
On Feature Saliency and Deep Neural Networks

by

Yash Garg

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctorate in Philosophy

Approved November 2020 by the
Graduate Supervisory Committee:

K. Selçuk Candan, Chair
Hasan Davulcu

Baoxin Li
Maria Luisa Sapino

ARIZONA STATE UNIVERSITY

December 2020



ABSTRACT

Technological advances have allowed for the assimilation of a variety of data, driv-

ing a shift away from the use of simpler and constrained patterns to more complex

and diverse patterns in retrieval and analysis of such data. This shift has inundated

the conventional techniques and has stressed the need for intelligent mechanisms

that can model the complex patterns in the data. Deep neural networks have shown

some success at capturing complex patterns, including the so called attentioned

networks, have significant shortcomings in distinguishing what is important in data

from what is noise. This dissertation observes that the traditional neural networks

primarily rely solely on the gradient-based learning to model deep features maps

while ignoring the key insight in the data that can be leveraged as a complimen-

tary information to help learn an accurate model. In particular, this dissertation

shows that the localized multi-scale features (captured implicitly or explicitly) can

be leveraged to help improve model performance as these features capture salient

informative points in the data.

This dissertation focuses on “working with the data, not just on data”, i.e. lever-

aging feature saliency through pre-training, in-training, and post-training analysis of

the data. In particular, non-neural localized multi-scale feature extraction, in images

and time series, are relatively cheap to obtain and can provide a rough overview

of the patterns in the data. Furthermore, localized features coupled with deep fea-

tures can help learn a high performing network. A pre-training analysis of sizes,

complexities, and distribution of these localized features can help intelligently allo-

cate a user-provided kernel budget in the network as a single-shot hyper-parameter

search. Additionally, these localized features can be used as a secondary input

modality to the network for cross-attention. Retraining pre-trained networks can

be a costly process, yet, a post-training analysis of model inferences can allow
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for learning the importance of individual network parameters to the model infer-

ences thus facilitating a retraining-free network sparsification with minimal impact

on the model performance. Furthermore, effective in-training analysis of the inter-

mediate features in the network help learn the importance of individual intermedi-

ate features (neural attention) and this analysis can be achieved through simulat-

ing local-extrema detection or learning features simultaneously and understanding

their co-occurrences. In summary, this dissertation argues and establishes that, if

appropriately leveraged, localized features and their feature saliency can help learn

high-accurate, yet cheaper, networks.
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Chapter 1

INTRODUCTION

Advancements in software and hardware technologies has enabled large-scale

integration of cost-effective smart technologies that allow for the assimilation of a

data in wide variety of applications, from images to video to time series. This ex-

plosion in the pace of availability of data has allowed for wide variety of multimedia

analytical tasks, such as:

• image classification, supervised or unsupervised, involves learning a clas-

sifier that can map an image to a target label with a high probability, often

referred as probabilistic classifier [34, 46, 52, 64, 101, 106, 113, 121, 132]

• object detection is one of the most highly researched problem in the present

time with the advent of self-driving technologies. Object detection involves

located object of interest an image, maybe even classify them [70, 102]

• video analytics involves learning a classifier that can work with a sequence

of images (ordered by time) can track the movement of subjects across videos

or classify gestures [57, 105]

• recommendation system aim at identifying personalized information given a

prior knowledge on the user. Furthermore, they aim devising a novel ranking

measure to rank the individual results w.r.t to the personal relevance [18]

• language processing has proven a great help in the rise of global commu-

nication in 21st century. Language is no more barrier in how we communi-

cate with our counter-parts across the world, for example, real-time language

1
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Figure 1.1: Overview of the Convolutional Neural Network Architecture

translation and image to text conversion [78, 85]

• sentiment analysis has been seen as a measure to understand the senti-

ments of people in online communication, particularly on social media. Senti-

mental analysis has allowed for emotion recognition and mental health moni-

toring through in-depth analysis of how people communicate on social media

platforms [24, 100]

• time series analytics has taken a turn for prominence with the arrival of

smart devices and wearable IoTs. This has opened the opportunities for heath

monitoring, activity recognition and more more [24, 74, 81? ? , 126, 130]

Succeeding at any of these applications, particular in multimedia analytics, in-

volves learning a function f that can maps the input X to target output Y using

model parameters W , s.t. f : X|W → Y . The ultimate goal here is to minimize

the separation (loss), △(Y ,Y
′
), between the observed Y and predicted Y

′, i.e.

Y
′
= f(X|W ), here, Y can be a categorical observation (clustering, hinge loss

[98]), or a probability distribution (classification, cross-entropy) or a real-valued ob-

servation (regression, mean absolute error).
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1.1 Multimedia Retrieval

Multimedia retrieval tasks, such as the problem of image and time series clas-

sification have been one of the fundamental problems in the vision community that

has attracted significant attention in the past two decades [25, 63, 66, 76]. Various

works have been proposed through the use of global features [29], local features

[9, 76], and, more recently, through deep features [106, 116] for learning effective

and discriminating representation for learning highly accuracy classification mod-

els. Global features are aimed at learning the global representation (overall) of

the input data, in contrast to the local features that aim at detecting salient feature

points in the data (images or time series) that might be of interest. However, both of

these approaches often lack the ability to generalize patterns contained in the data

as a whole. Furthermore, these localized features (SIFT and UVTF, see details

in Section 2) require a parametric bag-of-word approach to represent the individ-

ual instances of the data (an image or a time series). Deep features overcome

this problem by their ability to learn a generalized representation in form of deep

feature maps. Additionally, both global and local image features depend on an ad-

vanced classification model that feeds on these features to learn a classifier. One

such example of image classification model is deep neural networks, N , including

convolutional and recurrent neural networks (CNNs) - see Figure 1.1 - have seen

successful application in face recognition [64] as early as 1997, and in many more

diverse applications in the recent years, such as time series analysis [130, 121],

speech recognition [47], object recognition [70, 102, 101], and video classification

[57, 105]. More importantly, CNNs’ successful application in a variety of multimedia

domain has led to a shift away from conventional feature-driven approaches such

as local features (scale-invariant feature transform - SIFT [76] and Speed-Up Ro-

3



bust Features - SURF [9]) and global features (histogram-of-gradients - HOG [25])

towards learning deep generalized features using a well-crafted high performing

deep network architectures.

1.1.1 Deep Neural Networks as Classifiers

Deep networks have unequivocally shown their high performance by intelligently

learning a variety of deep feature maps that capture a variety of salient information

from the input data, such as pattern shapes (highly abstract) to pattern textures

(moderately abstract) to pattern colors (finely detailed). Deep networks, in general,

are a class of supervised learning models that rely on gradient-based learning for

capturing the abstract features in the data that can help the model classifier the input

to a particular target with confidence, also known as probabilistic classification.

The design, architecture, and the type of computation with the network, of deep

networks involves a significant amount of expert knowledge and hand-tuning, it is

search for optimal hyper-parameter configuration or design of neuron (the funda-

mental computing units in the network) remains an art form, than science. Various

works have been done for hyper-parameter search, such as grid search [63] and

random search [10], or by devising novel components for the networks such as,

ReLU [80], and batch-normalization [55]. However, the search for high-performing

network configuration remains an expert-driven art-form rather than a science, as

more recently, the search for hyper-configuration has moved towards searching

more specialized architectures, such as VGG [106], DenseNet [52], and RESNet

[46].

Given the success of specialized architectures, as seen earlier, contemporary

deep networks owe their success to the depth and width of the networks - thanks

to a large number of trainable parameters - that helps learn complex patterns con-

4



Figure 1.2: A Typical Flow of Hyper-Parameter Search Process [60]

tained in the image classification datasets, such as ImageNet [62]. Often, the num-

ber of hyper-parameters in these specialized network architectures range from tens

of thousands [66] to hundred of million [106, 52, 46], and such a large parameter

space may lead to a significant amount of parameters that are redundant and ir-

relevant to the final network output (performance). These redundant and irrelevant

hyper-parameters can have an insignificant or adverse contribution to the network

by introducing noisy information in the overall networks.

Much of the focus while working with deep neural networks have always been

focused on searching and pruning of the network parameters, inadvertently the

hyper-parameters, while assuming that both the input and latent features in the net-

works have equal importance and contribute equally to the final network output. Re-

cently, neural networks have borrowed the concept of the feature attention from the

natural language processing that highlights that, “not all input features contribute

equally to the output features” but there exists a contextual relationship between

the input and the output features [7]. Since 2014, after Bahdanau [7], significant

5
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Figure 1.3: Overview of the Various Data Analysis Opportunities While Training a

Deep Neural Network to Learn a Highly-Accurate Model

amount of work has been carried out for learning intelligent attention mechanisms,

such as Self Attention [79], Squeeze-and-Excitation Network (SENet) [51], Convo-

lutional Block Attention Module (CBAM) [119], Bottleneck Attention Module (BAM)

[91], Fusion Attention Networks (FusAtNet) [84], Transformer [114], and Multi-Scale

Multi-Head Attention (MSMSA) [40], and have shown that the leveraging variety of

relationship in the deep features, such as spatial (images), temporal (time series)

and filter (neurons), can help inform an effective attention mask that can boost the

network performance. However, attention modules have often relied on the net-

work’s ability to learn a generalized represents of the data and in-turn update the

attention mask during the back-propagation phase. 

This dissertation observes that instead of solely relying on expert inputs and

hand-tuning of the networks (be it hyper-parameters or connections in the network)

to learn a highly-accurate model, one can instead focus on understanding and an-

alyzing the data available before, while, and after training the model, i.e. pre-, in-

and post-training analysis of the data.
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1.2 Data Analysis for Learn Accurate Networks

As noted in the previous section, there is a vast amount of information that is

available while training a neural network. While one initially starts with input data

and the associated target data, during training the network generates hidden data

and intermediate network parameters can be further offer insights on the network’s

capability and consequently used to improve the model performance. Furthermore,

the model output, i.e. model inferences, is often considered only suitable for mea-

suring model loss, but can in-fact offer more than loss. An intelligent analysis can

help understand the classification power (if not accuracy) of the models. Therefore,

as shown in Figure 1.3, there are three critical opportunities to analyze data that

can offer insights to help with model training. 

1. Pre-Training Analysis is used to gather insights (salient information) from

the inputs and leverage the gathered insights in the model

2. In-Training Analysis is used to understand the how internal model activa-

tions (hidden data) are working and how they can be improved by novel op-

erations that can help improve their overall impact on the model performance

3. Post-Training Analysis is used to measure the classification power of the

model by understanding the model inferences

Neural Networks, in particular, are type of gradient-based learning algorithm

[66] that aim to learn a mapping from input data (X) to the target output (Y ) using

trainable model parameters (W ). As [10, 36] describes, the ultimate goals of a

neural network is to learn a function (f ) s.t.

f : XW → Y (1.1)
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in other words, the above mapping can be written as,

Y ≈ f(X,W ) (1.2)

Therefore, pre-training analysis can be seen as drawing deductions from the input

data (X), in-training analysis can be seen as understanding the intermediate oper-

ations (f(_,W )), and post-training analysis can be seen as understand the model

output/inferences (f(X,W )).

1.2.1 Pre-Training Analysis

The key vulnerability of neural network remains in their need for a new hyper-

parameter configuration for every unique dataset and the presence of noise, which

is a very common occurrence in the real-world datasets. This dissertations, we the

works presented in the Chapter 3 and ??, argues that if data is analyzed intelli-

gently before the model is trained, one can extract key insights that vary in size,

complexity, distribution, and diversity to either allocated a user provide kernel bud-

get for single-shot hyper-parameter configuration search or learn a complimentary

additional input modality that can help reduce the noise in the original input can be

used a cross-attention mechanism.

In particular, a principled approach for understanding the sizes, complexities,

distribution, and diversity of the complex local patterns contained in the input data

can uncover information that might otherwise have been overlooked. This princi-

pled approach is relatively cheaper to perform in comparison to training hundreds

of hyper-parameter configurations. Furthermore, these localized patterns can help

separate relevant information from irrelevant (noisy) information for the network to

focus on (attention). These two strategies can help learn a highly accurate neural

network with minimal computational overhead.

8



1.2.2 Post-Training Analysis

The increase in depth and width of the neural networks have been one of the

primary factors for the success of deep networks, however, this increase has led to

an exponential increase in the number of trainable parameters in the network. Con-

sequently, leading to a significant increase in the need for computational resources

and has introduced redundant and irrelevant parameters. Works such as Dropout

[108], PFEC [69] and NISP [123] have shown that the network contains significant

amount of redundancy in the network. Dropout [108] introduced the concept of

randomly, but temporally, dropping the neuron activations during the feed-forward

phase of network training to prevent network overfitting by reducing the co-variance

of the neuron i.e. reducing the neuron co-dependence. Furthermore, these strate-

gies classify the neurons into three categories:

• Significant Neurons: positively impact the model output

• Neutral Neurons: neither positively nor negatively impact the model output

• Insignificant Neurons: negatively impacts the model output

Here, aim is to penalize the insignificant and neutral neurons more than the

significant ones to push the formers to significance category. Furthermore, these

strategies do not account for the impact of removing either neuron or the weights

(parameters) to overall network output. Additionally, these methods can only be

used to. Therefore, a post-training analysis can leverage the model inference to

deduce the impact of model parameters on a pre-trained model and identify candi-

date model parameters that can be sparsified without having to re-train the network,

i.e. saving significant amount of computational expense.
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1.2.3 In-Training Analysis

With the increasing size of the neural networks to complement the complexity

and size of modern datasets, the neural networks are being inundated by sheer

size in hidden activations, consequently experience a deterioration in model ac-

curacy. [7] observed that one can model the relationship in intermediate network

activation and learn regions (local area) to focus on, i.e. attention. Mathematically,

attention is a way of weighting the input features by their learned importance as

follows: Y = σ(WX + b) ⊙Ma, where, Ma is the attention mask s.t. Maϵ[0, 1]

(soft attention) or Maϵ0, 1 (hard attention). To learn the mask matrix (Ma), a neural

network is modified to have two branches, (1) feature branch and (2) mask branch.

The feature branch is the conventional feed-forward branch that learns the latent

features to map input (X) to the output (Y ), whereas, themask branch aims to learn

the contextual relationship between the input and output features - represented as

Ma, the attention scores.

However, conventional does not account for the change in the latent features

in two adjacent layers, but rather attention module for each layer is mutually exclu-

sive with other modules in the network. It can be argued that the change in latent

features across layers highlights the local regions in the images that are important

to understand the patterns contained in the images, therefore, the mask branch

can be adapted to take latent features from two layers to learn informed attention.

Furthermore, learning attention explicitly as a particular layer limits the multi-scale

information being account for, as complex patterns are often composed of multiple

simpler patterns. Highlighting the need for multi-scale attention masks that account

for a multitude of scales of patterns while learning attention masks.
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1.3 Dissertation Outline

The remainder of the dissertation is organized as follows:

• In Chapter 2 presents the overview of various type of features, localized, la-

tent and deep, considered in this dissertation

• In Chapter 3, presents RACKNet a novel pre-training analysis of localized

image features to allocate user provided kernel budget

• In Chapter 4 presents iSparse framework, a post-training analysis of model

inferences (model outputs) for re-training free network sparsification

• In Chapter 5 presents the scale-space based attention network for local fea-

ture driven attention mechanism

• In Chapter 6 presents the novel SDMA mechanism to learn a complimentary

saliency series for cross attention in time series

• In Chapter 7 present XM2A, a unique multi-scale multi-head attention with

cross-talk framework, to learn temporal attention by leveraging the co-existence

of local multi-scale features

• Chapter 8 concludes the dissertation.
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Chapter 2

BACKGROUND

As seen in Chapter 1, successful applications of the deep networks in variety of

domains has lead to a significant shift away from the localized feature based ap-

proaches, such as Scale Invariant Feature Transform (SIFT) [76] and Uni-Variate

Temporal Features (UVTF) [15]. While deep representation owe their success to

learning rich and generalized representation of the patterns contained in the data

through the use to large and complex network architecture, such as, VGG [106],

ResNet [46] and InceptionNet [110], they still remain susceptible to noise and are

expensive to obtain, where as localized features are cheaper to obtain and can pro-

vide rough overview of the data that can help learn a high performing network [32].

Furthermore, latent features have shown promising results in identifying latent basis

vector (linearly independent eigenvectors) that maximized the separation between

the data points. This chapter discuss the literation on localized features ()and latent

features that fundamental to this dissertation.

2.1 Localized Features

2.1.1 Scale-Invariant Feature Transform (SIFT)

The Scale-Invariant Feature Transform (SIFT) [76] was devised to identify salient

keypoints in the images and describe them in a specialized representation, feature

descriptors, that are robust to scaling, translation, and rotation of pattern and im-

age brightness. These characteristics of SIFT has made it the de-facto local image

feature extraction strategy for content-based image retrieval.
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SIFT1 relies on a multi-step process to extract stable and scale-invariant pat-

terns contained in a given image, intuitively, SIFT keypoints corresponds to regions

in a given image that are different from their neighborhood, the steps are as follows:

1. Scale-Space Generation – Image data is transformed into multi-scale of dif-

ferent sizes determined by the Gaussian kernel used. This allows for identi-

fication of the features are different scales (see Section 2.1.1.1)

2. Extrema Detection and Localization – In this step, a search is carried out

in all image scales and spatial locations in the images over the difference-

of-Gaussian, generate in the prior step, to detect point of interests. Once

the interest points are detected, they localized at a scale and spatial location

where they are most stable (see Section 2.1.1.2)

3. Orientation Assignment – Prominent gradient direction is determine at the

location and scale of point-of-interest (see Section 2.1.1.3)

4. Descriptor Generation – Local gradients around the point of interest are

measures and summarized as histogram-of-orientations, gradients represents

the direction of the change in neighboring points. this allows for capturing the

local shape, distortion and illumination to provide rotation, scale and illumina-

tion invariance (see Section 2.1.1.4)

Given these steps, is named “Scale Invariance Feature Transform (SIFT)” as the

point-of-interest is transformed into a feature representation that is robust to change

in scale, orientation, and illumination.
1More details can be found in “Lowe, D. G., “Distinctive image features from scale-invariant

keypoints”, International Journal of Computer Vision 60, 2, 91–110 (2004).”
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2.1.1.1 Scale-Space Generation

The key aspect of the SIFT keypoints2, scale-invariant, can be attributed to the

multi-scale representation generated using the principled approach proposed by

Witkin [118]. Lowe in SIFT, extended the Witkin’s proposed “principled approach

to describe a signal qualitatively, managing the ambiguity of scale in an organized

and natural way” for images [118].

Specifically, Lowe in [76], proposed to expand the input image, along scale (σ

), by convolution with Gaussian masks (G ) over a continuum of sizes, i.e. scale .

The choice of using Gaussian mask is driven by various factors:

• monotonic: symmetric around mean, and strictly decreasing at distance from

mean increases

• well-behaved: for each observed value for scale (size) parameter has a non-

zero probability density

• locally sufficient: same probability distribution can be apply to both true

sample and the sample observed at a given scale

Thus Gaussian masks satisfies the “well-behavedness” criteria, i.e. it is monotonic,

well-behaved, and locally sufficient.

Gaussian kernel for a given image, I , depends on three factors, the indepen-

dent image variables, w and h (the width and height pixel coordinate), and scale,

σ, Gaussian’s standard deviation, is as follows:

G(w, h, σ) =
1

2πσ2
e−(w2+h2)/2σ2

, (2.1)

2For the purposes of this dissertation, SIFT features would be referred to a “keypoints” to avoid

ambiguity with deep features and dimensionality (features).
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Figure 2.1: Scale-Space Pyramid Generation by Smoothing an Image with Gaus-

sian Masks of Different Sizes. The Color“Yellow” (left) Represents the Gaussian

Generated and the Color “Blue” (right) Represents the Difference-of-Gaussian [76]

and the Gaussian convolved image representation, L , can be written as:

L(w, h, σ) = G(w, h, σ)⊛ I(w, h), (2.2)

here, ⊛ represents the convolution operation with respect to w and h. As Witkin

noted, “this function defined a hyper-surface on the (w, h, σ)-hyper-plane, where

each profile of constant σ is a Gaussian-smoothed version of I(w, h), the amount

of smoothing proportional to σ.” Thus referred to as Gaussian Scale-Space (GSS),

scale from σ and space from w and h.

Next, Lowe argues that stable keypoint can be identified in the scale-space us-

ing the difference-of-Gaussian (DOG), as difference-of-Gaussian is a close approx-

imation of scale-normalized Laplacian of Gaussian, σ2∇2G leading to most stable

extrema (minima or maxima) being detected. Therefore, difference-of-Gaussian
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Figure 2.2: Extrema Detection Long Space and Scale. The Symbol × Represents

the Point of Interest in the Images, and the “Green” Circles are the Neighbors [76]

(DOG), D ,can be defined as difference of two adjacent scaled separated by mul-

tiplicative factor k as follows:

D(w, h, σ) = (G(w, h, kσ)−G(w, h, σ))⊛ I(w, h)

= L(w, h, kσ)−L(w, h, σ)

(2.3)

Furthermore, the uses of difference-of-Gaussian, helps eliminate high-frequency

details, such as random noise, and highlight the edges appearing at various scales.

Thus, Difference-of-Gaussian (DOG) can be seems as an enhancement strategy

that involves the subtraction of one blurred image (G(w, h, kσ)) representation from

another blurred version (G(w, h, σ)).

2.1.1.2 Extrema Detection and Localization

With the successful generation of the Gaussian Scale-Space (GSS) (see Figure

2.1), next step is to detect the local extrema keypoints, i.e. local minima and local

maxima. This detections step is performed in the D(ksσ), by comparing each local

point, ⟨w, h⟩, to their eight spatial neighbors on eighteen scale neighbors (nine in

each predecessor (Dks−1) and successor scale (Dks+1)), as shown in Figure 2.2
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and formalized in Equation 2.4.

max



Dw−1,h−1,ks+1σ Dw,h−1,ks+1σ Dw+1,h−1,ks+1σ

Dw−1,h,ks+1σ Dw,h,ks+1σ Dw+1,h,ks+1σ

Dw−1,h+1,ks+1σ Dw,h+1,ks+1σ Dw+1,h+1,ks+1σ

Dw−1,h−1,ksσ Dw,h−1,ksσ Dw+1,h−1,ksσ

Dw−1,h,ksσ Dw,h,ksσ Dw+1,h,ksσ

Dw−1,h+1,ksσ Dw,h+1,ksσ Dw+1,h+1,ksσ

Dw−1,h−1,ks−1σ Dw,h−1,ks−1σ Dw+1,h−1,ks−1σ

Dw−1,h,ks−1σ Dw,h,ks−1σ Dw+1,h,ks−1σ

Dw−1,h+1,ks−1σ Dw,h+1,ks−1σ Dw+1,h+1,ks−1σ



(2.4)

Thus, pruning the local points that are similar to their local neighborhood, both in

scale and space. In other words, a local point, ⟨w, h⟩, is a keypoint, K , if it is greater

than Θ% of the maximum of it’s 26 scale-space neighbors in DOG.

Next step, is to identify if the detection keypoints have low contrast (sensitive to

noise) or are poorly localized along as edge. this is achieved by the use of Taylor

series expansion of the scale-space function, D(w, h, σ), s.t.

D(x) = D +
∂DT

∂x
x+

1

2
xT ∂

2DT

∂x2
x. (2.5)

Here, x = ⟨w, h, σ⟩. The localized position, x̂, of the keypoint is determined by

taking the derivative of the function with w.r.t x,

x̂ = −∂2D

∂x2

−1

.
∂D

∂x
, (2.6)

thus, the D(x̂) can be computed as

D(x̂) = D +
1

2

∂DT

∂x
x̂. (2.7)

Lowe discards all extrema points where ⌊D(x̂)⌋ < 0.03, thus eliminating the points

with low contrast, adding invariance to noise (contrast).
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DOG leads to strong edge responses, thus making pruning solely based on low

contrast insufficient. Therefore, poorly defined peaks in DOG can contain large

principal curvature ratio, i.e. bending of the surface at the peak. The curvature can

be computed using Hessian matrix, H at keypoint location and scale as follows:

H =

Dww Dwh

Dhw Dhh

 (2.8)

The derivatives can be estimated by taking the difference of the neighboring sample

points. The eigenvalues of H are proportional to the principal curvature of D,

relying on the Harris corner detector. Therefore, we can say that,

Tr(H) = Dww +Dhh = α + β

Det(H) = DwwDhh − (Dwh)
2 = αβ

Here, α and β represents the top two eigenvalues. If the determinant is negative,

there the keypoint is rejected. Next,l et us assume, curvature ratio, r , the ratio of

the two eigenvalues, s.t. α = rβ, then:

Tr(H)2

Det(H)
=

(α + β)2

αβ
=

(rβ + β)2

rβ2
=

(r + 1)2

r
(2.9)

Next, goal is to pruning keypoint that have a curvature ratio higher than (r+1)2

r
,

therefore,
Tr(H)2

Det(H)
<

(r + 1)2

r
. (2.10)

Lowe uses r = 10 as the default values of r to pruning keypoint by curvature ratio.

2.1.1.3 Orientation Assignment

In this step, a principled approach is used to assign a consistent orientation, i.e.

gradient direction, to each keypoint given their local neighbors. To determine the
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Figure 2.3: Keypoint Descriptor Extraction. “Green” Boxes Represents the Grid

Cell Describing the Neighborhood Around the Point-of-Interest, “Blue” Circle Rep-

resenting the Radius of the Scope of Keypoint, and “Black” Arrows Represents the

Direction of the Gradients and Length of the Arrow Represents the Magnitude of

the Gradient Change [76]

keypoint orientation, the scale associated with the keypoint is leveraged to deter-

mine the magnitude (m) and orientation (θ) of the gradient at keypoint of location:

m(w, h) =
√

(L(w + 1, h)−L(w − 1, h))2 + (L(w, h+ 1)−L(w, h− 1))2 (2.11)

θ(w, h) = tan−1((L(w + 1, h)−L(w − 1, h))/(L(w, h+ 1)−L(w, h− 1))) (2.12)

2.1.1.4 Descriptor Generation

Descriptor can be seen as a vectorized representation of the local neighborhood

gradient around the keypoint (see Figure). This neighborhood is defined by a 16×16

pixel neighborhood around the keypoint local ⟨w, h⟩. This neighborhood is than split

into a 4× 4 grid, where each grid cell is of size 4× 4 pixels. An 8-bin histogram-of-

orientation is created for each grid cell. Here, each bin in the histogram captures

45◦ s.t. all 8 bins together covers entire 360◦ angle spectrum, i.e. gradient orienta-
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tion. Once the histogram is generated, it is can transformed into normal vector, i.e.

descriptor to have unit magnitude.

2.1.2 Uni-Variate Temporal Features (UVTF)

[15] extended the SIFT for Uni-Variate Temporal Features (UVTF)3, and showed

localized temporal keypoint (extracted similar to SIFT) can be used to speed up

expensive time series operations, such as DTW computation.

This section describes in details the localized keypoints extraction process (con-

sisting of “scale-space generation” and “extrema detection” steps), motivated from

SIFT, to identify key intervals (or “keypoints”) in the individual variates in a multi-

variate time series.

