diag
1 (f1(i)) (4.3)

J2 =
h

∑
i=1

(f2(i))TW diag
2 (f2(i)) (4.4)

where h∈N+ is the prediction horizon, g=
[

xg yg θg

]′
is the goal and

[
x(i) y(i) θ(i)

]′
is the position at iteration i, which is dependant on the hypothesized inputs for the agent

and their partner.

The weight vectors for the two agents working together are defined as,

W1 =

[
w11 w12 w13 w14

]
, W1 ∈ R4×1 and W2 =

[
w21 w22 w23 w24

]
, W2 ∈ R4×1.

The weighting matrix for the cost function of agent-1 is W diag
1 ∈ R4×4. It is a diag-

onal matrix such that, W diag
1 = diag(

[
w11 w12 w13 w14

]
). Similarly, for agent-2, the

diagonal weighting matrix W diag
2 ∈ R4×4 and W diag

2 = diag(
[

w21 w22 w23 w24

]
).

The inverse optimal control algorithm considers W1 6=W2.

(Please refer to section-4.1.2 for the forward algorithm).

p(i) such that p(i)[0 : 3] = W1 and p(i)[4 : 7] = W2 is defined. The objective function

in the formulation is a function of p(i) at iteration, i. (Please refer to the algorithm 1).

Genetic algorithm is used as a solver in this case for finding the optimal weights [36].

(refer to section-4.1.3). The fitness function is calculated using frobenius norm of the

38

difference between the human and predicted trajectories [36]. The description of fitness

value calculation using frobenius norm has been given in the section-4.1.4

4.1.2 Forward Algorithm to Generate the Trajectories

The task can be described as a standard collaborative couch-pushing task to achieve a

defined goal. The goal demands a dominant movement in the y-direction. The application

of inputs is also predominantly in the y-direction. Therefore the task involves collabo-

ratively reaching the goal. As the agents start applying input velocities at different time

instances, it was observed that there is an initial disturbance generated in x and θ (angu-

lar) dimensions. This deviation can be regarded as a noisy initial condition for the agents’

model predictive control. However, to ensure that interaction behavior between the agents

is not biased in any way and doesn’t over-fit, constant (zero) initial conditions were con-

sidered for all the pairs. The following sections contain the analysis between simulation

results using model predictive control (considering the zero initial conditions) and the ac-

tual human-human trajectories.

The feature vector, fi ∈ R1×n and the weighting matrix, W diag
i ∈ Rn×n are defined for

an agent, i. W diag
i is a diagonal matrix whose diagonal elements are the weights allocated

to the features from the feature vector, f . For example, the diagonal element W diag
i (m,m)

is the weight allocated to the mth feature, fi(1,m).

A quadratic cost function with finite horizon is chosen, that accounts for cost of ap-

plying the inputs, their outcomes on the future time-steps and the reward for proceeding

towards the goal. Let, h ∈ N+ be the prediction horizon.

39

Assume that, the trajectory for ui
i(k) is ξ i

i (k) = {ui
i(k),u

i
i(k+ 1), ...,ui

i(k+ h− 1)} and

ui
−i(k) is ξ i

−i(k) = {ui
−i(k),u

i
−i(k + 1), ...,ui

−i(k + h− 1)}. These are the predicted input

trajectories (according to agent, i) for the agent and their partner at the kth step. Now the

cost function to be minimized by the agent would be as follows,

Ji(ξ
i
i (k),ξ

i
−i(k), ȳ(k),g) =

h

∑
k=1

(fi(k))TW diag
i (fi(k)) (4.5)

Here, h ∈ N+ is the prediction horizon. g =

[
xg yg θg

]′
is the goal position and ȳ(k) =[

x(k) y(k) θ(k)

]′
is position at time step k.

As the states considered in the output are only the position terms, the output of the state

space can be denoted as,

ȳ(k) =Cs(k) (4.6)

where,

C =

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 1 0

 (4.7)

At each time step k, the agent, i chooses a Nash equilibrium solution < ξ i∗
i ,ξ i∗

−i > using the

condition,

ξ
i∗
i = argmin

ξ i
i∈Ξi

Ji(ξ
i
i ,ξ

i∗
−i, ȳ,g) (4.8)

ξ
i∗
−i = argmin

ξ i
−i∈Ξ−i

Ji(ξ
i∗
i ,ξ i

−i, ȳ,g) (4.9)

where Ξi and Ξ−i are the action trajectory sets for the agent i and their partner. Then they

define a set Ξ∗ which contains all the Nash Equilibrium pairs. The agent then picks a

solution which minimize the cost, from Ξ∗. This optimal solution is denoted as follows,

ξ
o
i = argmin

ξ i
i ,<ξ i

i ,ξ
i
−i>∈Ξ∗

Ji(ξ
i
i ,ξ

i
−i, ȳ,g) (4.10)

40

ξ
o
−i = argmin

ξ i
−i,<ξ i

i ,ξ
i
−i>∈Ξ∗

Ji(ξ
i
i ,ξ

i
−i, ȳ,g) (4.11)

By solving (4.10) and (4.11), the agent i obtains the optimal control trajectories. The

agent then chooses the first element from each trajectory as the predicted control inputs for

current time step (k). Hence ui
i = ξ o

i [0] and ui
−i = ξ o

−i[0] which are the first elements from

the sets, ξ o
i and ξ o

−i respectively, are chosen. The agent applies the input, ui
i.

Each agent i, (in our case, i = {1,2}) has their own weight vector Wi and therefore a

different cost function, Ji. Hence, each of them applies inputs based on the result of their

own cost function. This results in a trajectory that deviates from the most optimal path

in case both the agents followed the same cost function. This can be observed due to the

variations in strategies (cost functions) of the involved agents.

4.1.3 Optimization Solver: Genetic Algorithm

The optimizer or solver used in the proposed optimization formulation is a genetic

algorithm. The ga() function from the Global Optimization toolbox in MATLAB has been

used.

Outline of the Genetic Algorithm

Genetic algorithm is an optimization solver that calculates the global optimum in most

cases. The difference between a classical solver and the genetic algorithm can be explained

as follows. A classical solver generates only a single point at each iteration and updates

it to reach the optima. The genetic algorithm generates a group or population of points

at each iteration. The population at each iteration is generated by selecting and updating

the best points from the previous iterations. This new population is referred to as the

new generation. Only the best points in the previous generations contribute to the next

generations and the optimal solution evolves over multiple generations.

41

In the proposed algorithm (1), the vector p ∈ R8×1, is generated by appending the

weight vectors of both the agents, W1 and W2. The objective function in this case is a

combination of the lines 4 and 5 in the algorithm (1). The variables other than p (or W (i)
1 ,

W (i)
2) are all constants. This is because the physics of the system, initial conditions, pre-

diction horizon, the position of the goal, and expert (human) trajectory is all constant for

a trial. Therefore, the lines 4 and 5 together can be visualized as the objective function,

which is a function of the variable, pi and returns the fitness value ei (refer to the section

4.1.4). The genetic algorithm finds the best value of p such that a minimum e is reached.

The steps followed by the solver (ga() function in MATLAB) are as follows;

1. An initial population is chosen randomly. In our case, the initial population consists

of multiple options of p ∈ R1×8. This is because, p is the decision variable and is

adjusted to minimize the value of fitness function, e. These options of p are referred

to as members of the generation. Each generation consisted of 200 members for the

current application.

2. The raw fitness scores for each option of p (member) in this population are calculated

using the fitness function.

3. These raw scores are scaled to a new range of fitness values called expectation values.

4. The members with lower fitness values are chosen as parents for the next generations.

5. Three types of children, elite, crossover, and mutation are generated from the selected

parents from the previous generation and form the next generation.