2.1.2.1 Temporal Scale-Space Generation

Intuitively, the smoothing process can be seen as generating a multi-scale repre-

sentation of the given series and thus the differences between smoothed versions

of a given series correspond to differences between the same series at different

scales. Based on the argument that the interesting events will be maximally differ-

ent from the overall pattern in their local neighborhoods, searches for those points

that have largest variations with respect to both time and scale. Therefore, the first

step of the process is to create a scale-space consisting of multiple smoothed ver-

sions of a given series – each resulting series are then subtracted from the series

in the adjacent temporal scale to obtain the what are referred to as difference-of-

Gaussian series.

Let Tv represent a uni-variate time series, s.t. Tv ∈ T[v, :] , and T
(t,σ)
v represents

3More details can be found in “Candan, K. Selçuk, et al. ”sDTW: Computing DTW Distances

using Locally Relevant Constraints based on Salient Feature Alignments.” VLDB (2012).”
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Figure 2.4: Generating Gaussian Scale-space and Dog for a Variate from a Multi-

variate Time Series. Here, y and x Represents the Variate and Temporal Dimen-

sions of a Time Series

the smoothed version of Tv through convolution with the Gaussian function along

the temporal dimension:

G (t, σ) =
1√
2πσ

e
−t2

2σ2 (2.13)

such that

Lv(t, σ) = G (t, σ)⊛ Tv(t). (2.14)

Intuitively, Gaussian smoothing can be perceived as a multi-scale representation

of a given series (Tv), and the subsequent differences of the different Gaussian

smoothed (Difference-of-Gaussian - DoG) series correspond to difference of the
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Figure 2.5: A Sample Candidate Keypoints Point, F , (Solid Black) and It’s Neigh-

bors in Adjacent Scales “s+1” (Red) and “s− 1” (Yellow) and in Time “t− 1” (Blue)

and “t+ 1” (Green)

same series at difference scales. Therefore, the DoG can be computed as

Dv(t, σ) = (G(t, kσ)−G(t, σ))⊛ Tv(w, h)

= Lv(t, kσ)−Lv(t, σ)

(2.15)

Here, Dv(t, σ is the difference between the representation of the same input series

(Tv) smoothed at different scales, σ and kσ (here, k is the constant multiplicative

factor). Analogous to SIFT, UVTF incrementally reduce the temporal length of the

input series (Tv), s.t.

Tv(t, 2σ) =
Tv(2 ∗ t− 1, ksσ + Tv(2 ∗ t, k2σ)

2
(2.16)

organized as octaves, O , where each of these Oo, o ∈ {1, ..., O} octaves is fur-

ther organized as scales, S s.t. a given scale Ss, s ∈ 1, ..., S has an associated

smoothing factor of ksσ s.t. kS = 2, within each octave o.

2.1.2.2 Extrema Detection

This step searches for points of interest, ⟨t, o, s⟩ across multiple scales of the given

time series, v, by searching over multiple scales and locations of the given series

(here o denotes an octave and s denotes the corresponding scale). The search of

local extrema (keypoints) is performed by comparing the immediate neighbor (see

22



Figure 2.5) along both time and scale in the DoG representation, D(t,σ)
v , of the input

series, Tv. Thus, pruning the keypoints that are similar to their local neighborhood,

both in scale and time. A keypoint, K⟨v, t, o, s⟩, is an extremum if it is maximum

across it’s eight neighbors, three is each adjacent scales (s− 1 and s+1), and two

in time (t− 1 and t+ 1)) i.e.

max


Dt−1,ks+1σ

v Dt,ks+1σ
v Dt+1,ks+1σ

v

Dt−1,ksσ
v Dt,ksσ

v Dt+1,ksσ
v

Dt−1,ks−1σ
v Dt,ks−1σ

v Dt+1,ks−1σ
v

 (2.17)

In other words, ⟨t, o, s⟩ is designated as an extremum if it is greater than Θ% of the

maximum of it’s 8 scale-time neighbors in DOG (D). Furthermore, each identified

keypoint has an associated temporal keypoint scope, defined by the temporal scale

(s) in which it is located. The radius of the keypoint is set to 3σ, as the under

Gaussian smoothing three standard deviation would cover ∼ 99.73% of the original

temporal points that has contributed to the keypoint.

Given these, each key temporal keypoint can be rewritten as quadruple,F⟨v, t, o, s⟩.

2.2 Latent Features

Latent, word of latin origin “latẽns” [leyt-nt], referred to as hidden. Latent fea-

tures are variables or representations that are not observable directly, but inferred

mathematically from other directly observed features/variables. Latent variables

are often referred to as hidden categories - hypothetical variables/construct. This

interpretation of latent variable has leads to their widespread use in the domain of

dimensionality reduction, through approaches such as Principal Component Anal-

ysis (PCA) [92] and Infinite Feature Selection (InfFS) [97], aimed at learning or-

thonormal latent features that maximizes the variance between the data points and

separation between the features respectively.
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2.2.1 Principle Component Analysis (PCA)

Principal Component Analysis (PCA) is eigen-decomposition based latent fea-

tures extraction approach and can be seen as an approach that fits d-dimensional

latent space over a D-dimensional original space.
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Figure 2.6: Abstract Overview of PCA Applied on 2D Data Points, and Shows Two

Prominent Orthonormal Principal Components.“Green” and “Red” Represents the

1st and 2nd Principal Components Respectively

PCA can be defined as orthonormal linear transformation that transformed the

original features space into new latent space such that the greatest variance by

some scalar projection of the data comes to lie on the first latent dimensional, also

called “principal component”.

Given a data matrix, X ∈ RN×D, where each feature (matrix column) is cen-

tered around zero. Mathematically, the input matrix is first converted into a covari-

ance matrix, Xc, s.t.

Xc = XXT , (2.18)

and the XT can be transformed into

XT = USV , (2.19)
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here, U and V are left and right eigenvectors and S is the Eigenvalue matrix. The

input data covariance matrix, XT ∈ RD×D is converted into three matrix as follow:

U ∈ RD×d,S ∈ Rd×d, and V ∈ Rd×D, where d represents the number of reduced

dimensions or latent features. Mathematically, U = V T as both dimensions of the

XT represents features.

Another extension of PCA is the Singular Vector Decomposition (SVD), this ap-

proach works on the data matrix directly as opposed to covariance matrix. Analo-

gous to PCA, SVD is defined as follows:

X = USV , (2.20)

here, the input matrix, X ∈ RN×D is converted into three matrix as follow: U ∈

RN×d,S ∈ Rd×d, and V ∈ Rd×D.

The key intuition behind the successfully working of PCA lies in the idea of use

of covariance matrix, as covariance matrix contains the estimates of how each fea-

tures in X related to every other features X. Each eigenvector represents the

direction in which the data can be dispersed to maximize the variance in the latent

space. Finally, the eigenvectors captures the importance of each of these direc-

tions, i.e. the eigenvectors.

Some of the key properties of eigenvectors learned using PCA:

• Orthogonal: any two eigenvectors are perpendicular to each other, i.e. Ui.Uj =

0 thus formed basis vectors

• Normal: any eigenvector in the U or V is a normal vector, i.e. |Ui| = 1

Therefore, eigenvectors are referred as orthonormal vectors.
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2.2.2 Infinite Feature Selection (InfFS)

With the increase in the dimensionality of the data, feature selection has be-

come a prominent pre-processing step for many machine learning and deep learn-

ing models. The crux of the feature selection/ranking methods is to identify set of

strong features that are not redundant and irrelevant.

Infinite Feature Selection (InfFS) is an unsupervised feature ranking method.

InfFS transforms the problem feature ranking in graph centrality problem [13]. Here,

relationship between each pair of features is defined in terms of there statistical

properties and mutual correlation. The goal here is to maximizing the divergence

amongst the features and ranking the features high that are most dissimilar to there

counter part and carry most self divergence, i.e. standard deviation.

Specific algorithmic details is presented in the Algorithm 1. This section will dis-

cuss the intuition behind various components in the InfFS. As noted earlier, InfFS,

view the feature ranking problem as creating an affinity graph, and subset of feature

paths connecting them. The cost of the path between two features is the defined

in terms of their variance and correlation.

InfFS creates a graph, G (V, E) , such that, V represents the features in input

matrix, X ∈ RN×D , and E represents the pair of two features. The graph can be

considered as an adjacency matrix A , where each element Aij ∈ A, 1 ≤ i, j ≤ D

is defined as:

Aij = ασij + (1− α)Cij, (2.21)

here, α ∈ [0, 1] is the loading coefficient, σij being the maximum standard devi-

ation among the two features, X(i) and X(j), s.t. σij = max(std(X(i)), std(X(j))),

and Cij is defined as Cij = 1 − |spearman(X(i), X(j))| and represents the inverse

Spearman’s rank correlation coefficient i.e. . thus, Aij is measure to describe the
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Algorithm 1: Infinite Feature Selection [97]
Data: X = {X(1) . . . X(D)}, α

Result: s̃ energy scores, for each feature

Building the graph

for i← 1 to D do

for j ← 1 to D do
σij = max(std(X(i)), std(X(j)))

Cij = 1− |spearman(X(i), X(j))|

Aij = ασij + (1− α)Cij

end

end

Letting paths tend to infinity

r = 0.9
ρ(A)

S = (I − rA)−1 − I

s̃ = S̃e

return s̃

maximal feature dispersion and their correlation.

In order to rank the features of their importance, InfFS proposed to measure

the importance in terms of path between two node in the graph. To do, so they

leverages the Katz centrality [58] to measure betweenness centrality, as follows:

S = (I − rA)−1 − I (2.22)

Finally, the overall feature score is defined as

∀i = 1 . . . D

s̃i =
D∑
j=0

Si,j.
(2.23)
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2.3 Deep Features

Deep features, also referred to as deep representation in the literature, can be

seen as a response of the neuron or the layer (as a whole – set of neuron) in a

neural network. The term “deep” refers to the position of the layer or neuron in

the network structure, and the term “feature” refers to the neuron/layer output. In

order to contain deep features, input data (with minimal pre-processing) is passed

through the neural network, N . A neural network can be defined as a sequential

arrangement of trainable layers, such as convolution, recurrent and fully connected

layers. Layers, such as convolution and recurrent, acts as a feature extractor and

the layers, such as fully connected, acts as a classifier (classification problem) or

predictor (regression problem). Most widely used neural network training approach

is a supervised learning, therefore, the deep features can be seen as a generalized

representation of the each sample in the input data. It is further observed that as

the depth of the network increases, each layer/neuron capture information (repre-

sentation) at different scale, i.e. the more shallow the layer is more finer details are

captured, such as edges in patterns, intensity of pixels, however, more deeper one

goes, the captured features become more abstract i.e. general shape of the object

in the image. Therefore, deep features differ as different depths in the network.

For the purposes of this dissertation, the focus is on the overall network out-

put rather then exploring different deep features at different depths in the network.

In remainder of this dissertation, a neural network is considered as a sequential

arrangement of linear (type of neuron/layer) and non-linear operations (neural ac-

tivation) that aim at learning a mapping function, f , that maps the input data X to

output Y s.t.

f : X → Y . (2.24)
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As pointed out by Bergstra [10], the ultimate objective of the neural network is to

minimize the expected loss/model error, E , over i.i.d. X samples of the learning

function, f representing the network,N . Often the success of the learning function,

f , depends on the choice of hyper-parameters, θ .

f : X → Y | θ. (2.25)

A typical neural network contains variety of heterogeneous components that con-

stitutes as network hyper-parameters, and to learn multiple network parameters

simultaneously, such as:

• Input layer is the first layer in the network that acts as a gateway to the deep

network to accept raw or pre-processed in inputs for the network to feed on

• Trainable layers are the layers that contains the majority of the network that

are learned during model training.This layer is generally represented as Y =

WX +B, here W and B are the network weights and bias matrix

• Activation layer provides the non-linearly to the network to model a gener-

alized representation for complex non-linearly separate data samples

• Pooling layer allows us to control the amount of intermediate data that needs

to propagate through the network. As the depth increases, the amount of data

(floating point operations) in the network increases. Therefore, the pooling

layer allows to down-size the data as the depth increases

• Fully-Connected layer often referred to as FC, is the final output layer of the

network where the target is situated, for classification the number of classes is

the size of the FC layer with “softmax” activation and for regression problem,

number of target variables with “linear” activation defines the FC layer
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Chapter 3

RACKNet: ROBUST ALLOCATION OF CONVOLUTIONAL KERNELS

3.1 Overview

Deep neural networks have demonstrated unprecedented success in various

applications involving multimedia objects, including images, text, and more com-

plex signals. However, these networks are complex, with a large number of hyper-

parameters. Despite their impressive success when these hyper-parameters are

suitably fine-tuned, the design of good network architectures remains an art-form

rather than a science: while various search techniques, such as grid-search, have

been proposed to find effective hyper-parameter configurations, often these param-

eters are hand-crafted (or the bounds of the search space are provided by a user).

This chapter argues, and experimentally show, that one can minimize the need for

hand-crafting, by relying on the dataset itself. In particular, RACKNet show that

the dimensions, distributions, and complexities of localized features extracted from

the data can inform the structure of the neural networks and help better allocate

limited resources (such as kernels) to the various layers of the network. To achieve

this, RACKNet observes present several hypotheses that link the properties of the

localized image features to the CNN and RCNN architectures and then, relying

on these hypotheses, present a RACKNet framework1 which aims to learn multi-

ple hyper-parameters by extracting information encoded in the input datasets. Ex-

perimental evaluations of RACKNet against major benchmark datasets show that
1Garg, Yash, and Candan, K. Selçuk. RACKNet: Robust Allocation of Convolutional Kernels in

Neural Network for Image Classification. International Conference on Multimedia Retrieval, 2019.
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Figure 3.1: Outline of a CNN (in this Chapter, Set of Convolutional Layers Between

Two Pooling Layers is Referred as “Racks”)

RACKNet provides significant improvements in the network design and robustness

to change in the network.

3.2 Introduction

Deep neural networks, including convolutional neural networks (CNNs, Figure

3.1) have seen successful application in face recognition [64] as early as 1997, and

more recently in various multimedia domains, such as time series analysis [130,

121], speech recognition [47], object recognition [70, 102, 101], and video classifi-

cation [57, 105].

More recently, CNNs’ successful application in a variety of multimedia domains

has lead to a shift away from feature driven algorithms, such as SURF [8], HOG [29],

and SIFT [76], into the design of well-crafted CNN architectures for specific datasets

and application domains. Unfortunately, deep neural networks, including CNNs,

tend to be complex with a large number of hyper-parameters. As [10] points out, the

ultimate objective of finding a high performing architecture configuration to minimize

the expected loss, L(x; lf ), over i.i.d x samples of the learning function, lf , repre-

senting the network, NN . Often the success of the learning function, lf , depends on
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Figure 3.2: Overview of the RACKNet Framework: Sizes, Complexities, and Dis-

tributions of the Local Features Extracted from the Image Dataset During Pre-

Processing are Used to Inform the Structure of the CNN and Allocate Convolution

Kernels Within the Neural Network Architecture
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the choice of hyper-parameters, λ. Therefore, L is a function of hyper-parameters

as well, where L(x, λ; lf ). Despite their impressive success when these hyper-

parameters are suitably fine-tuned, design of good network architectures still re-

mains an art-form rather than a science, while various techniques, such as random

search [11, 10], grid-search [63], and others [37, 108, 26, 55, 107, 131], have been

proposed to help locate an effective (optimal or close-to-optimal) hyper-parameter

configuration, λo. Due to high-dimensionality of the hyper-parameter space and the

complexity and non-linearity of the CNN architectures, searching for an effective

hyper-parameter configuration, λo, is a computationally-expensive process, which

has led to an interest in specialized and targeted approaches [37, 108, 125, 80, 55]

that introduce refinements on-top of existing high performing network configura-

tions. Yet, today these parameters need to be hand-crafted (or at least the bounds

of the search space are provided by a user).

As further discussed in Section 3.3, a common shortcoming of the existing ap-

proaches to hyper-parameter search is that they “work on the data, not with the

data”, i.e. they aim to find a hyper-parameter configuration that minimizes L, but

in the process they ignore the available data and the key insights that the data can

provide in honing in on effective configurations of hyper-parameters. In contrast,

RACKNet argues that one can minimize the need for hand crafting of the search

space, by relying on a pre-training analysis of the data itself. To this end, this chap-

ter presents a RACKNet framework which aims to learn key hyper-parameters by

extracting information encoded in the input datasets (Figure 3.2).

3.2.1 Key Contributions

RACKNet focuses on hyper-parameters that impact kernel budget allocation,

which (as one can see in Figure 3.3) can have significant impacts on model accura-
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cies and training times. In particular, RACKNet show that the sizes, complexities,

and distributions of localized features, such as SIFT features [76], extracted from

the dataset can provide insights that can inform the structure of the neural networks

and help better allocate limited resources (such as kernels) within the network.

In other words, RACKNet argues that, even when the SIFT features

may not be sufficiently informative to achieve high accuracies in media

analysis tasks alone, they can provide reliable insights that can inform

the design of effective CNN and RCNN architectures.

More specifically, unlike purely feature-based approaches, which leverage features

extracted from the data to implement the analysis task, RACKNet uses these fea-

tures only to inform the structure of the CNN (or RCNN) to be used for analysis. To

achieve this, RACKNet first present four key observations that link the properties

of the localized features to the CNN and RCNN architectures:

• Observation 1: Sizes of the localized features in the dataset can inform the

kernel sizes and the numbers of sub-sampling racks of the CNN.

• Observation 2: Complexities of the features (measured through the entropies

of their descriptors) at different scales can be used to discover the number of

layers per rack.

• Observation 3: Overall complexities of convolutional layers, defined through

corresponding image features, can be used to inform the arrangement of lay-

ers within a rack.

• Observation 4: Distribution of the features for a given complexity component

can be used to discover the number of kernels per convolution layer.
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It is important to note that, while RACKNet uses both localized and CNN fea-

tures, they are used for entirely different purposes:

• cheaper-to-obtain, but rough, localized features are used to bootstrap the

hyper-parameter of the CNN; whereas

• expensive-to-obtain, but finer-grain, CNN features are, then, used to obtain

the classifier.

RACKNet is designed as an unsupervised general purpose single-shot architec-

ture search framework that takes pre-computed localized image features for hyper-

parameter extraction (as described in Section 3.4). RACKNet argues, and exper-

imentally show, these feature can provide insights on the dataset that can inform

the architecture of the network. RACKNet is evaluated on common benchmark

datasets, such as MNIST, SVHN, CIFAR10, COIL20, and ImageNet, and a com-

monly used localized image feature, known as SIFT [76]. Experiments on these

datasets show that RACKNet indeed provides significant improvements in the net-

work performance.

3.2.2 Organization of the Chapter

This chapter is organized as follows: Section 3.3 describes the existing work

in detail, Section 3.4 presents the proposed RACKNet framework, and Section

3.5 discusses the performance and robustness of RACKNet framework under var-

ious settings involving change in kernel budget and dropout rate for both CNN and

RCNN designs. Chapter conclude in Section 3.6.
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Table 3.1: Key Notations Used in this Chapter (More Details in Appendix B)

Symbol Convolutional Neural Network (CNN) Symbol Scale Invariant Feature Transform (SIFT)

r # of racks of conv. layers o # of Octaves

ci # of conv. layers in the given rack,Ri gi # of Gaussian comp. in entropy histogram an octave, oi

ki,j # of kernels in a given conv. layer, Ci,j ni,j # of feature-similarity clusters in a given Gauss. comp., gi,j

ei,j Kernel size for a given conv. layer, Ci,j σi,j Feature scope in a given Gauss. comp., gi,j

3.3 Related Work

Successful application of convolutional neural networks (CNN) dates back to

the 90s where it was applied to face recognition [64]. More recently CNNs have

shown promising results in various multimedia applications such as image en-

hancement [17], speech recognition [47], video classification [57, 105], object recog-

nition [70, 102, 101], and time series analysis [130, 121] have generated significant

interest in CNN deisgn and configuration.

[63, 11, 10] proposed hyper-parameter configuration search techniques that

evaluate performances of different configurations on training data. [10], for ex-

ample, implemented a random search over a bounded 32-dimensional parameter

space. [131] proposed a reinforcement learning based technique to incrementally

improve hyper-parameter configurations. [26] proposed an evolutionary search al-

gorithm that generates a large population of CNNs to converge on a good config-

uration through mutations. [53] designed a greedy search through multi-attribute

learning.

The main difficulty with these search-based techniques is that the process can

be very costly as the possible parameter space can be very large. The prohibitive

cost of search-based approaches led to approaches that target specific network

components; these include maxout [37], batch normalization [55], rectified-lu [62,
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80, 45], and dropout [108], techniques: [37] proposed a maxout strategy that intro-

duces a max-pooling layer that provides spatial invariance to the network. [55] pro-

posed a batch normalization layer aiming to minimize the covariate shift in the net-

work, allowing for higher learning rates. The dropout layer proposed in [108] aims to

prevent overfitting of the network by randomly engaging and disengaging the con-

volutional kernels during training. [62] proposed Rectified Linear Units (ReLUs) aim-

ing to minimize the loss of gradients during the training phase of the network. [80]

proposed a non-linear rectifier that reduced the sparsity in the network. [45] pro-

posed Probabilistic-ReLU, advancing the conventional ReLUs, to adaptively learn

the ReLU parameters. Fusion networks have been proposed that combine shallow

and deep features [16, 129].

This RACKNet notes that a major weakness of the various techniques discussed

above is that they ignore the input data itself. In particular, RACKNet argues that

it may be possible to use the training dataset itself to help search for appropri-

ate CNN hyper-parameter configurations. While this data-driven approach has

not been used in CNN design, RACKNet observes that it found successful use

in several other application domains. For example, [127] demonstrated that spatio-

temporal features extracted from time series data can reduce the computational

cost of determining warping paths between multi-variate time series. [104, 72] lever-

aged spatio-temporal features extracted from multi-variate time series to improve

on time series classification. [34, 31] leveraged metadata extracted from datasets

to improve classification accuracies. This chapter further notes that even when the

local image features alone may not be able to provide high accuracies in media

analysis, they can provide insights that can inform the design of effective CNNs.

38



3.4 Robust Allocation of Convolution Kernels for CNNs (RACKNet)

As discussed above, while well designed CNNs can be very effective in image

classification, their effectiveness is often hampered by the need for hand-crafted

hyper-parameter design, especially for new datasets that have not been seen in the

past. In this section, RACKNet framework is proposed that bootstraps the hyper-

parameter configuration for CNNs based on a pre-analysis of the image dataset,

D, (Figure 3.2). In particular, in order to better distribute the given budget, B, of

convolutional kernels across CNN layers, RACKNet proposes to leverage SIFT

features that capture local image patterns. RACKNet translates the sizes, com-

plexities, and distribution of the high-level feature patterns in the given dataset to

hyper-parameters of CNN structures that best utilize the given kernel budget.

3.4.1 Hyper-Parameters of a CNN

A convolutional neural network (CNN [65]) is a type of neural network that

works by leveraging the local spatial arrangements by establishing local connec-

tions among small spatial regions across the adjacent layers. A CNN consists of

several complementary components organized into layers (Figure 3.1):

• Each convolution layer links local-spatial data (i.e., pixels at the lowest layer)

through a set of filters or kernels that represent the local spatial features iden-

tified in the data.

• Since each convolution layer operates on the output of the previous convolu-

tion layer, higher layers correspond to increasingly complex features obtained

by combining lower-complexity features.

• Since relevant features of interest can be of different sizes, pooling/subsampling
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layers are introduced among convolution layers: these pooling layers carry

out down-sampling of the output of a convolution layer, thereby (given a fixed

kernel size) effectively doubling the size of the feature extracted by the cor-

responding filter.

Therefore, intuitively, a CNN searches for increasingly complex local features that

can be used for understanding (and interpreting) the content of a dataset. Given a

dataset, and labeled data, this is achieved by a process known as back-propagation

that uses gradient-search to identify the filters that best fit the labeled data.

Before the back-propagation can be implemented, however, one needs to pick

hyper-parameters, such as the number of convolution layers, type of pooling op-

erations, and number of kernels. In this chapter, RACKNet follows the following

convention (see also Table 3.1):

• RACKNet divides the sequence of convolution layers into r racks, each corre-

sponding to a different feature size: to enable this, the two consecutive racks

of convolution layers are separated by a pooling/subsampling layer.

• For each rack, Ri, of convolutional layers, RACKNet associates ci many con-

volution layers, each resulting in more and more complex features of the size

corresponding to the rack, Ri.

• Each convolution layer, Ci,j ∈ Ri, has ki,j kernels, each of size ei,j×ei,j, where

ei,j is the edge length of the kernel.

Therefore, the search for the hyper-parameters of the CNN can be posed as search-

ing for the appropriate r, c, ki,j, and ei,j parameter values that best describes the

data.
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3.4.2 Background: Local Image Features

As shown in the introduction, a common shortcoming of the existing approaches

to hyper-parameter search is that they “work on the data, not with the data”, i.e. they

ignore the available data and key insights that the data can provide in honing in on

effective configurations of hyper-parameters. In contrast, RACKNet argues that

one can minimize the need for hand crafting of the search space, by relying on a

pre-training analysis of the data itself. More specifically, RACKNet observes that if

one could cheaply extract localized features of a given dataset (independent of the

labeled data) – even if these features may not be sufficiently effective in achieving

high accuracies in media analysis – the sizes, complexities, and distributions of

these localized features can provide reliable insights that can inform the design of

effective CNN architectures.

There are several localized feature extraction algorithms for images: these in-

clude SURF [8], HOG [29], and SIFT [76]. Scale Invariant Feature Transform [76],

in particular, has been the de facto image representation strategy for content-based

image retrieval as these features have shown robustness against rotation, scaling,

and various distortions. SIFT [76] extracts stable and scale invariant patterns con-

tained in a given image through a multi-step approach. SIFT supports multi-scale

feature extraction: intuitively, SIFT features correspond to regions in a given image

that are different from their neighborhoods, also in different image scales. Conse-

quently, starting from the smallest feature size (provided by the user), features are

organized into octaves corresponding to doubling of the feature diameter. In the

rest of this section, it is shown that sizes and complexities of the localized features

in a given dataset can be used to inform the design of CNNs that will operate on

that dataset.
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3.4.3 Observation #1: Number of Racks

As described earlier, RACKNet organizes the layers of a CNN in the form of

racks of convolution layers, where each rack corresponds to features of a different

size: in particular, the down-sampling (through average pooling) operation between

two consecutive racks reduces the number of rows and columns by half. Therefore,

it is easy to see that there is a correspondence between the number of racks, r, of

a CNN and the number of octaves, o, of localized features extracted from images

in a given dataset.

Note that, while in general the number of octaves is a user provided input param-

eter to the SIFT algorithm, in general the number of features the algorithm identifies

drops with increasing octaves. This is because, while an image may contain many

small size features, the number of large yet stable features declines with the feature

size. Therefore, the first hypothesis is that

r = oD,

where oD is the number of octaves where one is able to detect sufficiently many

features in a given dataset, D.

3.4.4 Observation #2: Number of Convolution Layers in a Rack

As discussed in Section 3.2, each convolution layer corresponds to a set of

features (represented by kernels) of a different complexity [103].

In other words, the more diverse the complexities of image features of

a given size, the more convolution layers the corresponding rack needs

to have.

Therefore, the next observation is that one can determine the number of convolution

42



!

"!!!!

#!!!!

$!!!!

%!!!!

&!!!!