6. The members with the best (lowest) fitness values are passed directly to the new

generation and are called elite children.

7. A combination of multiple members from the previous generation which are selected

as parents produce the crossover children.

42

8. Updating the values of a single member among the chosen parents from the previous

generation produces mutation children.

9. Each generation consists of a population of 8× 1 vectors and a new generation is

created at each iteration of the algorithm.

10. The algorithm keeps running until the relative change in the fitness value of the best

member pi in a generation i is lesser than the threshold of convergence for more than

a certain number of generations.

The objective function for the ga() solver is a function of p and returns the fitness value

which is calculated using the fitness function. (Refer to section 4.1.4). Therefore, every

point in the generations of the genetic algorithm is of the dimension 8×1.

Threshold of convergence was chosen as ε = 0.01 and the maximum stalling genera-

tions, max stall gen = 20 generations. This means when the change in the average fitness

value < ε for more than max stall gen generations, the solver stops the optimization pro-

cess. Every generation consists of a population of 200 hypothesized p′s.

4.1.4 Fitness Function

Frobenius norm between simulated and expert trajectories is chosen to calculate the

fitness function in the inverse optimal control formulation by [36]. The squared of the

Frobenius norm value is used as the fitness function. Frobenius norm is the matrix norm. It

compares every term from the first matrix to its corresponding term in the second matrix.

43

Let the output from the human trajectory (consisting of the states x,y,θ from the first

to the last time step) be y(i, j) and the output from the simulated trajectory to be ȳ(i, j). Let

the dimensions of these two matrices be m×n. Frobenius norm of a matrix the difference

between simulated and human trajectory can be defined as,

f rob norm(y, ȳ) =

√
m

∑
i=1

n

∑
j=1
‖y(i, j)− ȳ(i, j)‖2 (4.12)

As fitness function, e f rob norm is defined as the square of the frobenius norm of differ-

ence between the actual and simulated trajectories,

e f rob norm(y, ȳ) =
m

∑
i=1

n

∑
j=1
‖y(i, j)− ȳ(i, j)‖2 (4.13)

This method tries to generate a trajectory, which has a time-step wise closest resem-

blance to the human trajectory.

4.1.5 Re-Sizing the Data Before Analysis

It was observed from the collected data that a dyad would not start at the first time

step or end at the last time step. There was a region between their start time and their

end time of the task. The rest of the section of the trajectory was observed to have no

actions by the agents. For analyzing the interaction behavior, it is important to consider

the effective trajectory only. It was also observed that each pair had a different start time

and an end time for the task, resulting in different lengths of effective trajectories for each

of them. Therefore, to have the trajectories of equal lengths for the sake of comparison,

the trajectories were resampled to a common length. This was done using the MATLAB

function, resample(). The inputs required for this function are, the time-series to be re-

sampled, desired size of the series after re-sampling and the current size of the time-series.

The sampling time (ts), used for simulating the low level dynamics for the trial, according

to equations 3.19, 3.28, 3.29, 3.30 is also modified. The new sampling time is defined as

44

tnew
s = 0.04×tnew

told
, where tnew is the new length of the time-series and told is the length before

re-sampling. The re-sampled trajectories would now be used for fitting the human models

using the inverse optimal control algorithm - 1.

4.1.6 The Proposed Optimization Formulation

The inverse optimal control framework is formulated as an optimization with the fitness

function (refer to section-4.1.4) as the objective function. The objective function is a func-

tion of the decision variable, p which is an 8× 1 vector (explained in the section 4.1.3).

The genetic algorithm, a global optimization solver is used for the process.

The genetic algorithm hypothesizes a population of 200 decision variables at every

generation. For all generations, the algorithm- 2 is used to calculate the trajectory cor-

responding to every hypothesized vector pi in the generation, which is used to calculate

it’s corresponding fitness value, ei. The fitness value is calculated as the squared of the

frobenius norm (refer to section-4.1.4), which has been denoted as ‖·‖2
F in the algorithm-

1. These fitness values are used for selecting parent members for the next generation. As

explained in section- 4.1.3.

The genetic algorithm keeps running until the change in average fitness value for 20

consecutive generations is less than 0.01. The best fitness value at the final generation and

its corresponding decision vector is returned as the best fit. In the algorithm-1, Pi is denoted

as the ith generation of p’s.

45

Algorithm 1: Algorithm to fit W1, W2 given the system dynamics, threshold of

convergence and expert demonstrations
input : Expert demonstrations y[1:N], state space {A,B1,B2,C}, initial condition

s(0), goal g = [xg,yg,θg], prediction horizon h, input candidate set I,

threshold of convergence ε , number of time steps N

output: Optimal decision vector, p

1 Initialize P(0) = random() and i = 0

2 while ∆ei > ε do

3 For all p ∈ Pi, generate

ȳ(t = 0 : N; p) = generate tra jectory(A,B1,B2,C, p,s(0),h,goal)

4 For all p ∈ Pi, calculate ei(p) = ‖ȳ(t = 0 : 245; p)− y(t = 0 : 245)‖2
F

5 Find eavg
i , ebest

i from ei(p), p ∈ Pi

6 ∆eavg
i = eavg

i − eavg
i−1

7 Update p(i)best based on ebest
(i)

8 Increment i

9 Generate new generation Pi using the genetic algorithm solver

10 end

11 p = p(i)best

12 return p

46

Algorithm 2: generate trajectory(): The forward algorithm in the inner loop of

the algorithm 1
input : State space, {A,B1,B2,C}, updated vector, p, initial condition, s(0), the

goal, g = [xg,yg,θg], prediction horizon, h, input candidate set, I

output: Generated optimal trajectory using determined weights, ȳ(t = 1 : N; p)

1 for t = 1 : N do

2 Extract W1 and W2 from p

3 Update B1 and B2 based on (3.29) and (3.30)

4 for (ξ 1
1 ,ξ

1
2)∈ Ξ1×Ξ2 do

5 compute J1(ξ
1
1 ,ξ

1
2 , p,g) using W1

6 end

7 Find the Nash Equilibira set Ξ∗ based on (4.8) and (4.9)

8 Compute ξ o
1 and ξ o

2 with (4.10) and (4.11)

9 Choose the first action in ξ o
1 as the optimal control, uo

1 = ξ o
1 [0].

10 for (ξ 2
1 ,ξ

2
2)∈ Ξ1×Ξ2 do

11 compute J2(ξ
2
1 ,ξ

2
2 , p,g) using W2

12 end

13 Find the Nash Equilibira set Ξ∗ based on (4.8) and (4.9)

14 Compute ξ o
1 and ξ o

2 with (4.10) and (4.11)

15 Choose the first action in ξ o
2 as the optimal control, uo

2 = ξ o
2 [0].

16 Update the value of ȳ(t) using uo
1 and uo

2 based on (4.6)

17 end

47

(a) Comparison of simulated and actual x-

trajectory, tuned using the optimization algo-

rithm

(b) Comparison of simulated and actual y-

trajectory, tuned using the optimization algo-

rithm
Figure 4.1: Trajectories for the actual and simulated trajectories for pair-9, trial-1 tuned

using the algorithm

(a) Comparison of simulated and actual angu-

lar trajectory, tuned using the optimization algo-

rithm

(b) Comparison of simulated and actual x vs

y trajectory, tuned using the optimization algo-

rithm
Figure 4.2: Trajectories for the actual and simulated trajectories for pair-9, trial-1 tuned

using the algorithm

48

4.1.7 Preliminary Analysis

Observe Figures 4.1 and 4.2. It can be observed that humans would not try to reach

the goal as soon as possible, as long as they can reach in the defined time-limit. The

algorithm would find a trajectory that has a minimum Euclidean distance from the human

trajectory for x, y, and θ . Suitable weights determining cost functions of this trajectory are

simulated. Higher costs are allotted to the control inputs to generate a slower trajectory (that

resembles the human trajectory, time-step wise). At a certain point in the simulation, the

input becomes costlier than the distance from the goal, thus not reaching the goal (y = 0).