!
'!
(

!
'"
&

!
'#

!
'#
&

!
'$

!
'$
)

!
'$
(

!
'%
%

!
'%
*

!
'&

!
'&
%

!
'&
+

!
')
%

!
')
+

!
'*
#

!
'*
*

!
'+

!
'+
$

!
'+
*

!
'(
"

!
'(
+

"
'!
#

"
'!
&

"
'"
",
-
.
/
0
1
-
2,
1
-
3
0
-
4
5
6

,-./01-2-4/1786

9.0::;.42257<874-4/:

,=>?@>ABC 9" 9# 9$ 9%

Figure 3.4: (Sample) Feature Entropy Distribution for the MNIST Dataset [66]:

Here, Different Colors Correspond to Four Different Gaussian Components Identi-

fied in this Complexity Histogram (Figure Best Viewed in Color).

layers in a given rack, by analyzing the distribution of the complexities of the SIFT

features in the corresponding octave, extracted from the dataset.

3.4.4.1 Feature Complexity and Distribution

In this chapter, RACKNet proposes to measure the complexity of a SIFT feature,

F , in terms of the entropy of the pixels within the corresponding scope as

E(F ) = −
∑

a∈pixel_amplitudes

Pscope(F )(a)logPscope(F )(a),

where, pixel_amplitudes is the set of possible pixel values and Pscope(F )(a) is the

distribution of the amplitude value a within the scope of the feature F . Note that

each SIFT feature, F , has a center ⟨xF , yF ⟩ and a scale σF represent the amount of

Gaussian smoothing corresponding to the feature. Since under Gaussian smooth-

ing, 3 standard deviations would cover ∼99.73% of the pixels that have contributed
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to the identified feature, the radius of a feature F is defined as 3σF . To compute

Pscope(F )(a), all pixels are considered within the ±3σF from ⟨xF , yF ⟩ in either of the

two directions. Next a complexity histogram, H(D, Oi), describing the entropy dis-

tribution of the features extracted from the dataset D, corresponding to octave Oi,

is computed.

3.4.4.2 Number of Convolution Layers

As seen in Figure 3.4, the entropy distribution is rarely uniform and shows a certain

degree of clustering. Therefore, it can be argued that the entropy distribution can be

leveraged to determine the number of convolution layers in a given rack. In partic-

ular, complexity histogram can be treated as a mixture of k (possibly overlapping)

Gaussians, where each Gaussian component corresponds to a distinct feature’s

complexity. Thus, given the entropy histogram, H(D, Oi), corresponding to octave,

Oi, a non-parametric Gaussian mixture separation algorithm2 can be used to (a)

identify the number, gi, of Gaussian components and (b) to associate each distinct

entropy instance to one of these components. Thus, the number of convolutional

layers can be determined as

∀i=1...r ci = gi.

where, ci is the number of convolution layers corresponding to the ith rack using

the number of Gaussian components„ gi of the corresponding octave, Oi.

3.4.5 Observation #3: Organization of Convolution Layers within a Rack

As discussed in Section 3.4.1, during the feed forward phase of CNN, the com-

plexities of the patterns learned increases as the training process moves from one
2In the implementation, the Gaussian mixture model available through the Python library, scikit-

learn [93] is used.

44



convolutional layer to another.

Therefore, the local image features extracted from the image dataset

should be mapped to the convolution layers in the order implied by the

Gaussian components to which they belong.

More specifically,

∀i=1...r∀j,h=1...ci (j > h)↔ (µi,j > µi,h) ,

where µi,j is the mean of the jth Gaussian component of the ith rack. As described

next, this order of complexities is used in distributing the kernel budget to the con-

volution layers in a rack.

3.4.6 Observation #4: Number of Kernels in a Convolution Layer

The next key observation is that:

the number of kernels corresponding to jth convolution layer of the ith

rack should reflect the number of relevant distinct patterns of the corre-

sponding feature size and complexity.

Unfortunately, without access to the labeled data, there exists no information about

the number of relevant distinct patterns. However, as shown in in next section,

one can replace this constraint with a more relaxed constraint which can be readily

computed.

3.4.6.1 Convolution Layers with Non-Uniform Kernel Counts

LetGi,j be one of the gi Gaussian components obtained in the previous step through

the analysis of the complexity histogram at octave Oi. Let Fi,j be the correspond-

ing set of SIFT features, again identified as a by-product of the non-parametric
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Gaussian separation process. RACKNet argues that the number, ki,j, of kernels

corresponding to the jth convolution layer of the ith rack should be inversely pro-

portional to the number of similarity clusters3 for the features in Fi,j:

∀i=1...r∀j=1...gi ki,j
inv∼num_clusters(Fi,j).

While this initially sounds surprising, there is a simple explanation for this relation-

ship between the number of feature similarity clusters and the number of kernels:

the higher the number of clusters of Fi,j one can identify, the more dis-

tinguishable the underlying feature patterns are and thus, the fewer the

number of kernels are needed to distinguish these patterns.

This observation is validated in Section 3.5 (Table 3.6). Note that given this obser-

vation and given a total budget of B kernels for the entire CNN, the number, ki,j, of

kernels corresponding to the jth convolution layer of the ith rack is computed as

∀i=1...r∀j=1...ci ki,j = βi,j ×B,

and

βi,j = 1−

(
ci∑

p=1...r cp
× ni,j∑

l=1...ci
ni,l

)
where, ni,j = num_clusters(Fi,j) is the number of descriptor similarity clusters for

octave Oi and Gaussian component, Gi,j.

3.4.6.2 Weight Sharing with non-Uniform Kernel Counts

An important decision in network design is the connectivity among kernels across

consecutive layers. This has two aspects to consider: (a) how convolutions at a
3In the implementation, the non-parametric density-based spatial clustering algorithm DB-

SCAN [28] with cosine distance to identify the number of similarity clusters, ni,j , of the descriptors

of the features in Fi,j is used.
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(a) Conventional Weight Sharing
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(b) Proposed Weight Sharing

Figure 3.5: Weight Sharing: in Conventional Strategy, Weight Sharing is on one-

to-one Basis; in the Proposed Approach, 1-M/N-1 Sharing is Possible Based on

Kernel Similarities.

down-stream layer are related to the convolution results of the up-stream layer and

(b) how, during training, weights can be shared across kernels in these two layers

(or how weights learned for kernels in one layer are used to bootstrap the weight

for the another consecutive layer). For instance,

• in terms convolution connections, [108] (a CNN implementation) and [70] (an

RCNN implementation) both rely on full connectivity across consecutive con-

volution layers.

• in terms of weight sharing, however, [108] assumes no weight sharing across

layers, whereas [70] assumes that weight sharing occurs on a one-to-one ba-

sis between corresponding kernels in two layers: i.e., during the feed-forward

stage of each iteration, the weight for a downstream kernel is initialized with

the weight of the corresponding kernel in the up-stream layer.

Note that weight sharing described above is possible because the number of ker-

nels across two consecutive layers are the same. As shown in the Section 3.4.6.1,

in RACKNet, there may be different number of kernels across consecutive layers;

this means that, when weight sharing is implemented, a one-to-one strategy will
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not work. This difficulty can be overcome by mapping each Ki,j,l (in the jth convo-

lution layer of the ith rack) to the most similar kernel, Ki,j−1,h, s.t. ∀i=1...r,∀j=2...gi ,

and ∀l=1...ki,j , consequently

µ(Ki,j,l) = Ki,j−1,h s.t. h = argmax
h′=1...Ki,j−1

{
cos(K⃗i,j−1,h′ , K⃗i,j,l)

}
.

Here µ() corresponds to the mapping function and K⃗∗ corresponds to the vector

representations of the convolution patterns learned during the training of the net-

work. Note that, since the discovered patterns change at each iteration, the map-

ping µ() needs to be revised accordingly. Note also that the kernel alignments

learned during the feed-forward stage are preserved and leveraged during the

back-propagation of the gradients as well. In particular, during back-propagation,

gradients are redirected to the corresponding kernel mappings, µ(), for synchronous

error correction.

3.5 Experiments

In this section, the proposed RACKNet framework is evaluated for data-driven

CNN design and compare its classification accuracy performance against alterna-

tive schemes.

3.5.1 Experimental Setup

RACKNet was implemented RACKNet in Python environment using Tensor-

Flow framework [2] and Keras [22]. During the training of CNN, 10% of the training

data was reserved for validation to evaluate model quality. Root Mean Square Er-

ror (RMSE) is used as the model optimizer. rectified-linear unit (ReLU) [80] and

softmax [14] as the hidden and output activation function, and for pooling average

or maxout [37] were used. Default kernel budget of 400 anddefault dropout rate of
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0.25 is used. MatLab implementation was used to extract SIFT features [76], and

scikit-learn [93] both to search for Gaussian components of entropy histograms,

and for feature similarity clustering using DBSCAN. All experiments were executed

on an Intel Xeon E5-2670 2.3 GHz Quad-Core Processor with 32GB RAM4.

3.5.2 Competitors

The proposed framework is compared against several competitors: wide net [4],

maxout [37], dropout [108], and RCNN [70]. Furthermore, to assess the usefulness

of the four key observations that form the core of RACKNet, several alternative

kernel allocation strategies were considered:

• Random budget allocation distributes the kernel budget, B, to the conv. layers

at random, s.t.
∑

∀i=1...r

∑
∀j=1...ci

βij ×B = B.

• Uniform rack budget allocation allocates the same number of kernels for each

rack in the CNN and then uniformly allocates kernels for each layer in the rack;

∀i=1...r∀j=1...ci βij =
1
ci
× 1

r
.

• Uniform layer budget allocation allocates the same number of kernels for each

convolutional layer irrespective of the convolution layer to which it belongs; i.e.,

∀i=1...r∀j=1...ci βij =
1∑r

p=1 cp
.

• Section 3.4.6 showed that RACKNet allocates kernels to convolution layers in a

rack inversely proportional to the feature complexities. C-Proportional alloca-

tion strategy uses the opposite strategy and allocates kernels to convolution lay-

ers in a rack directly proportional to the feature complexities: ∀i=1...r∀j=1...ci βij =

ci∑r
p=1 cp

× ni,j∑ci
p=1 ni,p

.

4Results presented in this chapter were obtained using “Chameleon: A Large-Scale Reconfig-

urable Experimental Environment for Cloud Research” (NSF Award No. 1743354)
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Table 3.2: Convolutional Layers and Numbers of Kernels ( ‘-’ Denotes Downsam-

pling Layer by 2) with Kernel Budget 400.

Datasets Convolution Layers ⟨Kernels⟩

MNIST 4-4-4 ⟨35,36,32,32-30,36,30,40-35,31,35,35⟩

SVHN 3-4-3 ⟨39,30,53-35,39,37,40-40,40,41⟩

CIFAR 5-3-3 ⟨39,29,38,39,39-33,39,39-37,37,37⟩

COIL 2-4-4 ⟨8,77-44,29,44,44-46,25,46,46⟩

ImageNet
10-12-6 ⟨10,16,12,13,16,21,19,15,10,11-14,11,16,15,

17,12,15, 19,12,15,14,12-14,18,10,13,16,14⟩

• In noted in Section 3.4.5, RACKNet orders convolution layers ibased on the fea-

ture complexities. Inverse-order allocation uses the opposite allocation strat-

egy, and places convolution layers with higher feature complexities later in the

feed-forward sequence.

In all scenarios, the number of racks and the numbers of convolution layers per

rack are selected per Observations #1 and #2.

3.5.3 Benchmark Datasets

For evaluation, various commonly used benchmark datasets; including digit

datasets, MNIST and SVHN, and real-world image datasets, CIFAR10, COIL20,

and ImageNet (Figure 3.6) were considered.

• MNIST is a dataset containing 60k and 10k training and testing images, re-

spectively of 28× 28 handwritten digit captures (Figure 3.6(a)).

• SVHN dataset consists of 32 × 32 house numbers extracted from Google

Street View images. The dataset consists of 73k and 26k images for train-
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(a) MNIST [66] (b) SVHN [89]

(c) CIFAR [61] (d) COIL [88]

Figure 3.6: Samples from the benchmark datasets

ing and testing (Figure 3.6(b)).

• CIFAR10 contains 50k training and 10k testing images, respectively, with 32×

32 resolution and the dataset contains 10 labels (Figure 3.6(c)).

• COIL20 contains images of 20 real-world objects. For each object, the dataset

includes 72 images, captured at 5-degree intervals by rotating a turntable 360

degrees (Figure 3.6(d)).

• ImageNet contains ∼1.23 million images for 1000 real-world entities, with
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Table 3.3: Entropy Histogram Bin Size vs Model Accuracy RACKNet (RCNN Im-

plementation)

Bin Size MNIST SVHN CIFAR COIL

0.001 98.93 90.12 85.36 99.54

0.010 99.48 97.85 95.74 99.86

0.020 99.04 90.05 84.79 99.37

0.050 95.20 87.02 81.88 98.68

∼1000 images per entity [62].

Table 3.2 shows the hyper-parameters extracted using the RACKNet. In par-

ticular, each feature octave corresponds to a “rack”, and the number of layers per

rack is determined using the data - not by user input. Entropy histogram bin size

of 0.01 is used as default: as shown in Table 3.3, RACKNet performs well with this

bin size, independent of the dataset.

3.5.4 Results

3.5.4.1 RACKNet vs. Competitors

In Table 3.4 and 3.5, the RCNN-based implementation of RACKNet is compared

against various state of the art CNN and RCNN techniques. As the tables show,

the network design based on the RACKNet framework provide the best overall

accuracies, indicating that RACKNet allocates kernel resources more effectively

than the handtuned competing architectures, with the exception of SENet [50] which

has a similar accuracy to RACKNet. It is important to note that SENet which is

significantly deeper than RACKNet, with 154 layers against only 28 layers wheras

RACKNet achieves similar accuracies with as low as 390k hyperparameters as

52



Table 3.4: Reported Accuracies for the Competitors vs RACKNet (RCNN imple-

mentation) Accuracy.

MNIST SVHN CIFAR COIL

Maxout [37] 99.55 97.53 88.32 –

Dropout [108] 99.21 97.45 87.39 –

Deep Net [4] 99.07 – – 99.23

Wide Net [4] 97.66 – – 99.36

RCNN [70] 98.12 93.67 75.28 90.02

RACKNet 99.48 97.85 95.74 99.86

RACKNet-maxout 99.72 98.54 97.62 100.00

opposed to 26.9 million in SENet.

3.5.4.2 RACKNet vs. Alternative Allocation Strategies

Table 3.6 compares RACKNet-based kernel allocation to alternative kernel allo-

cation strategies. Results in this table confirm that the four key observations that

form the core of the RACKNet framework are highly effective and that RACKNet is

the only strategy that consistently outperforms the random allocation strategy. It

is especially important to note that while naiïve allocation strategies, such as ran-

dom, show reasonable performance on simple datasets, like MNIST and CIFAR10,

they show very poor performance for complex ones, such as ImageNet, In contrast,

RACKNet provides consistently superior performance for both simple and complex

data sets.
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Table 3.5: Top-1 Classification Accuracy for ImageNet

Approaches Parameters Accuracy

Dropout [108] – 61.90

VGG-16 [106] 134M 72.70

PReLU [45] – 78.41

Batch Normalization [55] – 78.01

DenseNet-126 [52] 7M 74.98

RESNet-34 B [46] 0.46M 78.16

RESNet-34 C [46] 0.46M 78.47

SENet [50] 26.9M 81.32

Random 0.39M 69.12

Uniform-Layer (CNN-Plain) 0.39M 71.74

RACKNet-CNN 0.39M 76.82

RACKNet-RCNN 0.39M 79.14

RACKNet-RCNN-Maxout 0.39M 81.02

3.5.4.3 Kernel Budget, Dropout Rates, and Racks

In Figures 3.7 and 3.8, investigates the robustness of RACKNet (CNN and RCNN)

against varying kernel budgets and dropout rates. As shown in the figures, RACK-

Net is robust against varying kernel budgets and dropout rates and can help provide

significant protection against introduction of noisy kernels that degrade the network

accuracy. Table 3.7 shows that RACKNet works well with 3 racks, as predicted by

the number of feature octaves of localized SIFT features. Providing a higher num-

ber of racks does not contribute to performance as the number of SIFT features

drop significantly for larger octaves, limiting any discernible insights from the cor-
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Table 3.6: Accuracy for Various Kernel Allocation Strategies.

Strategies Observation MNIST SVHN CIFAR COIL

Random ⟨o1, o2⟩ 98.98 90.34 69.69 99.53

Uniform Rack ⟨o1, o2⟩ 98.97 90.90 70.18 99.55

Uniform Layer ⟨o1, o2⟩ 98.97 91.04 69.50 94.57

C-Proportional ⟨o1, o2, o3⟩ 98.90 90.77 68.50 99.16

Inverse Order ⟨o1, o2, o4⟩ 98.99 91.11 69.88 99.38

RACKNet ⟨o1, o2, o3, o4⟩ 99.25 94.57 71.65 99.94

Table 3.7: Accuracy vs Number of Racks, RACKNet-RCNN

MNIST SVHN CIFAR COIL

Rack–2 99.56 98.51 97.31 100

Rack–3 99.72 98.54 97.62 100

Rack–4 98.78 97.21 96.83 99.63

responding features.

3.5.4.4 Execution Time

RACKNet requires extraction and analysis of local image features for their sizes

and complexities before the CNN is trained. Table 3.8 presents the time cost of this

process along with the CNN training time. As this table shows, the pre-processing

overhead of RACKNet is not high. Since the pre-processing cost does not grow as

fast as the CNN training cost, RACKNet becomes cost efficient especially for large

training sets, such as SVHN. A key advantage of advantage of RACKNet over

other hyper-parameter search approaches is that, while they have to train multiple
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Table 3.8: Execution Time (in seconds)

Datasets MNIST SVHN CIFAR COIL ImageNet

(# of Instances) (60K) (73K) (50K) (1.3K) (1.23M )

Feature 340.34 449.35 302.10 110.59 8439.32

Entropy Histogram 81.04 119.47 60.41 26.56 4110.04

Mixture Separation 1.79 1.71 2.17 1.93 3.76

Clustering 75.76 97.45 62.13 30.21 1529.67

Training 929.33 1396.79 1189.61 187.01 31952.12

network configurations during the hyper-parameter search, RACKNet trains only a

single network configuration; instead, it pre-processes the data to determine the

best performing configuration Since the pre-processing cost grows much slower

that the network training cost, this provides large cost savings.

3.6 Conclusion

In this chapter, the proposed RACKNet, a framework for allocating convolution

kernels for different layers of a CNN is presented. In particular, noting that local

image features pre-extracted from the training data can provide reliable insights

that can inform the design of the CNN architectures, and present four key observa-

tions that link sizes, complexities, and distributions of these local features to CNN

hyper-parameters. Experiments using several benchmark datasets have shown

that the proposed approach leads to highly accurate classifiers without requiring

hand-crafting of the hyper-parameters. Experiments have further shown that the

proposed framework leads to more-accurate CNNs that are robust against kernel

budget availabilities, dropout rates, and Racks.
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(b) Classification Accuracy vs Kernel Dropout Rate

Figure 3.7: Accuracy vs. Kernel Budget and Dropout Rates (RCNN Implementa-

tion), for Clarity, RCNN with Uniform-Layer Budget Allocation Strategy is Shown.
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Figure 3.8: Accuracy vs. Kernel Budget and Dropout Rates (CNN Implementation),

for Clarity, CNN with Uniform-Layer Budget Allocation Strategy is Shown.
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Chapter 4

iSparse: OUTPUT INFORMED SPARSIFICATION OF NEURAL NETWORK

4.1 Overview

Deep neural networks have demonstrated unprecedented success in various

multimedia applications. However, the networks created are often very complex,

with large numbers of trainable edges which require extensive computational re-

sources. It must be noted that many successful networks nevertheless often con-

tain large numbers of redundant edges. Moreover, many of these edges may have

negligible contributions towards the overall network performance. This chapter

presents the novel iSparse framework1, and experimentally show, that one can

sparsify the network without impacting the network performance. iSparse lever-

ages a novel edge significance score, E , to determine the importance of an edge

with respect to the final network output. Furthermore, iSparse can be applied both

while training a model or on top of a pre-trained model, making it a retraining-

free approach - leading to a minimal computational overhead. Comparisons of

iSparse against state-of-the-art techniques on benchmark datasets show that iS-

parse leads to effective network sparsification for architectures such as, LeNet,

VGG and ResNet.
1Garg, Yash, and Candan, K. Selçuk. iSparse: Output Informed Sparsification of Neural Net-

work. In Proceedings of the 2020 International Conference on Multimedia Retrieval (pp. 180-188).
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4.2 Introduction

Deep Neural Networks (DNNs), particularly Convolutional Neural Networks (CNNs),

have shown impressive success in many applications, such as facial recognition [64],

time series analysis [121], speech recognition [47], object classification [70], and

video surveillance [57]. As the term “deep” neural networks implies, this success

often relies on large networks, with large number of trainable edges (weights) [46,

52, 106, 132].

4.2.1 Challenge: Network Size and Complexity

While a large number of trainable edges help generalize the network for complex

and diverse patterns in large-scale datasets, this often comes with enormous com-

putation cost to account for the non-linearity of the deep networks (“relu”, “sigmoid”,

“tanh”). In fact, CNNs owe their recent success to hardware level innovations that

render the immense computational requirements practical [82, 90]. However, the

benefits of hardware solutions and optimizations that can be applied to a general

purpose DNN or CNN are limited and these solutions are fast reaching their lim-

its. This has lead to significant interest in network-specific optimization techniques,

such as network compression [21], pruning [69, 123], and regularization [108, 115],

aim to reduce the number of edges in the network. However, many of these tech-

niques require retraining the pruned network, leading to the significant amount of

computational waste.

4.2.2 Network Sparsification

Many successful networks often contain large numbers of redundant edges, for

example, the weights of sample network shown in Figure 4.2, highlights that the
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Figure 4.1: Comparison of Model Classification Accuracy and Model Sparsification

Factor for Different Image Classification Datasets
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Figure 4.2: Overview of Post-Training Model Parameter Distribution for LeNet-5

Architecture When Trained for MNIST Dataset

weight distribution is centered around zero and has significant number of weights

with insignificant contribution to the network output. Such edges may add noise

or non-informative information leading to reduction in the network performance.

[5, 27, 123] has shown that it is possible to predict 95% network parameters while

only learning 5% parameters. Sparsification techniques can generally be classi-

fied into neuron/kernel sparsification [69, 123] and edge/weight sparsification tech-

niques [5, 115]: [69] proposed to eliminate neurons that have low l2-norms of their

weights, whereas [123] proposed a neuron importance score propagation (NISP)

technique where neuron importance scores (using [97] - See Equation 4.6) are
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propagated from the output layer to the input layer in a back-propagation fashion.

Dropout [108] technique instead deactivates neuron activations at random. As an

edge sparsification technique, DropConnect [115] selects edges to be sparsified

randomly. [5] showed that the network performance can be maintained by eliminat-

ing insignificant weights without modifying the network architecture.

4.2.3 iSparse Contributions

Following these works, it can be argued that network sparsification can be a very

effective tool for reducing the size and complexity of DNNs without any significant

loss in accuracy. However, it can also be argued that the edge weights cannot be

used “as is” for pruning the network. Instead, one needs to consider the significance

of each edge within the context of their place in the network (Figure 4.3):

“two edges with the same edge weight may have different degrees of

contributions to the final network output”

and this work demonstrates that it is possible to quantify significance of each edge

in the network, relative to their contributions to the final network output and use

these measured edge significance to minimize the redundancy in the network by

sparsifying the weights(edges) that contributes insignificantly to network. Through

experimental evaluation of iSparse framework has shown that a given pre-trained

network can be sparsified by almost 50% without impacting the network perfor-

mance. The key contributions of iSparse are as follows:

• Output-informed quantification of the significance of network parame-

ters: Informed by the final network layer output, iSparse computes and prop-

agates edge significance scores that measure the importance of each and

every edge in the network with respect to the model output (Section 4.4).
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Figure 4.3: Overview of iSparse Framework, Considering the Contribution of Neu-

ron ni to the Overall Output Rather than Only Between ni and nj Neurons

• Retraining-free network sparsification (Sparsify-with): The proposed iS-

parse framework is robust to edge sparsification and can maintain network

performance without having to retraining the network. This implies that one

can apply iSparse on pre-trained networks, on-the-fly, to achieve the desired

level of sparsification (Section 4.4.3)

• Sparsification during training (Train-with): iSparse can also be used as a

regularizer while training model, allowing for learning of sparse networks from

scratch (Section 4.5).

As the sample results in Figure 4.1 shows, iSparse is able to achieve 30-50%

sparsification with minimal impact on model accuracy. More detailed experimen-

tal comparisons (See Section 4.6) of iSparse against Dropout, l1, DropConnect,

Retraining-Free and Lottery-Ticket Hypothesis on benchmark datasets illustrated

that iSparse leads to more effective network sparsifications.
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4.2.4 Organization of the Chapter

The chapter is organized as follows: Section 4.3 provides an overview of the

work done in the domain and the crucial background on the state-of-the-art network

architectures in use. Section 4.4 describes in detail the proposed iSparse frame-

work (sparsify-with) and Section 4.5 provides the iSparse (train-with) framework.

Section 4.6 presents the experimental evaluation of the proposed framework and

Section 4.7 concludes the chapter.

4.3 Related Work

A neural network is a sequence of layers of neurons to help learn (and remem-

ber) complex non-linear patterns in a given dataset [39]. Recently, Deep Neural

Networks (DNNs), and particularly CNNs, have leveraged hardware optimizations

to scale large networks and have shown impressive success in several data anal-

ysis and machine learning applications [47, 57, 64, 70, 121].

The number of trainable parameters in a network can range from as low as

tens of thousands [67] to hundreds of millions [106]. The three order increase in

the number trainable parameter may lead to parameters being redundant or pa-

rameters that have negligible contribution to the overall network output. This re-

dundancy and insignificance of the network parameters has led to advancements

in network regularization, by introducing dynamic or informed sparsification in the

network. These advancements can be broadly classified into two main categories:

parameter pruning and parameter regularization. In particular, pruning focuses

on compressing the network by eliminating the redundant or insignificant param-

eters. [43, 42] aims to prune the parameters with near-zero weights inspired from

l1 and l2 regularization [111, 112]. [69] choose to filter out convolutional kernel with
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cumulative minimum weight in given layer. Recently, [123] minimizes the change

in final network performance by eliminating the neuron that have minimal impact on

the network output by leveraging neuron importance score (NL) - computed using

Inf-FS [97]. More complex approaches have been proposed to tackle the prob-

lem of redundancy in the network through weight quantization. [95] propose to the

quantize the inputs and output activations of the layers in a CNN by using step func-

tion and also leveraging the binary operation by using the binary weights opposed

to the real-values weights. [19] focuses on low-level mobile hardware with limited

computational power, and proposed to leverage the network’s inherent redundancy

by using hashing functions to compress the network weights.

[7, 119] showed that each input feature to a given layer in the network rarely

have the same importance, therefore, learning there individual importance (atten-

tion) helps improve the performance of the network. More recently, [32] has shown

that input data informed deep networks can provide high-performance network con-

figurations. Further, works such as [33, 34, 72] have shown that salient information

can help improve the model performance. iSparse relies on output information for

identifying and eliminating insignificant parameters from the network, without hav-

ing to update the edge weights or retraining the network.