If lower costs were selected for the control inputs, the trajectory would become faster than

the human trajectory. While the goal would be reached in this case, the euclidean distance

between the simulated and human trajectories would be higher than before, resulting in the

rejection of this solution.

Therefore, a method that could capture the trend of human trajectories, rather than

time-step wise comparison was required.

4.2 Update 1: Dtw Distance As New Fitness Function

Human behavior is too complex to model perfectly. Sometimes, people tend to pause

during the task. Sometimes, they act very slowly and are not concerned about the elapsed

time if they ultimately reach the goal, although there is a time constraint.

Due to these factors, it is difficult to replicate the exact human trajectory. However, to

analyze the humans’ strategies, trajectories that follow similar trends to human trajectories

can be considered. These trajectories do follow similar trends to the human trajectories but

are not synchronized with them. Most of the time, human trajectories are slightly delayed.

Dynamic time warping was used as the fitness function, to find a trajectory that follows the

most similar trend to the human trajectory.

49

4.2.1 Fitness Function: Dynamic Time Warping

Now, the fitness function in the algorithm-1 is calculated using DTW () (dynamic time

warping distance) between simulated and expert (human) trajectories.

Dynamic time warping is an algorithm that is used to measure the similarity among

two chronological time series sequences, which may vary in speeds. It has be used to align

sequences which may be misaligned, but follow a similar trend and can also be used to

calculate similarity between them [50]. A few applications of dynamic time warping are,

to calculate the closest predictions for sales using trends followed in the past observations

[51], analysis of walking sequences using data from different individuals [52] and speech

analysis [53]. The similarity between two chronological time-series sequences and the

DTW() distance between them are inversely proportional. Therefore, lower DTW distance

value implies more similarity between the sequences and vice versa.

4.2.2 Mathematical Description of the Dynamic Time Warping algorithm

Let the two sequences in comparison be Y = {y(1),y(2), ...,y(n)} and Ȳ = {ȳ(1), ȳ(2), ..., ȳ(n)}

The sequences are first aligned. In order to align the sequences, they are arranged in an

n× n grid. One of the axes in the grid corresponds to the indices of the sequence, Y and

the other axis corresponds to the indices of the sequence, Ȳ . Therefore, each term in the

sequence Y is aligned with each term in the sequence Ȳ .

A set of warping paths (W = {w1,w2, ...,wm}), containing different alignments of the

sequences is generated. The elements in the paths are tuples, < i, j >. Where i is the index

of an element from Y and j is the index of an element from Ȳ .

The value of a member w(k) =< i, j > such that w ∈W is

dist(w(k)) = ‖Y (i)− Ȳ (j)‖ (4.14)

50

The function DTW (Y,Ȳ) returns the most optimal path W such that

W (Y,Ȳ) = argmin
W

n

∑
k=1

dist(w(k)) (4.15)

The final numeric value returned by the function DTW (Y,Ȳ) is

DTW (Y,Ȳ) =
n

∑
k=1

dist(W (k)) (4.16)

where W is the optimal warping path from (4.15).

A few rules for generating the warping paths are as follows.

• Every point in the first sequence must be paired with one or more points in the second

sequence and vice versa.

• The first points in the two sequences must be matched with each other, but they may

not be the only matches for these two points.

• The last points in the two sequences must be matched with each other, but they may

not be the only matches for these two points.

• The paired indices of the points in the first sequence and the points in the second

sequence must be monotonically increasing.

The output vectors y and ȳ in our case are not 1 dimensional vectors. They are 3

dimensional vectors consisting of the trajectories of x, y and θ . The DTW () function treats

each of these columns (trajectories of x, y and θ) from the output matrix as independent

vectors and returns the sum of the three final values.

The line 5 in the algorithm- 1 is changed to dynamic time warping distance instead of

the frobenius norm.

51

4.2.3 Comparison of the Fitness Functions: Dtw distance and Frobenius Norm

Let the generated trajectory from the algorithm be Ȳ ∈ Rm×n and the human trajectory

according to the collected data be, Y ∈Rm×n. The value of m= 3 corresponding to the three

dimensions of output trajectory, x, y and θ and n = length of the trajectory in time-steps.

Therefore,

e f rob norm(Y,Ȳ) =
m

∑
i=1

n

∑
j=1
‖Y (i, j)− Ȳ (i, j)‖2 (4.17)

eDTW (Y,Ȳ) =

[
m

∑
i=1

n

∑
j=1

dist(W)

]2

(4.18)

where W is the optimal warping path described in section-4.2.2. The optimal warping path

is calculated along the time-steps, (j = 1 : n) by comparing every point in Y (i, j = 1 : n) with

every point in Ȳ (i, j = 1 : n). The comparison is carried out using the euclidean distance

measure, or norm (refer to section-4.2.2).

The major difference between the nature of the two fitness functions is the calculation

of the warping path in case of DTW distance. This step accounts for the misalignment

in the two sequences/trajectories and therefore estimates the similarity in the trend of the

trajectories rather than the time-step wise comparison carried out using the Frobenius norm.

Another difference between the calculations of the fitness functions is as follows. The

fitness function using Frobenius norm is calculated as the sum of squares of the terms in

the difference matrix, while DTW distance is calculated using the square of the sum of the

terms in the warping path. This is the reason, why the fitness values obtained using DTW

distance were larger than the ones obtained using Frobenius norm.

52

(a) Comparison of x vs timestep trajectories (b) Comparison of y vs timestep trajectories

Figure 4.3: Comparison of trajectories generated from baseline model (frobenius norm as
fitness function) and update-1 model (DTW distance as fitness function) with actual

human trajectory

(a) Comparison of θ vs timestep trajectories (b) Comparison of x vs y trajectories

Figure 4.4: Comparison of trajectories generated from baseline model (frobenius norm as
fitness function) and update-1 model (DTW distance as fitness function) with actual

human trajectory

53

4.2.4 Analysis

An improvement in the completeness of the task (reaching the goal) could be observed

in the trajectory obtained from this update.(Refer to figures 4.3, 4.4). However, using root

mean squared error as an analysis metric was no longer possible. This is because, while the

shape of the trajectory (trend) was similar to the human trajectory, the exact trajectory (of

each co-ordinate at every time step) was not achieved using this fitness function. Therefore,

the metric used to compare the trajectories had to be changed to be DTW distance (dynamic

time warping distance). The description of evaluating the value of this metric has been

explained in 4.2.1.

4.3 Update 2: Assume Different Cost Function for Partner

To improve the performance of the forward algorithm further, a level of complexity was

added to the optimal control (algorithm-2).

Consider an agent, i. Until now, i is assumed to evaluate the input trajectories of itself

and the partner according to equations 4.8, 4.9, 4.10 and 4.11. The agent uses the same

cost function, Ji which corresponds to the weighting vector Wi for the evaluation. However,

a more realistic scenario would be, that humans would not assume that their partner is

identical (has the same strategy) to them during collaborative tasks.