4.4 iSparse Framework

As discussed in Section 4.2, in order to tackle complex inputs, deep neural net-

works have gone increasingly deeper and wider. This design strategy, however, of-

ten results in large numbers of insignificant edges2 (weights), if not redundant. This

section, describes in detail, the proposed iSparse framework which quantifies the

significance of each individual connection in the network with respect to the over-
2An edge is defined as a direct connection (weighted) between two neurons.
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all network output to determine the set of edges that can be sparsified to alleviate

network redundancy and eliminate insignificant edges. iSparse aims to determine

the significance of the edges in the network to make informed sparsification of the

network, irrespective of the type of layers, such convolutional (n-dimensional) and

fully connected (dense).

4.4.1 Mask Matrix

A typical neural network, N , can be viewed as a sequential arrangement of

heterogeneous layers (L), such as convolutional (C) and fully connected (F) layers:

N (X) = LL (LL−1 . . . (L2 ( L1(X)))) , (4.1)

here, X is the input, L is the total number of layers in the network and L ϵ {C,F},

s.t., any given layer, Ll | 1 ≤ l ϵ L, can be generalized as

Ll(Yl) = σl(WlYl +Bl) = Ŷl, (4.2)

where, Yl is the input to the layer (s.t. Yl = Ŷl−1 and for l = 1, Y1 = X) and σl, Wl,

and Bl are the activation function, weight, and bias respectively. Note that, if the

lth layer has ml neurons (i.e., |Ŷl| = nl) and the (l − 1)th layer has nl neurons (i.e.,

|Yl| = ml), then Ŷl ϵ Rml×1, Yl ϵ Rnl×1, Wl ϵ Rml×nl and B ϵ Rml×1.

Given this formulation, the problem of identifying insignificant edges can be

formulated as the problem of generating a sequence of binary mask matrices,

M1, . . . ,ML, that collectively represents whether any given edge in the network is

sparsified (0) or not (1):

Ml = Bnl×ml ,B ϵ {0, 1}, 1 ≤ l ≤ L (4.3)
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4.4.2 Edge Significance Score

Let Ml be a mask matrix as defined in Equation 4.3, and Ml can be expanded

as

Ml =


Ml,1,1 . . . Ml,1,nl

... . . . ...

Ml,ml,1 . . . Ml,ml,nl

 , (4.4)

where each Ml,i,j ∈ {0, 1} corresponds to an edge el,i,j in the network. The goal

of iSparseis to learns an edge significance score to help set the binary value of

Ml,i,j for each edge in the network. More specifically, iSparse aims to associate a

non-negative real valued number, El,i,j ≥ 0, to each edge in the network, s.t.

Ml,i,j =


1 El,i,j ≥ τl(θl)

0 El,i,j < τl(θl)

,∀i = 1 . . .ml, j = 1 . . . nl. (4.5)

Here, τl(θl) represents the lowest significance of the θl% of the most significant

edges in the layer l. Intuitively, given a target sparsification rate, θl, iSparseranks

all the edges based on their edge significance scores and keep only the highest

scoring θl% of the edges by setting their mask values to 1.

As shown in Figure 4.2, in the Section 4.2, the (signed) weight distribution of the

edges in a layer is often centered around zero, with large numbers of edges having

weights very close to 0. Also argued in the Introduction that such edges can work

counter-intuitively and add noise or non-informative information leading to reduction

in the network performance. In fact, several existing works, such as [5], relies

on these weights for eliminating insignificant edges without having to retrain the

network architecture. However, as commented in the Introduction, iSparse argues

that edge weights should not be used alone for sparsifying the network. Instead,

one needs to consider each edge within the context of their position in the network:
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Figure 4.4: A Sample Network Architecture and its Sparsification Using Retraining-

Free [5] and iSparse; Here Node Labels Indicate Input to the Node; Edge Labels

[0,1] Indicate the Edge Weights; and Edge Labels Between Parentheses Indicate

Edge Contribution

two edges in a network with the same edge weight may have different degrees of

contributions to the final network output. Unlike existing works, iSparse takes this

into account when selecting the edges to be sparsified (Figure 4.4).

More specifically, let W+
l be the absolute positive of the weight matrix, Wl ,

for edges in lth layer. Next, iSparsecomputes the corresponding edge significance

score matrix, El, as

El = W+
l ⊙Nl (4.6)

where, Nl represents the neuron significance scores3, Nl,1 through Nl,nl
, and ‘‘⊙ ”

represents the scalar multiplication between edge weights and neuron scores. This

can further be expanded as,

El =


W+

l,1,1 × Nl,1 . . . W+
l,1,nl
× Nl,1

... . . . ...

W+
l,ml,1

× Nl,nl
. . . W+

l,ml,nl
× Nl,nl

 . (4.7)

Nl,i, denotes the significance of the ith input neuron to the lth connection layer of

the network, which itself is defined recursively, based on the following layer in the
3Nl summarizes the edge and neuron importance in the subsequent layers i.e. Ll+1 . . .LL.
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network, using the conventional dot product:

Nl = W+
l+1Nl+1, (4.8)

that is

Nl =


W+

l+1,1,1 × Nl+1,1 + · · ·+W+
l+1,1,nl+1

× Nl+1,nl+1

...

W+
l+1,ml+1,1

× Nl+1,1 + · · ·+W+
l+1,ml+1,nl+1

× Nl+1,nl+1

 . (4.9)

Note that Nl can be expanded as

Nl = (W+
l+1(W

+
l+2 . . . (W

+
L−1(W

+
L NL)))), (4.10)

Above, NL denotes the neuron scores of the final output layer, and NL is defined

using infinite feature selection [97, 123] (more details can be seen in Section 2.2.2

of Chapter 2) as NL = inffs(ŶL) where ŶL ϵ Rx×n (x is the number of input sam-

ples and n is the number of output neurons) to determine neuron importance score

with respect to the the final network output. Given the above, the edge score (Equa-

tion 4.6) can be rewritten as

El = W+
l ⊙

(
W+

l+1(W
+
l+2 . . . (W

+
L−1(W

+
L NL)))

)
. (4.11)

Note that the significance scores of edges in layer l considers not only the weights

of the edges, but also the weights of all downstream edges between these edges

and the final output layer.

4.4.3 Edge Sparsification

As noted in Section 4.4.1, the binary values in the masking matrix Ml depends

on τl(θl), which represents the lowest significance of the θl% of the most significant
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edges in the layer4: therefore, given a target sparsification rate, θl, for layer l, iS-

parse ranks all the edges based on their edge significance scores and keep only

the highest scoring θl% of the edges by setting their mask values to 1. Note that,

once an edge is sparsified, change in its contribution is not propagated back to the

layers earlier in the network relative to the sparsified edge. Having determined the

insignificant edges with respect to the final layer output, represented in form of the

mask matrix, Ml (described in Section 4.4.1), the next step is to integrate this mask

matrix in the layer itself. To achieve this, iSparse extends the layer l (Equation 4.2)

to account for the corresponding mask matrix (Ml):

Ll(Yl) = σl ((Wl ∗Ml)Yl +Bl) , (4.12)

where, ∗ represents the element-wise multiplication between the matrices Wl and

Ml. Intuitively, Ml facilitates introduction of informed sparsity in the layer by elimi-

nating edges that do not contribute significantly to the final output layer.

4.5 Integration of iSparse within Model Training

Previous section discussed the computation of edge significance scores on a

pre-trained network, such as of pre-trained ImageNet models, and the use of these

scores for network sparsification. This section further highlights that iSparse can

also be integrated directly within the the training process.

To achieve this, the edge significance score is computed for every trainable layer

in the network using the strategy described in Section 4.4.2 and the mask matrix is

updated using Equation 4.5. Furthermore, the back-propagation accounts for the
4In the experiments reported in Section 4.6, without loss of generality, iSparse assumes that θl

has the same value for all connection layers in the network. This is not a fundamental assumption

and iSparse can easily accommodate different rates of sparsification across connection layers.
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mask matrices:

W ′
l = Wl − η(Ml ∗ Errl) (4.13)

where, W ′
l are the updated weights, Wl original weights, η is the learning rate, and

Errl is the error recorded by as the divergence in between ground truth (Yl) and

model predictions (Ŷl) as Errl = |Yl − Ŷl|. Note that, iSparse argues that any edge

that does not contribute towards the final model output, must not be included in the

back-propagation. Therefore, iSparse masks the error as Errl ∗Ml.

4.6 Experimental Evaluation

In this section presents the experimental evaluation of the proposed iSparse frame-

work using LeNet, VGG, and ResNet architectures (See Section 4.6.2) and com-

pare it against the approaches, such as Dropout, l1, DropConnect, Retraining-Free

and Lottery-Ticket Hypothesis (see Section 4.6.1). iSparse was implemented in

Python environment using Keras Deep Learning Library [22]. All experiments were

performed on an Intel Xeon E5-2670 2.3 GHz with 32GB RAM 5.

4.6.1 Competitors

iSparse is compared against several state-of-the-art network regularization and

sparsification techniques:

• Dropout6 [108] is a randomly drops neuron activations after every epoch

• Lasso (l1) regularization6 [111] aims to penalize the large model weights by

pushing them towards zero, leading to a simpler network
5Results presented in this chapter were obtained using NSF testbed: “Chameleon: A Large-

Scale Re-configurable Experimental Environment for Cloud Research”
6 train-with configuration
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• DropConnect [115] is a purely random approach, where edges are randomly

selected for sparsification6,7

• Retraining-free [5] considers each layer independently and sparsifies in-

significant weights in the layer, without accounting for the final network output

contribution6,7

• Lottery Ticket Hypothesis [30] aims at finding a subnetwork configuration

by iterative sparsification of network6

4.6.2 Benchmark Networks and Datasets

iSparse, without loss of generality, leverages LeNet-5 [67], VGG-16 [106], and

ResNet-18 [46] as the baseline architectures to evaluate sparsification performance

on different benchmark image classification datasets and for varying degrees of

edge sparsification. This section presents the overview of these architectures:

• LeNet-5: Designed for recognizing handwritten digits, LeNet-5 is simple net-

work with 5 trainable (2 convolution and 3 dense) and 2 non-trainable layers

using average pooling with tanh and softmax as the hidden and output acti-

vation.

• VGG-16: VGG [106]’s, a 16 layer network with 13 convolution and 3 dense

layers, with interleaved 5 max-pooling layers. VGG leverages ReLU as the

hidden activation to overcome the problem of vanishing gradient, as opposed

to tanh

• RESNet-18 [46] consists of 17 convolutional layers with varying (64, 128, 256,

and 512) number of convolutional kernels, a 2D maxpooling layer, a global
7 sparsify-with configuration
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Figure 4.5: Top-1 and Top-5 Classification Accuracy for Sparsified VGG-16 Model

for ImageNet (sparsify-with)

average layer, and a fully connected layer. First convolutional layer uses a

kernel size of 7× 7 and the remainder use 3× 3 as kernel size

LeNet’s simplicity has made it a common benchmark for datasets recorded in con-

strained environments, such as MNIST [66], FMNIST [120], COIL [88, 87], and

NORB [68], and given the ability of VGG/ResNet network to learn the complex pat-

tern in the real-world dataset, benchmark datasets, such as CIFAR10/20/100 [61],

SVHN [89], GTSRB [109], and ImageNet [26] are used.

4.6.3 Classification Results

This section presents and discusses the accuracy results.

4.6.3.1 Sparsification of Pre-trained Models (sparsify-with)

Figure 4.5 presents the top-1 and top-5 classification results for ImageNet dataset

for VGG-16 network. As seen in the Figure 4.5, iSparse provides the highest ro-

bustness to the degree of sparsification in the network. In particular, with iSparse,

the network can be sparsified by 50% with ≤ 6% drop in accuracy for top-1 and

≤ 2% drop in accuracy for top-5 classification, respectively. In contrast, the com-
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Figure 4.8: Model Classification Time vs Sparsification Factor for 10,000 MNIST

Test Images (Train-With)

petitors, see larger drops in accuracy. The closest competitor, Retrain-free, suffers

a loss in accuracy of ∼ 16% and ∼ 6% for top-1 and top-5 classification, respec-

tively. The other competitors suffer significant accuracy drops after a mere 10-20%

sparsification.

Figures 4.6a, 4.6b and 4.6c show the top-1 classification accuracy results for

other models and data sets. As shown in the figures, the above pattern holds for all

configurations considered: iSparse provides the best robustness. It is interesting
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to note that DropConnect sees drastic drop in accuracy for the VGG networks and

especially on the CIFAR data. This is likely because, VGG-CIFAR is already rela-

tively sparse (20% > sparsity as opposed to∼ 7% for VGG-ImageNet and < 1% for

LeNet) and these three techniques are not able to introduce additional sparseness

in a robust manner. A similar pattern is observed in the ResNet architecture, how-

ever, DropConnect shows more invariance to random weight drop, it is argued that

this is due to the incorporation of residual connections. In contrast, iSparse is able

to introduce significant additional sparsification with minimal impact on accuracy.

Figure 4.9 provides the mask matrices created by the different algorithms to

visual illustrate the key differences between the competitors. As shown in the fig-

ure, DropConnect selects individual edges for sparsification, but only randomly and

this prevents the algorithm to provide sufficiently high robustness. Retrain-free and

iSparse both select edges in an fine-grained manner: retrain-free uses relies on

edge-weights, whereas iSparse complements edge-weight with an edge signifi-

cance measure that accounts for each edges contribution to the final output within

the overall network. As shown in the Figure 4.9 (d) and (e), this results in some dif-

ferences in the corresponding mask matrices, and these differences are sufficient

to provide significant boost in accuracy.

4.6.3.2 Sparsification during Training (train-with)

Table 4.1 present accuracy results for the scenarios where iSparse (iS) is used to

sparsify the model during the training process. The table also considers Dropout

(DO), l1 regularization, DropConnect (DC), Retrain-Free (RF), and Lottery-Ticket

Hypothesis (LT) as alternatives. As shown in table, for all three network architec-

tures, under most sparsification rates, the output informed sparsification approach

underlying iSparse leads to highest classification accuracies.
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Table 4.1: Top-1 Classification Accuracy for Sparsified Architectures for Different

Datasets (Train-with). Notations in Section 4.6.3.2. For Baseline (Base) Architec-

ture and L1, the Achieved Sparsification Is Presented in “()”

Networks LeNet-5 network VGG-16 network ResNet-18 network
Datasets MNIST data set CIFAR-10 data set CIFAR-10 data set

Base arch. 98.79 (0% sparsification) 84.14 (0% sparsification) 73.61 (0% sparsification)

Base w. L1 98.22 (21.62% sparsification) 84.51 (13.26% sparsification) 73.98 (27.53% sparsification)

Alternatives DO DC RT LT iS DO DC RT LT iS DO DC RT LT iS

Sp
ars

.T
arg

et

5% 98.09 98.90 97.99 98.03 98.09 85.13 84.21 84.56 84.29 84.66 73.83 73.72 74.35 74.10 74.34

10% 98.07 98.17 98.45 98.82 98.56 84.77 84.35 84.33 84.23 84.35 74.52 73.22 74.49 74.31 74.78

20% 98.70 98.79 98.81 98.60 98.98 77.81 82.83 85.04 84.68 85.81 75.42 69.84 73.08 73.38 75.01

30% 98.54 98.78 98.71 98.72 98.98 76.16 83.41 84.17 83.48 84.48 74.69 72.43 74.10 73.39 74.36

40% 98.11 98.85 98.97 98.37 98.99 77.51 83.96 82.01 81.37 82.21 67.89 70.38 73.15 74.10 75.27

50% 97.60 98.55 98.85 98.68 99.00 69.21 83.44 84.15 81.59 84.53 66.20 71.35 72.69 74.13 74.12

Datasets FMNIST CIFAR20 CIFAR20

Base arch. 88.02 (0% sparsification) 66.96 (0% sparsification) 52.35 (0% sparsification)

Base w. L1 86.80 (21.84% sparsification) 67.12 (7.57% sparsification) 52.63 (22.94% sparsification)

Alternatives DO DC RT LT iS DO DC RT LT iS DO DC RT LT iS

Sp
ars

.T
arg

et

5% 88.35 88.23 88.70 87.76 88.75 62.47 62.26 62.01 62.54 62.85 52.99 52.42 50.69 51.17 53.69

10% 88.06 87.60 87.02 87.34 87.89 66.72 63.63 66.53 66.97 67.33 56.16 50.49 51.38 51.44 57.19

20% 87.00 88.02 88.00 86.89 88.11 64.10 61.79 63.45 63.89 65.03 56.52 52.91 54.13 55.60 56.23

30% 86.51 88.00 87.75 87.37 88.25 61.32 62.14 58.39 58.99 62.14 52.12 52.97 53.07 54.17 54.51

40% 84.09 87.81 87.25 86.79 88.30 65.67 66.34 65.09 65.28 66.62 47.17 50.19 51.06 48.26 51.64

50% 83.13 87.76 88.15 86.83 88.46 66.77 65.37 65.04 65.56 68.82 43.29 46.32 49.35 50.77 50.98

Datasets COIL20 CIFAR100 CIFAR100

Base arch. 95.96 (0% sparsification) 55.09 (0% sparsification) 41.01 (0% sparsification)

Base w. L1 95.61 (32.46% sparsification) 55.31 (6.71% sparsification) 45.01 (22.71% sparsification)

Alternatives DO DC RT LT iS DO DC RT LT iS DO DC RT LT iS

Sp
ars

.T
arg

et

5% 95.33 95.00 94.16 95.99 94.72 53.90 57.35 52.74 53.17 53.10 43.84 40.36 39.53 40.68 40.71

10% 95.44 94.72 95.01 95.49 95.55 51.24 51.32 51.01 51.60 51.48 42.37 40.88 38.08 40.77 40.89

20% 94.33 95.83 95.95 95.01 96.10 49.21 51.67 50.01 51.11 50.52 42.22 40.90 43.84 43.85 44.95

30% 94.32 95.00 94.74 94.56 95.00 53.76 51.19 54.05 54.26 54.50 41.58 41.22 43.39 44.99 45.98

40% 92.83 95.00 95.31 94.85 95.56 53.91 50.19 55.11 55.26 55.68 37.74 41.08 43.25 43.33 44.51

50% 92.61 95.00 94.16 93.26 94.72 52.01 51.65 51.78 51.96 52.56 39.22 36.57 43.69 43.40 44.21

Datasets COIL100 SVHN SVHN

Base arch. 90.00 (0% sparsification) 91.33 (0% sparsification) 89.68 (0% sparsification)

Base w. L1 90.38 (21.57% sparsification) 91.86 (8.63% sparsification) 88.24 (23.03% sparsification)

Alternatives DO DC RT LT iS DO DC RT LT iS DO DC RT LT iS

Sp
ars

.T
arg

et

5% 90.27 89.83 90.12 91.00 90.61 92.02 93.49 92.42 91.90 92.70 92.77 90.79 90.99 90.64 91.98

10% 89.94 90.05 89.81 89.99 90.33 91.99 95.00 92.56 92.06 92.96 91.52 91.87 89.87 90.06 91.12

20% 89.32 90.83 88.54 90.56 91.03 87.13 92.63 93.34 93.51 93.74 90.23 89.83 88.48 89.85 91.56

30% 89.13 90.12 90.12 89.86 90.55 89.94 91.95 91.97 82.04 92.26 91.68 91.83 87.91 88.98 92.48

40% 86.27 88.22 90.01 90.03 90.44 88.65 88.79 91.92 92.12 92.31 90.18 91.16 89.83 90.87 91.87

50% 82.77 90.66 90.21 89.99 90.85 88.75 82.94 87.61 87.75 87.68 89.58 90.79 87.49 88.63 91.56

Datasets NORB GTSRB GTSRB

Base arch. 84.42 (0% sparsification) 97.68 (0% sparsification) 96.12 (0% sparsification)

Base w. L1 83.30 (27.98% sparsification) 97.74 (35.88% sparsification) 92.02 (44.51% sparsification)

Alternatives DO DC RT LT iS DO DC RT LT iS DO DC RT LT iS

Sp
ars

.T
arg

et

5% 86.46 84.51 84.75 85.14 85.03 97.11 96.49 97.68 97.98 98.64 96.71 95.84 97.19 96.35 97.23

10% 83.25 85.35 85.98 85.75 86.25 92.73 95.03 91.09 87.32 93.24 97.32 95.71 95.84 96.04 97.56

20% 85.65 83.04 82.56 82.98 83.29 94.82 93.02 94.41 90.56 95.76 97.55 93.26 95.30 95.91 96.96

30% 85.02 86.69 85.91 85.79 86.08 96.30 97.18 97.43 87.27 98.56 96.37 94.56 92.70 92.88 98.81

40% 84.72 83.14 84.12 84.86 85.08 89.03 95.61 96.91 87.78 97.61 96.25 93.39 92.90 93.61 94.55

50% 84.63 84.49 85.61 85.69 86.77 84.34 94.31 95.91 89.44 97.31 97.73 95.91 94.30 93.26 95.12
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Table 4.2: Robustness Analysis for Cifar10 (VGG) for Edge-based Sparsification

Strategies Against iSparse (Train-with)

Tanh-Adam Tanh-RMS ReLU-Adam

Base arch. 87.66 (0% sparsified) 81.95 (0% sparsified) 84.14 (0% sparsified)

Alternatives DC RT iS DC RT iS DC RT iS

Sp
ar
si
fic
at
io
n
Ta
rg
et

5% 88.87 89.56 89.66 81.17 85.94 86.14 84.21 84.56 84.66

10% 84.75 88.21 88.31 86.75 87.01 87.42 84.35 84.33 84.35

15% 81.78 81.89 82.49 88.75 88.99 89.04 83.43 83.51 83.69

20% 85.64 85.95 86.21 87.10 89.10 89.23 82.83 85.04 85.81

25% 86.10 87.68 87.86 84.81 87.31 87.74 84.07 84.32 84.56

30% 87.07 86.21 86.30 80.20 83.45 83.56 83.41 84.17 84.48

35% 82.38 86.43 86.48 85.91 86.75 86.93 83.06 84.95 85.42

40% 86.76 88.63 88.77 82.17 84.10 87.44 83.96 82.01 82.21

45% 83.90 85.52 85.61 85.79 86.40 89.42 82.75 82.81 82.83

50% 80.45 79.21 79.59 83.89 86.42 86.52 83.44 84.15 84.53

4.6.4 Robustness to the Variations in Network Elements

This section presents the impact of various network elements on network per-

formance. In particular, the performance of iSparse (iS) against DropConnect (DC)

and Retrain-Free (RF) for different hidden activation functions and network op-

timizers are compared. Tables 4.2 presents classification performances for net-

works that rely on different activation functions (tanh and ReLU) and for optimiz-

ers (Adam and RMSProp). As shown in these two tables, iSparse remains the

alternative which provides the best classification accuracy under different activa-

tion/optimization configurations.
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4.6.5 Ablation Studies for Final Layer Neuron Score Initialization

This section presents the evaluation of the performance on iSparse framework

with different type of neuron score initialization strategies for the final layer (L). In

particular, the following scoring strategies are evaluated:

– Identity score (IDN) (all scores are “1”),

– Principal Component Analysis (PCA) [92], and

– Infinite Feature Selection (InfFS) [97].

It is observed that the iSparse framework with InfFS as a mechanism to determine

the neuron scores for the final layers leads to a better performance opposed to the

other strategies (see Table 4.3), as a result of leveraging the relationship between

a neuron and other neuron in the layer. A networks capability is not only in predict-

ing the correct label, but also sufficient separating the predicted labels from other

possible labels, whereas IDN assumes a total independence among the neurons.

4.6.6 Robustness to the Variations in Sparsification Order

Next, the performance of iSparse under different orders in which the network

layers are sparsified is evaluated. In particular, the following three sparsification

orders are considered:

– input-to-output layer order : this is the most intuitive approach as it does not

require edge significance scores to be revised based on sparsified edges in

layers closer to the input;

– output-to-input layer-order : in this case, edges in layers closer to the network

output are sparsified first – but, this implies that edge significance scores are
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Table 4.3: Model Accuracies for Different Strategies to Initialize Neuron Importance

for Final Layer - CIFAR10

Networks VGG-16 ResNet-18

Base arch. 84.14 (0% sparsified) 73.61 (0% sparsified)

Alternatives IDN PCA InfFS IDN PCA InfFS

Sp
ar
si
fic
at
io
n
Ta
rg
et

5% 82.94 83.96 84.66 73.25 73.20 74.13

10% 81.59 83.85 84.35 73.46 73.86 74.28

15% 81.24 83.45 83.69 73.32 73.57 74.12

20% 82.67 84.65 85.81 74.52 74.21 75.01

25% 81.42 83.98 84.56 74.86 74.45 74.95

30% 80.64 82.96 84.48 73.72 73.80 74.36

35% 80.45 81.56 85.42 73.53 73.99 74.01

40% 78.48 79.54 82.21 74.94 75.09 75.27

45% 80.23 81.24 82.83 73.06 72.39 73.39

50% 80.85 82.68 84.53 74.19 74.19 74.21

updated in the earlier layers in the network to account for changes in the

overall edge contributions to the network;

– random layer order : in this case, to order of the layers to be sparsified is

selected randomly.

Figure 4.7 presents the sparsification results for different orders, data sets, and

sparsification rates. As evident in the figure, the performance of iSparse is not

sensitive to the sparsification order of the network layers.
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4.6.7 Impact of Sparsification on Classification Time

Finally, in Figure 4.8, the impact of edge sparsification on the classification time

is investigated. As shown in this Figure, edge sparsification rate has direct im-

pact on the classification time of the resulting model. When it is considered that

iSparse allows for ∼ 30 − 50% edge sparsification without any major impact on

classification accuracies, this indicates that iSparse has the potential to provide

significant performance gains. What is especially interesting to note in Figure 4.8

is that, while all three sparsification methods, iSparse (iS), DropConnect (DC), and

Retrain-Free (RF), all have the same number of sparsified edges for a given spar-

sification factor, the proposed iSparse approach leads to the least execution times

among the three alternatives. It can be argued that this is because the output in-

formed sparsification provided by iSparse allows for more efficient computations

in the sparsified space.

4.7 Conclusions

This chapter presents the proposed iSparse, a novel output-informed, frame-

work for edge sparsification in deep neural networks (DNNs). In particular, iS-

parse proposes a novel edge significance score that quantifies the significance of

each edge in the network relative to its contribution to the final network output. iS-

parse leverages this edge significance score to minimize the redundancy in the

network by sparsifying those edges that contribute least to the final network out-

put. Experiments, with 11 benchmark datasets and using two well-know network

architectures have shown that the proposed iSparse framework enables 30− 50%

network sparsification with minimal impact on the model classification accuracy.