Therefore, i is now modeled to consider different weighting vectors, Wi,i and Wi,−i and

subsequently the cost functions Ji,i and Ji,−i to evaluate the control trajectories of itself and

its partner. Consequently, at each time step k,

Ji,i(ξ
i
i (k),ξ

i
−i(k), ȳ(k),g) =

h

∑
k=1

(fi(k))TW diag
i,i (fi(k)) (4.19)

Ji,−i(ξ
i
i (k),ξ

i
−i(k), ȳ(k),g) =

h

∑
k=1

(fi(k))TW diag
i,−i (fi(k)) (4.20)

54

Here W diag = diag([W]) is a diagonal matrix which has diagonal elements equal to the

elements in the vector W , and fi(k) is the feature vector at time-step k (the definitions are

the same as described in section-4.1.2). Therefore, i chooses the Nash equilibrium solution,

< ξ i∗
i ,ξ i∗

−i > using the condition,

ξ
i∗
i = argmin

ξ i
i∈Ξi

Ji,i(ξ
i
i ,ξ

i∗
−i, ȳ,g) (4.21)

ξ
i∗
−i = argmin

ξ i
−i∈Ξ−i

Ji,−i(ξ
i∗
i ,ξ i

−i, ȳ,g) (4.22)

where Ξi and Ξ−i are the action trajectory sets for the agent i and their partner.Further, i

defines the set Ξ∗ containing all the Nash Equilibrium pairs and then picks a solution from

it which minimize the cost. This optimal solution is denoted as follows,

ξ
o
i = argmin

ξ i
i ,<ξ i

i ,ξ
i
−i>∈Ξ∗

Ji,i(ξ
i
i ,ξ

i
−i, p,g) (4.23)

ξ
o
−i = argmin

ξ i
−i,<ξ i

i ,ξ
i
−i>∈Ξ∗

Ji,−i(ξ
i
i ,ξ

i
−i, p,g) (4.24)

which is used to further calculate, ui
i = ξ o

i [0] and ui
−i = ξ o

−i[0] and therefore the agent’s

input, ui
i.

Applying this update to both the agents, the weight vectors to be fitted now are, W11,W12

for agent-1 and W21,W22 for agent-2. When these weight vectors are concatenated together

to form a single decision variable for the genetic algorithm, the decision variable would

now be of the size, 16×1 instead of 8×1 as it was before (refer to section-4.1.1).

55

(a) Comparison of trajectories generated from

baseline and updated models with actual human

trajectory (x vs timestep)

(b) Comparison of trajectories generated from

baseline and updated models with actual human

trajectory (y vs timestep)

Figure 4.5: Comparison of trajectories generated from baseline and updated models with
actual human trajectory

(a) Comparison of trajectories generated from

baseline and updated models with actual human

trajectory (θ vs timestep)

(b) Comparison of trajectories generated from

baseline and updated models with actual human

trajectory (x vs y)

Figure 4.6: Comparison of trajectories generated from baseline and updated models with
actual human trajectory

56

4.3.1 Analysis

An improvement can be observed in the results.(Refer to figures 4.5, 4.6). A reduction

in the error metric can also be observed. The conclusion from these improvements is,

even in a mundane task such as this, humans tend to assume the partner’s behavior/strategy

(different from their own) while choosing their actions. The improvement in the fitness

value corresponding to optimal weights returned by the genetic algorithm solver has been

displayed in table-4.1. As mentioned in the previous update, the comparison metric is

DTW() distance.

Table 4.1: Comparison of fitness values from updates 1 and 2 with the baseline algorithm.

Algorithm Fitness value

baseline 31.1563

Update-1 20.0257

Update-2 16.4604

4.4 Update 3: Stochastic Inputs Using Bounded Rationality

Updates made to the collaborative model were able to obtain more similarity between

the trends of generated trajectory and the human trajectory. However, the model lacks an

important aspect of human behavior, stochastic nature. When a human predicts the optimal

input at a particular time step, there is just a higher probability that the agent would take

the action. However, there is also a probability that they would take an action other than the

predicted one. This behavior would be dependant on how rational or random the human is

during the task.

57

4.4.1 Incorporating Stochastic Inputs

While modeling the optimal control problem with stochastic inputs, the stochastic na-

ture can be incorporated by generating a probability distribution (P) over the input candi-

date set. P is determined by choosing a coefficient of rationality, which would be called α .

The procedure is adapted from [8].

Consider the action candidate set to be U . With the algorithm from the update- 2,

(section - 4.3), an agent i computes the optimal control input pair (ui, u−i). Assuming that

their partner is completely optimal, the agent builds a probability density function over the

action candidate set, U . The action is selected from U based on this probability density

function (PDF) over U .

How Is the PDF Generated?

Let ui ∈ U where, U is the action candidate set. Referring to algorithm- 2, for each ui,

a cost is calculated considering that the predicted input of the partner, u−i is optimal and

deterministic. Let the cost candidate set, C be the set of costs corresponding to each ui ∈U

calculated using equation-4.3/4.4. Based on the cost candidate set, the probability density

function should be determined such that, the higher the cost of input; the lower is the

probability of applying that input.

Therefore, the probability density for each member ui ∈U , was calculated based on its

corresponding value of cost as follows,

P(ui|u−i,α, p,g) =
eα(cmax−ci)

∑c∈C eα(cmax−c)
(4.25)

58

Here, cmax ∈C is the maximum cost from the cost candidate set C, ci ∈C is the cost for

applying input ui, α is the coefficient of rationality. The higher the value of α , the more

is the rationality of the agent i’s action. p are the hypothesized weights and g is the goal

position. The cost function is dependant on these two quantities.

The results obtained from this update were found to reduce the final error (DTW dis-

tance between the generated trajectory and human trajectory) to a great extent.

An Explanation for Equation-(4.25)

The literature [8] referred to generate the probability density function, uses the formula-

tion, ’maximization of a reward function’ to generate the control inputs. Therefore, each

candidate, u from the action candidate set U has an associated reward. Consider that R is

the reward candidate set which corresponds to the candidates ui ∈U . Therefore, the higher

the value of a candidate in R, the higher should be its corresponding value in the probabil-

ity density function (Figure 4.7(a)). To capture this relationship, the authors of [8] use the

following equation.

P(ui|u−i,θ ,α) =
eαRui

∑u∈U eαRu
(4.26)

where, Ru ∈ R is the reward corresponding to the input u and is a function of the trained

weights, θ

However, in our case, the relationship between the cost candidate set C and the prob-

ability density function is the opposite. Therefore, the lower the value of a candidate in

C, the higher should it’s the corresponding value of the probability density function. To

achieve this, a reducing exponential function (Figure 4.7(b)) is required in contrast to the

increasing exponential function, used in the literature.

But, a function y = e−x decays to 0 too quickly. As the cost function in our case is

quadratic, the generated cost values are positive and significantly greater than 0. Therefore,

59

(a) Plot for the exponential function, y = ex (b) Plot for the exponential function, y = e−x

Figure 4.7: Exponential functions for pdf generation

the corresponding value of y using the equation, y = e−ci , ci ∈ C would tend to zero in

almost all the cases, considering our cost function.

As a solution to this issue, the exponential curve is moved so that, value at the maxi-

mum cost candidate is 1 and the rest of the values of the costs are all > 1. The numerator

in the equation (4.25) would then be exponentially larger for smaller cost values. (Observe

the comparison between y = e−Cui and y = emax(C)−Cui , in figure-4.8. This is just a visual-

ization to describe the process of defining the probability density function. The plot in the

illustration assumes cmax = 3, but it can be any arbitrary value.)

Once the agent has calculated the probability density function (pd f (ui)) over the action

candidate set U , a control action ui ∈ U is selected based on it. The control action may

or may not be the most optimal but is not completely random either, because it is picked

based on a probability density function. This process of action selection is performed at

every time-step and applied between lines 13 and 14 of the algorithm-2. The rationality

coefficient α is assumed to be different for both the agents, resulting in an addition of 2

terms (α1 and α2) in the decision variable, p. Therefore, the new decision variable now has

dimensions, 18×1.

60

Figure 4.8: Plot for the exponential function, y = e−x and y = emax−x

(a) Comparison of trajectories generated from

baseline and updated models with actual human

trajectory (x vs timestep)

(b) Comparison of trajectories generated from

baseline and updated models with actual human

trajectory (y vs timestep)

Figure 4.9: Comparison of trajectories generated from baseline and updated models with
actual human trajectory

61

(a) Comparison of trajectories generated from

baseline and updated models with actual human

trajectory (θ vs timestep)

(b) Comparison of trajectories generated from

baseline and updated models with actual human

trajectory (x vs y)

Figure 4.10: Comparison of trajectories generated from baseline and updated models
with actual human trajectory

4.4.2 Analysis

Inverse optimal control (Algorithm-1) is performed with this update resulting in great

improvements to the DTW () distance or error value. (Refer to figures 4.9, 4.10)

However, due to the presence of randomness in the forward algorithm (trajectory gen-

eration), the search-space of optimization changes completely. Multiple solutions have

become possible. This is because rationality coefficients determine a probability density

function. So, for a pair of them, (α1, α2), there would be multiple resultant trajectories.

When the genetic algorithm simulates a trajectory with the pair the result is a member of a

large set of results. Therefore, every time the inverse optimal control is performed, differ-

ent solutions (p’s) would be achieved. Multiple runs were performed to check similarities

between the fitted cost function and the corresponding fitness values. To ensure no biases,

the recorded fitness values and trajectories are used directly as returned by the genetic al-

gorithm solver. This exercise is performed five times to ensure more general conclusions.

62

Table-4.2 shows the improvement in fitness value of all the updates including the current

one. A mean of all the five fitness values (refer to table-4.3) is considered to ensure that the

reduction in fitness value is not just a special case of result.

Table 4.2: Comparison of fitness values from updates 1 and 2 with the baseline algorithm.

Algorithm Fitness value

baseline 31.1563

Update-1 20.0257

Update-2 16.4604

Update-3 9.915

Table 4.3: Comparison of fitness values from 5 runs of the optimization algorithm.

Run no. 1 2 3 4 5

fitness value 10.6035 8.7286 10.7608 9.7437 9.7384

63

(a) Comparison of trajectories generated from 5

runs of the stochastic input and DTW fitness func-

tion models, with actual human trajectory (x vs

timestep)

(b) Comparison of trajectories generated from 5

runs of the stochastic input and DTW fitness func-

tion models, with actual human trajectory (y vs

timestep)

Figure 4.11: Comparison of trajectories generated from 5 runs of the stochastic input and
DTW fitness function models, with actual human trajectory

(a) Comparison of trajectories generated from 5

runs of the stochastic input and DTW fitness func-

tion models, with actual human trajectory (θ vs

timestep)

(b) Comparison of Trajectories Generated From

5 Runs of the Stochastic Input and DTW Fitness

Function Models, With Actual Human Trajectory

(x vs y)

Figure 4.12: Comparison of trajectories generated from 5 runs of the stochastic input and
DTW fitness function models, with actual human trajectory

64

4.5 Update 4: Original Fitness Function With Stochastic Inputs

Adding a stochastic component to all the agents’ input selection changes the possible

behavior dynamic of the model. In the second update, the fitness function was changed to

DTW to tackle the effect of stochastic/random human behavior, which is now accounted

for by adding stochasticity to the agents’ inputs. Therefore, the model is tested with the

original fitness function, Frobenius norm between human state trajectory and simulated

state trajectory. The rest of the problem setup was kept the same. i.e. dimensions of the

decision variable, p remained 18×1. (Refer to figures 4.13, 4.14)

(a) Comparison of trajectories generated from

baseline and updated models with actual human

trajectory (x vs timestep)

(b) Comparison of trajectories generated from

baseline and updated models with actual human

trajectory (y vs timestep)

Figure 4.13: Comparison of trajectories generated from baseline and updated models
with actual human trajectory

65

(a) Comparison of trajectories generated from

baseline and updated models with actual human

trajectory (θ vs timestep)

(b) Comparison of Trajectories Generated From

Baseline and Updated Models With Actual Human

Trajectory (x vs y)

Figure 4.14: Comparison of trajectories generated from baseline and updated models
with actual human trajectory

4.5.1 Analysis

The results appear quite promising. However, in this case as well, the fitted variable p

would vary every time. Therefore, similar to the previous update, the genetic algorithm was

run five times, and an average of the fitness value from all 5 runs was considered to ensure

a more generalized result (refer to figure-4.15, figure-4.16). The resulting error values have

also been documented in table-4.5 and table-4.6.

Table 4.4: Comparison of fitness values between baseline and Update-4.

Algorithm Fitness value

Baseline 4.6022

Update-4 1.5299

66

Table 4.5: Comparison of fitness values from 5 runs of the Update-4.

Run no. 1 2 3 4 5

fitness value(frobenius norm) 1.4372 1.5480 1.5666 1.6749 1.4229

Table-4.4 shows the comparison between the fitness values (frobenius norm in both of

these cases) of the baseline algorithm and the updated algorithm. To generalize the fitness

value obtained from Update-4, a mean of fitness values obtained from 5 of the algorithm

has been considered. The values obtained in each run has been tabulated in table-4.5. The

comparison is made only with the baseline algorithm, as the fitness function for both the

algorithms was the same.

As frobenius norm was used as the fitness function in both the cases, root mean squared

error (RMSE) could be used to compare the results. Table-4.6 shows the improvements

obtained in the RMSE values from the first model before any updates and the new model

with all the fourth update.

Table 4.6: Comparison of root mean squared error values between baseline and 5 runs of
Update-4.

Algorithm RMSE (x) RMSE (y) RMSE (θ)

Baseline 0.069 0.3541 0.1095

Update-4 run-1 0.0299 0.0789 0.0821

Update-4 run-2 0.0347 0.0731 0.976

Update-4 run-3 0.0199 0.1016 0.0758

Update-4 run-4 0.0324 0.09 0.0984

Update-4 run-5 0.0227 0.0903 0.0701

67

(a) Comparison of trajectories generated from 5

runs of the model considering stochastic input and

frobenius norm as fitness function, with actual hu-

man trajectory (x vs timestep)

(b) Comparison of Trajectories Generated From 5

Runs of the Model Considering Stochastic Input

and Frobenius Norm As Fitness Function, With

Actual Human Trajectory (y vs timestep)

Figure 4.15: Comparison of trajectories generated from 5 runs of the model considering
stochastic input and frobenius norm as fitness function, with actual human trajectory

(a) Comparison of trajectories generated from 5

runs of the model considering stochastic input and

frobenius norm as fitness function, with actual hu-

man trajectory (θ vs timestep)

(b) Comparison of Trajectories Generated From 5

Runs of the Model Considering Stochastic Input

and Frobenius Norm As Fitness Function, With

Actual Human Trajectory (x vs y)

Figure 4.16: Comparison of trajectories generated from 5 runs of the model considering
stochastic input and frobenius norm as fitness function, with actual human trajectory

68

4.6 Discussion

The results obtained from the several updates made to the baseline algorithm developed

by referring to [36] have been documented for a single pair’s data (Pair-9). The reason

for this was to emphasize analyzing whether the proposed updates were able to generate

better trajectories. The next step would be to test these models against data from the other

pairs. To present that a reduction in error metric is observed in the data from other pairs

have been presented as well. (tables-A.2, A.1) A comparison of the error metric (DTW

distance/Frobenius norm) between the baseline algorithm and updates-1, 2, and 3 for three

other pairs has been performed and presented. Another comparison between the error met-

rics for the Baseline model and Update-4 has also been performed and presented.