Experiments have also shown that the iSparse is highly robust to variations in net-
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work elements (activation and model optimization functions) and that iSparse pro-

vides a much better accuracy/classification-time trade-off against competitors.
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(a) DropConnect [115] (b) Retrain-Free [5] (c) iSparse

Figure 4.9: Mask Matrices for the Lenet Network Conv_2 Layer for Mnist Data

(Sparsification Factor = 50%): Dark Regions Indicate Sparsified Edges; In (E) iS-

parse, the Arrows Point to Those Edges That Are Subject to Different Pruning De-

cision from Retrain-free in(D) (Green Arrows Point to Edges That Are Kept in iS-

parse instead of Being Pruned and Red Arrows Point to Edges That Are Sparsified

in iSparse instead of Being Kept)
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Chapter 5

SAN: SCALE-SPACE ATTENTION NETWORK

5.1 Overview

Deep Neural Networks (DNNs), especially Convolutional Neural Networks (CNNs),

have been effective in various data-driven applications. Yet, DNNs suffer from sev-

eral major challenges; in particular, in many applications where the input data is

relatively sparse, DNNs face the problems of overfitting to the input data and poor

generalizability. This brings up several critical questions: “Are all inputs equally

important?” “Can one selectively focus on parts of the input data in a way that re-

duces overfitting to irrelevant observations?” Recently, attention networks showed

success in helping the overall process focus onto parts of the data with higher im-

portance in the current context. Yet, SAN notes that the current attention network

design approaches are not sufficiently informed about the key data characteristics

in identifying salient regions in the data. This chapter presents an innovative robust

feature learning framework, scale-invariant attention networks (SAN)1, that identi-

fies salient regions in the input data for the CNN to focus on. SAN concentrates

attention on parts of the data where there is major change across space and scale,

and argue that the salient regions identified by SAN lead to better network perfor-

mance compared to state-of-the-art (attentioned and non-attentioned) approaches,

including state-of-the-art architectures on common benchmark datasets for image

and time classification, and object detection.
1Garg, Yash, Candan, K. Selçuk, and Sapino, Maria-Luisa. SAN: Scale-Space Attention Net-

works. In 2020 IEEE 36th International Conference on Data Engineering (pp. 853-864).
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Figure 5.1: Overview of Conventional Attention Module

5.2 Introduction

Deep Neural Networks (DNNs), including Convolutional Neural Networks (CNNs)

have seen successful applications in many data engineering domains, such as text

processing [100, 78], data alignment [24], recommender systems [18], time series

search and processing [122, 130, 121], and media search and analysis [64, 47,

70, 102, 101]. More recently, CNNs’ successful application in a variety of data-

intensive domains has led to a shift away from feature-driven algorithms into the

design of CNN architectures crafted for specific datasets and applications.

CNNs owe their success to large depth and width: this introduces a large num-

ber of trainable parameters (from tens of thousands [66] to hundreds of millions [106])

and enables learning of a rich and discriminating representation of the data [46, 66,

106, 110, 116]. However, as [44] points out, “increase in the depth of the network

can lead to model saturation or even degradation in accuracy”. More specifically,

in many applications where the input data is relatively sparse, DNNs face the prob-

lems of overfitting to the input data and poor generalizability. This brings up several
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critical questions: “Are all inputs equally important?” “Can one selectively focus on

parts of the input data in a way that reduces overfitting to irrelevant observations?”

Works such as [72, 34, 32] has shown that salient information can help improve the

model performance, both deep learning and machine learning models.

5.2.1 Attention Networks

The need for working with a limited number of trainable parameters to learn high

performing network architectures necessitates techniques to help focus on the most

relevant parts of the data. One way to achieve this is through fusion of multi-modal

data characteristics, such as channel (i.e. latent) and spatial relationships in im-

ages and temporal relationship in time series, where information transferred from

different modalities help strengthen and weaken their individual impacts [116]. An-

other common approach is to learn multi-scale features [110] to capture a rich rep-

resentation of data. More recently, attention networks gained popularity as a more

effective way to tackle this challenge [7]. Commonly, networks with attention mod-

ules have two, feature and attention, branches (see Figure 5.1). The feature branch

is analogous to the conventional networks where the neural structure extracts fea-

tures from data, whereas, in the attention branch, the network aims to quantify the

importance of the input features to focus on. The attention mechanism, on the other

hand, enables the network to focus on a specific, contextually-relevant, subset of

the features [83].

Attention mechanisms have been developed for different types of data. For in-

stance, the original attention network (proposed by Bahdanau in [7]) was designed

to recover attention to help identify a subset of input features important to a given

state in a recurrent neural network (RNN) used for analyzing sequence data. In

image analysis, on the other hand, the attention branch may aim to translate the
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spatial and channel level contextual relationship into an attention mask [116]. Since

the introduction of the attention mechanism, there has been significant amount of

work done that has enabled state-of-the-art networks, enriched with attention mech-

anisms, to outperform their predecessors [83, 116, 119, 91, 114]. While these and

other works, some of which discussed in Section 5.3, have provided strong evi-

dence regarding the promise of the attention mechanisms in reducing overfit and

improving accuracy, SAN notes that the current approaches suffer from a shared

shortcoming: While the existing mechanisms leverage multi-modal information,

they fail to consider information that a cross-scale examination of the latent fea-

tures may reveal.

5.2.2 Contributions: Scale-Space Attention Networks (SAN)

In a recent work, [32] has shown that scale-space based approaches can be

used to inform the design of CNNs – in particular, even though localized features,

like SIFT, may not lead to very accurate classifiers themselves, the information

these features capture at different scales might nevertheless be used to inform the

design of the hyper-parameters (e.g. number of layers, number of kernels per layer)

of CNNs. SAN is build on a similar observation and argue that a scale-space driven

technique can also be used to design better attention mechanisms that can help

focus attention of the deep neural network to parts of the data that are most critical.

Fundamentally, a CNN architecture extracts increasingly complex (multi-scale)

features through layers of interleaved convolutional and pooling layers, coupled

with non-linearity enablers, such as ReLU and tanh functions. this chapter also

demonstrated that SAN can adapt to the CNN architecture to implement a robust

scale-space based attention mechanism that focuses processing onto contextually

salient aspects of the data. In particular, this chapter presents a novel scale-space
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attention network, SAN, which brings together the following key ideas:

– Identifying salient changes in scale-space: Traditional attention mecha-

nism consider layers in isolation when generating attention. SAN further ar-

gues that comparing and contrasting latent features from two adjacent layers,

to locate salient changes in scale-space, is a more effective attention strat-

egy.

– Attention to extrema: Given that a neighborhood in the input is likely to have

changes in varying amplitudes, and argue that the attention should be given

to extrema, where the changes in scale-space are local maxima.

– Attention region extraction through smoothed extrema: SAN translates

these extrema into attention masks by applying a convolutional operation

around the extrema – this helps avoid noisy artifacts in the latent representa-

tion which could adversely affect performance.

As SAN experimentally validate in Section 5.5, the proposed SAN framework has

the following advantages: (a) SAN detects and describes salient changes in the

latent features to identify detailed and diverse attention masks that help boost net-

work performance while retaining finer details of the patterns. (b) SAN consistently

performs better than the competitors in both bottleneck and full attention scenarios

(see details in Section 5.5.3). (c) SAN framework is able to learn a high-performing

network architecture with minimal computational overhead.

5.2.3 Organization of the Chapter

The following sections are organized as follow: Section 5.3 discusses current

state-of-the-art approaches and their shortcomings, Section 5.4 presents the pro-
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posed framework, in Section 5.5 SAN is evaluted, and in Section 5.6 concludes the

chapter.

5.3 Related Work

Successful application of DNNs in diverse domains [64, 130, 121, 47, 70, 102,

101, 57, 105] has motivated the community to devise novel network architectures

that outperform the prior art.

5.3.1 Design of DNNs

A common approach to design DNNs is to hand-craft specialized network ar-

chitecture for specific domain and data. As early as 1998, Lecun [67], proposed a

five layer convolutional network to detect hand-written digits. The increasing preva-

lence of more complex datasets, such as ImageNet [26], led to more complex de-

sign of the hand-crafted networks [106, 46, 110, 51, 52]. These span from 10s to

100s of layers with hundreds of millions of trainable parameters. While these net-

works have different architectures, they often leverage common design optimiza-

tions that have been shown to improve the network performance. For instance,

batch-normalization [55] is used to address the problem of co-variate shift in the

network by normalizing individual batch output of the layers to facilitate early con-

vergence of the network; ReLU [86] is used to handle the problem of vanishing gra-

dients by eliminating the negative gradient in the feed forward phase of the network.

To help with the design of new architectures or for improving existing ones, recently

several hyper-parameter search strategies have been proposed: these include,

grid-search [63] and random search [10]. Both strategies perform principled hyper-

parameter search and have shown to determine an optimal hyper-parameter con-

figuration, however, they heavily rely on domain expert input to hand-craft hyper-
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Figure 5.2: Outline of a convolutional neural network [32]: a sequential arrange-

ment of layers with localized spatial connections interleaved with pooling operations

that scale the features extracted from the image. In this work, SAN consider two

positions for integrating the attention branches: in bottleneck (b) attention, attention

modules is attached right before subsampling (marked with ♦ in the figure); in full

(f) attention, the attention modules are applied at each and every trainable layer

(marked with ▲ in the figure)
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Figure 5.3: Abstract Overview of the Proposed Attention Module

parameter search space. In a recent work, [32] has shown that scale-space based

approaches can be used to inform the design of the hyper-parameters (e.g. number

of layers, number of kernels per layer) of CNNs.
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5.3.2 Attention Networks

Despite these advances, traditional DNNs are still faced with the problem of

performance degradation with the increase in the depth [44]: these networks tend

to saturate after a certain depth and networks suffer from limited generalization of

input data into a fixed-length encoding [7]. Attention mechanisms [7, 116, 119, 91]

aim to address this issue. In [7], attention is used for improving the sequence

translation task, from English to German, using recurrent neural nets (RNNs). This

work highlighted that not every input feature (word) in a sequence is equally im-

portant, rather focusing on a different subset of input features may be more appro-

priate at different stages of the translation process. Building on this observation,

attention has been applied to different applications (image captioning [100], rec-

ommender systems [18], multi-task learning [122], question generation [78]) and

different network architectures, including CNNs [65] and LSTMs [48]. [116] was

one of the early efforts in attentioned image understanding; the authors proposed

a residual attention mechanism which emulates residual learning by introducing the

attention module as a residual connection comprising of an autoencoder module.

Convolutional block attention module [119] and bottleneck attention module [91]

proposed to leverage spatial and channel relationships in an image dataset to learn

attention masks that summarize the importance of channels in the images and lo-

cate where the most information resides spatially. This chapter argues that these

works suffer from global (rather than local) summarization and from the fact that

they do not leverage cross-layer information for discovering attention. To address

this shortcoming, an informed attention network is proposed that leverages salient

changes in latent features and transform them into rich (diverse and detailed) at-

tention masks.
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(a) Previous Layer (b) Current Layer (c) DoC Construction

(d) Extrema Extraction (e) Extrema Smoothing (f) Learned SAN Mask

Figure 5.4: Sample Outputs of the Various Components of SAN– These Samples

Are Taken at the First Bottleneck Position in VGG-16, Implementing Attention on

the Outputs From conv_1 (Yl−1) and conv_2 (Yl), with 64 Channels (Kernels) Rep-

resented here Using an 8 × 8 Grid. (5.4a) Shows the Output from conv_1; (5.4b)

Shows the Output Observed at conv_2; (5.4c) Shows the DoC Extracted from these

two Layers; (5.4d) Highlights the Detected Extrema; and (5.4e) Shows the Output

of the Extrema Smoothing Step; Finally, (5.4f) Shows the 64 Detailed and Diverse

Attention Masks Learned by the Proposed SAN Module

5.4 SAN Framework

As discussed in Section 5.2, the success of deep neural networks can be cred-

ited to the increase in their depths and widths thanks to modern hardware. This in-

crease has enabled these networks to learn sufficiently complex patterns contained

in the dataset. Convolution Neural Networks (CNNs), which seek multi-scale fea-
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tures, have proven especially successful in image and time series understanding.

However, not every part of the data is of equal importance for extracting features

and avoiding overfitting, especially in the presence of sparse data, necessitates the

network to learn the importance (attention) of different parts of the data. This sec-

tion presents a novel scale-space attention network (SAN) framework that identi-

fies salient changes in latent features across scales and translates them into robust

(detailed and diverse) attention (Figure 5.3).

5.4.1 Convolutional Neural Networks and Attention Modules

A convolutional neural network (CNN [65]) is a type of neural network that works

by leveraging the local spatial arrangements by establishing connections among

small spatial regions across adjacent layers (Figure 5.2).

5.4.1.1 Convolutional Neural Architectures

A CNN consists of several complementary components organized into layers:

• Each convolution layer links local-spatial data (i.e., pixels at the lowest layer)

through a set of channels (or kernels) that represent the local spatial features.

• Since each convolution layer operates on the output of the previous convolu-

tion layer, higher layers correspond to increasingly complex features obtained

by combining lower-complexity features.

• Since relevant features of interest can be of different sizes, pooling/subsampling

layers are introduced among convolution layers: these pooling layers carry

out down-sampling of the output of a convolution layer, thereby (given a fixed

kernel size) effectively doubling the size of the feature extracted by the cor-

responding filter.
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Intuitively, a CNN searches for increasingly complex local features that can be used

for understanding (and interpreting) the content of a dataset. Such latent features

(deep representations) are fundamental to the success of the deep neural networks,

as each layer in the network sequentially feeds on the latent features (output) of

the previous layers to learn rich and abstract features. More formally, a neural

network (N ) is a sequential arrangement of layers (L), mainly convolutional and

dense layers, to map the input X to output Y as follows:

Y = N (X) = LL(LL−1(. . .L2(L1(X)))); (5.1)

here, X ∈ RN×D and Y ∈ RN×O where N is the number of samples, D is the

dimensionality of the sample, O is the number of class labels, and L is the number

of layers. Any given layer Ll can be generalized (perceptron) as,

Ll(Xl) = σl(WlXl +Bl), (5.2)

where Xl (the output of layer l − 1, s.t. Xl = Yl−1) is the input to the layer l (for

l = 1, X1 = X) and σl, Wl, and Bl are the layer’s activation function, weight, and

bias respectively. Note that, if the lth layer has ml neurons and the (l − 1)th layer

has nl neurons, then Yl ∈ Rml×1, Xl ∈ Rnl×1, Wl ∈ Rml×nl and B ∈ Rml×1.

5.4.1.2 Attention Masks

As discussed in Sections 5.2.1 and 5.3, several researchers noticed that significant

amount of waste in learning and inference effort can be avoided if the attention is

directed towards parts of a data that are likely to contain interesting patterns. This is

achieved by attaching so called attention modules to this neural architecture, where

the output of the attention module is used to weight the features learned in the

CNN [116, 83, 119]. Such attention mechanisms have shown to help improve the
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network performance by facilitating the network with the ability to learn to highlight

important and suppress unimportant features.

In CNNs, attention is achieved through the introduction of attention masks. As

visualized in Figure 5.1, the layer contains an additional component called attention

mask (M a
l ):

La
l = Ll ⊙M a

l ⟨Yl⟩. (5.3)

Here, M a
l highlights the important local regions in the image, and/or suppresses the

unimportant regions. However, conventional attention mechanisms fail to consider

information that a cross-scale examination of the latent features may reveal, and,

this work argues that salient changes in the scale-space can be identified through

a cross-scale examination of the latent features and the extrema in these changes

can be leveraged for more effective attention masks.

5.4.2 Feature Search in Scale-Space

In the literature, there are several localized feature extraction algorithms for

images: these include SURF [8], HOG [29], and SIFT [76]. In particular, SIFT

has been the de facto representation strategy for content-based image retrieval as

these features have shown robustness against rotation, scaling, and various distor-

tions. Intuitively, each feature corresponds to a region in a given image that is differ-

ent from its neighborhood, also in different image scales. These stable patterns are

extracted through a multi-step approach, including (a)scale-space construction, (b)

candidate key-point identification, (c) pruning of poorly localized, non-robust fea-

tures, and (d) descriptor extraction.

The scale-space used for feature search is constructed through an iterative

smoothing process, which uses Gaussian convolutions to create different versions

of the input data, each with different amount of detail. Robust localized features
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are then located where the differences between neighboring regions (possibly in

different scales) are large – in other words, these keypoints are located at the local

extrema of the scale space defined by the difference-of-Gaussian (DoG) of the in-

put image. More specifically, an l-layer state space of an input image, I, is defined

as a set of data matrices {I0, . . . , IL}, where Il = I{σ0×kl}, is a smoothed version

of the input image for some smoothing parameter σ0 and a scaling parameter k > 1.

Given this, a DoG, G, is created by considering a sequence of difference matrices

{D0, . . . ,DL−1}, where Dl = |Il+1 − Il| and feature candidates are sought at the

local maxima and minima of the resulting DoG: each Dl[x, y] (where x and y are the

rows and columns, respectively) is compared against its 26 (= 33 − 1) neighbors

(spatial neighbors in the scale l and neighboring scales l−1 and l+1) and the triplet

⟨l, x, y⟩ is selected as a candidate only if it is close to being an extremum among

these neighbors2.

5.4.3 Scale-Space Attention Networks (SAN)

Despite their success in object recognition and image search, SIFT features de-

scribed above have recently been overshadowed by CNNs in many image recogni-

tion tasks [70, 102, 101, 57, 105]. Yet, as discussed earlier, this advantage of CNNs

are subject to several constraints: most importantly, due to the large number of pa-

rameters that need to be learned from data, CNNs require a lot of data objects for

training. Features likes SIFT, on the other hand, are (a) relatively cheaper to obtain

and (b) since they encode the key domain knowledge “a robust feature is one that

is maximally different from its immediate neighborhood both in space and scale”

algorithmically, they do not require training data. In this section, a novel attention
2The number of neighboring triplets may be less than 26 if the triplet is at the boundary of the

image or scale space.
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Figure 5.5: Overview of the Difference-of-Cconvolutions (DoC) Construction Mod-

ule in SAN the Module Takes Latent Features (Y ) from Two Consecutive Layers

(l−1 and l) and Transforms the Latent Features Yl−1 into the Same Basis Space as

Yl by Taking Average along the Channel Axis (Y l−1), Followed by the Expansion

of the Channel Dimension Through Replication to Obtain Y
′

l−1; Finally, SAN Take

the Absolute Difference (△Yl = |Yl − Y
′

l−1|) to obtain the DoC

module is constructed for CNNs based on a similar observation: “the CNN should

pay special attention to latent features that are maximally different from their im-

mediate neighborhood both in space and scale”. In particular, unlike conventional

attention mechanisms (Equation 5.3), SAN proposes to leverage outputs from two

adjacent layers when constructing the attention module:

La
l = Ll ⊙M a

l ⟨Yl,Yl−1⟩. (5.4)

As discussed in the rest of this section, here M a
l ∈ [0, 1], is a soft-attention mask

obtained by identifying and augmenting the salient local regions within the latent

features based on informative local changes. More specifically, SAN proposes to

compare latent features (outputs) from two adjacent layers, l−1 and l to help identify
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the robust salient region, as opposed to relying only an individual layer output,

Ll, as in conventional attention networks. Detail of the process are visualized in

Figure 5.5, next:

5.4.3.1 Difference-of-Convolutions (DoC) Construction

Figures 5.4a and 5.4b show sample kernels learned in two consecutive layers. This

chapter argues (and experimentally show in Section 5.5) that one can learn diverse

attention masks by considering these two adjacent layers together. In order to

extract salient regions in layer l, SAN first constructs a difference-of-convolutions

(DoC) representation, which helps facilitate localization of scale-space changes

that are prominent in an image. Note that unlike SIFT [76], where the DoG is con-

structed by performing a pixel-by-pixel subtraction of two Gaussian smoothed im-

ages, SAN, seeks the difference among the latent features Yl−1 and Yl, where the

convolution kernels themselves are learned from the data. Therefore, the DoC is

computed from the outputs of the two consecutive convolution layers, l − 1 and l,

as follows:

△Yl = |Yl − Yl−1| (5.5)

Experimental evaluation shows in Section 5.5, taking the absolute difference (as

opposed to simple difference) has significant positive impact on the attention per-

formance – this is because attention needs to be given to, not only maxima, but ex-

trema of the difference of Gaussians. In addition, taking a non-absolute difference

might cause multiple counter-intuitive effects in the network: first, the introduction

of negative gradients may lead vanishing gradient problem as positive and nega-

tive gradients might cancel each other; secondly, the negative difference to sigmoid

function will push the attention towards “0”, as sigmoid(x) ∈ [0, 0.5], ∀ x ≤ 0.
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Note, however, that there is a significant problem with the Equation 5.5: the la-

tent features from the two layers do not have one-to-one correspondence, therefore

the difference operation is not well defined: Yl ∈ RH×W×C and Yl−1 ∈ RH×W×C′,

where H and W is height and width of the input image and C and C ′ are the num-

ber of channels/kernels in the layers, l and l− 1, respectively. Therefore, the set of

channels (kernels) C and C′ where C = |C| and C ′ = |C′| potentially represent two

different sets of basis vectors. Therefore, to implement DoC over these different

sets of basis vectors, SAN proposes to take average along the channel dimension,

s.t.

Y l−1[h,w, 1] =
1

C

C∑
c=1

Yl−1[h,w, c]

∀h = 1 . . . H, w = 1 . . .W

(5.6)

where Y l−1 ∈ RH×W×1 represents the channel average of Yl−1. SAN, then, ex-

pands the channel dimension of Y l−1 as

Y
′

l−1 = stack(Y l−1, C
′), (5.7)

where C ′ is the number of channels of Yl and the “stack” operation allows for stack-

ing C ′ many replicas of Y l along the channel dimension to obtain Y
′

l−1 ∈ RH×W×C′.

Consequently, the representative Y
′

l is now comparable to Yl and the proposed at-

tention mechanism, SAN, can be applied on two adjacent convolutional layers with

different number of channels without a padding operation to align the dimensions.

Given the above, SAN defines the salient change across the latent features

(updating the Equation 5.5) as follows:

△Yl = |Yl − Y
′

l−1|. (5.8)

Here,△Yl represents the change in latent features defined in terms of the absolute

difference between the two latent features. Samples results are presented in Fig-
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ure 5.4c: as one can see in the figure, the DoCs discovered using two consecutive

CNN layers retain large degrees of detail.

5.4.3.2 Extrema Detection

The SAN attention mechanism leverages the computed values of△Yl to learn the

attention mask M a
l ; but, one cannot use DoC directly as an attention mechanism:

One reason for this is that the DoC itself can be subject to noise. This problem

can be resolved by using the extrema of DoC rather than the DoC itself. However,

simply detecting an extremum by exploring the neighborhood and marking it as

“1” if it is a local extremum and “0” if not, might lead to a salt-and-pepper noise in

attention, severely limiting the network’s learning ability. Since the goal is to focus

on the changes that are robust and prominent, SAN instead propose a weighted

extrema detection mechanism, as follows:

∀h = 1 . . . H, w = 1 . . .W, c = 1 . . . C

Y e
l [h,w, c] = αh,w,c ×△Yl[h,w, c],

(5.9)

where
∀h′ ∈ {h− 1, h, h+ 1}, w′ ∈ {w − 1, w, w + 1}

αh,w,c =
#of△Yl[h,w, c] ≥ △Yl[h

′, w′, c]

9
.

(5.10)

Here, α ∈ (0, 1] is the weighing parameter representing the portion of the DoC

neighborhood (3 × 3 region around the coordinates ⟨h,w⟩) for channel c in layer l

smaller than the DoC value △Yl[h,w, c]. As seen in the degree of contrast present

in the sample results in Figure 5.4d, this step helps highlight the salient points in

the DoC while suppressing non-informative regions – the use of localized weighing

suppresses noisy perturbations and retains more salient latent changes.
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5.4.3.3 Extrema Smoothing

While the soft extrema detection mechanism on △Yl proposed above allows for

highlighting salient changes and suppressing the noise through localized weigh-

ing, this operation can still leak certain amount of noise and artifacts in the weighed

output, Y e
l [h,w, c]. Therefore, SAN further propose to leverage trainable convolu-

tional layers, with kernels the same size as the kernels (k) of the feature extraction

branch of the network, to smooth away such artifacts:

Y a
l = σ

(
Y e

l ∗W k
l + bkl

)
(5.11)

The application of this additional convolutional layer acts as a blurring operation

that smooths the unintended extrema artifacts, thus enabling the learning of a more

robust attention mask. Sample results are presented in Figure 5.4e – note that, the

smoothing operation, not only eliminates artifacts, but also boosts diversity relative

to the pre-smoothed version of the extrema. The validity of this observation and the

positive impact of this additional smoothing step are validated in the experimental

evaluation section (Section 5.5, Table 5.9).

5.4.3.4 Attention Mask Recovery

In the final step of SAN, the convolved output is passed, Y a
l , through the sigmoid

function to learn the final attention mask, M a
l , highlighting the salient attention re-

gions:

M a
l = sigmoid(Y a

l ). (5.12)

Intuitively, the sigmoid function takes a real-valued vector of attentions and maps

them to values in the range [0, 1] such that entries in the vector that are away

from 0 are saturated to 0 or 1 depending on whether they are negative or posi-
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(b) VGG-16

!
"
#$
%
&%
'(

!
"
#$
)
&)
'(

)
&)
'(

!
"
#$
)
&)
'*

!
"
#$
)
&)
'*

!
"
#$
)
&)
'*

+
,-
.
/
,$0
-
-
,

1
$2
,/
33

4 4

*
(
5
#$
)
&)
'(

*
(
5
#$
)
&)
'*

*
(
5
#$
)
&)
'*

*
(
5
#$
)
&)
'*

4 4

(
6
!
#$
)
&)
'(

(
6
!
#$
)
&)
'*

(
6
!
#$
)
&)
'*

(
6
!
#$
)
&)
'*

4 4

6
*
(
#$
)
&)
'(

6
*
(
#$
)
&)
'*

6
*
(
#$
)
&)
'*

6
*
(
#$
)
&)
'*

4 4

(c) RESNet-18

Figure 5.6: Overview of the Network Architectures for LeNet-5 [67], VGG-16 [106],

and RESNet-18 [46]. Colors Represent, Blue: Convolution (stride=1), Light-Blue:

Convolution (stride=2), Orange: Avg-Pooling (avg), Red: Max-Pooling (max),

Black: Fully Connected (fc), and Yellow: Output Layer (fc-softmax)
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Figure 5.7: RESNet-18 with Bottleneck Attentions (Attention Applied Before Pool-

ing Layers)

tive, respectively, and entries ∼ 0 take a non-boundary value between 0 and 1

following a sigmoid shape. Consequently, M a
l serves as a soft attention mask s.t.

M a
l [h,w, c] ∈ [0, 1] for layer l.

Figure 5.4f illustrates the rich (detailed and diverse) attention masks learned

by the proposed scale-space attention network, SAN, as it intelligently uses the

outputs of two adjacent convolutional layers to discover salient local regions to

focus the attention.
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5.5 Experiments

In this section, the proposed SAN framework is experimentally evaluated and is

compared against the baseline, non-attentioned networks (LeNet-5 [67], VGG [106]

and ResNet [46] - see Section 5.5.2) as well as the major competitors (CBAM [119],

BAM [91], and RAN [83] (see Section 5.5.4 for more details) in bottleneck and full

positions (5.5.3).

SAN was implmented in Python environment (3.5.2) using Keras Deep Learning

Library (2.2.4-tf) [22] with TensorFlow Backend (1.14.0) [2]. All experiments were

performed on an Intel Xeon E5-2670 2.3 GHz Quad-Core Processor with 32GB

RAM equipped with Nvidia Tesla P100 GPU with 16 GiB GDDR5 RAM with CUDA-

10.0 and cuDNN v7.6.43.

5.5.1 Datasets

• For the simpler LeNet network, data sets recorded in controlled environments

were considered:

– MNIST contains 60k and 10k training and testing handwritten digit im-

ages of 28× 28 resolution [66].