It can be observed that the first update was able to capture the trend of human tra-

jectories and was made by changing the fitness function. This update was made to the

optimization formulation and not the multi-agent collaboration model (the forward model).

The next updates were made to the multi-agent collaboration model (Algorithm-2),

which runs at every iteration of the Inverse Optimal Control (Algorithm-1).

Initially, the model was built such that an agent would assume that its partner is iden-

tical to itself. The prediction of self input and the other agent’s input was computed using

this assumption. An amendment was made to this assumption in the second update. There-

fore, each agent would have its weighting vector (cost function) and assume a partner’s

weighting vector (cost function) not identical to its own. This update resulted in a further

reduction in the error value from 20.0257 to 16.4604.

The next update introduced a stochastic component to the control inputs of each agent.

This update was able to take a big leap on error reduction, resembling the human trajecto-

ries more than the previous update. The error was reduced from 16.4604 to 9.915. How-

ever, due to the stochastic component present in the forward model of the Inverse Optimal

69

Control, a unique answer was not obtained repeatedly as in the previous cases. Therefore,

to ensure a reliable solution, the genetic algorithm was run multiple times for the same data

and the average of all the optimal fitness values returned by the genetic algorithm was con-

sidered for comparison. It was observed that all these results, the final error were reduced

significantly compared to the previous updates.

The next update was made to the fitness function of the stochastic model, with every

agent’s assumption that the partner’s cost function is not identical to self. The fitness func-

tion was changed back from DTW distance to Frobenius norm. This attempt was made to

find out whether it was possible to use the new model framework, to produce a model with

a time-step wise resemblance to the human model. The results were remarkable. Again, to

ensure a reliable solution, the genetic algorithm was run multiple times for the same data

and the average of all the optimal fitness values returned by the genetic algorithm was con-

sidered for comparison. Considering the fitness value (Frobenius norm) from the optimal

weights returned by the genetic algorithm, the value was reduced from 4.6022 in the case

of the baseline model with no updates to 1.5299 (mean value from all 5 runs). As Frobenius

norm was used as the fitness function in both the cases, root mean squared error (RMSE)

could be used to compare the results. The improvements could be significantly seen in the

fitted RMSE values (table-4.6).

70

Chapter 5

CONCLUSIONS, SUMMARY AND FUTURE WORK

5.1 Conclusions

Human behavior in collaborative tasks can be described as an optimal control frame-

work. However, as the task involves interaction with the other agent, the optimal inputs

are predicted by every agent for themselves and their partner using a Nash equilibrium so-

lution. Due to the underlying joint dynamics which influence the states at every time step

based on both the agents’ inputs, the interaction between the agents is ensured.

It can also be concluded that humans consider their partner’s cost function to be dif-

ferent from their own. Even when the task is as mundane as collaborative couch pushing,

a human agent would use its own cost function and a different cost function that they as-

sume their partner to follow. The agent uses these cost functions to calculate the Nash

equilibrium pair and predicts their own and their partner’s control inputs.

It can also be concluded that human inputs are stochastic, and can be sub-optimal in

many cases. This behavior has been mentioned in the literature as ”bounded rationality”

[54]. It can also be concluded from the resultant rationality coefficients from the inverse

optimal control, that humans display fairly rational behavior resulting in sub-optimal solu-

tions, but not the most optimal ones.

71

A big concern of using the stochastic input model is that, while it results in trajectories

that have a remarkable resemblance to human trajectories, every time the inverse optimiza-

tion (inverse optimal control) is run, a different resultant trajectory is generated. This is due

to the randomness present in the optimal control generation. Even a pair of rationality coef-

ficients (corresponding to the pair of participating humans) would result in many solutions,

every time it is run. To ensure that the results are more generalized, the trajectories are run

several times and an average performance from these runs is considered for comparison.

5.2 Summary

To model robotic agents that can teach, learn as well as co-operate with human subjects,

they must be incorporated with a good predictive human model. Therefore, it is important

to model human behavior in collaborative tasks, when they interact with other humans.

While human behavior may be different based on what kind of partner they are working

with, the base framework would still be similar. Human behavior in a single-agent task in

itself is very difficult to model. Therefore, modeling it in collaborative multi-agent tasks is

a challenging problem.

An experiment involving collaborative couch pushing was developed. A major contri-

bution of the work is the design of a collaborative multi-agent experiment. The experiment

was designed to analyze and model human-human interaction behavior. The design ensures

collaboration and interaction between participating agents through the underlying joint dy-

namics. The experimental setup was developed from scratch. It consisted of haptic devices

for human input, UNITY game development application for the physics engine and visual

feedback, and a python program for data collection and experiment automation. The data

collection was performed for fifteen pairs of people.

72

To model the high-level interaction dynamics between participating agents, it was nec-

essary to have a low-level dynamic model (physics) of the UNITY physics engine. There-

fore, system identification of the dynamic model in the UNITY engine was performed.

Another important contribution is an approach to find the behavior model of the agents

using an inverse optimization formulation. A base model was developed to simulate col-

laborative behavior in a couch pushing-task. The model is an extended optimal control

formulation. An inverse optimal control (IOC) framework was used from the literature.

Several updates were made to it at different stages to obtain trajectories more similar to

those of humans.

The fitness function chosen for the initial algorithm was a Frobenius norm of the be-

tween the actual and the simulated trajectories of the angular and linear position of the

center of the object. However, the generated trajectories would not be able to reach the

final goal. The reason is unpredictable human behavior. Humans are very intelligent en-

tities and have more complex behavior models. It is not possible to replicate the exact

human behavior, however, an attempt was made to reduce the error metric between human

trajectories and simulated trajectories.

To achieve trajectories that follow similar trends as human trajectories, a new fitness

function was introduced. Dynamic time warping was used as the new fitness function. The

resulting trajectories were found to show more similarities with human trajectories.

An update was made to the optimal control algorithm followed by each agent individ-

ually. In the baseline algorithm, every agent predicted their own inputs and their partner’s

inputs under the assumption that their partner has the same cost function as them. This

assumption was removed in the proposed update. In the new model, every agent would per-

form input predictions considering separate cost functions for themselves and their partner.

An improvement in the resulting trajectories was observed.

73

The final update was made to the model with the addition of a stochastic component to

inputs applied by the participating agents. This update resulted in trajectories much closer

to the human trajectories. However, due to the stochastic or random nature of the optimal

control, multiple solutions emerge for the inverse optimal control. To solve this concern,

several runs of the inverse optimal control (generating trajectories and calculating fitness

value) were made, and a mean of all the resulting fitness values was returned. While there

was a variation in the fitted weight values, the fitness values from the final results remained

closer to each other and significantly lesser than the previous update.

5.3 Future Work

Based on the results for Pair-9, the developed model showed promising results, the next

step would be to apply the updated inverse optimal control model to other pairs’ data.

A possible solution to solve the concern of the fitted weights considering stochastic

inputs could be as follows. Instead of generating a single trajectory, a band of possible

trajectories would be generated for analysis. The mean trajectory from this band could be

considered.

Another solution to this issue could be a new update. In every iteration of the genetic

algorithm, the trajectory would be generated using the hypothesized decision variable and

the fitness value of this trajectory, compared with the human trajectory would be returned.

The possible update would be to run the step of trajectory generation and fitness function

calculation several times. The final fitness value would be the mean of all the fitness values

generated from these different trajectories.

To begin with, emphasis will be given to modeling the behavior for tasks with pure

translation goals. However, the model will also be extended to the trials with translation

+ rotation goals. An important aspect to consider in this case is that an additional dimen-

sion to the goal (the rotational component) may result in a more complicated higher level

74

dynamic. Therefore, the model must be updated further to account for these complexities

in the high-level dynamics. The existing literature must be explored for more theoretical

concepts that could be added to the high-level model.

The data also consists of multiple trials within a single goal-scenario (e.g. translation,

translation+rotation). The developed model-fitting approach can also be used to fit inter-

trial trajectories for a single pair and analyze behaviors based on the fitted decision variable.

e.g. based on the rationality coefficient.

The setup can be updated from a human-human interaction to a human-robot interaction

setup. The robotic agent in this case would account for human behavior considering the

above model framework. There would be a few changes required in this extension. The

robot may have to take a few trials runs to model the human’s cost function, after which,

it would be able to effectively collaborate with the human partner. The setup must also be

updated to have more intuitive low-level dynamics (physics).

75

REFERENCES

[1] C. L. Baker and J. B. Tenenbaum, “Modeling human plan recognition using bayesian
theory of mind,” Plan, activity, and intent recognition: Theory and practice, pp. 177–
204, 2014.

[2] S. Nikolaidis, J. Forlizzi, D. Hsu, J. Shah, and S. Srinivasa, “Mathematical models of
adaptation in human-robot collaboration,” arXiv preprint arXiv:1707.02586, 2017.

[3] A. De Santis, B. Siciliano, A. De Luca, and A. Bicchi, “An atlas of physical human–
robot interaction,” Mechanism and Machine Theory, vol. 43, no. 3, pp. 253–270,
2008.

[4] A. Kucukyilmaz, T. M. Sezgin, and C. Basdogan, “Conveying intentions through
haptics in human-computer collaboration,” in 2011 IEEE World Haptics Conference.
IEEE, 2011, pp. 421–426.

[5] N. Stefanov, A. Peer, and M. Buss, “Online intention recognition for computer-
assisted teleoperation,” in 2010 IEEE International Conference on Robotics and Au-
tomation. IEEE, 2010, pp. 5334–5339.

[6] D. P. Losey, C. G. McDonald, E. Battaglia, and M. K. O’Malley, “A review of in-
tent detection, arbitration, and communication aspects of shared control for physical
human–robot interaction,” Applied Mechanics Reviews, vol. 70, no. 1, p. 010804,
2018.

[7] Y. Li, K. P. Tee, W. L. Chan, R. Yan, Y. Chua, and D. K. Limbu, “Role adaptation of
human and robot in collaborative tasks,” in 2015 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2015, pp. 5602–5607.

[8] D. Fridovich-Keil, A. Bajcsy, J. F. Fisac, S. L. Herbert, S. Wang, A. D. Dragan,
and C. J. Tomlin, “Confidence-aware motion prediction for real-time collision avoid-
ance1,” The International Journal of Robotics Research, vol. 39, no. 2-3, pp. 250–265,
2020.

[9] F. Leibfried, J. Grau-Moya, and D. A. Braun, “Signaling equilibria in sensorimotor
interactions,” Cognition, vol. 141, pp. 73–86, 2015.

[10] A. Bobu, D. R. Scobee, J. F. Fisac, S. S. Sastry, and A. D. Dragan, “Less is more:
Rethinking probabilistic models of human behavior,” in Proceedings of the 2020
ACM/IEEE International Conference on Human-Robot Interaction, 2020, pp. 429–
437.

[11] H. Wang and K. Kosuge, “Control of a robot dancer for enhancing haptic human-
robot interaction in waltz,” IEEE transactions on haptics, vol. 5, no. 3, pp. 264–273,
2012.

[12] J. Stückler and S. Behnke, “Following human guidance to cooperatively carry a large
object,” in 2011 11th IEEE-RAS International Conference on Humanoid Robots.
IEEE, 2011, pp. 218–223.

76

[13] M. Lawitzky, A. Mörtl, and S. Hirche, “Load sharing in human-robot cooperative ma-
nipulation,” in 19th International Symposium in Robot and Human Interactive Com-
munication. IEEE, 2010, pp. 185–191.

[14] A. Bussy, A. Kheddar, A. Crosnier, and F. Keith, “Human-humanoid haptic joint
object transportation case study,” in 2012 IEEE/RSJ International Conference on In-
telligent Robots and Systems. IEEE, 2012, pp. 3633–3638.

[15] Y. Wang, Y. Sheng, J. Wang, and W. Zhang, “Optimal collision-free robot trajectory
generation based on time series prediction of human motion,” IEEE Robotics and
Automation Letters, vol. 3, no. 1, pp. 226–233, 2017.

[16] M. Kawato, “Internal models for motor control and trajectory planning,” Current
opinion in neurobiology, vol. 9, no. 6, pp. 718–727, 1999.

[17] D. Vogt, S. Stepputtis, S. Grehl, B. Jung, and H. B. Amor, “A system for learning
continuous human-robot interactions from human-human demonstrations,” in 2017
IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017,
pp. 2882–2889.

[18] N. Jarrassé, T. Charalambous, and E. Burdet, “A framework to describe, analyze and
generate interactive motor behaviors,” PloS one, vol. 7, no. 11, p. e49945, 2012.

[19] S. O. Oguz, A. Kucukyilmaz, T. M. Sezgin, and C. Basdogan, “Supporting negoti-
ation behavior with haptics-enabled human-computer interfaces,” IEEE transactions
on haptics, vol. 5, no. 3, pp. 274–284, 2012.

[20] M. Lanctot, E. Lockhart, J.-B. Lespiau, V. Zambaldi, S. Upadhyay, J. Pérolat, S. Srini-
vasan, F. Timbers, K. Tuyls, S. Omidshafiei et al., “Openspiel: A framework for rein-
forcement learning in games,” arXiv preprint arXiv:1908.09453, 2019.

[21] S. Jain and B. Argall, “Probabilistic human intent recognition for shared autonomy
in assistive robotics,” ACM Transactions on Human-Robot Interaction (THRI), vol. 9,
no. 1, pp. 1–23, 2019.

[22] ——, “Recursive bayesian human intent recognition in shared-control robotics,” in
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 3905–3912.

[23] X. Yu, W. He, Y. Li, C. Xue, J. Li, J. Zou, and C. Yang, “Bayesian estimation of human
impedance and motion intention for human-robot collaboration,” IEEE transactions
on cybernetics, 2019.

[24] W. Yoshida, R. J. Dolan, and K. J. Friston, “Game theory of mind,” PLoS computa-
tional biology, vol. 4, no. 12, 2008.

[25] N. Bard, J. N. Foerster, S. Chandar, N. Burch, M. Lanctot, H. F. Song, E. Parisotto,
V. Dumoulin, S. Moitra, E. Hughes et al., “The hanabi challenge: A new frontier for
ai research,” Artificial Intelligence, vol. 280, p. 103216, 2020.

77

[26] R. Choudhury, G. Swamy, D. Hadfield-Menell, and A. D. Dragan, “On the utility of
model learning in hri,” in 2019 14th ACM/IEEE International Conference on Human-
Robot Interaction (HRI). IEEE, 2019, pp. 317–325.