– FMNIST contains 60k and 10k training and testing images of 28 × 28

resolution with 10 classes [120].

• For the more complex VGG/ResNet Network, data sets recorded in real-world

settings were considered:

– CIFAR10/20/100 contains 50k training and 10k testing images, respec-
3Results presented in this chapter were obtained using NSF testbed: “Chameleon: A Large-

Scale Re-configurable Experimental Environment for Cloud Research”
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(a) Input

(b) CBAM Mask (c) BAM Mask (d) SAN Mask

(e) Input

(f) CBAM Mask (g) BAM Mask (h) SAN Mask

Figure 5.8: Attention masks learned by CBAM, BAM and SAN module for GTSRB

dataset when placed at the first bottleneck position in VGG-16: SAN masks are

more diverse and retain finer details from the input images

tively, with 32 × 32 resolution and the dataset contains 10, 20, and 100

labels [61].

– GTSRB dataset contains 39,209 and 12,630 training and testing images

for 43 unique traffic sign [109].

– GTSDB is an object detection dataset with bounding boxes representing

the positions of signs [49].

– ImageNet contains ∼1.23 million images for 1K real-world entities, with

∼1K images per entity [26].
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• For recurrent networks, multi-variate time series data sets were considered:

– Mocap: contains sensor (62) recording for 184 subjects for 8 gestures [38].

– FFC: constains flight statistics for fuel usage, including temperature and

wing position for 500 flights.

5.5.2 Baseline (Non-Attentioned) Architectures

5.5.2.1 LeNet-5

Designed for recognizing handwritten digits [67], LeNet-5 is a relatively simple net-

work with 5 trainable (2 convolution and 3 dense) and 2 non-trainable layers us-

ing average pooling (Figure 5.6a). LeNet demonstrated that localized image fea-

tures (handcrafts) can be substituted by deep features through the use of back-

propagation of the classification error. The two convolution layers contain 6 and 16

kernels and dense layers have 120 and 84 kernels. Hidden layers are tanh and the

final layer is softmax. LeNet’s simplicity has made it the benchmark architecture

for datasets recorded in constrained environments, such as MNIST, and FMNIST,

in many works [55, 23, 35].

5.5.2.2 VGG

With the increase in complexity of data [26], a deeper and more complex architec-

ture was required. An answer to this requirement was the VGG network [106] (Fig-

ure 5.6b), a 16 and 19 layer networks with 13 and 16 convolution layers respectively

and 3 dense layers, with interleaved 5 max-pooling layers. VGG demonstrated that

small kernel sizes (e.g. 3×3) can achieve better accuracies than using large kernels

(e.g. 5× 5 or 11× 11). Furthermore, VGG leverages ReLU as the hidden activation

to overcome the problem of vanishing gradient, as opposed to tanh. Furthermore,
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the network uses a convolutional layer with kernel size 1 × 1 as 7th, 10th and 13th

layers in the network to introduce additional non-linearity and uses rectification op-

eration. In addition to the kernel size, VGG proposed to slide the convolution kernel

by 1 unit in each spatial direction and pooling kernel by 2 units along each spatial

dimension. Given the ability of VGG network to learn the complex pattern in the

real-world dataset, SAN used the network on datasets, such as CIFAR10/20/100,

GTSRB, and ImageNet that contains complex, real-world objects.

5.5.2.3 ResNet

As seen in Section 5.2, much of the success of neural networks lies in their depth

and width, however, as [44] shows, the network saturates, and may even degrade,

after a certain depth is reached. ResNet [46] demonstrated that the problem of

accuracy saturation/degradation might be alleviated by the use of residual connec-

tions (Figure 5.6c). SAN considered ResNet architecture for two depths: 18 and 50.

For instance, ResNet-18 consists of 17 convolutional layers with varying (64, 128,

256, and 512) number of convolutional kernels, a 2D maxpooling layer, a global

average layer, and a fully connected layer. First convolutional layer uses a kernel

size of 7× 7 and the remainder use 3× 3 as kernel size. Each convolutional layer

is followed by batch-normalization [55] and ReLU [86].

5.5.2.4 LSTM-4

SAN considered a 4 layers LSTM architecture comprised of 64 LSTM units each,

with average pooling following every two recurrent layer, and final dense layer with

softmax (classification) and linear (forecasting) as output activation. SAN was com-

pared to recurrent attention network (RAN) [83].
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5.5.3 Positioning the Attention Modules

As noted in Equation 5.1, and seen in Figure 5.6, a neural network is a sequence

of layers interleaved by sub-sampling (pooling) layers. This means that there are

multiple locations in the network where the latent features are being generated and

transfered forward. As discussed in Section 5.4.1, SAN considered two alternative

attention strategies:

– Bottleneck placement strategy: attention modules are applied before the data

is down-size at pooling layers.

– Full placement strategy: in this case, attention modules are placed for every

trainable layer in the network.

Figure 5.7 shows the version of the ReSNet-18 networks extended with attention

modules, under bottleneck strategy.

5.5.4 Competitors

In this section, SAN was compared against the following competitors:

– Non-Attentioned Baselines: As the basic baseline, networks without any at-

tention module were considered. In particular, four types of baseline archi-

tectures were explored: LeNet-5, VGG, RESNet, LSTM-4 (see Section 5.5.2

for more details).

– Convolutional Block Attention Network (CBAM): CBAM is an attention mod-

ule [119] that is designed to leverage contextual relationships among channel

and spatial latent features to learn the attention mask. This is achieved by

sequentially considering channel attention followed by spatial attention. In-

tuitively, the channel attention helps learn “meaningfulness” of the image,
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followed by spatial attention to learn “where” this meaningful information lies

in the image. [119] suggested that the CBAM modules are placed after con-

volutional layers.

– Bottleneck Attention Module (BAM): In contrast to the CBAM’s sequential ap-

proach towards learning channel and spatial attention, BAM [91] computes

channel and spatial attention simultaneously, similar to inception networks [110].

BAM creates three branches in the network, 1) feature branch, 2) channel

branch, and 3) spatial branch. In the feature branch, the latent features are

propagated forward, similar to the conventional networks, whereas channel

and spatial branch learn the respective attention masks. Note that unlike

CBAM (which relied on conventional convolution layers), BAM used dilated

convolution layers. BAM recommended that the attention modules be placed

before the bottleneck.

– Recurrent Attention Network (RAN) [83]aims at learning the subset of input

feature at t while relying on the model output at time t-1.

As described above, CBAM and BAM use different (full vs. bottleneck) attention

module placement strategies. Both strategies were consderied when comparing

SAN against the competitors. Figure 5.8 displays bottleneck attention for three

sample images under CBAM, BAM, and the proposed SAN attention mechanisms.

Note also that CBAM and BAM rely on different (conventional and dilated) types

of convolution layers. Therefore, SAN was trained with two different versions of the

proposed attention modules: SAN-c with conventional convolution layers and SAN-

d with dilated convolutional kernels.
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Table 5.1: Model Classification Accuracies (Top-1 and Top-5) for ImageNet Data

for VGG-16/RESNet-18 Model Architecture

VGG-16 RESNet-18

Bottleneck Full Bottleneck Full

Datasets Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Base Model 71.90 90.6 71.90 90.60 70.40 89.45 70.40 89.45

CBAM 72.40 90.97 72.43 91.25 70.95 89.63 70.73 89.91

BAM 72.89 92.46 73.06 92.96 71.12 89.99 71.35 90.45

SAN-c 73.01 93.24 73.87 93.58 71.64 91.45 71.88 91.53

SAN-d 73.57 93.97 74.26 94.07 72.01 92.87 72.38 92.93

5.5.5 Experimental Results

5.5.5.1 Classification Accuracy

To evaluate the effectiveness of SAN framework, and demonstrate its robustness to

the network architecture, in this section measures classification accuracies on three

network architectures (LeNet-5, VGG-16, and RESNet-18) and on seven bench-

mark datasets (MNIST, FMNIST, CIFAR10/20/100, GTSRB and ImageNet)4. Top-

1 ans Top-5 Classification accuracy results are presented in Tables 5.1, 5.4, 5.2,

and 5.3. SAN defines the top-k accuracy as the ratio of the experiments in which

the true class label is observed among top-k candidate class labels.

Figure 5.1 shows top-1 and top-5 classification results for the complex ImageNet

dataset for VGG-16 and RESNet-18 network architectures. As observable in this

figure, SAN-c and SAN-d consistently outperform the baselines and the attention
4Two types of SAN models were trained, first with conventional convolutions (CBAM) and SAN d

with dilated convolutional kernels (BAM).
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Table 5.2: Model Classification Accuracies (Top-1 and Top-5) for VGG-16 Model

Architecture

Bottleneck

Datasets CIFAR10 CIFAR20 CIFAR100 GTSRB

Accuracy Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Base Model 72.70 93.12 45.17 70.01 31.07 53.01 96.21 99.84

CBAM 76.57 95.23 46.14 72.56 32.17 54.02 96.38 99.96

BAM 76.15 94.85 48.95 76.89 32.96 55.65 96.85 100.00

SAN-c 78.42 97.86 50.23 78.99 34.58 58.99 97.96 100.00

SAN-d 79.01 99.50 52.84 82.03 36.14 61.23 98.25 100.00

Full

Datasets CIFAR10 CIFAR20 CIFAR100 GTSRB

Accuracy Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Base Model 72.70 93.12 45.17 70.01 31.07 53.01 96.21 99.84

CBAM 74.65 94.26 45.74 72.16 32.51 54.67 97.45 100.00

BAM 76.42 95.63 46.79 73.68 35.96 61.45 97.73 100.00

SAN-c 79.89 97.99 51.14 82.99 37.59 63.48 98.31 100.00

SAN-d 81.24 99.98 54.88 86.48 39.03 68.45 98.95 100.00

competitors, CBAM and BAM. Figure shows that the results are relatively compa-

rable for bottleneck and full strategies and also that the version of SAN which uses

dilated convolutional kernels provides the overall highest accuracy gains under all

scenarios. On the average, the accuracy gains provided by SAN-d is 4.91× the

accuracy gains provided by CBAM and 1.68× the accuracy gains provided by BAM

over the baseline. BAM’s inception-style approach of having independent parallel
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Table 5.3: Model Classification Accuracies (Top-1 and Top-5) for RESNet-18 Model

Architecture

Bottleneck

Datasets CIFAR10 CIFAR20 CIFAR100 GTSRB

Accuracy Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Base Model 68.55 90.51 49.32 73.00 37.83 62.95 97.85 99.98

CBAM 73.76 96.40 53.39 80.34 40.95 65.65 98.11 99.99

BAM 73.42 93.42 53.53 81.13 40.72 65.39 98.42 100.00

SAN-c 74.82 97.86 55.23 85.82 41.74 67.10 99.24 100.00

SAN-d 78.89 99.97 56.53 87.26 41.49 66.95 99.76 100.00

Full

Datasets CIFAR10 CIFAR20 CIFAR100 GTSRB

Accuracy Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Base Model 68.55 90.51 49.32 73.00 37.83 62.95 97.85 99.98

CBAM 74.40 97.42 51.73 75.89 40.74 67.97 98.52 100.00

BAM 72.67 96.71 54.77 82.64 40.49 67.01 98.95 100.00

SAN-c 75.03 98.99 52.74 78.95 44.14 72.43 99.53 100.00

SAN-d 79.67 100.00 54.94 83.98 47.06 74.42 99.85 100.00

branch allows for better summarization of contextual information into attention mask

than CBAM, however, the approach of taking the global average and maximum to

summarize entire spatial information into single value limits the performance gains.

SAN leverages the salient changes in latent features to identify points of attention

to outperform both of these competitors.

Table 5.4 presents the classification performance of different architectures on

MNIST and FMNIST datasets with LeNet-5 architecture. Note that the LeNet-5 ar-
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Table 5.4: Model Classification Accuracies (Top-1 and Top-5) for LeNet-5 Model

Architecture

Datasets MNIST FMNIST

Accuracy Top-1 Top-5 Top-1 Top-5

Base Model 98.37 99.98 89.43 99.87

CBAM 97.88 99.98 89.27 99.85

BAM 98.52 99.99 89.64 99.90

SAN-c 98.56 99.99 89.75 99.92

SAN-d 98.70 100.00 89.94 99.96

chitecture is a special case, where the same architecture with SAN attention module

represents both bottleneck and full attention model, as LeNet has only 2 convolu-

tion layers and each layer is followed by a down-sampling layer thus making it both

bottleneck and full attention architecture simultaneously. Therefore, Table 5.4 does

not present full and bottleneck results separately. As shown in the figure, thanks

to the simplicity of the data, the baseline architecture has 98.37% (for MNIST) and

89.43% (for FMNIST) classification accuracy without any attention. Even in this

scenario where there is very limited room for improvement, SAN-d improved the

accuracy to 98.7% (for MNIST) and 89.94% (for FMNIST). In contrast, CBAM re-

sulted in a drop in accuracy to 97.88% (for MNIST) and 89.27% (for FMNIST).

Attention using BAM, on the other hand, provides some gains (98.52% for MNIST)

and 89.64% for FMNIST), but lower than the gains provided by SAN-d.

In Tables 5.2 and 5.3, the application of different attention modules on VGG-

16 and RESNet-18 architectures and their performance on relatively complex CI-

FAR10/20/100 and GTSRB datasets, under bottleneck and full attention placement
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Figure 5.9: Model Training Time (in seconds)

strategies is evaluared. These two figures reconfirm that, overall, SAN-d is the best

attention strategy, providing significant up to 9.71% accuracy gains over the base-

line.

Figure 5.8 provides sample attention masks to explain the key reasons behind

the accuracy gains of SAN. As shown in this figure, SAN is able to learn rich (diverse

and detailed) and robust attention masks. In stark contrast, CBAM learns only a

single attention mask shared across all channels in the convolutional layer, severely
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Figure 5.10: Model Training Time (seconds) for LeNet-5

limiting its ability to learn rich attention. While BAM does learn an explicit attention

mask for each individual channel, it is able to retain coarser details - adding only

limited richness to the network. In short, SAN’s ability to account for the differences

between two consecutive convolutional layers enables rich and robust attention

masks leading to significant boost in network performance.

Table 5.5 demonstrates that SAN is able to outperform CBAM and BAM for

deeper networks as well. SAN’s ability to learn salient changes across layers

proves beneficial, also when the level of abstraction increases in deeper networks.

5.5.5.2 Model Training Time

In Figures 5.9 and 5.10, the computational cost (training time) of SAN frame-

work against the competitors are compared. The figures show that the proposed

SAN mechanism introduces much smaller training overhead than the competitors,

CBAM and BAM. While SAN-d, with dilated convolutional kernels, requires more

training time than SAN-c, the difference is slight, and higher accuracy gains of SAN-

d makes that difference worthwhile. One important observation comparing Fig-
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ures 5.9a and 5.9b, is that on the same data, SAN provides significantly higher train-

ing execution gains over CBAM and BAM on (residual connection-based) RESNet-

18 than on VGG-16. In fact, while the training cost for SAN strategies are similar for

both networks, CBAM and BAM’s training costs doubles when residual connections

are introduced. This indicates that the scale-invariant robust attention generated

through DoC extrema lead to a much more effective use of the residual connections.

Overall, SAN provides models with higher classification accuracies compared to

CBAM and BAM, at a significantly lower training cost.

5.5.5.3 Time Series Classification and Forecasting

In Table 5.6 and 5.7, one can see that SAN outperforms the base model as well

as RAN for both classification and forecasting of multi-variate time series. For the

classification task (Table 5.6), further observe that, while all three models are able

to reach 100% model accuracy, SAN leads to 43% drop in model loss compares

to Base model and 39% for RAN attention module for bottleneck positions, and

for full attention position, SAN leads to 92% drop in loss against Base model and

89% against RAN, this demonstrated that the importance of input features learned

(attention mask) by SAN is more informed and robust than the mask learned by

RAN. For the forecasting task, SAN leads to maximum accuracy and minimum

forecasting error5.
5In Section 5.5.5.3 presents both model accuracy and loss. As in classification results, all models

reach 100% accuracy, therefore, model loss is leveraged as a measure to compare the models and

for forecasting, loss is used to measure the divergence of the forecasting results from ground truth.
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Table 5.5: Classification Accuracy for Deeper Models - CIFAR10 (VGG-19 and

ResNet-50) - Bottleneck

Network VGG-19 ResNet-50

Accuracy Top-1 Top-5 Top-1 Top-5

Base 69.48 86.95 67.79 90.86

CBAM 70.24 89.85 65.82 89.74

BAM 71.41 94.01 68.76 94.51

SAN-c 77.14 96.21 71.36 96.89

SAN-d 77.36 96.88 72.73 97.25

Table 5.6: Model Classification Accuracy and Loss for MOCAP Dataset for LSTM

Model4

Metric Accuracy Loss (MAE)

Position Bottleneck Full Bottleneck Full

Base Model 100.00 100.00 0.1118 0.1118

RAN 100.00 100.00 0.1055 0.0751

SAN 100.00 100.00 0.0641 0.0084

5.5.5.4 Object Detection

Table 5.8 presents that for both bottleneck and full positions, SAN can better learn to

detect objects of interest in an image. This highlights the importance of leveraging

the salient changes across layers(while using only a single trainable layer in the

attention module) as opposed to CBAM and BAM which rely on more than one

trainable layers in each module.
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Table 5.7: Model Forecasting Accuracy for Flight Fuel Consumption Dataset for

LSTM Model4

Metric Accuracy (cos. sim.) Loss (MAE)

Position Bottleneck Full Bottleneck Full

Base Model 0.9672 0.9672 40.88 40.88

RAN 0.9526 0.9745 37.04 33.40

SAN 0.9745 0.9773 33.40 31.48

Table 5.8: Model Object Detection Accuracy for GTSDB Dataset for VGG-16 Ar-

chitecture

Position Bottleneck Full

Base Model 86.79

CBAM 88.25 90.67

BAM 89.87 91.71

SAN-c 92.45 93.01

SAN-d 93.88 95.63

5.5.5.5 Ablation Studies

Finally Table 5.9 presents the ablation studies that validate the three key hypothe-

ses underlying the SAN attention framework:

– Cross-layer channel alignment: As discussed in Section 5.4.3.1, the latent

features from layers l − 1th and lth layer are not represented on the same

basis; therefore, SAN proposes an efficient transformation that maps these

two layers onto a common basis, without padding. In Table 5.9, w CCA refers

to case where channel alignment is used as described, whereas w/o CCA
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Table 5.9: Model Classification Accuracy vs Model Architecture and Dataset Sum-

marizing the Performance of Different Blocks Involved in Devising SAN Module (“–”:

Incompatible Configuration when Two Layers have Different Channel Counts)

Architectures LeNet-5 VGG-16 RESNet-18

Datasets MNIST FMNIST CIFAR10 CIFAR20 CIFAR100 GTSRB CIFAR10 CIFAR20 CIFAR100 GTSRB

0 Base Model 98.37 89.43 72.7 45.17 31.07 96.21 68.55 49.32 37.83 96.21

1 no-Abs, no-CCA,
– – 68.83 39.48 22.07 93.25 65.82 46.36 41.53 93.51

no-Extrema, no-Smoothing

2 Abs,no-CCA,
– – 70.45 42.17 30.99 93.96 68.83 48.42 42.3 94.01

no-Extrema, no-Smoothing

3 Abs,CCA,
98.34 89.55 73.95 40.19 32.34 95.98 71.53 49.17 42.86 96.23

no-Extrema, no-Smoothing

4 Abs, CCA,
98.17 89.28 72.79 42.3 29.21 94.96 70.59 48.62 42.17 96.34

Extrema, no-Smoothing

5 Abs, CCA,
98.56 89.75 78.42 50.23 34.58 97.96 74.82 55.23 44.14 98.31

Extrema, Smoothing

refers to the case where channels are not aligned.

– Absolute difference for extremaDoC construction: As discussed in Section 5.4.3.1,

SAN seeks attention at the extrema of the DoC – not only maxima – in order

to prevent the “sigmoid” operation on the latent features to wipe-out heavily

negative values, SAN defines DoC using absolute difference. In Table 5.9,

w Abs refers to case where absolute differences are used to construct DoC,

whereas w/o Abs refers to the case where simple (non-absolute) difference

is used.

– Attention to the extrema of DoC: As mentioned above, to seek points of atten-

tion, SAN looks at the extrema of DoC. In Table 5.9, w Extrema refers to case

where an extrema search step is applied on the DoC, whereas w/o Extrema

refers to the case where the DoC is used directly without seeking its extrema.

– Extrema smoothing: As discussed in section 5.4.3.3, while extrema help iden-
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tify the salient points in the latent features, smoothing of these extrema can

help eliminate noise and improve robustness. In Table 5.9, w Smoothing

refers to case where a final smoothing step is applied, whereas w/o Smooth-

ing refers to the case where the smoothing step is omitted.

As shown in the table, the highest accuracies are obtained when all four steps

are combined. It is especially interesting to see that, alone, extrema detection does

not improve accuracy – results with extrema detection, but without smoothing (#4)

are not better than results without extrema detection (#3); however, when combined

with the final smoothing step (#5) to eliminate artifacts, extrema detection is very

effective in boosting the overall accuracy.

5.6 Conclusion

This chapter presents the SAN framework a robust and model-independent at-

tention module that aims to guide the attention of the network architecture to salient

localized regions in the image/time series to boost the network accuracy, with min-

imal training overhead. To achieve this goal, an innovative robust feature learning

framework is proposed with novel scale-invariant attention networks (SAN) that

identify salient regions in the input data using extrema of the difference of Gaus-

sians. Unlike the existing attention networks, SAN primarily concentrates attention

on parts of the data where there is major change across space and scale. Exper-

imental evaluation shows that the proposed attention module, SAN, can be suc-

cessfully applied to various state-of-the-art architectures, such as LeNet-5, VGG-

16, and RESNet-18, as an add-on to significantly boost the effectiveness, including

for benchmark datasets. Experiments further showed that, SAN leads to minimal

training overhead in comparison to the attention modules, such as CBAM, BAM,

and RAN.
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Chapter 6

SDMA: SALIENCY DRIVEN MUTUAL ATTENTION

6.1 Overview

Integration of rich sensory technologies into critical applications, such as ges-

ture recognition and building energy optimization, has highlighted the importance

of intelligent time series analytics. To accommodate this demand, uni-variate ap-

proaches have been extended for multi-variate scenarios, but naive extensions

have lead to deterioration in model performances due to their limited ability to cap-

ture the information recorded in different variates and complex multi-variate time

series patterns’ evolution over time. Furthermore, real-world time series are often

contaminated with noisy information. In this chapter, it is noted that a time series

often carry robust localized temporal events that could help improve model per-

formance by highlighting the relevant information; however, the lack of sufficient

data to train for these events make it impossible for neural architectures to identify

and make use of these temporal events. SDMA argues that a companion process

helping identify salient events in the input time series and driving model’s attention

to the associated salient sub-sequences can help with learning a high-performing

network. Relying on this observation, a novel Saliency-Driven Mutual Cross Atten-

tion (SDMA) framework1 is proposed that extracts localized temporal events and

generate a saliency series to compliment the input time series. Further, an archi-

tecture which accounts for the mutual cross-talk between the input and saliency
1Garg, Yash, and Candan, K. Selçuk, ”SDMA: Saliency-Driven Cross Mutual Attention for Time

Series Analytics”, IEEE International Conference on Pattern Recognition, 2020
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series branches where input and saliency series attend each other is proposed.

Experiments show that the proposed mutually-cross attention framework can offer

significant boosts in model performance when compared against non-attentioned,

conventionally attentioned, and conventionally cross-attentioned models.

6.2 Introduction

Recent technological advances in sensory technologies have enabled large

scale integration of sensor networks in a wide variety of applications, such as ges-

ture recognition [34], weather monitoring [124], power usage forecasting [81], traffic

sign detection [126] , and flood prediction [74]. This rapid integration, consequently,

has lead to a significant explosion in the amount of temporal data being generated,

both in terms of depth (length of time series) and diversity (type of time series). Sen-

sor networks have enabled simultaneous recording a variety of attributes defining

a system, leading to the generation of multi-variate time series - each variate cor-

responding to a different attribute being recorded. This explosion in the pace of

multi-variate temporal data generation has stressed upon the importance of, intel-

ligent time series analytics.

6.2.1 Time Series Analysis

With the increase in the availability of time series data, knowledge discovery

tasks, such as classification and forecasting, that rely on these data have become

increasingly more feasible. The problem of time series analysis often involves

learning a function f than can map the observations recorded over time to a target

output. This target output can be a discrete (classification), f : X1...T → Y , or a

temporally evolving observation (forecasting), f : X1...T → Y1...T . The ultimate goal

of time series modeling is to learn from the past (t1, t2, . . . , t−1) observations and to
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Figure 6.1: A Sample Multi-variate Time Series, Tracking 62 Sensors, Created by

Body Motion Capture [1]

map the learning to the present (t) or the future (t+1, . . . , T ). The problem involves

a set of recorded variables X ∈ X1,X2, . . . ,Xd that drive a set target variables, Y

(see Figure 6.1). For classification, Y the target variable is a set of class labels,

and for forecasting, Y involves predicting the target variable sufficiently ahead in

the future, which we refer as “lead” (l), i.e. f : Xt−l → Yt.

6.2.2 Neural Networks for Time Series Analysis

Many techniques, including Dynamic Topic Models (DTM) [12] and deep neural

networks (DNNs), such as LSTMs [48], have been proposed to address time se-

ries imputation, labeling, and prediction tasks. LSTMs especially have been shown

to be more effective than the conventional feed-forward and recurrent neural net-

works. Modern neural networks leverage depth and width of their models to learn

complex patterns in the data in the form of deep features [110]. Conventional mod-

els, such as CNNs, and MLPs, lacks the ability to memorize temporal pattern over

time. To counter this limitations, recurrent networks (RNN) introduced a memorize

block in form of a recurrent connection to remember the pattern at time t−1 to help
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Figure 6.2: Overview of a Conventional Attention Mechanism, where an Attention

Branch Attends on the Features Learned by a Data Branch

inform the network at time t [99]. Consequently, one difficulty with neural network

based inference is the large number of model parameters that need to be learned

from data. This is especially problematic for sparse and noisy data sets where it is

difficult to learn these model parameters for accurate inference. Yet, as the num-

ber of variates and lengths of the time series increase, it is becoming increasingly

difficult to learn an effective model, specially for recurrent models [7]. Existing solu-

tions tend to fail when the events that are being inferred are rare or when detecting

and predicting anomalies.

6.2.3 Attention Mechanisms

The quality of the time series models often suffer from the curse of dimension-

ality. In particular, the model accuracy depends on how well the model captures

the richness and complexity of the patterns encoding in the variates. Recent re-

search has shown that attention mechanisms (that help the neural network to focus

on different aspects of the data at different stages of inference) has the potential to

alleviate this difficulty to some degree. As [7] points out, a complementary atten-
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tion block can help the network self determine the importance of the input features

and highlight a subset of significant input features. In general, an attention network

(see Figure 6.2), contains a feature and an attention branch interleaved together.