[27] E. Kamenica and M. Gentzkow, “Bayesian persuasion,” American Economic Review,
vol. 101, no. 6, pp. 2590–2615, 2011.

[28] Z. Wang, A. Peer, and M. Buss, “An hmm approach to realistic haptic human-robot
interaction,” in World Haptics 2009-Third Joint EuroHaptics conference and Sympo-
sium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. IEEE,
2009, pp. 374–379.

[29] C. Baker, R. Saxe, and J. Tenenbaum, “Bayesian theory of mind: Modeling joint
belief-desire attribution,” in Proceedings of the annual meeting of the cognitive sci-
ence society, vol. 33, no. 33, 2011.

[30] Y. Wang, Y. Ren, S. Elliott, and W. Zhang, “Enabling courteous vehicle interactions
through game-based and dynamics-aware intent inference,” IEEE Transactions on
Intelligent Vehicles, vol. 5, no. 2, pp. 217–228, 2020.

[31] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforcement learn-
ing,” in Proceedings of the twenty-first international conference on Machine learning,
2004, p. 1.

[32] D. Hadfield-Menell, S. J. Russell, P. Abbeel, and A. Dragan, “Cooperative inverse
reinforcement learning,” in Advances in neural information processing systems, 2016,
pp. 3909–3917.

[33] Y. Wang, G. J. Lematta, C.-P. Hsiung, K. A. Rahm, E. K. Chiou, and W. Zhang,
“Quantitative modeling and analysis of reliance in physical human–machine coordi-
nation,” Journal of Mechanisms and Robotics, vol. 11, no. 6, 2019.

[34] C. Liu, W. Zhang, and M. Tomizuka, “Who to blame? learning and control strategies
with information asymmetry,” in 2016 American Control Conference (ACC). IEEE,
2016, pp. 4859–4864.

[35] H. El-Hussieny, A. Abouelsoud, S. F. Assal, and S. M. Megahed, “Adaptive learning
of human motor behaviors: An evolving inverse optimal control approach,” Engineer-
ing Applications of Artificial Intelligence, vol. 50, pp. 115–124, 2016.

[36] H. El-Hussieny and J.-H. Ryu, “Inverse discounted-based lqr algorithm for learning
human movement behaviors,” Applied Intelligence, vol. 49, no. 4, pp. 1489–1501,
2019.

[37] M. K. O’Malley, A. Gupta, M. Gen, and Y. Li, “Shared control in haptic systems for
performance enhancement and training,” 2006.

[38] Y. Li, J. C. Huegel, V. Patoglu, and M. K. O’Malley, “Progressive shared control
for training in virtual environments,” in World Haptics 2009-Third Joint EuroHaptics
conference and Symposium on Haptic Interfaces for Virtual Environment and Teleop-
erator Systems. IEEE, 2009, pp. 332–337.

78

[39] D. J. Block, M. B. Michelotti, and R. S. Sreenivas, “Application of the novint falcon
haptic device as an actuator in real-time control,” Paladyn, Journal of Behavioral
Robotics, vol. 4, no. 3, pp. 182–193, 2013.

[40] S. S. Nudehi, R. Mukherjee, and M. Ghodoussi, “A shared-control approach to haptic
interface design for minimally invasive telesurgical training,” IEEE Transactions on
Control Systems Technology, vol. 13, no. 4, pp. 588–592, 2005.

[41] K. B. Reed and M. A. Peshkin, “Physical collaboration of human-human and human-
robot teams,” IEEE Transactions on Haptics, vol. 1, no. 2, pp. 108–120, 2008.

[42] Y. Li, V. Patoglu, and M. K. O’malley, “Shared control for training in virtual environ-
ments: Learning through demonstration,” in Proceedings of EuroHaptics, 2006, pp.
93–99.

[43] D. Powell and M. K. O’Malley, “The task-dependent efficacy of shared-control haptic
guidance paradigms,” IEEE transactions on haptics, vol. 5, no. 3, pp. 208–219, 2012.

[44] N. Stefanov, A. Peer, and M. Buss, “Role determination in human-human interaction,”
in World Haptics 2009-Third Joint EuroHaptics conference and Symposium on Haptic
Interfaces for Virtual Environment and Teleoperator Systems. IEEE, 2009, pp. 51–
56.

[45] C. E. Madan, A. Kucukyilmaz, T. M. Sezgin, and C. Basdogan, “Recognition of hap-
tic interaction patterns in dyadic joint object manipulation,” IEEE transactions on
haptics, vol. 8, no. 1, pp. 54–66, 2014.

[46] R. Groten, D. Feth, R. L. Klatzky, and A. Peer, “The role of haptic feedback for the
integration of intentions in shared task execution,” IEEE Transactions on Haptics,
vol. 6, no. 1, pp. 94–105, 2012.

[47] A. Melendez-Calderon, V. Komisar, G. Ganesh, and E. Burdet, “Classification of
strategies for disturbance attenuation in human-human collaborative tasks,” in 2011
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society. IEEE, 2011, pp. 2364–2367.

[48] D. Feth, R. Groten, A. Peer, S. Hirche, and M. Buss, “Performance related energy
exchange in haptic human-human interaction in a shared virtual object manipulation
task,” in World Haptics 2009-Third Joint EuroHaptics conference and Symposium on
Haptic Interfaces for Virtual Environment and Teleoperator Systems. IEEE, 2009,
pp. 338–343.

[49] S. M. LaValle and S. A. Hutchinson, “Path selection and coordination for multiple
robots via nash equilibria,” in Proceedings of the 1994 IEEE International Conference
on Robotics and Automation, 1994, pp. 1847–1852 vol.3.

[50] D. J. Berndt and J. Clifford, “Using dynamic time warping to find patterns in time
series.” in KDD workshop, vol. 10, no. 16. Seattle, WA, USA:, 1994, pp. 359–370.

79

[51] S. H. Kim, H. S. Lee, H. J. Ko, S. H. Jeong, H. W. Byun, and K. J. Oh, “Pattern
matching trading system based on the dynamic time warping algorithm,” Sustainabil-
ity, vol. 10, no. 12, p. 4641, 2018.

[52] N. L. Olsen, B. Markussen, and L. L. Raket, “Simultaneous inference for misaligned
multivariate functional data,” arXiv preprint arXiv:1606.03295, 2016.

[53] K. Yu, J. Mason, and J. Oglesby, “Speaker recognition using hidden markov models,
dynamic time warping and vector quantisation,” IEE Proceedings-Vision, Image and
Signal Processing, vol. 142, no. 5, pp. 313–318, 1995.

[54] R. Nakahashi and S. Yamada, “Modeling human inference of others’ intentions in
complex situations with plan predictability bias,” arXiv preprint arXiv:1805.06248,
2018.

80

APPENDIX A

MODEL ANALYSIS FOR 4 DIFFERENT PAIRS

81

Table A.1: Comparison of fitness values between the baseline algorithm and updates 1,2,3
(comparison metric is DTW distance).

Pair Baseline Update-1 Update-2 Update-3
9 31.1563 20.0257 16.4604 9.915
10 38.09 19.89 13.91 9.6132
11 45.49 11.7 10.36 9.7163
14 30.26 23.32 22.98 8.8355

Table A.2: Comparison of fitness values between the baseline algorithm and update-4
(comparison metric is Frobenius norm).

Pair Baseline Update-4
9 4.6022 1.5299
10 5.3417 2.3032
11 4.3412 1.8355
14 3.8503 2.0598

82

APPENDIX B

IRB APPROVAL FOR DATA COLLECTION INVOLVING HUMAN SUBJECTS

83

Figure B.1: IRB page-1

84

Figure B.2: IRB page- 2

85