Here the aim of attention branch is to feed on the feature branch output and learn

the importance of individual deep features. However, it can be observed that a

naive attention block might not lead to substantial gains in network performance

(as shown in Section 6.5). DNNs capture features at different scales (depths), how-

ever these features remain vulnerable to noisy and redundant information, conse-

quently leading to overfitting. Recently, a variety of multi-stream deep architectures

that leverage cross attention to counter noisy and redundant information have been

proposed [84, 3]. The challenge with such attention mechanisms, is that the atten-

tion model itself needs to be constructed carefully to ensure that the model focuses

on the most relevant parameters, without mistakenly ignoring parameters critical

for the inference task.

6.2.4 Key Contributions: SDMA Framework

In this chapter, it is noted that a time series often carry robust localized temporal

events that could, at least in theory, help improve model performance; however,

the lack of sufficient data to train for these features make it impossible for neural

architectures and their attention mechanisms to identify and make use of these

features.

Observation #1 (Localized salient event-driven input attention): Traditional at-

tention mechanism assume that the networks can learn sufficiently rich deep fea-

tures for the task at hand. However, this might not be the case. It can be argued

that a separate process helping identify salient temporal events (highlighting the rel-

evant temporal information) and driving model’s attention to the associated salient
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sub-sequences can help with learning a high-performing network. Recent works,

such as [32] and [33], have shown that scale-space based approaches can be used

to learn high-performing networks. In particular, even though localized features, like

SIFT (Scale Invariant Feature Transform) [76] (for images) and UVTF (Uni-Variate

Temporal Events) [15] (for univariate time series), may not lead to very accurate

classifiers themselves, the information captured by these can nevertheless be use-

ful to help support high performing networks. In particular, one can identify salient

temporal events and their temporal scopes (sub-sequences) on a time series and

focus the model training (attention) on the identified sub-sequences [15].

These salient points highlights the relevant information encoded in the input

time series, which can be used to help improve the model performance.

Observation #2 (Mutually-supporting cross attention): Cross attention mech-

anisms, such as [77, 3, 84], help learn attention mask from one modality of time

series to attend another – Therefore, in theory the saliency series can be used to

learn attention masks for the input data series. However, SDMA argues argue (and

experimentally observe) that this will provide limited gains, because any noise in

saliency can potentially impact the overall accuracy. Therefore, SDMA argues that

a mutually-supporting cross attention mechanism between the input and saliency

branches (“attending the saliency” and “attending the input”) can help achieve su-

perior model performance, by capturing the relevant information (in itself ) and si-

multaneously suppressing the noisy information (in the other) and vice versa.

Summary: In summary, (a) one can learn accurate multi-variate models by lever-

aging salient multi-variate temporal events and their temporal scope to direct mod-

els’ attention to the salient information in the time series. (b) Instead of an archi-

tecture where the attention branch attending on the feature branch, an alternative

architecture where both branches are attending on each other can lead to superior
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performance. Relying on these observations and arguments, this chapter presents

a novel SDMA Framework, which brings together the following core observations.

Key contributions of SDMA are experimentally validated in Section 6.5 and observe

that SDMA is able to learn a high-performing model by leveraging the localized

temporal events and by implementing a cross-talk between feature and attention

branch, and compare it against state-of-the-art attention networks, such as SAN

[33] and DSTP [73] against their performance on various benchmarks datasets.

6.2.5 Organization of the Chapter

This chapter is organized as follows: Section 6.3 describes the existing work

in detail, Section 6.4 presents the proposed RACKNet framework, and Section

6.5 discusses the performance and robustness of RACKNet framework under var-

ious settings involving change in kernel budget and dropout rate for both CNN and

RCNN designs. Chapter conclude in Section 6.6.

6.3 Related Works

Success of neural networks various domains, such as face recognition [64],

power forecasting [81], traffic sign detection [126] , and flood prediction [74] have

driven the shift-away from localized-event based approaches, which provides a

rough overview through systematic extraction salient event points. Localized events

extraction leverages multi-scale representation of the input data to extract events

at different scale to capture scale-invariant information in the data by highlighting

relevant and suppressing irrelevant information. [15] has shown that key-events

can help reduce the computational cost of determining DTW warping path. [31]

demonstrated that localized features can be used to reduce the computational cost

of DTW-based similarity measures. More recently, [32, 33] used be used learn high-
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performing networks buy either using these event in pre-traiing analysis of data or

emulating event extraction during model training. Recurrent networks (RNN) in-

troduced a recurrent connection to remember the patterns at time t − 1 to learn

patterns at time t [99]. However, RNNs’ suffers from catastrophic forgetting for

long time series [7]. Long short-term memory (LSTM) extended RNNs’ by using

a cell state along with hidden state to robust memorization [48]. While LSTM has

proven successful [73, 94, 114] they remain vulnerable to noisy learning for multi-

variate time series. [7] proposed attention mechanism as a measure to highlight

relevant and suppress irrelevant features. DSTP [73] and DA-RNN[94] extended

the attention by exploring inter-variate and individual temporal relationship in time

series.

6.3.1 Cross-Attention Mechanism

With the rise in multi-modal learning, cross attention mechanisms have been

readily observed in the works such as image-text matching. [54] showed that deep

features when learned for each modality together in the single feed-forward phase,

leads to a better model performance. However, this work did not allow the modal-

ities to attend each other. [77] extends [54] by proposing a stack-cross attention

module, where first the image attended the text( caption) following by attentioned

text attending the image. [3] proposed to measure the degree of a disaster by using

image and text perform a mutual cross attention to eliminate the noisy information,

however, the input features to the cross attention modules were derived from pre-

trained DenseNet (image) and BERT (text) model. [84] proposed a cross attention

mechanism where two image representation (HSI and LiDAR) of the same object

were used to learn rich spectral and spatial attention masks to attend the deep

features learned by the network. Each of these works, [54, 77, 3, 84] have shown
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(a) Localized Temporal Events and Their Scopes (Red Boxes)

(b) Corresponding Saliency Series

Figure 6.3: (a) Localized Temporal Events Extracted on a Multi-Variate Time Series

and (b) the Corresponding Saliency Series Learned using the SDMA Framework

that for their respective evaluation models with cross attention demonstrate a su-

perior performance to the model that only had self-attention, thus highlighting the

fact that different modalities capture different aspects of the data, and when each

modality attended the other, they were able to highlight the relevant and suppress

the irrelevant information.

6.4 SDMA Framework

As discussed in Section 6.2, advances in sensory technologies has enabled

large-scale assimilation of streaming data (recording multiple dependent and inde-

pendent attributes simultaneously - multi-variate time series) at a very large scale

and speed. A multi-variate time series potentially contains both relevant and irrele-
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Figure 6.4: An Overview of the Proposed SDMA framework to Learn Saliency-

informed Input Attention Mask and the Architectural Design of the Mutually-

supporting Cross Attention Block: SDMA comprises of Three Stages: (1) Temporal

Event Extraction, (2) Constructing Saliency Series, and (3) Model Training With

Mutually Supporting Cross Attention. A Fully Connected (Fc) and Lstm Layer Is

Used As the Output Layer for Classification and Regression Task Respectively. ∗

Note That the SDMA block Can Be Extended to Multi-layer Architecture (As Shown

in Figure 6.10)

vant information and, unless the focus (or attention) of the network is pulled towards

relevant portions of the data, this can adversely impact the network performance.

Therefore,the structural information of the variate (in the form of salient temporal

events) can be leveraged to learn in an input attention to help highlight relevant and

suppress irrelevant information in a given variate (Figure 6.3). In this section, the

proposed SDMA Framework is presented that leverages salient events and their

temporal scopes as a way to generate salient input attention for the neural network

(Figure 6.4).
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6.4.1 Uni- and Multi-Variate Time Series

A uni-variate time series (UVTS) is a sequence of ordered pair of observations

and time at which observations were recorded for a given attribute (variate),

T = [(v1, t1) , (v2, t2) , . . . , (vT , tT )] . (6.1)

While in general the temporal separation between two consecutive timestamps can

be non-periodic, in this chapter the timestamps recorded in a UVTS are assumed

to be periodic in nature.

A multi-variate time series (MVTS), T, is a set of uni-variate time series, T , s.t.

T = {T1,T2, . . . ,TV } (6.2)

where, V is the number of variates, T ∈ RV×T , and T ∈ R1×T , and T is number of

timestamps.

6.4.2 Localized Temporal Events

Localized patterns have been shown to be effective for image retrieval [76] and

motion classification [75] tasks. Similarly to these works, the localized event extrac-

tion process consists of (a) “scale-space generation” and (b) “extrema detection”

steps to identify key intervals (or “events”) in the individual variates. The first step

of the process is to create a scale-space consisting of multiple smoothed versions

of a given series – each resulting series are then subtracted from the series in

the adjacent temporal scale to obtain difference-of-Gaussian series. Intuitively, the

smoothing process can be seen as generating a multi-scale representation of the

given series and thus the differences between smoothed versions of a given series

correspond to differences between the same series at different scales. Based on
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Figure 6.5: Creating the Gaussian Scale-Space and DoG for a Variate from a Multi-

Variate Time Series. Here, y and x Represents the Variate and Temporal Dimen-

sions of a Time Series

the argument that the interesting events will be maximally different from the over-

all pattern in their local neighborhoods, SDMA searches for those points that have

largest variations with respect to both time and scale.

6.4.2.1 Temporal Scale-Space Generation

Figure 6.5 visualizes the process for creating the scale-space from a multi-variate

time series. Let Tv represent a uni-variate time series, s.t. Tv ∈ T[v, ∗], and T
(t,σ)
v

represents the smoothed version of Tv through convolution with the Gaussian func-

tion along the temporal dimension:

G (t, σ) =
1√
2πσ

e
−t2

2σ2 (6.3)

such that

T (t,σ)
v = G (t, σ)⊛ Tv, (6.4)

where, ⊛ represents the convolution operaiton. Intuitively, Gaussian smoothing

can be perceived as a multi-scale representation of a given series (Tv), and the sub-

sequent differences of the different Gaussian smoothed (Difference-of-Gaussian

- DoG) series correspond to difference of the same series at difference scales.

Therefore, the DoG can be computed as

D(t,σ)
v = T (t,kσ)

v − T (t,σ)
v . (6.5)

Here, D(t,σ)
v is the difference between the representation of the same input series

(Tv) smoothed at different scales, σ and kσ (here, k is the constant multiplicative
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Figure 6.6: A Sample Candidate Event Point, F , (Solid Black) and its Neighbors in

Adjacent Scales “s + 1” (Red) and “s − 1” (Yellow) and in Time “t − 1” (Blue) and

“t+ 1” (Green)

factor).

Analogous to SIFT, series is initially smoothed by a factor of σ0, incrementally

smooth the series by a multiplicative factor k. The scale space is organized as

octaves, O, where each of these Oo, o ∈ {1, ..., O} octaves is further organized as

scales, S s.t. a given scale Ss, s ∈ 1, ..., S has an associated smoothing factor of

ksσ s.t. kS = 2, within each octave o:

T t,2oσ0
v = T t,(kS)oσ0

v (6.6)

As shown in Figure 6.5, for each octave (where the degree of smoothing is doubled),

the length of the series is reduced (by half) for efficient computation, but this is not

critical for the discussion.

6.4.2.2 Extrema Detection

In the next step, the points of interest are searched, ⟨v, t, o, s⟩ across multiple scales

of the given time series, v, by – here o denotes an octave and s denotes the corre-

sponding scale.

The search of local extrema (events) is performed by comparing the immediate

neighbor (see Figure 6.6) along both time and scale in the DoG representation of
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Figure 6.7: Overview of Event Scope and the Significance of Information Around

the Event Center (•): the Significance of the Event Reduces as it Moves Further

Away from the Center

the input series, Tv. This helps identify events that are different from their local

neighborhoods, both in scale and time.

Note that, each identified event has a temporal scale, s = (o×S)+s, defined by

the octave o and scale s, in which it is located. More formally, a quadruple ⟨v, t, o, s⟩,

is an extremum if it is maximum across its eight neighbors, three is each adjacent

scales (s− 1 and s+ 1), and two in time (t− 1 and t+ 1)) i.e.

max


Dt−1,ks+1σ0

v Dt,ks+1σ0
v Dt+1,ks+1σ0

v

Dt−1,ksσ0
v Dt,ksσ0

v Dt+1,ksσ0
v

Dt−1,ks−1σ0
v Dt,ks−1σ0

v Dt+1,ks−1σ0
v

 (6.7)

In other words, ⟨v, t, o, s⟩ is designated as an extremum if it is greater than Θ%

of the maximum of it’s 8 scale-time neighbors in DoG (D). Once the extrema have

been identified, a threshold center amplitude criteria (intensity threshold) is imposed

to ensure the the identified extrema has a minimum contrast of 0.005 as used in

[76].

6.4.2.3 Event Representation

Finally, an event, E , is defined as a ⟨v, t, σ, a⟩, where v is the variate on which it is

identified, t is the center of the event, σ = k(o×S)+s × σ0 is its temporal scale, and a

is the average of the observed values within 3σ (under Gaussian smoothing three

standard deviation would cover ∼ 99.73% of the original temporal points that has

contributed to the event (Figure 6.7).
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(a) Without-Cut (b) With-Cut

Figure 6.8: Two Strategies to Generate Attention Mask

6.4.3 Construction of the Saliency Series

In the next step, the localized temporal events identified on Tv and their event

scopes are translated into a saliency series Sv.

6.4.3.1 Per-Event Saliency

As seen in Section 6.4.2, a temporal event, Ei, can be described using four es-

sential attributes, ⟨vi, ti, σi, ai⟩, where σi represents the standard deviation of the

corresponding Gaussian kernel. Note that, by construction, the most significant in-

formation of a given event lies closer to the event’s center, ti, and this reduces on

moving away from the event center (Figure 6.7):

Mv,i(t, σi) =
1√
2πσi

e
−(t−ti)

2

2σ2
i . (6.8)

Gaussian series is normalized to obtain the normalized series, Mv,i:

Nv,i =
Mv,i(t, σi)

max(Mv,i(t, σ))
. (6.9)
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Figure 6.9: Aggregate Attention Mask with Three Local Events
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(b) SDMA Type 2 Architecture

Figure 6.10: Overview of the Two Types of SDMA Architecture to Integrate the

Attention Block in a Multi-Layer Network

Next the event amplitude, ai, is incorporated to obtain the corresponding saliency

series:

Sv,i = ai ∗Nv,i (6.10)

Note that, since it relies on a Gaussian function centered on the time ti, the input

mask defined above extends from the very beginning of the time series to its very

end (Figure 6.8a). Alternatively, since under Gaussian smoothing three standard

deviation would cover ∼ 99.73% of the original temporal points that has contributed

to the event, the start and end of the mask is defined as ti − 3σi and ti + 3σi,

respectively and the rest is set to 0 (Figure 6.8b). The two techniques are referred

as saliency series without cut and with cut, respectively.

6.4.3.2 Aggregate Saliency

In the final step, the saliency series from all identified events are combined. In

particular, let v be a variate and let Ev be the set of all events identified on this

variate. The aggregated saliency series Av ∈ R1×T for this variate is computed as
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follows (Figure 6.9):

Av =
∑
Ei∈Ev

Sv,i. (6.11)

The saliency series of all variates are then passed to the next phase for model

training with mutually supporting cross attention – in particular, these salience se-

ries are used to guide SDMAto attend on relevant parts of the series.

6.4.4 Mutually-Supporting Cross Attention

In this section, the design of SDMA attention block is proposed, which intro-

duces mutually-supporting attention across feature and attention branches. As

discussed in the introduction, localized events are rough approximations of salient

information in the series. The richness of the attention masks inherently depend

on the discriminatory power of the input events to the attention block – therefore,

it can be argued that by enabling a bi-directional cross-talk between the feature

branch and attention branch, in the form of mutually-supporting attention, can help

overcome the limitations of both.

6.4.4.1 Single-Layer SDMA

As shown in Figure 6.4, the SDMA comprises of two LSTM layers, one for the input

data and the other for saliency-based attention. The purpose of these two LSTMs

is to learn deep representation of input series and saliency series, respectively,

over time, through a combination of linear and non-linear operations. Unlike a con-

ventional attention mechanism (Figure 6.2), however, while the attention branch

attends the feature branch, the feature branch also attends the attention branch.

Let T be a time series corresponding to variate v and S be the corresponding

saliency series created through robust event discovery process describe above;
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then the SDMA model can be described as

YTv = LSTM(Tv,W , h, c) (6.12a)

YAv = LSTM(Sv,W , h, c) (6.12b)

UTv = sigmoid(YTv) (6.12c)

UAv = sigmoid(YAv) (6.12d)

GTv = YTv ⊙UAv (6.12e)

GAv = YAv ⊙UTv (6.12f)

Yo,v = GTv +GAv (6.12g)

Intuitively, the input data and saliency series are transformed into deep rep-

resentations through the use of LSTM layers (Equations 6.12a and 6.12b). These

deep representations are then used to learn two attention masks, on corresponding

to data, the other one to saliency, through the application of the sigmoid operations

(Equations 6.12c and 6.12d). Once the individual attention masks are learned, a

mutually-supporting cross-attention mechanism is implemented through Equations

6.12e and 6.12f. As a final step of the SDMA block, the final output is determined

using Equation 6.12g, which is the summation of attended data and saliency fea-

tures.

6.4.4.2 Multi-Layer SDMA

In this section, two architectural configurations are explored to integrate SDMA at-

tention block into a multi-layer network.

• Type 1: As shown in Figure 6.10a, in the first approach a sequential architec-

ture is constructed, where the outputs of feature and attention branches feed
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to the subsequent feature and attention branch. Note that in this architecture,

the saliency features are gradually abstracted along with the data features.

• Type 2: In the second architecture, a semi-parallel attention structure is lever-

aged: as shown in Figure 6.10b, in this case the deep saliency features are

learned from input saliency in each attention block opposed to deep saliency

features from prior block.

This section experimentally shows that the both SDMA architectures are able to

outperform the state-of-the-art. The experiments also show that the Type 2 archi-

tecture is able to provide better performance by countering the problem of over-

abstraction [46].

6.5 Experiments

In this section, the SDMA framework is experimentally evaluated and compare it

against alternative attention mechanism. The SDMA framework was implemented

using Keras Library [22] with Tensorflow Backend [2] and feature extraction (see

Table 6.1 ) was carried on MATLAB [59].

6.5.1 NN Architectures and Accuracy Measures

Two types of network architectures are considered, a single layer configuration

and a 3-layer configuration, where the number of hidden neurons in each layer in

the network is equal to twice the number of variates. All competitors have identical

data branch for each competitor and custom attention block. The performance of

SDMA Framework is evaluated for time series classification and forecasting. For

classification tasks, “categorical crossentropy” and “RMSProp” as model loss and

optimizer are used, respectively. For forecasting tasks, “mean absolute error” is
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Table 6.1: Overview of Datasets and Parameter Configuration

Dataset MOCAP AUSLAN SML

# Variates 62 22 17

# Timestamps 1000 45 96

# Instances 184 2585 42

# Targets 8 95 1

Task Classification Regression

Domain Gesture Energy

Epochs 2 25 50

# of octaves (O) 3 3 3

# of scales (S) 3 3 3

Initial Sigma (σ0) 0.5 1.5 2

Intensity Threshold 0.005 0.005 0.005

reported and also use it as model loss/error. The dataset was split into training

(70%), validation (10%) and testing (20%) set. Models were trained for fixed epochs

(see Table 6.1) and best model performance is reported. For forecasting models

l = 1 is used to predict target 1 step ahead in the future. Execution times are not

reported, as equal number of epochs for each configuration.

6.5.2 Datasets

The performance of SDMA framework are evaluated on three benchmarks:

• MOCAP (Motion Capture) [1] data set was recorded at CMU’s Motion Capture

Lab – the subject wore an exoskeleton comprised of motion sensors recording

62 attributes for a period of 1000 time units, and for 8 gestures.
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Table 6.2: Comparison of Model Performance for SDMA Framework and Various

Baseline Attention Mechanisms

Evaluation Metric Classification Accuracy (↑) Forecasting Error (↓)

Benchmark Datasets MOCAP AUSLAN SML

Architecture Type
Single Multi-Layer Single Multi-Layer Single Multi-Layer

Layer Type 1 Type 2 Layer Type 1 Type 2 Layer Type 1 Type 2

Base W/O Attention 72.65 68.53 68.53 71.16 69.40 69.40 0.129 0.157 0.157

A
tte

nt
io
n

Conv. Attn.

Self [71] 74.41 70.88 70.88 72.91 73.96 73.96 0.099 0.131 0.131

DSTP [73] N.A. 71.64 71.64 N.A. 71.05 71.05 N.A. 0.121 0.121

SAN [33] 77.35 70.88 70.88 74.23 70.00 70.00 0.115 0.133 0.133

FusAtNet (Data Only) [84] 74.32 74.32 74.32 81.61 81.61 81.61 0.104 0.104 0.104

Conv. Cross-Attn
FusAtNet (Data + Sal.) [84] 84.12 84.12 84.12 82.15 82.15 82.15 0.089 0.089 0.089

SDCA 75.88 82.94 81.82 80.17 78.63 82.77 0.097 0.103 0.092

Mutual Cross-Attn SDMA (Proposed) 88.23 84.05 91.17 88.77 85.96 86.56 0.078 0.094 0.087

• AUSLAN (Australian Sign Language) [56] datasets is comprised of 22 vari-

ates recording 95 hand gestures for 2565 instances for an average length of

45 time units.

• SML [81] is a data set from a building energy monitoring systems recording

24 attributes, for 40 calendar days recording attributes every 15 mins.

Table 6.1 summarizes the datasets.

6.5.3 Competitors

As competitors, five NN attention modules are considered:

• Self Attention [71] is a mechanism to compute relationships among input

features using activation functions, such as “sigmoid”.

• DSTP [73] a dual-stage two-phase attention, applies attention along variates

and time in two separate stages.
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Table 6.3: Performance Evaluation for Various Dataset Using SDMA Framework

for Various Mask Initialization Sstrategies

Evaluation Metric Classification Accuracy (↑) Forecasting Error (↓)

Benchmark Datasets MOCAP AUSLAN SML

Architecture Type
Single Multi-Layer Single Multi-Layer Single Multi-Layer

Layer Type 1 Type 2 Layer Type 1 Type 2 Layer Type 1 Type 2

Base W/O Attention 72.65 68.53 68.53 71.16 69.4 69.40 0.129 0.157 0.157

G
au
ss
ia
n

Scale-Space 83.82 77.65 85.29 73.26 74.23 83.47 0.103 0.129 0.097

Unit With-Cut 82.35 77.65 82.35 73.70 77.45 83.47 0.086 0.116 0.101

Amplitude W/O-Cut 84.12 77.94 79.12 76.04 78.42 82.32 0.087 0.112 0.104

Center With-Cut 86.18 72.65 81.18 73.89 79.35 81.72 0.085 0.125 0.103

Amplitude W/O-Cut 83.24 72.18 82.06 75.86 83.95 85.88 0.091 0.129 0.113

Average With-Cut 82.94 79.41 82.35 84.24 81.40 82.28 0.082 0.109 0.101

Amplitude W/O-Cut (Proposed) 88.23 84.05 91.17 88.77 85.96 86.56 0.078 0.094 0.087

• SAN [33] emulates localized event extraction within the attention block for

dynamic feature extraction to adaptively drive network attention.

• FusAtNet [84] is a cross attention module that learns different attention masks

using the two input modalities; FusAtNet is trained with the input time series

and saliency series.

• SDCA (Saliency Driven Cross Attention) is a variant of the proposed SDMA,

where only the input features are attended based on the saliency series ex-

tracted the event analysis process described in Section 6.4.

6.5.4 Results

6.5.4.1 Model Performance

Table 6.2 presents the classification accuracy results (higher the better ↑), and fore-

casting error results (lower the better ↓) as well. As shown in the table, models

trained with SDMA as the attention blocks are able to outperform the competitors
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and the SDCA variant (which does not leverage mutual-enforcement within the at-

tention block). Existing mechanisms, such as Self and DSTP, either look at one

single time instance along variates (fine-grained) or over the entire length of the

variates (coarser), thus ignoring the localized, multi-scale, changes in various sub-

sequences in the time series. Furthermore, SDMA is able to outperform the state-

of-the-art FusAtNet (data+saliency) cross attention mechanism. It can therefore

be argued that the proposed mutual cross attention mechanism in SDMA is more

effective in eliminating noise. Additionally, when input series are used to learn the

masks in FusAtNet (data-only), a loss in model performance can be observed; this

further confirms the robustness and richness of the learned saliency series.

The table also show that a single layer SDMA architecture is often as good or

better than the multi-later architectures. Among the multi-layer structures, however,

the Type-2 SDMA model architecture, which leverages a semi-parallel structure

to prevent over-abstraction of attention features, perform better than the Type-1

architecture.

6.5.4.2 Ablation Study

Next, the model performance is evaluated for various design choices made in

the SDMA Framework through an ablation study. The results are presented in

Table 6.3. In this table, an architecture without attention against the proposed

mutually-enforcing saliency based attention (SDMA) architecture under different

strategies for generating the underlying saliency series is considered. Here

• scale space corresponds to the version of SDMA, where the output of Eq. 6.4

is used directly to construct the per-event saliency series;
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• unit amplitude corresponds to a scenario where all events are assigned the

same magnitude after normalization; i.e, the output of Equation 6.9 is used

as per-event saliency;

• in center amplitude, the amplitude that the event center is used as the event

amplitude in Eq. 6.10; and

• in mean amplitude, the average of the amplitudes within the event scope is

used as the event amplitude in Eq. 6.10.

The table compares the with-cut and without-cut strategies for series constructions.

As shown in the table 6.3, the saliency strategy which considers the average

amplitude based scaling of saliency (which considers the entire temporal scope

of the event), complemented with a without-cut construction (which avoids poten-

tial aberrations at the border of the event scope), consistently provides the best

performing attention model.

6.6 Conclusion

This chapter presents the novel SDMA Framework for learning a saliency series

for a given input time series. In particular, a novel approach to initialize attention

as a function of localized temporal events and their temporal scopes are proposed.

These events help highlight the salient sub-sequences for the network to focus

on. SDMA leverages the novel mutually supporting cross-attention architecture to

combine information from input series and saliency series, where “input attending

saliency” and “saliency attending the input”, providing superior gains then conven-

tional and cross-attention mechanisms. Experimental evaluation on the various

datasets, such as MOCAP, AUSLAN, and SML highlight that SDMA outperforms

state-of-the-art attentions mechanism.
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Chapter 7

XM2A: MULTI-SCALE MULTI-HEAD ATTENTION WITH CROSS-TALK

7.1 Overview

Advances in sensory technologies are enabling the capture of a diverse spec-

trum of real-world data streams. Increasing availability of such data, especially in

the form of multi-variate time series, allow for new opportunities for applications that

rely on identifying and leveraging complex temporal patterns A particular challenge

such algorithms face is that complex patterns consist of multiple simpler patterns of

varying scales (temporal length). While several recent works (such as multi-head

attention networks) recognized the fact complex patterns need to be understood in

the form of multiple simpler patterns,this chapter notes that existing works lack the

ability of represent the interactions across these constituting patterns. To tackle this

limitation, this chapter presents a novel Multi-scale Multi-head Attention with Cross-

Talk (XM2A) framework designed to represent multi-scale patterns that make up a

complex pattern by configuring each attention head to learn a pattern at a particular

scale and accounting for the co-existence of patterns at multiple scales through a

cross-talking mechanism among the heads. Experiments show that XM2A outper-

forms state-of-the-art attention mechanisms on benchmark datasets.

7.2 Introduction

Recent advances in sensor technologies have enabled assimilation of large

amount of streaming data in a wide variety of applications, from gesture recog-

nition [34] to object recognition [113] and speech processing [85]. In particular,
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Figure 7.1: Overview of Salient Multi-Scale Temporal Patterns Extracted from a

Multi-Variate Time Series [96]

sensor networks have enabled simultaneous recording of a multitude of attributes,

leading to large multi-variate time series - each variate corresponding to a differ-

ent attribute being recorded. This explosion in the pace of multi-variate temporal

data generation has highlighted the need for effective time series analytics, helping

discover complex patterns captured in temporal data.

7.2.1 Multi-Scale Feature Learning

Localized multi-scale features extraction approaches, such as SIFT [76] and

RMT [15, 75] (see Figure 7.1), have shown promise at identifying salient and ro-

bust information in image matching and time series analytics, respectively. In a

similar vain, neural networks learn multi-scale features by interleaving trainable

layers (capturing different aspects of the data) and pooling layers (to vary the scale

of feature maps) [106, 110]. [128] has shown that combining salient local patterns

learned by [76] and global feature maps discovered through a deep neural network

can improve model performance in image analysis. [33] has shown that the model

performance can be further boosted by simulating the localized multi-scale feature

extraction process within the network itself when learning attention masks.
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Figure 7.2: An Abstract Overview of the Proposed XM2A Framework, Introducing

the Cross-Talk Between Attention Heads to Share Multi-Scale Information Learned

on Each Head Independently; This is Followed by Learning a Rich Attention Mask

Capturing Information from Multi-Head. i.e. Information Learned Using Kernel of

Different Size at Each Attention Head

7.2.2 Time Series Analysis with Multi-Head Attention

Recurrent networks and LSTMs [99, 48, 20], where the goal is to learn a pre-

dictor, p : T|W → Y to map the input (T) to the output (Y ) using model parameter

(W ), may require large amounts of resources due to their computational complex-

ities that slow the model training and can reduce the model effectiveness. Further-

more, real-world time series, often contain noisy information that can impact the

model performance. [114] pointed that if the input (or latent) features are properly

attended, one can eliminate the need for recurrent units [99, 48, 20]. This not only
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enables to use of computationally efficient dense and convolutional units, but also

enables robustness of the model against noise in the input data. [114] further pro-

posed that it may be possible to capture diverse relationships between a pair of

timestamps by using multiple operations, called “attention heads”, simultaneously.

While this approach has shown promise in neural machine translation tasks, unfor-

tunately it fails to account for the fact that local temporal patterns of different scales

can be important, moreover, the proposed operations do not account for patterns

spanning multiple timestamps. [40], recently, proposed a multi-scale multi-head

self-attention (MSMSA) mechanism to learn multi-scale features with the attention

heads to capture local patterns at different scales. However, the design of the

multi-scale module in [40] does not account for the interactions among the atten-

tion elements of different scales.

7.2.3 Key Contributions

As outlined above, multi-variate time series often include robust localized pat-

terns, in the form of sub-sequences, that carry information critical to a given target

variable, Y , and attention mechanisms leverage these patterns to focus the compu-

tation to relevant parts of the data. Conventional approaches, such as [79, 7, 114],

only consider sub-sequences of fixed length, whereas recent multi-scale work, such

as [40], fail to account for the interactions among the patterns of different scales.

To tackle this limitation, this chapter presents the proposed novel Multi-scale Multi-

head Attention with Cross Talk (XM2A) framework designed to represent multi-

scale patterns that make up a complex pattern by configuring each attention head

to learn patterns at a particular scale and accounting for co-existence of patterns

at multiple scales through a cross-talking mechanism among the attention heads

(Figure 7.2):
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• Multi-Scale, Multi-Head Attention with Small Number of Trainable Pa-

rameters: Traditional multi-head attention modules learn patterns at a single

scale (see Section 7.4.1). XM2A argue that this is a critically flawed assump-

tion that does not hold true for many applications; in contrast, these applica-

tions involve a spectrum patterns at different lengths. As opposed to conven-

tional attentional mechanisms that learn the query and key-value pair directly

by applying a linear transformation using weight matrices, XM2A uses con-

volutional transformations in each attention head to help capture patterns at

different temporal scales. Moreover, in contrast to the existing work, such as

[40], the proposed XM2A attention framework introduces a smaller number of

trainable patterns, significantly improving efficiency and effectiveness of the

learning process.

• Attention Heads with Cross Talk: In XM2A, different attention heads learn

features of different scales that co-exist in the time series. However, it must be

noted that naïve concatenation of attention outputs may not necessarily be the

most effective way to capture the interactions among the multi-scale features.

Therefore, XM2A proposes a cross-talking mechanism among the attention

heads (Figure 7.3): a feature descriptor summarizes temporal and variate

level information at each attention head and the cross-talk among attention

heads allow the attention processes at multiple scales to share information to

help learn a strong predictor.

Experiments reported in Section 7.6 show that the proposed XM2A mecha-

nism outperforms state-of-the-art attention mechanisms, such as Transformers and

MSMSA, on benchmark datasets, such as SADD, AUSLAN, and MOCAP.
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7.3 Related Work

Multi-scale feature learning has long attracted the interest of pattern recognition

community, from localized feature extraction [76, 15, 75] or deep feature [106, 110]

learning multimedia analytical tasks. Deep features have shown promising results

in capturing features maps at different scales by stacking multiple layers and have

shown human-level performance [106, 110, 114]. Their extension to the domain

of time series, using RNNs [99], LSTMs [48], or GRUs [20], has shown promising

results as well. However, recurrent units are inherently complex and significantly

increase the model training time.

[7] observed that while the complexity of the recurrent units cannot be reduced,

an informed attention mechanism can help the models intelligently select a subset

of informative input features to improve the model performance. Transformer [114]

further observed that, when attention mechanism is used wisely, it can completely

eliminate the need of recurrent units in the network and one can replace them with

dense or convolutional unit. [114] proposed to use multiple attention head simul-

taneously in order to learn the relationships between different timestamps in the

time series (or tokens in the sentence embedding). However, transformer lacks

the ability to consider localized temporal patterns at different scales in a given

multi-head attention block. [40] proposed to learn multi-scale features of differ-

ent scales specific to each attention head, where the feature scale was determined

as (2 ∗ h − 1) where 1 ≤ h ≤ H is the attention head identifier. However, [40] fails

to observe that these multi-scale features co-exists in the original time series and

that these features can interact. Furthermore, the heuristic of [40] leads to a signifi-

cant increase in the number of trainable parameters. Based on these observations,

XM2A framework aims to discover multi-scale features with cross-talking attention
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heads to learn rich attention masks.
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Figure 7.3: XM2A vs. MSMSA [40]

7.4 XM2A Framework

A uni-variate time series (UVTS), T , is a sequence of ordered pair of obser-

vations and times at which observations were recorded for a given attribute (vari-

ate); i.e. T = [(v1, t1) , (v2, t2) , . . . , (vT , tT )]. A multi-variate time series (MVTS),

T ∈ RV×T , is a set of UVTS, T ∈ R1×T , s.t. T = {T1,T2, . . . ,TV } where V and

T are the numbers of variates and timestamps, respectively. Each MVTS is asso-

ciated with a symbolic label Y . XM2A represents this as a probability distribution

where true label has a probability of 1 and false labels 0. In time series classifi-

cation, the goal is to learn a predictor, p : T|W → Y that maps the input (T) to

the output (Y ) given model parameters (W ) in a way that minimizes the separation

between the true output Y and predicted output Y ′ = p(T|W ), i.e. △(Y, Y ′) – more
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details on this in Section 7.6.3.

7.4.1 Conventional Multi-Head Attention

Conventional attention mechanisms rely on the immediate past to learn impor-

tance of the data [51]; they also learn a single mapping (relationship) between the

query (Q – a given timestamp) and the keys (K – all timestamps) [79]. [114] pro-

posed an attention function which, for a given input, I, maps a query, Q, and a set

of key-value pairs, ⟨K,V ⟩, to an output, O, computed as a weighted sum of the

input values. Here, the query, Q, the key, K, and the values, V , are all obtained

through linear transformations on the input, I (i.e., Q = WQI, K = WKI, and

V = W V I). The output, O, is computed as

O = softmax(
QKT
√
dk

). (7.1)

Here,
√
dk is a scaling factor defined in terms of the dimensionality of the key

vector. This scaling factor is used for preventing the intermediate features from

exploding due to the magnitude of the query and key matrices. The attention head

is defined as a scaled dot product:

Attention(Q,K,V ) = softmax(
QKT
√
dk

)V . (7.2)

By extension, a multi-head attention block is defined as

MultiHead(I, h) = concat(head1, . . . , headH)W
O, (7.3)

where 1 ≤ h ≤ H denotes one of theH heads in the model, headh = Attention(Qh,Kh,Vh).

Finally, the output weight matrix WO ∈ RH.dk×V is used to map the output of the

concatenation back to the original number of variates.
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7.4.2 Multi-Scale Attention Heads in XM2A

Multi-head attention process enables the network to simultaneously learn mul-

tiple relationships among the query and the keys in the series. While multi-head

attention has shown promise in a variety of neural machine translation tasks, this

chapter observes that the conventional multi-head attention has significant limita-

tions – in particular, when attending many real-world time series, it is important

to look at local temporal neighborhoods of the query as patterns that may span

multiple scales. Leveraging multi-scale patterns can reduce the amount of noisy

information being propagated in the network, as different scales perform smoothing

at different levels; thus suppressing the details differently at different scales.

Based on these observations, XM2A uses convolutional transformations, similar

to MSMSA, in each attention head to help capture patterns at different temporal

scales, as opposed to conventional attentional mechanisms that learn the query

and key-value pair directly by applying a linear transformation using weight matrices

(WQ, WK , and W V ).

7.4.2.1 Learning Multi-Scale Patterns

To learn multi-scale temporal patterns, XM2A transforms the linear operation of

learning query, key, and value from a given input (I), into a 1D convolutional oper-

ation on a given attention head (h), i.e.

W †
hI →W c

h ⊛ I.

Here, † represents the individual weight matrix for query (Q), key (K) and value

(V ), and W c ∈ Rdk×s×1 is the weight matrix for convolution operation (⊛) where dk

represents the number of convolution kernels, and s× 1 is the size of the kernel –

152



i.e. the scale of temporal patterns learned. Given these, multi-scale patterns, S,

learned by the process (Step 1 in Figure 7.2) can be formally defined as,

Sh = W c
h ⊛ I. (7.4)

Note that, in XM2A, the scale of the temporal patterns learned is a function of

the number of attention heads: an attention module with H heads will learn tem-

poral patterns with scales s ∈ [1, . . . , H]. More specially, head1 will learn temporal

patterns of length 1, head2 will capture patterns of length 2, and so on.

7.4.2.2 Query and Key Descriptors

Unlike conventional attention processes, including MSMSA, which simply use scaled

dot-product between the query and key matrix, XM2A extracts and leverage query

and key descriptors, both along the time and variate dimensions, to re-calibrate

the intermediate network output; i.e. to learn the importance of each element in

the value matrix V . The key intuition behind the use of descriptors in the attention

process is that

there exists inherent interdependencies among the variates and,

similarly, among the timestamps and these interdependencies can be

extracted and represented in the form of query and key descriptors.

as shown in Step 2 Figure 7.2):

• Query descriptors (q⃗ ∈ RV×1) can be interpreted as queries learned through

global averaging of the multi-scale patterns along the temporal dimension.

They are extracted by compressing the information captured for each variate
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into a single value, s.t.

∀v = 1, . . . , dk q⃗h[v] =
1

T

T∑
t=1

Sh[t, v]. (7.5)

• Key descriptors (⃗k ∈ RT×1) can be interpreted as keys learned through

global averaging of the multi-scale patterns along the temporal dimension.

They are extracted by compressing the information captured for each times-

tamp into a single value, s.t.

∀t = 1, . . . , T k⃗h[t] =
1

dk

dk∑
v=1

Sh[t, v]. (7.6)

The average operation in Equation 7.6 and 7.5 helps suppress noise in the in-

termediate data. While the maximum operation can also be instead of average,

XM2A observes that maximum operation would leave the network susceptible to

outliers. In Section 7.6.4.3, experimentally show that models learned using average

based descriptors out-perform models learned using maximum based descriptors.

7.4.3 Cross-Talking among Attention Heads

In conventional multi-head attention networks, each attention head indepen-

dently learns an attention matrix without implicit or explicit knowledge of the learn-

ings at other attention heads. This is referred as self-talking attention heads; the

proposed key (temporal) and query (variate) descriptors can be used for learning

an attention matrix, M a
h ∈ RT×V (recording the attention weight for each element

in the value matrix) by performing a dot-product between the two descriptors, as

follows:

M a
h = softmax(q⃗hk⃗

T
h ). (7.7)
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Self-talking approach for learning the attention matrix does not capture the in-

teractions among the multi-scale attention heads. Therefore, XM2A establishes a

cross-talking mechanism among the attention heads to facilitate information shar-

ing among the heads.

Firstly, instead of learning a single attention matrix per attention head, XM2A com-

putes one cross-talking attention matrix per attention head pair (Steps 3-4 Figure

7.2) as follows:

∀1≤h1,h2≤H M a
h1,h2

= softmax(q⃗h1 k⃗
T
h2
) (7.8)

Once the cross-talking attention matrices are computed, the value matrix is at-

tended by each mask (Step 5 Figure 7.2):

∀1≤h1,h2≤H Y a
h1,h2

= M a
h1,h2
⊙ Vh1 . (7.9)

Next, XM2A applies an “sum&norm” operation on the outputs of each individual

attention; i.e. each attention head returns only a single output (Step 6 Figure 7.2):

∀1≤h1≤H Y norm
h1

= norm(
H∑

h2=1

Y a
h1,h2

). (7.10)

Here, the summation allows for merging different temporal patterns captured at

different scales. The normalization step that follows help prevent the gradients

from exploding due to potentially large sums.

In the final step, XM2A concatenates the individual attention head outputs and

computes a final output, Y ′, of the multi-scale, multi-headed attention module as a

whole:

Y ′ = concat(Y norm
1 , . . . ,Y norm

H )WO. (7.11)

The use of the output weight matrix, WO (as shown in Step 7 Figure 7.2), helps

fuse the information learned across different multi-scale attentions into a single
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Table 7.1: Feature Scale and # of Parameters for Different XM2A Variants

Variant Length of hth Feature # of Parameters

MSMSA (2 ∗ h)− 1 (2 ∗ h)− 1

XM2A-MSMSA (M) (2 ∗ h)− 1 (2 ∗ h)− 1

XM2A-Exp (E) 2h−1 2h−1

XM2A-Exp-Pool (EP) 2h−1 1

XM2A-Pool (P) h 1

XM2A-Hybrid (H) ⌈2h−1

h
⌉ h

XM2A h h

output of the multi-scale multi-head attention block, as the multi-scale patterns co-

exists in the input series (T).

7.5 Versions of XM2A

In the default XM2A formulation presented in the previous section, the H heads

have been constructed by incrementing the attention length by one for each head

starting from 1; i.e., 1 ≤ h ≤ H. However, XM2A sees that different versions of

XM2A are possible depending on how the attention lengths have been varied and

how many kernel are allocated per attention head:

• XM2A-MSMSA (M): This is the version of the XM2A algorithm, where the fea-

ture temporal length and the number of parameters in a kernel is determined

as 2 ∗ h− 1

• XM2A-Exp (E): This is the version of the XM2A algorithm, where the feature

temporal length and the number of parameters in a kernel is determined as

2h−1 to cover wider spread of information
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Table 7.2: Overview of Datasets and Parameter Configuration

Dataset SADD AUSLAN MOCAP

# Instances 8800 2585 184

# Timestamps 50 45 1000

# Variates 13 22 62

# Targets 10 95 8

Training Epochs 25 25 5

• XM2A-Pool (P): This version applies the pooling operation of size h, and

the feature temporal length is set as 1 to cover identical of information to

XM2A without increase in number of parameters

• XM2A-Exp-Pool (EP): This version applies the pooling operation of size 2h−1

and feature scale of 1 to cover wider (than XM2A) spread of information with-

out increase in number of parameters

Model accuracy and the impact of parameter complexity are evalauted for dif-

ferent versions of XM2A in the next section.

7.6 Experiments

In this section, the XM2A framework is evaluated and compare it against al-

ternative attention mechanisms. XM2A was implemented using Keras Library [22]

with Tensorflow [2].

7.6.1 Datasets and Network

Three multi-variate time series benchmark datasets are considered:

• SADD [41] contains 8800 spoken instance of digits (0 . . . 9) in arabic and rep-
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resented using 13 MFCCs over 50 time units (mel frequency cepstral coeffi-

cient).

• AUSLAN [56] is comprised of 22 variates recording 95 hand gestures for 2565

instances for an average length of 45 time units.

• MOCAP [1] consists of full-body gestures performed by 8 subjects recorded

using exoskeleton capturing 62 attributed over 1000 time units.

Datasets are summarized in Table 7.2. Each series T in the multi-time series T (see

Section 7.4) is transformed to have mean of zero and unit standard deviation. This

transformation has been shown to improve the model convergence during training

[66, 117, 55, 6].

7.6.2 Competitors

XM2A was compared against various non-attentioned and attentioned (single-

head and multi-head) networks as follows:

• Baseline networks: VGG [106] and InceptionNet [110] were considered as

baselines, as VGG learns multi-scale features with the increase and network

depth and InceptionNet simultaneously learn features of varying scales within

a layer.

• Self Attention: [79] proposes to let the data attend itself, i.e. softmax(q⃗T
t .⃗kt)v⃗t,

where, q, k, and v are not linearly transformed.

• SENet: [51] proposes to calibrate each neuron output with an identical score

by squeezing the entire neuron (Yni
) output into a single value, si = avg(Yni

)

and then passing it through an autoencoder to learn latent relationships.
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• BAM: [91] creates three branches: 1) data, 2) temporal, and 3) variate branches.

The temporal and variate branches, learn the attention mask exclusively for

time and variate information respectively and, in the data branch, the two

masks are fused together to attend the input data.

• Transformer: [114] proposes to parameterize [79] and to use multiple atten-

tion heads simultaneously. An attention head is defined as follows:

head(q⃗WQ, k⃗WK , v⃗W V );

the multi-head attention block is defined as a function of multiple heads:

MultiHead(q⃗, k⃗, v⃗) = [head1, . . . , headH ]W
O.

• MSMSA: [40] transforms each attention head from [114] to learn multi-scale

patterns, without cross-talk, where the scale is determined by 2× h− 1; here

h is the attention head identifier.

7.6.3 Model Training and Configuration

Models were trained for time series classification tasks. For model training, “cat-

egorical cross-entropy” and “RMSProp” were used as model loss and optimizer re-

spectively. Each dataset was split into training (70%), validation (10%) and testing

(20%) sets. As defined in [114], the model contained 8 attention heads, 64 hid-

den neusons in each attention head, and 6 layers. In the experiments best model

accuracy is reported after training the model for 25 epochs.
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Table 7.3: Comparison of Model Classification Accuracy of XM2A Against state-of-

the-art Attention Networks

Model Configuration
Classification Accuracy

SADD AUSLAN MOCAP

Baseline W/O Attn
Deep Net [106] 95.93 80.50 71.47

Wide Net [110] 96.01 81.29 72.29

A
tte

nt
io
n

Single-Head

Self [79] 94.56 82.50 73.76

SENet [51] 94.91 82.54 73.11

BAM [91] 95.95 82.89 74.99

Multi-Head

Transformer [114] 96.16 85.52 75.11

MSMSA [40] 97.03 87.63 76.47

XM2A 98.12 89.52 78.82

7.6.4 Results

7.6.4.1 Parameter-Accuracy Tradeoff

In Figure 7.4 presents the parameter-accuracy tradeoff analysis for the various vari-

ants of XM2A, along with the basic Transformer and MSMSA architectures. As it

can be seen in the figure, MSMSA provides better accuracy than Transformer, but

requires a significantly higher number of parameters. In contrast, XM2A variants

always provide better accuracy than both Transformer and MSMSA and the num-

ber of parameters can be as low as that of Transformer (for XM2A-P). The default

XM2A provides the best overall accuracy and the default version is considered in

the rest of the section.
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Table 7.4: Model Accuracy for Various Model Configurations

Model Configuration Classification Accuracy

Feature Data Cross
SADD AUSLAN MOCAP

Type Norm. Talking

Maximum

– ST 94.99 80.40 71.76

Batch
IS 96.02 85.70 74.94

SS 96.24 86.24 76.89

Layer
IS 95.96 86.12 75.41

SS 97.52 88.15 77.99

Average

– ST 95.12 80.73 72.17

Batch
IS 96.21 86.56 76.14

SS 96.02 87.38 77.05

Layer
IS 96.50 86.93 76.47

SS (XM2A) 98.12 89.52 78.82

7.6.4.2 Model Performance against Competitors

Table 7.3 presents the classification accuracy results for XM2A and compare it

against various state of the art attention mechanisms. As it can be seen in the ta-

ble, models trained with XM2A-based multi-head attention module outperforms not

only the traditional attention modules, such as Self, SENet1, and BAM, but also,

the Transformer, and MSMSA. It is important to note that, XM2A leads to signif-
1While not critical to this discussion, it is interesting to note that Self and SENet based attention

mechanisms lead to a drop in model performance for the SADD dataset – this is due to the presence

of ReLU activation in the attention block, which eliminates the negative MFCC signals that are of

significant importance in the domain of speech recognition.
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Figure 7.4: Trade-off Between Number of Model Parameters and Model Accuracies

icant gains in model performance against MSMSA. This confirms the argument

that that there co-exist local patterns of different scales and they, together, define a

complex pattern to attend – therefore, allowing simpler multi-scale patterns learned

at different attention heads share their knowledge through cross talking help dis-

cover complex patterns that provide superior attention performance. The fact that

XM2A requires a smaller number of model parameters than MSMSA (as seen in

Figure 7.4) further confirms the significance of cross-talking between the attention

heads.

162



7.6.4.3 Ablation Study

This section presents the evaluation of various design choices made in the XM2A frame-

work. In particular, the key and query descriptor generation (Eq 7.5 & 7.6), cross-

talking (Eq 7.8) and normalization steps (Eq 7.10) are evaluated: (a) Descriptors

can be generated in two ways: averaged and maximum descriptors. (b) Two dif-

ferent normalization strategies are considered: Batch [55] and Layer Norm [6]. (c)

Further different talking mechanisms were considered to generate attention masks:

in self-talk (ST), (Eq 7.7) uses the key and query descriptors within each attention

head exclusively (i.e. no cross-talk); in input-to-scale (IS), cross-talking generates

key and query descriptors for V (the value matrix) and cross talk is between the

query of input and key of the head and key of the value and query of the head, re-

spectively; scale-to-scale (SS), as defined in Eq 7.9, is the proposed scale-to-scale

cross-talk mechanism for XM2A.

As it can be seen in the Table 7.4, XM2A outperforms all alternative config-

urations. In general, a better model performance is observed with averaged de-

scriptor. This is because average operation is less susceptible to outliers (noisy

activations) than maximum operation. Moreover, it can be seen that the layer nor-

malization leads to a superior performance as it preserves inter-neuron relations

in a layer as opposed to batch norm, which treats each neuron activation inde-

pendently. Finally, the proposed multi-scale cross-talk mechanisms provides per-

formance boosts against self-talk (or no crosstalk) and input-to-scale cross-talking

strategies.
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7.7 Conclusion

In this work, it is observed that existing multi-head attention techniques lack

the ability of capture multi-scale patterns simultaneously in the attention module

and fail to account for the co-existence of such patterns at different scales. There-

fore, a novel Multi-scale Multi-head Attention with Cross-Talk, XM2A Framework

is proposed that can capture multi-scale patterns by enabling attention heads to

learn patterns at a particular scale, while accounting for the co-existence of other

patterns at other scales through a cross-talking mechanism among the attention

heads. XM2A outperforms state-of-the-art attention mechanisms, such as Trans-

formers and MSMSA, on benchmark datasets, SADD, AUSLAN, and MOCAP.
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Chapter 8

CONCLUSION AND FUTURE WORK

The desiderata of this dissertation are to design data-driven approaches that can

help learn a high-performing deep neural network. The works present in this dis-

sertation focus on leveraging the key insights captured in data, in particular, input

data, hidden (intermediate) data, and output (model inferences) data. To this end,

multiple works are proposed in this dissertation that leveraging of the data analysis

techniques to learn accurate models.

8.1 Robust Allocation of Convolution Kernel

A pre-training analysis of data can uncover insights in the data in form of local

multi-scale features that are of various sizes and complexities, and have diversity

and distributions. Chapter 3 presents the RACKNet framework that can minimize

the need for hand-crafting, by relying on the pre-training analysis of input data it-

self. To achieve this, RACKNet presents several hypotheses that link the properties

of the localized image features to the neural networks and then, relying on these

hypotheses, RACKNet framework aims to learn multiple hyper-parameters by ex-

tracting information encoded in the input datasets.

8.2 Output Information Sparsification

Complex datasets rely on a large number of network parameters for learning

accurate models, however, this often introduces noisy and irrelevant model param-

eters that have insignificant contribution to the model output. Chapter 4 presents

the iSparse framework that can sparsify the network parameters in a pre-trained
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network without impacting the network performance. iSparse leverages a novel

edge significance score to determine the importance of an edge concerning the

final network output.

8.3 Scale-Space Attention Network

Each layer in the network learns features of a particular scale, and as the net-

work gets deeper the sclae of the feature increases. However, while attending a

given layer in the network, the attention mechanism can only leveraging feature of

a particular scale. Chapter 5 presents the SAN framework that leverage output of

two adjacent layers in the network to compare the changes in the activation across

multiple scale through the user of novel difference-of-convolutions, followed by the

feature augmentation to highlight the saliency local extrema in the data. This work

highlights the fact that understanding the chances happening across the layers in

the network can help boost the model accuracy.

8.4 Saliency-driven Mutual Cross Attention

Additional pre-training analysis of the data can help separate noisy irrelevant

information from the relevant information. Chapter 6 presents the SDMA framework

that specializes in highlighting the relevant information in the data while suppressing

the noisy irrelevant information through the extraction of an additional input modality

for the network called saliency series. This saliency series representation salient

points in the data and their local neighborhood that is of prominence.

8.5 Multi-Scale Multi-Head Attention with Cross Talk

This dissertation observes that simpler multi-scale features co-exist in the data

and together summarize the complex patterns. However, conventional attention

166



mechanisms fail at leveraging the co-existence of multi-scale features to describe

the complex patterns. Chapter 7 presents the XM2A framework, that explicitly

learns multi-scale features in each attention heads and shares the knowledge be-

tween each attention head with the mechanism called cross talk. This knowledge

sharing allows for rich attention mask extraction.

8.6 Future Work

Multi-scale features have shown promise in both deep networks and conven-

tional machine learning. With the rise in real-world applications, complex patterns,

especially temporal patterns, can span both in time and across multiple attributes.

This dissertation primarily explores patterns in the individual attributes (variate)

without incorporating the inter-variate relationship. As future work, the works in

this dissertation, especially, SDMA and XM2A can be explored further with the in-

corporation of the graph convolutional networks as an additional input modality to

supply the network with more information to help model the relationships better.
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